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Abstract
Federated Learning (FL) is very appealing for its privacy ben-
efits: essentially, a global model is trained with updates com-
puted on mobile devices while keeping the data of users local.
Standard FL infrastructures are however designed to have
no energy or performance impact on mobile devices, and are
therefore not suitable for applications that require frequent
(online) model updates, such as news recommenders.

This paper presents FLeet, the first Online FL system,
acting as a middleware between the Android OS and the
machine learning application. FLeet combines the privacy
of Standard FLwith the precision of online learning thanks to
two core components: (i) I-Prof, a new lightweight profiler
that predicts and controls the impact of learning tasks on
mobile devices, and (ii) AdaSGD, a new adaptive learning
algorithm that is resilient to delayed updates.

Our extensive evaluation shows that Online FL, as imple-
mented by FLeet, can deliver a 2.3× quality boost compared
to Standard FL, while only consuming 0.036% of the battery
per day. I-Prof can accurately control the impact of learning
tasks by improving the prediction accuracy up to 3.6× (com-
putation time) and up to 19× (energy).AdaSGD outperforms
alternative FL approaches by 18.4% in terms of convergence
speed on heterogeneous data.

CCS Concepts: • Computing methodologies → Ma-
chine learning; • Security and privacy;

Keywords: federated learning, online learning, asynchro-
nous gradient descent, profiling, mobile Android devices
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1 Introduction
The number of edge devices and the data produced by
these devices have grown tremendously over the last 10
years. While in 2009, mobile phones only generated 0.7% of
the worldwide data traffic, in 2018 this number exceeded
50% [74]. This exponential growth is raising challenges both
in terms of scalability and privacy. As the volume of data pro-
duced by mobile devices explodes, users expose increasingly
detailed and sensitive information, which in turn becomes
more costly to store, process, and protect. This dual challenge
of privacy and scalability is pervasive in machine learning
(ML) applications such as recommenders, image-recognition
apps, and personal assistants. These ML-based application of-
ten operate on highly personal and possibly sensitive content,
including conversations, geolocation, or physical traits (faces,
fingerprints), and typically require tremendous volumes of
data for training their underlying ML models. For example,
people in the USA of age 18-24, type on average around 900
words per day (128 messages per day [69] with an average
of 7 words per message [17]). The Android next-word pre-
diction service is trained on average with sequences of 4.1
words [36] which means that each user generates around 220
training samples daily. With tens of millions or even billions
of user devices [8] scalability issues arise.

Federated Learning. To address this dual privacy and
scalability challenge, large industrial players are now seek-
ing to exploit the rising power of mobile devices to reduce
the demand on their server infrastructures while, at the same
time, protecting the privacy of their users. Federated Learn-
ing (FL) is a new computing paradigm (spearheaded among
others by Google [11,41,72]) where a central server itera-
tively trains a global model (used by an ML-based applica-
tion) without the need to centralize the data. The iterative
training orchestrated by the server consists of the following
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synchronous steps for each update. Initially, the server selects
the contributing mobile devices and sends them the latest
version of the model. Each device then performs a learning
task based on its local data and sends the result back to the
server. The server aggregates a predefined number of results
(typically a few hundreds [8]) and finally updates the model.
The server drops any results received after the update. FL is
“privacy-ready” and can provide formal privacy guarantees
by using standard techniques such as secure aggregation and
differential privacy [9].
The standard use of FL has so far been limited to a

few lightweight and extremely privacy-sensitive services,
such as next-word prediction [82], but its popularity is
bound to grow. Privacy-related scandals continue to un-
fold [53,54], and new data protection regulations come into
force [31,76]. The popularity of FL is clearly visible in two
of the most popular ML frameworks (namely TensorFlow
and PyTorch) [29,70], and also in the rise of startups such
as S20.ai [71] or SNIPS (now part of Sonos) [73], which are
betting on private decentralized learning.

Limitation of Standard FL. These are encouraging
signs, but we argue in this paper that Standard FL [8] is
unfortunately not effective for a large segment of ML-based
applications, mainly due to its constraint for high device avail-
ability: the selected mobile devices need to be idle, charging
and connected to an unmetered network. This constraint
removes any impact perceived by users, but also limits the
availability of devices for learning tasks. Google observed
lower prediction accuracy during the day as few devices
fulfill this policy and these generally represent a skewed
population [82]. With most devices available at night the
model is generally updated every 24 hours.
This constraint may be acceptable for some ML-based

services but is problematic to what we call online learning
systems, which underlie many popular applications such
as news recommenders or interactive social networks (e.g.,
Facebook, Twitter, Linkedin). These systems involve large
amounts of data with high temporality, that generally be-
come obsolete in a matter of hours or even minutes [55]. To
illustrate the limitation of Standard FL, consider two users,
Alice and Bob, who belong to a population that trains the ML
model underlying a news recommendation system (Figure 1).
Bob wakes up earlier than Alice and clicks on some news ar-
ticles. To deliver fresh and relevant recommendations, these
clicks should be used to compute recommendations for Alice
when she uses the app, slightly after Bob. In Standard FL
(upper half Figure 1), the device of Bob would wait until
much later (when idle, charging and connected to WiFi) to
perform the learning task thus negating the value of the task
results for Alice. In an online learning setup (lower half of
Figure 1), the activity of Bob is rapidly incorporated into the
model, thereby improving the experience of Alice.
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Figure 1. Online FL enables frequent updates without re-
quiring idle-charging-WiFi connected mobile devices.

Challenges and contributions. In this paper we address
the aforementioned limitation and enable Online FL. We in-
troduce FLeet, the first FL system that specifically targets
online learning, acting as a middleware between the oper-
ating system of the mobile device and the ML-based appli-
cation. FLeet addresses two major problems that arise after
forfeiting the high device availability constraint.

