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Abstract 

Glenohumeral osteoarthritis is a degenerative shoulder joint disease, which causes the breakdown of articu-

lar cartilage and bone. People affected by this disease suffer from severe pain and eventually reduced mo-

bility and poor life quality. This disease is unfortunately prevalent in the elderly population. In most advanced 

cases, a total joint replacement or total shoulder arthroplasty (TSA) is needed. There are two types of TSA: 

the anatomical Total Shoulder Arthroplasty (aTSA) and the reverse Total Shoulder Arthroplasty (rTSA). aTSA 

is usually performed in cases of intact rotator cuff muscles. It involves the replacement of the damaged car-

tilage and exposed bones by prostheses, thereby re-establishing the relative motion of the joint and dramat-

ically reducing pain. As a result, basic human functions such as lifting a coffee pot or combing one’s hair are 

restored. With the elderly population constantly growing, the number of aTSAs performed each year is in-

creasing: in Switzerland, the hospitalization rate due to shoulder problems has exceeded the number due to 

other injuries for the first time in 2013. However, although the aTSA is usually an excellent procedure, its 

failure rate is relatively high mostly because of the aseptic glenoid implant loosening, often associated to an 

unstable loading on the glenoid implant. This instability may be reinforced by the presence of glenohumeral 

subluxation, defined as the relative position of the humeral head with respect to the glenoid fossa. 

A new design of prosthesis, called overcorrected (OC) prosthesis, was proposed as a means to reduce the 

postoperative subluxation; however, it was never tested experimentally nor clinically. The objective of this 

thesis was to evaluate the potential of posterior OC implants on the reduction of posterior subluxation of 

patients planned for aTSA. Due to inherent difficulties in acquiring in-vivo measurements as well as testing 

prosthesis designs on real-life patients, finite element (FE) models have been developed worldwide with the 

aim of first describing then predicting shoulder biomechanical behavior under various conditions. Thus, a 

patient-specific FE model of the glenoid bone bone after aTSA was developed in order to compare OC versus 

standard implants. This FE model was based on patients of the Lausanne University Hospital (CHUV) who 

were planned for aTSA, and required three main steps: 

First, it was important for the FE model to account for patient-specific anthropometric data such as glenoid 

orientations, glenoid density or muscle strength, responsible for movements. Based on the patients’ pre-

operative computed tomography (CT) data, the glenoid bone FE model of each patient was developed. Virtual 
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implant placement was performed for each FE model, replicating preoperative planning and matching post-

operative CT. 

Second, patient-specific loading was computed thanks to a patient-specific musculoskeletal model (MSM). 

This MSM allowed the evaluation of the joint reaction force during activities of daily living such as lifting a 

coffee cup or combing one’s hair. As such, each of the patient’s FE model contained patient-specific anatom-

ical information and patient-specific glenohumeral loading for three activities of daily living. 

Third, this FE model required a material law for the bone in order to predict the bone reaction to the implant 

design. In order to evaluate this material law, two parts were required. First, an experimental set-up involving 

Digital Volume Correlation (DVC) was designed. DVC is a recent noninvasive technique, which enables the 

measurement of displacement and deformation in 3D, usually at the micro-level using a micro-CT (μCT) scan-

ner. In this part of the project, cadaveric implanted glenoids were loaded in a μCT-compatible device and 

scanned before and during loading. DVC was used to extract displacement and compressive strain at the peri-

implant area, with an accuracy of 694.3 με and a precision of 440.3 με. Displacement random error was 6.1 

μm. In the second part, FE models replicating the experiment were developed with the first goal of predicting 

the displacement and strain measured by DVC and the secondary goal of finding the most suitable bone 

material law that enabled a good replication of the experiment. Five specimen-specific FE models were cre-

ated. While the displacement was very well replicated (Slope =1.0, R2 = 1.0), the strain was poorly replicated 

(Slope = 0.51 - 0.70, R2 = 0.28 - 0.37). 

The workflow and the most suitable material law found in the above-described part of the thesis were used 

to create patient-specific FE models that compared OC to standard implants. First results indicate that the 

OC design can reduce subluxation without over-constraining the underlying bone. It would be interesting to 

extend this study to a larger population to confirm the potential advantage of the OC implants over standard 

ones. 

To conclude, this thesis presents a framework to create advanced patient-specific numerical models of the 

glenohumeral joint after aTSA, which are able to include patient’s anthropometric data and patient-specific 

loading conditions. The latter entails also the ability to replicate activities of daily living. This framework is 

composed of (i) a procedure to convert preoperative CT data in patient-specific FE models of the glenoid 

bone after aTSA; (ii) a patient-specific MSM able to evaluate the glenohumeral joint reaction forces; (iii) an 

experimentally validated bone material law to evaluate the behavior of novel prosthetic designs in a simu-

lated environment. This work is a first step towards the development of a computer tool to assess optimal 

implant design, implantation strategy, as well as to offer personalized predictions in the clinic. 
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Résumé 

L’arthrose gléno-humérale ou omarthrose est une pathologie dégénérative de l’épaule qui se traduit par la 

dégradation progressive du cartilage qui recouvre l’os. Cette pathologie s’accompagne de douleurs aiguës et 

d’une réduction progressive de la mobilité dans l’articulation et par conséquent d’une détérioration de la 

qualité de vie. Cette pathologie touche le plus souvent la population âgée. Dans les cas les plus avancés 

d’omarthrose, le remplacement articulaire de l’épaule par une prothèse, plus communément appelé l’ar-

throplastie d’épaule, est fortement conseillé. Il existe actuellement deux types d’arthroplastie d’épaule : le 

premier consiste à remplacer l’articulation par une prothèse totale d’épaule de type anatomique (PTEa) et le 

second par une prothèse totale d’épaule de type inversée (PTEi). Cette dernière est utilisée dans le cas où les 

muscles de la coiffe des rotateurs ne sont pas endommagés. L’arthroplastie d’épaule de type anatomique 

remplace le cartilage endommagé et les os exposés par des prothèses, rétablit le mouvement dans l’articu-

lation et réduit fortement les douleurs. Ainsi les fonctions humaines basiques telles que prendre une tasse 

de café ou se coiffer les cheveux sont restituées. Avec le vieillissement de la population, the nombre de PTEa 

implantées augmente : en Suisse, le nombre d’hospitalisations dûes à des pathologies de l’épaule a dépassé, 

pour la 1ère fois en 2013, le nombre d’hospitalisations dûes à d’autres pathologies. Bien que l’arthroplastie 

d’épaule de type anatomique soit une chirurgie réussie, son taux de complications reste élevé. Le descelle-

ment aseptique du composant glénoïdien en est l’une des principales complications. Une charge excentrée 

sur le composant glénoïdien entrainant une instabilité est souvent citée comme cause de ce descellement. 

Cette instabilité peut être accentuée par la présence de subluxation, définie par la position de la tête humé-

rale relative à la cavité glénoïde. 

Un nouveau concept de prothèse, appelée prothèse « surcorrigée », a été proposé pour palier à une éven-

tuelle subluxation postopératoire récurrente mais n’a jamais été testé cliniquement. L’objectif principal de 

cette thèse est donc d’évaluer le potentiel de cette prothèse surcorrigée à réduire la subluxation postérieure 

chez les patients ayant besoin d’une PTEa. 

Il est difficile voire impossible d’effectuer certaines mesures in-vivo ou de tester des concepts de prothèses 

sur des patients. Pour cette raison, le développement de modèles numériques est en plein essor, leur but 

étant d’évaluer puis de prédire le fonctionnement de l’épaule sous différentes conditions. Ainsi, un modèle 

par éléments finis (FE) de l’épaule, spécifique au patient, a été développé afin de comparer la prothèse stan-
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dard et la prothèse surcorrigée. Ce modèle numérique est basé sur des patients du Centre Hospitalier Uni-

versitaire Vaudois (CHUV) qui avaient une pose de PTEa prévue. Ce modèle a été développé suivant ces trois 

axes : 

En premier lieu, il était important que le modèle FE contienne les données anthropométriques spécifiques à 

chacun de ces patients comme l’orientation de la glène, la densité osseuse ou encore la force musculaire, 

responsables du fonctionnement de l’épaule. Les tomodensitogrammes pré-chirurgicaux de la glène ont per-

mis la construction du modèle FE pour chacun des patients. La PTEa a été implantée virtuellement dans 

chaque modèle FE et a pu être placée correctement en suivant la planification chirurgicale et en se basant 

sur les tomodensitogrammes post-chirurgicaux. 

En second lieu, la force gléno-humérale (GHF) prédite durant des activités de la vie quotidienne telles que 

prendre une tasse de café ou se coiffer les cheveux, a été calculée grâce à un modèle musculosquelettique 

(MSM) spécifique à chaque patient. Ainsi, chacun des modèles FE proposés contient les données anato-

miques ainsi que la GHF spécifique au patient et prédite pour trois activités de la vie quotidienne. 

En troisième lieu, le modèle FE requiert une loi de comportement des matériaux de l’os afin de prédire la 

réaction de ce dernier face à différents concepts de prothèses. Pour cela, deux étapes ont été nécessaires : 

dans la première, un dispositif expérimental de Corrélation Volumique Numérique (communément appelée 

DVC) a été développé. DVC est une technique de mesure non-invasive permettant la mesure de champs de 

déplacement et de déformation en trois dimensions, à l’échelle microscopique et avec l’aide d’un micro to-

mographe (μCT). Dans cette partie du projet, des glènes cadavériques ont été implantées avec des prothèses 

standard, puis mises sous charge dans un μCT et scannées avant et durant la mise en charge. La méthode 

DVC a été utilisée pour mesurer les champs de déplacement et de compression dans la région autour de la 

prothèse avec une exactitude de 694.3 με et une précision de 440.3 με. L’erreur aléatoire de déplacement 

s’est élevée à 6.1 μm. La seconde partie consistait à construire des modèles FE répliquant l’expérience afin 

de prédire les champs de déplacement et compression ainsi que de trouver la meilleure loi de comportement 

de matériaux de l’os permettant une bonne réplication de l’expérience. Un modèle FE pour chacun des cinq 

spécimens mis sous charge a été créé. Le déplacement prédit par le modèle FE présentait une très bonne 

corrélation avec l’expérience (coefficient de détermination R2 = 1.0 et pente =1.0) mais les champs de com-

pression n’ont pas été assez bien corrélés (R2 = 0.28-0.37 et pente = 0.51-0.70). 

La loi de comportement de matériaux ainsi que les étapes requises pour le développement du modèle FE ont 

été utilisés pour créer des modèles FE spécifiques aux patients afin de comparer numériquement les deux 

concepts de prothèses standard et surcorrigée. Les résultats préliminaires indiquent que le concept de pro-

thèse surcorrigée réduit le risque de subluxation postopératoire sans pour autant surcontraindre l’os. Il serait 
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intéressant d’étendre cette étude à une plus large population afin de confirmer l’avantage de la prothèse 

surcorrigée. 

Pour conclure, cette thèse propose une structure pour créer des modèles par éléments finis de l’articulation 

gléno-humérale spécifiques à des patients ayant besoin d’une PTEa. Ces modèles contiennent des données 

anthropométriques et anatomiques de chaque patient ainsi que la force gléno-humérale spécifique à chacun 

et à certaines activités de la vie quotidienne. Cette structure est composée comme suit : i) une méthode de 

conversion des tomodensitogrammes pré-chirurgicaux en modèles par éléments finis de l’os, ii) un modèle 

musculosquelettique spécifique à chaque patient permettant de prédire la force gléno-humérale, iii) une loi 

de comportement de matériaux validée expérimentalement permettant l’évaluation du comportement os-

seux en présence de différents concepts de prothèses. Ce travail est une première étape vers le développe-

ment d’un outil numérique qui permettrait la sélection du concept de prothèse idéal, de la meilleure stratégie 

d’implantation ainsi que d’un diagnostic personnalisé dans un contexte clinique. 

Mots-clés 

Épaule, glène, arthroplastie totale de l’épaule de type anatomique, éléments finis, modèle musculosquelet-

tique, micro tomographe, corrélation volumique numérique, contraintes sur la glène. 
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 Introduction 

1.1 Clinical Background 

Daily activities such as moving the arms, grabbing, lifting and sports such as swimming and climbing are pos-

sible due to the large and complex joint known as shoulder. It is composed of four bones: the humerus, the 

scapula (commonly known as shoulder blade), the clavicle (commonly known as collarbone) and the sternum 

[1]. The shoulder is composed of four joints: the glenohumeral (GH) joint, the acromioclavicular (AC) joint, 

the sternoclavicular (SC) joint and the scapulothoracic (SC) joint. The coordination of these four joints and 

their associated bone segments and muscles enables the shoulder function (Figure 1:1). 

 

Figure 1:1 Joints of the Shoulder Complex.  

(Image courtesy of https://www.physio-pedia.com/Shoulder) 

The GH joint is the main joint of the shoulder, accounting for about two thirds of its range of motion. It is 

generally described as a synovial ball-and-socket joint where the humeral head (ball) is received into the 

glenoid cavity (socket) [2]. Due to the much smaller concavity of the glenoid fossa, the humeral head is able 

to slide over the surface of the glenoid fossa enabling complex movements and an extended range of motion. 

Indeed, the GH joint displays the highest range of motion of any joint in the human body. Nonetheless, this 

high mobility comes at the price of stability [1]. Stability is achieved through a complex mechanism of active 

(muscles) and passive stabilizers. The four rotator cuff muscles are known to provide one of the main mech-

anisms of shoulder stabilization, those muscles are the Supraspinatus, Subscapularis, Infraspinatus and Teres 
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Minor (Figure 1:2). They all arise from the scapula and attach to the humeral head [2–4]. The passive stabi-

lizers are composed by the glenohumeral capsule, the labrum, the bursae and all the ligaments of the shoul-

der [5] (Figure 1:3). 

 

Figure 1:2 Rotator cuff muscles of the shoulder. 

(Image courtesy of National Institute Of Arthritis And Musculoskeletal And Skin Diseases, NIAMS.) 

 

 

Figure 1:3 Passive stabilizers of the shoulder: left: frontal view and right: sagittal view. 

(Left image courtesy of https://teachmeanatomy.info/upper-limb/joints/shoulder) and right image courtesy of 

https://musculoskeletalkey.com/clinical-anatomy-and-biomechanics-of-the-glenohumeral-joint-including-stabilizers/) 
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A failure of the rotator cuff muscles can lead  to serious consequences: the uncontrolled posterior/anterior 

translation of the humeral head could lead to shoulder dislocation [3] or in more moderate cases, to a gradual 

wear of the glenoid cavity as well as the humeral head cartilage, therefore reducing the movement of the GH 

joint and causing the onset of pain. This reduction, coupled with cartilage damage may lead to problematic 

shoulder pathologies such as osteoarthritis and osteoporosis [4]. 

1.2 Glenohumeral Osteoarthritis 

Glenohumeral Osteoarthritis (OA) is a degenerative joint disease, which causes the breakdown of articular 

cartilage and bone. It is different from Rheumatoid Arthritis (RA), which is an inflammatory autoimmune 

condition [6,7] . People affected by OA suffer from severe pain and eventually reduced mobility and life qual-

ity. Several joints might be affected by OA, but the most common ones are knees, hips and fingers. Shoulder 

OA is not as prevalent but is still very common and increases with age [8]. Two types of OA are identified: 

“Primary” describes first-time OA without any available pre-existing condition and “secondary” OA may be 

caused by previous conditions such as chronic instability, humeral fracture, rotator cuff tears, surgery or 

trauma [8–10] . In Switzerland, 2013 was the first year in which the number of patients hospitalized due to 

osteo-articular and musculoskeletal pathologies exceeded the number of patients hospitalized because of 

other injuries [11]. 

1.3 Total Shoulder Arthroplasty 

In most advanced cases of OA, a total shoulder replacement, called Total Shoulder Arthroplasty (TSA) is ad-

vised. TSA consists in replacing the damaged cartilage and exposed bone by human-made implants in order 

to reestablish the basic shoulder function. Surgeons have the choice between two kinds of replacement: 

treatment using anatomical shoulder prosthesis, called anatomical Total Shoulder Arthroplasty (aTSA) or the 

newer reverse Total Shoulder Arthroplasty (rTSA). rTSA is preferred when faced with rotator cuff tears [4,12] 

(Figure 1:4). 
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Figure 1:4 Top: Depiction of Total Shoulder Arthroplasty. Bottom: Postoperative computed tomography images of ana-

tomical Total Shoulder Arthroplasty (aTSA, left) versus reverse Total Shoulder Arthroplasty (rTSA, right). 

(Top image courtesy of Wikimedia.org. Image under Creative Commons Attribution-Share Alike 4.0 International li-

cense. Author Bruce Blaus) 

Aiming to improve implant stability and to restore the mobility of the shoulder joint, but at the same time to 

protect the injured rotator cuff muscles, the implant used in rTSA was first invented in 1985 by Grammont 

[4,13,14]. The rTSA procedure consists in replacing the glenoid by a spherical implant and adding a cup at the 

humeral head (Figure 1:4, right). Although rTSA was successful in relieving pain and restoring function in 

many cases [4], this design had many drawbacks. The main complications associated with rTSA are: implant 

loosening and failure at the bone-baseplate interface, scapular notch (glenoid bone resorption due to cyclic 

contact with the humeral component), micromotion or wear of the humeral cup. 

The implant used for aTSA mimics the anatomy of the GH joint (Figure 1:4, left) and was first developed by 

Neer in 1972 [15]. The procedure consists in replacing the humeral head by a metallic sphere and the glenoid 
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by a polyethylene socket. In this case, the rotations in the joint are still performed mostly by the rotator cuff 

muscles and thus proved to be inefficient in case of damaged rotator cuff muscles [3]. Although aTSA may 

also be used in cases of rotator cuff insufficiency [15]. 

Although aTSA is an established procedure with very positive outcomes in terms of reduction of pain and 

restoring patient’s mobility [15,16], its failure and revision surgery rates are relatively high compared to other 

joints, such as hip arthroplasty [17]. One of the main causes of aTSA failure is the aseptic loosening of the 

glenoid component [3,4,15,18–22], but the mechanisms behind this phenomenon are still unclear [19,22,23]. 

It may be caused by excessive stresses at the bone-implant interface [3], by bone resorption and micromo-

tion, or by component instability due to off-center loadings, the so-called “rocking horse effect” 

[12,14,15,20]. 

1.4 Shoulder Instability after aTSA 

There are three types of shoulder instability: first the luxation, commonly known as shoulder dislocation, 

happens when the humeral head pops out of the glenoid cavity without returning to its stable position. Sec-

ond, subluxation is known as an unstable situation of the native joint where the humeral head “briefly” slides 

away from the glenoid cavity but returns back inside the glenoid fossa without any treatment. Some persons 

report that this subluxation might happen during sleep. This subluxation may happen anteriorly, posteriorly 

and inferiorly [24]. Third, the most commonly used definition though is the GH subluxation expressed by the 

Glenohumeral Subluxation Index (GHSI). This GH subluxation is defined as the relative position of the humeral 

head with respect to the glenoid fossa and/or to the scapular axis, measured on the transverse slice of a CT 

[25,26]. This subluxation is expressed in terms of distance (millimeters) or by the GHSI, defined as the relative 

position of the humeral head with respect to the glenoid fossa center, normalized by the humeral head di-

ameter and expressed in percentage subluxation [27]. GHSI is measured in 3D as it was proven to be more 

reliable than the conventional 2D measurements [28,29]. 

OA causes the erosion of the joint, thus decentering the humeral head with respect to the glenoid fossa 

center. Historically, OA glenoid types were first categorized by Walch et al. [26]: Type A represents no sub-

luxation, the glenoid is symmetrically eroded. Subcategories include A1 presenting small glenoid erosion and 

A2 presenting severe glenoid erosion. Type B occurs when there is a posterior subluxation: the wear of the 

joint occurs asymmetrically. Subcategories include B1: minor posterior erosion and B2: severe posterior ero-

sion. Type C is not associated to osteoarthritic wear, but to dysplasia. Later, a more detailed classification 

was proposed by Bercik [30] who introduced type B3 as monoconcave and posterior erosion of glenoid in-

ducing a retroversion of at least 15° and/or a 70% subluxation. Moreover, glenoid anteversion and anterior 

humeral head subluxation was introduced and defined as type D. This study also presented a precision for 
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A2: this type should present a line, if drawn between anterior and posterior rims of the glenoid, that transects 

the humeral head.  

If the preoperative subluxation is not corrected during aTSA, the eccentric humeral head component may 

apply an off-center loading postoperatively on the glenoid component which may accelerate its failure (rock-

ing horse effect) [25,31]. As such, patients planned for aTSA and presenting a risk of recurrent postoperative 

GH subluxation, asymmetrical overcorrected glenoid implants have been suggested as an alternative to clas-

sical implants. The potential advantages and drawbacks of these asymmetrical implants have however never 

been assessed clinically. 

Although measurement techniques may exist, investigating shoulder pathologies and their causes is a com-

plicated task because the needed parameters cannot be obtained in a non-invasive manner. For example, 

the behavior of deep muscles and the measurement of joint reaction forces cannot be acquired in vivo for 

healthy patients. In order to overcome these experimental limitations, non-invasive experimental set-ups 

such as motion capture devices were introduced. On the other hand, numerical models are flourishing. Two 

types of numerical models are distinguished: musculoskeletal models (MSM) and finite element (FE) models 

[5]. Usually MSM are multi-body systems, based on rigid body dynamics which determine joint reaction force 

and muscle forces. Their main advantage is their ability to compute a large number of physiological compo-

nents such as bones and soft tissues as well as their respective interactions. However, by using the rigid body 

assumption they do not give any information about material deformations or about bone internal quantities 

such as stress or strain. On the other hand, FE models have the capacity to predict stress, strain, micromotion 

at the bone-implant interface and more instability factors but are not adapted to simulate the interaction of 

a large number of anatomical structures such as the effect of all the different independent muscles acting 

together on the shoulder. 

1.5 Musculoskeletal Modeling of Shoulder Joint 

The human shoulder is a highly complex joint based on the interplay between bones and muscles. Quantifying 

this interplay is highly difficult due to the limited available measurement techniques and to general ethical 

aspects. In this sense, musculoskeletal modeling turned out to be a helpful means to describe and estimate 

the biomechanical role of each component of the shoulder complex. 

A number of musculoskeletal models (MSM) were developed in the last decades aiming to provide a deeper 

understanding of the shoulder joint in a non-invasive way. The long-term goal of most MSM is to be a clinical 

tool to improve the diagnosis, pathology, treatment and post-treatment processes [32,33]. However, most 

of these models either use values obtained from cadaveric measurements based on scaling [32,34] or are 

based on a small number of subjects [35].  
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Some of the known and used shoulder models are the Delft shoulder and elbow model [36,37], Garner and 

Pandy model based on the visible human project [38,39], the Swedish model [40], the AnyBody model [41], 

the Opensim model [42], the UK National shoulder model [43], the Waterloo model [44], the Case model [45] 

and the Portuguese model [46]. All these models contain the joints and muscles of the shoulder complex. 

Most of the shoulder MSM are based on an inverse dynamics principle, meaning that the joint and muscle 

forces are obtained from input kinematics of the joints. All these models are based on static or dynamic cost 

function minimizations, for example the minimization of the squared muscle forces over the physiological 

cross sectional area (PCSA) [44], the sum of squared errors between predicted and constrained angles [43], 

the difference between measured electromyography (EMG) and predicted muscle activity [47], the muscle-

energy consumption during complete motion [46], a stability function to avoid luxation [48].The kinematics 

input into the models were obtained either from motion recordings available in the literature or were spe-

cifically measured for the study using 3D motion capture systems. The latter method is very useful as it pro-

vides more accurate movements of the joints and bone segments compared with literature-based data but 

the soft tissue artefacts remain an important source of uncertainties, especially for the scapula [33]. 

As validation techniques, comparison against available literature data (on joint reaction force amplitude, GH 

center location or muscle forces), against EMG signal measurements or instrumented prostheses [49] were 

mostly used [32,33]. Moreover, the provided data from instrumented prostheses is more and more estab-

lished as a good validation method. Recent review papers argued however, that these validation methods 

are limited since surface EMG cannot measure deep muscles and are subject to skin movement artefacts and 

instrumented prostheses do not provide indication on healthy subjects [33]. 

The emerging tendency in MSM of the last decade is to take account of the subject-specific data [32,33,50], 

the final goal being to create a MSM in a clinical setting that can be adapted quickly to each new patient and 

thus provide a custom-made diagnosis and treatment approach. The most common and simple approach for 

patient-specific modeling is to scale the whole model with patient height and bodyweight. Recently, specific 

parameters were adjusted, such as muscle properties based on imaging [50] or kinematic data [32]. 

Recent publications [32,50] highlighted the lack of sensitivity analysis and its utmost importance to validate 

the models. This lack of validation is due to many factors: the huge amount of parameters present in the 

model steps, the challenge of choosing the correct behavior model for the study, the correct parameters to 

study and their range; and finally the expensive computational time. 
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The sensitivity of MSM to predict GH joint reaction force was reported to be largely determined by GH joint 

center location, input kinematics, Physiological Cross Sectional Area (PCSA) of muscles, scapular shape, scal-

ing of muscle insertions and origin locations or segment length [32,33]. These studies used either parametric 

approaches, comparisons to experimental data or probabilistic approaches [32,33]. 

1.6 Finite Element Modeling of Total Shoulder Arthroplasty 

Finite Element (FE) models have proved their potential in the analysis and prediction of the mechanisms 

around total joint arthroplasty and have been used for the past 40 years [51]. Many FE models simulating 

shoulder arthroplasty exist and are getting more and more sophisticated, with a clear tendency towards pa-

tient-specific modeling. However due to the complexity of the musculoskeletal system of the shoulder and 

the difficulty to get accurate measurements, simplifications and assumptions need to be made on several 

levels: 2D models, ideal boundary conditions, joint force taken from literature, soft tissues not taken into 

account, isotropic, elastic, homogenous bone material properties, ideal or approximate friction coefficients, 

no subluxation or absence of humeral head translations [12,52–58]. 

FE models were developed to investigate different clinical questions and pathologies such as rotator cuff 

tears, GH joint instability or effect of different implant designs on outcome of shoulder arthroplasty [5]. In 

the context of TSA, most FE models investigated different implant material, designs and orientations [54,59–

63], use of cement [64,65] or articular conformity [53,66,67] with respect to glenoid component aseptic loos-

ening [5].  

Three important steps are needed for the construction of a FE model: first the geometry of the bone or soft 

tissue is collected either by using cadaveric data, literature data, average measured data or subject-specific 

data acquired thanks to imaging techniques such as Computed Tomography (CT), Micro Computed Tomog-

raphy (µCT) and Magnetic Resonance Imaging (MRI) [5,68]. The second milestone is to apply mechanical 

properties. The scapula is usually modelled as rigid or linear elastic material. Recently, density-Young’s Mod-

ulus (ρ-E) relationships, with density (apparent, bone mineral or ash) derived from CT data were applied on 

the scapula [5,65,69–72]. The third milestone consists in assigning boundary conditions on the FE model: 

some studies used boundary conditions from the experimental set-up they designed while others imposed 

artificial boundary conditions [5]. Recently, muscle forces from MSM were used in order to make the loading 

situation more realistic [5,68]. 

