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Abstract

Optical frequency combs are a series of phase-locked and equidistant laser lines in the spectral

domain. In the time domain, they correspond to periodic pulse trains by the Fourier relation.

The ability to shape optical combs and pulse trains is pivotal to many applications in optical

communications and microwave photonics. For communication purposes, the information

can be multiplexed in either time or frequency, by associating the data symbols to the comb

lines or optical pulses. In particular, shaping optical pulses into sinc profile is of special

interest, as it achieves high spectral efficiency when multiplexed. In regards to microwave

photonics, frequency combs also have emerged as useful tools for processing radiofrequency

(RF) signals in parallel. Comb-based RF photonic filter is one of the examples. Optical combs

combined with dispersive propagation could construct filtering functions in the RF domain.

Additionally, the shaping of comb spectra enables reconfiguration of the synthesized RF

photonic filters.

The thesis presents results on various shaping techniques for the generation and applications

of optical frequency combs. Both electro-optic combs and integrated microcombs are explored

in the study, while their pulse shaping takes place either in the generation stage or externally.

The first part of the thesis deals with optical sinc pulse shaping. A simple and flexible sinc pulse

generator is demonstrated based on a single electro-optic modulator. Rectangular spectra of

optical sinc pulses are harnessed to shape RF filters with sinc responses. Moreover, the method

of sinc pulse shaping can fulfill the add-drop functionalities for superchannels multiplexed

from sinc pulses.

In the second part, temporal Talbot shaping of frequency combs is addressed. The temporal

Talbot effect multiplies the repetition-rates of optical pulse trains in time. A novel temporal

Talbot multiplier is demonstrated in a conventional optical tapped delay line structure. Fur-

thermore, such shaping concept is extended for the demonstration of azimuthal Talbot effect.

When the orbital angular momentum modes are superimposed with Talbot phases, the light

petal is self-imaged in the azimuthal angle.

Lastly, the third part exploits the internal shaping of soliton microcombs for the use in RF

photonic filters. Versatile soliton states and thereby various microcomb spectra, are generated

in a microresonator on demand. Such optical spectra could reconfigure their corresponding

RF filters. Among others, perfect soliton crystals and two-soliton states are utilized, which
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Abstract

respectively divide and translate their filter passband frequencies.

Key words:

• Optical frequency comb

• Optical sinc pulse

• Talbot effect

• Optical orbital angular momentum

• Soliton microcomb

• RF photonic filter
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Résumé

Un peigne de fréquences optiques est une série de modes optiques régulièrement espacés

en fréquence et cohérents en phase entre eux. Par transformée de Fourier, dans le domaine

temporel cela correspond à des trains d’impulsions successives et régulières. La possibilité de

pouvoir contrôler la forme spectrale du peigne optique et les impulsions correspondantes est

essentielle pour de nombreuses applications de télécommunications optiques et de photo-

nique appliquée aux micro-ondes. Dans le cas des télécommunications, les données peuvent

être multiplexées indifféremment dans le domaine temporel ou fréquentiel en attribuant un

canal de données à une série d’impulsions ou à un mode du peigne optique. Un cas spécial,

avec des impulsions optiques façonnées pour s’approcher de la fonction sinus cardinal, est

particulièrement intéressant car il permet d’obtenir une efficacité spectrale élevée quand

plusieurs canaux optiques sont multiplexés ensemble. Pour la photonique appliquée aux

micro-ondes, les peignes optiques sont apparus comme des outils indispensables afin de

traiter plusieurs signaux micro-ondes en parallèle. Les filtres photoniques pour ondes radio-

fréquences basé sur un peigne optique en sont un exemple. Un signal radiofréquence peut

être filtré par une astucieuse association d’un peigne optique avec un milieu dispersif. De

plus, le control de la forme spectrale du peigne optique permet la reconfiguration du filtre

micro-onde.

La présente thèse rapporte les résultats du développement de plusieurs techniques de gé-

nération de peigne de fréquences optiques ainsi que les résultats de multiples expériences

résultant de leurs utilisations. Des peignes optiques ont ainsi été généré avec des modulateurs

électro-optiques ainsi qu’en utilisant des micro-résonateurs optiques, avec le contrôle des

impulsions optiques durant la génération des modes ou a posteriori.

La première partie la thèse présente la génération d’un train d’impulsion optique approchant

la forme de la fonction sinus cardinal. Une source minimaliste et flexible n’utilisant qu’un seul

modulateur électro-optique est décrite. Grâce à une forme spectral rectangulaire du peigne

optique, un filtre radiofréquence ayant la forme du sinus cardinal a été obtenu. De plus, le

control précis des impulsions optiques permet une fonction d’ajout/retrait pour des super-

canaux de télécommunications optiques basés sur le multiplexage de trains d’impulsions.

Dans seconde partie le contrôle du peigne optique par effet Talbot est étudié. L’effet Talbot

temporel peut démultiplier le taux de répétition des trains d’impulsions optiques. Un multipli-
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Résumé

cateur temporel utilisant l’effet Talbot est démontré en utilisant seulement une matrice 1xN,

avec différents retards et avec des contrôles de phase indépendants, suivi d’un recombiner. De

plus, le concept est étendu avec la démonstration de l’effet Talbot azimutal. En effet, quand

les modes de moment angulaire orbital sont surimposés en suivant les phases Talbotiennes,

les pétales lumineux sont distribués suivant l’angle azimutal.

La troisième partie rapporte comment le contrôle de solitons générés dans des micro-résonateurs

photoniques permet l’utilisation de ces sources de peignes optiques pour obtenir des filtres

radiofréquences. Plusieurs états solitoniques étant atteignables dans le micro-résonateur,

une source de peigne optique polyvalente est démontrée. Ainsi, des filtres radiofréquences

reconfigurables peuvent être obtenu. En particulier, des cristaux parfaits de solitons et des

états à double solitons ont été utilisé pour démontrer des scissions du filtre passe-bande ainsi

que des translations en fréquence.

Mots clefs :

• Peigne de fréquences optiques

• Impulsion optique sinus cardinal

• Effet Talbot

• Moment angulaire orbital optique

• Micropeigne à solitons

• Filtre photonique radiofréquence
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1 Introduction

1.1 Overview of optical frequency combs

Optical frequency combs, as their name implies, are a series of phase-locked, equidistant

laser lines in the frequency domain [1–7]. The time and frequency pictures of the optical

frequency combs are depicted in Figure 1.1. In the frequency domain, the comb lines are

equally spaced by the comb free spectral range (FSR), or equivalently the repetition-rate frep,

similar to hair combs. The absolute frequency of each comb component can be indexed as

fn = n frep + fo, with fo being the residual carrier-envelope offset frequency, and n ∈N+ being

typically large number. The temporal waveform of the combs is linked to their spectra by

Fourier-transform, which is repetitive and the period is the inverse of the frequency grid, i.e.

T = 1/ frep. Frequency combs were traditionally generated from mode-locked lasers (MLLs),

whose comb lines are all in-phase so as to produce ultrashort pulses in the time domain. For

such combs with in-phase/linear-phase relation among the comb lines, the temporal pulse

is transform-limited and the pulse width is inversely proportional to the comb bandwidth.

The carrier-envelope offset frequency fo is resulted from the carrier-envelope phase offset∆φ

between adjacent pulses, related by 2π fo =∆φ frep.

There are many types of MLLs. In essence, their working principle are similar, all require

phase locking of the cavity modes within the gain profile [8]. The mode-locking can be either

achieved actively, for example using external amplitude or phase modulation, or passively

by saturable absorber or Kerr-lens. Regarding their actual implementations, MLLs can be

quite different from dye lasers in the early days, to solid-state lasers [9], fiber lasers [10], and

semiconductor lasers [11]. They have evolved significantly in terms of size, and cost, stability,

and performance since their first demonstration. Overall, the typical repetition-rates frep of

passive MLLs fall in the order of MHz to several GHz, which are in general inversely related to

their cavity lengths.

Apart from mode-locked lasers, there are also other frequency comb sources. Electro-optic

(EO) combs are obtained by external modulation of continuous-wave (CW) lasers in electro-

optic modulators (EOMs) [12, 13]. Their repetition-rates are determined by the fundamental
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Chapter 1 Introduction

Figure 1.1 – Time and frequency representations of optical frequency combs. In the time
domain, frequency combs correspond to periodic optical pulse trains with period T = 1/ frep.
∆φ is the carrier-envelope phase offset. In the frequency domain, combs are a series of
discrete laser lines equally spaced by the comb repetition-rate frep. The absolute frequency
of n-th comb line is given by fn = n frep + fo, where fo is the carrier-envelope offset frequency
that relates to∆φ as 2π fo =∆φ frep. Adapted from [6].

frequencies of the driving radiofrequency (RF) signals, thus being fully flexible and simultane-

ously well-defined. Owing to the large bandwidths of EOMs, the EO comb repetition-rates

can be operated at the range up to tens of GHz. Noticeably, this is generally higher than the

repetition-rates of MLLs. Also unlike the MLLs, the repetition-rates of EO combs can be freely

tuned due to their cavity-less operation.

Recently, optical combs based on microresonators have become as emerging compact and

broadband comb sources [14–16]. They are often termed as Kerr combs or microcombs. The

typical repetition-rates of microcombs are even higher than EO combs, which are in the

range between tens of GHz to several THz due to their miniaturized cavities. The comb lines

are initiated via cascaded four-wave mixing process, then entering into mode-locked states

with the formation of localized temporal structures. The ever-maturing on-chip integration

of microresonators has facilitated dispersion engineering for microcomb generation, and

possesses the potential for mass production [17].

Frequency combs based on quantum cascade lasers (QCLs) with direct electrical pumping

have made mid-infrared and THz electromagnetic radiation within reach [18, 19]. QCL-combs

are based on the intersubband transitions in sandwiched quantum-well heterostructures.

Unlike the common interband semiconductor lasers, the mode-locking of QCL-combs are

achieved by the active RF frequency modulation instead of producing short pulses.

Optical frequency combs are central to enormous applications listed below [4, 5, 7]:
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Optical clockworks and metrology. The precision of time counting scales with the clock

frequency in the time-keeping roadmap [4]. While the current definition of second is given by

the Cesium microwave frequency standards, optical frequency combs hold a promise for next-

generation atomic clocks. Indeed, the fractional uncertainty of the state-of-the-art optical

synthesizer is down to 1×10−19 level [20]. Optical frequency combs provide direct phase-

coherent chain between the RF and the optical domains, therefore being called clockworks

or gearbox. This would generally require frequency combs with octave spanning to be able

to retrieve and stabilize the carrier-envelope offset frequencies fo, through the frequency-

doubling the red part of the spectra and heterodyning with the blue part. When self-referenced,

they can be referenced at the RF to form the optical synthesizers. Or reversibly, frequency

combs can be locked to some ultra-stable optical transitions of ions and atoms, and then

converting the references back to the RF domain.

Molecular spectroscopy. Optical frequency combs with fine-tooth spacing and broad cov-

erage are suitable for molecular spectroscopy. Most of the molecule-fingerprints are at the

mid-infrared (2-20 µm) and ultra-violet (< 400 nm) wavelength regions [6]. Both direct-comb

spectroscopy and dual-comb spectroscopy (two phase-locked frequency combs with slightly

offseted repetition-rates) [21] have been used for this purpose.

Ranging. Light detection and ranging (LIDAR) with optical frequency combs empowers rapid

and high-precision distance measurements [22]. The most straightforward implementation

of LIDAR is based on the time-of-flight measurement, with resolution ultimately limited by

the optical pulse width but in real world by the response time of photodetector (PD). Linear

optical sampling approach could circumvent this limit by employing dual combs to achieve

sub-wavelength resolution and wide unambiguity range [23].

Spectrograph calibration. High-resolution spectrographs are key instruments in astrophysics

for the discovery and characterization of exoplanets. Frequency combs of high repetition-rates

(tens of GHz) could enable precise calibration of such astronomical spectrographs [24]. In this

sense, EO combs [25] and microcombs [26] are favored for their large comb line spacing.

Optical communications. In order to take advantages of the ample bandwidth resources

at optical carrier frequency, wavelength-division multiplexing (WDM) is widely adopted in

optical communication systems to increase the data rate. Optical frequency combs can be

employed as independent optical channels in place of the current large laser bank [27, 28].

Moreover, the mutual coherence of individual comb lines brings additional advantages in

simplifying the receiver scheme with joint signal processing [29]. The time domain equivalence

of WDM system is the optical time-division multiplexing (TDM) [30, 31]. Since the TDM

systems are densely multiplexed in time, they require short optical pulses to encode the

information. As mentioned before, optical pulse sources essentially correspond to frequency

combs.

Microwave photonics. Using photonic approaches to generate, process, and distribute mi-

crowave signals provides added benefits, unparalleled by the microwave engineering tech-
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niques alone [32, 33]. Optical frequency combs intrinsically combine the two worlds. One

natural application is generating ultra-low phase noise microwave via optical frequency di-

vision [34, 35]. Such optical-to-microwave translation preserves the fractional frequency

instability. With fully stabilized combs being locked to optical reference, the division process

could greatly reduce the phase fluctuations of the generated microwave frequency.

In addition to microwave synthesis, line-by-line shaping of the comb spectra enables arbitrary

microwave waveform generation [36]. Also for microwave signal processing, finite impulse

response (FIR) microwave photonic filters can be constructed based on frequency combs and

dispersive propagation [37]. There are other applications using combs for true-time delay

beamforming and RF channelized receiver [38].

1.2 Thesis motivation

The ability to control and shape optical frequency combs are crucial to many applications

mentioned in Section 1.1, particularly for optical communications and microwave photonics

[39]. Perhaps the most well-established comb shaping device is the Fourier transform pulse

shaper, where each frequency component is dispersed by a grating and mapped to different

spatial location, addressed with a spatial light modulator (SLM) and then recombined [40,

41]. The typical spectral resolution of such device is around 10 GHz, like the commercially

available products - WaveShaper series from Finisar, but can also be as fine as 1 GHz at the

cost of bandwidth and loss [42]. This opens up line-by-line shaping regime of EO combs [43]

and microcombs [44] for the generation and measurement of optical waveforms and spectra.

To minimize the size of such free-space shaping devices, there have been prototypes that

build the shapers fully on-chip based on arrayed waveguide gratings and tuning elements

[45, 46]. Apart from spectral domain shaping, frequency combs can also be shaped in the

time domain. In this case, the temporal pulses are split into multiple copies, each being

delayed incrementally and adjusted in amplitudes and phases, and then recombined [47, 48].

Such time-domain pulse shaping devices could easily process small FSR combs, but are not

energy-preserving due to their interferometric configurations. Recently, a novel shaper design

with MHz spectral resolution was demonstrated based on time-to-frequency mapping in a

recirculating frequency shifting loop [49].

Besides the full amplitude and phase control of optical frequency combs, a lot of applications

require specifically the adjustment of the comb FSR and the pulse repetition-rate. To increase

the comb FSR, pulse shapers can be simply programmed to transmit one out of several lines

periodically while attenuating all the other frequency components. This is attractive, for

example, in the photonic synthesis of wireless link towards THz carrier frequency [50]. On the

other hand, reducing the comb FSR is generally realized via pulse picking technique. where the

initial high repetition-rate pulse train is down-sampled by temporal gating. The FSR-reduced

combs would provide finer resolution for spectroscopy, and lead to increased pulse energy

after amplification favored by optical nonlinear processes [51]. Overall, the above-mentioned
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approaches to increase or decrease the comb FSRs discard part of the energy either in the

frequency or time domain.

On the contrary, temporal Talbot effect [52] and spectral Talbot effect [53] are in principle

lossless ways to increase the pulse repetition-rate and reduce the comb line spacing, respec-

tively. Temporal self-imaging appears when the frequency combs undergo specific amount

of second-order dispersion. This can be realized by propagation through optical fiber [54],

linearly chirped fiber Bragg grating (LCFBG) [55], or in a pulse shaper programmed with

certain quadratic phase sequence (Talbot phases) just as if the combs propagate [56]. Spectral

Talbot effect is the frequency domain counterpart of the temporal self-imaging phenomenon.

Instead of gating the pulses, the multi-level phase (Talbot phase) modulation of the pulses

would insert new comb lines between the original comb intervals [57]. Moreover, recent

studies show that the temporal and spectral Talbot effects are inherently connected, which

can losslessly transfer the optical pulse trains from one comb FSR to another [58, 59].

All of the shaping techniques described above are external, which control the optical frequency

combs that have already been generated. Alternatively, they may be shaped internally at the

generation stage. For instance, parabolic phase modulation maps the flat-top pulse shape to

equalized comb spectra [60], and then can be further compressed to near transform-limited

pulses by a spool of single-mode fiber (SMF) [61]. Such time-to-frequency mapping approach

alleviates the use of programmable shaper for short pulse formation. In regards to microcombs,

perfect soliton crystals (PSC) are equally-spaced solitons formed under low pump power [62].

Interestingly, the number of solitons varies with pumped resonances. As a result, the comb

FSR can be internally controlled by pumping different resonances without additional efforts.

Given the variety and impact of optical frequency combs are now taking, the investigation of

new shaping concepts is timely.

1.3 Thesis goal and contribution

The thesis explores novel generation and shaping techniques of optical frequency combs,

mainly for the applications in microwave photonics and optical communications. Two types

of comb sources - EO combs and integrated microcombs are studied throughout the thesis.

Overall, the thesis is divided into three parts: shaping and applications of optical sinc pulses,

temporal and azimuthal Talbot shaping, and shaping of soliton microcombs for RF photonic

filters.

The first part of the thesis is about a special type of frequency comb sources when all the comb

lines are of equal amplitudes and linear phase relation. In the time domain, this translates into

a periodic optical sinc pulse train [63]. Compared to Gaussian pulses, such sinc pulses can be

more densely packed in time, overlapping with each other while still maintaining orthogonality.

In this manner, Nyquist orthogonal time-division multiplexing (OTDM) superchannels are

formed, achieving higher spectral efficiency than the conventional TDM systems [64]. Indeed,

Nyquist OTDM is nothing else but the time domain equivalence of the orthogonal frequency-
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division multiplexing (OFDM) systems (likewise OFDM achieves higher spectral efficiency

than conventional WDM systems) [65]. The generation of high-quality optical sinc pulses

is the first step towards building Nyquist OTDM transmitter, and is preferably without the

aid of programmable shaper. There are indeed several demonstrations of direct synthesis of

optical sinc pulses, but either with limited flexibility for the number of subchannels [63, 66]

or with non-zero roll-offs [67]. Flexible optical sinc pulse generators remain elusive. At the

receiver side, Nyquist OTDM signals are generally demultiplexed via optical sampling [68, 69].

Additional functionality comes from the the add-drop multiplexing (ADM), which not only

extracts the target subchannel but replaces it with a new data stream. However, till now, there

is no viable ADM architecture for Nyquist OTDM similar to what has been demonstrated for

OFDM system [70]. Also, it will be interesting to look for new applications of sinc pulses. In the

first part, a flexible synthesis of optical sinc pulses is provided, and is then used for add-drop

multiplexing of Nyquist OTDM systems and RF photonic filters.

Then the second part of the thesis is outreached to a more general case, when the phases

between the comb lines no longer satisfy linear relation but complex phase pattern. As

mentioned earlier, temporal Talbot effect occurs when the comb lines pick up Talbot phases.

In this scenario, the initial optical pulses redistribute their energy to self-imaged pulses,

multiplying the pulse repetition-rate without changing the comb FSR. Temporal Talbot effect

has been applied to synthesize radio-over-fiber (RoF) link [50], to generate high power THz

frequency [71], and to mitigate nonlinear distortion of ultra-short pulse delivery [72]. It is

highly desired to integrate this shaping function to photonic chips, and not until recently

is the demonstration of on-chip temporal Talbot multiplier [73]. However, such design is

not tunable in wavelength and has limited processing bandwidth. Therefore, more flexible

schemes compatible with photonic integration are needed. Additionally, it is interesting to

extend the self-imaging concept to a new degree of freedom - the orbital angular momentum

(OAM) mode of light, which shares similar mathematical foundation as the frequency comb

mode [74, 75]. Indeed, some relevant studies have shown agreement of this duality [76, 77]. In

the second part, a novel temporal Talbot shaping approach amenable to photonic integration

is proposed, and also the azimuthal Talbot effect is demonstrated.

The third part of the thesis is related to tailoring microcombs for microwave photonic purposes.

Compared to traditional comb sources, microcombs not only reduce the size and cost of the

systems, but could bring unique advantages and unlock new RF photonic applications thanks

to their broad bandwidths and large comb FSRs [38, 78]. Specifically, the thesis is focused

on the integrated microcomb-based RF photonic filters. For this type of RF filters, the filter

functions are defined by the optical comb spectra, where each comb line corresponds to

the tap of the FIR filters [79, 80]. Adapting microcombs for comb-based RF filters enhances

the filters with broader spur-free range, lower latency, less dispersion induced fading, and

increased number count of filter taps [81–83]. However, all these demonstrations are based

on the microcombs that do not directly translate into the desired filter functions. Additional

programmable pulse shapers are required to trim the comb spectra, in order to achieve proper

suppression ratio and reconfigurability. Undoubtedly, this comprises the benefits of using
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microcombs while bulky equipment is parasitic. On the other hand, it is well-known that a

single microresonator device could actually produce versatile soliton formats thereby various

comb spectral patterns. As such, the third part of the thesis explores the internal control

of soliton configurations of microresonators, so as to achieve RF photonic filtering without

external shaping.

1.4 Thesis structure

Chapter 2 describes the general principles involved in this study. It includes the basis of

various EOM structures and optical microresonators for EO comb and microcomb genera-

tion, respectively. In addition, the techniques of spatial and temporal light shaping are also

discussed, with a particular interest of Talbot self-imaging in diverse representations.

Chapter 3 deals with a special type of optical combs that are of periodic sinc shape in time.

First, such optical pulses are generated in a simple yet fully flexible approach, which is based

on EOM driven by synchronized multi-harmonic RF signals. Then the rectangular shape of

the sinc pulse spectrum is utilized, for the shaping of near-perfect sinc filter response in RF

domain. Also exploiting the temporal shaping capability of EOM, a viable ADM architecture is

envisioned for optical communication system that uses sinc pulse as information carrier.

Chapter 4 describes the Talbot phenomena in time and azimuthal angle. The temporal Talbot

effect shapes frequency combs with Talbot phases, leading to the repetition-rate multiplication

(RRM) of corresponding pulse trains in time. Here a novel temporal Talbot multiplier is

implemented based on the interference in a simple optical tapped delay line (TDL) structure,

which is well-known for RRM shaping but via the spectral amplitude filtering. Moreover, the

self-imaging concept is reached out to the shaping of light intensity petals in azimuthal angle,

based on the interference of multiple OAM modes with Talbot initial phases.

Chapter 5 explores the internal microcomb shaping in optical microresonators for the use

in RF photonic filters. The smooth spectra of soliton microcombs guarantee the RF filters

with descent passband suppression ratio, while the possible direct generation of various

soliton states enables the RF filters with wide reconfigurability. Specifically, the PSC states

and the two-soliton states with versatile relative angles between them are harnessed. The

performances of soliton-based RF filters are characterized and compared to other RF photonic

filters of the same category.

Chapter 6 concludes the studies presented in this thesis and suggests future research oppor-

tunities based on the current work.
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2 General principles

In this chapter, I will briefly introduce the general background involved in the study of the

thesis. Since it mainly deals with the generation, shaping, and applications of EO combs

and microcombs, the working principles of modulators and microresonators are described.

Various types of lithium niobate (LiNbO3) EOMs and liquid crystal based SLMs are visited, in

the perspectives of comb generation and light field shaping, respectively. I will then give a

short introduction to the concept of Talbot effect. Lastly, I will discuss the basis of microcomb

generation based on silicon nitride (Si3N4) microresonators.

2.1 Electro-optic modulator

EOMs are indispensable electro-optical components that have been used in almost all photonic-

related applications, ranging from fiber-optic communications, microwave photonics, dis-

tributed fiber sensing [84], to quantum optics [85]. Basically, EOMs transfer electrical signals

into the optical domain, where some unique advantages of optics can be harnessed, such as

the extreme low loss of optical fibers (∼ dB/km) for signal transmission, and massive band-

width for data stream parallelization (e.g. WDM). Most commonly used EOMs are based on

LiNbO3. They typically have electrical bandwidths in the tens of GHz, while some customized

options could go beyond 100 GHz. Also, EOMs working at different spectral regions are now

commercially available from visible band to wavelength beyond 2 µm. The half-wave voltage

(the voltage required to induce a π phase shift, Vπ) of the EOMs are wavelength dependent.

In the telecom-band around 1550 nm, which is also the wavelength we are working with,

the Vπ of commercial EOMs generally range from 3 V to 10 V. However, it is noted that with

the recent integrated thin-film LiNbO3 technology, EOMs of Vπ as low as 1.4 V have been

demonstrated thanks to the much reduced gap between the electrodes [86]. This ultra-high

RF-optical transduction is highly desired in data communication, as it could be directly driven

by CMOS-compatible voltage [86], and also in RF photonics to boost the link gain [87].