First, learning tasks may have an energy impact on mobile
devices now powered on a battery. Given that learning tasks
are generally compute intensive, they can quickly discharge
the device battery and thereby degrade user experience. To
this end, FLeet includes I-Prof (§2.2), our new profiling tool
which predicts and controls the computation time and the
energy consumption of each learning task on mobile devices.
The goal of I-Prof is not trivial given the high heterogeneity
of the devices and the performance variability even for the
same device over time [61] (as we show in §3).
Second, as mentioned above, synchronous training dis-

cards all late results arriving after the model is updated thus
wasting the battery of the corresponding devices and their
potentially useful data. Frequent model updates call for small
synchronization windows that given the high performance
variability, amplify this waste. We therefore replace the syn-
chronous scheme of Standard FL with asynchronous updates.
However, asynchronous updates introduce the challenge of
staleness as multiple users are now free to perform learn-
ing tasks at arbitrary times. A stale result occurs when the
learning task was computed on an outdated model version;
meanwhile the global model has progressed to a new version.
Stale results add noise to the training procedure, slow down
or even prevent its convergence [39,85]. Therefore, FLeet
includes AdaSGD (§2.3), our new Stochastic Gradient De-
scent (SGD) algorithm that tolerates staleness by dampening
the impact of outdated results. This dampening depends on
(a) the past observed staleness values and (b) the similarity
with past learning tasks.

164



FLeet: Online Federated Learning via Staleness Awareness and Performance Prediction Middleware ’20, December 7–11, 2020, Delft, Netherlands

Controller

+ similarity threshold
  + size threshold

AdaSGD
Server

I-Prof

+ latency SLO
+ energy SLO Model

(2) size bound

(3) similarity

Data

Worker

ML app

(5) gradient
(4) <model, mini-batch size>

(1) device 
info

(1) label info

Figure 2. The architecture of FLeet.

We fully implemented the server side and the Android
client of FLeet1. We evaluate the potential of FLeet and
show that it can increase the accuracy of a recommendation
system (that employs Standard FL) by 2.3× on average, by
performing the same number of updates but in a more timely
(online) manner. Even though the learning tasks drain en-
ergy directly from the battery of the phone, they consume
on average only 0.036% of the battery capacity of a modern
smartphone per user per day. We also evaluate the com-
ponents of FLeet on 40 commercial Android devices, by
using popular benchmarks for image classification. Regard-
ing I-Prof, we show that 90% of the learning tasks deviate
from a fixed Service Level Objective (SLO) of 3 seconds by
at most 0.75 seconds in comparison to 2.7 seconds for the
competitor (the profiler of MAUI [18]). The energy deviation
from an SLO of 0.075% battery drop is 0.01% for I-Prof and
0.19% for the competitor. We also show that our staleness-
aware learning algorithm (AdaSGD) learns 18.4% faster than
its competitor (DynSGD [39]) on heterogeneous data.

2 FLeet
FLeet incorporates two components we consider necessary
in any system that has the ambition to provide both, the
(a) privacy of FL and (b) the precision of online learning
systems. The first component is I-Prof, a lightweight ML-
based profiling mechanism that controls the computation
time and energy of the learning task by using ML-based
estimators. The second component of FLeet is AdaSGD, a
new adaptive learning algorithm that tolerates stale updates
by automatically adjusting their weight.

2.1 Architectural Overview
Similar to the implementation of Standard FL [8], FLeet
follows a client-server architecture (Figure 2) where each
user hosts a worker and the service provider hosts the server
(typically in the cloud). In FLeet, the worker is a library that
can be used by any mobile ML-based application (e.g., a news
articles application). The model training protocol of FLeet
is the following (the numbers refer to Figure 2):

1
https://github.com/gdamaskinos/fleet

(1) The worker requests a learning task and sends informa-
tion regarding the labels of the local data along with infor-
mation about the state of the mobile device. We introduce
the purpose of this information in Steps 2 and 3.
(2) I-Prof employs the device information to bound the
workload size (i.e., set a mini-batch size bound) that will
be allocated to this worker such that the computation time
and energy consumption approximate an SLO set by the
service provider or negotiated with the user (details in §2.2).
The mini-batch size is then set as themin(mini-batch size
bound, local data size2).
(3) AdaSGD computes a similarity for the requested learn-
ing task with past learning tasks in order to adapt to updates
with new data (details in §2.3).
(4) In order to prevent the computation of learning tasks
with low or no utility for the learning procedure, the con-
troller checks if both the mini-batch size and the similarity
values pass certain thresholds set by the service provider. If
the check fails, the request of the worker is rejected, oth-
erwise the controller sends the model parameters and the
mini-batch size to the worker and the learning task execution
begins (details about setting these thresholds in §2.4).
(5) Based on the mini-batch size returned by the server, the
worker samples from its locally collected data, performs the
learning task (i.e., one or multiple local model updates) and
sends the result (i.e., the gradient) back to the server. On
the server side, AdaSGD updates the model after dynami-
cally adapting this gradient based on its staleness and on its
similarity value (details in §2.3).
The above protocol maintains the key “privacy-readiness” of
Standard FL: the user data never leave the device.

2.2 Workload Bound via Profiling
In Online FL, a mobile device should be able to compute
model updates at any time, not only during the night, when
the mobile device is idle, charging and connected to WiFi.
Therefore, FLeet drops the constraint of Standard FL for
high device availability. Hence, the learning task now drains
energy directly from the battery of the device. Controlling
the impact of a learning task on the user application in terms
of energy consumption and computation time becomes cru-
cial. To this end, FLeet incorporates a profiling mechanism
that determines the workload size (i.e., the mini-batch size)
appropriate for each mobile device.