Although FE models are very useful non-invasive tools that predict general bone biomechanical behavior of 

the shoulder joint [19,71,73,74], they have three most common limitations: First, the lack of patient-specific 

parameters such as exact patient geometry or in-vivo loading [5]. The second limitation is the lack of a real-
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istic constitutive material law to describe the mechanical behavior of the glenoid bone [5,75,76]. Bone con-

stitutive material law was reported to have a direct impact on the validation potential of FE models [69,76]. 

The third major limitation of FE modeling is the lack of experimental validation [5,69,73,74]. Especially, in the 

context of aTSA, FE models are helpful to identify the causes of glenoid implant loosening which was reported 

as the most common sort of implant failure [19,21–23]. In this light, three studies recently attempted at 

validating their FE models by comparing displacement measurements on scapula [73], strain measurements 

on humeral head [77] and strain measurements on scapula [77] from the non-invasive measurement tech-

nique Digital Volume Correlation with specimen-specific FE model-predicted displacement and strain. Bound-

ary conditions from the experiment were applied. For these studies, good agreement was found between 

measurements and FE model-predicted quantities when the boundary conditions of the experiment were 

replicated: slope ranged between 0.87 and 1.09 and coefficient of determination R2 between 0.79 and 1.00 

for glenoid bone displacement [73]; slope = 0.83  and R2= 0.80 for humeral head strain [77] and slope = 0.54 

– 0.59 and R2=  0.73 – 0.75 for scapula compressive strain [78]. 

1.7 Digital Volume Correlation 

A few different in vitro measurements have been proposed to analyze the glenoid bone-implant mechanical 

system. Experimental setups approved by the American Society for Testing and Materials (ASTM) were de-

veloped to track the bone-implant relative movement with the help of differential variable reluctance trans-

ducers (DVRT) [21,79]. However, these methods affect the bone structure and are limited to a small set of 

discreet measurement points. Thus, they do not fully describe the bone-implant behavior. To overcome this 

limitation, a method combining micro-CT (µCT) and digital volume correlation (DVC) was proposed [69]. 

DVC is a measurement technique first introduced in 1999 by Bay et al [80] to track pattern of microstructural 

features in a volume of interest (VOI). DVC is based on a non-rigid registration obtained by optimizing an 

objective function that compares samples from unloaded and loaded images [81,82]. DVC needs high reso-

lution images such as µCT images and is thus able to provide full-field displacement and strain maps in a VOI. 

The emerging DVC combined to µCT technique was used extensively in the hip arthroplasty and vertebro-

plasty [19,82–91]. More specifically to the shoulder joint, DVC - µCT technique was used to track micromotion 

around cementless porcine glenoid implants [69] with errors ranging between 20 and 30 µm. Moreover, DVC 

was used to investigate displacements around cadaveric scapulae due to axial loading [73]. Most recently, 

DVC was used to measure strain on humeral head [77], and on glenoid under loading [74]. The latter study 

reported strain measurements of cemented glenoid bone under concentric, anterior and posterior loading 

(750 N). Medio-lateral bone strain was measured using DVC before and after implantation. Comparing de-

formation at a virtual section at 5.7 mm away from glenoid face, the authors found that the implanted glenoid 
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was more deformed than the native glenoid and that anteriorly and posteriorly loaded specimens achieved 

higher range of strain than the concentric loaded specimen [74]. 

Only very recently, have there been attempts at creating and validating FE models against DVC measure-

ments: Kusins et al. [73] quantified the accuracy of Quantitative Computer Tomography (QCT)-derived FE 

models of four cadaveric scapulae in replicating the displacements measured by DVC. The specimens were 

loaded mechanically and the displacement captured via µCT. The authors found a very good correlation (co-

efficient of determination R2 = 0.79 – 1.99 and slope = 0.87 – 1.09) between experimentally measured dis-

placements and specimen-specific FE model-predicted displacements. This was true only when the experi-

mental displacements were used as boundary conditions to the FE model. Another study [76] investigated 

displacement and reaction force predictions of FE models using 15 different material mapping density-elas-

ticity laws. The authors also found an excellent experiment-FE model agreement when boundary conditions 

of the experiment (experiment displacements) were used. Lastly, only two studies quantified compressive 

strains predicted by specimen-specific model of osteoarthritic humeral head [77] resp. of scapula [78] com-

pared to measured strain by DVC. The authors found an excellent agreement (R2 = 0.80 and slope = 0.83) [77] 

resp. good agreement (R2 = 0.73 – 0.75 and slope = 0.54 – 0.59) [78] when boundary conditions of the exper-

iment were applied in the model. 

An important aspect in DVC is the error and uncertainty quantifications. Most reported uncertainty studies 

evaluated uncertainties either by a zero-strain analysis (two consecutive unloaded scans) [84,86,88,89,92–

94], or by virtually deforming an image set [92,95]. More recently, different DVC parameters were compared 

on the same image sets [92,93]. It was reported that accuracy and precision of displacement and strain out-

puts are influenced by a number of factors such as DVC objective function [82] or image resolution [82,92,93]. 

Most recently, one study [96] published error analysis involving repeated virtually deformed images: the 

authors found the highest errors in the direction of the applied virtual loading and further argued that this 

conservative method should be used to assess errors associated with measurement technique. 

1.8 Sensitivity Analysis 

The development of patient-specific (PS) models is the trend of the last decade [32]. Recent MSM reviews 

highlighted the lack of sensitivity analysis and their utmost importance to validate the models because of the 

important amount of parameters present in the model steps, the challenge of choosing the correct behavior 

model for the study, the correct range for input parameters, the correct parameters to study and finally the 

expensive computational time. 

In general, the use of modeling comes with a goal of proving the usefulness of the model at hand and its 

ability to correctly predict the system it represents. In this area, often the concepts of verification, validation 
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and sensitivity analysis are not easily distinguishable. Based on The American Society of Mechanical Engineers 

(ASME), the verification is the “process of determining that a computational model accurately represents the 

underlying mathematical model and its solution” [97], in other words “are the equations solved correctly?”; 

whereas the validation is the “process of determining the degree to which a model is an accurate represen-

tation of the real world from the perspective of the intended uses of the model” [97], in other words, “does 

the model correctly predict the system it represents?”. 

The Sensitivity Analysis (SA) is a method to assess the variation in the output of a model after varying its 

inputs. If a slight change in the inputs causes dramatic changes in the output of the model, the latter is not 

robust enough and thus cannot be used widely. The main aim of a SA is to provide a quantitative confidence 

level of a model by first assessing the uncertainties or errors associated with the different input sources of 

that model, with the implementation of that model, with the propagation of input uncertainty through the 

model and finally with the correctness of the output [98–100].  

SA can answer the following questions: Does the model I built resemble my system? What are the most 

contributing factors in my study? Are there groups of factors that interact with each other? Where is my 

output variation most visible and significant? Answering these questions helps first to assess the most signif-

icant sources of errors in the model, second to provide a ranking of the most influential factors in a model 

and third to find a direction for the bettering of the model [100]. 

Numerous methods exist to perform SA, but three approaches are mainly used in numerical biomechanical 

studies: the simple parametric study, the probabilistic approach and the design of experiment method. We 

will review these three important approaches briefly with focus on their usability, their advantages and dis-

advantages [98–100]. A parametric study consists in varying one input at a time and studying the consequent 

output changes. It is a fast and humanly understandable method however; it provides information only about 

one factor. The probabilistic approach is used for random and continuous input variables. The input is given 

as a normal distribution and the analysis is performed by repeating the analysis for randomized input values. 

This method provides the contribution of each of the inputs to the uncertainty of the model output. The 

probabilistic approach, although considered the gold standard, is usually too time consuming for numerical 

simulations. The Design Of Experiment (DOE) method is quite new in the biomechanics modeling world but 

is more and more used. It consists in varying all inputs at the same time. The result is a hierarchy of im-

portance of the factors as well as the interaction of these input factors on the model output. This method 

has many different approaches (e.g. Factorial design, Taguchi) and thus may be more or less time consuming 

depending on the chosen method and the simplifications made. The most important drawback of this method 

is the so called “lack-of-random error”. The method is indeed restricted to look for a solution around the 

discrete input numbers given while the correct value may lie outside this spectrum. Moreover, varying more 
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than three different parameters at the same time is quite challenging to human understanding, if compared 

to the simple parametric study. The method ends with an analysis of variance to get a statistical significance 

of the ranked factors. Its main strength is the relative ranking of the most influential parameters in a model 

[99–101]. 

Most of the recently published FE studies still use a simple parametric study but there is an increasing ten-

dency to use DOE methods to investigate the sensitivity of models in knee, hip, shoulder and back biome-

chanics [101–107]. The main driving force of the above-mentioned publications is ranking the most influential 

parameters in their multi-step / multi-factor model for the first time in their respective fields. With this 

method, they were able to gain more in-depth knowledge of the important factors in numerical modeling as 

well as directions of bettering the modeling process.  

Past studies of MSM investigating sensitivities of shoulder joint reaction forces determined an important 

influence of joint center location, input kinematics, PCSA of muscles, scapular shape and scaling of muscle 

wrapping, segment length and muscle insertions. All these studies used either parametric approaches, com-

parisons to experimental data or probabilistic approaches [32,33]. 

1.9 Limitations of Current State of the Art 

In light of the state of the art presented, four main limitations were identified and addressed in the present 

work. 

First, for patients planned with aTSA and presenting a risk of recurrent postoperative GH subluxation, asym-

metrical overcorrected (OC) glenoid implants were suggested as an alternative to classical implants, however, 

the underlying mechanisms behind shoulder recurrent instability after aTSA are still unknown and the bio-

mechanical advantages of OC implants has not been assessed clinically nor biomechanically. 

Second, although shoulder FE modeling in the context of aTSA has been an established procedure for the last 

four decades, the correct representation of boundary conditions and experimental validation remain chal-

lenging. 

Third, although the use of PS models for aTSA has been rising during the last decade, both FE modeling and 

in MSM, numerous questions remain unsolved: which parameters to change from one patient to another? 

Which of those are relevant to the model? How to extract the patient’s data? 

Last, even if optimal PS parameters were found, a huge gap in the sensitivity analysis of these (FE and mus-

culoskeletal) models of shoulder arthroplasty would remain. Although probabilistic approaches are consid-

ered as the gold standard, both the FE models and the MSM still mostly use one-at-a-time SA strategies. The 
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latter is a good-enough local strategy to one’s own model, but does not give an importance-ranking of the 

input parameters. A ranking of importance is preferable especially in light of the large number of parameters 

that may be considered in a PS model. 

1.10 Thesis objectives 

The aim of the present work was to evaluate the potential biomechanical advantages of overcorrected (OC) 

implants in the context of aTSA by answering the two following research questions: 1) Do OC implants reduce 

postoperative subluxation? 2) Do OC implants transfer excessive stresses to the cement at the bone–implant 

interface? Four objectives were considered to answer these questions. An overview is provided in Figure 1:5. 

The first objective of the thesis, presented in Chapter 2, was to measure full-field displacement and defor-

mation of the glenoid bone under axial loading. Digital Volume Correlation technique was applied to cadav-

eric human glenoid bones imaged with µCT while undergoing various mechanical loadings. 

The second objective of this thesis, presented in Chapter 3, was to create and validate FE models of three 

cadaveric glenoids under axial loading, using the experimental set-up developed in the previous Chapter. 

The third objective of the thesis, presented in Chapter 4, was to extend a generic MSM of the shoulder to 

include the forearm and to become a patient-specific model. The updated model would then be used to 

predict GH joint reaction forces during three activities of daily living. This part was performed in collaboration 

with two other PhD projects. 

The final objective of this thesis, presented in Chapter 5, was divided in four steps: first the workflow of the 

validated specimen-specific FE model of Chapter 3 was used to create patient-specific FE models. Second, 

the MSM developed in Chapter 4 was used to predict shoulder joint reaction forces of patients recruited for 

the study. These joint reaction forces were put as boundary conditions in the FE models. Third, OC implants 

were designed and imported into the FE models. Last, subluxation, cement stress and bone compressive 

strains predicted by FE models were compared between both implant designs (standard and OC) to answer 

the research questions. 
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Figure 1:5 Overview thesis objectives. 
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 Glenoid bone strain after anatomi-

cal total shoulder arthroplasty: In vitro meas-

urements with micro-CT and digital volume 

correlation 

This chapter is published in Y.Boulanaache, F.Becce, A.Farron, D.P.Pioletti & A.Terrier. “Glenoid 

bone strain after anatomical total shoulder arthroplasty: In vitro measurements with micro-CT and digital 

volume correlation”. Medical Engineering & Physics, Volume 85, November 2020, Pages 48-54. DOI: 

10.1016/j.medengphy.2020.09.009 
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2.1 Abstract 

Glenoid implant loosening remains a major source of failure and concern after anatomical total shoulder 

arthroplasty (aTSA). It is assumed to be associated with eccentric loading and excessive bone strain, but direct 

measurement of bone strain after aTSA is not available yet. Therefore, our objective was to develop an in 

vitro technique for measuring bone strain around a loaded glenoid implant. A custom loading device (1500 

N) was designed to fit within a micro-CT scanner, to use digital volume correlation for measuring displace-

ment and calculating strain. Errors were evaluated with three pairs of unloaded scans. The average displace-

ment random error of three pairs of unloaded scans was 6.1 µm. Corresponding systematic and random 

errors of strain components were less than 806.0 µε and 2039.9 µε, respectively. The average strain accuracy 

(MAER) and precision (SDER) were 694.3 µε and 440.3 µε, respectively. The loaded minimum principal strain 

(8738.9 µε) was 12.6 times higher than the MAER (694.3 µε) on average, and was above the MAER for most 

of the glenoid bone volume (98.1%). Therefore, this technique proves to be accurate and precise enough to 

eventually compare glenoid implant designs and fixation techniques, or to validate numerical models. 
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2.2 Introduction 

Although anatomical total shoulder arthroplasty (aTSA) is an effective surgical treatment for advanced gleno-

humeral osteoarthritis, aseptic loosening of the glenoid implant remains a major cause of failure and concern 

[19,21–23]. While various causes have been identified [19], there are still several open questions, as for ex-

ample on the optimal glenoid implant design. To answer such questions, in vitro studies are frequently per-

formed. 

A few different in vitro measurements have been proposed to analyze the glenoid bone-implant mechanical 

system. Experimental setups approved by the American Society for Testing and Materials (ASTM) were de-

veloped to track the bone-implant relative movement with the help of differential variable reluctance trans-

ducers (DVRT)[21,79]. However, these methods affect the bone structure and are limited to a small set of 

discreet measurement points. Thus, they do not fully describe the bone-implant behavior. To overcome this 

limitation, a method combining micro-CT and digital volume correlation (DVC) was proposed to measure 

micromotion around cementless porcine glenoid implants after aTSA [69]. DVC has already been used to 

evaluate strain in trabecular bone [82,84,86,89], cortical bone [83,84], whole bones [87,88,91] after hip ar-

throplasty and vertrebroplasty, and recently on in situ mice tibiae [87]. DVC was applied to investigate dis-

placements around cadaveric scapulae due to axial loading [73]and very recently in the context of cemented 

polyethylene glenoid implants [74]. This study reported strain measurements of glenoid bone under concen-

tric, anterior and posterior loading (750 N). Medio-lateral bone strain was measured using DVC before and 

after implantation. Comparing deformation at a virtual section at 5.7 mm away from glenoid face, the authors 

found that the implanted glenoid was more deformed than the native glenoid and that anteriorly and poste-

riorly loaded specimens achieved higher range of strain than the concentric loaded specimen. 

Furthermore, in order to correctly interpret DVC measurements, uncertainties must be evaluated. Most pre-

vious studies evaluated uncertainties either by a zero-strain (two consecutive unloaded scan) 

[84,86,88,89,92–94], or by virtually deforming an image set [92,95]. More recently, different DVC parameters 

were compared on the same image sets [92,93]. These studies showed that precision and accuracy depend 

on the spatial resolution of images and on DVC settings. 

Therefore, the objective of the present study was to develop a technique based on micro-CT and DVC to 

measure in vitro glenoid bone strain after aTSA. More specifically, a custom loading device was designed to 

replicate physiological loading after aTSA, optimal parameters of the measurement technique were evalu-

ated, and errors associated with the measurement of displacement and strain were quantified. 
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2.3 Materials and Methods 

2.3.1 Specimen preparation 

A fresh cadaveric scapula (harvested from a 69-year-old female) was obtained from Science Care (Phoenix, 

AZ, USA), wrapped into saline-moistened gauze (10% phosphate-buffered saline) and vacuum sealed to be 

stored at -80°C. Preoperative planning was performed using standard-of-care conventional shoulder com-

puted tomography (CT) scans (Discovery CT750 HD, GE Healthcare, Waukesha, WI, USA). Data acquisition 

settings were: 120 kVp tube potential; 200 mA tube current; 0.7 s gantry revolution time; 64 x 0.625 mm 

beam collimation; 0.984 pitch. Image reconstruction parameters were: 1.25/0.7 mm section thickness/inter-

val, 488 x 488 µm in-plane spatial resolution; sharp (bone plus) kernel. An anthropomorphic thorax phantom 

(QRM, Moehrendorf, Germany) with a synthetic humerus (Sawbones, Vashon Island, WA, USA) and saline 

plastic bags simulating rotator cuff muscles were used to replicate in vivo x-ray attenuation in the experi-

mental setup. The scapula was thawed in saline at room temperature for 24 hours prior to CT scanning and 

refrozen (-80°C) immediately after. 

A senior shoulder surgeon (AF) performed the surgical planning from this CT dataset by using a preoperative 

planning software (BLUEPRINT™ 3D Planning, Tornier-Wright Medical, Montbonnot-Saint-Martin, France). 

This planning helped selecting the optimal glenoid implant type, size (AEQUALIS™ PERFORM keeled size S, 

Tornier-Wright Medical, Montbonnot-Saint-Martin, France) and positioning within the glenoid bone. To 

avoid beam hardening metal artifacts, the two original metallic radiopaque markers were removed from the 

keel of the glenoid implant by the manufacturer. 

The scapula was thawed in saline at room temperature 24 hours prior to implantation. The implant was ce-

mented (TBCem 3, Class IIb, European Medical Contract Manufacturing, Nijmegen, The Netherlands) within 

the glenoid bone using patient-specific instruments. The scapula was then vacuum-sealed in saline-mois-

tened gauze and then refrozen (-80°C). 

The implanted scapula was thawed in saline at room temperature 24 hours prior to mechanical testing. The 

implanted scapula needed to fit into an aluminum tube with a diameter of 60 mm, thus requiring cutting. A 

diamond band saw (312 Pathology Saw, EXAKT Technologies, Oklahoma City, OK, USA) was used to remove 

the acromion, spine, coracoid process, inferior pillar (23 mm from the center of the glenoid cavity), and me-

dial part (70 mm from the center of the glenoid cavity) of the scapula. The soft tissues were kept in order to 

preserve the natural moisture of the specimen as much as possible (Figure 2:1). To center the glenoid within 

the tube and align the medio-lateral scapular axis with the tube axis, we used a custom 3D printed guide. The 

specimen was then potted 30 mm deep in polyurethan resin (NEUKADUR MultiCast 20, Altropol Kunstoff, 

Stockelsdorf, Germany). 
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Figure 2:1 a) Implanted specimen in implantation setup. b) Potted specimen in polyurethan resin. c) image and CAD 

image of implant. 

2.3.2 Loading device and micro-CT imaging 

A micro-CT loading device was adapted to reproduce a force of 1500 N applied by the humeral component 

on the glenoid implant [108–110]. To avoid beam hardening metal artifacts, we built a spherical cap of poly-

ether ether ketone (PEEK) to replicate the head of the humeral component. This part was mounted on an 

aluminum piston, aligned with the tube axis. A 2000 N load cell (LCM202-2KN, Omega Engineering, Stamford, 

CT, USA) and a NI-USB-9215 acquisition card (National Instruments, Austin, TX, USA) were used to monitor 

the compressive force. 

The loading device (Figure 2:2) containing the specimen was inserted into a micro-CT scanner (Skyscan 1076 

in vivo micro-CT, Bruker micro-CT, Kontich, Belgium). We first scanned the unloaded glenoid six times subse-

quently (mCTi, i = 1, …, 6), for error estimation, also known as zero-strain analysis. The scans were performed 

consecutively pairwise: mCT1-mCT2, mCT3-mCT4, and mCT5-mCT6. After each scan pair, the specimen was 

removed from the micro-CT and repositioned. The same scanning position was imperatively kept between 

two consecutive scans. For strain estimation, the glenoid was scanned first in the unloaded state (mCT7), 

then in the loaded state at 1500 N (mCT8) after preconditioning (10 cycles at 1500 N) and relaxation delay 

(10 minutes). Scanning parameters were as follows: 36 µm spatial resolution, 100 kV tube potential, 100 µA 

tube current, 1 mm aluminum filter, 310 ms exposure time, 0.5° rotation step, 360° scanning, 68 mm scanning 

width and frame averaging 4. The entire glenoid required three sub-scans (3x21 mm = 63 mm total longitu-

dinal coverage), for 130 minutes overall acquisition time. Images were reconstructed using a ring artifact 

reduction of level 2 and beam hardening correction of 80% (NRecon v1.6.10.4, Bruker micro-CT, Kontich, 

Belgium). 
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Figure 2:2 Custom-designed loading device fitting into the micro-CT scanner. 

2.3.3 Digital volume correlation 

DVC was used to estimate 3D displacement maps between each micro-CT scan pair. In each pair, one scan 

was superimposed to the other by the built-in Euclidean rigid registration of the fixed side (5-mm-thick resin-

immersed bone) using Amira 6.7 (FEI SAS, Burlington, MA, USA). All scans were then cropped to include the 

glenoid bone, but exclude the resin (> 20 mm from the glenoid implant keel) and PEEK sides. A mask was 

applied on each scan to remove the implant and the soft tissues around the bone and cement. This procedure 

was performed in Amira. For DVC, Elastix-Transformix open-source registration software [111] was used: 

Displacement maps were obtained from non-rigid registration with multi-resolution B-spline transform and 

gradient-descent optimization of normalized correlation coefficient similarity metric. Strain maps were de-

rived from displacement maps using Abaqus finite element solver (v.6.14, Simulia, Dassault Systèmes, Provi-

dence, RI, USA). 

2.3.4 Parametric study 

To find optimal DVC parameters, a parametric study of 53 different settings was performed. The parameters 

considered were: grid size, number of resolutions1, sample size, similarity metric, number of histogram bins 

and the optimization routine. This optimization was performed on three sets of scan pairs: Set1, Set2, and 

Set3. Set1 contained two same scans (mCT3-mCT3). Set2 contained an unloaded scan (mCT3) and the same 

scan virtually deformed (mCT3s) with a stretch of 0.5% in the three orthogonal directions. Set3 consisted of 

two repeated unloaded scans (mCT3 and mCT4). From Set1, we rejected all settings producing non-zero dis-

placement. From Set2, we rejected all settings not predicting the controlled stretch. The check was per-

formed visually and quantitatively by computing the median of the resulting strain in the three orthogonal 

directions (E11, E22, and E33). We kept only settings visually reproducing the applied stretch and with an 

error below 150 µε. This limit was set for convenience in order to limit the number of settings to 3. It is 

                                                           

1 “Resolutions” is a term used by the software developers to designate “iterations” 
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important to mention that although some settings produced the lowest errors, they were not kept if they did 

not reproduce the applied deformation. From Set3, we chose the settings that produced the lowest random 

errors for the three displacement components (U1, U2, and U3). The direction of U3 is along the scanning 

and loading axis, and the other two are orthogonal, approximately corresponding to antero-posterior and 

infero-superior axes. Details are provided in Section 2.6.1. 

2.3.5 Error analysis 

The errors associated with this measurement technique (optimal DVC parameter set for loaded displacement 

and strain described above) were evaluated by a zero-strain analysis on the three unloaded micro-CT scan 

pairs (mCT1-mCT2, mCT3-mCT4, and mCT5-mCT6). Strains were derived from displacement maps on a 2 mm-

sized hexahedral mesh of the entire scan. Several errors were evaluated for each of the three scan pairs: We 

calculated the displacement random errors defined by the standard deviation of the measured displacement. 

We calculated for each of the six components of strain the systematic and random errors defined respectively 

by the mean and standard deviation of strain values [93]. Systematic and random errors of the principal strain 

invariants were calculated. Finally, in order to be consistent with previous studies on DVC, for each scan pair, 

we evaluated the accuracy and precision defined by the mean absolute error (MAER) and standard deviation 

of absolute error (SDER) of strain, respectively [81,89,93]. An overview of the error analysis described above 

is presented in Section 2.6 at Figure 2:6. 

For sake of comparison with other studies, the above-mentioned errors were evaluated in a volume of inter-

est (VOI). The VOI (125x226x190 voxels) was located on the anterior part of the glenoid (Figure 2:3). 

An additional error calculation was performed between two repeated unloaded and masked scans (mCT3 

and mCT4): the first scan remained undeformed (mCT3) and a virtual compression of 1% was applied on the 

second scan (mCT4def). The virtual compression was applied along X, Y and Z axis, separately. This error 

analysis was based on a recent study on bovine cortical bone [96] and is presented in section 2.6.4. 

2.3.6 Loaded displacements and strains 

Displacements of the loaded scapula were calculated with the optimal DVC parameter set (Appendix A) using 

unloaded (mCT7) and loaded (mCT8) scans. Strains were derived from displacements on a tetrahedral mesh 

(2 mm size) of the glenoid bone, which was segmented with Amira. We report the amplitude of displacement 

and the minimum principal strain stain invariant. All other displacement and strain components are provided 

in Section 2.6.2. 
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2.4 Results 

2.4.1 Parametric analysis 

The parametric analysis provided the following optimal parameter set: five-resolution B-spline transform (40-

voxel grid size) and gradient-descent optimization (gain factor 100 and 32 histogram bins) of normalized cor-

relation coefficient similarity metric using a sample size of 12’000. Extended data can be found in Section 

2.6.1. 

2.4.2 Error analysis 

The random error of displacement in all three directions ranged between 2.9 and 11.7 µm. The average ran-

dom error in loading direction was 6.1 µm and peaked at 9.0 µm (Figure 2:3). 

The systematic error of the six components of strain ranged between -172.7 µε and 806.0 µε, while random 

error ranged between 395.3 µε and 2039.9 µε. The systematic error of principal strain invariants ranged 

between -1367.2 µε and 1348.7 µε, while random error of principal strain invariants ranged between 280.6 

µε and 1656.3 µε. On average, systematic and random errors of the third principal strain invariant were -

1129.4 µε and 1274.7 µε, respectively. 

Over the three zero-strain analysis, the accuracy of the method (MAER) ranged between 484.2 µε and 800.2 

µε while the precision (SDER) ranged between 313.2 µε and 579.8 µε. On average, accuracy (MAER) was 

694.3 µε, while precision (SDER) was 440.3 µε. 