The EO effect of LiNbO3 modulator is also known as the Pockels effect. It is a second-order χ(2)

process only naturally arising in non-centrosymmetric materials [88]. Due to the Pockels effect,
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RF DCRF

DC1

DC2

RF1

RF2

DC3

a b c

PM MZM

DP-MZM

Figure 2.1 – Schematics of various types of Electro-optical modulators (EOMs). (a) PM (phase
modulator); (b) MZM (Mach-Zehnder modulator); (c) DP-MZM (dual-parallel Mach-Zehnder
modulator). The black rectangle represents the electro-optic modulation region, where RF
and DC signals are applied.

the refractive index of LiNbO3 changes under the external applied voltage. The refractive index

change would induce the phase change of the incoming optical wave, thereby achieving phase

modulation. EOMs used throughout the thesis are mainly phase modulator (PM), Mach-

Zehnder modulator (MZM), and dual-parallel Mach-Zehnder modulator (DP-MZM), which

are depicted in Figure 2.1. Their properties and working principles are provided below, serving

as guidelines for EO comb generation and optimal modulation schemes used in this thesis.

Phase modulator. To illustrate the phase modulation, here we consider that a CW laser

with amplitude E0 at optical frequency ω0 is sent to the PM. When an electrical voltage

V (t) = VRF sin(ωm t) is applied to the PM with VRF the amplitude and ωm the modulation

frequency, the output optical field is thus modulated and given by:

E = E0 exp
(
iω0t + i

πVRF

Vπ,RF
sin(ωm t )

)
(2.1)

where Vπ,RF is the half-wave voltage at RF frequency. Note that without loss of generality,

the trivial static phase resulted from optical propagation is omitted above. We also denote

β = πVRF /Vπ,RF as the modulation index for simplicity. Using Jacobi–Anger expansion, Eq.

(2.1) rewrites:

E = E0 exp(iω0t )
{ ∞∑

n=−∞
Jn(β)exp(i nωm t )

}
(2.2)

where Jn(β) (n ∈Z) is the Bessel function of the first kind. It can be seen that new sidebands at

frequencies ω0 +nωm are generated through phase modulation, with amplitudes Jn(β) set by

the modulation index and mode number. This lays the foundation of EO comb generation.

The intrinsic property of the Bessel function J−n(β) = (−1)n Jn(β) tells that the sidband pairs

generated by phase modulation are always out-of-phase. When the modulation index is
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relatively small, not so many sidebands are excited. It is noted that, no matter how small the

modulation index is (consider the modest 3 modes, ω0 −ωm , ω0, and ω0 +ωm in Figure 2.2 a),

these modes cannot follow the linear phase relation (the relative phases will be π, 0, 0), while

linear phase is desired for pulse generation. When being detected at the photodetector (PD),

the beating signals from the sidebands and optical carrier will be canceled out. This is quite

obvious from the time domain, as the phase modulation does not change the light intensity.

That is to say, although sideband combs are created, there is no optical pulse formation (Figure

2.2 a).

a b c

PM MZM DP-MZM

Figure 2.2 – Examples of the waveforms and spectra based on EOMs driven by a single RF
frequency. (a) PM; (b) MZM; (c) DP-MZM. The operation parameters of the DP-MZM are
retrieved from [89]. T = 2π/ωm is the repetition period, the mode indices are indexed with
respect to the optical carrier, and the phases of central comb modes are labeled. MZM and
DP-MZM can generate sinc pulses with 3 and 5 comb lines, but not PM.

Mach-Zehnder modulator. A MZM is constructed by putting the phase modulators in a Mach-

Zehnder interferometer (MZI), as depicted in Figure 2.1 b. Through interference between the

two arms, the phase modulation is converted to intensity modulation. Therefore, sometimes

the MZM is also known as intensity modulator or amplitude modulator. There are basically

two categories of MZMs depending on the way they are driven, being either push-pull (the

electrical signal applied differentially to both arms) or unbalanced (the electrical signal applied

only to one arm). Here we confine our discussion to only the push-pull MZMs, as they are

chirp-free (no parasitic phase modulation) and are also more widely used. Apart from the RF

uploading port, there is also a direct current (DC) bias port in the MZM to modify the relative

static phase between the two arms.

We assume here that the input and output couplers of the MZM equally splits and combines
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the optical power with no extra phase shift (the extra phase can be included into the DC bias).

Consider a CW laser directed to a MZM driven by a sinusoidal wave, the output optical field

becomes:

E =
E0

2
exp(iω0t )

{
exp

(
i
πVRF

2Vπ,RF
sin(ωm t )+ i

πVDC

2Vπ,DC

)+exp
(− i

πVRF

2Vπ,RF
sin(ωm t )− i

πVDC

2Vπ,DC

)}
= E0 exp(iω0t )cos

( πVRF

2Vπ,RF
sin(ωm t )+ πVDC

2Vπ,DC

)
(2.3)

where VDC and Vπ,DC are the DC bias voltage and the DC half-wave voltage, respectively. Here

the optical field experiences an opposite phase shift in the two arms for both the RF signal and

DC bias. Also we define β =πVRF /2Vπ,RF and ψ =πVDC /2Vπ,DC as the normalized RF power

and the normalized DC bias, respectively. By using trigonometric identity and Jacobi-Anger

expansion, Eq. (2.3) rewrites:

E = E0 exp(iω0t )
{

cos
(
βsin(ωm t )

)
cosψ− sin

(
βsin(ωm t )

)
sinψ

}
= E0 exp(iω0t )

{
cosψ

[
J0(β)+

∞∑
n=1

J2n(β)
(

exp(i 2nωm t )+exp(−i 2nωm t )
)]+ ...

i sinψ
[ ∞∑

n=1
J2n−1(β)

(
exp(i (2n −1)ωm t )−exp(−i (2n −1)ωm t )

)]} (2.4)

It can be seen that new comb modes spaced by ωm are also generated. However, unlike for the

phase modulation, here the DC bias offers additional control on the odd and even sidebands.

For example, when ψ = 0 (or π/2) all the odd (or even) numbers of the frequency modes are

suppressed. Such bias conditions are known as maximum transmission point (MATP, ψ = 0),

minimum transmission point (MITP, ψ = π/2), respectively. Both cases would increase the

comb FSR by two-times while ψ =π/2 suppresses the original optical carrier. We also consider

the case when the modulation index is small, and only the first 3 modes (ω0 −ωm , ω0, and

ω0 +ωm) are generated. The relative phases between them are −π/2, 0, +π/2, which follow

the linear phase relation and give rise to optical pulses in time. Adjusting the bias ψ could

balance the power of the carrier and the sidebands for sinc pulse generation (Figure 2.2 b) [63].

While the relative phases for the first 5 modes are 0, −π/2, 0, π/2, 0 that by no means obey the

linear phase criterion.

Dual-parallel Mach-Zehnder modulator. DP-MZM can be viewed as an optical device con-

sisting of two child MZMs embedded in a parent MZI (Figure 2.1 c). An extra phase shifter

(controlled by DC3) is nested in the parent MZI to adjust the relative phase shift between

the main upper and lower arms. Such topology allows for the arbitrary amplitude and phase

modulation of the optical wave, which is appealing for coherent communications [90] and

microwave photonics [91]. In telecommunications, a DP-MZM is also called an IQ modulator,

where the in-phase and quadrature parts of complex signals can be separately uploaded via

the two MZMs. Especially with the development of coherent detection techniques, quadrature

amplitude modulation (QAM) becomes the most important approach to increase the spectral
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efficiency. It is also worth to mention that ultra-high QAM constellation has recently been

achieved [92]. For microwave photonics, the advanced modulation techniques based on

DP-MZM could mitigate the dispersion induced power fading [37, 80] and obtain ultra-high

rejection RF notch filter [93].

The governing equation of the DP-MZM can be formulated as:

E =
E0

2
exp(iω0t )

{
cos

( πṼRF 1

2Vπ,RF
+ πVDC 1

2Vπ,DC

)+cos
( πṼRF 2

2Vπ,RF
+ πVDC 2

2Vπ,DC

)
exp

(
i
πVDC 3

Vπ,DC

)}
(2.5)

where ṼRF k (k = 1,2) denotes the applied RF signal and VDC k (k = 1,2,3) denotes the applied

DC voltage. Here we have assumed ideal 50/50 couplers and identical half-wave voltages

for the embedded modulators. When the DP-MZM is only singly driven (ṼRF 2 = 0), it could

function as sinc pulse generator with 5 comb lines (Figure 2.2 c) [66, 89]. The working principle

is straightforward, as the structure is basically a single MZM plus an unmodulated optical

carrier. This additional carrier changes the overall carrier to be out-of-phase, making the

phase relation between the main 5 modes to be 0, −π/2, π, π/2, 0. The modified phase relation

actually obeys the linear phase criterion (the incremental phase is −π/2). Once the phase

relation is met, the amplitude equalization of the 5 comb modes can be simply guaranteed by

adjusting the DC bias (Figure 2.2 c).

For most of the applications, both embedded MZMs are driven. As for QAM signaling, the

phase shifter is biased at the quadrature (πVDC 3/Vπ,DC = π/2). The simple amplitude mod-

ulation in the MZMs would give the in-phase and quadrature parts of the signals, and then

combine orthogonally at the output of the DP-MZM. In this thesis, we are interested in the

modulation scheme of single-sideband (SSB) modulation with the carrier [37, 80], which will be

utilized for RF signal upconversion. Since we also want to preserve the phase relation between

the SSB and the optical carrier for broad bandwidth, an electrical 90◦ hybrid is used for RF

modulation. Under this condition, we assume ṼRF 1 = VRF cos(ωm t ) and ṼRF 2 = VRF sin(ωm t ).

We also define as before β = VRF /2Vπ,RF and ψk = VDC k /2Vπ,DC (k = 1,2,3) for clarity in the

expression. Under the small signal approximation, Eq. (2.5) derives:

E =
E0

2
exp(iω0t )

{
cos

(
βcos(ωm t )+ψ1

)+cos
(
βsin(ωm t )+ψ2

)
exp(i 2ψ3)

}
≈ E0

2
exp(iω0t )J0(β)

(
cosψ1 +cosψ2 exp(i 2ψ3)

)+ ...

E0

2
exp

(
i (ω0 −ωm)t

)
J1(β)

(− sinψ1 − i sinψ2 exp(i 2ψ3)
)+ ...

E0

2
exp

(
i (ω0 +ωm)t

)
J1(β)

(− sinψ1 + i sinψ2 exp(i 2ψ3)
)

(2.6)

Here the analysis is carried out in the same way as Eq. (2.4), yet being limited to the first-order

sidebands under weak RF modulation. It can be seen that, with proper tuning of the three DC

bias of the DP-MZM, one of the mode can be suppressed. Moreover, the relative amplitude

and phase of the other sideband with regards to the carrier can be arbitrarily set [94]. An
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extreme case is the SSB modulation without the optical carrier, indeed DP-MZM is also known

as SSB modulator.

2.2 Spatial light modulator

Unlike EOMs that modulate the lightwaves in time, SLMs modulate the light beams spatially

as the name implies. They are typically used to tailor the wavefront of light, through an

array of digitally controlled pixels. Therefore, SLMs have a myraid of use in many forms of

imaging systems [95, 96], optical tweezers [97], laser physics [98], optical communications [99],

and recently optical computing [100]. Common types of SLMs are liquid crystal modulators

(LCMs) and digital micromirror devices (DMDs). In this thesis, LCM is chosen for the light

field shaping, and therefore is used interchangeably with the word SLM. Compared to the

typical DMDs, LCMs generally offer higher spatial resolution (3.74 µm for the one we use) and

better bit depth (generally 8-bit for SLMs while binary for DMDs). Although the modulation

speed of the SLMs (∼ 60 Hz) are much slower than that of the DMDs (∼ 20 kHz), there is no

issue for the proof-of-concept experiment since no dynamic shaping is involved in this work.

The spatial phase modulation of LCM is achieved by applying electrical voltages to the pixels.

For each pixel, the embedded liquid crystal molecule changes its orientation according to

the magnitude of the voltage applied on it, therefore acquires controllable phase shift [101].

Nonetheless, once the device is well calibrated, it can be easily used by loading computer

generated holograms to it, without going to the details of the hardware implementation.

The LCM we use is a liquid crystal on silicon (LCoS) phase-only modulator, working in the

reflective manner. It has 3840×2160 pixels (4k resolution) and full 2π phase range in the

telecom-band around 1550 nm.

Spatial shaping. The main task of using SLM in this work is to implement arbitrary complex

amplitude modulation in two-dimensional space. Basically, both amplitude and phase modu-

lation need to be encoded in a phase-only modulator - the most popular LCM available and is

also the one we have. This is not trivial, but many approaches have been developed in the past

years [101–103]. Although implemented very differently, more or less all these methods rely

on diffraction, spatially separating the target field from the rest. Among others, the technique

we use is the double-phase hologram (DPH), which also employs an optical 4− f system with

filtering at the Fourier plane [104]. The method is described as follows.

First, an arbitrary field U (x, y) = A(x, y)exp(iψ(x, y)) can always be expressed by the summa-

tion of two phasors with proper scaling, where A(x, y) and ψ(x, y) are the target amplitude

and phase distributions. Without loss of generality, we have assumed the maximum value

of the amplitude A(x, y) to be 1 (i.e. the amplitude is normalized). The complex field can be

rewritten:

U (x, y) =
1

2

{
exp

(
iψ(x, y)+ i arccos A(x, y)

)+exp
(
iψ(x, y)− i arccos A(x, y)

)}
(2.7)
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a

b c

d

Figure 2.3 – Simulation of the complex amplitude modulation through double-phase hologram
(DPH) encoding. (a) Schematic of the complementary checkerboards (gray: modulated, black:
unmodulated). The SLM is divided into two checkerboards for the modulation of the two
holograms separately. (b) Simulation verification of the DPH encoding scheme. Retrieved
amplitude and phase images are in good agreement with the target amplitude and phase
images. (c) The phase hologram encoded to the SLM. (d) Normalized power of the Fourier
transform of the complex field. Red circle indicates the low-pass filter.

That is, one could construct the complex amplitude function through the summation of

two phasor fields. For clarity, we refer them as θ1(x, y) =ψ(x, y)+arccos A(x, y) and θ2(x, y) =

ψ(x, y)−arccos A(x, y). To attain the DPH, the pixels of 2D SLM are divided into two subgroups

with complementary checkerboard distributions, denoted by M1(x, y) and M2(x, y) as shown

in Figure 2.3 a. The gray and black boxes represent 1 (modulated) and 0 (unmodulated) pixels,

respectively. Such checkerboards undergo very high frequency spatial modulation, therefore

diffracting the incident light to different spatial spots at the far field. This can lead to amplitude

modulation by filtering out part of the light. Suppose the period of modulation is p (the period
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is 2-times the pixel length), the checkerboard fields can be expressed by the Fourier series:

M1,2(x, y) = 2
∞∑

n=−∞

∞∑
m=−∞

cos
(π(n ±m)

2

)sin( nπ
2 )

nπ

sin( mπ
2 )

mπ
exp(i 2πnx/p)exp(i 2πmy/p) (2.8)

Physically, n and m stand for the diffraction orders in x and y directions, respectively. Here

we have assumed the checkerboards to be infinite in space for simplicity, which is reasonable

given the large difference between the pixel number in each direction and the period. The

encoding strategy here is to associate the two phase patterns θ1(x, y) and θ2(x, y) respectively

with M1(x, y) and M2(x, y), and then combined as the overall phase pattern θ(x, y) to be loaded

to the SLM:

θ(x, y) = θ1(x, y)M1(x, y)+θ2(x, y)M2(x, y) (2.9)

As for each pixel (x, y), it is noted that only one of M1(x, y) and M2(x, y) is 1 and the other will

be 0. Eq. (2.9) can thus be expressed as:

exp
(
iθ(x, y)

)
= exp

(
iθ1(x, y)

)
M1(x, y)+exp

(
iθ2(x, y)

)
M2(x, y) (2.10)

Substituting Eq. (2.8) into Eq. (2.10) derives:

exp
(
iθ(x, y)

)
=

∞∑
n=−∞

∞∑
m=−∞

{
cnm

1 exp
(
iθ1(x, y)

)+cnm
2 exp

(
iθ2(x, y)

)}
exp(i 2πnx/p)exp(i 2πmy/p)

(2.11)

where cnm
1,2 = 2cos(π(n±m)/2)sin(nπ/2)sin(mπ/2)/nmπ2 denote the amplitudes of the diffrac-

tion orders. Typically, the frequency content of a conventional phasor is well confined within

a certain region, smaller than the frequency grids defined by the diffraction of the checker-

boards. This is valid due to the fact that the checkerboards have the highest spatial variation

and thereby highest spatial frequency. As a result, one could separate the zero-th order from

the higher diffraction orders, which can be implemented by putting a pupil in the frequency

space. If only the zero-th order (n = m = 0) is selected, Eq. (2.11) becomes:

U
′
(x, y) =

1

2

{
exp

(
iθ1(x, y)

)+exp
(
iθ2(x, y)

)}
= U (x, y) (2.12)

where c00
1,2 = 1/2 is computed. It is clearly seen that the filtered out zero-th order field U

′
(x, y) is

exactly the summation of two phasors, and equal to the target complex amplitude function as

defined in Eq. (2.7). Therefore, such DPH method is effective in encoding both amplitude and

phase functions simultaneously in a phase-only SLM, with the spatial filtering in the Fourier

domain.

The encoding scheme is also verified by simulation. For example, we target the amplitude and

phase modulation as shown in Figure 2.3 b. Based on Eq. (2.9), we first calculate the required

phase hologram that will be loaded to the SLM (Figure 2.3 c). Then we compute the Fourier
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transform of the hologram, whose spectral power distribution is shown in Figure 2.3 d. We

take only the center part of the Fourier image to implement the low pass filtering. The size of

the spatial filter is indicated by the red circle. In the experiment, such filtering function can be

carried out using an iris in the Fourier plane of a 4− f system [105]. The amplitude and phase

functions retrieved are in good agreement with the target ones (Figure 2.3 b).

Pulse shaping. SLMs not only enable the spatial shaping of light beams, but could also sculpt

the optical field in time and frequency. Since the Fourier domain pulse shaping technique is

an important concept involved in the thesis, the basic principle is briefly described here.

Figure 2.4 – Schematic setups of Fourier domain pulse shaping. (a) Classical 4− f pulse shaper
with gratings at the input and output planes, and spatial light modulator at the Fourier plane.
Adapted from [106]. (b) Reflective-type pulse shaper with 4− f configuration being folded.
LCoS: liquid crystal on silicon. Adapted from Finisar Waveshaper product brochure.

Figure 2.4 a shows the typical setup of a Fourier domain pulse shaper [40, 106]. It is based

on an optical 4− f system with two identical gratings in its input plane and output plane,

as well as an SLM in the Fourier plane. In this configuration, the setup is fully symmetrical,

which consists of two gratings, two lenses, and a SLM. First, the frequency components of

the input optical pulses are spatially dispersed by the grating. After the lens, these dispersed

frequency components are made parallel, and being focused at the SLM plane. Each frequency

component is then mapped to distinct position on the SLM, an can therefore be individually

addressed by the SLM for both amplitude and phase modulation. The remaining part of

the 4− f setup does the reverse job to merge all these frequency components to one output

beam. As a result, the output pulse waveform is controlled through the amplitude and phase

shaping of its constituting frequency components. Noticeably, the 4− f configuration can be

intrinsically dispersion-less under proper alignment. Such 4− f setup can also be folded, as

shown in Figure 2.4 b, with a LCoS working in reflective manner. Such folded configuration

benefits from using only half of the optical components (grating, lens, etc) as well as ease

the optical alignment. Also as shown in Figure 2.4 b, when a cylindrical mirror is used, each

frequency component of light is only focused in the horizontal axis but fully occupies the

vertical axis. By applying phase ramps in the vertical direction, each frequency of light can be

directed to different output position [41]. Given their usefulness in many applications, such

Fourier domain pulse shapers are now commercially available.
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2.3 The Talbot effect

Figure 2.5 – Illustration of spatial Talbot effect. When a plane wave illuminates a periodic
grating, the transmitted optical field is diffracted, and repetitively resembles itself along the
propagation. The interference pattern is also known as the Talbot carpet. zT is the Talbot
length between the grating plane and the secondary Talbot image. Adapted from [107].

The Talbot effect is named after Henry Fox Talbot for the first observation in 1836 [108]. It

describes unusual wave phenomena, which have been observed and used on a wide spectrum

of waves, such as acoustics, plasmonics, electron beams, x-ray, in addition to optics [107]. In

optics, the Talbot effect is most commonly explained in the context of spatial diffraction. As

shown in Figure 2.5, when a monochromatic plane wave illuminates a periodic grating, the

optical field after the grating repetitively resembles itself along the propagation in space. The

elegant pattern in Figure 2.5 is also known as Talbot carpet. In addition to the Talbot image that

exactly mimics the input image (primary Talbot image), more interesting patterns also appear

at specific propagation distances, such as pattern with half period shift (secondary Talbot im-

age), and fractional patterns with reduced period (double-, triple-frequency fractional images).

This effect is a pure linear effect, which arises owing to the coherent interference of trans-

verse wavevectors under Fresnel approximation. Such transverse wavevector components

are exactly the Fourier series of the periodic grating function. Along the propagation, these

lightwaves pick up quadratic phases due to the spatial diffraction. The multimode interference

(MMI) coupler, one of the ubiquitous elements in the current photonic integrated circuitry, is

also based on the spatial Talbot effect [109, 110]. It is a multi-input and multi-output device

(generally 2×2) that works as optical coupler. In a multimode waveguide, multiple eigenmodes

of the waveguide excited at the input would interfere, and after certain length of propagation,

they create self-images so as to equally split the optical power.

Temporal Talbot effect. Due to the space-time duality, similar spatial self-imaging phe-

nomenon also arises in time, known as the temporal Talbot effect [52]. The multiple transverse

wavevectors which constitute the periodic spatial images, are analogous to a series of fre-

quency comb modes that make up the optical pulse trains, while the Fresnel diffraction in
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Figure 2.6 – Illustrations of temporal and spectral Talbot effects. (a) Temporal self-imaging
is achieved by second-order chromatic dispersion of optical frequency combs. (b) Spectral
self-imaging is achieved by quadratic phase modulation of optical pulses. tr is the pulse
period, vr is the comb FSR, and q = 3 is shown. The phases of optical pulses after temporal
self-imaging, and the phases of frequency combs after spectral self-imaging, comply with the
generalized Talbot relation. Adapted from [111].

space corresponds to the second-order dispersion in time. In the presence of dispersion,

all these frequency comb modes would experience quadratic phases during propagation,

therefore creating at specific positions the original or fractional self-images. The fractional self-

imaging in time multiplies the repetition-rate of an optical pulse train. It is worth mentioning

that the comb line spacing in the frequency domain remains unchanged, which is fundamen-

tally different from increasing the comb FSR. The typical implementations require certain

amount of second-order chromatic dispersion, like using a linearly chirped fiber Bragg grating

(LCFBG) or a spool of optical fiber to realize the temporal Talbot effect [112]. Illustration of the

temporal Talbot effect is shown in Figure 2.6 a.

Spectral Talbot effect. Spectral Talbot effect also exists given by the Fourier duality. Similar

to temporal Talbot effect, the spectral version deals with frequency comb modes and optical

pulse trains as well. As shown in Figure 2.6 b, when the initial optical pulse trains are under

proper quadratic phase modulation, the comb FSR in the spectrum is correspondingly divided

while the optical waveform intensity is preserved. Note this is also distinct from the pulse

picking technique that realize comb FSR division by discarding part of the pulses periodically.

The spectral self-imaging can be implemented in some nonlinear optical processes [113], or
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can be inscribed in EOMs with the pre-determined multi-level EO phase modulation [57].

The loaded temporal phase patterns are the Talbot phases, which will be formulated in the

following paragraph.

Generalized Talbot effect. Perhaps the most general Talbot phases are described as [58, 111,

114]:

φk =π
p

q
k2 (2.13)

where p and q are mutually prime positive integers (the greatest common divisor (GCD) of p

and q is 1), i.e. gcd(p, q) = 1 and p, q ∈N+. k can be the index of the pulse (frequency mode)

for spectral (temporal) Talbot effect. pzT /q refers to the relative position at the Talbot carpet

depicted in Figure 2.5. For instance, the triple-frequency image, secondary Talbot image,

double-frequency image, and primary Talbot image in Figure 2.5 correspond to p/q = 2/3, 1/1,

3/2, and 2/1, respectively. The applied Talbot phases could realize q-times self-images, with

some of them showing additional half sub-period shift (the period of q-times self-images)

with regards to the input image. More intriguingly, the phases of these self-images again satisfy

the Talbot phase relations (neglecting the constant phase term), expressed as:

φn = −π s

q
n2 (2.14)

where n is the index of the self images and s ∈N+ defined by:

sp ≡
{

1 (mod 2q), if q ≡ 0 (mod 2)

1+q (mod 2q), if q ≡ 1 (mod 2)
(2.15)

wher s and q are also coprime and have opposite parity [111]. The mathematics behind these

equations are related to the Gauss sum [115]. The phases of Talbot images have long been

known from the phase relations of MMIs [110], but revived recently for the special interests in

time-frequency signal processing [58, 59, 116, 117]. Such relation indicates that the temporal

and spectral Talbot effects are closely linked to each other. That is to say, one could use

two-step Talbot shaping to modify both the comb FSR and pulse period in a lossless manner

[59]. The concatenation of phase modulation and dispersive propagation enables arbitrary

repetition-rate multiplication of comb sources [59]. Similar two-step Talbot shaping has been

adopted to generate optical square pulses, in temporal analog of Talbot array illuminators

[117].