Best-effort solution. To highlight the need for a specific
profiling tool, we first consider a naive solution in which
users process data points until they reach the SLO either in
terms of computation time or energy. At this point, a worker
sends back the resulting “best-effort” gradient. The service
provider cannot decide beforehand whether for a given de-
vice, the cost (in terms of energy, time and bandwidth) to
download the model, compute and upload the gradient is

2The size of the local data is available to the server via the label info.
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Figure 3. Motivation for lower bounding the mini-batch
size. The noise introduced by weak workers (i.e., with small
mini-batch sizes) may be detrimental to learning.

worth the benefit to the model. Updates computed on very
small mini-batch sizes (by weak devices) will perturb the
convergence of the overall model, and might even negate
the benefit of other workers.
To illustrate this point, consider the experiment of Fig-

ure 3. The figure charts the result of training a Convolutional
Neural Network on CIFAR10 [43] under different combina-
tions of “strong” and “weak” workers. The strong workers
compute on a mini-batch size of 128 while the weak workers
compute on a mini-batch size of 1. We observe that even 2
weak workers are enough to cancel the benefit of distributed
learning, i.e., the performance with 10 strong + 2 weak work-
ers is the same as training with a single strong worker.

One way to avoid this issue could be to drop all the gradi-
ents computed on amini-batch size lower than a given bound
or weigh them with a tiny factor according to the size of
their underlying mini-batch. This way would however waste
the energy required to obtain these gradients. A profiler tool
that can estimate the maximum mini-batch size (workload
bound) that a worker can compute is necessary for the con-
troller to decide whether to reject the computation request of
this worker, before the gradient computation. Unfortunately,
existing profiling approaches [10,13,14,18,35,44,83] are not
suitable because they are either relatively inaccurate (see
§3.3) or they require privileged access (e.g., rooted Android
devices) to low-level system performance counters.

I-Prof. Mobile devices have a significantly lower level
of parallelism in comparison with cloud servers. For exam-
ple, the graphical accelerators of mobile devices generally
have 10-20 cores [6,68] while the GPUs on a server have
thousands of cores [62]. Given this low level of parallelism,
even a relatively small mini-batch size can fill the process-
ing pipelines. Hence, any additional workload will linearly
increase the computation time and the energy consumption.
Based on this observation, we built I-Prof, a lightweight
profiler specifically designed for Online FL systems. We de-
sign I-Prof with three goals in mind: (a) operate effectively
with data from a wide range of device types, (b) do so in a
lightweight manner, i.e., introduce only a negligible latency
to the learning task and (c) rely only on the data available
on a stock (non-rooted) Android device.
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Figure 4. The linear relation between the computation time
and the mini-batch size depends on the specific device, and
may even vary for the same device, depending on operation
conditions such temperature.

I-Prof employs an ML-based scheme to capture how the
device features affect the computation time and energy con-
sumption of the learning task. I-Prof predicts the largest
mini-batch size a device can process while respecting both
the time and the energy limits set by the SLO. To this aim,
I-Prof uses two predictors, one for computation time and
one for energy. Each predictor updates its state with data
from the device information sent by the workers.
Designing such predictors is however tricky, as mod-

ern mobile phones exhibit a wide range of capabilities.
For example, in a matrix multiplication benchmark, Galaxy
S6 performs 7.11 Gflops whereas Galaxy S10 performs
51.4 Gflops [46]. Figure 4 illustrates this heterogeneity on
three different mobile devices by executing successive learn-
ing tasks of increasing mini-batch size (“up”). After reaching
the maximum value, we let the devices cool down and exe-
cute subsequent learning tasks with decreasing mini-batch
size (“down”). We present the results for the up-down part
with the same color-pattern, except for Honor 10 in Fig-
ure 4(b) that we split for highlighting the difference. Figure 4
illustrates that the linear relation changes for each device and
for certain devices (Honor 10, Galaxy S7) also changes with
the temperature. Note that Honor 10 shows an increased
variance at the end of the “up” part (Figure 4(b)) that is at-
tributed to the high temperature of the device. The variance
is significantly smaller for the “down” part.
In the following, we describe how I-Prof predicts the

mini-batch size (n) given a computation time SLO3 (tSLO ).
The computation time linearly increases with the workload
size, i.e., tcomp = α ·n, where α depends on the device and its
state. Considering the goal (i.e., tcomp → tSLO ), the optimal
mini-batch size is predicted as:

n̂ = max
(
1,
tSLO
α̂

)
(1)

I-Prof estimates the slope α̂ from the device characteristics
and operational conditions using a method that combines
linear regression and online passive-aggressive learning [16].

3The prediction method given an energy SLO is the same.
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The input to this method is a set of device features based
onmeasurements available through the Android API, namely
available memory, total memory, temperature and sum of the
maximum frequency over all the CPU cores. However, these
features only encode the computing power of a device. For
the prediction based on the energy SLO, I-Prof also needs a
feature that encodes the energy efficiency of each device. We
choose this additional feature as the energy consumption per
non-idle CPU time4. We show in our evaluation (§3.3) that
these features achieve our three design goals. Given a vector
of device features (x), and a vector of model parameters
(θprof), the slope α̂ is estimated as α̂ = xTθprof.

I-Prof uses a cold-start linear regression model for the
first request of each user device. We pre-train the cold-start
model using ordinary least squares with an offline dataset.
This dataset consists of data collected by executing requests
from a set of training devices with a mini-batch size increas-
ing from 1 till a value such that the computation time reaches
twice the SLO. I-Prof periodically re-trains the cold-start
model after appending new data (device features). The train-
ing cost is negligible given the small number of features.

Furthermore, I-Prof creates a personalized model for ev-
ery new device model (e.g., Galaxy S7) and employs it for
every following request coming from this particular model.
I-Prof bootstraps the new model with the first request (for
which the cold-start model is used to estimate the computa-
tion time). For all the following learning tasks that result in
pairs of (x (k ),α (k )), I-Prof incrementally updates a Passive-
Aggressive (PA) model [16] as: θ (k+1)

prof = θ
(k)
prof +

f (k )

∥x (k )∥
2v

(k )

wherev (k ) = siдn(α (k ) − x (k )Tθ (k )
prof)x

(k) denotes the update
direction, and f the loss function:

f (θprof,x,α) =

{
0 if |xTθprof − α | ≤ ϵ

|xTθprof − α | − ϵ otherwise.
(2)

The parameter ϵ controls the sensitivity to prediction error
and thereby the aggressiveness of the regression algorithm,
i.e., the smaller the value of ϵ the larger the update for each
new data instance (more aggressive).