Within the VOI, the random errors of displacement ranged between 1.62 µm and 2.17 µm. The systematic 

error of the six components of strain ranged between -321.7 µε and 637.9 µε, while random error ranged 

between 410.1 µε and 964.9 µε. The systematic error of the third principal strain invariant was -681.7 µε 

while its random error was 539.4 µε. MAER was 626.0 µε and SDER was 195.7 µε. 
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Figure 2:3 Left: Unloaded masked specimen with VOI in orange. 

Right: Random error of displacement in loading direction (U3). 

2.4.3 Loaded displacement and strain 

Maximum displacement amplitude was 825.4 µm (Suppl. Material Table 2:4). Displacement in the axial (load-

ing) direction was up to 797.6 µm (Figure 2:4, left), while maximum displacement in the transverse direction 

was 825.4 µm. The axial displacement was greater on the anterior than posterior side, revealing a bending 

deformation. The bone volume fraction of axial displacement above the average random error of 6.1 µm was 

99.6%. 

Minimum principal strain was more negative (compressive) on the anterior than posterior side (Figure 2:4, 

right). Average and peak compressive strain (absolute minimum principal strain) were 8738.9. µε and 

46’000.0 µε, respectively. The bone volume fraction of minimum principal strain above accuracy (MAER) was 

98.1% (Figure 2:5). The minimum principal strain percentile values 5%, 25%, 50%, 75%, 95% were respec-

tively:  -22400, -11160, -6540, -3770, -1210 µε. Extended data can be found in Section 2.6.2. 
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Figure 2:4 Top: Loaded unmasked image of specimen (yellow) superposed on unloaded unmasked image of specimen 

(grey). Bottom: Displacement along loading axis (U3) (left) and minimum principal strain (right) resulting from a 

1500 N force applied in the z-direction. 
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Figure 2:5 Volumetric distribution of minimum principal strain within the loaded glenoid bone, where the light grey 

bars represent the accuracy (MAER). 
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2.5 Discussion 

Although total shoulder arthroplasty is an effective procedure to relieve pain and restore range of motion, 

its failure rate is higher than hip arthroplasty [17,112]. Component loosening was identified as a possible 

cause of failure. Loosening may be due to excessive bone deformation. The aim of this study was to develop 

a method to measure strain within the glenoid bone after aTSA, while a load was applied to the glenoid 

implant by its humeral counterpart. Micro-CT images and DVC were combined to evaluate glenoid bone strain 

with sufficient accuracy and precision for future numerical bone model validation studies; which in turn might 

help predict bone behavior and diagnose shoulder problems in a clinical environment. 

The peak random error of displacement in the loading direction corresponded to 1.1% of the maximum 

loaded displacement (797.6 µm). The random error was evenly distributed over the glenoid bone with the 

exception of localized peaks found at the edges. Away from the edges, on the VOI, this error decreased to 

2.2 µm. The random errors of displacement were in the same range as other DVC studies using similar scan-

ning spatial resolutions: from 0.5 to 63.1 µm random errors [93]. 

The systematic and random errors of strain were consistent with other similar cemented bone measurements 

at 16-voxel size, but higher for 48-voxel size [93]. The highest errors were localized at the edges of the image. 

A variability in error values was observed between the three zero-strain tests due to the unavoidable reposi-

tioning, as reported by a recent study which found higher errors after repositioning (mean strain differences 

up to -4427 µε). It would have been interesting to report zero-strain errors using two consecutive scans with-

out repositioning but it was not possible due to the size of the specimen which required three subscans. The 

specimen holder movement between repeated scans was thus unavoidable. 

The reported MAER (626.0 µε) and SDER (195.7 µε) values on the VOI were within the range of a previous 

study on cemented specimens (VOI-3 and VOI-5 of [93]) but higher than a recent in situ study on loaded 

mouse tibiae that reported MAER and SDER around 158 for an equivalent subvolume [87].The MAER repre-

sented 7.2% of the average compressive strains in bone. According to [89], the MAER is below the recom-

mended 10%, thus ensuring the usability of our method for future numerical model validation. 

Previous studies on vertebrae, femur and tibia found compressive yield strain to range between 7’000 – 

10’000 µε [113,114]. If we assume the glenoid bone to yield around 10’000 µε, 72.3% of our glenoid sample 

was in the elastic range under 1500 N of compressive axial loading. Although the peak compressive strain 

value of 46’000 exceeds bone failure strain, it concerned only 0.1% of the bone and was thus considered an 

outlier. When outliers are not considered, the compressive strains peak at -22’400 µε. Our loading device 

induced a complex bone deformation. In the middle axial slice, it appears mainly as a bending strain. This 

bending was caused by the eccentric (relative to loading axis) fixation of the medial part of the scapula in the 
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cement but especially by the natural curved form of the scapula. The axial force of 1500 N was selected as a 

maximal worst-case scenario value, derived from instrumented prostheses measurements reporting forces 

higher than 200% of body weight during activities of daily living [115]. 

The non-rigid registration was obtained using the Elastix package, which provides a wide range of parameters 

to achieve optimal accuracy (presented in Section 2.6.2). All previous studies on bone used B-spline transform 

for their non-rigid registration with Elastix [116–118]. Elastix indeed recommends a cubic B-spline order. The 

B-spline function uses a grid on the target image, which the user should refine for each iteration. Conducting 

a parametric study to determine the optimal registration parameters is critical [118]. In our study, the optimal 

parameters were obtained by using virtually stretched images and comparing the outcome both qualitatively 

and quantitatively. Although a stretch instead of compression was applied, it did not change the quality of 

the transformed image. It was important to stretch the images in the expected deformation directions and 

by the expected deformation amount in order to optimize the parameters’ sensitivity to the applied loading. 

Registration was obtained within 20 minutes on a 32 CPUs server. 

The main strength of this study was to provide original measurements of 3D strain maps within the whole 

glenoid bone after aTSA. These measurements were obtained using a custom-made loading device, specifi-

cally designed for this study. Furthermore, we faithfully replicated the standard clinical surgical setting with 

the help of preoperative CT scans, preoperative surgical planning software, and patient-specific instruments. 

We also analyzed the error, by using three consecutive micro-CT scan pairs, instead of the commonly re-

ported analysis performed on single scan pairs only. Another strength of this study was the evaluation of the 

errors on three different types of scans and especially on a virtually stretched scan, while all previous studies 

which investigated DVC errors used only one repeated unloaded scan. Besides, our study showed that some 

DVC parameters can output very small errors for repeated unloaded scans, but may also underestimate the 

deformation when applied to virtually stretched image. Therefore, we eventually chose DVC parameters 

providing optimal confidence of the measured deformation after loading, although these parameters did not 

output the lowest zero-strain error.  

In this feasibility study, we applied the technique only to a single sample. In a next step, we will evaluate the 

variability of the glenoid strain after aTSA with a series of scapulae. A natural variability is indeed expected 

since the glenoid implant is usually not aligned with the medio-lateral loading axis. For this case, the planned 

version was 7 degrees (retroversion) and the inclination was zero degrees. In a series of scapulae, the range 

of glenoid version and inclination should be less than 10 degrees. The measured strain was limited to bone 

by masking micro-CT images. This masking excluded soft tissue artefacts surrounding the scapula and re-

duced the measurement errors [93,119]. 
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In conclusion, this technique provides the 3D maps of displacement and strain within the glenoid bone after 

aTSA. It is based on a custom-made loading device for micro-CT imaging and DVC analysis, and its accuracy 

and precision levels are sufficient to eventually compare different surgical techniques (reaming, cementing, 

implant types) or validate numerical models. 
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2.6 Supplementary Material 

 

Figure 2:6 Error analysis performed on three pairs of unloaded scans. 
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2.6.1 Optimal parameters for DVC 

The Elastix package provides a wide range of parameters to get optimal non-rigid registration2. This optimi-

zation was performed on three sets of scan pairs: Set1, Set2, and Set3. Set1 was two same scans (mCT3-

mCT3). Set2 was an unloaded scan (mCT3) and the same scan virtually deformed (mCT3s) with a stretch of 

0.5% in the three orthogonal directions. Set3 consisted of two repeated unloaded scans (mCT3, mCT4). Each 

pair was then non-rigidly registered using a combination of parameters (Table 2:1). 

Among the most important parameters to tune, grid size, optimization routine and similarity metric were 

considered. In the present study, a B-spline transform was used. It is important to know that for each regis-

tration, Elastix provides a resulting image which needs to be compared to the input images and thus helps to 

visually eliminate wrong registrations. 

The optimization routine was performed in three steps: first, the random displacement errors were com-

puted for Set1. The parameter sets that did not provide zero displacement in all three directions (U1, U2 and 

U3) were removed. Second, more parameter sets were removed if they provided images that did not match 

the virtually stretched image of Set2 even if they produced low displacement errors on Set3. For the remain-

ing parameters (i.e. that reproduced the applied stretch), the median of the resulting applied strain in the 

three axial directions (E11, E22 and E33) were computed. Only three parameter sets remained acceptable 

(Table 2:2). The third optimization step consisted in calculating the random displacement errors in the three 

axial directions (U1, U2, U3) for Set3. The parameter set that provided the lowest displacement errors was 

considered the optimal parameter set. From this parameter analysis (Table 2:2), the optimal setting chosen 

was #41. 

 FinalGridSpacing: 40 

 Resolution3: 5 

 SampleSize: 12000 

 Metric: Normalized Correlation Coefficient 

 Bins:32 

 Optimizer: Standard Gradient Descent gain factor SP_a = 100. 

Image properties: For computer memory reasons, all images (8-bit grayscale) were sized around: 

1100x1300x1000 voxels, around 40x47x38 mm. In total, around 1060 slices were reconstructed. Registration 

was obtained within 20 minutes on a linux server with 32 CPUs and 128 GB RAM. 

                                                           

2 elastix.bigr.nl/wiki/index.php/Parameter_file_database 
3 “Resolutions” is a term used by the software developers to designate “iterations 
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Settings FinalGridSpacing (voxels) Resolution SampleSize Metric Bins Optimizer 

1 42 3 12000 AdMattMutInfo 32 StdGradDesc SP=10 

2 42 4 12000 AdMattMutInfo 32 StdGradDesc SP=10 

3 42 5 12000 AdMattMutInfo 32 StdGradDesc SP=10 

4 42 7 12000 AdMattMutInfo 32 StdGradDesc SP=10 

6 42 5 12000 AdMattMutInfo 24 StdGradDesc SP=10 

7 42 5 12000 AdMattMutInfo 40 StdGradDesc SP=10 

8 42 5 12000 AdMattMutInfo 48 StdGradDesc SP=10 

9 42 5 12000 AdMattMutInfo 56 StdGradDesc SP=10 

10 42 5 12000 AdMattMutInfo 64 StdGradDesc SP=10 

11 42 5 12000 AdMattMutInfo 255 StdGradDesc SP=10 

12 42 5 12000 AdMattMutInfo 270 StdGradDesc SP=10 

13 42 5 12000 AdMattMutInfo 16 StdGradDesc SP=10 

14 42 5 24000 AdMattMutInfo 32 StdGradDesc SP=10 

15 42 5 32000 AdMattMutInfo 32 StdGradDesc SP=10 

16 42 5 24000 AdMattMutInfo 64 StdGradDesc SP=10 

17 42 5 12000 AdMattMutInfo 32 StdGradDesc SP=100 

18 42 5 12000 AdMattMutInfo 32 StdGradDesc SP=500 

19 42 5 12000 AdMattMutInfo 32 StdGradDesc SP=1000 

20 42 5 12000 AdMattMutInfo 32 StdGradDesc SP=2000 

21 42 5 12000 AdMattMutInfo 32 StdGradDesc default val-

ues 

22 42 5 12000 AdMattMutInfo 32 AdapStochGrad 

23 42 5 12000 AdNormCorr 32 AdapStochGrad 

24 42 5 12000 AdNormCorr 32 StdGradDesc SP=10 

25 42 5 12000 AdNormCorr 32 StdGradDesc SP=100 
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26 

 

42 5 12000 AdNormCorr 32 StdGradDesc SP=500 

26 42 5 12000 AdNormCorr 32 StdGradDesc SP=1000 

27 42 5 12000 AdNormCorr 32 StdGradDesc SP=2000 

28 42 5 12000 AdNormCorr 32 StdGradDesc default val-

ues 

29 42 5 12000 MSD 32 StdGradDesc SP=10 

30 42 5 12000 MSD 32 StdGradDesc SP=0.5 

31 42 5 12000 MSD 32 StdGradDesc SP=1 

32 42 5 12000 MSD 32 StdGradDesc SP=0.2 

33 42 5 24000 AdNormCorr 32 AdapStochGrad 

34 42 5 12000 AdNormCorr 64 AdapStochGrad 

35 42 5 24000 AdNormCorr 64 AdapStochGrad 

36 42 5 12000 AdNormCorr 16 StdGradDesc SP=100 

37 42 5 12000 AdNormCorr 24 StdGradDesc SP=100 

38 42 5 24000 AdNormCorr 32 StdGradDesc SP=100 

39 42 5 32000 AdNormCorr 32 StdGradDesc SP=100 

40 32 5 12000 AdNormCorr 32 StdGradDesc SP=100 

41 40 5 12000 AdNormCorr 32 StdGradDesc SP=100 

42 48 5 12000 AdNormCorr 32 StdGradDesc SP=100 

43 52 5 12000 AdNormCorr 32 StdGradDesc SP=100 

44 56 5 12000 AdNormCorr 32 StdGradDesc SP=100 

45 64 5 12000 AdNormCorr 32 StdGradDesc SP=100 

46 72 5 12000 AdNormCorr 32 StdGradDesc SP=100 

47 80 5 12000 AdNormCorr 32 StdGradDesc SP=100 

48 52 5 12000 AdNormCorr 32 StdGradDesc SP=100 

49 52 5 12000 AdNormCorr 32 StdGradDesc SP=100 
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50 42 3 12000 AdNormCorr 32 StdGradDesc SP=100 

51 56 3 12000 AdNormCorr 32 StdGradDesc SP=100 

52 52 3 12000 AdNormCorr 32 StdGradDesc SP=100 

53 56 3 12000 AdNormCorr 32 StdGradDesc SP=100 

Table 2:1 List of settings used for the parametric study for non-rigid registration. 

 

 Random displacement errors for Set2 (voxels) 

 U1 U2 U3  

41 0.09 0.08 0.12  

44 0.10 0.09 0.13  

53 0.29 0.22 0.35  

Table 2:2 Settings considered for comparison in Set3. 
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2.6.2 Extended data 

This section extends the result section of the main document with more detailed figure and tables associated 

to error quantification of displacement and strain, and loaded displacement. Test 1 represents DVC applied 

on mCT1-mCT2, Test 2 represents DVC applied on mCT3-mCT4 and Test 3 represents DVC applied on mCT5-

mCT6.  

Displacement errors 

 

Figure 2:7 Displacement random errors in zero-strain conditions (voxels). 

 

 

Figure 2:8 Displacement random errors in zero-strain conditions. 
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 Random error [µm] 

 U1 U2 U3 

Test 1 5.7 2.9 9.0 

Test 2 3.3 2.9 4.3 

Test 3 11.7 8.9 5.1 

Average 6.9 4.9 6.1 

Table 2:3 Random displacement errors in zero-strain conditions.  
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Strain errors 

 

Figure 2:9 Systematic errors in zero-strain conditions for the six components of strain. 

 

 

Figure 2:10 Random errors in zero-strain conditions for the six components of strain. 
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Figure 2:11 Systematic errors for the three principal strain invariants. 

 

 

Figure 2:12 Random errors for the three principal strain invariants. 
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 MAER [µε] SDER [µε] 

Test 1 800.2 579.8 

Test 2 484.2 313.2 

Test 3 798.5 427.8 

Average 694.3 440.3 

Table 2:4 Average accuracy (MAER) and precision (SDER) of strain measurements in zero-strain conditions. 

 

 MAER [µε] SDER [µε] 

Test 1 800.2 579.8 

Test 2 484.2 313.2 

Test 3 798.5 427.8 

Average 694.3 440.3 

 

Table 2:5 Average accuracy (MAER) and precision (SDER) of strain measurements in zero-strain conditions. 
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VOI error analysis 

 

 

Figure 2:13 Random displacement errors in zero-strain conditions for VOI. 

 

 

 

Figure 2:14 Systematic strain errors in zero-strain conditions for VOI. 
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Figure 2:15 Random strain errors in zero-strain conditions for VOI 

Loaded displacement 

 U1 U2 U3 

Average [µm] -601.0 411.6 145.4 

Standard deviation [µm] 600.5 131.6 221.0 

Maximum [µm] -818.9 825.4 797.6 

Table 2:6 Average, standard deviation and maximum value of displacement during axial loading (1500 N). 
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2.6.3 Extended explanations on Elastix software 

This section presents details about the Elastix software registration process. For more information, please 

refer to the manual 

For its registration, one image (called moving image, grayscale Intensity (𝐼𝑀(𝑥)) is aligned to another image 

(called fixed image, grayscale Intensity (𝐼𝐹(𝑥)), x being the spatial coordinate. Using suitable metric and op-

timiser, the registration aims at finding the correct transformation 𝑇(𝑥) = 𝑥 + 𝑢(𝑥) so that 𝐼𝑀(𝑥) and 𝐼𝐹(𝑥) 

are aligned. This registration produces the displacement map 𝑢(𝑥) we are looking for. Formulated differently, 

our goal is to find the values of the transformation parameters that minimize the metric (which is a cost 

function) with respect to the transform 𝑇. Mathematically, the goal is to solve the optimization problem of 

finding the best transformation parameter vector μ =  𝑎𝑟𝑔𝜇
𝑚𝑖𝑛 𝐶 (𝜇; 𝐼𝐹 , 𝐼𝑀), with C being the cost function 

to be minimized. The following diagram was taken from the Elastix manual (Figure 2:16) and summarizes the 

steps and the components needed in the registration process.  

 

Figure 2:16 Most important components of registration in Elastix.  

(Image courtesy of Elastix The Manual v4.8 [120]) 

In our study, we chose the following components. 

Sampler: this component loops over the voxels of the fixed image and compares them to the voxels of the 

moving image. Many ways are possible: compare each voxel of the images or only an area/subset chosen 

randomly. In order to reduce memory usage, we chose not to loop over all the voxels of the image but to 

compare a random subset of voxels on each image. The subset size is determined by the user but its location 

is chosen randomly at each new iteration. The number of iterations is called “number of resolutions” in Elastix 

and is represented by the arrow in the Figure above.  
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Transform: Amongst a wide choice of transformations (translation, rigid, affine etc), we chose a B-Spline 

transformation with its associated 3rd order B-Spline interpolator. Associated to this transform is the grid 

spacing. Grid spacing is known in other studies by “nodal spacing”. Basically the nodal spacing determines 

how dense the grid is. The grid is applied on the image to compare it to the fixed image. Elastix gives the 

possibility to choose a fixed size of grid or to change it (refine it) after each iteration. It is important to men-

tion that in our study and as recommended by Elastix, we start at a high grid size in order to capture the big 

structures in the image and then to reduce the grid size to capture more detailed structures. For this reason, 

our approach is both global and local. 

Metric: In order to give a measure of transformation quality or similarity measure as called in the manual, a 

wide choice of metric is available. We chose the Normalized Correlation Coefficient defined in equation 2.6 

in the Elastix Manual [120]. 

𝑁𝐶𝐶(𝜇; 𝐼𝐹 , 𝐼𝑀) =
∑ (𝐼𝐹(𝑥𝑖)𝑥𝑖∈𝛺𝐹

− 𝐼𝐹̅) ∗ (𝐼𝑀 (𝑇𝜇(𝑥𝑖)) − 𝐼𝐹̅)

√∑ (𝐼𝐹(𝑥𝑖) − 𝐼𝐹̅)2
𝑥𝑖∈𝛺𝐹

∗ ∑ (𝐼𝑀(𝑇𝜇(𝑥𝑖)) − 𝐼𝑀̅̅̅)2
𝑥𝑖∈𝛺𝐹

 

With 𝐼𝐹̅ =  
1

|𝛺𝐹|
∑ 𝐼𝐹(𝑥𝑖)𝑥𝑖∈𝛺𝐹

 and 𝐼𝑀̅̅̅ =  
1

|𝛺𝐹|
∑ 𝐼𝑀(𝑇𝜇(𝑥𝑖))𝑥𝑖∈𝛺𝐹

 being the average grey-values. 

Optimizer: In order to solve the optimization problem, an iterative optimization routine is needed which 

involves a “search direction” and a scalar gain factor which controls the step size of this “search”. Many 

optimizers are implemented in Elastix and we chose the Standard Gradient Descent: 

µ𝑘+1 = µ𝑘 −  𝑎𝑘𝑔(µ𝑘), with 𝑔(µ𝑘) =
𝜕𝐶

𝜕µ
 evaluated at the current position µ𝑘 and 𝑎𝑘 =  

𝑎

(𝐴+𝑘+1)𝛼 

In our case and using Elastix recommendations 𝑎 = 100, 𝐴 = 50  and 𝛼 = 0.6.  
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2.6.4 Error analysis on repeated virtually deformed images 

This section presents the error analysis performed on repeated virtually deformed images of the unloaded 

specimen: mCT3-mCT4. 

Methods: A fourth error calculation was performed, following a recent study on bovine cortical bone (PMID 

30736962) which consists in evaluating the error between two repeated unloaded and masked scans (mCT3 

and mCT4): the first scan remained undeformed (mCT3) and a virtual compression of 1% was applied on the 

second scan (mCT4def). The deformation was applied along X, Y and Z axis, separately. The same DVC and 

post-processing method were used as presented for the error calculation on virtually deformed scans (Set 

2). Systematic (median) and random (standard deviation) errors for each component of strain and for the 

third principal strain were calculated. Errors were evaluated on the mesh containing the whole image. In a 

second step, the mesh was cropped to around 50% of its initial volume (VOI1) but still contained: cortical 

bone, trabecular bone and masked volume. Third, the errors were evaluated on a volume of interest (VOI2) 

containing bone without the surrounding mask nor cement (Figure 2:17). 

Results: Systematic (Figure 2:18) and random (Figure 2:19) errors were highest for the normal components 

of strain along the deformation direction. Averaged across all three deformation directions, peak systematic 

errors represented up to 60.4% of the applied deformation when the whole image was considered and de-

creased to 22.5% for VOI1 and to 0.2% for VOI2. Similar decrease was observed for minimum principal strain 

which decreased from 43.5% to 15.2 % (VOI1) and to 1% (VOI2). 

 

Figure 2:17 MicroCT image of deformed scan (mCT4def), red border. Orange border: cropped image, VOI1. White bor-

der: VOI2. 
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Figure 2:18 Systematic errors for repeated virtually deformed scans (mCT3-mCT4def). 
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Figure 2:19 Random errors for repeated virtually deformed scans (mCT3-mCT4def). 

Discussion: The error calculation on repeated deformed scans (mCT3-mCT4def) was a supplementary step 

to evaluate the errors associated with the measurement technique presented. The systematic and random 

errors were highest in the direction of applied deformation, similarly to the study that first introduced this 

error calculation concept (PMID 30736962). The systematic errors were up to 60% of the applied deformation 

when the entire volume was investigated and decreased drastically (around 22%) when the outer layers of 

the image were removed (VOI1) even if VOI1 still included areas of different bone types and border of the 

bone with the mask. When only bone was investigated (VOI2), the errors were extremely small (0.2%). This 

trend was observed in the previous study: errors were around 15% of applied deformation (for 1% defor-

mation) and decreased to be similar to zero-strain errors when the outer layers of the images were removed. 

Our study found high percentage errors compared to the published study which may have the following 

causes: the present study analyzed images of the whole specimen (including edges, trabecular bone, cortical 

bone and cement) while the previous study investigated a VOI containing cortical bone. Moreover, this rela-

tive high error may be due to relatively noisier images of the single specimen investigated. More specimens 

need to be tested in order to confirm the trend. Lastly, a close comparison is not fair due to the different 

machines (micro – CT versus Synchrotron) and scanning resolutions (36 µm versus 1.6 µm) used. 
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 Bone displacement after anatomi-

cal Total Shoulder Arthroplasty measured by 

Digital Volume Correlation and predicted by 

CT-derived finite element model 

This chapter describes the validation of patient-specific finite element models with respect to meas-

ured DVC displacement, strain and joint reaction force.  
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3.1 Abstract 

CT-derived finite element (FE) models of glenoid bone can be used to answer clinical questions, but experi-

mental validation is challenging. The goal of the study was to compare FE model predictions against Digital 

Volume Correlation (DVC) results. Five cadaveric glenoid samples were loaded (750 N) after total shoulder 

arthroplasty (TSA) and their displacement, strain, and reaction force were compared to FE models. 35 differ-

ent bone constitutive laws were simulated for each FE model. Displacement correlation was very strong 

(R2 = 1.00), but moderate for strain (R2 = 0.37) and for force (R2 = 0.66). Validation of FE models of TSA with 

DVC remains challenging. 

Keywords: finite element model; glenoid; micro-CT; bone strain; digital volume correlation; total shoulder 

arthroplasty. 
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3.2 Introduction 

Specimen-specific finite element (FE) models of the shoulder joint are very useful non-invasive tools to pre-

dict general bone biomechanical behaviour [19,71,73,74] However, they rely on a series of assumptions and 

simplifications and one of their recurrent limitation is the lack of experimental validation [69,73,74]. Espe-

cially, in the context of anatomical Total Shoulder Arthroplasty (aTSA), FE models are helpful to identify the 

causes of glenoid implant loosening which was reported as the most common sort of implant failure [19,21–

23]. 

The emerging Digital Volume Correlation (DVC) combined to micro-Computed Tomography (µCT) and me-

chanical loading set-up enables the measurement of full-field quantities such as displacement and strain. 

DVC was used in hip arthroplasty and vertrebroplasty to measure strain in trabecular bone [82,84,86,89], 

cortical bone [83,84], whole bones [85,88,91] and on in situ mice tibiae [87,90]. In the context of shoulder 

joint, it was used to quantify micromotion around cementless porcine glenoid implants after aTSA [69] and 

strain on cemented glenoid bone [74] under concentric, anterior and posterior loading (750 N). Recently, two 

studies aimed at validating FE models against DVC measurements: [73] correlated the displacements pre-

dicted by Quantitative Computer Tomography (QCT)-derived FE model of four cadaveric scapulae against 

displacements measured by DVC. The specimens were imaged in a µCT during loading. A very good correla-

tion (R2 = 0.79 – 1.99, slope = 0.87 – 1.09) was found between DVC-measured displacements and FE model-

predicted displacements when the boundary conditions of the experiments were applied on the model. The 

second study [76] investigated FE model predictions of displacement and reaction force of glenoid under 

loading for 15 different bone constitutive laws against DVC measurements. Excellent DVC – FE model agree-

ment was achieved when boundary conditions of the experiment were used (R2 = 0.82 – 1.00, slope = 0.86 –

1.06). Most recently, compressive strains of osteoarthritic humeral head [77] resp. of scapula [78] predicted 

by specimen – specific FE models were compared to DVC – measured strains. Excellent agreement was found 

(R2 = 0.80, slope = 0.83) [77] resp. good agreement (R2 = 0.73 – 0.75, slope = 0.54–0.59) [78] were found when 

boundary conditions of the experiment were used. 