In this thesis work, we adopt one of the specific subset of the generalized Talbot phases [118],

which will be detailed in Chapter 4.
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2.4 Optical microresonator

Optical microresonators are resonant structures that confine light in small mode volumes,

which have been used from optical sensing to quantum applications [119]. The properties of

microresonators are also very well suited to use them as nonlinear optical devices, and have

recently received tremendous attention [16]. Indeed, a plethora of material platforms and

cavity geometries are being investigated for microcomb generation [120]. In this thesis, the

microcombs are based on integrated Si3N4 microresonators. We are particularly interested

in the microcombs for applications in RF photonics. Since the thesis is not dedicated to

microresonator nor microcomb generation, only the very basics relevant to the thesis work

are discussed.

𝐸𝑖𝑛 𝐸𝑜𝑢𝑡

e−
𝛼
2
𝐿𝑅+𝑖𝜑𝑅

𝑖 𝜃𝑒𝑥

Figure 2.7 – Layout of the optical microresonator. The light is coupled from the bus waveguide
to the ring resonator and collected at the bus waveguide. i

√
θex : cross coupling coefficient;

LR : roundtrip length; α: loss per unit length; φR : phase accumulated per roundtrip.

Resonance characteristics. First, we describe the universal linear properties of optical mi-

croresonators. As shown in Figure 2.7, a typical microresonator device is comprised of a

closed-loop waveguide (mostly ring shape as depicted) being coupled to a bus waveguide via

evanescent coupling. We consider that a monochromatic optical field Ei n at angular frequency

ωp is injected to the bus waveguide. When the gap between the bus waveguide and the ring is

close enough, the spatial overlap of the evanescent fields in the bus waveguide and the ring

would create a certain amount of cross coupling. We denote such power coupling strength per

roundtrip as θex , so that for the optical field it becomes i
√
θex where i accounts for the 90◦

phase shift for the cross coupling. Owing to the energy conservation, the bar coupling is thus

given by 1−θex for the power, and
√

1−θex for the field. For the optical field being coupled

to the ring, it travels the circumference of the ring before entering again the coupling region.

The propagation of the optical field in the ring leads to a phase shift φR = ωp ne f f LR /c per

roundtrip, but the field also gets attenuated by exp(−αLR /2) in amplitude due to the intrinsic

loss. LR denotes the round-trip length of the ring, ne f f is the effective refractive index and c is

the speed of light. α refers to the power loss per unit length in linear scale.
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For the light that recirculated over one round trip in the ring, at the coupling region, partial

light will stay inside the ring with bar coupling
√

1−θex , while the rest will be coupled back to

the bus waveguide with the cross coupling i
√
θex . And this process repeats over and over again

for the light that remains in the ring. In the bus waveguide, all of these optical waves output

from different roundtrips would interfere with the initial bar coupled field. The circulating

field Eci r c and output field Eout can therefore be mathematically described as:

Eci r c = Ei ni
√
θex exp(−αL

2
+ iφR )

∞∑
n=0

(√
1−θex exp(−αL

2
+ iφR )

)n

= Ei n
i
√
θex exp(−αL

2 + iφR )

1−
√

1−θex exp(−αL
2 + iφR )

(2.16)

Eout = Ei n

√
1−θex + i

√
θex Eci r c = Ei n

√
1−θex −exp(−αL

2 + iφR )

1−
√

1−θex exp(−αL
2 + iφR )

(2.17)

where (n +1) refers to the number of roundtrip the light has circulated in the ring before it is

coupled out. It can be clearly seen that, both Eq. (2.16) and Eq. (2.17) are periodic functions

with period of fF SR = cLR /ne f f in the frequency domain. In the time domain, the roundtrip

time is the inverse of the FSR, i.e. TR = 1/ fF SR . Here we have assumed for the moment the

microresonator is dispersion-less.

Figure 2.8 – Amplitude and phase responses of optical microresonator under three different
regimes. Under-coupled regime: θex = 0.1 (blue) ; critical-coupled regime: θex = 0.19 (orange);
over-coupled regime: θex = 0.3 (yellow). The intrinsic loss term is exp(−αL/2) = 0.9 for all cases.
For critical- (under-, over-) coupling, the cross coupling θex is equal (smaller, larger) than the
loss per roundtrip 1−exp(−αL), or equivalently κ0 = (>,<)κex .

The transfer function H ( f ) = Eout /Ei n of such linear device can be visualized as seen in Figure

2.8. As predicted, it is a periodic function demonstrating resonances in the spectrum. The

lineshapes of these resonances can be inferred from the circulating optical field Eci r c /Ei n ,
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which are expressed as:∣∣∣∣Eci r c

Ei n

∣∣∣∣2

∼ 1

1+ 4
p
ρ

(1−pρ)2 sin2 φR

2

(2.18)

where ρ = (1−θex )exp(−αL) refers to the power transmitted from one roundtrip to the next.

Therefore, we can find the linewidth of the resonance κ by:

κ

2π fF SR
=
∆φR,3dB

2π
=

4arcsin
(√ (1−pρ)2

4
p
ρ

)
2π

≈ 1−ρ
2π

(2.19)

The third equality holds for small roundtrip loss (ρ is close to 1). Eq. (2.19) gives the full-

width-half-maximum (FWHM) of the resonance κ in the angular frequency as κ≈ (1−ρ)/TR .

On the other hand, this can be viewed as the total power loss rate of the microresonator.

We could also found separately the loss rates induced by the propagation and coupling, as

κ0 =αL/TR and κex ≈ θex /TR (θex << 1 assumed), respectively. And both these loss channels

constitute the total loss, i.e. κ = κ0 +κex . This could also be verified from κ ≈ (1−ρ)/TR =(
1− (1−θex )exp(−αL)

)
/TR ≈ (

1− (1−κ0TR )(1−κex TR )
)
/TR ≈ κ0 +κex . The quality factor of

microresonator can be defined as the ratio of the optical angular frequency ω and the loss rate

of microresonator, i.e. Q =ω/κ for loaded Q and Q0 =ω/κ0 for intrinsic Q.

Coupling regime. Three distinct coupling regimes are observed depending on the relation

between the cross coupling strength and the loss per roundtrip. When they are equal (κ0 = κex ),

at resonances, all of the light from the bus waveguide could be coupled to the ring resonator

(orange curves in Figure 2.8). This is due to the fact that the bar-coupled optical field is exactly

equal in amplitudes, but out-of-phase with all the recirculating fields from the ring. Such

operation regime is denoted as critical coupling.

Other than this operation status, the light from the bus waveguide can only be partially coupled

to the ring. When the intrinsic loss rate is greater than the coupling strength (κ0 > κex ), it is

known as the under coupling (blue curves in Figure 2.8). In this case, the total linewidth κ is

smaller compared to critical coupling regime, when we consider both cases possess the same

intrinsic loss rate. The phase response of the under-coupled regime also indicates it provides

roughly 0◦ phase change across the resonance frequency. Such under-coupled condition can

be experimentally realized by a large gap between the bus waveguide and ring resonator, or

mismatching the geometries between the bus and ring waveguides.

On the other hand, over coupling refers to the condition when the intrinsic loss rate is smaller

than the coupling strength (κ0 < κex , yellow curves in Figure 2.8). The total linewidth is larger

than the critical-coupled regime in this scenario. Interesting features are observed in the

phase response of the over-coupled regime. It shows a 2π phase shift across the resonance

frequency. Moreover, the phase response exhibits an exact π phase inversion exactly at the

resonance frequency. Such phase relation of over-coupled rings can be harnessed for some
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advanced RF photonic filtering purposes [91]. Likewise, over coupling regime is generally

reached by placing the bus waveguide closer to the ring resonator than for critical coupling.

Dispersion. Up to now, the discussion above has assumed the microresonators to be dispersion-

less, so that all resonances are equally-spaced. It may be approximated like this for a narrow

bandwidth, the resonances would however deviate from such idealized equidistant grid for a

broad bandwidth coverage. Let us recall the resonant condition for the microresonator:

φR =
ωmne f f (ωm )LR

c
= 2πm (2.20)

where m ∈N+, which can be interpreted as the number of wavelengths encompassed in the

ring resonator. It is noted that the effective refractive index is a function of the frequency, caus-

ing the resonances to deviate from an equidistant grid. We could study such non-uniformity

of the resonances through the Taylor expansion of the resonant frequencies:

ωµ =ω0 +
∞∑

n=1

Dn

n!
µn =ω0 +D1µ+ D2

2!
µ2 + D3

3!
µ3 + ... (2.21)

The above equation is expanded with respect to a certain resonant frequency ω0. µ = m−m0 ∈
Z is the relative mode index, where m0 is the corresponding mode index of ω0. Dn =

∂n
ωµ

∂µn

are the coefficients of the Taylor series. D1 represents the uniform spacing between adjacent

resonances, thereby D1 = 2π fF SR which is linked to the local cavity FSR. While Dn(n ≥ 2)

accounts for the deviation from the equidistant distribution. Specifically, the physical meaning

of D2 refers to the quadratic dependence of the resonance deviation. It is related to the

group velocity dispersion β2 and the inverse group velocity β1, which can be derived as

D2 = −D2
1β2/β1. The sign of D2 denotes the dispersion of the microresonator, with anomalous

dispersion (D2 > 0) and normal dispersion (D2 < 0). The integrated dispersion is defined as

Di nt (µ) =ωµ−(ω0+D1µ), which represents the overall resonance walk-off from the equidistant

grids. In addition to the second-order dispersion D2, higher-order dispersion or avoided mode

crossings could also be important contributions to the integrated dispersion. The integrated

dispersion must be nonzero for microcomb generation [121].

Avoided mode crossing. The avoided mode crossings (AMX) are the local resonance frequency

deviations that resulted from the coupling between the current mode and the other mode

families. Generally, the microresonators used for microcomb generation support multiple

spatial modes. Due to the distinct spatial distributions, these modes typically have unequal

effective refractive indices with different frequency dependence, thereby giving different FSRs

and integrated dispersion profiles. While the mismatch in FSR will lead to the resonances

of two mode families crossing in frequency. Ideally, although being coincided in spectrum,

the resonance frequencies of different mode families are unaffected by such crossover, as the

modes are eigensolutions and thus orthogonal to each other. However, in practice, any defect

of the microresonator could induce the coupling between the two mode families. And such

coupling will give rise to the formation of new hybridized modes, so that their local dispersion
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profiles are significantly modified [122, 123].

Microcomb generation. Following the description of the linear properties of microresonators,

I will give a very basic overview of Kerr comb generation in microresonators. The low-loss

and small mode volume of microresonators as well as their resonant nature have made them

perfect devices for nonlinear optics. There are many platforms that have been used for

microcomb generation from dielectric to conducting materials, such as the metal fluoride

where the soliton was first observed [124], silicon nitride that is CMOS-compatible [125], and

lithium niobate that exhibits both Pockels and Kerr effects [126]. The nonlinear refractive index

of Si3N4 is around 2.4×10−19 m2/W, which is far from the highest among all the platforms.

However, the recent fabrication improvement of Si3N4 has resulted in extremely low loss

enabling microcomb excitation with mW pump power [17]. Moreover, the dispersion of

integrated microresonator can be engineered by tailoring the cross-section of the waveguide.

Together with the wide transparency window from the visible to the mid-infrared, the absence

of two-photon absorption in the telecom-band, and the potential for mass production, Si3N4

has become one of the most suitable platform for microcomb generation, and in general

for linear and nonlinear optical processes. Si3N4 does not naturally exhibit second-order

nonlinearity χ(2), but may be triggered by optical poling via the formation of self-organized

grating structures [127]. Here we treat Si3N4 only as a third-order nonlinearity χ(3) medium.

Microcombs are equidistant optical frequency combs generated in miniaturized microres-

onators, which rely on the Kerr nonlinearity to produce new frequencies. Modulational insta-

bility (MI) is the prerequisite for comb initiation. As the first step for microcomb generation,

hyperparametric oscillation in optical microresonator was first observed around 15 years ago

[128]. The comb spectrum is typically widely spaced by multiple FSRs also known as primary

combs. In the time domain, it corresponds to stable waveforms known as Turing patterns

or Turing rolls. Beyond the primary combs, broadband optical frequency combs have then

followed [44, 129–131]. All of these pioneer works as well as the generation of temporal cavity

solitons in fiber cavities [132], eventually led to the observation of dissipative Kerr solitons

in crystalline microresonators [124, 133] and then in integrated microresonators [125]. After

that, the research on microcombs has flourished as a very active field, from the fundamental

understanding of the dynamics [121] towards various applications of the microcombs [28].

There are basically two types of mode-locked microcombs depending on the dispersion

regimes they operated at [121]. As mentioned earlier, the existence of the MI gain is the

first step for comb generation. It is well known that the MI arises under anomalous group

velocity dispersion for single-pass structures, and similar condition applies to the resonant

microresonators. Indeed, dissipative Kerr solitons exist in anomalous dispersion regime, anal-

ogous to the general operation of solitons that require the anomalous dispersion to counteract

the self-phase modulation (SPM) effect. Figure 2.9 a showcases the spectrum and temporal

waveform of a dissipative Kerr soliton obtained in a magnesium fluoride microresonator [124].

The spectrum exhibits the typical sech2 shape of soliton, together with a strong CW pump line.

This manifests low conversion efficiency due to the poor overlap between the soliton and the
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Figure 2.9 – Examples of microcomb generation in the anomalous and normal dispersion
regimes. The insets show the temporal waveforms of the microcombs. (a) Dissipative Kerr
soliton generation in anomalous dispersion regime, with solitons seated at the CW background.
(b) Dark pulse generation in anomalous dispersion regime, with dark pulses formed in the
time domain. Adapted from [16] with (a) originally from [124] and (b) originally from [134].

pump, which may be improved by pumping microresonators with optical pulse sources [135].

In the time domain, dissipative Kerr solitons correspond to short pulses seating on top of the

CW background of the pump.

While less intuitive, mode-locked comb states also exist for normal dispersion microresonators.

They correspond to the so-called dark pulses or platicons [136]. In the context of normal dis-

persion, although MI is predicted to appear in the resonators [121], it is very difficult to access

the region experimentally using conventional excitation methods. In the experiment, MI

in normal dispersion microresonator generally arises due to the AMX effect, which locally

modifies the integrated dispersion for some resonances [122]. The formation of dark pulses is

recently explained being linked to interlocked switching waves between the upper and lower

homogeneous states [137]. As shown in Figure 2.9 b, the microcomb generated in a normal

dispersion Si3N4 microresonator shows dark pulses in the time domain with complex tem-

poral structures [134]. The spectrum of dark pulse microcomb features very high conversion

efficiency from the pump to the comb lines, but typically requires additional pulse shaping for

target applications due to its rugged spectrum.

Lugiato-Lefever equation. The formation of Kerr combs in optical microresonators is most

generally described by coupled mode equations [138], Ikeda map [139], or the Lugiato-Lefever

equation (LLE) [140]. Unlike Ikeda map which emulates the field as it propagates, the LLE is

based on mean-field approximation to speed up simulation. That is, the LLE assumes the field

to be slowly varying within the roundtrip time, which is valid for the scenario of microcomb
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generation. Mean-field LLE describes a damped, driven, detuned microresonator as [141]:

∂A

∂t
=

(− (
κ

2
+ iδω)+ i

D2

2

∂2

∂Φ2 + i g |A|2)A+p
κex si n (2.22)

where A(Φ, t) is the temporal envelope of the intracavity field, and is normalized such that

|A|2 corresponds to the intracavity photon number. t is the ’slow time’ linked to the number of

the roundtrips light circulated. While Φ is the ’fast time’ quantity that represents the location

of the envelope function in the angular coordinate of the resonator. κ is the total power loss

rate as described before. δω =ω0 −ωp is the detuning between the resonance frequency and

pump frequency. D2
2
∂2

∂Φ2 is the second-order dispersion operator. Here the LLE is moving at

the frame of the group velocity of the envelope, and higher-order dispersion is omitted. g is

the Kerr frequency shift per photon, defined as g = ħω2
0cn2/n2

0Ve f f , where n0 is the effective

group refractive index, n2 is the nonlinear refractive index, and Ve f f is the effective mode

volume. The term g |A|2 accounts for the SPM.
p
κex si n represents the external driving term,

where |si n |2 denotes the pump power.

As in the simulation of the nonlinear Schrödinger equation (NLSE) [142], the LLE can also be

numerically solved using split-step method. In Eq. (2.22), the dispersion term is generally

computed in the frequency domain, while the SPM term is computed in the time domain.

Thanks to the efficient fast Fourier transform computation, the repeated Fourier transforms

required by this method can be efficiently implemented. In this thesis, the LLE subjected to

additional AMX is simulated in Chapter 5 to understand the binding effect of two solitons.

2.5 Conclusions

In this chapter, the general principles related to the thesis study are described, providing the

guidelines for the following chapters. First, the working principles of EOMs lay the foundations

for optical sinc pulse generation and EO modulation. Second, the basis of SLMs are described,

with the emphasis on spatial light shaping and Fourier domain pulse shaping. Then various

representations of the Talbot effect in space, time, and frequency are introduced, and are

generalized with the concept of the Talbot phases. Finally, the basic properties of optical

microresonators and microcomb generation are briefly discussed.
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3 Generation and applications of opti-
cal sinc pulses

The content in this chapter is based on the following publications:

• J. Hu, S. J. Fabbri, and C.-S. Brès, "Flexible Width Nyquist Pulse Based on a Single Mach-

Zehnder Modulator, " in Conference on Lasers and Electro-Optics (CLEO), SF3N.6 (2018).

[143]

• J. Hu, S. J. Fabbri, and C.-S. Brès, "Reconfigurable Filter-free Sinc-shaped RF Photonic

Filters Based on Rectangular Optical Frequency Comb," in Conference on Lasers and

Electro-Optics (CLEO), SM1C.1 (2018). [144]

• J. Hu, S. Kharitonov, S. J. Fabbri, and C.-S. Brès, "Add-Drop Multiplexing Architecture

for Nyquist OTDM Signals Based on a Single Mach-Zehnder Modulator," in Asia Com-

munications and Photonics Conference (ACP), M4A.38 (2019). [145]

3.1 Introduction

Optical sinc pulses have been used for a wide range of photonics-related applications. Due

to their rectangular spectral shape and zero inter-symbol interference (ISI) in time domain,

they have been used in Nyquist OTDM systems [64] to achieve high spectral efficiency as

comparable to OFDM systems. In this case, sinc pulses, or more generally Nyquist pulses,

would serve as the carriers for data symbols. They are aggregated in time to form an optical

superchannel. For the implementation of high-speed Nyquist OTDM systems, the optical

generation of sinc pulses is favored in order to supplant the limited electronic bandwidth [146].

As a consequence, simple and effective synthesis of sinc pulses has been actively pursued.

Moreover, the sinc pulses may not only be needed in the transmitter, but also in the receiver

side to demultiplex the Nyquist OTDM signals via matched sampling [68]. While for optical

networks, in addition to demultiplexing a specific subcarrier, the ability to replace such sub-

carrier with a new data stream is essential. However, no such scheme exists for Nyquist OTDM

systems, as have been envisioned or demonstrated for many other advanced multiplexing

techniques [70, 147, 148].
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Further, the frequency comb nature of sinc pulses is also appealing to use them for comb-

based RF photonic filters [80]. For this specific application, the requirement of the optical

source is much relaxed, as no linear phase relation among the comb lines is needed (even the

laser lines can be incoherent). The rectangular spectra of sinc pulses would impart the RF

filters with sinc response, which may be potentially used for the demultiplexing of RF OFDM

signals.

In this chapter, I will present the main results regarding the generation of optical sinc pulses, as

well as their usages in RF photonics and optical communications. Section 3.2 briefly discusses

the mathematical foundation of sinc pulses. Section 3.3 demonstrates a flexible sinc pulse

generation scheme based on a single MZM driven by multi-harmonic RF signals. Section 3.4

synthesizes RF photonic filters with sinc-shaped responses based on rectangular frequency

combs. Section 3.5 provides time-domain reconfigurable optical add-drop multiplexing

architectures for Nyquist OTDM signals.

3.2 Properties of sinc pulses

A sinc pulse is a special case of a more general pulse category, named Nyquist pulse or raised-

cosine pulse, which is defined as [149]:

r (t ) =
sin(πt/Ts)

πt/Ts

cos(απt/Ts)

1− (2αt/Ts)2 (3.1)

where Ts is half of the pulse duration between the zero crossings, and α is the roll-off factor

falling in the range 0 ≤α≤ 1. As can be seen from Eq. (3.1), r (mTs) = 0 for m ∈Z 6=0. That means

the Nyquist pulse is free from ISI with its Ts-spaced time translates. When being multiplexed,

although the Nyquist pulses are temporally overlapped, they can be unambiguously sampled

at these zero-crossing points. Ts also represents the symbol period in this case. As a result,

Nyquist pulses can be more densely packed in time compared to Gaussian pulses. The

spectrum of Nyquist pulse is given by:

R̃( f ) =



Ts , if | f | ≤ 1−α
2Ts

Ts

2

{
1+cos

(πTs

α
(| f |− 1−α

2Ts
)
)}

, if 1−α
2Ts

≤ | f | ≤ 1+α
2Ts

0, otherwise

(3.2)

It is obvious from Eq. (3.2) that the bandwidth occupancy of a Nyquist pulse increases with the

roll-off factor α. The minimum bandwidth is achieved when α = 0, and the spectrum becomes

rectangular with the temporal waveform being sinc-shaped. The sinc pulse is orthogonal to its

Ts-spaced time translates (usually not the case for α> 0), and is therefore of particular interest

among the family of Nyquist pulses. According to Parseval’s theorem, this is equivalent to
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prove the orthogonality in frequency domain:∫ ∞

−∞
sin

(
π(t −mTs)/Ts

)
π(t −mTs)/Ts

sin
(
π(t −nTs)/Ts

)
π(t −nTs)/Ts

d t

=
∫ 1

2Ts

− 1
2Ts

exp(−i 2π f mTs)Ts exp(−i 2π f nTs)Ts d f = Tsδmn

(3.3)

where m,n ∈Z and δmn is the Kronecker delta function (δmn = 1 if m = n, otherwise δmn = 0).

In Eq. (3.3), we also utilize the Fourier transform property stating that the delay in time domain

corresponds to a phase shift in frequency. The orthogonality of sinc pulses implies that the

symbols modulated on sinc pulses can be more easily retrieved with sinc pulse sampling,

instead of using a very short pulse (Dirac function).

In practice, generally, periodic sinc pulses are synthesized rather than producing an isolated

single sinc pulse. As mentioned earlier, frequency combs with comb lines having equal

amplitudes and linear spectral phases correspond to a sequence of sinc pulses in time domain.

The mathematical derivation is explained as follows. For simplicity, frequency combs with odd

number of lines N , centered at frequency f0 and spaced by∆ f , as well as zero initial phases

for all frequency components are assumed. The time domain representation of the optical

field is thus given by:

E(t ) =
E0

N

N−1
2∑

k=− N−1
2

exp
(
i 2π( f0 +k∆ f )t

)
=

E0

N
exp

(
i 2π f0t − iπ(N −1)∆ f t

)1−exp(i 2πN∆ f t )

1−exp(i 2π∆ f t )

=
E0

N

sin(πN∆ f t )

sin(π∆ f t )
exp(i 2π f0t )

(3.4)

where sin(πN∆ f t )

N sin(π∆ f t )
corresponds to the normalized envelope of the optical field. It actually

corresponds to a sequence of sinc pulses, which can be analyzed in the frequency domain by

Fourier transform:

F
{ sin(πN∆ f t )

N sin(π∆ f t )

}
= F

{ 1

N

N−1
2∑

k=− N−1
2

exp(i 2πk∆ f t )
}

=
1

N

N−1
2∑

k=− N−1
2

δ( f −k∆ f )

=
1

N
ΠN∆ f ( f )

N−1
2∑

k=− N−1
2

δ( f −k∆ f )

(3.5)

where F
{ }

represents the Fourier transform. ΠN∆ f
( f ) is a rectangular function defined as:

ΠN∆ f ( f ) =


1, if | f | ≤ N∆ f

2

0, otherwise

(3.6)
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Owing to the convolution theorem, the envelop function can be expressed as:

sin(πN∆ f t )

N sin(π∆ f t )
=

1

N
F−1{ΠN∆ f ( f )

}⊗F−1{ N−1
2∑

k=− N−1
2

δ( f −k∆ f )
}

=
1

N

sin(πN∆ f t )

πt
⊗ 1

∆ f

∞∑
k=−∞

δ(t − k

∆ f
) =

∞∑
k=−∞

sin
(
πN∆ f (t − k

∆ f
)
)

πN∆ f (t − k
∆ f

)

(3.7)

where F−1
{ }

is the inverse Fourier transform and ⊗ represents the convolution operation.

Similarly, the optical field in the case of even number of comb lines can be derived:

sin(πN∆ f t )

N sin(π∆ f t )
=

∞∑
k=−∞

(−1)k
sin

(
πN∆ f (t − k

∆ f
)
)

πN∆ f (t − k
∆ f

)
(3.8)

From Eq. (3.7) and (3.8), we have confirmed that a series of comb lines with equal-amplitudes

and linear phases indeed correspond to sinc pulses in time. The period of the sinc pulse train

is the inverse of the comb FSR, i.e. T = 1/∆ f . The symbol period Ts , which is also half of

the zero crossings of the main peak, is found to be Ts = 1/N∆ f . Although the expressions of

optical fields are different for odd and even number of comb lines, their intensity expressions

are unified:

I (t ) = |E(t )|2 = E 2
0

sin2(πN∆ f t )

N 2 sin2(π∆ f t )
= E 2

0

∞∑
k=−∞

sin2
(
πN∆ f (t −kT )

)(
πN∆ f (t −kT )

)2 (3.9)

where Eq. (3.9) uses the orthogonality of sinc pulses described in Eq. (3.3). The frequency and

time domain representations of sinc pulses are shown in Figure 3.1.