I-Prof focuses solely on the time and energy spent during
an SGD computation. Despite network costs (in particular
when transferring models) having also an important impact,
they fall outside the scope of this work as one can rely on
prior work [4,51,66] to estimate the time and energy of net-
work transfers within FLeet.

2.3 Adaptive Stochastic Gradient Descent
The server-driven synchronous training of Standard FL is
not suitable for Online FL, as the latter requires frequent
updates and needs to exploit contributions from all workers,
including slow ones (§1). Therefore, we introduce AdaSGD,

4CPU time spent by processes executing in user or kernel mode.
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AdaSGD, proposed in this paper, dampens stale gradients
with an exponentially decreasing function (Λ(τ )) based on
the expected percentage of non-stragglers (τthres := s-th per-
centile of staleness values), and boosts the gradient of the
straggler (τ = 48) due to its low similarity (sim(xi )).

an asynchronous learning algorithm that is robust to stale
updates. AdaSGD is responsible for aggregating the gradi-
ents sent by the workers and updating the application model
(θapp)5. Each update takes place after AdaSGD receives K
gradients. The aggregation parameter K can be either fixed
or based on a time window (e.g., update the model every 1
hour). The model update is:

θ (t+1)
app = θ

(t )
app − γt

K∑
i=1

min
(
1,Λ(τi ) ·

1
sim(xi )

)
·G(θ (ti )

app, ξi )

(3)
where γt is the learning rate, t ∈ N denotes the global logical
clock (or step) of the model at the server (i.e., the number of
past model updates) and ti ≤ t denotes the logical clock of
the model that the worker receives.G(θ (ti )

app, ξi ) is the gradient
computed by the client w.r.t the modelθ (ti )

app on the mini-batch
ξi drawn uniformly from the local dataset xi .

The workers send gradients asynchronously that can re-
sult in stale updates. The staleness of the gradient (τi := t − ti )
shows the number of model updates between the model pull
and gradient push of worker i . One option is to directly apply
this gradient, at the risk of slowing down or even completely
preventing convergence [39,85]. The Standard FL algorithm
(FedAvg [52]) simply drops stale gradients. However, even
if computed on a stale model, the gradient may incorpo-
rate potentially valuable information. Moreover, in FLeet,
the gradient computation may drain energy directly from
the battery of the phone, thus making the result even more
valuable. Therefore, AdaSGD utilizes even stale gradients
without jeopardizing the learning process, by multiplying
each gradient with an additional weight to the learning rate.
This weight consists of (a) a dampening factor based on the
staleness (Λ(τi )) and (b) a boosting factor based on the user’s
data novelty ( 1

sim(xi )
), that we describe in the following.

5Not to be confused with the model of the profiler (θprof ).
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Staleness-based dampening. AdaSGD builds on prior
work on staleness-aware learning that has shown promis-
ing results [39,85]. In order to accelerate learning, AdaSGD
relies on a system parameter: the expected percentage of non-
stragglers (denoted by s%). We highlight that this value is
not a hyperparameter that needs tuning for each ML appli-
cation but a system parameter that solely depends on the
computing and networking characteristics of the workers,
while it can be adapted dynamically [64,65]. We define the
staleness-aware dampening factor Λ(τ ) = e−βτ , with β cho-
sen s.t. 1

τthres
2 +1

= e−β
τthres

2 (i.e., the inverse dampening func-
tion [39] intersects with our exponential dampening function
in τthres

2 ), where τthres is the s-th percentile of past staleness
values. Figure 5 shows the dampening factor of AdaSGD
compared to the inverse dampening function (employed by
DynSGD [39]). Our hypothesis is that the perturbation to
the learning process introduced by stale gradients, increases
exponentially and not linearly with the staleness. We em-
pirically verify the superior performance of our exponential
dampening function compared to the inverse in §3.2.
As a quantile, τthres is estimated from the staleness distri-

bution. In practice, for the past staleness values to be repre-
sentative of the actual distribution, an initial bootstrapping
phase can employ the dampening factor of DynSGD. Af-
ter this phase, the service provider can set s% and deploy
AdaSGD. An underestimate of s% will slow down conver-
gence, whereas an overestimate may lead to divergence. As
we empirically observe (§3.1), the staleness distribution often
has a long tail. In such cases, the best choice of s% is the one
that sets τthres at the beginning of the tail.
Similarity-based boosting. In the presence of stragglers

with large delays (comparing to the mean latency), staleness
can grow and drive Λ(τ ) close to 0, i.e., almost neglect the
gradients of these stragglers. Nevertheless, these gradients
may contain valuable information. In particular, they may
be computed on data that are not similar to the data used by
past gradients. Hence, AdaSGD boosts these gradients by
using the following similarity value:

sim(xi ) = BC(LD(xi ),LDдlobal ) (4)

where BC denotes the Bhattacharyya coefficient [79], andLD
the label distribution, that captures the importance of each
gradient. We choose this coefficient given our constraints
(sim(xi ) ∈ [0, 1]). For instance, given an application with
4 distinct labels and a local dataset (xi ) that has 1 example
with label 0, and 2 examples with label 1:LD(xi ) = [ 13 ,

2
3 , 0, 0].

The global label distribution (LDдlobal ) is computed on the
aggregate number of previously used samples for each label.
We highlight thatLD is not specific to classificationML tasks;
for regression tasks, LD would involve a histogram, with the
length of the LD vector being equal to the number of bins
instead of the number of classes.

The similarity value essentially captures how valuable the
information of the gradient is. For instance, if a gradient
is computed on examples of an unseen label (e.g., a very
rare animal), then its similarity value is less than 1 (i.e., has
information not similar to the current knowledge of the
model). For the similarity computation, the server needs only
the indices of the labels of the local datasets without any
semantic information (e.g., label 3 corresponds to “dogs”).