One commonly cited limitation of recent FE models was the lack of realistic constitutive material law used to 

mechanically describe bone behavior. Although many constitutive laws exist [75,76] and more and more FE 

models use Density-Young’s Modulus (ρ-E) relationships, with density derived from computed tomography 

(CT) data [5,65,69–72], there is no consensus regarding the best-suited material law for glenoid bone under 

loading [75,76] which has a direct impact on the validation potential of said models [69,76]. 

The primary goal of the present study was to quantify the accuracy of bone displacement, bone strain and 

bone reaction force after aTSA predicted by CT-derived specimen-specific FE models against experimental 
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DVC values. The secondary goal of this study was to determine the best-suited bone material law among 

reported ones in the literature. Five specimens were used for this comparison. They were first implanted 

with a polyethylene glenoid component, then loaded within µCT loading device. The aTSA specimens were 

imaged before and during loading to derive experimental displacement and strain using DVC. A FE model was 

created for each specimen, from preoperative CT data, and 35 bone material laws were tested in order to 

find the one that would enable the best experiment-model agreement.  
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3.3 Materials and Methods 

3.3.1 Digital Volume Correlation 

Five fresh-frozen male cadaveric scapulae were used for this study (Table 3:1). Each specimen scanned us-

ing typical clinical CT parameters (Discovery CT750 HD, GE Healthcare, Waukesha, WI, USA). An anthropo-

morphic thorax K2HPO4 phantom (QRM, Moehrendorf, Germany) with a synthetic humerus (Sawbones, 

Vashon Island, WA, USA) and saline plastic bags simulating rotator cuff muscles were used to replicate in-

vivo x-ray attenuation in the experimental setup. Only keeled cemented glenoid implants were used 

(AEQUALIS™ PERFORM, Tornier-Wright Medical, Montbonnot-Saint-Martin, France). To avoid beam hard-

ening metal artifacts, metallic radiopaque markers within the implant keel were removed by the manufac-

turer. A senior shoulder surgeon (AF) used a 3D preoperative planning software and patient-specific instru-

mentation (BLUEPRINT™ 3D Planning, Tornier-Wright Medical, Montbonnot-Saint-Martin, France) to per-

form the arthroplasty. All specimens were cut frozen and potted in polyurethan resin for mechanical test-

ing. 

Each specimen was inserted in a µCT loading device, scanned unloaded, and then loaded (750 N). Precondi-

tioning and relaxation delay were performed between unloaded and loaded scan. The scanning resolution 

was 36 µm. Images were reconstructed using a ring artifact reduction (NRecon v1.6.10.4, Bruker micro-CT, 

Kontich, Belgium). DVC was used to estimate the displacement field of each specimen. We used Elastix-

Transformix open-source registration software [111], with non-rigid registration, multi-resolution B-spline 

transform and gradient-descent optimization of normalized correlation coefficient similarity metric (1.4 mm 

nodal spacing, precision = 440.3 µε, accuracy = 694.3 µε). Strain was derived from displacement using 

Abaqus FE solver (v.6.14, Simulia, Dassault Systèmes, Providence, RI, USA). Details of this experimental 

setup are already reported [121]. 

Specimens Age Height [cm] Weight [kg] Density, ρK2HPO4 [g/cm3] Side 

S1 77 175 91 0.228 ± 0.141 R 

S2 84 180 78 0.185 ±0.129 L 

S3 67 178 77 0.157 ±0.109 L 

S4 59 188 86 0.161 ±0.088 L 

S5 85 155 73 0.177 ±0.127 L 

Table 3:1 Description of the specimens used in the study. In order to calculate the density of each specimen, the 

K2HPO4 calibration phantom was used to convert HU into K2HPO4 equivalent density (ρK2HPO4): ρK2HPO4 [g/cm3] = 

HU/1460. 



Overcorrected Implants for Total Shoulder Arthroplasty 

76 

3.3.2 Finite Element Model 

For each specimen, the preoperative CT was rigidly registered to the unloaded µCT, in order to replicate the 

experiment positioning. Bone was segmented from CT. The Computer Aided Design (CAD) file of the implant 

was provided by the manufacturer, and was positioned as in the µCT. These above steps were performed 

using Amira 2019.2 (FEI SAS, Burlington, MA, USA). Bone surface triangular mesh creation and smoothing 

were performed with Geomagic Design X (3D Systems, Inc). The glenoid bone geometry and placed glenoid 

implant were imported in Solidworks 2019 (Dassault Systèmes SolidWorks Corporation). Virtual implantation 

was performed according to the 3D preoperative planning. A cement layer with a uniform thickness of 

0.5 mm was considered, except at the backside of the keel, where the cement thickness was 2 mm, due to 

1.5 mm polyethylene removal by the manufacturer during radiopaque markers removal. The scapular bone 

cut, glenoid implant, and cement layer were imported into Abaqus. A rigid hemisphere was added in the 

Abaqus model to replicate the articular surface of the humeral component (Figure 3:1). Quadratic tetrahedral 

elements (C3D10) were used for bone, implant and cement. The bone was assigned 1.5 mm sized mesh. 

Mesh size was chosen based on a mesh convergence study presented in section 5.6.2. 

 

 

Figure 3:1 Specimen-specific finite element model. 

For the implant and cement, the material properties were provided by the manufacturer. For bone, Young’s 

Modulus was assigned based on several reported density-elasticity relationships [69,71,122–129]. A MATLAB 

(R2017b, The Mathworks Inc, Natick, USA) script was written to assign CT numbers as Hounsfield units (HU) 

on each node of the FE mesh from the preoperative CT. The K2HPO4 calibration phantom scanned with each 

specimen during preoperative CT provided the following HU to K2HPO4 equivalent density (𝜌𝐾2𝐻𝑃𝑂4
) conver-

sion, 𝜌𝐾2𝐻𝑃𝑂4
 was called hereafter “ρCT”. 
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𝜌𝐶𝑇[g/cm3]  =  HU/1460 

Equation 3:1: HU to K2HPO4 equivalent density (ρK2HPO4) conversion 

Most of the density-elasticity relationships (ρ-E) investigated expressed Young’s Modulus with apparent den-

sity 𝜌𝑎𝑝𝑝, thus, the following ρCT to apparent density 𝜌𝑎𝑝𝑝 conversion was used [129] : 

𝜌𝑎𝑝𝑝 = 2.192 ∗ 𝜌𝐶𝑇 + 0.007 

Equation 3:2: ρCT to apparent density ρapp conversion 

Specifically for Keller’s law [124], apparent density 𝜌𝑎𝑝𝑝 was converted to ash density 𝜌𝑎𝑠ℎ using [130] : 

𝜌𝑎𝑠ℎ = 0.6 ∗ 𝜌𝑎𝑝𝑝 

Equation 3:3: ρash to apparent density ρapp conversion 

We also considered several values for the threshold of apparent density (𝜌𝑎𝑝𝑝) distinguishing trabecular and 

cortical bone. Different values for this threshold are reported in the literature [76], but only the following 

most commonly used were chosen: 𝜌𝑎𝑝𝑝 = 1.00 𝑔/𝑐𝑚3 [131] and 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 [132]. Additionally, 

𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 was used. The combination of ρ-E and density threshold resulted in 35 different bone 

material laws (Table 3:2). 

To replicate the boundary conditions of the experiment, bone nodal displacements from the experiment 

were assigned on the articular surface, on the medial surface (5 mm from the back of the keel of the implant), 

on the scapular spine and on the coracoid. 
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ρ-E Density transition Equation 

L1 [125] n.a. 𝐸𝐵𝑜𝑛𝑒 = 15′000 ∗ (
𝜌𝑎𝑝𝑝

1.8
)2 

L2 [124,125] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 15′000 ∗ (

𝜌𝑎𝑝𝑝

1.8
)2 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L3 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 15′000 ∗ (

𝜌𝑎𝑝𝑝

1.8
)2 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L4 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 15′000 ∗ (

𝜌𝑎𝑝𝑝

1.8
)2 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L5 [122,125] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 15′000 ∗ (

𝜌𝑎𝑝𝑝

1.8
)2 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L6 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 15′000 ∗ (

𝜌𝑎𝑝𝑝

1.8
)2 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L7 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 15′000 ∗ (

𝜌𝑎𝑝𝑝

1.8
)2 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L8 [127] n.a. 
𝜌𝑎𝑝𝑝 < 0.35, 𝐸𝐵𝑜𝑛𝑒 = 1049.45 ∗ 106 ∗ 𝜌𝑎𝑝𝑝

2 

0.35 < 𝜌𝑎𝑝𝑝 < 1.8, 𝐸𝐵𝑜𝑛𝑒 = 3 ∗ 10−6 ∗ 𝜌𝑎𝑝𝑝
3 

L9 [124,127] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 

𝜌𝑎𝑝𝑝 < 0.35, 𝐸 = 1049.45 ∗ 106 ∗ 𝜌𝑎𝑝𝑝
2 

0.35 < 𝜌𝑎𝑝𝑝 < 1, 𝐸 = 3 ∗ 10−6 ∗ 𝜌𝑎𝑝𝑝
3 

𝜌𝑎𝑝𝑝 > 1, 𝐸 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L10 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 

𝜌𝑎𝑝𝑝 < 0.35, 𝐸 = 1049.45 ∗ 106 ∗ 𝜌𝑎𝑝𝑝
2 

0.35 < 𝜌𝑎𝑝𝑝 < 1, 𝐸 = 3 ∗ 10−6 ∗ 𝜌𝑎𝑝𝑝
3 

𝜌𝑎𝑝𝑝 > 1.2, 𝐸 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L11 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 

𝜌𝑎𝑝𝑝 < 0.35, 𝐸 = 1049.45 ∗ 106 ∗ 𝜌𝑎𝑝𝑝
2 

0.35 < 𝜌𝑎𝑝𝑝 < 1, 𝐸 = 3 ∗ 10−6 ∗ 𝜌𝑎𝑝𝑝
3 

𝜌𝑎𝑝𝑝 > 1.8, 𝐸 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L12 [129] n.a. 𝐸𝐵𝑜𝑛𝑒 = 32′790 ∗ 𝜌𝐶𝑇
2.307 

L13 [124,129] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 32′790 ∗ 𝜌𝐶𝑇

2.307 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L14 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 32′790 ∗ 𝜌𝐶𝑇

2.307 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L15 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 32′790 ∗ 𝜌𝐶𝑇

2.307 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L16 [122,129] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 32′790 ∗ 𝜌𝐶𝑇

2.307 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L17 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 32′790 ∗ 𝜌𝐶𝑇

2.307 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L18 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 32′790 ∗ 𝜌𝐶𝑇

2.307 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L19 [128] n.a. 𝐸𝑏𝑜𝑛𝑒 = 11′035.9 ∗ 𝜌𝑎𝑝𝑝
2.13 

L20 [124,128] 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 11′035.9 ∗ 𝜌𝑎𝑝𝑝

2.13 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L21 [122,128] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 11′035.9 ∗ 𝜌𝑎𝑝𝑝

2.13 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 
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L22 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑏𝑜𝑛𝑒 = 11′035.9 ∗ 𝜌𝑎𝑝𝑝

2.13 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L23 [126] n.a. 𝐸𝐵𝑜𝑛𝑒 = 8′920 ∗ 𝜌𝑎𝑝𝑝
1.83 

L24 [124,126] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 8′920 ∗ 𝜌𝑎𝑝𝑝

1.83 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L25 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 8′920 ∗ 𝜌𝑎𝑝𝑝

1.83 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L26 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 8′920 ∗ 𝜌𝑎𝑝𝑝

1.83 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L27 [71] n.a. 
0.35 < 𝜌𝑎𝑝𝑝 < 1.8, 𝐸 = 3 ∗ 10−6 ∗ 𝜌𝑎𝑝𝑝

3 

𝜌𝑎𝑝𝑝 > 1.8, 𝐸 = 17′500𝑀𝑃𝑎 

L28 [123] n.a. 𝐸 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝
2 

L29 [123,124] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L30 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L31 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝐸𝑐𝑜𝑟𝑡 = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

L32 [122,123] 𝜌𝑎𝑝𝑝 = 1 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L33 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L34 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 
𝐸𝑡𝑟𝑎𝑏 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝐸𝑐𝑜𝑟𝑡 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

L35 [69] n.a. 
0.1 < 𝜌𝑎𝑝𝑝 < 1.3, 𝐸 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝

2 

𝜌𝑎𝑝𝑝 > 1.3, 𝐸 = 90 ∗ 𝜌𝑎𝑝𝑝
7.4 

Table 3:2 Material laws used, (n.a. = not applicable). Following relationships were used: ρCT [g/cm3] = ρK2HPO4 = HU/ 

1460. ρapp =2.192* ρCT +0.007 [129] and ρash = 0.6* ρapp [130]. 

3.3.3 Output 

To compare FE model predictions and DVC measurements, the following three metrics were used: 1) dis-

placement of the bone in three orthogonal directions, 2) minimum principal strain of the bone and 3) reaction 

force of the bone in the loading direction. These three metrics were considered at each node of the FE model 

and compared to the corresponding DVC measurements. Linear correlation between FE model and DVC was 

quantified by the coefficient of determination (R2), slope (A), y-intercept (B), Root Mean Square Error (RMSE) 

and maximum error (MaxError = maximum difference between FE model and DVC). We excluded from this 

correlation the nodes where boundary conditions were applied. Outlier nodes were excluded from the anal-

ysis using 5x the Cook’s distance [73,133]. We performed this linear regression for each of the 35 material 

laws, for each of the five specimens, and also with all five specimens pooled together. This resulted in a total 

of 210 DVC to FE model statistical comparisons. The performance of the material law was quantified first 

according to the closest slope and R2 to unity scored by each metric when all specimens were pooled. In a 
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second step, the laws that presented the best FE model-DVC agreement for reaction force and the lowest 

RMSE were considered the best-suited laws.  
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3.4 Results 

Extended results are reported in Supplementary Material Section 3.6. 

3.4.1 Displacement 

Across all material laws and for pooled specimens, the correlation was very strong in the three directions of 

displacement: coefficient of determination R2 = 1.00, slope A = 1.00 and y-intercept B from -2.93 to 0.63, 

RMSE from 9.18 to 13.94 and MaxError µm from 52.60 to 74.74 µm (Table 3:4). 

Across all material laws and for each specimen, the correlation between FE model and DVC displacement was 

strong (Table 3:3). In the direction of loading (Uz), R2 ranged from 0.76 to 0.99, A ranged from 0.90 to 1.00, 

B ranged from -12.3 µm to 9.6 µm, RMSE ranged between 7.15 and 14.63 and MaxError ranged between 

31.95 and 68.96 µm. In the other two directions Ux and Uy, R2 ranged from 0.70 to 0.98, A from 0.78 to 1.00, 

B from -17.10 µm to 33.89 µm, RMSE from 3.76 to 16.95 µm and MaxError from 13.74 to 85.09 µm. The 

weakest correlations were observed for specimens S1 and S4. 

          

DISPLACEMENT Ux Uy Uz 

  R2 Slope 

A 

y-intercept 

B 

R2 Slope 

A 

y-intercept 

B 

R2 Slope 

A 

y-intercept 

B 

           

S1 0.71-

0.79 

0.82-

0.97 

-17.10 to -

4.06 

0.89-

0.91 

0.94-

0.96 

-10.6 to -

4.83 

0.98 1 2.69 to 

3.58 

S2 0.95-

0.97 

0.95-

0.97 

6.47 to 

17.84 

0.84-

0.91 

0.87-

1.00 

-5.32 to 

9.11 

0.99 0.97-

0.99 

-0.15 to 

3.10 

S3 0.96-

0.98 

1 -1.22 to 

2.13 

0.89-

0.93 

0.96-

1.00 

-11.60 to -

4.81 

0.98 1 -12.33 to -

10.37 

S4 0.70-

0.72 

0.78-

0.81 

5.25 to 6.23 0.75-

0.8 

0.78-

0.86 

-6.95 to -

4.04 

0.76-

0.82 

0.9-

0.94 

6.73 to 

9.64 

S5 0.88-

0.92 

0.97-

1.00 

3.23 to 9.08 0.88-

0.92 

0.91-

0.94 

21.14 to 

33.89 

0.99 1 1.23 to 

6.67  

 

       

DISPLACEMENT Ux Uy Uz 

 RMSE  MaxError RMSE MaxError RMSE MaxError 

S1 6.45 - 7.58 26.24 - 32.94 7.78 - 8.70 30.03 - 34.76 7.74 - 8.41 36.20 - 39.63 

S2 10.44 – 13.87 38.11 - 51.69 6.02 - 8.06 18.85 - 25.24 10.14 - 11.96 31.95 - 41.69 

S3 11.40 - 15.68 54.80 - 74.74 9.41 - 11.31 49.60 - 65.25 13.20 - 14.63 61.31 - 68.96 

S4 6.03  -  6.22 26.41 - 27.90 3.76 - 4.16 13.53 - 15.72 7.15 - 8.26 35.97 - 45.60 

S5 14.01 - 16.95 60.58 - 71.03 11.62 to 14.04 45.33 - 86.27 12.20 - 12.97 61.81 - 67.50 

Table 3:3 linear regression results for displacement for each specimen.  
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 Ux Uy Uz 

 R2 A B RMSE MaxError R2 A B RMSE MaxError R2 A B RMSE MaxError 

all ρ-E 1 1 -1.95 

to -

1.58 

11.41 

to 

13.94 

60.58 to 

74.74 

1 1 -2.93 to -

0.24 

9.18 to 10.44 52.60 to 

86.27 

1 1 -0.73 

to 

0.63 

11.62 

to 

12.52 

54.48 to 

68.96 

Table 3:4 Linear regression results for displacement for all specimens pooled and across all material laws investigated 

expressed with coefficient of determination R2, slope A, y-intercept b, RMSE and MaxError. 

3.4.2 Minimum Principal Strain 

For Minimum Principal Strain, the correlation between FE model and DVC was weak across all material laws 

and for all specimens pooled (Figure 3:2): R2 ranged between 0.28 and 0.37 while A ranged between 0.51 and 

0.70. RMSE ranged between 7190 and 7618 µε and MaxError ranged between 86770 and 90210 µε (Suppl. 

Material, Table 3:11). 

Investigating each specimen separately, the correlation was moderate for S4 and S5 (R2 = 0.38 to 0.53 and 

A = 0.53 – 0.88), weak for S1 and S3 (R2 =  0.15 to 0.36 and A = 0.49 – 0.74) and very weak for S2 (R2 = 0.07 to 

0.14 and A = 0.31 – 0.53) (Table 3:5). 

 

Figure 3:2 Minimum Principal Strain linear regression for all specimens pooled and for all material laws. 
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 R2 Slope y-intercept 

S1 0.15-0.23 0.57-0.74 0.00 

S2 0.07-0.14 0.31-0.53 -0.01 

S3 0.28-0.36 0.49-0.65 -0.01 to 0.0 

S4 0.38-0.46 0.61-0.68 0.00 

S5 0.35-0.53 0.53-0.88 -0.01 to 0.0 

Table 3:5 linear regression results for reaction force for each specimen and for all material laws. 

3.4.3 Reaction Force 

High variation was found in the agreement between FE model-predicted and experimentally applied reaction 

force (Figure 3:3). The difference between predicted and experimental reaction force varied across all mate-

rial laws for pooled specimens: R2 ranged between 0.22 to 0.66 while slope ranged between 0.03 and 0.96. 

RMSE ranged between 0.52 and 0.78 N while MaxError ranged between 8.60 and 24.90 N. 

 

Figure 3:3 High variation in reaction force linear regression for all specimens pooled and for all material laws. Best 

agreement found for material laws L19, L28, L33-L35, in red. 
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3.4.4 Material law 

For displacements, L32 provided the highest correlation for each specimen separately, but L19, L28, and L33-

L35 presented extremely similar results, with differences lower than 1 µm (Section 3.6.1, Tables A1 to A3).  

For minimum principal strain, L19, L28, L33-L35 presented very similar, but weak correlation for pooled spec-

imens. When each specimen was investigated separately, S1, S3 and S4 presented a clear advantage for L33-

L35, while specimen S5 had better results with L19. Specimen S4 did not show any clear tendency (Supple-

mentary Material section 3.5.2, Tables 3:12 to 3:14). 

For reaction force, L19, L28, L33-L35 (red in Figure 3:3) presented the best correlation (R2 between 0.41 – 

0.63 and slope between 0.51 – 0.95). Particularly L28 presented the closest correlation to DVC (R2 = 0.63, 

A  = 0.96, B = 0.00) and scored the lowest errors (RMSE = 0.52 N and MaxError = 8.60 N). 

From these results, L28 was the optimal material law to predict DVC measurements of displacement (Figure 

3:4) with FE model. For illustration, we present displacement (Figure 3:5) and minimum principal strain (Fig-

ure 3:6) of the five specimens with L28. 

 

Figure 3:4 Linear regression for displacement along the three directions using material law L28 for all specimens 

pooled. 
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 Ux Uy Uz 

 R2 A B RMSE R2 A B RMSE R2 A B RMSE 

L28 1.00 1.01 -1.74 12.18 1.00 1.01 -1.90 10.44 1.00 1.01 -0.41 11.74 

Figure 3:5 Displacement from DVC (top) vs. FE model-predicted displacement using material law L28 (bottom) for 

specimens S1 to S5 (from left to right) and linear regression results for all specimens pooled. 

 

 

 R2 A B RMSE 

L28 0.29 0.52 -0.01 7598.72 

Figure 3:6: DVC minimum principal strain (top) vs. FE model-predicted minimum principal strain using material law L28 

(bottom) for specimens S1 to S5 (from left to right) and linear regression results for all specimens pooled.  

FE 

DVC 

S1 S2 S3 S4 S5 

FE 

DVC 

S1 S2 S3 S4 S5 



Overcorrected Implants for Total Shoulder Arthroplasty 

86 

3.5 Discussion 

The goal of the present study was to evaluate the accuracy of displacement, compressive strain and reaction 

force predictions of CT-derived specimen-specific FE models compared to DVC measurements. An excellent 

agreement was found for displacement in all three directions. The displacements were in general not very 

sensitive to the change in material law. The correlation was poor to moderate for strain. 

One recently published study on loaded scapulae also found an excellent correlation between experimental 

displacements (calculated by DVC) and QCT-derived specimen-specific FE model when boundary conditions 

of the experiment were replicated. Findings were: R2 = 0.83-1.00, A = 0.93-1.05 and B = -0.02 – 0.01 for con-

centrated load at 500 N and R2 = 0.79 – 1.00, A = 0.87 – 1.09 and B = -0.03 to 0.03 for off-axis load [73]. The 

published study used material law L33 with transition between trabecular and cortical bone of 𝜌𝑎𝑝𝑝 =

1.54 𝑔/𝑐𝑚3. This corresponds to material laws L33 (𝜌𝑎𝑝𝑝 = 1.00 𝑔/𝑐𝑚3) and L34 (𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3) in our 

study; both of which scored similar results: R2=0.72-0.99, A = 0.81-1.03 and B = (-12.06 – 32.91 µm). Previous 

studies used commonly 𝜌𝑎𝑝𝑝 = 1.00 𝑔/𝑐𝑚3 and 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 as trabecular to cortical transition den-

sity [76]. In our case, the intermediate value 𝜌𝑎𝑝𝑝 = 1.2 𝑔/𝑐𝑚3 was added because specimens S3 to S5 ex-

hibited this transition density.  

Poor correlation was found for minimum principal strain predicted by the model for all specimens pooled: 

R2 = 0.28 – 0.37 and A = 0.51 – 0.70. Specimen S2 presented the weakest agreement for all material laws 

investigated: R2 = 0.07 – 0.14 and A = 0.31 – 0.53. Compared to published data, these correlations are indeed 

weak: One recently published study on humeral head osteotomies under loading investigated tensile and 

compressive strain and found a very good agreement between experiment and derived FE model R2 = 0.80 

and A = 0.83 across 6 specimens; while another most recent study published linear regression results of com-

pressive strain of scapulae under loading with R2 ranging between 0.73 – 0.75 and a slope ranging between 

0.54 – 0.59 [77]. One published study hinted at the higher uncertainty of strain predictions [73]. 

Specimens S3 to S5 presented a better correlation with respect to minimum principal strain when using re-

lationships L23-L26 compared to material laws L19, L28, L33-L35 while the opposite was observed for speci-

mens S1 and S2. This is probably due to the difference in relative density: S3 to S5 had a relatively lower 

mean density and thus the deformation was probably more exaggerated using the L19, L28, L33-L35 group. 

In general, the poor agreement of strain hints that the DVC technique used was not accurate enough for 

investigating strain at an applied loading of 750 N and needs in any case further investigation. 

Across all material laws investigated, L19, L28 and L33-L35 presented the best agreement with respect to 

reaction force replication. These material laws (except L19) all use Rice [123] as trabecular bone material law 
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with different trabecular to cortical bone transitions but they usually provide less stiff models than the L24-

L26 group. Relationship L19, although developed on patellar bone, also provides a relatively soft trabecular 

bone which explains the similar behavior. Two studies on scapulae also used Rice as trabecular bone material 

law [69,73] with different trabecular-cortical bone transition, both of which were included in our study (L33 

to L35). 

One study on loaded cadaveric scapulae investigated reaction force errors predicted by QCT-FE models of 

specimens and found the lowest errors when using Rice as trabecular bone material law (L13-L15 in [76]). 

This study claimed that the best trabecular to cortical bone transition was 𝜌𝑎𝑝𝑝 = 1.00 𝑔/𝑐𝑚3  when inves-

tigating reaction force. This was not confirmed in our study which showed that the best correlation was ob-

tained by either using 𝜌𝑎𝑝𝑝 = 1.8 𝑔/𝑐𝑚3 or by extrapolating the trabecular material law to the cortical bone 

(Table 3:17 in supplementary material section 3.6.3). This difference in findings between the studies is prob-

ably due to lower average density of the specimens in the present study. Minimum principal strain and dis-

placement showed only a rather negligible influence of the trabecular transition level and were more im-

pacted when the power law was changed (Table 3:6 to Table 3:11 in the supplementary material 3.6.1 and 

3.6.2). 

Similar to the previous study, displacements were quite robust to change in material law while reaction forces 

presented more variation. Variation in minimum principal strain was also observed in our case. This may 

support the theory that micro-architecture may be the reason for these variations [76,134]. Thus, more FE 

models investigating sensitivity of compressive strains to different material laws are needed to confirm the 

tendency. Bone mesh size was assigned to 1.5 mm, to be consistent with the DVC nodal spacing of 1.4 mm 

and after mesh convergence study where maximum displacement, average axial strain and minimum princi-

pal strain were investigated for bone mesh sizes 0.5, 1, 1.5, 2 and 3. The mesh convergence study was per-

formed in the context of the previously published work [135]. Moreover, the area around the implant was 

chosen because our interest lies in the bone behavior around the implant. 