Figure 3.1 – Frequency and time representations of periodic sinc pulses. (a) In the frequency
domain, sinc pulses correspond to a series of equal amplitudes, linear phases frequency comb
lines. ∆ f : comb FSR; N : number of comb lines. (b) In the time domain, the intensity of
sinc pulses is shown. T : pulse period; Ts : the symbol period, or equivalently half of the
zero-crossings between the main peak. Adapted from [65].
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3.3 Flexible optical sinc pulse generator

Optical sinc pulses can be obtained through the general optical arbitrary waveform generation

techniques [106]. By manipulation of the amplitudes and phases of frequency combs in a pulse

shaper, the temporal waveforms can be shaped to sinc pulses. Besides the external shaping of

existing frequency combs, pulse shaper may also be used inside an active mode-locked laser

cavity to tailor the spectrum, thereby directly outputing the target sinc pulses [149].

There are also schemes generating sinc pulses without involving pulse shapers. As described

in Section 2.1, sinc pulses with 5 spectral comb lines can be obtained based on DP-MZM

[89]. Besides, sinc pulses with 9 spectral lines can be produced based on two cascaded MZMs

driven by two synchronized RF frequencies [63]. Although other methods could generate

Nyquist pulses with flexible or more number of spectral lines, for instance the demonstrations

based on dual-drive MZM [67], or times lens (PM) [150, 151], they do not correspond to sinc

pulses with zero roll-off factors. Since the number of comb lines constituting the sinc pulses

also determines the number of channels that can be aggregated in time, flexibility of comb

lines is desired as to reconfigure the Nyquist OTDM systems.

Principle of flexible optical sinc pulse generator. Here we propose an alternative simple

method for generating sinc pulses based on a single MZM. Synchronized multi-harmonic RF

signals are electrically combined to drive the MZM. Such scheme could realize sinc pulses with

arbitrary number of lines below 2N +1 using N RF sinusoidal signals. In the experiment, we

showcase sinc pulse generation with 4 to 9 comb lines based on 2 to 4 synchronized RF signals.

The use of multi-harmonic RF signals provides the precise amplitude and phase control of

each pair of sidebands. Hence, the perfect flatness and linear phase relation of the optical

combs can be achieved, alongside with the high side mode suppression ratio (SMSR) in the

spectrum. Recalling the operating principle of the MZM, when it is driven by N RF sinusoidal

waves, the MZM output is formulated as:

E(t ) = E0 cos(ψ+
N∑

k=1
βk cosωk t )exp(iω0t )

= E0
{

cosψcos(
N∑

k=1
βk cosωk t )− sinψsin(

N∑
k=1

βk cosωk t )
}

exp(iω0t )

(3.10)

where ψ = VDC /2Vπ,DC is the normalized bias, βk = Vk /2Vπ,ωk are the modulation indices

for RF sinusoidal waves at angular frequencies ωk , (k = 1, ...N ). By keeping βk of each RF

component identical and small (β =β1 = ... =βN << 1), as well as setting the multi-harmonic

RF signal as ωk = k∆ f , (k = 1, ...N ), Eq. (3.10) can be approximated by:

E(t ) ≈ E0
{

cosψ− βsinψ

2

N∑
k=1

(
exp(−i k∆ f t )+exp(i k∆ f t )

)}
exp(iω0t ) (3.11)

In order to obtain equal amplitude and in-phase relation of all optical frequency components,

cosψ = −βsinψ/2 has to be satisfied here. Therefore, sinc pulses of 2N +1 comb lines with
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comb FSR∆ f are generated, based on N synchronized RF tones. Note that since the modula-

tion index is small, the bias point is close to the minimum transmission point (MITP) of the

MZM.

Similarly, sinc pulses with even number of comb lines can also be synthesized using multi-

harmonic approach. Still by keeping the modulation indices β = β1 = ... = βN << 1, when

the MZM is driven with RF frequencies of ωk = (k −1/2)∆ f , (k = 1, ...N ) and biased at MITP

(ψ =π/2), the output optical field is approximated as:

E(t ) ≈−E0
β

2

N∑
k=1

{
exp

(− i (k − 1

2
)∆ f t

)+exp
(
i (k − 1

2
)∆ f t

)}
exp(iω0t ) (3.12)

where 2N comb lines satisfying sinc pulse condition are also generated. Noticeably, the input

optical carrier is completely notched in this case. To sum up, sinc pulses with up to 2N +1

lines can be obtained when the MZM is driven by N multi-harmonic RF signals.

Bias

MZM
CW 

Laser
OSA

Amp

ϕ 

ϕ ϕ 

ϕ 

OSO

f

t

ω1

ω2 ω4

ω3

Δf

T

Figure 3.2 – Schematic setup of flexible sinc pulse generator. A CW laser is injected to the MZM
driven by a number of synchronized RF sinusoidal waves. OSO: optical sampling oscilloscope;
OSA: optical spectrum analyzer; ϕ: tunable phase shifter; Amp: electrical amplifier. The MZM
output is directed to the OSO and OSA for measurement, where the intensity waveform and
spectrum of sinc pulses with 9 comb lines are shown.

Experimental results. The schematic setup of the flexible sinc pulse generator is depicted in

Figure 3.2. A CW laser is directed to a 40 GHz low Vπ MZM driven by multiple synchronized RF

signals. The modulator output is then split equally for simultaneous waveform and spectrum

measurements, using an optical sampling oscilloscope (OSO) and an optical spectrum ana-

lyzer, respectively. Due to the low sensitivity of the OSO, the optical signal is amplified by an

erbium-doped fiber amplifier (EDFA), and the amplified spontaneous noise (ASE) is filtered

before the OSO. The electrical part of the setup consists of four synchronized RF clock sources

of various frequencies, RF broadband amplifiers, RF power combiners, and electrical delay

lines as phase controllers. Alternatively, a single clock source can be used followed by a bank

of RF frequency multipliers [152]. In the experiment, we target sinc pulses with standard 10

GHz comb FSR. For sinc pulses with 5, 7, 9 lines, 2 to 4 RF frequencies are used with 10 GHz

34



Generation and applications of optical sinc pulses Chapter 3

fundamental frequency and its harmonics, i.e. 20 GHz, 30 GHz, and 40 GHz. While for sinc

pulses with 4, 6, 8 lines, 2 to 4 RF frequencies are set to 5 GHz, 15 GHz, 25 GHz, and 35 GHz.

The relative phases of these RF components are fully tunable either from the clock sources

directly or by inserting electrical phase shifters in the paths.

a

b

Figure 3.3 – Waveforms and spectra of optical sinc pulses. (a) Optical sinc pulses with 5, 7, and
9 comb lines when the MZM is driven by 10, 20, 30, 40 GHz. (b) Optical sinc pulses with 4, 6,
and 8 comb lines when the MZM is driven by 5, 15, 25, 35 GHz. Blue: experiment; Orange:
simulation.

Figure 3.3 presents the measured waveforms and spectra of synthesized optical sinc pulses,

where the number of comb lines ranges from 3 to 9 while maintaining the comb FSR at 10

GHz. The temporal waveforms are very close to the ideal sinc functions for all cases, and
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the sinc pulse width gets narrower with more spectral comb lines. With regards to the sinc

pulses with odd number of comb lines, the spectra show characteristic rectangular shapes,

with minimum power imbalance and high SMSR. As seen in Figure 3.3 a for 5, 7, and 9 comb

lines, the flatness is 0.08 dB, 0.09 dB, and 0.15 dB, and the SMSR is about 30.0 dB, 30.4 dB, and

23.9 dB, respectively. In terms of even number of lines with 4, 6, 8 combs shown in Figure 3.3 b,

the flatness is measured to be 0.08 dB, 0.05 dB, and 0.12 dB, respectively. However, the SMSR

is much smaller compared to the odd number of comb lines, as the laser carrier cannot be

completely notched, limited by the extinction ratio of the MZM. The SMSR is measured to be

12.2 dB, 11.8 dB, and 11.2 dB.

a b

Figure 3.4 – Optical sinc pulses of 9 comb lines under different RF power levels. (a) The
measured pulse widths of sinc pulses (blue) and SMSR of the comb spectra (orange) versus the
RF power input to the MZM. Blue dashed line corresponds to the ideal FWHM of sinc pulse
with 9 comb lines. (b) The temporal waveform of the sinc pulses under 4.2 dBm (top) and 11.9
dBm (bottom), respectively. Blue: experiment; Orange: simulation.

Optical sinc pulse generation under different RF power level is also studied, in the case of 9

comb lines as an example. As mentioned above, the multi-harmonic method only generates

sinc pulses under small RF power, therefore, the optical pulses obtained under large RF power

deviate from the ideal sinc shapes. This can be seen in Figure 3.4 a. In the frequency domain,

the pulse spectra show worse SMSR with the increase of input RF power, which is due to

the fact that the MZM generates stronger higher-order sidebands. In the time domain, the

FWHM pulse width also increases with the RF power input to the MZM, and diverges from

the ideal sinc pulse width of 9.9 ps (indicated as blue dashed line in Figure 3.4 a). Figure

3.4 b showcases the measured optical waveforms under low RF power (top, 4.2 dBm) and

high RF power (bottom, 11.9 dBm). It can be clearly seen that the sinc pulses under low RF

power modulation are better fit with the ideal sinc pulses (the mean absolute deviation of the

normalized waveforms are 1.4% and 2.7%, respectively). Nonetheless, since the MZM is biased

either at or close to the MITP, using small signal modulation results in low pulse power. Such

low power will bring in excessive ASE after the pulse amplification. Therefore, there exists a

trade-off between the perfect sinc pulse shape and the optical signal-to-noise ratio (OSNR).
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3.4 RF photonic filters of sinc responses

RF filters based on optical frequency combs and dispersive propagation enable RF signal

processing in the photonic domain [37, 39]. Compared to their electrical counterparts, this

approach provides versatile filter shapes and wide tuning range empowered by the possible

line-by-line shaping of the optical combs [80–83]. For instance, highly selective rectangular

RF filters have been demonstrated using programmable pulse shapers to tailor the optical

frequency combs [153] or slice ASE source [154]. From a communication perspective, RF

photonic filters with sinc responses may offer promising potential to high-speed OFDM

systems, optimizing the spectral efficiency among electrical, optical, and wireless applications.

Given the complex features of sinc-shaped RF filters, direct implementation in the electrical

domain is challenging.

On the other hand, RF photonic filters with sinc responses can be obtained based on rect-

angular frequency spectra. Since we know how to directly generate optical sinc pulses that

also show rectangular spectra, we would like to apply this to the RF photonic filtering. As

mentioned above, the linear phase relation of the comb lines is generally not required for

most of the comb-based RF filters [37, 80]. As in the case of optical sinc pulse generation, we

also target sinc-shaped RF filters without additional spectral shapers. But here we use two

cascaded MZMs driven by synchronized RF frequencies to obtain rectangular comb spectra

[63] . The proposed RF filter scheme can be easily reconfigured by modifying the RF signals

(frequency, power), and the DC bias driving the MZMs. The flexibility of the RF filters are

shown by varying the number of comb lines, thereby changing the number of filter taps while

maintaining near perfect sinc responses.

Principle of comb-based RF filter with sinc response. The conceptual setup and experimen-

tal implementation of comb-based RF filter is illustrated in Figure 3.5. Note that similar

operation also applies to Chapter 5. The comb source (dashed box) is obtained by external

modulation of a CW laser using two cascaded MZMs, driven at frequency f1 and f2, respec-

tively. Then the generated comb goes to a DP-MZM through a polarization controller. A

small portion of combs is tapped for spectrum monitoring on an OSA. The RF signal from the

vector network analyzer (VNA) is loaded to the in-phase and quadrature ports of the DP-MZM

through an electrical 90◦ hybrid coupler. After propagation through a spool of dispersion com-

pensating fiber (DCF), the comb carriers and SSB signals acquire differential delays. Finally,

the optical signals are directed to a photodetector (PD) where they beat to retrieve the original

RF signal. The response of the obtained RF photonic filter is measured by the VNA.

Let us generalize the operating principle of comb-based RF filters by considering the frequency

combs of arbitrary shapes:

Ecomb(t ) = E0 exp(i kω0t )
N−1∑
k=0

ak exp(i k2π∆ f t ) (3.13)

where N is the number of comb lines. The comb lines are spaced by∆ f in frequency, and the
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MZM1
CW 
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Figure 3.5 – Experimental setup of sinc-shaped RF filters based on rectangular optical combs.
EDFA: erbium-doped fiber amplifier; PC: polarization controller; DCF: dispersion compensat-
ing fiber; PD: photodetector; OSA: optical spectrum analyzer; VNA: vector network analyzer.
The rectangular optical combs are generated using two MZMs driven by two RF frequencies
f1 and f2 separately. The RF signal from the VNA is upconverted to the optical domain in a
DP-MZM via the electrical 90◦ hybrid. Then the frequency comb lines carrying the informa-
tion of the RF signals acquire differential delays through propagation in a spool of DCF. After
being detected by the PD, the RF signal is retrieved and send back to the VNA for the filter
response measurement. The images of OSA and VNA show the target rectangular optical comb
spectrum and sinc-shaped RF response, respectively.

ω0 denotes the angular frequency of the first line. ak is the complex amplitude of each comb

line, which contains both amplitude and phase information. Then the frequency combs are

injected to the DP-MZM, which is modulated by the scanning RF signal fRF from the VNA.

As detailed in Section 2.1, DP-MZM could achieve SSB modulation with an arbitrary ratio

between the carrier and the sideband:

EDP−M Z M (t ) = E0 exp(i kω0t )
N−1∑
k=0

ak exp(i k2π∆ f t )
(
1+γexp(i 2π fRF t )

)
(3.14)

where γ is the coefficient between the sideband and the carrier. It can be seen from Eq. (3.14)

that the RF signal now is broadcast to the frequency combs. Then the optical signals propagate

through a dispersive medium (DCF used here), where they would pick up quadratic phases as:

EDC F (t ) =E0 exp(i kω0t )
N−1∑
k=0

ak
{

exp
(
i k2π∆ f t + iΘ22π2(k∆ f )2)+ ...

γexp
(
i k2π∆ f t + i 2π fRF t + iΘ22π2(k∆ f + fRF )2)} (3.15)

whereΘ2 = −β2L refers to the product of group velocity dispersion (GVD) of the fiber β2 and

fiber length L. At the output of dispersive propagation, each carrier and sideband receives a

distinct quadratic phase. Then the optical signals are converted back to electrical signals at a
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square-law PD. Since the VNA measures at the frequency it sent out (i.e. fRF ), the photocurrent

generated at fRF frequency is given by [80, 155]:

i fRF (t ) ∼ 1

2
r 〈|E(t )+E∗(t )|2〉

= r |E0|2
N−1∑
k=0

|ak |2|γ|2 cos(2π fRF t +Θ24π2∆ f fRF +Θ22π2 f 2
RF +θγ)

(3.16)

where 〈 〉 stands for the averaging at optical frequency and r is the responsivity of the PD. |γ|
and θγ is the amplitude and phase of γ, i.e. γ = |γ|exp(iθγ). Therefore, the transfer function

H( fRF ) of the comb-based RF filter can be found:

H( fRF ) ∼ exp(iΘ22π2 f 2
RF )

N−1∑
k=0

|ak |2 exp(iΘ24π2∆ f fRF ) (3.17)

In the above equation, we have omitted all the scaling factors and the static phase. The filter

function consists of a quadratic phase term and the discrete Fourier transform of the comb

intensity |ak |2. Therefore, the RF filter response can be seen as a TDL filter, where |ak |2 are the

tap weights. Also the response is periodic with the frequency fF SR = 1/2πΘ2∆ f . Since the tap

weights of the filter are all-positive, the response shows peaks at n fF SR , (n = 0,1, ...). When the

input comb spectrum is rectangular (i.e. |ak |2 = 1, k = 1, ..., N ), Eq. (3.17) rewrites:

H( fRF ) ∼ exp(iΘ22π2 f 2
RF )

exp(iΘ24π2N∆ f fRF )−1

exp(iΘ24π2∆ f fRF )−1

∼ exp
(
iΘ22π2 f 2

RF + iΘ22π2(N −1)∆ f fRF
)sin(Θ22π2N∆ f fRF )

sin(Θ22π2∆ f fRF )

(3.18)

where the amplitude response of H( fRF ) actually corresponds to periodic sinc functions. This

can be derived as for Eq. (3.7) and (3.8):

sin(Θ22π2N∆ f fRF )

sin(Θ22π2∆ f fRF )
=


N

∞∑
k=−∞

(−1)k sin
(
NΘ22π2∆ f ( fRF −k fF SR )

)
NΘ22π2∆ f ( fRF −k fF SR )

, if N ≡ 0 (mod 2)

N
∞∑

k=−∞

sin
(
NΘ22π2∆ f ( fRF −k fF SR )

)
NΘ22π2∆ f ( fRF −k fF SR )

, if N ≡ 1 (mod 2)

(3.19)

Here we have confirmed that the RF filter based on rectangular comb is indeed of sinc shape.

The quadratic phase term represents a linear group delay additional to the periodic sinc carver,

which is due to the modulation scheme being used [155]. While the linear phase term vanishes

when the center of the comb is set as reference.

Experimental results. In the experiment, MZM1 and MZM2 are driven by RF clocks of 30 GHz

and 20 GHz, respectively. By properly setting the RF power and DC bias to MZM1, 2 comb

lines (carrier suppressed), 3 comb lines (odd-order harmonics suppressed), or 4 comb lines
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a

b

Figure 3.6 – RF photonic filters with sinc responses based on optical combs with rectangular
shapes. (a) Optical rectangular combs generated based on cascaded MZMs with 6, 9, 12 spec-
tral lines at 20GHz comb FSRs. (b) Corresponding sinc-shaped RF photonic filters based on
rectangular combs in (a). The 3 dB bandwidth of the RF filters are indicated. Blue: experiment;
Orange: simulation (ideal sinc).

(even-order harmonics suppressed) spaced at 2 f1 = 60 GHz are generated. While the MZM2

is driven at f2 = 20 GHz to triple the number of comb lines and lower the comb repetition

rate to ∆ f = f2. The resultant frequency combs with 6, 9, and 12 comb lines and 20 GHz

comb FSRs are illustrated in Figure 3.6 a. They show flatness of 0.5 dB, 0.6 dB, 0.7 dB, and

SMSR of 20.3 dB, 20.8 dB, 13.8 dB, respectively. Note that these rectangular combs do not

necessarily correspond to sinc pulses in time. The DCF module we used in the experiment

could compensate the dispersion of 60 km SMF fiber. Consider the typical 17 ps/nm/km

of SMF in C-band, the DCF corresponds to -1020 ps/nm amount of dispersion and results

in Θ2 ≈ 1.3×10−21 s2 at 1550 nm. Therefore, the peak of the RF filter can be predicted by

fF SR = 1/2πΘ2∆ f ≈ 6.1 GHz. All these filters operate within the first Nyquist zone (DC to 10

GHz) so that they are free from spurious frequency [80]. Figure 3.6 b shows the measured

RF filter responses, where all of them exhibit near perfect sinc shapes. Center frequencies of

these filters are as predicted at around 6.1 GHz. By varying the rectangular comb bandwidths

from 120 GHz to 240 GHz, the 3 dB bandwidths of the corresponding sinc-shaped filters are

reconfigured from 960 MHz to 450 MHz.

We also study the phase responses of the sinc-shaped RF filters. Figure 3.7 shows the measured

phase response of the filter based on rectangular combs constituting 9 lines. Note that here the

quadratic phase is not shown as the VNA is calibrated on the single laser carrier. The measured

phase response is then unwrapped, which demonstrates clear π phase jump at every notch

point of the amplitude response, as the sinc function flips the sign at every zero crossing. The

experimental results match well with simulated pure π phase jumps at the amplitude nulls.
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Figure 3.7 – Phase response of the RF photonic filter based on the rectangular combs with 9
spectral lines. Blue: measured phase response; Orange: unwrapped phase response; Yellow:
simulated phase response; Purple: measured power response. The RF filter shows π phase
jumps at the nulls of the sinc function.

3.5 Add-drop multiplexer for Nyquist OTDM system

All-optical ADM is a key element in high data rate optical networks to completely extract a

channel while inserting a new channel back to the link, without involving optical to electrical

domain conversion. It has been widely investigated in both TDM and WDM systems in the

past decades. Recently, the development of high spectral efficiency superchannels such as

OFDM, Nyquist WDM, and Nyquist OTDM, have reinforced the design consideration of their

corresponding ADMs, due to the fact that they are more compactly packed in either time or

frequency domains. For Nyquist WDM signals, the pulse shaper, also known as a wavelength

selective switch (WSS) can fulfill the add-drop functionality as in general for WDM system

[147]. A ring-assisted MZI pre-filtering interleaver with sharp response, in conjugation with a

WSS, has been utilized to enhance the add-drop ability of Nyquist WDM with minimum guard

band [148]. OFDM ADM has been demonstrated by first demultiplexing the target channel,

then destructive interfering the original signal with dropped channel to clear up the spectral

slot for the new channel [70]. However, for Nyquist OTDM system - the temporal counterpart

of OFDM, an ADM architecture is still elusive.

In this section, we propose a simple ADM structure for Nyquist OTDM signals. Unlike TDM

systems, Nyquist OTDM systems consist of a number of sinc pulse subchannels that are

orthogonally overlapped in time (when roll-off factor is 0). This makes it difficult to notch a

single channel while not affecting the rest. The specific requirement of the ADM would be

the complete notch at the temporal positions of the target subchannel, while being lossless

at the other zero ISI points. This feature somewhat resembles the sinc function but in a

flipped manner, or termed as dark sinc function. Therefore, we could basically utilize the

complementary nature of dual-output modulators. When one of the modulator output gives

the periodic sinc pulse trains, the other port would be the dark sinc pulse trains.

Optical bright and dark sinc carver pair. The proposed ADM architecture is based on this
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Chapter 3 Generation and applications of optical sinc pulses

simple principle. It uses multi-port MZM for the simultaneous synthesis of bright and dark sinc

pulse carver pair. Such MZMs are commercially available. For example, EOSPACE provides

both 1×2 MZM (one input, two outputs) and 2×2 MZM (two inputs, two outputs). These MZMs

can be explored to obtain the pulse carvers exactly the same way as generating sinc pulses

driven by multi-harmonic RF signals. The bright and dark sinc functions are respectively the

matched sampling/pulse shaping and the notch functions needed for add-drop of Nyquist

OTDM signals. A proof-of-concept simulation is carried out for 50 Gb/s on-off keying (OOK)

Nyquist OTDM system, which is aggregated from 5×10 Gb/s orthogonal subchannels. Two

slightly different ADM implementations are proposed, and are compared in terms of add-drop

setups and penalties.
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Figure 3.8 – Layout of 2×2 MZM with the flow of optical fields. As an example, the optical
modulation function is calculated when a unit optical field is injected to the input port 1 of the
2×2 MZM. The modulation function for the bar coupling and cross coupling are respectively
i sinθ and i cosθ, where θ denotes the total phase shift per arm.

Let us recall the operating principle of the conventional MZM driven by multi-harmonic RF

signals (Eq. (3.10)). In fact, this just corresponds to one of the output port of the MZI structure,

while the other port should be the complement of Eq. (3.10). The total power is preserved

due to energy conservation. Considering the most general 2×2 MZM topology as sketched in

Figure 3.8, the modulation function can be derived:

mi j (t ) =


i sin(ψ+

N∑
k=1

βk cosωk t ), if i = j , bar function

i cos(ψ+
N∑

k=1
βk cosωk t ), if i 6= j , cross function

(3.20)

where mi j is the temporal modulation function connecting the input port i , (i = 1,2) and

output port j , ( j = 1,2). As defined previously, ψ = VDC /2Vπ,DC is the normalized bias, βk =

Vk /2Vπ,ωk are the modulation indices for RF frequencies ωk , (k = 1, ...N ). For simplicity, we

drop the common static phase shift i . Here the modulation function of the multi-port MZM

is defined instead of its output optical field. The derivation of Eq. (3.20) can be carried out

as implemented in Figure 3.8. It is found that the bar coupling (i = j ) and the cross coupling
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(i 6= j ) functions are respectively sine and cosine functions, which are indeed complementary

in terms of power.

a

b

Figure 3.9 – Bar and cross pulse carvers in comparison with ideal bright and dark sinc functions.
The 2× 2 MZM is driven by two RF frequencies at 10 GHz and 20 GHz. (a) When the RF
modulation is weak, the bar function is close to the ideal sinc shape and its rectangular
spectrum shows high SMSR. However, the cross function could not achieve the complete
notch in time. The simulation is obtained by ψ = 0.152, β1 = 0.3, and β2 = 0.3. (b) When the RF
modulation is large, the bar function deviates from the ideal sinc shape and its rectangular
spectrum shows poor SMSR. The cross function does achieve almost complete notch in time,
and shows nearly no loss at the other ISI points. The simulation is obtained by ψ = 0.323,
β1 = 0.635, and β2 = 0.605.