2.4 Implementation
The server of FLeet is implemented as a web application
(deployed on an HTTP server) and the worker as an Android
library. The server transfers data with the workers via Java
streams by using Kryo [27] and Gzip. In total, FLeet accounts
26913 Java LoC, 3247 C/C++ LoC and 1222 Python LoC.

Worker runtime. We design the worker of our middle-
ware (FLeet) as a library and execute it only when the over-
lying ML application (Figure 2) is running in the foreground
for two main reasons. First, since Android is a UI-interactive
operating system, background applications have low priority
so their access to system resources is heavily restricted and
they are likely to be killed by the operating system to free re-
sources for the foreground running app. Therefore, allowing
the worker to run in the background would make its perfor-
mance very unpredictable and thus impact the predictions
of I-Prof. Second, running the worker in the foreground
alleviates the impact of collocated (background) workload.
We build our main library for Convolutional Neural Net-

works in C++ on top of FLeet. We employ (i) the Java Native
Interface (JNI) for the server, (ii) the Android NDK for the
worker, (iii) an encoding scheme for transferring C++ objects
through the java streams, and (iv) a thread-based paralleliza-
tion scheme for the independent gradient computations of
the worker. On recent mobile devices that support NEON [5],
FLeet accelerates the gradient computations by using SIMD
instructions. We also port a popular deep learning library
(DL4J [22]) to FLeet, to benefit from its rich ecosystem of
ML algorithms. However, as DL4J is implemented in Java,
we do not have full control over the resource allocation.

FLeet relies on the developer of the overlying ML ap-
plication to ensure the performance isolation between the
running application and the worker runtime. The worker
can execute in a window of low user activity (e.g., while
the user is reading an article) to minimize the impact of the
overlying ML application on the predictive power of I-Prof.

Resource allocation. Allocating system resources is a
very challenging task given the latency and energy con-
straints of mobile devices [24,56]. Our choice of employing
only stock Android without root access means we can only
control which cores execute the workload on the worker,
with no access, for instance, to low-level advanced tuning.
Given this limited control and the inherent mobile device
heterogeneity, we opt for a simple yet effective scheme for
allocating resources.
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This scheme schedules the execution only on the “big”
cores for ARM big.LITTLE architectures and on all the cores
otherwise. In the case of computationally intensive tasks
(such as the learning tasks of FLeet), big cores are more
energy efficient than LITTLE cores because they finish the
computation much faster [32]. Regarding ARMv7 symmet-
ric architectures with 2 and 4 cores that equip older mobile
devices, the energy consumption per workload is constant re-
gardless of the number of cores: a higher level of parallelism
will consume more energy but the workload will execute
faster. For this reason, our allocation policy relies on all the
available cores so that we can take advantage of the embar-
rassingly parallel nature of the gradient computation tasks.
For such tasks, we empirically show (§3.4) that this scheme
outperforms more complex alternatives [56].

Controller thresholds. In practice, the service provider
can adopt various approaches to define the size and simi-
larity thresholds of the controller (Figure 2). One option is
A/B testing along with the gradual increase of the thresholds.
In particular, the system initializes the thresholds to zero
and divides the users into two groups. The first group tests
the impact of the mini-batch size and the second the impact
of the label similarity. Both groups gradually increase the
thresholds until the impact on the service quality is con-
sidered acceptable. The server can execute this A/B testing
procedure periodically, i.e., reset the thresholds after a time
interval. We empirically evaluate the impact of these thresh-
olds on prediction quality in §3.5.

3 Evaluation
Our evaluation consists of two main parts. First, in §3.1,
we evaluate the claim that Online FL holds the potential
to deliver better ML performance than Standard FL [8] for
applications that employ data with high temporality (§1).
Second, we evaluate in more detail the internal mechanisms
of FLeet, namely AdaSGD (§3.2), I-Prof (§3.3), the resource
allocation scheme (§3.4) and the controller (§3.5).

We deploy the server of FLeet on a machine with an Intel
Xeon X3440 with four CPU cores, 16 GiB RAM and 1 Gb
Ethernet, on Grid5000 [33]. The workers are deployed on a
total of 40 different mobile phones that we either personally
own or belong to the AWS Device Farm [7] (Oregon, USA).
In §3.1, we deploy the worker on a Raspberry Pi 4 as our
hashtag recommender is implemented on TensorFlow that
does not yet support training on Android devices.

3.1 Online VS Standard Federated Learning
We compare Online with Standard FL on a Twitter hash-
tag recommender. Tweepy [75] enables us to collect around
2.6 million tweets spanning across 13 successive days and
located in the west coast of the USA. We preprocess these
tweets (e.g., remove automatically generated tweets, remove
special symbols) based on [23]. We then divide the data into
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Figure 6. Online FL boosts Twitter hashtag recommenda-
tions by an average of 2.3× comparing to Standard FL.

shards, each spanning 2 days, and divide each shard into
chunks of 1 hour. We finally group the data into mini-batches
based on the user id.

Our training and evaluation procedure follows an Online
FL setup. Our model is a basic Recurrent Neural Network im-
plemented on TensorFlow with 123,330 parameters [30], that
predicts the 5 hashtags with the largest values on the output
layer. The model training consists of successive gradient-
descent operations, with each gradient derived from a single
mini-batch (i.e., sent by a single user). Every day includes
24 mini-batches and thus 24 distinct gradient computations,
while each model update uses 1 gradient. For the Online
FL setup, the 24 daily updates are evenly distributed (one
update every hour). Training uses the data of the previous
hour and testing uses the data of the next hour. For the Stan-
dard FL setup, the 24 daily updates occur all at once (at the
end of the day). Training uses the data of the previous day
and testing uses the data of the next day. We highlight that
under this setup, the two approaches employ the same num-
ber of gradient computations and the difference lies only in
the time they perform the model updates. We also compare
against a baseline model that always predicts the most pop-
ular hashtags [42,63]. We evaluate the model on the data of
each chunk and reset the model at the end of each shard.