This study has a number of limitations. First the number of specimens used is too small for any conclusive 

and especially any strong statistical analysis. Second, the model introduces several simplifications: bone was 

segmented from the CT data and not the µCT data. Second, µCT data and CT-data were rigidly registered, 

which may introduce a slight difference in positioning. Third, the implant was positioned using µCT data and 

virtual implantation was performed. All these steps may have introduced cumulative errors. Moreover, the 

0.5 mm thick cement is idealized while in reality, the hot cement diffused into the trabecular bone and de-

stroyed some trabeculae. Also, and as stated previously [76,136], material mapping from density may intro-

duce some errors in density quantification, especially that assumptions were introduced with equations (2) 

and (3). Partial volume effect was clearly present as shown in Figure 3:6 where the outer contour of the 
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surface was clearly assigned lower density modulus than in reality, thus contributing to reduce agreement 

between DVC and FE model.  

Lastly, this study used boundary conditions from the experiment, which is a strength since most validation 

studies are limited by the lack of correct boundary conditions and using them has shown a great improve-

ment in experiment-model correspondence [73,76,77,90,133,134,137,138]. However, using boundary con-

ditions from the experiment may be considered as a limitation to the applicability in vivo since the boundary 

conditions for each patient cannot be replicated to the FE model. 

Nonetheless, the present study is among the first ones to present a CT to FE workflow which compares DVC 

versus FE model-predicted displacement, minimum principal strain and reaction force results on loaded ca-

daveric specimens. This study is the first one to present strain validation data from DVC measurements on 

implanted cadaveric scapulae. 

To conclude, this study presents specimen-specific CT-derived FE model that very well replicated displace-

ments measured experimentally. The best suited ρ-E relationship was 𝐸 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝
2 [123] at the 

most suitable transition depending on the average density of the specimens. The workflow presented may 

be extended for patient-specific FE model generation in the context of implant design comparison. However 

compressive strain results need to be handled with caution. 
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3.6 Supplementary Material 

3.6.1 Displacement 

R2 Ux Uy Uz 

ρ-E S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

L1 0.77 0.97 0.97 0.71 0.91 0.91 0.89 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L2 0.76 0.96 0.97 0.71 0.91 0.90 0.88 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L3 0.76 0.97 0.97 0.71 0.91 0.90 0.89 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L4 0.76 0.97 0.97 0.71 0.91 0.90 0.89 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L5 0.79 0.97 0.97 0.71 0.92 0.91 0.91 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L6 0.78 0.97 0.97 0.71 0.91 0.91 0.90 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L7 0.77 0.97 0.97 0.71 0.91 0.91 0.89 0.92 0.78 0.91 0.98 0.99 0.98 0.79 0.99 

L8 0.72 0.96 0.97 0.70 0.89 0.89 0.87 0.91 0.77 0.91 0.98 0.99 0.98 0.80 0.99 

L9 0.71 0.95 0.97 0.70 0.89 0.89 0.84 0.91 0.77 0.92 0.98 0.99 0.98 0.80 0.99 

L10 0.72 0.96 0.97 0.70 0.89 0.89 0.86 0.91 0.77 0.91 0.98 0.99 0.98 0.80 0.99 

L11 0.72 0.96 0.97 0.70 0.89 0.89 0.87 0.91 0.77 0.91 0.98 0.99 0.98 0.80 0.99 

L12 0.75 0.97 0.97 0.70 0.90 0.90 0.89 0.91 0.76 0.91 0.98 0.99 0.98 0.76 0.99 

L13 0.77 0.97 0.97 0.71 0.90 0.90 0.91 0.91 0.77 0.91 0.98 0.99 0.98 0.76 0.99 

L14 0.76 0.97 0.97 0.70 0.90 0.90 0.89 0.91 0.76 0.91 0.98 0.99 0.98 0.76 0.99 

L15 0.75 0.97 0.97 0.70 0.90 0.90 0.89 0.91 0.76 0.91 0.98 0.99 0.98 0.76 0.99 

L16 0.79 0.97 0.97 0.71 0.91 0.91 0.91 0.91 0.77 0.91 0.98 0.99 0.98 0.76 0.99 

L17 0.77 0.97 0.97 0.70 0.90 0.90 0.90 0.91 0.76 0.91 0.98 0.99 0.98 0.76 0.99 

L18 0.75 0.97 0.97 0.70 0.90 0.90 0.89 0.91 0.76 0.91 0.98 0.99 0.98 0.76 0.99 

L19 0.72 0.96 0.96 0.70 0.88 0.89 0.86 0.89 0.75 0.91 0.98 0.99 0.98 0.79 0.99 

L20 0.72 0.96 0.96 0.70 0.88 0.89 0.86 0.89 0.75 0.91 0.98 0.99 0.98 0.79 0.99 

L21 0.72 0.96 0.96 0.70 0.88 0.89 0.86 0.89 0.75 0.91 0.98 0.99 0.98 0.79 0.99 

L22 0.77 0.97 0.98 0.71 0.91 0.91 0.90 0.92 0.78 0.91 0.98 0.99 0.98 0.78 0.99 

L23 0.78 0.97 0.98 0.71 0.91 0.91 0.90 0.92 0.78 0.91 0.98 0.99 0.98 0.78 0.99 

L24 0.77 0.97 0.98 0.71 0.91 0.91 0.90 0.92 0.78 0.91 0.98 0.99 0.98 0.78 0.99 

L25 0.77 0.97 0.98 0.71 0.91 0.91 0.90 0.92 0.78 0.91 0.98 0.99 0.98 0.78 0.99 

L26 0.72 0.96 0.97 0.70 0.89 0.89 0.87 0.91 0.77 0.91 0.98 0.99 0.98 0.80 0.99 

L27 0.78 0.96 0.98 0.72 0.91 0.91 0.90 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L28 0.74 0.95 0.98 0.72 0.90 0.90 0.84 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L29 0.76 0.96 0.98 0.72 0.91 0.91 0.88 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L30 0.76 0.96 0.98 0.72 0.91 0.91 0.88 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L31 0.78 0.96 0.98 0.72 0.91 0.91 0.90 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L32 0.79 0.97 0.98 0.72 0.92 0.91 0.91 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L33 0.78 0.96 0.98 0.72 0.92 0.91 0.90 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L34 0.78 0.96 0.98 0.72 0.91 0.91 0.90 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

L35 0.78 0.96 0.98 0.72 0.91 0.91 0.90 0.93 0.80 0.88 0.98 0.99 0.98 0.82 0.99 

Table 3:6 Coefficient of determination (R2) for displacement in three directions for each specimen across all material 

laws. 
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Slope Ux Uy Uz 

ρ-E S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

L1 0.91 0.96 1.02 0.79 1.00 0.95 0.97 0.98 0.82 0.94 1.00 0.98 1.03 0.92 1.00 

L2 0.90 0.96 1.02 0.79 1.00 0.95 0.95 0.98 0.82 0.94 1.00 0.98 1.03 0.92 1.00 

L3 0.91 0.96 1.02 0.79 1.00 0.95 0.96 0.98 0.82 0.94 1.00 0.98 1.03 0.92 1.00 

L4 0.91 0.96 1.02 0.79 1.00 0.95 0.97 0.98 0.82 0.94 1.00 0.98 1.03 0.92 1.00 

L5 0.95 0.97 1.02 0.80 1.01 0.96 1.01 0.98 0.83 0.93 1.00 0.98 1.04 0.92 1.00 

L6 0.93 0.96 1.02 0.79 1.00 0.96 0.98 0.98 0.82 0.94 1.00 0.98 1.04 0.92 1.00 

L7 0.91 0.96 1.02 0.79 1.00 0.96 0.97 0.98 0.82 0.94 1.00 0.98 1.03 0.92 1.00 

L8 0.84 0.96 1.01 0.78 0.98 0.95 0.93 0.97 0.80 0.94 1.00 0.98 1.03 0.91 1.00 

L9 0.82 0.95 1.01 0.78 0.98 0.94 0.87 0.97 0.80 0.93 1.00 0.98 1.03 0.91 1.00 

L10 0.83 0.96 1.01 0.78 0.98 0.94 0.92 0.97 0.80 0.94 1.00 0.98 1.03 0.91 1.00 

L11 0.84 0.96 1.01 0.78 0.98 0.95 0.93 0.97 0.80 0.94 1.00 0.98 1.03 0.91 1.00 

L12 0.89 0.96 1.02 0.79 1.00 0.95 0.94 0.97 0.80 0.94 1.00 0.98 1.04 0.90 1.00 

L13 0.92 0.97 1.02 0.79 1.00 0.96 0.99 0.97 0.81 0.94 1.01 0.98 1.04 0.90 1.00 

L14 0.90 0.96 1.02 0.79 1.00 0.96 0.96 0.97 0.80 0.94 1.01 0.98 1.04 0.90 1.00 

L15 0.89 0.96 1.02 0.79 1.00 0.95 0.94 0.97 0.80 0.94 1.00 0.98 1.03 0.90 1.00 

L16 0.94 0.96 1.01 0.79 1.00 0.96 0.99 0.97 0.81 0.94 1.01 0.99 1.04 0.90 1.00 

L17 0.91 0.96 1.02 0.79 0.99 0.96 0.96 0.97 0.81 0.94 1.00 0.98 1.04 0.90 1.00 

L18 0.89 0.96 1.02 0.79 0.99 0.96 0.94 0.97 0.80 0.94 1.00 0.98 1.03 0.90 1.00 

L19 0.83 0.96 1.01 0.78 0.97 0.94 0.94 0.96 0.78 0.93 1.00 0.97 1.03 0.90 1.00 

L20 0.83 0.96 1.01 0.78 0.97 0.94 0.94 0.96 0.78 0.93 1.00 0.97 1.03 0.90 1.00 

L21 0.83 0.96 1.01 0.78 0.97 0.94 0.94 0.96 0.78 0.93 1.00 0.97 1.03 0.90 1.00 

L22 0.93 0.96 1.02 0.79 1.01 0.95 0.97 0.98 0.82 0.94 1.00 0.98 1.04 0.92 1.00 

L23 0.93 0.96 1.02 0.80 1.01 0.96 0.98 0.98 0.82 0.94 1.00 0.98 1.04 0.92 1.00 

L24 0.93 0.96 1.02 0.80 1.01 0.96 0.97 0.98 0.82 0.94 1.00 0.98 1.04 0.92 1.00 

L25 0.93 0.96 1.02 0.79 1.01 0.96 0.97 0.98 0.82 0.94 1.00 0.98 1.04 0.92 1.00 

L26 0.84 0.96 1.01 0.78 0.98 0.95 0.93 0.97 0.80 0.94 1.00 0.98 1.03 0.91 1.00 

L27 0.94 0.96 1.02 0.81 1.02 0.96 0.99 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

L28 0.89 0.95 1.02 0.80 1.01 0.94 0.87 0.99 0.84 0.91 1.00 0.98 1.03 0.94 1.01 

L29 0.92 0.96 1.02 0.81 1.01 0.95 0.97 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

L30 0.92 0.96 1.02 0.81 1.01 0.95 0.97 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

L31 0.94 0.96 1.02 0.81 1.02 0.95 0.99 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

L32 0.97 0.96 1.02 0.81 1.02 0.95 1.02 1.00 0.86 0.91 1.00 0.98 1.03 0.94 1.00 

L33 0.95 0.96 1.02 0.81 1.02 0.95 1.00 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

L34 0.94 0.96 1.02 0.81 1.02 0.95 0.99 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

L35 0.94 0.96 1.02 0.81 1.02 0.95 1.00 0.99 0.85 0.91 1.00 0.98 1.03 0.94 1.01 

Table 3:7 Slope of linear regression for displacement in three directions for each specimen across all material laws. 
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y-intercept Ux Uy Uz 

ρ-E S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

L1 -8.67 11.84 -1.02 5.47 0.97 -6.81 -0.52 -7.84 -5.49 23.00 3.07 1.07 -11.72 8.40 3.64 

L2 -9.83 13.36 -1.02 5.48 1.43 -7.62 1.58 -7.96 -5.61 22.52 3.18 1.12 -11.64 8.42 3.49 

L3 -9.24 12.22 -0.96 5.47 1.02 -7.37 -0.05 -7.84 -5.53 22.81 3.14 1.14 -11.68 8.40 3.59 

L4 -8.99 11.91 -0.97 5.47 0.93 -7.17 -0.47 -7.83 -5.51 22.91 3.11 1.09 -11.70 8.40 3.62 

L5 -4.86 7.46 -0.70 5.44 0.35 -5.22 -2.92 -7.55 -5.15 24.83 2.71 0.22 -12.26 8.33 4.97 

L6 -7.07 10.55 -1.11 5.45 1.02 -5.80 -1.57 -7.85 -5.34 23.58 2.89 0.82 -11.90 8.42 4.03 

L7 -8.61 11.84 -1.02 5.47 1.02 -6.65 -0.52 -7.84 -5.49 23.00 3.09 1.07 -11.72 8.40 3.63 

L8 -15.24 14.99 -0.46 5.93 5.47 -9.61 3.52 -9.30 -6.31 22.46 2.92 1.98 -10.44 8.67 3.40 

L9 -17.10 17.84 -0.47 5.97 6.62 -10.60 9.11 -9.59 -6.52 22.28 3.07 1.92 -10.37 8.69 3.26 

L10 -15.93 15.41 -0.35 5.94 5.63 -10.16 4.55 -9.30 -6.40 22.32 2.97 2.06 -10.41 8.67 3.34 

L11 -15.31 14.99 -0.46 5.93 5.44 -9.70 3.52 -9.30 -6.31 22.47 2.93 1.98 -10.45 8.67 3.40 

L12 -10.71 13.95 -0.16 5.66 2.60 -7.86 1.89 -9.80 -6.38 21.20 2.99 1.35 -11.22 9.58 4.96 

L13 -7.75 10.38 -0.13 5.63 2.05 -5.64 -1.92 -9.56 -6.08 22.20 2.69 0.89 -11.53 9.54 5.63 

L14 -9.24 13.03 -0.33 5.66 2.87 -6.28 0.81 -9.81 -6.24 21.56 2.84 1.15 -11.33 9.60 5.20 

L15 -10.52 13.95 -0.16 5.66 2.80 -7.26 1.90 -9.80 -6.38 21.16 3.06 1.35 -11.22 9.58 4.96 

L16 -5.83 9.35 0.12 5.64 2.51 -4.83 -0.95 -9.51 -5.92 22.95 2.75 0.34 -11.93 9.55 6.67 

L17 -8.63 12.36 -0.34 5.66 3.49 -5.57 0.59 -9.83 -6.14 21.74 2.91 1.01 -11.47 9.64 5.54 

L18 -10.48 13.95 -0.16 5.66 2.89 -7.05 1.90 -9.80 -6.38 21.14 3.10 1.35 -11.22 9.58 4.96 

L19 -15.85 15.56 2.13 6.23 9.08 -9.83 1.94 -

11.60 

-6.95 23.53 3.57 3.10 -11.65 9.46 5.31 

L20 -16.11 15.56 2.13 6.23 8.96 -10.32 1.94 -

11.60 

-6.95 23.53 3.58 3.10 -11.65 9.46 5.31 

L21 -15.88 15.56 2.13 6.23 9.06 -9.94 1.94 -

11.60 

-6.95 23.53 3.56 3.10 -11.65 9.46 5.31 

L22 -7.34 11.63 -0.92 5.38 -0.01 -6.42 -0.63 -7.68 -5.38 22.96 3.07 0.76 -11.93 8.57 3.93 

L23 -6.91 11.06 -0.90 5.38 -0.16 -6.20 -1.26 -7.64 -5.35 23.14 3.03 0.73 -11.96 8.56 4.03 

L24 -7.17 11.51 -0.93 5.38 -0.05 -6.28 -0.77 -7.69 -5.37 23.02 3.05 0.74 -11.94 8.57 3.96 

L25 -7.33 11.63 -0.92 5.38 -0.01 -6.38 -0.63 -7.68 -5.38 22.97 3.07 0.76 -11.93 8.57 3.94 

L26 -15.19 14.99 -0.46 5.93 5.48 -9.53 3.52 -9.30 -6.31 22.46 2.93 1.98 -10.44 8.67 3.40 

L27 -5.98 9.86 -1.19 5.26 -2.33 -5.89 -3.10 -5.06 -4.25 32.75 3.05 0.30 -11.98 6.82 1.92 

L28 -11.41 17.75 -1.22 5.31 0.43 -9.46 9.04 -5.61 -4.69 31.19 3.35 0.11 -11.72 6.89 1.23 

L29 -8.55 11.71 -0.96 5.25 -1.74 -8.15 -0.58 -5.06 -4.43 31.97 3.25 0.49 -11.85 6.82 1.69 

L30 -8.55 11.71 -0.96 5.25 -1.74 -8.15 -0.58 -5.06 -4.43 31.97 3.25 0.49 -11.85 6.82 1.69 

L31 -6.42 9.86 -1.19 5.26 -2.43 -6.75 -3.11 -5.06 -4.25 32.73 3.06 0.30 -11.98 6.82 1.91 

L32 -4.06 6.47 -0.90 5.25 -3.23 -5.80 -5.32 -4.81 -4.04 33.89 2.88 -

0.15 

-12.33 6.73 2.65 

L33 -5.61 9.13 -1.20 5.26 -2.63 -6.18 -3.70 -5.06 -4.19 32.99 3.01 0.19 -12.06 6.82 2.06 

L34 -6.22 9.86 -1.19 5.26 -2.39 -6.37 -3.10 -5.06 -4.25 32.74 3.04 0.30 -11.98 6.82 1.93 

L35 -6.13 9.78 -1.21 5.26 -2.46 -6.43 -3.16 -5.06 -4.23 32.80 3.05 0.28 -11.99 6.82 1.96 

Table 3:8 y-intercept of linear regression for displacement in three directions for each specimen across all material 

laws. 
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RMSE Ux Uy Uz 

ρ-E S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

L1 6.85 11.41 12.61 6.10 14.55 7.93 6.58 9.86 3.94 11.92 8.10 11.12 13.99 7.80 12.34 

L2 6.97 11.88 12.59 6.11 14.72 7.99 6.87 9.86 3.95 11.88 8.09 11.27 13.98 7.80 12.36 

L3 6.90 11.54 12.61 6.10 14.59 7.97 6.68 9.86 3.94 11.91 8.09 11.18 13.99 7.79 12.35 

L4 6.87 11.43 12.61 6.10 14.54 7.96 6.58 9.86 3.94 11.92 8.09 11.13 13.99 7.79 12.35 

L5 6.47 10.70 12.65 6.08 14.03 7.88 6.02 9.89 3.93 12.13 8.16 10.14 14.10 7.79 12.30 

L6 6.68 10.93 12.61 6.10 14.46 7.87 6.25 9.86 3.94 11.95 8.14 10.86 14.01 7.80 12.32 

L7 6.85 11.41 12.61 6.10 14.56 7.91 6.58 9.86 3.94 11.92 8.10 11.12 13.99 7.80 12.34 

L8 7.39 12.55 13.08 6.20 15.80 8.49 7.37 10.41 4.00 11.64 8.23 11.74 13.97 7.46 12.29 

L9 7.58 13.35 13.04 6.22 16.20 8.63 8.06 10.42 4.01 11.62 8.18 11.96 13.95 7.47 12.30 

L10 7.46 12.66 13.07 6.21 15.88 8.55 7.56 10.41 4.00 11.65 8.21 11.81 13.96 7.46 12.30 

L11 7.39 12.55 13.08 6.20 15.79 8.50 7.37 10.41 4.00 11.64 8.23 11.74 13.97 7.46 12.29 

L12 7.02 11.55 13.09 6.20 15.43 8.11 6.84 10.52 4.09 11.73 8.25 11.40 14.39 8.26 12.97 

L13 6.75 10.44 13.13 6.18 15.05 7.95 6.18 10.53 4.07 11.81 8.31 10.81 14.44 8.25 12.90 

L14 6.90 11.16 13.09 6.19 15.40 8.00 6.55 10.52 4.09 11.71 8.28 11.21 14.40 8.26 12.92 

L15 7.04 11.55 13.09 6.20 15.47 8.06 6.84 10.52 4.09 11.72 8.24 11.40 14.39 8.26 12.96 

L16 6.54 10.74 13.14 6.17 14.92 7.92 6.20 10.55 4.07 11.94 8.33 10.26 14.52 8.25 12.85 

L17 6.84 10.88 13.09 6.19 15.48 7.95 6.39 10.52 4.09 11.76 8.31 11.06 14.41 8.26 12.88 

L18 7.04 11.55 13.09 6.20 15.49 8.05 6.84 10.52 4.09 11.71 8.24 11.40 14.39 8.26 12.95 

L19 7.44 12.52 15.68 6.20 16.95 8.66 7.48 11.31 4.16 12.31 8.41 11.96 14.63 7.63 12.96 

L20 7.44 12.52 15.68 6.20 16.92 8.70 7.48 11.31 4.16 12.31 8.41 11.96 14.63 7.63 12.96 

L21 7.44 12.52 15.68 6.20 16.95 8.67 7.48 11.31 4.16 12.31 8.41 11.96 14.63 7.63 12.96 

L22 6.74 11.22 12.40 6.12 14.32 7.86 6.47 9.77 3.95 11.86 8.08 11.04 13.98 8.03 12.44 

L23 6.70 11.06 12.40 6.11 14.24 7.84 6.38 9.77 3.95 11.87 8.08 10.96 13.99 8.03 12.43 

L24 6.72 11.18 12.40 6.12 14.30 7.85 6.44 9.77 3.95 11.86 8.08 11.01 13.99 8.03 12.43 

L25 6.74 11.22 12.40 6.12 14.32 7.85 6.47 9.77 3.95 11.86 8.08 11.04 13.98 8.03 12.43 

L26 7.39 12.55 13.08 6.20 15.80 8.49 7.37 10.41 4.00 11.64 8.23 11.74 13.97 7.46 12.28 

L27 6.68 12.01 11.46 6.04 14.38 7.78 6.58 9.41 3.77 13.95 7.85 10.98 13.25 7.16 12.24 

L28 7.22 13.87 11.40 6.07 15.22 8.05 8.06 9.42 3.81 13.92 7.74 11.45 13.20 7.18 12.37 

L29 6.93 12.48 11.45 6.05 14.60 7.90 7.05 9.41 3.78 14.01 7.80 11.19 13.24 7.17 12.31 

L30 6.93 12.48 11.45 6.05 14.60 7.90 7.05 9.41 3.78 14.01 7.80 11.19 13.24 7.17 12.31 

L31 6.67 12.01 11.46 6.04 14.36 7.85 6.58 9.41 3.77 13.96 7.85 10.98 13.25 7.16 12.25 

L32 6.45 11.47 11.48 6.03 14.01 7.86 6.22 9.43 3.76 14.04 7.88 10.44 13.32 7.15 12.20 

L33 6.59 11.78 11.46 6.03 14.29 7.83 6.42 9.41 3.77 13.94 7.87 10.86 13.26 7.16 12.23 

L34 6.67 12.01 11.46 6.04 14.37 7.82 6.58 9.41 3.77 13.95 7.86 10.98 13.25 7.16 12.25 

L35 6.65 11.98 11.46 6.04 14.35 7.82 6.56 9.41 3.77 13.95 7.86 10.96 13.25 7.16 12.24 

Table 3:9 RMSE of linear regression for displacement in three directions for each specimen across all material laws. 
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MaxError Ux Uy Uz 

ρ-E S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 

L1 28.26 41.57 59.59 26.44 61.88 31.81 20.52 52.64 14.82 47.86 38.34 32.31 66.30 41.83 62.30 

L2 29.11 43.57 59.58 26.44 61.63 32.61 18.85 52.60 14.85 47.38 38.40 33.71 66.30 41.88 62.55 

L3 28.45 42.24 59.59 26.45 61.81 32.38 19.80 52.61 14.82 47.77 38.32 32.47 66.30 41.83 62.51 

L4 28.45 41.64 59.59 26.44 61.85 32.36 20.47 52.62 14.80 47.81 38.33 32.58 66.30 41.83 62.48 

L5 26.24 40.42 59.57 26.43 61.03 30.15 22.02 52.74 14.51 48.94 38.17 34.20 66.30 42.23 62.54 

L6 27.73 40.69 59.60 26.41 61.70 30.82 19.62 52.66 14.69 47.81 38.35 38.09 66.30 41.83 62.26 

L7 28.20 41.57 59.59 26.44 61.88 31.67 20.52 52.64 14.82 47.87 38.40 32.31 66.30 41.83 61.81 

L8 31.74 45.73 62.27 27.53 65.54 34.51 22.28 56.67 15.11 45.82 39.14 33.64 64.48 38.67 62.74 

L9 32.94 50.38 62.20 27.83 67.22 34.76 22.33 56.62 15.28 45.33 38.65 38.33 64.48 38.73 62.54 

L10 32.20 46.51 62.27 27.55 66.08 34.55 21.09 56.63 15.17 45.68 38.69 34.66 64.48 38.65 62.75 

L11 31.89 45.73 62.27 27.53 65.54 34.51 22.28 56.67 15.11 45.82 39.36 33.64 64.48 38.67 62.74 

L12 29.28 44.05 62.22 27.45 65.12 32.88 20.80 63.74 15.72 47.26 39.31 32.63 68.52 45.52 64.12 

L13 27.76 39.48 62.25 27.28 63.13 30.62 21.22 63.94 15.42 47.91 39.23 32.63 68.52 45.58 64.35 

L14 28.66 42.77 62.22 27.44 65.16 31.46 21.17 63.89 15.62 47.38 39.12 34.33 68.52 45.57 64.25 

L15 29.03 44.05 62.22 27.45 65.09 32.42 20.80 63.74 15.72 47.29 39.29 32.63 68.52 45.52 64.36 

L16 26.79 45.02 62.23 27.28 63.43 30.03 22.35 64.16 15.29 48.31 39.37 40.29 68.96 45.17 64.35 

L17 28.30 41.98 62.23 27.43 65.11 31.02 21.39 64.06 15.48 47.56 39.11 41.37 68.52 45.60 64.47 

L18 28.96 44.05 62.22 27.45 65.08 32.41 20.80 63.74 15.72 47.30 39.28 32.63 68.52 45.52 64.35 

L19 31.78 45.10 74.74 27.90 71.03 33.98 23.04 65.25 15.54 47.56 39.63 32.74 67.94 38.60 66.28 

L20 32.00 45.10 74.74 27.90 70.27 34.08 23.04 65.25 15.54 47.54 39.49 32.74 67.94 38.60 66.28 

L21 31.90 45.10 74.74 27.90 71.03 33.99 23.04 65.25 15.54 47.55 39.59 32.74 67.94 38.60 66.28 

L22 27.90 41.50 58.96 26.96 60.58 31.36 21.12 52.99 14.94 47.67 38.06 32.29 66.57 43.65 61.95 

L23 27.36 40.63 58.98 26.96 60.64 31.16 20.46 53.00 14.92 47.76 38.10 31.95 66.57 43.65 62.02 

L24 27.84 40.96 58.96 26.96 60.61 31.23 20.07 53.00 14.93 47.71 38.07 32.31 66.57 43.65 62.05 

L25 27.88 41.50 58.96 26.96 60.58 31.33 21.12 52.99 14.94 47.67 38.06 32.29 66.57 43.65 61.97 

L26 31.65 45.73 62.27 27.53 65.53 34.51 22.28 56.67 15.11 45.83 38.52 33.64 64.48 38.67 62.75 

L27 27.49 39.94 54.85 26.58 69.30 30.80 24.24 49.61 13.78 85.08 36.82 32.35 61.68 36.10 67.18 

L28 30.97 51.69 54.80 26.57 69.46 33.51 22.39 49.63 14.21 86.27 36.88 41.69 61.31 36.26 67.50 

L29 29.25 42.18 54.84 26.60 69.47 32.55 23.57 49.60 13.92 80.69 36.94 34.32 61.68 36.10 66.85 

L30 29.25 42.18 54.84 26.60 69.47 32.55 23.57 49.60 13.92 80.69 36.94 34.32 61.68 36.10 66.85 

L31 27.77 39.94 54.85 26.58 68.64 31.96 24.24 49.61 13.78 84.70 36.66 32.35 61.68 36.10 66.95 

L32 26.47 38.11 54.89 26.45 67.89 31.29 25.24 49.95 13.53 84.92 36.20 32.35 61.68 35.97 66.70 

L33 27.26 39.42 54.85 26.57 68.78 31.04 24.53 49.62 13.74 84.68 36.70 33.34 61.68 36.11 67.03 

L34 27.57 39.94 54.85 26.58 69.30 31.14 24.24 49.61 13.78 85.09 36.76 32.35 61.68 36.10 67.05 

L35 27.62 39.88 54.85 26.57 68.67 31.15 24.24 49.61 13.78 84.24 36.79 32.60 61.68 36.11 67.08 

Table 3:10 MaxError of linear regression for displacement in three directions for each specimen across all material 

laws. 
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3.6.2 Minimum Principal Strain 