Since we consider the Nyquist OTDM system with 5×10 Gb/s substreams, the pulse carvers

associated to it should be the sinc function with 5 spectral lines spaced at 10 GHz, as well as its

complement. Regarding the implementation, the 2×2 MZM is driven by two RF frequencies at

10 GHz and 20 GHz. Without loss of generality, let us assume that the bar function achieves the

bright sinc shape that may be used for matched sampling or pulse shaping. Noticeably, the sinc

pulse condition can only be realized under weak RF modulation as described in section 3.3.

While in this scenario, the cross function could not achieve complete notch in time as shown

in Figure 3.9 a. This does not fulfills the notch function of ADM, as one of the subchannel

needs to be completely removed. Therefore, RF power needs to be increased. By properly

adjusting the RF power and the DC bias to the 2×2 MZM, complete notch can be achieved

for the cross coupling function as shown in Figure 3.9 b. Clearly, the cross function obtained

deviates from the ideal dark sinc shape. This can also be seen from its complementary bar

function, which shows broader transmission window than the ideal sinc shape in time. In

frequency domain, a number of sidebands in addition to the rectangular spectrum is also

observed. Luckily, the synthesized dark sinc carver shows minimal loss at the ISI points of the
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Nyquist OTDM signals. In Figure 3.9 b, the zero positions of the dark pulse carver are within

0.4 ps deviation from the ideal sinc for 20 ps channel spacing, well maintaining the zero ISI

criterion. Moreover, the proposed method is fully flexible in terms of the sinc carver width

based on the multi-harmonic technique described in 3.3. This correspondingly adapts the

ADM for Nyquist OTDM comprised of different subchannel number.
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Figure 3.10 – Schematic diagrams of add-drop multiplexers based on 2×2 MZM operated
as simultaneous bright and dark sinc carvers. (a) The original multiplexed Nyquist OTDM
channels (ch1, ..., ch5) and the new channel ch3’ are directed to the two input ports of the
2×2 MZM. One of the output of the MZM after temporal gating corresponds to the dropped
ch3. The other port directly outputs the Nyquist OTDM signals with ch3 being replaced by the
new ch3’. (b) Only the original multiplexed Nyquist OTDM channels are injected to the MZM.
The two outputs of MZM correspond to the dropped ch3 and the Nyquist OTDM signals with
ch3 being notched, respectively. The new channel ch3’ is then combined with the notched
Nyquist OTDM signals in an optical coupler, thereby forming the new Nyquist OTDM signals
with ch3’ instead of ch3.

ADM structures for Nyquist OTDM. Figure 3.10 presents two add-drop schemes based on

multi-port MZM. When both of the 2×2 MZM inputs are utilized (Figure 3.10 a), the Nyquist

OTDM signals and the new channel ch3’ are directed to the upper and lower input port of

MZM simultaneously. Note that here the added ch3’ can be input to the MZM without prior

sinc pulse shaping. Since the MZM functions as a bright sinc for bar coupling and a dark sinc

for cross coupling, the lower output port will receive new ch3’ with sinc carving, while the ch3
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within the original Nyquist OTDM signals will be notched out. This is exactly the add function

of the incoming Nyquist OTDM signals, where ch3 is replaced by ch3’. Here the insertion of

ch3’ at the right time slot (where ch3 being cleared up) is automatically guaranteed by the

complementary nature of MZM carver pair, although we do need a electrical or optical delay

line to align the symbol with peak of the sinc function. For the upper output port, the bright

sinc carver extracts ch3 from the incoming Nyquist OTDM stream by quasi-matched sampling

[68, 156], and the dark sinc carves the added ch3’. Therefore, ch3 is dropped out at the upper

output port with background interference from dark sinc of ch3’. An optical gating stage is

required to clear ch3’ and finally drop out ch3.

In order to get rid of the ch3’ in the drop port, a modified add-drop scheme is proposed

without adding ch3’ directly (Figure 3.10 b). In this case, the upper output port of the 2×2

MZM functions as a quasi-matched sampler of the incoming streams thereby drop out ch3,

while the lower output corresponds to the original signal with ch3 notched out. Therefore,

the lower output of MZM creates an empty time slot for the insertion of ch3’ via a simple

optical coupler. Unlike in Figure 3.10 a, here ch3’ needs prior Nyquist pulse shaping before

the insertion. However, the temporal gating of the dropped signal is not necessary for this

implementation. To sum up, in order to perform the full ADM, the first implementation

requires an additional gating stage while the second implementation requires an additional

sinc shaping stage.

The simulation setups of the proposed ADM schemes are depicted in Figure 3.11. The typical

setup of Nyquist OTDM transmitter is first shown in Figure 3.11 a [63]. A CW laser is externally

modulated by synchronized 10 GHz and 20 GHz RF signals to obtain sinc pulse trains with 5

comb lines, and then split to 5 streams. Each stream is independently modulated by 10 Gb/s

electrical data symbols with 10% rise-time (10 ps). This forms in total 50 Gb/s Nyquist OTDM

signals after recombining these 5 subchannels with proper delays (eye diagram Figure 3.11

(i)). The Nyquist OTDM signals are then directed to a 2×2 MZM for the add-drop multiplexing.

Figure 3.11 b and Figure 3.11 c respectively correspond to the ADM schemes described in

Figure 3.10 a and Figure 3.11 b, including the required measurement setups for the assessment

of their add-drop performances. Here the bit error rates (BER) of all channels are estimated

by direct counting with iterative Monte-Carlo method. A Gaussian-distributed optical white

noise is loaded to emulate the OSNR, in order to assess the penalties of proposed ADMs. In

Figure 3.11 b, typical 8 ps FWHM pulses from electro-absorption modulator (EAM) [157] is

simulated to gate the drop signal. In all cases, the overall data streams are matched sampled

with an optical sinc pulses of the same shape generated by MZM [156]. A 20 GHz Gaussian-

shaped optical bandpass filter is used for all cases to open up the optical eyes before the BER

estimation.

The eye diagrams at different positions of the two ADM schemes are explicitly shown in Figure

3.11. It can be seen that the zero ISI property is well maintained after clearing ch3 and inserting

ch3’ (Figure 3.11 (iii) and (vi) respectively for the two schemes), although the eye shapes are a

bit distorted. For the drop ports, an optical gating is required for the ADM scheme described
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Figure 3.11 – Simulation setups for the assessment of Nyquist OTDM ADMs. (a) Nyquist OTDM
transmitter consists of 5 streams of time-multiplexed 10 Gb/s modulated sinc pulse trains. (b)
The proposed ADM based on both input ports of the 2×2 MZM as well as its detection setup.
(c) The proposed ADM based on only one input port of the 2×2 MZM as well as its detection
setup. (i)-(vi) are eye diagrams at different locations specified in the setups (a)-(c). (i) original
Nyquist OTDM signals; (ii) dropped signal ch3 in (b); (iii) new Nyquist OTDM signals with ch3’
replacing ch3 in (b); (iv) dropped signal ch3 in (c); (v) notched Nyquist OTDM signals (without
ch3); (vi) new Nyquist OTDM signals with ch3’ replacing ch3 in (c).

in Figure 3.10 a. It samples at the correct time points where ch3 is maximized and ch3’ is

minimized (Figure 3.11 (ii)), as a strong ch3’ background is present at the eye. But this is not

necessary for the scheme depicted in Figure 3.10 b without the distortion from ch3’ (Figure

3.11 (vi)).

Performance assessment of the ADM schemes. Figure 3.12 shows the estimated BER perfor-

mance of the proposed ADMs. Ch1 and ch2 have very similar BER to ch5 and ch4, respectively,

as they are mirrored channels with respect to ch3, and are thus not plotted. This is also

manifested from the eye diagrams in Figure 3.12 (iii) and (vi). 7% hard-decision forward error

correction (FEC) threshold (BER=3.8×10−3) is plotted as a reference. The ideal curve in Figure

3.12 corresponds to the BER performance of back-to-back matched sampling, setting as the

benchmark for penalty estimation. The receiver sensitivity of the proposed ADMs are all

assessed at BER= 1×10−3. When the Nyquist OTDM signals and new subchannel ch3 are
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a b

Figure 3.12 – BER performances of proposed ADMs based on 2×2 MZM. (a) BER curves of add,
drop, and other subchannels when the ADM uses both of the input ports of 2×2 MZM. (b) BER
curves of add, drop, and other subchannels when the ADM uses only one of the input ports of
2×2 MZM. FEC: 7% hard-decision forward error correction threshold (BER=3.8×10−3); Ideal:
back-to-back matched sampling.

injected to the 2×2 MZM simultaneously (Figure 3.12 a), the penalties of ch4, and ch5 are

respectively 2.5 dB and 1.1 dB, while ch3’ is enhanced by 0.3 dB rather than degraded. The

gain of ch3’ is due to the fact that the synthesized carver of MZM is actually broader than the

ideal sinc shape. This broader carver not only clears more temporal space for ch3’, but also

shapes ch3’ to occupy more time slot. The effect is clearly seen in the eye of ch3’ that is wider

after the ADM (Figure 3.11 (iii)) compared to initial eye (Figure 3.11 (i)). A 2.8 dB difference is

observed for the drop ch3 with respect to the ideal matched sampling. This can be improved

by using shorter pulse for optical sampling. When only the Nyquist OTDM signals are injected

to the 2×2 MZM (Figure 3.12 b), the penalties are reduced as ch3’ is shaped to near perfect

sinc before being multiplexed. Ch3’, ch4, ch5 show respectively 0.5 dB, 1.3 dB, and 0.4 dB

penalties, while a difference of 0.5 dB is observed for the dropped ch3. In both schemes, the

subchannels adjacent to the added ones (ch4) are the most degraded rather than the added

channels themselves (ch3). When we separate the implementation of add and notch functions,

it significantly reduces the penalty at the cost of prior sinc shaping of ch3 before adding to the

link. Also the coupler to combine ch3’ and the notched Nyquist OTDM channels inevitably

possesses 3 dB loss. However, this scheme allows the direct detection of the dropped ch3

without additional optical gating.

Note that the proposed ADMs are limited by the modulator bandwidth and scalability of

multi-harmonic RF signals, therefore not readily suitable for ultra-short pulse Nyquist OTDM

systems. In this scenario, lossless time-lens method [60] may be adopted to expand the

bandwidth before the 2×2 MZM, together with dispersion compensating stage to obtain

complementary short pulse carver pair. It is worth to mention that the proposed approach is

in principle modulation format transparent. Nevertheless, the performances of the proposed

ADMs are sensitive to the modulation depth of the RF signals, therefore would require 2×2

MZM with high extinction ratio.
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3.6 Conclusions

In conclusion, a simple yet fully flexible optical sinc pulse generator is demonstrated. By using

multi-harmonic synchronized RF signals to drive a single-stage MZM, the full control is given

over the repetition rate, the duty cycle, and the central wavelength without external pulse

shaping. Based on 2 to 4 RF sinusoidal waves, we report optical generation of sinc pulses of 4

to 9 comb lines at a constant repetition rate of 10 GHz, together with clear rectangular comb

spectra. Moreover, we investigate the impact of the RF signal power on the synthesized sinc

pulses, and highlight the trade-off between the pulse quality and the ideal sinc shape.

In addition, RF filters with near perfect sinc responses are demonstrated based on optical

combs of rectangular shapes. Here the rectangular combs are directly generated from the

MZMs without external shaping. The filter bandwidths are easily reconfigured by changing the

number of comb lines, via tuning of the DC bias and RF power input to the MZMs. While the

center frequencies of the RF filters can be adjusted by changing the driving RF frequencies or

using interferometric setup [80]. Such sinc-shaped RF filters may be useful in demultiplexing

subcarriers for RF OFDM systems.

At last, two add-drop multiplexing schemes are proposed for Nyquist OTDM signals. While

slightly different in the detailed implementations, both ADM approaches utilize the bright and

dark sinc carver pair synthesized from a 2×2 MZM. Such complementary sinc pulse carvers are

demanded in the sampling/shaping and notch procedures of ADM realization. The add-drop

performances of two approaches are assessed and compared in proof-of-concept simulation.

The proposed ADM schemes would empower the optical Nyquist OTDM systems with the

ability of flexibly switching subchannels in the optical domain.
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4 Temporal and azimuthal Talbot ef-
fects

The content in this chapter is based on the following publications:

• J. Hu, C.-S. Brès, and C.-B. Huang, "Talbot effect on orbital angular momentum beams:

azimuthal intensity repetition-rate multiplication," Optics Letters, 43, 4033-4036 (2018).

[158]

• J. Hu, S. J. Fabbri, and C.-B. Huang, C.-S. Brès, "Investigation of temporal Talbot opera-

tion in a conventional optical tapped delay line structure," Optics Express, 27, 7922-7934

(2019). [159]

4.1 Introduction

High repetition-rate optical pulse trains are widely used for high-speed optical communica-

tions, optical sampling, and microwave photonics [39]. In addition to increasing the repetition-

rate directly at the laser cavity, repetition-rate multiplication (RRM) outside the laser cavity is

also sometimes desired [160]. As the optical pulse trains spectrally correspond to frequency

combs, RRM is most generally achieved by spectral amplitude filtering. It increases the comb

line spacing of the spectrum, using programmable pulse shaper or optical tapped delay line

(TDL) structure [48]. Another approach, however, maintains the comb line spacing but applies

spectral phase filtering, also known as temporal Talbot effect. Typical methods include using

LCFBG [55] or pulse shaper [56].

Here we show that the TDL structure that has long been used for spectral amplitude filtering,

can actually function as a temporal Talbot multiplier as well. Moreover, flexible combinations

of amplitude and phase filtering can also be implemented in such structure, all leading to the

same multiplication factor. The simple TDL structure is amenable to photonic integration,

hence very promising for versatile RRM on-chip.

OAM modes of light resemble the frequency comb modes in many ways. They are character-

ized with the helical phase fronts that are typically integer number of 2π around the azimuthal
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angle [74]. This integer number is also known as the topological charge. Noticeably, the topo-

logical charge of an OAM mode is analogous to the mode index of frequency comb line, while

the azimuthal angle can be seen as time but with only one period from 0 to 2π. Indeed, the

superposition of OAM modes has already been shown to create azimuthal petals [77], similar

to pulse train in time domain. Likewise, when a number of OAM modes are superimposed

with Talbot phases, azimuthal self-imaging would occur analogous to the temporal Talbot

effect. This implies that, the shaping concepts that have been developed for frequency comb

or optical pulse, may be adapted for shaping the OAM spectrum or the azimuthal profile of

the beam.

In this chapter, I will present the results on the temporal and azimuthal Talbot effects. First,

Section 4.2 discusses the mathematical foundations and properties of the Talbot phases used

in this thesis. Section 4.3 utilizes these Talbot phases to implement temporal Talbot operation

in optical TDL architecture. Section 4.4 extends the self-imaging concept to the OAM modes

of light, with the brief introduction of the OAM modes and then the demonstration of the

azimuthal Talbot effect.

4.2 Properties of Talbot phases

In Section 2.3, we have already described the generalized formula for Talbot phases. Through-

out this chapter, the Talbot phases adopted are specifically from [118], which can be formulated

as:

φn =


πn2

N
, if N ≡ 0 (mod 2)

2πn2

N
, if N ≡ 1 (mod 2)

(4.1)

where n ∈ Z. Comparing Eq. (4.1) with Eq. (2.13), we have chosen p = 1 and q = N if N is

an even number, while p = 2 and q = N if N is an odd number. For both cases, the greatest

common divisors (GCD) between the nominators (without πn2) and denominators are 1, i.e.

gcd(1, N ) = 1 for even N and gcd(2, N ) = 1 for odd N . This satisfies the coprime criterion for Eq.

(2.13). In the case of an odd N , it is noted that 2 is used as the nominator in Eq. (4.1) instead

of 1. The reason may be inferred from the Talbot carpet as sketched in Figure 4.1. When

N is even, the first N -self-images (p/q = 1/N ) are aligned with the initial images without a

period shift, which can be seen from 1/2 and 1/4 indicted in the Talbot carpet with solid boxes.

However, for an odd N , the first N -self-images always show a period shift compared to the

initial images, while the second N -self-images are aligned. It is manifested from the 1/3 and

2/3 indicted in the Talbot carpet with dashed boxes. And this may account for the definition

of Talbot phases when N is an odd number.

There are peculiar properties of Talbot phases as they are closely related to quadratic Gauss

sum [111, 114]. The main property is stated as follows. A sequence of phasors with Talbot
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Figure 4.1 – The Talbot carpet (half). p/q = 1/4 and 1/2 are indicated with the solid boxes,
while 1/3 and 2/3 are indicated with the dashed boxes. It can be seen that 3-times self-images
at 1/3 shows a period shift compared to the initial images, while not for 1/4, 1/2, and 2/3. This
may account for the definition of Talbot phases in [118]. Reproduced from [58].

phases, after discrete Fourier transform, also gives another sequence of phasors with Talbot

phases. This can be formulated for our Talbot phases as:

N−1∑
n=0

exp(−i
2πnk

N
− iφn) =



p
N exp(−i

π

4
+ iφk ), if N ≡ 0 (mod 2)

p
N exp(i

3N +1

4
φk ), if N ≡ 1 (mod 4)

p
N exp(−i

π

2
+ i

N +1

4
φk ), if N ≡ 3 (mod 4)

(4.2)

where k ∈Z. Since Eq. (4.2) is repetitive in k with period of N , we will confine the discussion

of the integer k between [0, N −1]. Note here (3N +1)/4 for N ≡ 1 (mod 4) and (N +1)/4 for

N ≡ 1 (mod 4) are both integers and also coprime with N . The detailed derivation of Eq. (4.2)

from scratch is beyond the scope of this thesis. Instead, we will begin with a lemma called the

generalized Landsberg-Schaar identity [115] (Eq. (2.8) in the reference):

N−1∑
n=0

exp(−iπ
n2l +nm

N
) =

√
N

L
exp(iπ

m2 −N l

4N l
)

l−1∑
n=0

exp(iπ
n2N +nm

l
) (4.3)

where m ∈Z, N ∈N+, l ∈N+, and N l +m needs to be an even number. In the following, we

will separately address the three conditions of Eq. (4.2) based on Eq. (4.3).

• N ≡ 0 (mod 2)

When N is an even number, set m = 0 and l = 1, so that N l +m = N satisfies the even

number condition. Substitute these values into Eq. (4.3), we can derive the following

identity:

N−1∑
n=0

exp(−i
πn2

N
) =

p
N exp(−i

π

4
) (4.4)
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Therefore the discrete Fourier transform of the Talbot phasors can be calculated:

N−1∑
n=0

exp(−i
2πnk

N
− iφn) = exp(i

πk2

N
)

N−1∑
n=0

exp(−i
π(n +k)2

N
)

=
p

N exp(−i
π

4
+ i

πk2

N
)

(4.5)

Note that for an even number N , the quadratic sums of n and (n +k) are the same. As a

result, Eq. (4.4) can be used for the second equality of Eq. (4.5).

• N ≡ 1 (mod 4)

When N is an odd number, let m = 2k (k ∈ Z), l = 2 in Eq. (4.3), which also satisfies

N l +m = 2N +2k is an even number. We derive that:

N−1∑
n=0

exp(−iπ
2n2 +2nk

N
) =

√
N

2
exp(i

πk2

2N
− i

π

4
)
{
1+exp(iπ

N +2k

2
)
}

(4.6)

Here Eq. (4.6) is valid whenever N is an odd number, so it holds for both N ≡ 1 (mod 4)

and N ≡ 3 (mod 4) cases. When N ≡ 1 (mod 4):

1+exp(iπ
N +2k

2
) =


1p
2

exp(i
π

4
), if k ≡ 0 (mod 2)

1p
2

exp(−i
π

4
), if k ≡ 1 (mod 2)

(4.7)

Also note that:

exp(i
πk2

N
) =


exp(i

πk2

2N
+ i

3π

2
k2), if k ≡ 0 (mod 2)

exp(i
πk2

2N
+ i

3π

2
(k2 −1)), if k ≡ 1 (mod 2)

(4.8)

In Eq. (4.8), we have used the fact that k2 (or k2 −1) is divisible by 4 if k is even (or odd).

Substitute Eq. (4.7) and Eq. (4.8) into Eq. (4.6), we can degenerate the two conditions

regardless k is even or odd:
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In this case, (3N +1)/4 is also an integer number, and is coprime with N . Eq. (4.9) is

equivalent to Eq. (4.2) in the condition of N ≡ 1 (mod 4) .

• N ≡ 3 (mod 4)
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Note that Eq.(4.6) is also valid for N ≡ 3 (mod 4). In this case:
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Similar expression as Eq. (4.8) for N ≡ 3 (mod 4) is found:
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The odd and even conditions of k can also be merged into one equation as:
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In Eq. (4.12), (N +1)/4 is also an integer and it is easy to prove that it coprimes with N .

Here we have derived Eq. (4.2) in the condition of N ≡ 3 (mod 4).

Overall, Eq. (4.2) is proved by incorporating all three parts above. Indeed, the discrete Fourier

transform of the Talbot phasors also gives a sequence of phasors with quadratic phases. By

comparing the calculated results with the generalized Talbot phases in Eq. (2.14), we found

that s = 1 for an even N , s = (3N +1)/2 for N ≡ 1 (mod 4), or s = (N +1)/2 for N ≡ 3 (mod 4),

respectively. Noticeably, this complies with Eq. (2.15) as well as the parity difference between

s and N . Eq. (4.2) underpins many Talbot phenomena in space, time, frequency, or even in

azimuthal angle as will be presented in this chapter.

4.3 Temporal Talbot multiplier based on an optical tapped delay

line

The proposed temporal Talbot multiplier is based on a conventional optical TDL structure

as sketched in Figure 4.2. It consists of N parallel delay lines with incremental delay T0 from

0 to (N −1)T0, each embedded with a phase tuning element. We assume the phase shifters

ϕn (n = 0,1,2, . . . , N −1) have at least 2π phase tuning range. Here the delay T0 is chosen to be

1/N of the input optical pulse period, while N -times RRM is always achieved at the output.

We suppose that the splitter used at the input and combiner at the output equally splits and

collects light with no additional phase relation between the arms: the additional phase in each

arm can be compensated through the corresponding phase tuning element without loss of
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Figure 4.2 – Schematic diagram of the optical tapped delay line (TDL) structure. It is composed
of N parallel arms with incremental delays and phase tuning elements. T0 is the unit delay
time, and ϕn (n = 0,1,2, . . . , N −1) are the phases applied to phase shifters.

generality. This architecture is well-known and can be integrated, and is indeed a simplified

version of the photonic integrated circuits demonstrated in [47, 48], albeit without power

control of each arm. The transfer function of such structure is given by:

H( f ) =
1

N

N−1∑
n=0

exp(−i 2πn f T0 − iϕn) (4.13)

Here we have adopted an opposite sign convention of the phases in Eq. (4.13) compared to the

equations developed for EO modulation, in order to comply with the publication [159]. But the

main results and conclusions remain the same. It can be seen that the TDL response is periodic

with a FSR equal to the inverse of the elementary delay, i.e. fF SR = 1/T0. Before discussing the

temporal Talbot operation of the proposed structure, we first review the well-known spectral

amplitude filtering as a comparison.

Spectral amplitude filtering. When all the phase shifters are set in-phase, for example ϕn = 0

(n = 0,1,2, . . . , N − 1), the filter response becomes a periodic sinc function [48]. This was

employed in optical OFDM systems for the demultiplexing of subcarriers [161]. As an example,

Figure 4.3 a showcases the power and phase response of the TDL filter when N = 8. It is clearly

seen that the filter suppresses all the frequency components at every 1/N (grey markers)

of fF SR , except the maximum transmission at every integer fF SR (red markers). Note that

the overshoot spikes in the phase response are artifacts at zero amplitudes. Therefore, if

a pulsed source with repetition-rate fF SR /N is sent through the filter, such that the comb

lines are aligned to the filter FSR, the comb spacing will be increased by N -times leading to

N -times RRM. This is shown in Figure 4.3 b. In the simulation, we have used periodic Gaussian

pulses as the input pulses, whose FWHM widths correspond to 1/25 of the period. The pulse

repetition-rate at the output of the filter is multiplied 8-times due to the increased comb line

spacing.

Spectral phase-only filtering. Spectral phase-only filtering, or temporal Talbot effect, is

characterized by RRM in the time domain while maintaining the spectral shape. Now we

consider the situation that the phase tuning elements are associated with the Talbot phases,

i.e. ϕn =φn (n = 0,1,2, . . . , N −1), where the actual phases being applied are the residues after
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TDL response Input Outputa b

Figure 4.3 – Spectral amplitude filtering operation of the TDL structure for N -times repetition-
rate multiplication (RRM). The phase tuning elements of the TDL are configured all in-phase,
i.e. (0,0,0,0,0,0,0,0). (a) Power (top) and phase (bottom) response of the TDL structure. (b)
Optical spectra (top) and temporal waveforms (bottom) at the input and output the TDL
filter. In simulation, N = 8 is used and the FWHM of the input pulse is set to 1/25 of its period.
fF SR = 1/T0 is the free spectral range of the device.

modulo 2π. When the input comb lines are aligned with the filter FSR, the transfer function at

the comb line locations can be found:

H( fk =
k

N T0
) =

1

N

N−1∑
n=0

exp(−i 2πn f T0 − iφn) =
1p
N

exp(−iθ+ i sφφk ) (4.14)

where fk = k/N T0 are the frequency locations of the input comb lines (k is the comb index

with respect to the center optical carrier). The second equality in Eq. (4.14) is valid due to

the property of Talbot phases proven in the identity of Eq. (4.2). θ and sφ are respectively

a constant phase and an integer multiplicative factor of the Talbot phases. As it has been

described in Section 4.2, they respectively correspond toπ/4 and 1 if N is even, 0 and (3N+1)/4

if N ≡ 1 (mod 4), π/2 and (N +1)/4 if N ≡ 3 (mod 4).