Quality boost. For assessing the quality of the hashtag
recommender, we employ the F1-score @ top-5 [28,42] to
capture how many recommendations were used as hash-
tags (precision) and how many of the used hashtags were
recommended (recall). In particular, for each tweet in the
evaluation set, we compare the output of the recommender
(top-5 hashtags) with the actual hashtags of the tweet, and
derive the F1-score. Figure 6 shows that Online FL outper-
forms Standard FL in terms of F1-score, with an average
boost of 2.3×. Online FL updates the model in a more timely
manner, i.e., soon after the data generation time, and can
thus better predict (higher F1-score) the new hashtags than
Standard FL. The performance of the baseline model is quite
low as the nature of the data is highly temporal [45].
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Figure 7. Staleness distribution of collected tweets follows
a Gaussian distribution (τ < 65) with a long tail (τ > 65).

Energy impact. We measure the energy impact of the
gradient computation on the Raspberry Pi worker. The Rasp-
berry Pi has no screen; nevertheless recent trends in mo-
bile/embedded processor design show that the processor is
dominating the energy consumption, especially for compute
intensive workloads such as the gradient computation [34].
We measure the power consumption of every update of On-
line FL by executing the corresponding gradient computation
10 times and by taking the median energy consumption. We
observe that the power depends on the batch size and in-
creases from 1.9 Watts (idle) to 2.1 Watts (batch size of 1)
and to 2.3 Watts (batch size of 100). The computation latency
is 5.6 seconds for batch size of 1 and 8.4 for batch size of
100. Across all the updates of Online FL (that employ var-
ious batch sizes and result in the quality boost shown in
Figure 6), we measure the average, median, 99th percentile
and maximum values of the daily energy consumption as 4,
3.3, 13.4 and 44 mWh respectively. Given that most modern
smartphones have battery capacities over 11000 mWh, we
argue that Online FL imposes a minor energy consumption
overhead for boosting the prediction quality.

Staleness distribution. We study the staleness distribu-
tion of the updates on our collected tweets, in order to set
our experimental setup for evaluatingAdaSGD (§3.2). We as-
sume that the round-trip latency per model update (gradient
computation time plus network latency) follows an expo-
nential distribution (as commonly done in the distributed
learning literature [3,25,48,58]). The network latency for
downloading the model (123,330 parameters) and uploading
the gradients is estimated to 1.1 second for 4G LTE and 3.8
seconds for 3G HSPA+ [37]. We then estimate the average
computation latency to be 6 seconds, based on our latency
measurements on the Raspberry Pi. Therefore, we choose
the exponential distribution with a minimum of 6+1.1 = 7.1
seconds and a mean of (6+1.1)+(6+3.8)

2 = 8.45 seconds. Given
the exponential distribution for the round-trip latency and
the timestamps of the tweets, we observe (in Figure 7) that
the staleness follows a Gaussian distribution with a long tail
(as assumed in [85]). The long tail is due the presence of
certain peak times with hundreds of tweets per second.

Noteworthy, for applications such as our Twitter hashtag
recommender where the user activity (and therefore the per-
user data creation) is concentrated in time, the difference
between Online and Standard FL in terms of communication
overhead (due to the gradient-model exchange) is negligi-
ble. For applications where the per-user data creation is
spread across the day, the communication overhead of On-
line FL grows, as each user communicates more often with
the server.

3.2 AdaSGD Performance
We now dissect the performance of AdaSGD via an image
classification application that involves Convolutional Neural
Networks (CNNs). We choose this benchmark due to its
popularity for the evaluation of SGD-based approaches [2,12,
40,52,85,86].We employmultiple scenarios involving various
staleness distributions, data distributions, and a noise-based
differentially private mechanism.

Image classification setup. We implement the models
shown in Table 1 in FLeet6 to classify handwritten char-
acters and colored images. We use three publicly available
datasets: MNIST [47], E-MNIST [15] and CIFAR-100 [43].
MNIST consists of 70,000 examples of handwritten digits (10
classes) while E-MNIST consists of 814,255 examples of hand-
written characters and digits (62 classes). CIFAR-100 consists
of 60,000 colour images in 100 classes, with 600 images per
class. We perform min-max scaling as a pre-processing step
for the input features.

We split each dataset into training / test sets: 60,000 / 10,000
for MNIST, 697,932 / 116,323 for E-MNIST and 50,000 / 10,000
for CIFAR-100. Unless stated otherwise, we set the aggrega-
tion parameterK (§2.3) to 1 (for maximum update frequency),
the mini-batch size to 100 examples [60], the ϵ (the Passive-
Aggressive parameter) to 0.1 and the learning rate to 15∗10−4
for CIFAR-100, 8 ∗ 10−4 for E-MNIST, and 5 ∗ 10−4 for MNIST.

Since the training data present on mobile devices are typi-
cally collected by the users based on their local environment
and usage, both the size and the distribution of the train-
ing data will typically heavily vary among users. Given the
terminology of statistics, this means that the data are not
Independent and Identically Distributed (non-IID). Following
recent work on FL [77,78,84,86], we employ a non-IID ver-
sion of MNIST. Based on the standard data decentralization
scheme [52], we sort the data by the label, divide them into
shards of size equal to 60000

2 * number of users , and assign 2 shards
to each user. Therefore, each user will contain examples for
only a few labels.

Staleness awareness setup. To be able to precisely com-
pare AdaSGD with its competitors, we control the stale-
ness of the updates produced by the workers of FLeet.
Based on [85] and the shape of the staleness distribution

6We implement the CNN for E-MNIST on DL4J and the rest on our default
CNN library.
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Table 1. CNN parameters.