 R2 Slope Y-intercept RMSE MaxError 

L1 0.36 0.70 0.00 7191.45 89840.00 

L2 0.36 0.69 0.00 7199.54 89840.00 

L3 0.36 0.70 0.00 7193.79 89840.00 

L4 0.36 0.70 0.00 7190.65 89840.00 

L5 0.36 0.69 0.00 7212.58 89840.00 

L6 0.36 0.70 0.00 7194.37 89840.00 

L7 0.36 0.70 0.00 7190.23 89840.00 

L8 0.34 0.68 0.00 7270.03 90210.00 

L9 0.34 0.67 0.00 7293.89 90210.00 

L10 0.34 0.67 0.00 7276.48 90210.00 

L11 0.34 0.68 0.00 7270.19 90210.00 

L12 0.33 0.61 -0.01 7418.37 90050.00 

L13 0.33 0.61 -0.01 7407.54 90050.00 

L14 0.33 0.61 -0.01 7418.07 90050.00 

L15 0.33 0.61 -0.01 7410.42 90050.00 

L16 0.32 0.60 -0.01 7481.65 90050.00 

L17 0.33 0.61 -0.01 7418.82 90050.00 

L18 0.33 0.61 -0.01 7408.94 90050.00 

L19 0.30 0.59 -0.01 7515.05 86770.00 

L20 0.30 0.59 -0.01 7516.27 86770.00 

L21 0.30 0.60 -0.01 7507.09 86790.00 

L22 0.30 0.59 -0.01 7515.14 86770.00 

L23 0.37 0.69 0.00 7206.04 89690.00 

L24 0.37 0.69 0.00 7203.51 89690.00 

L25 0.37 0.69 0.00 7205.26 89690.00 

L26 0.37 0.69 0.00 7205.55 89690.00 

L27 0.34 0.68 0.00 7269.96 90210.00 

L28 0.29 0.52 -0.01 7598.72 90080.00 

L29 0.28 0.51 -0.01 7617.63 90080.00 

L30 0.28 0.52 -0.01 7601.85 90080.00 

L31 0.29 0.52 -0.01 7599.84 90080.00 

L32 0.28 0.52 -0.01 7603.31 90080.00 

L33 0.29 0.52 -0.01 7599.29 90080.00 

L34 0.29 0.52 -0.01 7600.15 90080.00 

L35 0.29 0.52 -0.01 7600.61 90080.00 

MIN 0.28 0.51 -0.01 7190.23 86770.00 

MAX 0.37 0.70 0.0 7617.63 90210.00 

Table 3:11 Linear regression for minimum principal strain across all material laws and for all pooled specimens. 
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 R2 

ρ-E S1 S2 S3 S4 S5 

L1 0.19 0.13 0.36 0.42 0.52 

L2 0.19 0.12 0.36 0.42 0.52 

L3 0.19 0.13 0.36 0.42 0.52 

L4 0.19 0.13 0.36 0.42 0.52 

L5 0.19 0.13 0.36 0.42 0.51 

L6 0.18 0.13 0.36 0.42 0.52 

L7 0.19 0.13 0.36 0.42 0.52 

L8 0.17 0.09 0.35 0.41 0.50 

L9 0.16 0.08 0.35 0.41 0.50 

L10 0.17 0.09 0.35 0.41 0.50 

L11 0.17 0.09 0.35 0.41 0.50 

L12 0.17 0.12 0.30 0.42 0.49 

L13 0.17 0.13 0.30 0.43 0.49 

L14 0.16 0.12 0.30 0.43 0.49 

L15 0.17 0.12 0.30 0.42 0.49 

L16 0.16 0.11 0.30 0.43 0.49 

L17 0.16 0.12 0.30 0.43 0.49 

L18 0.17 0.12 0.30 0.42 0.49 

L19 0.15 0.09 0.28 0.38 0.45 

L20 0.15 0.09 0.28 0.38 0.45 

L21 0.15 0.09 0.28 0.38 0.45 

L22 0.19 0.14 0.35 0.46 0.53 

L23 0.19 0.14 0.35 0.46 0.53 

L24 0.19 0.14 0.35 0.46 0.53 

L25 0.19 0.14 0.35 0.46 0.53 

L26 0.17 0.09 0.35 0.41 0.50 

L27 0.22 0.09 0.30 0.38 0.35 

L28 0.21 0.07 0.30 0.38 0.35 

L29 0.22 0.08 0.30 0.38 0.35 

L30 0.22 0.08 0.30 0.38 0.35 

L31 0.22 0.09 0.30 0.38 0.35 

L32 0.23 0.09 0.30 0.38 0.35 

L33 0.22 0.09 0.30 0.38 0.35 

L34 0.22 0.09 0.30 0.38 0.35 

L35 0.22 0.09 0.30 0.38 0.35 

MIN 0.15 0.07 0.28 0.38 0.35 

MAX 0.23 0.14 0.36 0.46 0.53 

Table 3:12 Coefficient of determination (R2) for minimum principal strain for each specimen across all material laws. 
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 Slope 

ρ-E S1 S2 S3 S4 S5 

L1 0.68 0.49 0.62 0.64 0.86 

L2 0.67 0.48 0.62 0.64 0.86 

L3 0.68 0.49 0.62 0.64 0.86 

L4 0.68 0.49 0.62 0.64 0.86 

L5 0.67 0.48 0.62 0.65 0.86 

L6 0.67 0.51 0.62 0.64 0.86 

L7 0.68 0.49 0.62 0.64 0.86 

L8 0.60 0.37 0.65 0.68 0.83 

L9 0.59 0.34 0.65 0.68 0.83 

L10 0.60 0.36 0.65 0.68 0.83 

L11 0.60 0.37 0.65 0.68 0.83 

L12 0.62 0.46 0.49 0.61 0.82 

L13 0.63 0.50 0.49 0.61 0.83 

L14 0.62 0.47 0.49 0.61 0.83 

L15 0.63 0.46 0.49 0.61 0.82 

L16 0.60 0.40 0.49 0.61 0.82 

L17 0.61 0.47 0.49 0.61 0.82 

L18 0.63 0.46 0.49 0.61 0.82 

L19 0.57 0.35 0.51 0.63 0.76 

L20 0.57 0.35 0.51 0.63 0.76 

L21 0.57 0.35 0.51 0.63 0.76 

L22 0.69 0.53 0.59 0.64 0.88 

L23 0.70 0.53 0.59 0.64 0.88 

L24 0.69 0.53 0.59 0.64 0.88 

L25 0.69 0.53 0.59 0.64 0.88 

L26 0.60 0.37 0.65 0.68 0.83 

L27 0.74 0.34 0.50 0.68 0.53 

L28 0.71 0.31 0.50 0.68 0.53 

L29 0.73 0.33 0.50 0.68 0.53 

L30 0.73 0.33 0.50 0.68 0.53 

L31 0.74 0.34 0.50 0.68 0.53 

L32 0.74 0.34 0.50 0.68 0.53 

L33 0.74 0.34 0.50 0.68 0.53 

L34 0.74 0.34 0.50 0.68 0.53 

L35 0.74 0.34 0.50 0.68 0.53 

MIN 0.57 0.31 0.49 0.61 0.53 

MAX 0.74 0.53 0.65 0.68 0.88 

Table 3:13 Slope of linear regression for minimum principal strain for each specimen across all material laws. 
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 y-intercept 

ρ-E S1 S2 S3 S4 S5 

L1 0.00 -0.01 -0.01 0.00 0.00 

L2 0.00 -0.01 -0.01 0.00 0.00 

L3 0.00 -0.01 -0.01 0.00 0.00 

L4 0.00 -0.01 -0.01 0.00 0.00 

L5 0.00 -0.01 -0.01 0.00 0.00 

L6 0.00 -0.01 -0.01 0.00 0.00 

L7 0.00 -0.01 -0.01 0.00 0.00 

L8 0.00 -0.01 0.00 0.00 0.00 

L9 0.00 -0.01 0.00 0.00 0.00 

L10 0.00 -0.01 0.00 0.00 0.00 

L11 0.00 -0.01 0.00 0.00 0.00 

L12 0.00 -0.01 -0.01 0.00 0.00 

L13 0.00 -0.01 -0.01 0.00 0.00 

L14 0.00 -0.01 -0.01 0.00 0.00 

L15 0.00 -0.01 -0.01 0.00 0.00 

L16 0.00 -0.01 -0.01 0.00 0.00 

L17 0.00 -0.01 -0.01 0.00 0.00 

L18 0.00 -0.01 -0.01 0.00 0.00 

L19 0.00 -0.01 -0.01 0.00 0.00 

L20 0.00 -0.01 -0.01 0.00 0.00 

L21 0.00 -0.01 -0.01 0.00 0.00 

L22 0.00 -0.01 -0.01 0.00 0.00 

L23 0.00 -0.01 -0.01 0.00 0.00 

L24 0.00 -0.01 -0.01 0.00 0.00 

L25 0.00 -0.01 -0.01 0.00 0.00 

L26 0.00 -0.01 0.00 0.00 0.00 

L27 0.00 -0.01 -0.01 0.00 -0.01 

L28 0.00 -0.01 -0.01 0.00 -0.01 

L29 0.00 -0.01 -0.01 0.00 -0.01 

L30 0.00 -0.01 -0.01 0.00 -0.01 

L31 0.00 -0.01 -0.01 0.00 -0.01 

L32 0.00 -0.01 -0.01 0.00 -0.01 

L33 0.00 -0.01 -0.01 0.00 -0.01 

L34 0.00 -0.01 -0.01 0.00 -0.01 

L35 0.00 -0.01 -0.01 0.00 -0.01 

MIN 0.00 -0.01 -0.01 0.00 -0.01 

MAX 0.00 -0.01 0.00 0.00 0.00 

Table 3:14 y-intercept of linear regression for minimum principal strain for each specimen across all material laws. 
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 RMSE 

ρ-E S1 S2 S3 S4 S5 

L1 5335.21 7080.86 8029.81 4236.37 8919.37 

L2 5336.46 7104.39 8027.87 4238.80 8915.55 

L3 5328.03 7087.94 8029.62 4237.69 8920.54 

L4 5323.43 7081.94 8029.46 4237.36 8920.87 

L5 5414.73 7087.25 8037.49 4234.99 8936.32 

L6 5423.53 7060.89 8029.62 4236.62 8924.82 

L7 5324.26 7080.85 8029.79 4236.32 8918.90 

L8 5248.38 7237.82 8041.60 4067.57 9071.04 

L9 5262.55 7271.49 8040.75 4069.83 9082.11 

L10 5243.55 7245.91 8042.11 4069.60 9077.95 

L11 5249.22 7237.82 8041.61 4067.63 9071.68 

L12 5431.85 7113.12 8389.45 4404.80 9135.39 

L13 5481.03 7061.58 8392.88 4401.32 9131.32 

L14 5488.88 7095.31 8389.30 4404.61 9130.27 

L15 5358.71 7113.13 8389.40 4404.69 9131.76 

L16 5655.29 7167.46 8400.43 4402.36 9166.94 

L17 5458.38 7097.43 8390.85 4405.27 9143.28 

L18 5345.46 7113.16 8389.39 4404.68 9129.96 

L19 5310.21 7249.07 8520.22 4113.76 9517.91 

L20 5322.25 7249.09 8520.29 4113.55 9518.20 

L21 5311.43 7249.07 8520.23 4113.75 9517.64 

L22 5317.09 7041.76 8082.82 4418.02 8829.49 

L23 5316.58 7032.72 8084.72 4416.49 8828.73 

L24 5320.27 7039.08 8082.78 4417.81 8828.18 

L25 5314.41 7041.76 8082.81 4418.01 8827.60 

L26 5248.60 7237.82 8041.58 4067.57 9070.38 

L27 5102.37 7239.78 8381.47 4040.25 10405.77 

L28 5123.49 7292.51 8377.79 4039.28 10411.91 

L29 5075.40 7253.37 8382.03 4041.17 10410.71 

L30 5075.40 7253.37 8382.03 4041.17 10410.71 

L31 5113.24 7239.82 8381.58 4040.06 10406.15 

L32 5110.15 7230.59 8388.65 4039.40 10420.04 

L33 5112.98 7235.03 8381.86 4040.30 10410.53 

L34 5109.70 7239.79 8381.53 4040.29 10409.17 

L35 5114.68 7239.87 8381.62 4040.48 10407.95 

MIN 5075.40 7032.72 8027.87 4039.28 8827.60 

MAX 5655.29 7292.51 8520.29 4418.02 10420.04 

Table 3:15 RMSE of linear regression for minimum principal strain for each specimen across all material laws. 
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 MaxError 

ρ-E S1 S2 S3 S4 S5 

L1 60490.00 65500.00 89840.00 46620.00 87760.00 

L2 60490.00 65500.00 89840.00 46630.00 87590.00 

L3 60230.00 65500.00 89840.00 46630.00 87680.00 

L4 59900.00 65500.00 89840.00 46620.00 87720.00 

L5 65540.00 65470.00 89840.00 46580.00 88110.00 

L6 66730.00 65490.00 89840.00 46620.00 87980.00 

L7 59350.00 65500.00 89840.00 46620.00 87770.00 

L8 50860.00 65480.00 90210.00 44340.00 86590.00 

L9 51420.00 65490.00 90210.00 44360.00 86290.00 

L10 50730.00 65480.00 90210.00 44350.00 86480.00 

L11 51230.00 65480.00 90210.00 44340.00 86590.00 

L12 61580.00 65540.00 90050.00 48260.00 88880.00 

L13 64890.00 65530.00 90050.00 48230.00 89130.00 

L14 65810.00 65540.00 90050.00 48260.00 89080.00 

L15 57760.00 65540.00 90050.00 48260.00 88910.00 

L16 74350.00 65510.00 90050.00 48210.00 89250.00 

L17 62600.00 65540.00 90050.00 48260.00 89150.00 

L18 57290.00 65540.00 90050.00 48260.00 88920.00 

L19 52600.00 65790.00 86770.00 44020.00 86400.00 

L20 53410.00 65790.00 86770.00 44020.00 86380.00 

L21 52870.00 65790.00 86770.00 44020.00 86400.00 

L22 60070.00 65480.00 89690.00 47660.00 88410.00 

L23 60060.00 65480.00 89690.00 47660.00 88460.00 

L24 60080.00 65480.00 89690.00 47660.00 88430.00 

L25 59870.00 65480.00 89690.00 47660.00 88410.00 

L26 50870.00 65480.00 90210.00 44340.00 86600.00 

L27 52180.00 65340.00 90080.00 44900.00 86030.00 

L28 51880.00 65380.00 90080.00 44930.00 84600.00 

L29 50700.00 65350.00 90080.00 44910.00 85560.00 

L30 50700.00 65350.00 90080.00 44910.00 85560.00 

L31 52910.00 65340.00 90080.00 44900.00 86010.00 

L32 53490.00 65310.00 90080.00 44880.00 86390.00 

L33 52870.00 65330.00 90080.00 44900.00 86140.00 

L34 52930.00 65340.00 90080.00 44900.00 86020.00 

L35 52930.00 65330.00 90080.00 44900.00 86040.00 

MIN 50700.00 65310.00 86770.00 44020.00 84600.00 

MAX 74350.00 65790.00 90210.00 48260.00 89250.00 

Table 3:16 MaxError of linear regression for minimum principal strain for each specimen across all material laws. 
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3.6.3 Reaction Force 

ρ-E Slope Y-intercept R2 RMSE MaxError 

L1 0.21 0.01 0.62 0.55 8.60 

L2 0.15 0.01 0.44 0.62 12.24 

L3 0.16 0.01 0.44 0.63 12.24 

L4 0.18 0.01 0.46 0.63 12.24 

L5 0.22 0.01 0.33 0.75 23.13 

L6 0.22 0.01 0.50 0.67 20.41 

L7 0.21 0.01 0.63 0.54 8.60 

L8 0.27 0.01 0.43 0.66 20.54 

L9 0.15 0.01 0.35 0.70 17.03 

L10 0.17 0.01 0.32 0.70 17.03 

L11 0.26 0.01 0.42 0.68 20.54 

L12 0.03 0.01 0.53 0.59 11.30 

L13 0.03 0.01 0.41 0.71 17.12 

L14 0.03 0.01 0.44 0.65 16.62 

L15 0.03 0.01 0.52 0.58 10.47 

L16 0.03 0.01 0.44 0.65 18.25 

L17 0.03 0.01 0.27 0.77 17.04 

L18 0.03 0.01 0.52 0.58 10.95 

L19 0.51 0.01 0.51 0.61 16.01 

L20 0.45 0.01 0.40 0.74 24.90 

L21 0.56 0.01 0.29 0.77 24.90 

L22 0.50 0.01 0.48 0.67 20.54 

L23 0.10 0.00 0.65 0.53 8.60 

L24 0.11 0.00 0.57 0.53 8.60 

L25 0.11 0.00 0.66 0.52 8.60 

L26 0.11 0.00 0.66 0.53 8.60 

L27 0.27 0.01 0.43 0.65 20.54 

L28 0.96 0.00 0.63 0.52 8.60 

L29 0.14 0.01 0.26 0.76 17.03 

L30 0.16 0.01 0.22 0.77 17.03 

L31 0.63 0.01 0.35 0.77 24.90 

L32 0.77 0.01 0.31 0.78 24.90 

L33 0.82 0.01 0.41 0.73 24.90 

L34 0.84 0.00 0.45 0.71 24.90 

L35 0.82 0.00 0.44 0.72 24.90 

min 0.03 0.00 0.22 0.52 8.60 

max  0.96 0.01 0.66 0.78 24.90 

Table 3:17 Linear regression results for reaction force across all material laws and for all specimens pooled. 
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 Patient-specific musculoskeletal 

model 

The musculoskeletal model described in this chapter was used to estimate patient-specific gleno-

humeral joint reaction force, which will be used for the patient-specific FE model presented in chapter 5. The 

development of the musculoskeletal model presented here as well as its outcome were described in a publi-

cation submitted to Source Code for Biology and Medicine journal titled “A Matlab toolbox for scaled-generic 

modeling of shoulder and elbow”. Authors: Sarshari, E; Boulanaache, Y; Terrier, A; Farron, A; Mullhaupt, P 

and Pioletti, D.  
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4.1 Abstract 

Patient-specific musculoskeletal modeling is needed to estimate joint reaction forces (JRF) of a specific pa-

tient, but its development represents a challenge: the choice of personalized parameters, the optimization 

techniques used, the inputs chosen and validation processes used are not obvious and difficult to quantify. 

Starting from a generic upper limb musculoskeletal model [48,139,140] of a healthy volunteer, we considered 

five parameters to adapt for each patient: bodyweight, height, physiological cross-sectional area of muscles, 

glenoid inclination and glenoid version. With the help of measured kinematics and electromyography data, 

the numerical model predicted JRF for eleven activities of daily living. In addition, a sensitivity analysis of the 

model to its patient-specific inputs and to muscle degeneration was performed for an abduction at 60°. Re-

sults were consistent with other models’ predictions and instrumented prostheses measurements. Sensitivity 

analyses highlighted the importance of bodyweight (20%), height (0.83%) and supraspinatus PCSA (0.41%) 

on JRF amplitude, while glenoid inclination (25%) and version (9%) were most influential on JRF eccentricity. 

Rotator cuff muscle degeneration (3%) did not strongly influence JRF amplitude for abduction at 60°. In con-

clusion, this study identifies this musculoskeletal model as a potential clinical tool to help in diagnosis and 

instability predictions of prosthesis choice for total shoulder arthroplasty. 
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4.2 Introduction 

The shoulder joint is essential in performing simple daily life activities and its dysfunction may prevent people 

from basic autonomy. The functionality and underlying mechanisms of this joint are not yet well understood 

because the needed parameters cannot be obtained in a non-invasive manner. For example, the behavior of 

deep muscles and joint reaction forces cannot be measured in vivo for healthy patients. Numerous musculo-

skeletal models (MSM) were developed in the last decades aiming to provide a deeper understanding of the 

shoulder joint in a non-invasive way. The final goal of most MSM is to be a clinical tool to improve the diag-

nosis, pathology, treatment and post-treatment processes [32,33]. 

Some of the known and used shoulder models are the Delft shoulder and elbow model [36,37], Garner and 

Pandy model based on the visible human project [38,39], the Swedish model [40], the AnyBody model [41], 

the Opensim Model [42], the UK National shoulder model [43], the Waterloo model [44], the Case model [45] 

and the Portuguese model [46]. All these models contain joints of the shoulder complex and their muscles.  

Most of the shoulder MSM are based on an inverse dynamics principle, deriving muscle forces from input 

kinematics, and solving the indeterminacy with static or dynamic cost function minimization. Several cost 

functions were proposed, as for example the squared muscle forces over the physiological cross sectional 

area (PCSA) [44], the sum of squares errors between predicted and constrained angles [43], the difference 

between measured electromyography (EMG) and predicted muscle activity [47], the muscle-energy con-

sumption during complete motion [46], a stability function to avoid luxation [48]. The input kinematics can 

be either mathematically created or measured with 3D motion capture systems. Motion capture systems 

provide more complex and natural movements, but the soft tissue artefacts remain an important source of 

uncertainties, especially for the scapula [33]. 

Validation of MSM is very challenging. For the shoulder, models’ predictions were compared to EMG signal 

measurements [32,33], or instrumented prostheses[49]. These validations remains partial, since surface EMG 

cannot measure deep muscles, and instrumented prostheses are obviously restricted to patients with a 

shoulder pathology [33]. 

The emerging tendency in musculoskeletal modeling of the last decade is the subject-specific modeling 

[32,33,50], the dream being to create a MSM in a clinical setting that can be adapted quickly to each new 

patient and thus provide a custom-made diagnosis and treatment approach. The most common and simple 

approach for patient-specific modeling is to scale the whole model with patient height and bodyweight. Re-

cently, specific parameters were adjusted, such as muscle properties based on imaging [50] or kinematic data 

[32]. However, recent publications [32,50] highlighted the lack of sensitivity analysis and its utmost im-
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portance to validate the models. This lack of validation is due to many factors: the huge amount of parame-

ters required in the model steps, the challenge of choosing the correct behavior model for the study, the 

correct parameters to study and their range; and finally the expensive computational time. 

The sensitivity of MSM to predict glenohumeral joint force was reported to be largely determined by gleno-

humeral joint center location, input kinematics, PCSA of muscles, scapular shape, scaling of muscle insertions 

and origin locations or segment length. These studies used either parametric approaches, comparisons to 

experimental data or probabilistic approaches [32,33]. 

Therefore, the aim of the present study was to extend an existing MSM of the shoulder to add the elbow and 

make it adaptable to patients planned for anatomical Total Shoulder Arthroplasty (aTSA). This model was 

used to predict Joint Reaction Forces (JRF) during eleven activities of daily living. The second goal of this study 

was to perform a sensitivity analysis of this model to patient-specific parameters, and especially to rotator 

cuff muscle degeneration. 
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4.3 Materials and Methods 

4.3.1 Generic musculoskeletal model 

The original MSM [48] was based on MRI data of a healthy male volunteer (Body weight 85.5 kg and Height 

186 cm) and included thorax, humerus, scapula, clavicle, and 42 muscles, each represented by three cables. 

The inverse dynamic method was implemented in MATLAB (MathWorks, USA) to simulate simple abductions 

in the scapular plane up to 120 ° and output muscle forces and joint reaction forces (JRF). Three optimizations 

were implemented: first, the minimization of the cost function being the square of muscle stress. The second 

optimization minimized the eccentricity of the JRF with respect to the glenoid center to avoid luxation. The 

third optimization used the multicriteria optimization principle to link both cost functions. The model was 

validated against kinematic and EMG measurements of the volunteer during arm elevation [141]. 

In the present study, the original model was extended by adding the forearm of the same healthy volunteer. 

A half-body MRI was made following a specific protocol. The new MRI images were registered on the original 

ones then the bones: Ulna, Radius and hand were segmented (Figure 4:1 a). Second, the bony landmarks of 

the forearm and hand were added following the International Society of Biomechanics (ISB) standards [142]. 

Third, 14 muscles were added: Biceps brachii long and short heads, Triceps brachii long, medial and lateral, 

Brachialis, Brachioradialis, Supinator, Pronator Teres, Flexor Carpi Ulnaris, Flexor Carpi Radialis, Extensor 

Carpi Radialis Long and Brevis, Extensor Carpi Ulnaris. Lastly, the insertions and origins of the muscles were 

placed on the segmented bones using the MRI data and anatomic atlases [143,144]. The above-mentioned 

steps were all performed using Amira (v. 6.4, FEI Visualization Sciences Group, Burlington, MA, USA).  
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Figure 4:1 a) Reconstructed bone from MRI data b) Bony landmarks and reference frames c) Implemented MSM. 

(Images from PhD theses: b) courtesy of Mancuso [145]; c) courtesy of Sarshari [146]) 

Moreover, kinematic data of 11 palpable bony landmarks using 3D motion capture systems and EMG data of 

15 superficial upper limb muscles were collected on the healthy volunteer during 11 activities, 8 of which are 

considered activities of daily living (ADL). These kinematic and EMG data were incorporated to the MSM in 

order to bring more stability. The activities recorded were: act1 Abduction frontal plane with 2 kg, act2 Ele-

vation sagittal plane with 2 kg, act3 Abduction scapula plane with 2 kg, act4 Fast abduction scapula plane, 

act5 Slow abduction scapula plane, act6 Put 2 kg in a shelf at head height, act7 Hand behind the head, act8 

Touch the other shoulder, act9 French canes, act10 Counter external rotation (static pose, no motion), act11 

Counter internal rotation (static pose, no motion) [145]. 
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Figure 4:2 Bony markers and EEG of volunteer during activities of daily living. 