It can be inferred from Eq. (4.14) that, the TDL filter with Talbot phases creates identical

transmissions at the comb line locations. As a result, the shape of the input comb spectrum is

preserved. Here the varying part of the TDL filter is the phase response, sφφk , which complies

again with the Talbot phases (N is even) or multiples of the Talbot phases (N is odd). As such,

in addition to the same transmissions for all the input frequency components, the relative

phase response of the filter also fulfills the condition for the temporal Talbot effect therefore

resulting in N -times RRM.

A more straightforward explanation is from the time domain. As discussed in the spectral
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amplitude filtering case, the TDL structure with phase shifters tuned all in-phase enlarges the

spectral spacing by N -times. Then if we configure the phase shifters corresponding to the

Talbot phases, the spectral Talbot effect would occur, converting the spectrum with increased

spacing back to the original shape as the input. This is similar to spectral self-imaging achieved

by periodic multi-level Talbot phase modulation of pulse train, through arbitrary waveform

generator (AWG) [53, 57, 59]. Here the phase modulation of the pulse trains are implemented

through the phase tuning element associated to each copy of the initial pulse train.

Figure 4.4 shows again the case of N = 8 in this regard with the same input pulse train. Here the

phase shifters are configured with Talbot phase of N = 8, i.e. (0,π/8,π/2,9π/8,0,9π/8,π/2,π/8).

As shown in 4.4 a, the phase response of the filter (red markers in the bottom plot) is again of

periodic sequences (0,π/8,π/2,9π/8,0,9π/8,π/2,π/8) exactly matching the phases required

for temporal Talbot effect, together with equal amplitude transmission (red markers in the

top plot). Note that θ is omitted for illustration purpose here and afterwards, as a constant

phase will not change the waveform. The spectra and waveforms at the input and output of

the TDL device illustrated in Figure 4.4 b confirm the temporal Talbot operation. That is, the

repetition-rate of the pulses is 8-times multiplied, but the spectral shape remains identical to

the input spectrum. This is in stark contrast to the spectral amplitude filtering.

TDL response Input Outputa b

Figure 4.4 – Spectral phase-only filtering (temporal Talbot) operation of the TDL structure for
N -times RRM. The phase tuning elements of the TDL are configured with Talbot phases of
N = 8, i.e. (0,π/8,π/2,9π/8,0,9π/8,π/2,π/8). (a) Power (top) and phase (bottom) response of
the TDL structure. (b) Optical spectra (top) and temporal waveforms (bottom) at the input
and output the TDL filter.

Combined amplitude and phase filtering. In addition, the combination of spectral amplitude

and phase filtering [162], in between pure amplitude and pure phase-only filtering, can also

be realized in the TDL structure enabling the same N -times RRM. As an illustration, 8-times

RRM can be synthesized by combining either 2-times amplitude filtering with 4-times Talbot
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effect or 4-times amplitude filtering with 2-times Talbot effect, as shown in Figure 4.5 a and b,

respectively. Figure 4.5 a illustrates the case when the phase shifters are configured according

to the repeated Talbot phase of N = 4, i.e. (0,π/4,π,π/4,0,π/4,π,π/4), 2-times amplitude

filtering is realized due to 2- times repetition of applied phases to the phase shifters. This

is characterized both from the transmission profile (red/grey markers) of the filter response

and the doubled comb line spacing at the filter output. Moreover, the phase response at the

remaining comb lines follows the periodic Talbot phase relation (0,π/4,π,π/4), so that 4-times

temporal Talbot effect is achieved simultaneously. As such, 8-times RRM is observed at the

output of the filter while the spectrum appears as combs with comb line separation that is only

doubled. Similar condition applies to Figure 4.5 b for 8-times RRM, when the phase shifters

are configured to repeated Talbot phase sequence of N = 2, i.e. (0,π/2,0,π/2,0,π/2,0,π/2). In

general, N -times RRM can be synthesized in the TDL architecture through arbitrary integer

factor of N by spectral amplitude filtering, together with the complementary factor by temporal

Talbot effect. The strategy for the phase applied is the same as the example herein.

TDL response Outputa b TDL response Output

Figure 4.5 – Combined amplitude and phase filtering operation of the TDL structure for N -
times RRM. (a) Power (top) and phase (bottom) response of the TDL and the spectrum (top)
and temporal waveform (bottom) at the output of TDL filter, when the phase tuning elements
of the TDL are configured with repeated Talbot phases of N = 4, i.e. (0,π/4,π,π/4,0,π/4,π,π/4).
8-times RRM is achieved by 2-times spectral amplitude filtering and 4-times Talbot effect. (b)
Power (top) and phase (bottom) response of the TDL and the spectrum (top) and temporal
waveform (bottom) at the output of TDL filter, when the phase tuning elements of the TDL are
configured with Talbot phases of N = 2. 8-times RRM is achieved by 4-times spectral amplitude
filtering and 2-times Talbot effect.

Proof-of-concept verification. A proof-of-concept test is carried out with a commercial Mach-

Zehnder delay line interferometer (DLI), which is functionally equivalent to the proposed

structure at N = 2. The delay time between the two arms of interferometer is fixed at 100 ps

i.e. fF SR = 10 GHz, thereby is generally used as demodulator for 10 GHz differential-phase-

shift-keying (DPSK) signal. A piezo phase shifter is embedded in one arm to control the phase

relation between the two arms of the interferometer. Here we demonstrate that the DLI can be
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Figure 4.6 – Proof-of-concept verification of the proposed structure (N = 2) using a delay line
interferometer (DLI). (a) Experimental setup. MZM: Mach-Zehnder modulator; EDFA: erbium-
doped fiber amplifier; OSA: optical spectrum analyzer; OSO: optical sampling oscilloscope.
Input pulse trains with 5 GHz repetition-rate and 21 comb lines are synthesized based on
cascade modulators. The spectra and waveforms of the output pulse trains from the DLI are
measured with OSA and OSO. (b) The principle of temporal Talbot operation based on DLI.
The orange dashed lines corresponds to the DLI’s transfer function, where the blue circles
show equal transmission meanwhile periodic (0,π/2) phase response. (c) Optical spectra (top)
and temporal waveforms (bottom) measured at the input and two output ports of the DLI.

used to implement the temporal Talbot effect of 5 GHz pulse trains to achieve 2-times RRM.

Figure 4.6 a illustrates the experimental setup. Pulse trains with 5 GHz repetition-rate and

21 comb lines of rectangular shape are generated based on cascaded MZMs, when driven

by synchronized RF signals similar to Section 3.3. The spectrum and the waveform of the

input pulse trains (Fig. 4.6 c, input) are measured by an optical spectrum analyzer (OSA)

and an optical sampling oscilloscope (OSO), respectively. As sketched in Figure 4.6 b, the

embedded phase shifter is tuned so that the DLI have equal transmission to all the comb lines,

therefore the output spectrum shape will be identical to the input. As described above, an

additional periodic (0,π/2) phase profile also exists at these frequency comb locations that

gives rise to the temporal Talbot effect. This can be seen from both the two output ports of DLI

(Figure 4.6 c, output 1 & output 2): the pulse repetition-rates are doubled in the time domain,

while their spectra maintain the original shapes. Indeed, we have confirmed the temporal
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Talbot operation in the simplest case of N = 2. The asymmetrical pulse amplitude in the time

domain is mainly attributed to the power imbalance of the used DLI device, or equivalently

the extinction ratio of the DLI (nominal 18dB). Besides, the power discrepancy between the

input and each of the two outputs is roughly 5 dB, where 2 dB is the nominal insertion loss of

the DLI and 3 dB is due to the two outputs with equal power.

Efficiency and performance analysis. The efficiency of performing temporal Talbot effect in

the proposed TDL structure, however, is not a lossless process due to interference. Suppose the

input pulse train is comprised of K number of comb lines separated by fF SR /N , the frequency

representation of the input signal is given by:

Ei n( f ) =
E0p

K

K−1∑
k=0

akδ( f − fk ) (4.15)

where ak is the relative amplitude of the k-th frequency component fk . The total power of the

input source is |E0|2 ∑K−1
k=0 |ak |2/K . When the comb lines are aligned with the filter FSR, the

TDL output in the Talbot condition can be calculated:

Eout ( f ) = Ei n( f )H( f ) =
E0p
K N

K−1∑
k=0

ak exp(−iθ+ i sφφk )δ( f − fk ) (4.16)

where θ, sφ and φk are the same in Eq. (4.14). The total power at the output of the TDL is

therefore |E0|2 ∑K−1
k=0 |ak |2/K N , which corresponds to 1/N of the input power. As such, the

loss scales up for large number RRM by temporal Talbot effect. Nevertheless, this efficiency is

similar to performing spectral amplitude filtering in the same structure, where every one out

of N frequency components are selected.

If N×N discrete Fourier transform network [163] is installed as the output coupler, N temporal

Talbot RRM pulse trains can be accessed simultaneously. In fact, such N × N network has

been utilized in spectral amplitude filtering to direct different frequency spectra to different

ports, hence outputs N optical pulse trains with N -times RRM. Similarly, the incremental

linear phase imposed by the discrete Fourier transform network for each output port would

incrementally shift the Talbot pulse train by 1/T0 in time domain. Thus, all the N output pulse

trains are time-translated replica of initial Talbot pulse train. When all these Talbot pulse

trains are considered as a whole, the optical power is conserved. This is experimentally shown

above in the case of N = 2. Both outputs of the DLI exhibit 2-times Talbot pulse train, making

the overall structure in principle lossless if insertion loss is subtracted.

As seen from the output waveforms of the DLI, they deviate from ideal temporal Talbot effect.

To assess the performance of the TDL-based temporal Talbot multiplier, we evaluate the possi-

ble degradation due to the power imbalance and delay line length inaccuracy of the structure.

The power imbalance arises from both input and output couplers, as well as the unequal loss

in the arms due to the delay line length difference. Additional tunable Mach-Zehnder couplers

[48] or variable in-line attenuators can be adopted in the structure to tackle the imbalance.
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This would be necessary to improve the performance of temporal Talbot effect for sub-GHz

pulse train, as power imbalance increases with the delay line length difference. Another factor

that would degrade the performance is the delay line length inaccuracy. The filter response

is no longer periodic in this scenario. It is worth to mention that when the applied phases

also account for the phases induced by the length inaccuracy, the filter response around the

center frequency will still be close to ideal shape [164]. Nevertheless, the degradation would

inevitably be severe for input pulse trains with broader bandwidth. Unlike the power imbal-

ance which causes the Talbot-multiplied pulses to be of unequal amplitudes, the inaccuracy

of delay length mainly results in the output spectrum deviating from the input spectral shape.

Compared to its SLM-based pulse shaper counterpart, the proposed multiplier features several

advantages in terms of temporal Talbot implementation. The method benefits from the peri-

odic nature of its transfer function, thereby eliminating the use of SLM to apply periodic Talbot

phase. And it is particularly appealing to multiply relatively low repetition-rate (sub-GHz)

pulse train, which is not easily accessible by 4-f pulse shaper of limited spectral resolution.

Most importantly, while 4-f pulse shaper is generally bulky, the structure is ready to be inte-

grated to all kinds of platforms in a simple and compact manner. Compared to the LCFBG,

the TDL structure benefits from the flexible spectral amplitude and phase shaping. Also the

working bandwidth of the proposed structure is generally larger than the LCFBG. Nevertheless,

loss is intrinsic to the proposed multiplier as well as the potential degradation discussed above.

Overall, it provides a complementary approach to implement temporal Talbot RRM which is

amenable to photonic integration.

4.4 Azimuthal Talbot effect based on orbital angular momentum

beams

In this section, we demonstrate the self-imaging of azimuthal petals based on OAM modes

when superimposed with Talbot phases. First, we briefly discuss the basis of OAM of light, and

we draw close analogy between OAM mode and frequency comb mode, as well as between

azimuthal angle and time domain. Given the existence of temporal Talbot effect, similar

phenomenon is likely to occur in the azimuthal domain, i.e. the azimuthal Talbot effect. We

experimentally demonstrate such self-imaging effect using a series of superimposed OAM

modes, with experimental results in good agreement with simulation. The azimuthal Talbot

effect may offer more flexibility for various OAM-involved applications, such as particle

manipulation, laser inscription, quantum optics, and space-division multiplexing (SDM)

optical communication.

Optical angular momenta can be classified into two types: spin angular momentum (SAM)

and orbital angular momentum (OAM). SAM is linked to the circular polarization state of light

field, and is found to carry additional ±ħ of angular momentum per photon with respect to

linear polarization state, where ħ is the reduced Planck constant and the sign distinguishes

the left or right circular polarization [74]. OAM is associated to the helical phase structure
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of light wavefront. Figure 4.7 shows the wavefronts (top) and cross-section phase profiles

(bottom) of a number of OAM states of light. Mathematically, the OAM phase is characterized

by exp(i lΦ) in the cylindrical coordinate, where Φ is the azimuthal angle around the beam

center and l is known as the topological charge of the optical vortex. Compared to plane

wave, OAM state also carriers additional angular momentum of lħ per photon. Note that

the topological charge l and thereby the angular momentum lħ are also quantized. In fact,

fractional OAM state can be viewed as superposition of a number of integer OAM modes by

Fourier series [165]. The helical structure of light wavefront has attracted significant research

attention and found many applications in particle manipulation [166], quantum optics [167],

optical communication [168], sensing [77], and super-resolution microscopy [169].

0

2π

l = −2 l = −1 l = 0 l = +1 l = +2

Figure 4.7 – Schematics of orbital angular momentum (OAM) modes of light. Helical phase
fronts (top) and phase profiles at the cross-sections (bottom) of OAM modes are shown, with
topological charges from l = −2 to 2. Note that l = 0 corresponds to the plane wave of a
Gaussian beam. The phase fronts are adapted from Wikipedia.

Concept of azimuthal Talbot effect. Notably, the mathematical expression of OAM mode as

well as its discrete nature shares high similarity with optical frequency comb mode. That

is, a number of OAM modes superimposed with Talbot phases may also give rise to the

self-imaging in the azimuthal angle. However, unlike in the case of temporal Talbot effect

which typically relies on dispersive propagation to obtain quadratic phase, there is no such

dispersive counterpart in the azimuthal angle. Indeed for a beam propagating in free space,

the diffraction only occurs in the radial direction. Here we adopt the method by directly

associating the Talbot phase with each OAM mode, similar to implementing the temporal

RRM using a pulse shaper [56]. Consider a number of consecutive OAM modes with topological

charges from −M to M (2M +1 in total), and the superposition of OAM modes is given by:

E(r,Φ) =
M∑

l=−M
Al (r )exp(i lΦ+ iϕl ) (4.17)

where Al (r ), and ϕl are the amplitude and initial phase associated with l -th order OAM mode,

respectively. It is clearly seen from Eq. 4.17 that the expression of superimposed OAM modes is

alike a number of comb modes with different amplitudes and initial phases. Therefore, when

these OAM modes are of equal amplitudes and in-phase (ϕl = 0, l = −M , ..., M), there will be a
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OAM order l … l = -2 l = -1 l = 0 l = +1 l = +2 … Intensity
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Ord. x2 … …

Inv. x2 … …
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Figure 4.8 – Concept of azimuthal Talbot effect. When the OAM modes are superimposed
with Talbot phases, intensity self-images occur in the azimuthal angle. The last column shows
the intensity profile corresponding to the summation of all the OAM modes in each row
(topological charges from −10 to 10 are used in the simulation while only −2 to 2 are shown).
Ordinary (Ord.) and inverted (Inv.) with integer (×1) and fractional (×2 and ×3) Talbot effects
are illustrated.

single sinc-shaped petal generated in the azimuthal angle (Figure 4.8, Ord. ×1). Moreover, the

position of the petal can be modified by applying linear phases to the OAM modes, where the

translation in azimuthal angle is given by the linear phase slope. A specific example is when

the initial phases of adjacent OAM modes are π out-of-phase. In this case, the sinc-shaped

petal is also π shifted, which corresponds to the inverted pattern of the initial petal (Figure

4.8, Inv. ×1). These two conditions actually represent respectively the ordinary integer Talbot

and the inverted integer Talbot [52]. More interesting situation comes when the initial phases

of the OAM modes are the Talbot phases as defined in Eq. (4.1), i.e. ϕl = φl . For instance,

N = 2 and N = 3 of Eq. (4.1) gives the periodic Talbot phases as (0,π/2) and (0,2π/3,2π/3),

respectively. When applying these periodic phase sequences to the OAM modes, the single

intensity petal will get self-imaged in the azimuthal angle by 2 or 3-times (Figure 4.8, Ord.

×2 & Ord. ×3). This corresponds to the fractional Talbot images in the Talbot carpet, and is

analogous to temporal Talbot effect that achieves 2 or 3-times RRM. For all the inverted cases

of Figure 4.8, additional alternating (0,π) phase sequences are added on top of the ordinary

Talbot phases. In the Talbot carpet, they correspond to the half-period shifted fractional Talbot

images. While in the context of azimuthal angle, half-period is π and it is just the image

inversion.
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Experimental demonstration of azimuthal Talbot effect. The experiment setup to imple-

ment azimuthal Talbot effect is shown in Figure 4.9. We synthesize the superposition of a

series of OAM modes based on a 2D phase-only SLM and an optical 4− f system. The tech-

nique to encode complex amplitude modulation via such setup is described in Section. 2.2.

The 4− f imaging system incorporates a SLM in its input plane, a camera in its output plane,

and an iris placed in its Fourier plane. Two identical lenses with focal lengths f = 15 cm are

used in the 4− f system. In the experiment, a linear phase ramp is added in addition to the

calculated hologram to separate encoded field from reflection, while preserving the amplitude

images recorded at the camera [102]. As a result, although the 4− f system is aligned based on

the reflection from the SLM (red dashed line), the iris is displaced and selects the diffracted

light. Note that the iris here not only blocks out the unmodulated light, but also filters out

higher-order diffraction orders to achieve complex amplitude modulation [104]. A CW laser at

telecom wavelength is attenuated by an in-line attenuator to avoid saturation at the camera,

and passed through a polarization controller to maximize the SLM modulation efficiency. The

light beam is then collimated to 3.6 mm diameter and sent to the 4− f system described above.

Iris

LLSLM

CAM

COL
PC

CW LaserATT

f f f f

Figure 4.9 – Experimental setup for the demonstration of azimuthal Talbot effect. ATT: attenu-
ator; PC: polarization controller; COL: collimator; SLM: spatial light modulator; L: lens; CAM:
camera; f : focal length. The setup consists of an optical 4− f system to encode superposition
of OAM modes, with a SLM in its input plane, an iris in its Fourier plane, and a camera in its
output plane. The SLM is loaded with target phase pattern (the image corresponds to the
2-times azimuthal Talbot effect), and is illuminated by a collimated laser beam.

Figure 4.10 shows the experimental and simulated images of azimuthal self-imaging. Notice-

ably for a 4− f imaging system, the output image is an inverted replica of the input. Thus,

all the ordinary (inverted) Talbot images taken at the output plane of the 4− f system show

intensity peaks aligned at negative (positive) x-axis. In both experiment and simulation, we

use OAM topological charge orders from −10 to 10 with equal amplitudes. The results for

ordinary integer and inverted integer (obtained when neighboring OAM modes are π out of

phase) are shown in Figure 4.10 a and d, respectively. When proper Talbot phases defined by

Eq. (4.1) are applied, the doubling and tripling of the azimuthal intensity repetition-rate are

clearly observed in Figure 4.10 b and c. Figure 4.10 e and f are the inverted replica of Figure

4.10 b and c with additional periodically alternating (0,π) phases. All of the azimuthal Talbot
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images correspond to specific planes in a Talbot carpet.
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Figure 4.10 – Experiment and simulation images of azimuthal Talbot effect. The OAM modes
used in the experiment and simulation are ordered from −10 to 10 of equal amplitudes.
Ordinary (a) integer Talbot (×1): OAM modes all in-phase; (b) fractional Talbot (×2): OAM
modes with periodic (0,π/2) phases; (c) fractional Talbot (×3): OAM modes with periodic
(0,2π/3,2π/3) phases. Inverted (d) integer Talbot (×1): OAM modes with periodic (0,π) phases;
(e) fractional Talbot (×2): OAM modes with periodic (0,3π/2) phases; (f) fractional Talbot (×3):
OAM modes with periodic (0,5π/3,2π/3,π,2π/3,5π/3) phases.

In order to have a better comparison between experiment and simulation results , we extract

the azimuthal intensity of the experimental images in the case of inverted Talbot effect. The

experimental azimuthal intensity profile is obtained by first positioning a narrow donut ring

of interest around the origin of the beam, and then mapping the azimuthal angle and the

light intensity of all the pixels inside the ring. Finally, all the azimuthal angle and intensity

pairs are unwrapped in a (−π,π) plot, as well as being normalized. The azimuthal intensity

profiles of the experimental images of Figure 4.10 d, e, and f are extracted as in Figure 4.11.

The extracted azimuthal intensity distributions are in reasonably good agreement with the
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simulation. The self-imaged petals are indeed aligned with simulation results, and even the

sidelobes are visible due to the rectangular shape of the constituting OAM spectra. The noise

background observed in the experimental images is mainly attributed to the imperfection of

the camera being used, which shows a time-changing noise floor even without input light.

As such, the contrast between peaks and sidelobes of experimental images is degraded after

normalization, when compared to numerical results.
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Figure 4.11 – Extracted azimuthal intensity profiles of inverted Talbot images. From top to
bottom: original (integer Talbot), 2−times azimuthal Talbot, and 2−times azimuthal Talbot.
Orange: experiment; dashed black: simulation.

Azimuthal Talbot effect of Gaussian-apodized OAM spectrum. The petal shapes can also be

structured by tailoring the amplitude profiles of the OAM modes. When the OAM spectrum is

Gaussian-apodized, the corresponding azimuthal petal will also be Gaussian-shaped. This

is analogous to its time-domain counterpart: a transform-limited Gaussian pulse also corre-

sponds to a Gaussian-shaped frequency spectrum. The experiment and simulation images of

azimuthal intensity RRM using Gaussian-apodized OAM spectra are shown in Figure 4.11. By

using a Gaussian-apodized OAM spectrum ordered from −10 to 10, 2-times (Figure 4.11 b)

and 3-times (Figure 4.11 c) azimuthal self-imaging can be realized by adapting Talbot phase to

the spectrum (Figure 4.11 c). As expected, less sidelobes and broadening of the petal angular

occupancy are observed compared to a rectangular OAM spectrum, confirmed by both experi-

ment the simulation results. Higher multiplication factors can be obtained when increasing

the number of OAM orders as illustrated in Figure 4.11 d-f. Gaussian-shaped OAM spectra

ordered from −20 to 20 are combined with appropriate Talbot phases in order to reach a 10,

11, 12-fold azimuthal Talbot RRM.

Azimuthal Talbot effect of Laguerre-Gaussian modes. A widely used set of beams carrying

OAM is the Laguerre–Gaussian (LG) beam. The LG beam is characterized not only by the

azimuthal index, but also the radial index that corresponds to the number of nodes in the
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Figure 4.12 – Experiment and simulation images of azimuthal Talbot effect with Gaussian-
apodized OAM spectrum. OAM modes ordered from −10 to 10 with Gaussian apodization
for (a) integer Talbot (×1) (b) fractional Talbot (×2) (c) fractional Talbot (×3) in the azimuthal
angle. OAM modes ordered from −20 to 20 with Gaussian apodization for (d) fractional Talbot
(×10) (e) fractional Talbot (×11) (f) fractional Talbot (×12) in the azimuthal angle.

radial axis [74]. Here, we also demonstrate the azimuthal Talbot effect for a number of LG

beams of the same radial indices but different topological charges, given the full amplitude

and phase control of our setup. In the experiment, the laser beam is collimated to a larger size

(7 mm diameter) to approximate uniform illumination. Similar to previous conditions, Talbot

phases are associated with the topological charges for the azimuthal Talbot effect. Figure 4.13

shows the corresponding experimental and numerical results of superimposed LG modes with

the same radial indices. LG modes with radial indices of 0 and topological charges from −10 to

10 of equal weights are shown in Figure 4.13 a-c. For such LG modes, they only have one nodal

rings, while the size of hollow center enlarges with an increasing topological charge. Therefore,

the resulting Talbot images are qualitatively similar to images implemented from pure OAM

66



Temporal and azimuthal Talbot effects Chapter 4

 

d e f

a b c

0

1

N
or

m
al

iz
ed

 in
te

ns
ity

0

1

N
or

m
al

iz
ed

 in
te

ns
ity

Exp Exp Exp

Exp Exp Exp

Sim Sim Sim

Sim Sim Sim

Figure 4.13 – Experiment and simulation images of azimuthal Talbot effect of Laguerre-
Gaussian (LG) modes. LG modes with radial index of 0 and azimuthal indices ordered from
−10 to 10 for (a) integer Talbot (×1) (b) fractional Talbot (×2) (c) fractional Talbot (×3) in
the azimuthal angle. LG modes with radial index of 1 and azimuthal indices ordered from
−10 to 10 for (d) integer Talbot (×1) (e) fractional Talbot (×2) (f) fractional Talbot (×3) in the
azimuthal angle.

phases. LG modes with radial indices of 1 and topological charges from −10 to 10 of equal

weights are displayed in Figure 4.13 d-f. We can see that in Figure 4.13 d the initial intensity

petal breaks down in the middle. This can be attributed to the interference from different

azimuthal modes of different nodal ring orders. Nevertheless, the azimuthal intensity RRM is

still manifested according to the applied Talbot phases. The discrepancy between experiment

and simulation images, with experiment images attenuated in the periphery and intensified in

the center, is mainly due to the nonuniform illumination of the input Gaussian spatial profile.