Dataset Parameters Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3

MNIST Kernel size
Strides 28×28×1 5×5×8

1×1
3×3
3×3

5×5×48
1×1

2×2
2×2 10 – –

E-MNIST Kernel size
Strides 28×28×1 5×5×10

1×1
2×2
2×2

5×5×10
1×1

2×2
2×2 15 62 –

CIFAR-100 Kernel size
Strides 32×32×3 3×3×16

1×1
3×3
2×2

3×3×64
1×1

4×4
4×4 384 192 100

shown in Figure 7, we employ Gaussian distributions for
the staleness with two setups: D1 := N(µ = 6,σ = 2) and
D2 := N(µ = 12,σ = 4), to measure the impact of increas-
ing the staleness. We set the expected percentage of non-
stragglers (s%) to 99.7%, i.e., τthres = µ + 3σ . We evaluate
the SGD algorithms on FLeet by using commercial Android
devices from AWS.
We evaluate the performance of AdaSGD against three

learning algorithms: (i) DynSGD [39], a staleness-aware
SGD algorithm employing an inverse dampening function
(Λ(τ ) = 1

τ+1 ), that AdaSGD builds upon (§2.3), (ii) the stan-
dard SGD algorithm with synchronous updates (SSGD) that
represents the ideal (staleness-free) convergence behaviour,
and (iii) FedAvg [52], the standard staleness-unaware SGD
algorithm that is based on gradient averaging.

Staleness-based dampening. Figure 8 depicts that
AdaSGD outperforms the alternative learning schemes for
the non-IID version of MNIST. As expected, the staleness-
free scenario (SSGD) delivers the fastest (ideal) conver-
gence, whereas the staleness-unaware FedAvg diverges. The
comparison between the two staleness-aware algorithms
(DynSGD and AdaSGD) shows that our solution (AdaSGD)
better adapts the dampening factor to the noise introduced by
stale gradients (§2.3). AdaSGD reaches 80% accuracy 14.4%
faster than DynSGD for D1 and 18.4% for D2. Figure 8 also
depicts the impact of staleness on DynSGD and AdaSGD.
We observe that the larger the staleness, the slower the con-
vergence of both algorithms. The advantage of AdaSGD
over DynSGD grows with the amount of staleness as the
larger amount of noise gives more leeway to AdaSGD to
benefit from its superior dampening scheme.
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Figure 8. Impact of staleness on learning.

Similarity-based boosting. We evaluate the effective-
ness of the similarity-based boosting property of AdaSGD
(§2.3) in the case of long tail staleness (Figure 7). We employ
the non-IID MNIST dataset, D1 (thus τthres is 12) and set the
staleness to 4 · τthres = 48 for all the gradients computed on
data with class 0. This setup essentially captures the case
where a particular label is only present in stragglers. Fig-
ure 9(a) shows that AdaSGD incorporates the knowledge
from class 0 much faster than DynSGD.

Figure 9(b) shows the CDF for the dampening values used
to weight the gradients of Figure 9(a). We mark the two
points of interest regarding the τthres by vertical lines (as
also shown in Figure 5). If AdaSGD had no similarity-based
boosting, all updates related to class 0 would almost not be
taken into account, as theywould be nullified by the exponen-
tial dampening function, therefore leading to a model with
poor predictions for this class. Given the low class similarity
of the learning tasks involving class 0, AdaSGD boosts their
dampening value. The second vertical line denotes the stale-
ness value ( τthres2 = 6) for which AdaSGD and DynSGD give
the same dampening value (0.14). The slope of each curve at
this point indicates that the dampening values for DynSGD
are more concentrated whereas the ones for AdaSGD are
more spread around this value.
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Figure 9. Impact of long tail staleness on learning.

IID data. Although data are more likely to be non-IID
in an FL environment, the data collected on mobile devices
might in some cases be IID. We thus benchmark AdaSGD
under two additional datasets (E-MNIST and CIFAR-100)
with the staleness following D2. Figure 10 shows that our
observations from Figure 8 hold also with IID data. As with
non-IID data, FedAvg diverges also in the IID setting, and
AdaSGD performs better than DynSGD on both datasets.

Differential privacy. Differential privacy [26] is a pop-
ular technique for privacy-preserving FL with formal guar-
antees [9]. We thus compare AdaSGD against DynSGD in
a differentially private setup by perturbing the gradients as
in [2]. We keep the previous setup (IID data with D2) and
employ the MNIST dataset. Based on [80], we fix the prob-
ability δ = 1/N 2 = 1

600002 and measure the privacy loss (ϵ)

171



Middleware ’20, December 7–11, 2020, Delft, Netherlands Georgios Damaskinos, et al.

0 2 4 6 8
Step (x 1000)

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

AdaSGD

DynSGD

FedAvg

SSGD (ideal)

(a) E-MNIST

0 6 12 18 24
Step (x 1000)

0.0

0.1

0.2

0.3

0.4

A
cc

ur
ac

y

AdaSGD

DynSGD

FedAvg

SSGD (ideal)

(b) CIFAR-100

Figure 10. Staleness awareness with IID data.
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Figure 11. Staleness awareness with differential privacy.

with the moments accountant approach [2] given the sam-
pling ratio (mini-batch size

N = 100
60000 ), the noise amplitude, and

the total number of iterations.
Figure 11 demonstrates that the advantage of AdaSGD

over DynSGD also holds in the differentially private setup.
A better privacy guarantee (i.e., smaller ϵ) slows down the
convergence for both staleness-aware learning schemes.

3.3 I-Prof Performance
We compare I-Prof against the profiler of MAUI [18], a
mobile device profiler aiming to identify the most energy-
consuming parts of the code and offload them to the cloud.
MAUI predicts the energy by using a linear regression model
(similar to the global model of I-Prof) on the number of
CPU cycles (Ê = θ0 · n), to essentially capture how the size
of the workload affects the energy (as in [59]). We adapt the
profiler of MAUI to our setup by replacing the CPU cycles
with the mini-batch size for two main reasons. First, our
workload has a static code path so the number of CPU cycles
on a particular mobile device is directly proportional to the
mini-batch size. Second, measuring the number of executed
CPU cycles requires root access that is not available on AWS.

We bootstrap the global model of I-Prof and the model of
MAUI by pre-training on a training dataset. To this end, we
use 15mobile devices in AWS (that are different from the ones
used for the rest of the experiments), assign them learning
tasks with increasing mini-batch size until the computation
time becomes 2 times the SLO, and collect their device infor-
mation for each task. We rely on the same methodology to

evaluate energy consumption but use only 3 mobile devices
in our lab, as AWS prohibits energy measurements.