In order to output the glenohumeral JRF, equations of motion were implemented where bones were consid-

ered as rigid bodies, joints as ideal mechanical joints without translations and muscles as elastic strings. Mus-

cle paths were thus needed and they were represented using obstacles, via points and wrapping objects. 

These were placed following the obstacle-set method described by [147] and using the CT data of the volun-

teer for each of the 42 muscles. The force exerted by each muscle was calculated using a validated Hill-type 

musculotendon model [146]. Two important features of the model are first the EMG assisted load sharing 

(EALS) feature based on measured EMG data of each muscle [148]. The muscle force satisfies the following 

optimization: the sum of squared muscle stresses was minimized for the force was either zero (lower bound) 

or it was F_c = k*PCSA, where k is the Fick’s constant and PCSA the physiological cross sectional area of the 

muscle [146]. Each muscle can be represented by up to 20 strings (Figure 4:11 b). The second important 

feature introduced in this model is the stability constraint: the joint reaction force was constrained such that 

it would always point towards the glenoid fossa and never fall out of it [146]. 

The model has 9 degrees of freedom (DOF) [149]:3 ball-and-socket-joints: sternoclavicular, acromioclavicular 

and glenohumeral joints and two hinge joints for humeroulnar and radioulnar joints. Pronation and supina-

tion of the forearm were additionally implemented. The orientation of each bone segment was defined with 

help of the bony landmarks and 6 bone-reference-coordinate systems were defined for the motion: the 

thorax frame, the scapula frame, the humerus frame, the cone frame (which represents the glenoid fossa), 

the Ulna frame and the Radius frame (Figure 4:1 c). The MSM outputs glenohumeral JRF defined as JRF Am-

plitude (JRFa) and projected JRF on the glenoid fossa, defined as JRF Eccentricity (JRFe). 

To validate the new MSM, comparison against available literature data and instrumented prostheses was 

performed and presented in [146]. 

4.3.2 Patient-specific musculoskeletal model 

The generic MSM was extended in order to be patient-specific by adding the following parameters: gender, 

bodyweight, height, physiological cross-sectional area (PCSA) for each muscle, glenoid inclination and glenoid 

version. 

To adapt a generic model to a new patient, a scaling was implemented based on height and bodyweight 

inputs: the ratio of patient’s data on the generic data outputs a factor which will scale the maximal muscle 

force of the patient. The location of the bony landmarks, origin and insertion points of each muscle are scaled 

as well. The EMG data were scaled according to patient’s bodyweight. The scaling factors used were derived 

from a previous work by [150]. Moreover, the MSM is able to accept PCSA values for patients. The PCSA was 
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contoured by a professional radiologist and a MATLAB (The Mathworks, Inc) script was written to calculate 

the area of each muscle which serves as input to the patient-specific MSM (Figure 4:3). Details about the 

integration of EMG data to stabilize the MSM are found in the following PhD theses [145,146]. 

 

 

Figure 4:3 CT data of patient’s shoulder showing contouring of rotator cuff muscles’ PCSA performed by a professional 

radiologist. 

4.3.3 Output 

The patient-specific MSM predicted muscle forces, joint reaction force amplitude (JRFa) and joint reaction 

force eccentricity (JRFe), for given patient-specific anthropometric parameters. The JRF was output with re-

spect to time. JRFe was defined as distance between the glenoid center and the furthest JRF projection on 

the glenoid surface.  

4.3.4 Sensitivity Analysis 

A two-part sensitivity analysis (SA) was conducted for this model: first, a global SA was performed with design 

of experiment (DOE) method, in order to establish a ranking of the most influential patient-specific parame-

ters on JRF. Second, SA of model predictions with respect to rotator cuff muscle degeneration was performed.  

4.3.4.1 Global SA using DOE 

DOE method was used to investigate the sensitivity of JRFa and JRFe to the five patient-specific parameters 

described above. For each of these anatomical parameter, mean and standard deviation were chosen as DOE 

levels (Table 4:1). These values were taken from measurements on preoperative CT scans of 107 patients 

planned for anatomical total shoulder arthroplasty [29,151,152].  
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We considered an abduction position in the scapular plane at 60 degrees of elevation. The patient-specific 

MSM predicted all muscles’ and joint forces, but we considered here only JRFa and JRFe. JRFe was defined 

as distance between the glenoid center and the intersection of JRF with the glenoid surface. 

A linear model with first and second order interactions was chosen for this two-level full factorial study. 

Second and higher-order interactions were not considered. A total of 32 cases were thus investigated for 

JRFa and JRFe. DOE provided a ranking of the important parameters investigated and their contribution. Main 

effect plots were used to visualize the contribution of each anatomical parameter to JRFa and JRFe. In a last 

step, an analysis of variance (ANOVA) with 95% confidence interval was conducted to investigate the signifi-

cance of the DOE contributions (p-values < 0.05). 

Anatomical parameters Min Max 

Bodyweight (KG) 60 90 

Height (CM) 160 174 

PCSA Supraspinatus (CM2) 5 8 

Glenoid Inclination (°) 2 15 

Glenoid Version (°) -10 5 

Table 4:1: Anatomical parameters considered for the two-level (min and max) full factorial DOE. 

4.3.4.2 SA to muscle degeneration 

In order to perform a SA of this model to rotator cuff muscle degeneration, the generic model was adapted 

to 40 aTSA patients. They were 15 men and 25 women, the age was 74 ± 9 years, the body bodyweight (BW) 

was 77.75 ± 18.5 kg, the height was 64 ± 10 cm, the glenoid version was -9 ± 12° (negative for retroversion), 

the glenoid inclination was 4 ± 6.7°. The average rotator cuff muscle degeneration was 53% for supraspina-

tus, 39% for infraspinatus, 42% for subscapularis and 38% for teres minor. These parameters were introduced 

into MSM to estimate JRF during an abduction movement. JRF was reported as %BW. JRF at 60° and 90° 

abduction were considered. JRF values with degenerated muscles were compared to JRF obtained with non-

degenerated muscles. The differences of JRF were statistically compared with a paired t-test. Finally, the 

correlation between JRFa and muscle degeneration was evaluated. 
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4.4 Results 

4.4.1 JRF Amplitude and eccentricity in generic musculoskeletal model 

For the generic model based on the young volunteer, the peak JRFa was 580 N at 97° abduction, i.e. 68% BW 

(Figure 4:4). Over the abduction movement, the peak JRFe was 15 mm at 50° abduction and was 7.6 mm at 

60° abduction.  

 

 

 

Figure 4:4 Joint reaction force amplitude (top) and eccentricity (bottom) during abduction illustrated on the glenoid 

fossa: green points marks the start of the movement at 0° abduction and red point marks the end of the movement at 

140°. The red line represents the angles comprised between 0° and 140°. Eccentricity was calculated by intersecting 

JRF with the glenoid surface. 
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4.4.2 Global SA using DOE 

4.4.2.1 Joint reaction force amplitude 

The main effect plots (normalized mean value of JRFa (=383 N)) showed that JRFa increased proportionally 

with BW while Height and Supraspinatus PCSA had almost no influence (Figure 4:5). Subsequent analysis of 

variance (Table 4:2) confirmed these tendencies: the most influential parameter on JRFa was BW (20%), 

Height (0.8%) and supraspinatus PCSA (0.4%). All values were highly significant (p < 0.001).  

 

Figure 4:5 Main effect plots of all cases normalized to the mean value of JRFa (=383 N) for all 32 cases. 

Anatomical parameters JRF Amplitude 

 Contribution p-value 

Bodyweight 20.00% <0.001 

Height 0.83% <0.001 

SS PCSA 0.41% <0.001 

Table 4:2 ANOVA results for JRFa. 

4.4.3 Joint reaction force eccentricity 

The main effect plots (Figure 4:6) show that the JRFe increases proportionally with glenoid inclination and 

glenoid version while it decreases with increasing height. The influence of both glenoid version and height 

was similar. Subsequent analysis of variance (Table 4:3) showed the most influential factors on JRF eccen-

tricity to be glenoid inclination (17.1%), height (-4.3%), glenoid version (3.9%) and the combinations ver-

sion/inclination (3.7%) and height/version (-2.3%). All values were highly significant (p < 0.001) Table 4:3. 
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Figure 4:6 Main effect plots of all cases normalized to the mean value of JRFe (11 mm). 

 

Anatomical parameters JRF Eccentricity 

 Contribution p-value 

Height 1.35% <0.001 

G Inclination -24.99% <0.001 

G Version 8.92% <0.001 

Height X G Version -0.62% <0.001 

G Inclination X G Version 1.41% <0.001 

Table 4:3 ANOVA results for JRF eccentricity. 

4.4.4 Sensitivity analysis to muscle degeneration 

JRF with healthy muscles was 0.50 ± 0.13 BW at 60° and 0.66 ± 0.16 BW at 90° abduction (Table 4:4). When 

degenerated muscles were considered, JRF decreased to 0.48 ± 0.13 BW at 60° and 0.65 ± 0.14 BW at 90° 

abduction. Peak JRF difference (in %JRF of healthy muscles) was 0.25 but the average JRF differences were 

small: 0.03 ±0.05 at 60° and 0.024±0.07 at 90° abduction. The differences were statistically significant 

(p=0.028) for 60° abduction (0.03±0.05, p=0.028), but effect size was small (0.20), Table 4:4.  

 

JRF [%BW] Healthy Affected Effect size P-value 

60° Abduction 0.50 (±0.13) 0.48 (±0.13) 0.20 P=0.028 

90° Abduction 0.66 (±0.16) 0.65 (±0.14) 0.18 P=0.09 

Table 4:4: Results t-test: effect of muscle degeneration of JRFa. 
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The correlation between JRF change and rotator cuff muscle degeneration at 60° and 90° abduction was 

significant, but weak to moderate. Only the correlation between JRF change and Supraspinatus at 90° ab-

duction was not significant (p = 0.08,Table 4:5). More specifically, as rotator cuff muscle degeneration in-

creases, JRFa decreases (Figure 4:7). 

 

 Supraspinatus Infraspinatus Subscapularis Teres Minor 

60° Abduction R = -0.17. p = 0.02  R = -0.14, p = 0.003 R = -0.37, p < 0.001 R = -0.50, p < 0.001 

90° Abduction R = -0.17, p = 0.08 R = -0.24, p = 0.002 R = -0.37, p = 0.007 R = -0.59, p < 0.0001 

Table 4:5 Results: Correlations between JRFa and rotator cuff muscle degeneration. 

 

 

Figure 4:7 Correlation plots at 60°abduction (l.) and 90° abduction (r.) for SS, IS, SC, and TM (from top to bottom) to 

Joint Reaction Force Amplitude  
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4.5 Discussion 

A generic musculoskeletal model (MSM) of the shoulder was extended to include the forearm and to be 

adapted to patient-specific anthropometric parameters (bodyweight, height, rotator cuff muscles PCSA, gle-

noid Inclination and glenoid version). The MSM developed was able to output muscle forces and joint reac-

tion force amplitude and eccentricity values similar to published data (in vivo-measurements, numerical stud-

ies and instrumented prostheses) [146].  

The anatomical parameters taken into account in this study were bodyweight, height, Supraspinatus PCSA, 

glenoid version and glenoid inclination of patients planned for anatomical total shoulder arthroplasty. The 

height and bodyweight are the obvious choices when considering differences amongst patients. The PCSA of 

Supraspinatus is routinely checked before a total shoulder arthroplasty and is stated to be the most fre-

quently and most severely degenerated rotator cuff muscle [152]. Based on that study, the PCSA of Suprasp-

inatus was chosen. The glenoid inclination plays an important role in the occurrence of osteoarthritis and 

shoulder joint instability [153–155]. The glenoid version was chosen because it has been associated with 

rotator cuff tears [156,157] and suggested to be associated to posterior instability [157]. 

A sensitivity analysis to patient-specific parameter changes (bodyweight, height, supraspinatus PCSA, glenoid 

Inclination and glenoid version) performed on shoulder joint reaction force (JRF) amplitude (JRFa) and eccen-

tricity (JRFe) during abduction using the design of experiments method (DOE) showed the most influential 

anatomical parameters on the JRFa to be the bodyweight, the height and the Supraspinatus PCSA. The gle-

noid orientations had no effect. This result was expected since the scaling of the bodyweight and height leads 

to a scaling in the muscles PCSA which in turn has an effect on the maximum force achievable by the muscles.  

Minimizing the muscle force over its corresponding PCSA is a constraint used in musculoskeletal modeling 

which explains its important influence on the shoulder JRF. 

JRF amplitudes at maximum abduction in instrumented prostheses [49] show a clear importance of body-

weight: an increase in bodyweight induces an overall decrease in JRFa for most of the 7 patients performing 

an abduction up to 150°. However, the opposite tendency was observed in the present study. This is due to 

the scaling method implemented: a change in bodyweight will scale the PCSA of muscles and the inertia of 

bone segments no matter how the increased mass is distributed on the body. 

DOE predicted an important effect of glenoid inclination and version on the JRF eccentricity while body-

weight, height and Supraspinatus PCSA had almost no impact. This behavior is intuitive and was confirmed 

by studies which associated glenoid version to posterior instability [153,157] and another study which found 

a high correlation between glenoid inclination and glenohumeral supero-inferior translation [155]. 
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The present work showed rotator cuff muscle degeneration induced a negligible but significant change in 

JRFa (less than 3%) for 60° abduction. This hints at the recruitment of other muscles to perform the abduction 

task. This finding is confirmed by a study on six healthy subjects [158] which found a 1.5% change in JRF due 

to PCSA changes. Another study limited the influence of rotator cuff muscles to less than 50 N [48], meaning 

that even at PCSA of 2 cm2 , the task will still be performed by the rotator cuff muscles and thus no influence 

will be seen in JRF [146]. Among our patients, only 27.5% of them had a SS PCSA of less than 2 cm2 and 30% 

of them had a TM PCSA of less than 2 cm2. 

The main limitations of this study lie first in the statistical approach chosen: some of the combinations inves-

tigated in the DOE study may not be representative of the real population, e.g. it is quite unlikely that a very 

tall person would have a large bodyweight while having a small Supraspinatus PCSA. However, having taken 

anatomical parameters from an actual patients’ database and the standard deviation values (i.e. 65% around 

the average) reduce the discrepancy. Moreover, DOE needs discrete points of investigation which might hide 

some effects. Indeed, another parametric study on this MSM was conducted in order to investigate the in-

fluence of PCSA on JRFa during abduction and found negligible effect for the motion up to 60° abduction but 

important effect when abduction was higher [146]. A recent review of rigid MSM highlighted the difficulty to 

identify the true range of each input parameter in a MSM [32]. Second, the relative importance of body-

weight on the JRF amplitude might be exaggerated due to scaling method chosen: when the bodyweight is 

entered, the scaling is done on all bone segments of the body, however, in some cases, especially for elder 

patients, the bodyweight is not uniformly distributed on the body, thus not influencing the mass of the arms 

and forearms. It would be interesting to compare findings normalized over upper-arm mass. Another limita-

tion is the single abduction movement simulated. It would be interesting to investigate a more extreme ro-

tator cuff muscle degeneration on the four ADL simulated. 

The strength of this study was the use of an elaborated statistical approach for sensitivity analysis: to our 

knowledge, this study is the first to present a ranking of importance of anatomical parameters in a subject-

specific shoulder model. Moreover, this model was applied on 40 patients.  

To conclude, this study showed that bodyweight, height, supraspinatus PCSA, glenoid inclination and glenoid 

version influence the joint reaction force predicted by the patient-specific musculoskeletal model. We there-

fore recommend to account for this information in future clinically related applications of the musculoskele-

tal model. 
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 Clinical Application: patient-spe-

cific glenoid bone model 

This chapter answers the following clinical questions posed earlier in the thesis: 1) Do overcorrected 

implants reduce postoperative subluxation? 2) Do overcorrected implants transfer excessive stresses within 

the cement at the bone-implant interface? By creating three patient-specific finite element models, each 

simulating the implanted prosthesis vs. the overcorrected one. The FE model creation steps are based on the 

workflow used for specimen-specific glenoid bone FE model as discussed in Chapter 3. The applied loading 

on the glenoid implants stems from the developed patient-specific musculoskeletal model presented in Chap-

ter 4. 
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5.1 Abstract 

Glenohumeral osteoarthritis is common in the elderly and anatomical total shoulder arthroplasty (aTSA) is 

recommended in advanced stages. Even though aTSA is an established procedure, its failure rate and revision 

surgeries are relatively high compared to hip arthroplasty. One of the leading causes of failure is glenoid 

implant loosening, often associated with off-center loading. The latter may be reinforced by glenohumeral 

joint subluxation, defined as humeral head center offset from the glenoid surface center. In this case, asym-

metrical overcorrected (OC) glenoid implants were suggested as an alternative to standard implants. The 

present study aimed to evaluate the potential biomechanical advantages of OC implants compared to stand-

ard ones using the patient-specific finite element (FE) model. 

Three patients needing an aTSA were recruited, preoperative (pre-op), and six weeks postoperative (post-

op) CT images were performed. Each patient’s bone geometry was reconstructed from the pre-op CTs and 

the implant positioned using superposed post-op CT-images. Two glenoid FE models were created for each 

patient simulating aTSA: one model using the standard implant (STD) and another using the overcorrected 

(OC) implant. For each patient, a musculoskeletal model predicted glenohumeral joint reaction force (JRF) 

for four load cases that correspond to daily living activities. This JRF was used as a boundary condition on the 

patient-specific FE model to predict cement volume above fatigue limit of 7 MPa, bone compressive strain 

above the elastic limit of 1%, and glenohumeral subluxation. These predicted quantities were compared be-

tween STD and OC prostheses. Moreover, a sensitivity analysis to assumed uncertainties in the model crea-

tion process: 1) systematic error (-2%, 0, +2%) of CT numbers (in Hounsfield Units), 2) Gaussian filter param-

eter (0.1, 5, 20) and 3) trabecular bone constitutive law was performed on one patient. A full factorial design 

of experiment (DOE) method was used to investigate bone octahedral shear strain, axial bone strain, cement 

von Mises stress, and cement axial strain.  

Compared to the STD implant, the OC implant changed the glenohumeral subluxation from posterior to an-

terior for all patients and load cases F2 to F4. For load case F1, posterior subluxation was reduced for patient 

P3, more centered for patient P2, and not reduced for patient P1. The percentage difference in subluxation 

lay between 0.5% and 3.2%. No change was observed in critical cement volume when using OC design. Bone 

volume below the elastic limit mostly increased when using OC design: most important increase was ob-

served at load case F2 for P1 (50.9% bone volume under the elastic limit for STD vs 97.8% for OC) and least 

substantial increase was observed for patient P3 at F4 (from 99.9% with STD vs 100.0% with OC). Only for P2 

at F1 was there an over constrain observed: bone volume under elastic limit was 99.3% for STD vs 22.1% for 

OC. 
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Although only applied to three patients, these patient-specific FE models suggest the potential benefit of OC 

implants when postoperative recurrent subluxation is expected while not overly constraining the underlying 

bone.  

  



Overcorrected Implants for Total Shoulder Arthroplasty 

122 

5.2 Introduction 

Glenohumeral osteoarthritis is a degenerative joint disease, which causes the breakdown of articular carti-

lage and bone. People affected by this disease suffer from severe pain and eventually reduced mobility and 

life quality. Unfortunately, it is a common pathology. In advanced cases, when rotator cuff muscles are still 

functional, anatomical total shoulder arthroplasty (aTSA) is suggested. aTSA is an established procedure how-

ever, its failure rate and revision surgery are relatively high compared to hip arthroplasty [17]. One of the 

leading causes of failure is loosening of the glenoid implant, but the mechanisms behind it are still unclear 

[19,22,23]. Amongst others, this failure may be due to excessive cement stress leading to cement failure, 

glenoid [54,65,159] implant design [54,59], or to humerus implant-glenoid implant conformity [66,67]. Gle-

noid implant loosening is often associated with off-center loading [14]. The latter may be reinforced by shoul-

der subluxation, which is an instability present in the glenohumeral joint. 

Shoulder subluxation is defined as the humeral head’s relative position with respect to the glenoid fossa 

and/or the scapular axis. Walch et al [26] defined three types of osteoarthritic glenoids. In the absence of 

subluxation, the glenoid is symmetrically eroded and is called type A. Type B occurs when there is a subluxa-

tion: the wear of the joint occurs asymmetrically, in any direction, but more often posteriorly. Type C is not 

associated with osteoarthritic wear but with dysplasia. It is hypothesized that preoperative shoulder sublux-

ation may cause recurrent postoperative instability, resulting in glenoid loosening and eventually, prosthesis 

failure. As such, for patients planned for aTSA and presenting a risk of recurrent postoperative glenohumeral 

subluxation, asymmetrical overcorrected glenoid implants have been suggested as an alternative to classical 

implants. The potential advantages of these asymmetrical implants have however, never been assessed clin-

ically. 

Finite Element (FE) models have proved their potential to analyze and predict the mechanisms around total 

joint arthroplasty and have been used for the past 40 years [51]. Many models simulating shoulder arthro-

plasty exist and are becoming more sophisticated, with a clear tendency towards patient-specific modeling. 

However, due to the complexity of the shoulder’s musculoskeletal system and the difficulty of getting accu-

rate measurements, many simplifications and assumptions need to be made on several levels. Two most 

common limitations associated with shoulder FE modeling are first the lack of patient-specific parameters: 

in-vivo loading, exact patient geometry [5], and lack of correct bone constitute law [5,75,76]. The second 

major limitation of FE models is the lack of experimental validation [5,69,73,74].  

On the other hand, musculoskeletal models (MSM) were developed to provide a better understanding of the 

complex interplay of bones, muscles and tendons in ensuring the shoulder function. Amongst other param-
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eters, MSM are able to predict muscle forces and joint reaction forces [33]. In order to get a more compre-

hensive representation of the population, there is an increasing interest to develop patient-specific MSM 

[160]. However, most of these models either use cadaveric values based on scaling [32,34] or are based on a 

small number of subjects [35].  

To assess the biomechanical advantage of the overcorrected implant over the classical one, the primary ob-

jective of this study was to create patient-specific FE models for three patients. The FE model generation was 

based on a verified specimen-specific FE model presented in Chapter 3. The shoulder joint reaction force 

applied to each model was specific to each patient thanks to the validated patient-specific MSM described in 

Chapter 4. The two main questions asked were: 1) do overcorrected implants reduce posterior subluxation? 

And 2) do overcorrected implants transfer excessive stresses to the cement at the bone-implant interface? 
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5.3 Materials and Methods 

5.3.1 Patient recruitment and imaging 

Three aTSA patients were recruited at the Lausanne University Hospital (CHUV). Both senior orthopedic sur-

geon (Service of Orthopedics and Traumatology) and radiologist (Department of Diagnostic and Interven-

tional Radiology) collaborating in this project received ethical committee approval to recruit and work with 

the patients (CER-VD 395-15). A specific shoulder CT scan protocol was established. Each patient underwent 

one preoperative (pre-op) shoulder CT scan (Discovery CT750 HD, GE Healthcare, Waukesha, WI, USA) and 

one postoperative (post-op) CT scan. An anthropomorphic thorax K2HPO4 phantom was scanned with each 

patient (QRM, Moehrendorf, Germany). Following CT scan settings were used: 120 kVp tube potential; 200 

mA tube current; 0.7 s gantry revolution time; 64 x 0.625 mm beam collimation; 0.984 pitch. Image recon-

struction parameters were: 1.25/0.7 mm section thickness/interval, 488 x 488 µm in-plane spatial resolution; 

sharp (bone plus) kernel.  

Based on the pre-op CT-data, a MATLAB (R2017b, The Mathworks Inc, Natick, USA) code was written to 

measure patient-specific anthropometric data: apparent density, glenoid inclination, glenoid version (Figure 

5:1), and the Physiological Cross-Sectional Area (PCSA) of each of the four rotator cuff (RC) muscles: Infrasp-

inatus (IS), Subscapularis (SC), Supraspinatus (SS) and Teres Minor (TM). Beforehand, each RC muscle was 

contoured by the expert radiologist on the CT data. Moreover, the senior shoulder surgeon used the pre-op 

CT data in the 3D preoperative planning software and patient-specific instrumentation (BLUEPRINT™ 3D Plan-

ning, Tornier-Wright Medical, Montbonnot-Saint-Martin, France). In this step, both humeral and glenoid im-

plant type, size and positioning were planned ahead of the surgery. 

An overview of the patients of this study and their anthropometrics data is presented in Table 5:1. 

 Age Implant Gender Height 

[cm] 

Weight 

[kg] 

Version 

[°] 

Inclination  [°] PCSA [cm2] 

IS SC SS TM 

P1 74 S40 M 163 110 -15.45 5.34 2.76 8.58 1.13 0.92 

P2 79 M35 F 170 90 -8.73 5.29 7.66 9.00 3.00 0.25 

P3 54 M40 M 185 104 -0.37 -3.38 10.69 25.51 6.49 4.86 

Table 5:1: aTSA patients of the study. 
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Figure 5:1 Schematic showing glenoid orientations: glenoid version (GV) and glenoid inclination (GI). 

 

5.3.2 Patient-specific geometry  

The workflow used to create a patient-specific FE model from CT data was introduced in chapter 2. First, the 

pre-op CT data of each patient was imported and rigidly registered to post-op CT data. The Computer-Aided 

Design (CAD) file of the glenoid implant, provided by the manufacturer (AEQUALIS™ PERFORM keeled sizes 

S and M, Tornier-Wright Medical, Montbonnot-Saint-Martin, France), was superimposed over the post-op CT 

to replicate its real positioning correctly. These steps were performed using Amira 2019.2 (FEI SAS, Burling-

ton, MA, USA), Figure 5:2. In a second step, each patient’s scapular bone was segmented from the pre-op CT. 

This segmentation was based on CT number (Hounsfield Units) thresholds but was manually corrected when 

required from visual inspection. Bone surface triangular mesh creation and smoothing were performed with 

Geomagic Design X (3D Systems, Inc). 

 

Figure 5:2 Postoperative CT of patient where glenoid implant is outlined (red, left picture) and then correctly placed 

using manufacturer’s CAD model (blue, right picture). 

The segmented bone and the correctly placed glenoid implant were imported in Solidworks 2019 (Dassault 

Systèmes SolidWorks Corporation) where virtual implantation was performed according to 3D preoperative 
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planning. A cement layer with a uniform thickness of 0.5 mm was added around the implant with a backside 

of 2 mm based on the average measured cement thickness on the micro-CT images in chapter 3. The virtually 

implanted scapular bone, glenoid implant, and cement layer were imported into Abaqus (v.6.14, Simulia, 

Dassault Systèmes), where a rigid hemisphere was added to account for the metallic humeral component 

articular surface (Figure 5:3). 

 

Figure 5:3 FE model for patient P1: brown: implanted glenoid bone, green: cement layer, blue: glenoid implant and 

red: humerus. 

 

5.3.3 Overcorrected implant design 

Based on the surgeon’s recommendations and previous testing, the overcorrected implant was designed with 

a posterior overcorrection of 10°. This overcorrection design modification was performed on the articular 

side, without changing the bone side of the implant (Figure 5:4). 