It is worth to mention that the results presented in this section demonstrate the azimuthal self-

imaging at the generation stage. While the external Talbot phase shaping of an existing OAM

spectrum is possibly be implemented in the Fourier plane [170]. The OAM beams after Fourier
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transforms [171] or mode sorters [172] map the OAM orders into a series of spatially-resolved

concentric rings or different locations in a spatial axis, respectively. In this regard, the Talbot

phases can be easily associated with the OAM modes using a phase-only SLM. The technique

is analogous to using Fourier-domain pulse shaping for temporal Talbot implementation [56].

This may offer substantial interest for classical and quantum information processing when

OAM mode is used as the basis.

4.5 Conclusions

In summary, a novel temporal Talbot multiplier is proposed based on optical TDL structure,

which is conventionally used for spectral amplitude filtering. We demonstrate that, temporal

Talbot effect and versatile combined amplitude and phase filtering can be synthesized in such

an architecture, all leading to the same RRM factor. The working principle is theoretically

derived and numerically simulated, also confirmed by a proof-of-concept experiment. In

addition, we evaluate the efficiency and potential performance degradation of the proposed

temporal Talbot multiplier.

Also, the azimuthal Talbot effect based on the interference of OAM modes is demonstrated.

Various Talbot conditions from ordinary to inverted azimuthal self-images are demonstrated,

as well as achieving high petal multiplication factor. The close analogy between the azimuthal

and temporal Talbot intensity RRM is discussed. In addition, the azimuthal self-imaging in the

scenarios of Gaussian-apodized OAM spectrum and LG beam is also investigated. The finding

of azimuthal Talbot effect implies the duality between OAM mode and frequency comb mode.

Therefore, the shaping techniques of frequency combs may be borrowed for the processing of

OAM spectra, or vice versa.
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5 Soliton microcomb based RF pho-
tonic filters

The content in this chapter is based on the following publication:

• J. Hu, J. He, J. Liu, A. S. Raja, M. Karpov, A. Lukashchuk, T. J. Kippenberg, and C.-S. Brès,

"Reconfigurable radiofrequency filters based on versatile soliton microcombs," Nature

Communications, 11, 4377 (2020). [173]

The microresonators used in this study are fabricated by Junqiu Liu and characterized by Jijun

He. Jijun He also carried out part of the experiment and simulation in this work.

5.1 Introduction

Thanks to the ever-maturing photonic integration, RF photonic systems and subsystems

have been brought to new height [87, 174], in terms of footprint, scalability, and potentially

cost-effectiveness. Particularly, RF filtering at the chip-scale is a key enabling function [91].

Paradigm demonstrations include the integration of the basic filtering blocks, such as delay

lines [175], optical spectral shaper [46], programmable mesh topologies [176], ring resonators

[93], as well as the use of stimulated Brillouin scattering in waveguides [177]. Recently, an

all-integrated RF photonic filter has been shown in a monolithic platform [178]. In addition

to these approaches, RF filters can also be constructed based on multi-wavelength sources

and dispersive propagation [37, 80]. For such RF photonic filters, each optical wavelength is

equivalent to the filter tap of a TDL filter, while the differential delay is given by a common

dispersive element. The single dispersive delay line greatly simplifies the structure complexity

of a TDL filter. Nevertheless, the main complexity is then shifted to the multi-wavelength

source. EO combs [37, 80], MLLs [179, 180], or laser banks [175] are generally adopted as light

sources, which remain expensive and bulky options.

Integrated microcombs have appeared as an interesting alternative for comb-based RF pho-

tonic filters [81–83]. It is worth to mention that, besides filtering RF signals, microcombs have

been used in other various RF photonic functions, such as true-time delay beamforming [181],
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RF channelizer [182], and analog computation [183]. In regards to microcomb-based RF filters,

the large comb line spacing of microcombs also enhances RF filters with broader Nyquist

zone (spur free range), lower latency [81], less dispersion induced fading, as well as larger

number counts of equivalent delay lines [82], unparalleled by other approaches. However,

so far all these microcomb-based RF filters have been implemented on either dark pulses

[81, 136] or complex soliton crystal states [82, 83]. Additional programmable pulse shaping

modules are inevitably required to equalize or smooth the comb spectral shape. Thus, the

system complexity is significantly increased while the potential for low-cost and compactness

of such RF filters is compromised.

We demonstrate soliton-based RF photonic filters without any external shaping. In addition,

the synthesized RF filters can be all-optically reconfigured through the internal shaping

of versatile soliton states. Specifically, we trigger, in a deterministic fashion, the perfect

soliton crystals (PSC) to multiply the comb line spacing [62, 184], thereby dividing the RF

passband frequencies. Moreover, we achieve filter reconfiguration based on versatile two-

soliton microcombs (TSM). The spectral interference of two solitons is functionally equivalent

to an interferometric setup, shifting the filter passband frequency via modification of the

angle between them. The internal exploitation of abundant and regulated soliton formats of a

microresonator effectively bypasses external pulse shaping, which is required previously to

obtain RF filters with good suppression ratio and reconfigurability.

In this chapter, I will present the results regarding the internal shaping of soliton microcombs

for reconfigurable RF photonic filters. Section 5.2 describes the conceptual setup of soliton-

based RF filters and formulates the RF filter responses of various soliton states. Section 5.3

elaborates the excitation approaches of versatile soliton states and the characterization of

the microresonator chip being used. Section 5.4 details the reconfigurable RF photonic filters

based on these soliton states, together with a proof-of-concept system demonstration. Section

5.5 compares the performances of our filters with other comb-based RF filters, and a simple

link optimization of our RF filter is also provided.

5.2 Principle of operation

The working principle of comb-based RF photonic filters has been detailed in Section 3.4. In

terms of the current implementation, the conceptual diagram is depicted in Figure 5.1. Firstly,

a tunable C-band CW laser initiates soliton microcomb generation. As before, the comb lines

serve as the filter taps for the TDL RF photonic filter. By modulating the RF signals from a

VNA on MZM, the RF signals are broadcast to each microcomb mode. Then the upconverted

signals are propagated through a spool of SMF to acquire incremental delays between the filter

taps. Finally, the signals are converted back to the RF domain in a fast PD. The overall setup of

microcomb-based RF filter is slightly different from the one based on EO combs. Apart from

the difference in the comb source, MZM is used here instead of DP-MZM for RF modulation,

and also SMF is used instead of DCF for dispersive propagation.
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Figure 5.1 – Schematic diagram of versatile soliton-based RF photonic filters. The conceptual
setup consists of four parts: microcomb generation, RF signal upconversion, dispersive
propagation, and photodetection. MZM: Mach-Zehnder modulator; SMF: single-mode fiber;
PD: photodiode; VNA:vector network analyzer. Reconfigurable RF filters are synthesized
based on versatile soliton microcombs. (a) Single-soliton RF filter with passband centered at
fFSR (blue). (b) N− perfect soliton crystals (PSC) RF filters with passband centered at fFSR/N
(green, N = 4 is shown); (c) Two-soliton microcomb (TSM) RF filters with passband centered
at fFSRα/360◦ (orange), where α is the relative azimuthal angle between two solitons (α = 90◦

is shown).

RF filter responses of versatile soliton states. Recall that the comb-based RF filters can be

described by the discrete Fourier transform of the frequency comb intensity:

H( fRF ) ∼ cos(2π2Θ2 f 2
RF )

∑
k
|ak |2 exp(i 4π2Θ2k∆ f fRF ) (5.1)

where |ak |2 denotes the power of each comb line,Θ2 = −β2L is the product of the second-order

dispersion β2 of the dispersive element and its length L, and ∆ f is the comb line spacing.

fF SR = 1/2πΘ2∆ f is the FSR of the RF filters. The definitions of the parameters are the same

as in Eq. (3.17). While for Eq. 5.1, an amplitude modulation term replaces the quadratic phase

term of Eq. (3.17), as here the simple double-sideband (DSB) modulation based on MZM is

used [155]. Thanks to the large comb line spacing of microcombs, the required accumulated

dispersion Θ2 is much less to achieve similar fF SR . This makes the amount of dispersion

within reach via an integrated delay element [175]. Moreover, in this condition, the power

fading resulting from the amplitude modulation (cos(2π2Θ2 f 2
RF ) term of Eq. (5.1)) is also

minimized for smallΘ2. Note that the simple RF modulation via MZM bypasses the need of

complex modulator structure (DP-MZM) and a broadband electrical 90◦ hybrid.

The exact RF filter responses are obtained by substituting the microcomb spectral profile into
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Eq. (5.1). For single-soliton microcomb, the optical field is given by:

E(t ) ∼ sech(
t

Ts
)⊗

∞∑
n=−∞

δ(t −nT ) (5.2)

where Ts and T = 1/∆ f are the soliton pulse width and period, respectively. δ(t −nT ) is the

Dirac function and sech is the hyperbolic secant function of soliton pulse shape. Taking the

Fourier transform of Eq. (5.2), the single soliton spectrum is derived as:

Ẽ( f ) ∼ sech(π2Ts f )
∞∑

k=−∞
δ( f −k∆ f ) (5.3)

where f is the frequency offset between the comb mode and pump mode. This leads to the

power of each comb line, or equivalently the filter tap weights, being |ak |2 ∼ sech2(π2kTs/T ).

k ∈Z is the mode index with respect to the center comb line. Disregarding the envelope term

of Eq. (5.1) for the moment, we can rewrite the summation part using Poisson summation

formula:

∞∑
k=−∞

|ak |2 exp(i 2πk
fRF

fF SR
) = fF SR P ( fRF )⊗

∞∑
n=−∞

δ( fRF −n fF SR ) (5.4)

where P ( fRF ) is the Fourier transform of the generalized form of |ak |2, at which the mode

index k is substituted by an arbitrary variable x, times a factor fF SR :

P ( fRF ) =
∫

sech2(
π2

Ts fF SR
T x)exp(i 2π fRF x)d x ∼

2 T
Ts

fRF

fF SR

sinh( T
Ts

fRF

fF SR
)
≡G( fRF ) (5.5)

where the Fourier transform of sech-squared function can be analytical calculated using the

residue theorem [185], and is defined as G( fRF ). Therefore, the single-soliton-based RF filter

response HSSM ( fRF ) is derived by substituting G( fRF ) back to Eq. (5.1) as:

HSSM ( fRF ) ∼ cos(2π2Θ2 f 2
RF )

∞∑
n=−∞

G( fRF −n fF SR ) (5.6)

It is seen that the RF filter shows periodic filter responses and modulated by a fading envelope,

with FSR of fF SR . As the tap weights are all-positive, the passband frequencies of the RF filters

are at every multiples of fF SR , including a DC response. We focus on the first passband in this

chapter. This single-soliton condition is shown schematically in Figure 5.1 a.

Figure 5.1 b illustrates the condition when the N -PSC state (N = 4 is shown) is generated and

being used for the RF filtering. The defect-free N -PSC corresponds to N (N ∈N≥2) in-phase

solitons equally distributed in one period. Spectrally, N -PSC multiplies the initial comb line

spacing by N -times, as if the single soliton is generated from a N -times smaller microresonator.

Their corresponding RF filter responses HN−PSC ( fRF ) can thus be simply inferred from the
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single-soliton case:

HN−PSC ( fRF ) ∼ cos(2π2Θ2 f 2
RF )

∞∑
n=−∞

G( fRF −n
fF SR

N
) (5.7)

Here the filter FSR fF SR = 1/2πΘ2∆ f is effectively reduced by N -times due to the N -times

enlargement of the comb FSR. As a result, this would impart N -times division of the filter

passband frequencies.

When there are two solitons circulating in the microresonator, the corresponding RF filter

response can be formulated in a similar manner. Assume that the two solitons are of identical

amplitudes and pulse widths, which is generally the case for multi-soliton microcombs. The

optical field is thus given by:

E(t ) ∼ {
sech(

t

Ts
)+ sech(

t − αT
2π

Ts
)
}⊗ ∞∑

n=−∞
δ(t −nT ) (5.8)

where α is the relative azimuthal angle between two solitons, expressed in radian. The TSM

spectrum can be found by Fourier transform of Eq. (5.8):

Ẽ( f ) ∼ sech(π2T0 f )
(
1+exp(−iαk)

) ∞∑
k=−∞

δ( f −k∆ f ) (5.9)

We then obtain the filter tap weights as:

|ak |2 ∼ sech2(π2kT0/T )
(
2+2cos(αk)

)
(5.10)

where k ∈Z is the comb mode index relative to the center mode. Inserting Eq. (5.10) back to

Eq. (5.1) derives:

HT SM ( fRF ) ∼ cos(2π2Θ2 f 2
RF )

∞∑
n=−∞

{
2G( fRF )+G( fRF − α

2π
fF SR )+G( fRF + α

2π
fF SR )

}
(5.11)

Compared to Eq. 5.6, clearly new passbands of halved amplitudes appear due to two-soliton

interference, which are displaced at both sides from the initial response according to the

relative angle between them. Thus, the RF filter passbands can slide inside the fF SR by

modifying the relative soliton angles. This condition is depicted in Figure 5.1 c.

Besides, we can also derive the RF filter bandwidth from Eq. (5.5), which is approximately

2.98Ts fF SR /T . It is proportional to the soliton pulse width and the RF filter FSR, as well as the

repetition-rate of the underlying microcomb.

Microresonator FSR selection. We also investigate the impact of microresonator FSR on the

synthesized RF filter. The simulation is based on the fundamental single-soliton condition

formulated in Eq. (5.6), therefore the microcomb FSR corresponds to the microresonator FSR,

while the RF filters using PSC and TSM states are simply the division and translation of the
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Figure 5.2 – Visualization of RF filter response using different microcomb FSR. Simulated
RF filter responses (solid lines) based on various microcomb FSRs∆ f from 10 GHz, 20 GHz,
50 GHz to 104 GHz (FSR used in this study) are shown. The dispersion-induced fading en-
velops (dashed lines) are also sketched. Soliton pulse width Ts = 100 fs is considered for all the
cases in the simulation, while the accumulated dispersionΘ2 is adapted so that all these RF
filters coincide at the same frequency.

single soliton case. Subjected to the measurement range of VNA, we have chosen the RF FSR

fF SR to be around 16 GHz. Here the amount of accumulated dispersionΘ2 also needs to be

adjusted for different microcomb FSR.

In Figure 5.2, we visualize specifically the RF photonic filters using 10 GHz, 20 GHz, 50 GHz,

and 104 GHz single-soliton states, with identical soliton pulse width Ts = 100 fs assumed. It is

clearly observed that the envelope fading becomes more severe for small FSR microcomb due

to the largeΘ2 being used as to maintain the same center frequency of the filter. That is the

reason why advanced modulation technique is needed in Section 3.4 to eliminate the fading

effect. In comparison, microcombs of large comb spacing allow for a simple RF uploading

method. Also, since we are interested in RF filters up to around 16 GHz, the underlying comb

with repetition-rate over 32 GHz is preferred to avoid spurs generated from the signal beating

with other comb lines [37]. Such spur-free frequency range is the so-called Nyquist zone given

by half of the comb FSR. On the other hand, if one requires RF filters with narrower bandwidth,

a microresonator with larger size generating smaller FSR comb will be a better choice. This

is because the filter bandwidth scales with the comb FSR given a certain soliton pulse width,

as discussed above. The recent ultralow loss Si3N4 technology has successfully demonstrate

soliton formation down to the 10 GHz range [186], which would enable RF filters of only tens

of MHz bandwidth without additional pulse shaping. Since obtaining narrow RF photonic

filter is not the primary interest in this study, we utilize a 103.9 GHz microresonator in the

experiment. This allows simple RF upconversion and spur-free operation. While the working

principle presented here remains compatible with other microcomb FSR.
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Figure 5.3 – Si3N4 microresonator characterization. (a) Optical image of the Si3N4 microres-
onator chips. (b) Total linewidth, coupling strength, and intrinsic linewidth of each resonance
in the TE00 mode family. The shaded area corresponds to the resonances pumped in the ex-
periment. (c) Top: measured integrated group velocity dispersion (GVD) (Di nt /2π) of the TE00

mode family with respect to the resonance of 1555.1 nm; Bottom: zoom-in of integrated GVD
region between 1540 nm and 1580 nm. Dominant avoided mode crossing (AMX) is observed
around wavelength region of 1565 nm.

5.3 Versatile soliton microcomb generation

The soliton microcombs used for RF filtering are generated from an 103.9 GHz ultra-low loss

integrated Si3N4 microresonator (Q ∼ 1×107), fabricated by the photonic Damascene reflow

process [17]. The microresonator is a ring structure with radius of 217 µm (Figure 5.3 a). The

waveguide cross sections (width × height) of both the bus and ring waveguides are made to be

1500 nm×750 nm. To achieve critical coupling for the resonances in the telecom-band around

1550 nm, the gap distance between the ring and bus waveguide is designed to be 690 nm.

Microresonator characterization. By employing frequency-comb-assisted diode laser spec-

troscopy [187], the detailed information of resonances and the integrated group velocity disper-

sion (GVD) of the microresonator are measured, covering the wavelength region from 1500 nm

to 1630 nm. Figure 5.3 b illustrates the properties of the resonances, i.e. intrinsic linewidths
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κ0/2π, coupling strengths κex /2π, as well as the total linewidths κ/2π = (κ0 +κex )/2π of the

TE00 mode family, which are extracted from the fittings of calibrated transmission spectrum.

The shaded area of Figure 5.3 b denotes the experimentally accessed resonances around

1556 nm for the RF filter demonstrations. All these resonances show intrinsic linewidths

κ0/2π≈ 20 MHz, indicating the intrinsic Q factors to be around 1×107. Besides, the coupling

strengths of the pumped resonances are similar to their intrinsic linewidths, implying these

resonances are near critical coupling condition.

Then, the integrated GVD of the TE00 mode family can also be extracted by identifying the

precise frequency of each resonance, as shown in Figure 5.3 c. The formula of integrated GVD

is introduced in Section 2.4:

Di nt (µ) =ωµ− (ω0 +D1µ) = D2µ
2/2+D3µ

3/6+ ... (5.12)

where D1/2π is the FSR of microresonator, and Dn(n ∈ N≥2) correspond to the n-th order

dispersion coefficients. Di nt (µ) is defined as the deviation of the µ-th resonance frequency

ωµ/2π from the equidistant frequency grid, constructed from the FSR around the reference

resonance frequency ω0/2π. Here, the reference resonance is chosen at ω0/2π = 192.8 THz (i.e.

λ0 = 1555.1 nm). The retrieved dispersion terms are D1/2π≈ 103.9 GHz, D2/2π≈ 1.28 MHz,

and D3/2π∼O (1) kHz. As described in Section 2.4, operating at anomalous dispersion (D2 > 0)

is a prerequisite for soliton formation. The bottom part of Figure 5.3 c shows the zoom-in

view of the integrated GVD. Several avoided mode crossings (AMX) are clearly observed in

the measured GVD profile, and the most pronounced region is found around the wavelength

of 1565 nm. As will be seen below, AMX is responsible for the modulation of intracavity CW

background, thereby resulting in the ordering of the multi-solitons [188] and the evolution of

soliton crystals [62, 189].

Soliton microcomb generation. Figure 5.4 a shows the simulated stability diagram, which

consists of modulation instability (MI), breathers, chaos (spatio-temporal chaos and transient

chaos), and stable dissipative Kerr soliton states. The stability diagram is obtained from the

simulation of Lugiato–Lefever equation (LLE) incorporating the experimental AMX condition

(perturbation is added to a specific frequency mode in Eq. (2.22)). Recently, it has been

revealed that the pump power level is critical for whether the PSC or stochastic soliton states

are formed [62]. In our case, the threshold pump power Pth is found to be around 20 mW in

the bus waveguide. When the laser scanning route is operated below this threshold pump

power, defect-free PSC states can be accessed without crossing the chaos region. Contrarily,

soliton states with stochastic soliton number and relative distribution are accessed above

the threshold power. Experimentally, the single soliton and TSM states are reached by either

directly falling on such states or via backward tuning from the states with higher soliton

number [190]. For example, Figure 5.4 b shows three optical microcombs obtained from the

same resonance of 1555.1 nm: single-soliton, PSC (N = 4), and TSM (α = 132.7◦), respectively.

Figure 5.4 c depicts distinct soliton step features by pumping the resonance of 1555.1 nm under
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Figure 5.4 – Excitation of versatile soliton states. (a) Simulated stability diagram for versatile
soliton microcomb generation. Four different stability regions are listed: modulation instabil-
ity (MI, blue), breathers (red), spatio-temporal and transient chaos (chaos, yellow), and stable
dissipative Kerr soliton (DKS, green). Excitation routes for (1) single-soliton , (2) PSC, and (3)
TSM generation are depicted. (b) Examples of experimentally generated spectra at resonance
of 1555.1 nm: (1) single-soliton, (2) PSC (N = 4), and (3) TSM (α = 132.7◦). The pump power
is also indicated for each microcomb generation. (c) Typical soliton steps for PSC and TSM
formations, which are respectively denoted by the shaded areas. Transmission curves are
obtained by scanning a laser across the resonance below (left) and above (right) the threshold
pump power, at resonance of 1555.1 nm.

and above the threshold power Pth . The soliton step is manifested from the transmission

of the microresonator by scanning the CW pump laser frequency over the resonance. When

the pump power is around 15 mW, only a single PSC step is formed, and a soliton number

of 4 is indicated by the depth of the step. However, if the power of pump laser is increased

to around 50 mW, both two-soliton and single-soliton steps would appear. The distinct

soliton steps clearly indicate two different soliton generation regimes, and are consistent with

experimentally generated microcomb spectra. Thus, through controlling the pump power

and resonance frequency, various soliton microcombs (single-soliton, PSC, and TSM) can

be obtained on demand to produce the desired RF filter responses. It is also worthwhile to

mention that although this type of RF filter does not require coherent comb states, the high

intensity noise of MI combs is certainly undesirable [81]. Since the intensity noise will be
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transferred to the synthesized RF filters, mode-locked comb states are preferred to minimize

the noise at the RF output.

5.4 Reconfigurable soliton-based RF filter
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Figure 5.5 – Single-soliton/PSC spectra and their corresponding RF photonic filters. Through
deterministic accessing PSC states of different resonances, the RF filter passbands can be
divided correspondingly. Left column: microcomb spectra (blue: experiment, red: sech2

fitting). The insets of left column illustrate soliton distribution inside the microresonator:
single-soliton and PSCs with adjacent soliton angles of 180◦, 120◦, and 90◦, respectively
(360◦/N , N = 2,3,4). Right column: corresponding normalized RF filter responses (blue: ex-
periment, red: simulation). From top to bottom: RF filters centered at 16.24 GHz, 8.12 GHz,
5.42 GHz, and 4.06 GHz based on single-soliton and N−PSC (N = 2,3,4), generated at reso-
nances of 1556.0 nm, 1556.0 nm, 1554.3 nm, 1555.1 nm, respectively.

The versatile soliton microcombs are then harnessed for RF photonic filters. First, we detail

the experimental implementation. A C-band tunable CW laser is amplified by an EDFA

with ASE filtered, polarization aligned at the TE mode, and then coupled to a 104 GHz Si3N4

microresonator for soliton microcomb generation. Lensed fibers are used for the input and

output coupling of the chip, with around 30% fiber-chip-fiber coupling efficiency. Soliton

microcombs are initiated by scanning the pump over the resonances via the assistance of an

arbitrary function generator [124]. The residual pump of the generated microcomb is then

filtered by a tunable fiber Bragg grating (FBG), while a circulator is inserted in between to avoid

back-reflection. 10% of light is tapped to an optical spectrum analyzer (OSA) to record the

microcomb spectra. While the other 90% of the light is amplified, and polarization managed,

before sending to a 30 GHz bandwidth MZM. RF signals from the VNA are applied to the MZM

in DSB modulation format. The modulated spectra are then propagated through a spool
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of 4583.8 m SMF to acquire dispersive delays, and finally beats at a 18 GHz PD to convert

the signals back to the RF domain. The length of SMF is measured by a commercial optical

time-domain reflectometer (OTDR).

Single-soliton/PSC-based RF filters. Figure 5.5 depicts the RF photonic filters using single-

soliton and PSC states with various soliton number. The RF filter based on single-soliton is

centered at 16.24 GHz with MSSR of 23.2 dB. Further, various PSC states are deterministically

obtained at different resonances under the threshold power, thereby all-optically reconfiguring

the corresponding RF filters. The comb spacing multiplication via PSC results in the division

of the corresponding RF passbands. RF filters centered at 8.12 GHz, 5.42 GHz, and 4.06 GHz

(Figure 5.5 b-d) are experimentally synthesized through 2, 3, and 4 equally spaced solitons,

with MSSR of 22.6 dB, 25.6 dB, and 20.4 dB, respectively. All these RF filters achieve MSSR

over 20 dB without additional programmable spectral shaping. The MSSR here are limited by

the smoothness of the optical spectra [37], as several AMX can be seen in the microcombs.