 

 

Figure 5:4 Standard implanted prosthesis (left) and its corresponding overcorrected prosthesis (right) 
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5.3.4 Material properties 

Linear elastic homogeneous material properties were assumed for implant and cement, based on manufac-

turer data (Table 5:2). Based on the findings of chapter 2, the glenoid bone was assigned Rice’s density-

dependent bone constitutive law (Table 5:2). As described in chapter 2, a MATLAB script was written to give 

HU values to the glenoid bone mesh based on the K2HPO4 anthropometric phantom ρCT [g/cm3] = HU/1460. 

A friction coefficient of 0.3 was applied between the metallic humeral head and the polyethylene glenoid 

implant. Both implant – cement and cement – bone surfaces were fully bonded using tied constraints. Fol-

lowing a mesh convergence analysis (Supplementary Material Section 5.6), a tetrahedral mesh with an aver-

age size of 1 mm was assigned to the glenoid bone, and to the cement, and 2 mm tetrahedral mesh was 

assigned to the glenoid implant.  

Material Elastic Modulus [MPa] Poisson’s Ratio [-] 

Polyethylene (UHMWPE) 720 0.4 

Cement (PMMA) 2000 0.23 

Humeral head rigid rigid 

Bone 𝐸 = 60 + 900 ∗ 𝜌𝑎𝑝𝑝
2 [123] 0.26 [161] 

E = 2.192 ∗ ρ𝑎𝑝𝑝 + 0.007 [162] 

𝜌𝐶𝑇[
𝑔

𝑐𝑚3
] = 𝐻𝑈 1460⁄   

Table 5:2: Material properties used in FE model.  

 

The musculoskeletal model (MSM) developed and described in the previous chapter was used to output the 

patient-specific joint reaction forces (JRF) during three activities of daily living (ADL) needed in each FE model. 

The following patient-specific data were fed into the MSM: weight, height, glenoid implant inclination, gle-

noid implant version, and PCSA for all four rotator cuff muscles. The glenoid implant orientation (version and 

inclination) was obtained from the preoperative planning software.  

Three ADL were chosen among 7, presented in Chapter 4: 

- act3) Abduction in the scapula plane with 2 kg in the hand 

- act6) Put 2 kg on a shelf at head height 

- act7) Put the behind the head to simulate scratching the head or combing  
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The JRF was evaluated at 30° and 90°of abduction for act3. For act4 and act7, we considered the abduction 

angles corresponding to the maximum JRF. For readability ease, the load cases will be reported hereafter: 

act3 at 30° abduction as F1, act3 at 90° abduction as F2, act6 as F3 and act7 as F4. 

The JRF obtained by the MSM for each of the three ADL and three patients were given in the thorax coordi-

nate system [148,163], and thus needed to be transformed into the glenoid implant coordinate system with 

help of a stability cone coordinate system. Thorax and cone coordinate systems were defined in Sarshari et 

al. [148] and in Mancuso et al. [163]. The glenoid implant coordinate system was called hereafter GI coordi-

nate system and is presented in red in Figure 5:5. 

 

 

Figure 5:5 Glenoid Implant (GI) coordinate system in red based on thorax coordinate system (black) and on the stabil-

ity cone coordinate system (green). 

(Image courtesy of Mancuso [145]) 

The GI coordinate system was defined as follows: [145,146] 

i) Origin OGI is the center of the implant 

ii) YGI goes from the most superior to the most inferior rim of the GI. The axis is then projected on 

the GI plane. 

iii) ZGI parallel to Xcone and pointing towards humeral head 

iv) XGI was constructed through cross product of YGI and ZGI 
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5.3.5 Output 

Four load cases were tested for each patient (F1 to F4), for STD and OC glenoid implant. 

The outputs investigated in this study were: peak cement von Mises stress and its volume below fatigue limit 

of 7 MPa. We also considered the bone volume above the reported value of 1% for plastic deformation [89]. 

Lastly, subluxation is defined as distance of the humeral head center to the glenoid center projected on a 

plane perpendicular to the glenoid centerline. The glenoid centerline was defined as the axis going through 

the pre-surgery glenoid surface center and through the center of a sphere fitted in that glenoid surface [29]. 

Subluxation was expressed as percentage of the humeral head radius and was posterior when pointing in the 

XGI-direction. 

5.3.6 Sensitivity Analysis 

The FE model building pipeline needs many steps that may include errors. A sensitivity analysis was con-

ducted in order to identify the most influential factors of the pipeline on the output of the models. The sen-

sitivity analysis was conducted upon three patient models using the Design of Experiment (DOE). The loading 

applied was based on ASTM 2028 [164]. Three factors were analyzed: First, the Gaussian filter used to aver-

age HU values was evaluated: having a Gaussian distribution, the voxels located close to the considered voxel 

have a larger weight than those located further away. The sensitivity of the FE model to using different Gauss-

ian window length (called distance, d) and dispersion factor or Gaussian window width alpha (α) parameters 

was assessed by analyzing the possible range of BMD values that an element or region of interest can have. 

Parameters “d” takes into account the number of neighbouring elements taken into account in the weighing 

of the HU value of each element, while parameter alpha precises the weight of each element. More details 

are provided in the supplementary material section 5.6. A total of 21 regions of interest were analyzed and 

it was observed that no change in BMD values is experienced when α < 0.1 and α > 20. Also, it was observed 

that the BMD value measured when α = 5 was quite close to the median value of the range. Consequently, 

the values 0.1, 5 and 20 were considered as factors for the DOE method. 

Second, the sensitivity of the model to two different trabecular density-elasticity laws was investigated. Two 

laws were investigated: Latypova’s law [128]:  

E = 11′035.9 ∗ 𝜌𝑎𝑝𝑝
2.13 

Equation 5:1: Latypova’s law 
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And Keller’s law [124] 

E = 10′200 ∗ 𝜌𝑎𝑠ℎ
2.01 

Equation 5:2: Keller’s law 

Third, systematic error of CT numbers (-2%, 0, 2%) was investigated. 

A full factorial DOE method was used to investigate variation in bone octahedral strain, bone axial strain, 

cement von Mises stress, and cement axial strain. In total, 8 simulations were performed and the contribu-

tions of the input factors in order of importance was extracted. The results were expressed in terms of top 

5% volume. Lastly an analysis of variance using 95% confidence interval was performed on contribution fac-

tors calculated. 

5.4 Results 

5.4.1 Load cases 

The MSM output joint reaction forces (JRF) for each patient and each load case, the glenoid implant coordi-

nate system (Table 5:3). JRF for F1 points in the superior-posterior quadrant for patients P1 and P3 while it 

points in the supero-anterior quadrant for patient P2. JRF for F2 and F4 points in the supero-posterior quad-

rant for all patients. JRF for F3 points in the inferior-posterior quadrant for all patients. An illustration of these 

load cases is given for P1 (Figure 5:6) 

 P1 P2 P3 

Load cases Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N] 

F1 97 -706 -400 -223 -714 -161 23 -527 -246 

F2 996 -414 -274 1095 -488 -279 1188 134 -326 

F3 516 69 -342 595 110 -374 455 181 -238 

F4 241 -302 -200 160 -470 -235 167 -283 -194 

Table 5:3 Load cases applied for each patient, expressed in the glenoid implant reference system. 
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Figure 5:6 Illustration of load cases F1 to F4 for patient P1 given in the GI coordinate system. X-axis points posteriorly 

and Y-axis inferiorly with respect to glenoid fossa. 

 

5.4.2 Cement stress, bone strain, and subluxation 

Compared to the STD design, the OC design made no difference in cement volume above fatigue limit of 7 

MPa. Peak cement stress was reduced with load case F2, for all simulated patients when using OC design. No 

clear difference was observed in peak cement stress for the remaining load cases between STD and OC design 

(Table 5:4). 

With OC implants, volume of bone above the compressive strain elasticity limit of 1% was reduced for all 

load cases for patient P1 (Figure 5:7) and P3. For patient P2, bone volume below 1% was slightly reduced for 

F2, F3 and F4. For patient P1 and load case F1, the bone volume above the elastic limit increased when using 

OC design.  

When using OC implant design, posterior subluxation was reduced for all load cases for patient P3. For patient 

P2, posterior subluxation was reduced for all load cases except load case F1 where the force was pointing in 

the anterior direction. For patient P1, posterior subluxation was reduced for load cases F2 and F3, stayed 

similar for F1 but increased for F4 (Table 5:4).  
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 Cement volume below 7 

MPa 

[%] 

Bone volume below 

10'000 µε 

[%] 

Peak cement Von Mises stress 

[MPa] 

Subluxation 

[% HH diameter] 

P1 STD OC STD OC STD OC STD OC 

F1 100.00 100.00 85.42 98.06 44 44 2.47 2.96 

F2 99.27 100.00 50.86 97.78 71 36 -1.11 -4.30 

F3 99.94 99.99 88.39 96.61 41 50 -0.56 -2.48 

F4 100.00 100.00 96.60 98.57 26 39 0.47 1.18 

P2         

F1 100.00 98.19 99.31 22.05 47 241 4.78 7.98 

F2 100.00 100.00 90.43 90.42 139 92 -13.05 -16.49 

F3 100.00 100.00 97.07 92.07 51 114 -8.63 -10.60 

F4 100.00 100.00 98.93 94.87 25 82 -0.38 -1.34 

P3         

F1 100.00 100.00 90.44 100.00 36 7 -0.09 -0.34 

F2 100.00 100.00 98.15 98.23 51 35 -11.46 -14.44 

F3 100.00 100.00 99.59 99.19 10 21 -3.29 -4.43 

F4 100.00 99.99 99.87 100.00 9 7 -0.79 -0.87 

Table 5:4: Cement stress, compressive bone strain and subluxation after application of patient-specific load cases for 

standard (STD) and overcorrected (OC) implant designs. Negative sign in the subluxation columns corresponds to ante-

rior subluxation. 

 

 

Figure 5:7 Minimum Principal Strain in bone for patient P1 for all simulated load cases and for STD (top) versus OC 

(bottom) implant designs. 
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For all simulated load cases and all patients, the contact point between the humerus and glenoid implant 

was less eccentric with the overcorrected implant than with the STD implant (Figure 5:8) 

 

Figure 5:8 Contact pressure on implant for patient P1 for all simulated load cases and for STD (top) versus OC (bottom) 

implant designs. 

5.4.3 Sensitivity Analysis 

The results of the factorial analysis are presented in Table 5:5 below and expressed in terms of the top 5% 

volume. 

 

Table 5:5: Results of Factorial Analysis. 

The measured octahedral shear strains respectively axial strains (E11) of the models constructed using Kel-

ler’s Law were larger than those using Latypova’s Law: 1.8 difference factor resp. 1.45 difference factor.  
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 Material Law CT Systematic Error Filter Parameter R2 

Bone Oct Strain  30% 

p < 0.001 

-3% 

p = 0.11 

-1% 

p = 0.08 

0.99 

Bone axial strain 18% 

p < 0.01 

-6% 

p = 0.13 

4% 

p = 0.2 

0.78 

Cement Von Mises Stress 3% 

p < 0.01 

1% 

p < 0.05 

1% 

p < 0.05 

0.96 

Cement axial strain 3% 

p = 0.7 

-3% 

p = 0.5 

0% 

p = 0.7 

0.07 

Table 5:6: Contributions of parameters to FE model outcome. 

 

Using DOE analysis, bone octahedral shear strain and axial strain were highly sensitive to constitutive law: -

30% and -18%, respectively. The bone strain was much less sensitive to the gaussian filter (4%) and CT error 

(≤ 6%). Cement stress was slightly altered by all parameters (≤ 3%). Cement strain was not significantly altered 

by the combinations of constitutive law and CT error (≤ 10%) and by the combination of Gaussian filter and 

CT error (≤ 10%). The analysis of variance revealed significant results for bone octahedral shear strain (p < 

0.001), for bone axial strain (p = 0.028), for cement stress (p = 0.006), but not significant for cement strain (p 

= 0.22) (Table 5:6). 
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5.5 Discussion 

Although total shoulder arthroplasty is an effective procedure to relieve pain and restore shoulder function, 

glenoid component loosening was listed as one of the most common complications. This failure may be due 

to several factors, amongst others: excessive cement stress or off-center loading on the glenoid component. 

The latter may be reinforced in the presence of subluxation. Overcorrected implants (OC) were suggested as 

an alternative to correct the postoperative subluxation but were never tested clinically nor biomechanically. 

The present work aimed to develop three patient-specific (PS) finite element (FE) models in order to assess 

their potential by answering the two research questions: 1) Do overcorrected implants reduce posterior sub-

luxation? And 2) Do they transfer excessive stresses to the cement? First results suggest that OC implants 

indeed reduce the posterior subluxation without overconstraining the cement and the bone. 

The PS FE models were based on CT images of patients planned for aTSA. One FE model simulated the im-

planted prostheses (STD), and the second one contained the same geometry but with the OC implant. Pa-

tient-specific (PS) loading from a MSM was applied to the implants. Four load cases were simulated and 

cement von Mises stress, bone compressive strain and humeral head subluxation were investigated. 

A uniform cement thickness was added instead of a segemted layer because of the difficutly to distinguish 

the diffused cement and the trabeculae on the CT data.  

Excessive cement stress was reported to initiate microcracks, leading to cement damage and eventually in-

stability and glenoid implant loosening [54,65,159]. The literature reports different values of critical cement 

stress ranging between 4 and 14 MPa [54,66,165–168]. Thus, a middle value of 7 MPa as critical stress limit 

was chosen for this study. Using an OC implant design did not influence the volume of cement above this 

fatigue limit. Although peak stresses may have been larger than 7 MPa, its proportion was not significant 

(less than 0.1% for all simulated load cases and across all patients). 

When OC implants were used, the volume of bone above the elastic limit of 1% was reduced for all load cases 

and for patients P1 and P3 for all load cases, but not for patient P2 at load case F1. This is probably due to 

the force’s orientation for this patient which points in the antero-superior quadrant, while the prosthesis is 

posteriorly overcorrected. Moreover, for this specific case, a more restrictive humerus-glenoid surface inter-

action was applied: while for all other cases, humerus-glenoid were allowed to separate during the move-

ment, this was not the case for this case due to instability of the numerical model. This probably induced 

more compression on the glenoid implant and bone. 
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Posterior subluxation was reduced for most cases and for most patients, which is essential for such worst-

case scenarios. However, this OC design moves towards an anterior subluxation. This was expected due to 

the form of the implant and to the direction of the loads simulated. 

Although worst-case scenarios were chosen for the load cases, using an OC design reduced the eccentricity 

of the humeral head with respect to the glenoid implant, thus enabling a more concentric loading and reduc-

ing the rocking horse effect risk. The latter being defined as component instability due to off-center loading 

[12,14,20]. 

The conducted sensitivity analysis showed that the trabecular bone constitutive law had the most consider-

able impact on bone strain, while cement strain was nearly not altered. Our study helped identify sources of 

highest uncertainties in a multi-step PS model generation and showed that the CT imaging process is suffi-

ciently accurate, while efforts need to be focused on a validated constitutive law of trabecular bone.  

The present study overcame two of the major limitations associated with PS FE modeling [5] : first the lack 

of PS loading due to the complexity of sourcing the in-vivo loading by including PS loading and simulating 

different activities of daily living from a validated MSM [149]. Second, the lack of validation was overcome 

using a CT-to-FE workflow which was verified for displacements. Moreover, this study replicated planned 

implant placement for each patient, making the FE model as PS as possible. 

A number of other limitations need to be acknowledged: First, the boundary conditions applied on the gle-

noid bone were overly simplified: there is no account for muscle or tendon stabilization. However, as stated 

in a recent review about FE modeling of shoulder arthroplasty [5], one of the major limitations of all cited 

studies was the lack of a correct representation of the most important anatomical structures of the muscu-

loskeletal shoulder system. Additionally, a 0.3 friction coefficient was applied between the humeral head and 

glenoid implant, while the reported value for wet sliding of Titanium on UHMWPE is 0.2 and 0.4 for dry sliding 

[169,170]. Using a friction coefficient of 0.2 and allowing the surfaces to separate induced luxation for most 

load cases. Moreover, the number of patients and load cases simulated was not statistically strong enough. 

This is mainly due to the complexity of the patient-specific CT-to-FE model workflow. More patients and load 

cases need to be further investigated to establish the superiority of the OC design correctly.  

To conclude, this study presented an elaborated PS FE model, including rotator cuff muscle deficiencies and 

PS loading, which, to the author’s knowledge, has never been accounted for in patient-specific modeling of 

aTSA. Moreover, although the comparative tests were only performed on three patients, these preliminary 

results suggest that overcorrected implants are promising with respect to posterior subluxation, cement 

stress and bone compressive strain reduction. Further analyses with more patients and more daily living ac-

tivities still need to be performed to confirm these conclusions.  



Overcorrected Implants for Total Shoulder Arthroplasty 

137 

5.6 Supplementary Material 

5.6.1 Bone Material Mapping using Gaussian window 

The bone mechanical properties are directly related to the bone mineral density (BMD), which in turn can be 

related to the grayscale (HU) values measured from the CT images. In order to use density-elasticity relation-

ships, a calibration phantom was used to relate HU to density values at each integration point. A MATLAB 

script was used to assign HU value to each mesh element. Depending on the mesh density and the CT reso-

lution, a single voxel might not relate to a single mesh element but to several of them. In addition, the HU 

values at a certain node might not be representative of the density of the area delimited by the element. This 

situation becomes more evident in areas with high contrast (i.e. trabecular to cortical bone boundary). In 

order to correct that, the script takes into account the voxels surrounding the node location to a distance (d) 

defined by the user. The density value at each integration point was then calculated by considering a Gauss-

ian distribution of the HU values of the surrounding pixels that were included in the distance d. In other 

words, the pixels which were located far from the node had smaller weight than those located close to it. 

Such Gaussian distribution was implemented in the script by using the built-in MATLAB function 

𝑔𝑎𝑢𝑠𝑠𝑤𝑖𝑛 (𝑁; 𝛼), where 𝛼, called width factor [171], is proportional to the reciprocal of the standard devi-

ation (𝜎) as shown in Eq.5:3 and Eq. 5:4 and 𝑁 represented the number of points considered in the build-in 

function. The sensitivity of the FE model was performed with repsect to using different distance (d) in milli-

meters and alpha parameters of the Gaussian function. 

𝜎 =
𝑁 − 1

2 ∗ 𝛼
 

Equation 5:3: Standard deviation in Gaussian function. 

𝑦 = 𝑒−
1
2

∗(
𝑁
𝜎

)2

 

Equation 5:4: Gaussian window function 

 

Figure 5:9 Difference between using a smaller or larger alpha factor in the Gaussian function.  

(Image courtesy of https://ch.mathworks.com/help/signal/ref/sigwin.gausswin-class.html, [171]) 

https://ch.mathworks.com/help/signal/ref/sigwin.gausswin-class.html
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5.6.2 Mesh convergence 

Mesh convergence analysis was conducted for both bone and cement meshes: top 5%, 1% and 0.1% values 

for cement Max and Min Principal stress and bone Minimum principal strain were calculated for different 

mesh sizes. 

 

Figure 5:10 Bone minimum principal strain for varying mesh size. 
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Figure 5:11 Cement minimum (top) and maximum (bottom) principal strain for varying mesh size. 
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 Conclusion 

6.1 Achieved results 

This thesis was motivated by the following clinical research question: what is the biomechanical advantage 

of overcorrected glenoid implants in the context of anatomical total shoulder arthroplasty (aTSA)? To answer 

this question, a shoulder simulation framework was developed and contains the following building blocks: 1) 

a procedure to convert preoperative CT data into patient-specific finite element (FE) models of their aTSA, 2) 

a patient-specific musculoskeletal model (MSM) that estimated the glenohumeral joint reaction forces during 

seven activities of daily living, 3) an experimental set-up was developed that measured displacements and 

deformations of the glenoid bone after aTSA under 1500 N axial loading thanks to Digital Volume Correlation 

(DVC) method. This set-up achieved 694.3 με accuracy and 440.3 με precision while displacement random 

error was 6.1 μm. 4) A bone material law to evaluate the behavior of novel prosthetic designs in a simulated 

environment was validated. With help of five specimen-specific FE models replicating the experiment, they 

predicted displacements with a coefficient of determination of R2 = 1.0 and slope =1. The strain measure-

ments were however poorly replicated (R2 = 0.28-0.37 and slope = 0.51-0.70). Using these findings to create 

three patient-specific FE models comparing overcorrected and standard glenoid implants for patients 

planned for aTSA, the shoulder simulation framework developed in this thesis indicated that overcorrected 

glenoid implants might present a biomechanical benefit without adverse effect for the implant fixation. This 

preliminary result needs however to be further analyzed with alternative implant designs, to confirm a po-

tential clinical interest. 

The novelty of this work resides first in the development of a micro-CT – DVC method to measure bone 

deformation and its elaborated error quantification. Although the DVC technique is more and more used, its 

use in shoulder studies has been very limited until now. To our knowledge, only two groups have such a set-

up [73,74] and only one of them published a study on glenoid deformation after aTSA [74]. The second nov-

elty of this thesis is the validation of the specimen-specific FE model based on the experimentally measured 

displacements. The present study is the second to publish FE model-predicted displacements and strains 
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versus experimentally measured displacements and strains on implanted glenoid bone. Lastly, having in-

cluded patient-specific data into our FE models adds to the novelty of the present work. In the following 

sections, the limitations as well as the perspectives for future works are presented. 

6.2 Future development 

6.2.1 Workflow CT to FE 

The main challenges associated with the developed CT to FE model workflow lie in the complexity and mul-

titude of steps required: Indeed, a combination of five software was necessary and some of the steps re-

quired intensive manual labor such as the rigid registration of preoperative to postoperative images. For 

future use, these steps should be automated to strengthen repeatability. 

Although our specimen-specific and patient-specific FE models used key anthropometric data for gleno-

humeral stability, such as glenoid orientation and bone density, they still lack the contribution of further 

stabilizing soft tissues, such as rotator cuff muscles [5] and passive stabilizers such as glenohumeral capsule 

and both subacromial and subcoracoid bursae and the ligaments, especially the coracoacromial ligament 

which avoids humeral head from superior displacement [172]. 

An important aspect in bone modeling is the validity of the constitutive law. Although many laws were pro-

posed, there is still no consensus as to the optimal one [5,136,162]. The present work identified four consti-

tutive material laws with different parameters, to find the best replication of measured displacement field. 

A logical next step would be to test more than three specimens, in order to confirm the suitability of these 

material laws. Moreover, the partial volume effect needs to be addressed. A possible line of action might be 

to assign to the elements located at the outer surface of the bone an HU values averaged from HU values of 

neighboring elements; similar to what has been proposed in Knowles et al [76]. 

Moreover, bone anisotropy associated with trabecular structure is reported to affect stress and strain pre-

dictions of patient-specific numerical models [19,173]. Since it cannot be sufficiently evaluated from clinical 

CT scan, it should be derived differently. To account for bone anisotropy, we might use micro-CT scan of 

several specimens, extract the bone anisotropy for each and assign an averaged value, that could me mapped 

to the patient-specific FE model [173]. Alternatively, machine learning algorithms could be developed for this 

prediction. For example, the algorithm would have access to a database of µCT scans of scapulae, each of the 

scapulae would have assigned local anisotropy values. The algorithm would “get trained” on this database. 

Then, it would be able to assign anisotropy values to patient’s glenoid bone from CT data and thus increase 

the reliability of the FE model developed in this thesis. 
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6.2.2 DVC experimental set-up 

The non-invasive experimental set-up developed in this work to measure displacement and bone defor-

mation under loading is one of the first to be used for the glenoid bone. Although it enabled us to study 

glenoid bone deformation under loading, the number of specimens studied should be extended to assess the 

preliminary observations. For three specimens analysed here, central loading was applied at 500 N, 750 N 

then 1500 N. We should replicate the experiment on more samples, but also with different loading condi-

tions, such as controlled eccentric loading and different loading amplitudes. Possible future exploration might 

be to investigate how the bone deformations behave for increasing loads or if the bone constitutive material 

law used in the specimen-specific model was appropriate for all of the three loading cases, and for both the 

elastic deformation range (less than 1% compressive strain) and for the plastic deformation strain tested. 

Another interesting development would be to use other available DVC software such as BoneDVC [81,84] in 

order to compare the displacement and stain predicted by both software. 

6.2.3 Clinical application 

The overcorrected implants investigated in the present study showed functional improvements by reducing 

the posterior subluxation without endangering the underlying bone and cement. However, this study was 

only applied to three patients and thus no statistical analysis was performed. More patient-specific models 

need to be created and more activities of daily living loading cases should be investigated to confirm our 

preliminary findings. Lastly, as shown in the results section of chapter 5, an overcorrection of 10° might be 

too severe, as it may induce anterior subluxation. Therefore, smaller overcorrection angles could be investi-

gated to avoid anterior subluxation. 

An interesting future step would be to compare the predictions of the patient-specific models with the meas-

urements of a shoulder robotic simulator [145]. This robotic simulator was used to investigate glenohumeral 

subluxation using loaded glenoid prostheses during three activities of daily living. It would require to create 

patient-specific FE models of patients after aTSA, and use the same patients’ characteristics with the robotic 

simulator, to compare humeral head displacement in the same loading conditions. Given the availability of 

the aTSA registry of the local university hospital (CHUV), a large number of comparative tests could be per-

formed, and associated to surgery outcome. 

To conclude, the different parts of the framework developed in this work could be integrated and automa-

tized, to replicate patients more quickly. It would provide large data for investigating research questions with 

statistical analyses, and it might also be integrated in a clinical environment, within existing preoperative 

software. For example, when a patient is planned for aTSA, a preoperative CT scan is routinely performed. 
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This CT scan could be used for three applications: first, to the surgical planning software, second, to a prep-

aration platform for MSM and third to the FE software in order to create a patient-specific FE model. 

The surgeon would plan the surgery following their usual protocol, selecting the implant design and position-

ing in the glenoid bone. The preparation platform would use the planned glenoid implant orientations and 

measure the PCSA for each of the rotator cuff muscles from the CT scan, and feed them into the MSM. The 

later would predict typical glenohumeral joint forces during activities of daily living. The patient-specific FE 

model would be created using the bone densities extracted from the CT, the positioning of the implant for 

the preoperative software, and the forces obtained from the MSM. Finally, glenohumeral stability and bone 

strain would be estimated. These computer predictions could be used by the surgeon to refine the preoper-

ative planning and select the optimal implant design and surgical technique (Figure 6:1). 

 

Figure 6:1 Clinical application. 
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µCT Micro Computed Tomography 

2D Two dimensions 

3D Three dimensions 

ASP Anatomical Shoulder Prosthesis 

ASTM American Society for Testing and Materials  

aTSA Anatomical Total Shoulder Arthroplasty 

CHUV Centre Hospitalier Universitaire Vaudois 

CT Computed Tomography 

DOF Degree of Freedom 

DVC Digital Volume Correlation 

DVRT Differential Variable Reluctance Transducers 

EMG Electromyography  

EminPrin Minimum Principal Strain 

FE Finite Element 
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JRF Joint Reaction Force 

JRFa Joint Reaction Force Amplitude 
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MSM Musculoskeletal Model 

OC Overcorrected Implants 
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QCT Quantitative Computer Tomography  

RMSE Root Mean Square Error 
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