Nevertheless, all these microcombs preserve well the sech2 envelope, and remained smooth

after amplification.

In addition, the measured RF filter responses are compared to simulation results. For more

accurate fitting in the simulation, we also take into account the third-order dispersion β3 of

SMF. The RF filter response in the presence of β3 can be formulated as [155]:

H( fRF ) ∼∑
k
|ak |2 cos(2π2Θ2 f 2

RF +4π3Θ3k∆ f 2 fRF )× ...

exp
(
i 4π2∆ f (Θ2k fRF +πΘ3k2∆ f fRF + π

3
Θ3∆ f 2)

) (5.13)

where Θ3 = −β3L, and it is noted that Eq (5.13) converges to Eq. (5.1) when Θ3 is negligible.

|ak |2 correspond to the comb line intensity. They are extracted from the measured optical

spectra but after the EDFA, as the amplifying bandwidth of EDFA cuts part of the generated

microcomb spectra. In accordance with typical values of SMF dispersion, β2 = −20.2 ps2/km

and β3 = 0.117 ps3/km at 1550 nm are estimated in the fittings of RF filters. It can be seen in

Figure 5.5 that the simulation results are in excellent agreement with experimental RF filter

responses. Note that the bandwidths of experimentally synthesized RF filters broaden slightly

with their center frequencies, also due to the third-order dispersion of SMF [81].

The number of various PSC states that are accessible for a microresonator is subject to a

certain limit. In fact, the maximum soliton number that can be sustained in a microresonator

is roughly estimated by
p
κ/D2 [62]. PSC with a higher number of pulses would lead to the

interaction between them and destabilize the state. By substituting the total linewidths of

the pumped resonances, the maximum PSC number in our chip is estimated around 5. This

provides a good approximation as we can achieve PSC numbers from 2 to 4 experimentally.

We also need to point out here that not every PSC state below this predicted value is easily

generated, especially for a large maximum PSC number [62]. This eventually defines the

possible number of RF filters that can be achieved by passband frequency division.
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Figure 5.6 – TSM spectra and their corresponding RF photonic filters. By accessing different
two-soliton states, the RF filters can be all-optically reconfigured. Left column: TSM spectra
obtained from the resonance of 1556.0 nm (blue: experiment, red: envelope fitting). The insets
illustrate two soliton distribution inside the microresonator: the angles between them are
19.7◦, 43.0◦, 68.1◦, 94.6◦, 117.0◦, 142.5◦, and 169.2◦, respectively. Right column: corresponding
normalized RF filter responses (blue: experiment, red: simulation). From top to bottom: RF
filters centered at 0.85 GHz, 1.96 GHz, 3.05 GHz, 4.24 GHz, 5.26 GHz, 6.40 GHz, and 7.51 GHz.

TSM-based RF filters. Figure 5.6 shows the TSM spectra and their corresponding RF filter

responses, pumped at resonance of 1556.0 nm. According to Eq. (5.11), the first passband

frequency of RF filter scales linearly with the relative angle between two solitons, so that the

filter reconfiguration is achieved. In the experiment, TSM spectra with relative angles of 19.7◦,

43.0◦, 68.1◦, 94.6◦, 117.0◦, 142.5◦, and 169.2◦ are generated, where the angles are retrieved from

the fitting of the microcomb spectral envelopes. It is obtained first by extracting the power of

each comb mode of experimental TSM spectra. And pump mode is rejected and amplitude

rescaling is considered as a fitting parameter. Note that the amount of spectral red-shift due

to Raman effect is also estimated in fitting, by displacing the center of sech2 soliton spectra

from the pump comb mode. Then, the rescaling parameter and red-shift are estimated to

best fit the experimental data with the TSM spectral envelope given by Eq. (5.10), thereby

retrieving the azimuthal angle between two solitons. It is seen that excellent match between

the experimental and fitting spectra are obtained.
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Figure 5.7 – Simulation of TSM states. The intracavity waveform evolutions of all the possible
excitations of two-soliton states are shown. In total seven distinct steady states are observed,
where the angle in each plot indicates the relative angle between the two solitons. The
simulation is implemented based on the perturbed Lugiato–Lefever equation (LLE).

Importantly, the possible angles between two solitons are determined by the overall AMX

profile, and are rather robust to both laser power and frequency detuning, thereby determin-

istically dictating the filter passband frequencies to be either one of those shown in Figure

5.6. To gain insights of the relative angles between two solitons, we also perform LLE simu-

lation (Eq. (2.22)) to investigate the TSM formations. Here the LLE is perturbed by the AMX

as observed in integrated GVD profile. To involve the AMX effect, an additional frequency

detuning∆k is introduced at the k-th mode, so that the frequency of the k-th mode becomes

ωk =ω0 +D1k +D2k2/2+∆k . Here in simulation, the dispersion is limited to D2, and the Ra-

man and thermal effects are not taken into account. According to the dispersion measurement

and the generated microcomb spectra, the parameters for the AMX in the simulation are set

as k = 15 and∆k /2π = 100 MHz, enabling the modulation of the CW intracavity background

for the trapping of soliton temporal positions. Note that the strength of the AMX here is

estimated to introduce the regularizability of solitons, but without disturbing their formations

[62]. Other parameters used in the simulation are retrieved from the characterization, that is,

D1/2π = 103.9 GHz, D2/2π = 1.28 MHz, κex /2π = κ0/2π = κ/4π = 20 MHz.

Figure 5.7 demonstrates all the possible intracavity waveform evolutions that lead to the
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Figure 5.8 – Analysis of relative angles between two solitons. (a) One example of the simulated
TSM intracavity intensity profile (blue), where AMX-induced background modulation is ob-
served. The red and green lines respectively indicate the measured and simulated possible
azimuthal angles between two solitons. (b) Simulation of the intracavity waveform evolution
of TSM for robustness test. First, TSM state with relative angle of 168.0◦ is excited by scanning
the pump over the resonance. Once the TSM becomes stable, a 10.0◦ perturbation is intro-
duced to one of the solitons at white dashed line. The relative angle will re-stabilize to the
original angle of 168.0◦ after a period of free running.

formation of two-soliton states. The simulation is executed by decreasing the pump frequency

in the perturbed LLE described above. Versatile soltion generation occurs when the pump

frequency approaches and scans over the resonance, where only the two-soliton states are

recorded. In total seven distinct steady state two-soliton distributions are observed in simula-

tion, which is in accordance with experimental results. The blue curve in Figure 5.8 a shows

one of the two-soliton temporal intracavity profile. Due to the AMX effect, periodic intensity

modulation is observed upon the CW background. It is clearly seen that the soliton can only

be excited at specific parameter gradients [188], as manifested by the green dashed lines which

correspond to the stationary solutions obtained in simulation. These possible soliton angles

are in good agreement with experimental results, indicated as red dashed lines. To further

test the robustness of the angle between two solitons, an external perturbation is deliberately

introduced on their relative angle. Figure 5.8 b illustrates the dynamical evolution of the

two-soliton state under the disturbance. As before, the simulation is initiated as a standard

laser scanning scheme to kick out two solitons. Once the simulation reaches stable two-soliton

solution (relative angle of 168.0◦), one of the solitons is dragged from its original position by
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a 10.0◦ on purpose. After a period of free running, the two solitons converge back to their

original relative positions, again at 168.0◦ apart. This confirms the regulation of two solitons

under AMX background modulation.

Figure 5.6 also illustrates the measured RF filters of resonance 1556.0 nm centered at 0.85 GHz,

1.96 GHz, 3.05 GHz, 4.24 GHz, 5.26 GHz, 6.40 GHz, and 7.51 GHz. Owing to the binding effect

of two-soliton states, these RF filters are decisive for a certain optical resonance. As in the

case of PSC, a slight broadening of the filter passband width from 490 MHz to 620 MHz is

attributed to the third-order dispersion of SMF. Overall, the RF filters obtained at resonance

1556.0 nm could vary from DC to 8.1 GHz ( fF SR /2) with maximum grid of 1.2 GHz, while

roughly preserving the filter bandwidth in the meantime. In addition, mirrored passband

responses of the TSM-based RF filters coexist between 8.1 GHz and 16.2 GHz. The simulation

of TSM-based RF filter responses is similar to the case of PSC. It is also based on Eq. (5.13)

with the same SMF dispersion parameters, and the comb line power is extracted from the

experimental TSM spectra.
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Figure 5.9 – TSM-based RF filters from multiple resonances. (a) Left: RF filters centered at
1.83 GHz, 2.83 GHz, 3.94 GHz, 4.95 GHz, 6.00 GHz, and 7.06 GHz are obtained at resonance
of 1555.1 nm. Right: RF filters centered at 0.90 GHz, 2.07 GHz, 3.23 GHz, 4.52 GHz, 5.55 GHz,
and 6.90 GHz are obtained at resonance of 1556.8 nm. (b) Left: experimentally retrieved
(solid lines, top) and simulated (dashed lines, bottom) two-soliton angles at resonances of
1555.1 nm, 1556.0 nm, and 1556.8 nm. Right: the synthesized RF filter frequencies versus their
underlying two-soliton angles retrieved from TSM spectra. The dashed line denotes the linear
dependence between them.

More TSM-based RF filters can be achieved by exploiting adjacent resonances of 1556.0 nm.

Figure 5.9 a shows the RF filters obtained from resonances of 1555.1 nm and 1556.8 nm,
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together with the indicated filter passband frequencies. It is seen that the center frequencies

of these filters are relocated for different resonances. Considering all the RF filters synthesized

from these three resonances, the granularity of filter is further reduced to be less than 1 GHz.

Such passband frequency shifts of RF filters arise from the variation of their underlying

two-soliton azimuthal angles, which can be experimentally retrieved from their spectra and

compared to numerical simulation shown in Figure 5.9 b (left). In the simulation, the AMX

position is varied from 14-th to 16-th away from the pump of the same strength, to resemble the

change of resonances in line with experimental condition. The background modulation period

is then modified according to the relative distance between the pump mode and the AMX.

Besides, towards large relative soliton angle, the modification of its value through pumped

resonance also becomes more prominent. This effect is simply due to the accumulated

periodicity difference, and is clearly observed in both measured and simulated results. Figure

5.9 b (right) illustrates the relation between the experimental RF passband frequencies and

their corresponding TSM azimuthal angles. A good linear approximation confirms well the

operation principle of TSM-based RF filters as formulated in 5.11.
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Figure 5.10 – Proof-of-concept filter reconfiguration experiment using TSM-based RF fil-
ters. Two phase-shift keying (PSK) signals with 40 Mb/s modulation at 1.96 GHz and 20 Mb/s
modulation at 3.05 GHz, are filtered by the TSM-based RF filters configured at 1.96 GHz and
3.05 GHz, respectively. (a) From top to bottom: electrical spectra of original RF signal, signal
after 1.96 GHz filter, and signal after 3.05 GHz filter. (b) Top: Waveform after 1.96 GHz filter;
Bottom: waveform after 3.05 GHz filter.

RF filter reconfiguration experiment. A proof-of-concept RF filter reconfiguration experi-

ment is also illustrated in Figure 5.10 based on TSM-enabled RF filters. Two phase-shift keying

(PSK) signals in which a 40 Mb/s modulation at 1.96 GHz tone and a 20 Mb/s modulation

at 3.05 GHz tone, are generated separately from the two channels of an arbitrary waveform

generator (AWG). After superimposing the two streams of signals in a combiner, the composite

signal is sent through the TSM-based RF filters. The RF filters are then respectively recon-

figured at 1.96 GHz and 3.05 GHz to filter the input signals, by triggering the TSM spectra of

corresponding soliton angles. At the output of the RF filters, nearly complete rejection of
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either one of the PSK signals is observed on the electrical spectrum analyzer (ESA) (Figure

5.10 a), where the extinction ratios exceed 35 dB for both cases. Figure 5.10 b show the filtered

output RF waveforms recorded by a high-speed real-time oscilloscope. The periodicity of the

output temporal traces corroborate the filtering of the original RF signals.

5.5 Performance of soliton-based RF filter
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Figure 5.11 – Link performance optimization of the RF filter. Gain and noise figure (NF) of the
RF filter based on 4-PSC versus the bias of MZM (a) without EDFA at the MZM output (b) with
EDFA at the MZM output. Quad: quadrature; MITP: minimum transmission point.

RF filter link optimization. We also characterize and optimize the gain and noise figure of

our microcomb-based RF filters. We measure in particular the RF filter centered around 4 GHz

based on 4-PSC, while the performances as well as optimization technique are roughly similar

for other cases. An RF amplifier is used to lift the noise floor of the ESA (set at 1 Hz resolution

bandwidth) when measuring the filter noise figure. And the noise figure is assessed at the

center frequency of the filter which is of the primary interest. Since the link gain depends

quadratically on the optical power [174], we use a PD with high power handing capability

(maximum input power ∼+16 dBm, responsivity ∼ 0.6 A/W) in the link experiment.

It is well known that the DC bias point of the MZM plays an important role in determining

the filter’s gain and noise figure. The filter gain is maximized when the MZM is biased at

quadrature. However, when the bias is gradually decreased to the MITP, although the gain

drops, the noise actually reduces faster than the gain, which is known as the low-biasing

technique [174]. Thus, we vary the MZM DC bias while keeping the same optical power at

the MZM input around 150 mW (limited by its maximum input power), and we measure the

gain and noise figure of the filter as shown in Figure 5.11 a. The DC bias is normalized here,

where 0, 0.5, 1 correspond to bias points at MATP, quadrature, and MITP, respectively. Indeed,

when we tune the bias from quadrature towards MITP, both the filter gain and noise figure

are decreased. Note that we were not able to measure the noise figure values at very low bias

point close to MITP, as the noise floor there becomes comparable with the displayed noise

level [191]. In this configuration, we could obtain RF filter with loss of 24.7 dB and noise figure

of 27.7 dB.
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The loss of the RF filter due to the low-biasing technique can be simply compensated by

another EDFA at the output of the MZM [191]. We carry out the filter gain and noise figure

characterization in the same way, which is shown in Figure 5.11 b. In this scenario, the optical

power is limited by the maximum input power to the PD, where we operated at around 25 mW.

We can see that the filter gain increases first with the DC tuned from quadrature towards MITP,

and suddenly decreases when it is very close to MITP. This is because the power of modulated

sidebands (signals) are very small at the beginning, the filter gain increases when the power

between the carriers and signals become more balanced, as the gain relates to the product of

the signals and carriers power. And the gain reaches peak when the power of them become

comparable. After that, the filter gain drops quickly due to the weak carriers as very close to

the null point. In terms of noise figure, it reduces at the beginning due to the low-biasing, but

increases dramatically afterwards when the input power to the EDFA is too low, which tends

to amplify more noise instead of the carriers and signals. Overall, we could achieve positive RF

filter gain (+1.6 dB) with noise figure of 29.8 dB.

The further optimization of the filter link performance relies on the improvement of the

components used in the link, such as MZM with lower Vπ and higher maximum input power,

EDFA with lower noise figure, and PD with higher responsivity and higher power handling

capability. We note that MZM with Vπ as low as 1.4 V [86] is now feasible by integrated solution,

which is much lower than the commercial MZM. The optimal setup will use the low-biasing

technique and bypass the EDFA after the MZM, while still achieving relatively high RF gain.

Comparison with RF photonic filters of the same type. As summarized in Table 5.1, our

soliton-based RF filters presented in this chapter are compared with other RF photonic filters

based on various multi-wavelength sources. First, we see that the MSSR achieved by soliton

microcomb is comparable or even better than other implementations that do not require pulse

shapers, such as combs based on cascaded modulators [37], laser arrays [175] or mode-locked

lasers [179, 180], while none of them are integrated solutions regarding the light sources.

Second, all of the past microcomb-based RF filters require, to our knowledge, two high fidelity

pulse shapers [81–83], in order to equalize the largely unbalanced comb line intensity in the

complex microcomb states. The achievable MSSR is indeed higher as expected, due to the

fine equalization of comb amplitudes. Without pulse shapers, however, these approaches

are not able to achieve similar MSSR nor tunability. In our case, the MSSR is mainly limited

by the spectral roughness induced by mode crossings. One could envision combining our

current implementation with an integrated spectral shaper as previously demonstrated [46].

The integrated shaper can enhance our filters with improved MSSR and faster reconfiguration,

while the soliton microcombs can greatly simplify the EO combs previously used [46]. It

is worth noting that using integrated shaper for comb equalization in complex microcomb

spectra would be inefficient, due to the shaper’s limited extinction ratio. Thus, the ability to

control the soliton states among microcombs is truly essential for practical implementation.

From the table, it is also evident that only few past works report the link performances of

comb-based RF filters. The simple optimization of our soliton-based RF filter link is carried
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Table 5.1 – Comparison of RF photonic filters based on multi-wavelength sources.

Reference Light source Pulse
shaper

MSSR Passband
frequency

Gain Noise
figure

Photonic
integration

ref [180] MLL N 20.4 dB 0.6−1.8 GHz N/A N/A N

ref [179] MLL N 24 dB 8−16 GHz N/A N/A N

ref [175] Laser array N 10 dB 0−50 GHz N/A N/A delay line

ref [37] EO comb
(4 EOMs)

N 28.2 dB/61 dB
w/wo nonlin-
ear shaping

0.8−10.4 GHz −40 dB N/A N

ref [155] FP-EO comb
(1 EOM)

Y, one 30 dB 2.6−13.9 GHz N/A N/A N

ref [192] EO comb
(4 EOMs)

Y, one 32 dB 2−8 GHz 0 dB 24 dB N

ref [46] EO comb
(7 EOMs)

Y, two 35 dB 0.6−4 GHz −3 dB N/A spectral
shaper

ref [81] microcomb Y, two 25 dB 2.5−17.5 GHz N/A N/A microresonator

ref [82] microcomb Y, two 48.9 dB 1.4−11.5 GHz N/A N/A microresonator

ref [83] microcomb Y, two N/A 3.2−19.4 GHz N/A N/A microresonator

This work microcomb N 25.6 dB 0.8−16.2 GHz 1.6 dB 29.8 dB microresonator

Note: the best values of parameters extracted from the references are put in the table.
Y: Yes; N: no; N/A: not available. MLL: mode-locked laser; EO: electro-optic; EOM: electro-optic

modulator; FP: Fabry-Perot.

out as detailed above, which is very close to the optimized performances of the state-of-the-art

comb-based RF filters [192]. Nevertheless, the link performances of RF photonic filters in

general are far from being comparable to that of pure microwave solutions. Additionally, we

achieve here widely reconfigurable RF photonic filters from 0.8 GHz to 16.2 GHz covering the

whole RF FSR, taking into account both passbands obtained from TSM spectra. This multi-

octave filter operation is generally considered challenging by pure RF engineering, especially

at higher carrier frequency towards millimeter wave or terahertz wave. Notably, unlike many

other RF photonic filters equipped with the external shaping elements, the presented RF

filters cannot be continuously tuned due to the inherent regulation of solitons. However,

the exploration of multiple resonances could dramatically enrich the achievable RF filters,

while the possible controlled mode interaction [123] or using dichromatic pumps [193] may

empower the soliton-based RF filters with continuous tuning ability. Moreover, additional

functionalities such as photonic down-conversion of microwave signals can be simultaneously

realized while filtering, without involving electrical mixer and external local oscillators [194].
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In fact, the microcomb FSR will act as the local oscillator that naturally provides the stable RF

frequency. Thanks to the large microcomb FSR, this will be very promising for on-chip THz

wave signal processing.

5.6 Conclusions

In summary, we demonstrate reconfigurable soliton-based RF photonic filters using simplified

approaches. Contrary to previous demonstrations where pulse shapers are necessary to obtain

decent passband responses [81–83], the proposed schemes are intrinsically well-shaped with

the smooth spectral envelopes of solitons. More importantly, we harness various inherent soli-

ton states of a microresonator, like PSC and TSM, for RF filter reconfiguration at no additional

cost. The diversity and regularization of soliton formats in microresonator are investigated

in the favor of RF photonic filters. To certain extent, these internal shaping of soliton states

could be in place of substantial efforts made in the past for reconfiguring the comb-based RF

filters, such as using interferometric architecture [37, 81], programmable pulse shaping [82,

155], or Talbot-based signal processor [180]. Admittedly, although our soliton-based RF filters

are much simpler than the previous microcomb-based RF filters [81–83] as we eliminate the

use of two bulky pulse shapers here, the form factor is not yet as compact as their electrical

counterparts. Nevertheless, the basic components of soliton-based RF filters can be integrated

[175]. The recent advancements on the integration between laser chip and microresonator

[195, 196], as well as the possibility to replace the long fiber with an integrated photonic crystal

delay line [175], can be further connected to the current work for miniaturization. To conclude,

through internal shaping of the soliton states, the presented work significantly reduces the

system complexity, size, and cost of the microcomb-based RF filters, while preserving wide

reconfigurability. The proposed scheme serves as a stepping stone for chipscale, cost-effective,

and widely reconfigurable microcomb-based RF filters.
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The thesis has explored versatile shaping of optical frequency combs, specifically for the uti-

lization in microwave photonics and optical telecommunications. Both EO combs and soliton

microcombs are addressed, together with diverse internal and external shaping techniques

of them for different application purposes. In this closing chapter, the conclusions of the

presented research works are drawn. Further, some possible continuation and outlook of the

thesis are also suggested.

Chapter 3 is dedicated to optical sinc pulse shaping. A flexible optical sinc pulse generation is

enabled by controlling the amplitude and phase of each pair of comb lines electronically. Such

EO pulse synthesis is fully reconfigurable in terms of repetition-rate and pulse width, while

only relies on a single MZM stage. The single MZM approach features some unique advantages

compared to the operation based on cascaded MZMs [63]. For instance, the complementary

nature of a single dual-output MZM would simultaneously create bright and dark sinc pulse

pair, which can be employed in Nyquist OTDM system to attain add-drop functionalities.

The performance and detailed implementation of such ADM scheme is also investigated by

simulation. While from another point of view, the rectangular spectra of optical sinc pulses

are adapted for RF photonics to synthesize RF filters of sinc shapes. The center frequencies

and bandwidths of such filters are easily reconfigurable thanks to the full flexibility on the EO

comb generator.

In terms of possible future research, one of the directions is to pursue optical sinc pulses with

shorter pulse widths demanded in telecommunications. With the proposed sinc pulse genera-

tor, although being fully flexible, the achievable pulse width is fundamentally limited by the

MZM bandwidth. One interesting approach is to migrate the acousto-optic frequency-shifting

loop for the optical sinc pulse generator [197]. Instead of acousto-optic modulation, a DP-

MZM performing equivalent SSB modulation may be used to achieve comb FSR compatible

with optical communications. Besides, it is worthwhile to experimentally verify the proposed

ADM scheme in Nyquist OTDM systems.

Chapter 4 inspects the Talbot shaping of both optical frequency combs and OAM modes
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of light. First, a novel implementation of temporal Talbot multiplier is proposed based on

an optical TDL structure. While mostly being used for spectral amplitude filtering, such

architecture is also found to implement the temporal Talbot operation, as well as versatile

combinations of amplitude and phase filtering. The optical TDL structure is fully amenable

to photonic integration [48], hence is promising for on-chip temporal Talbot shaping of

optical combs. Similar Talbot shaping concept is then applied to the OAM modes of light.

The azimuthal Talbot effect is then demonstrated when a number of OAM modes of light

are superimposed with Talbot phases. It is manifested by the multiplication of petals in the

azimuthal angle, without changing their underlying OAM components.

Since there is few integrated temporal Talbot multiplier to date [73], the on-chip realization of

the proposed temporal Talbot scheme is worth demonstrating. While regarding the shaping

of OAM modes, the current implementation of the azimuthal Talbot effect is made possible

only at the generation stage. A logical next step is to realize such shaping externally on an

existing OAM spectrum. This could possibly be implemented in an OAM shaper demonstrated

recently [170], and would eventually trigger new interest in OAM-based classical and quantum

information processing. Moreover, the Talbot shaping of OAM modes is just one specific case

that exemplifies the duality between comb mode and OAM mode, while other techniques of

shaping the OAM and comb may be borrowed interchangeably.

Chapter 5 investigates the internal shaping of soliton states in microresonators for RF photonic

filtering. By exploiting the rich soliton configurations, all-optical reconfiguration of the RF

filters are demonstrated. Among others, perfect soliton crystals and two-soliton states are

utilized, which respectively divide and translate the center frequencies of their corresponding

RF filters. Notably, sufficient suppression ratios of such filters are automatically guaranteed

by the smooth spectral envelopes of solitons. Leveraging the inherent soliton states bypasses

external pulse shaping elements that are previously required. Also, the soliton-based RF filters

are compared with other comb-based RF filters, and their advantages and limitations are

discussed. Overall, it provides an elegant approach to reduce the cost, size, and complexity of

reconfigurable microcomb-based RF filters.

As for possible extension of the current RF filter work, photonic down-conversion of the

RF signals may be achieved simultaneously while filtering [194]. Indeed, the comb FSRs of

mode-locked microcomb states naturally function as local oscillators. The optimization of

link performance is another important metrics pursued in RF photonic filter community

[191]. Except for RF filtering, the inherent versatility of soliton states may also facilitate other

microwave photonic applications. For instance, in comb-based true-time delay phase array

antennas [181], the FSR variations of perfect soliton crystals could empower such systems

with beam-steering capability.
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