For testing, we use a different set of 20 commercial mobile
devices in AWS, each performing requests for the image
classification application (on MNIST), starting at different
timestamps (log-in events) as shown in Figure 12(a). In order
to ensure a precise comparison with MAUI, we add a round-
robin dispatcher to the profiler component which alternates
the requests from a given device between I-Prof and MAUI.

Computation time SLO. Figure 12(b) shows that I-Prof
largely outperforms MAUI in terms of deviation from the
computation time SLO. 90% of approximately 280 learning
tasks deviate from an SLO of 3 seconds by at most 0.75 sec-
onds with I-Prof and 2.7 seconds with MAUI. This is the
direct outcome of our design decisions. First, I-Prof adds
dynamic features (e.g., the temperature of the device) to train
its global model (§2.2). As a result, the predictions are more
accurate for the first request of each user. Second, I-Prof
uses a personalized model for each device that reduces the er-
ror (deviation from the SLO) with every subsequent request
(Figure 12(c)). Figure 12(d) shows that the personalized mod-
els of I-Prof are able to output a wider range of mini-batch
sizes that better match the capabilities of individual devices.
On the contrary, MAUI relies on a simple linear regression
model which has acceptable accuracy for its use-case but is
inefficient when profiling heterogeneous mobile devices.

Energy SLO. To assess the ability of I-Prof to also target
the energy SLO,we use the same setup as for the computation
time, except on 5 mobile devices7. We configure I-Prof with
a significantly smaller error margin, ϵ = 6∗10−5 (Equation 2),
because the linear relation (capture by α as defined in §2.2) is
significantly smaller for the energy than for the computation
time (as shown in Figure 4).
Figure 13 shows that I-Prof significantly outperforms

MAUI in terms of deviation from the energy SLO. 90% of
36 learning tasks deviate from an SLO of 0.075% battery
drop by at most 0.01% for I-Prof and 0.19% for MAUI. The
observation that I-Prof is able to closely match the latency
SLO, while MAUI suffers from huge deviations, holds for the
energy too. The PA personalized models are able to quickly
adapt to the state of the device as opposed to the linear model
of MAUI that provides biased predictions.

3.4 Resource Allocation
We evaluate our resource allocation scheme (§2.4) and com-
pare it against CALOREE [56] which is a state of the art
resource manager for mobile devices. The goal of CALOREE
is to optimize resource allocation in order for the workload
execution to meet its predefined deadline while minimizing
the energy consumption. To this end, CALOREE profiles

7AWS prohibits energy measurements so we only rely on devices available
in our lab, listed in their log-in order: Honor 10, Galaxy S8, Galaxy S7,
Galaxy S4 mini, Xperia E3.
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Figure 12. I-Prof outperforms MAUI and drives the computation time closer to the SLO.
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Figure 13. I-Prof outperforms MAUI and drives the energy
closer to the SLO.

the target device by running the workload with different re-
source configurations (i.e., number of cores, core frequency).
Since FLeet executes on non-rooted mobile devices, we can
only adapt the number of big/little cores (but not their fre-
quencies). By varying the number of cores allocated to our
workload (i.e., gradient computation), we obtain the energy
consumption of each possible configuration. From these con-
figurations, CALOREE only selects those with the optimal en-
ergy consumption (the lower convex hull) which are packed
in the so called performance hash table (PHT).
CALOREE on new devices. In their thorough evaluation,

the authors of CALOREE used the same device for training
and running the workloads. Therefore, we first benchmark
the performance of CALOREE when running on new devices.
We employ Galaxy S7 to collect the PHT and set the mini-
batch size that I-Prof gives for a latency SLO of 3 seconds
(§3.3).We then run this workloadwith CALOREE on different
mobile devices, as shown in Table 2.
The performance of CALOREE degrades significantly

when running on a different device than the one used for
training. The first line of Table 2 shows the baseline error
when running on the same device. The error increases more
than 6× for a device with similar architecture and the same
vendor (Galaxy S8) and more than 32× for a device of similar

Table 2. Performance of CALOREE [56] on new devices.

Running device Deadline error (%)
Galaxy S7 1.4
Galaxy S8 9
Honor 9 46
Honor 10 255

architecture but different vendor (Honor 9 and 10). This sig-
nificant increase for the error is due to the heterogeneity of
the mobile devices which make PHTs not applicable across
different device models.

CALOREE vs FLeet. We evaluate the resource allocation
scheme of FLeet by comparing it to the ideal environment
for CALOREE, i.e., training and running on the same device
(a setup nevertheless difficult to achieve in FL with millions
of devices). Following the setup used for the energy SLO
evaluation (§3.3), we employ 5 devices and fix the size of the
workload (mini-batch size) based on the output of I-Prof. In
particular we set the mini-batch size to 280, 4320, 6720, 5280,
1200 for the devices shown in Figure 14 respectively. We set
the deadline of CALOREE either equal or double than the
computation latency of FLeet. We take 10 measurements
and report on the median, 10th and 90th percentile.
Figure 14 shows the fact that in the ideal environment

for CALOREE and even with double the time budget (giving
more flexibility to CALOREE), FLeet has comparable energy
consumption. Since gradient computation is a compute inten-
sive task with high temporal and spacial cache locality, the
configuration changes performed by CALOREE negatively
impact the execution time and cancel any energy saved by
its advanced resource allocation scheme. Additionally, the
fewer configuration knobs available on non-rooted Android
devices limit the full potential of CALOREE.

3.5 Learning Task Assignment Control
The controller of FLeet employs a threshold to prune learn-
ing tasks and thus control the trade-off between the cost of
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Figure 14. Resource allocation of FLeet vs. CALOREE.

the gradient computations and the model prediction qual-
ity. This threshold can be based either on the mini-batch
size or on the similarity values (Figure 2). To evaluate this
trade-off, we employ non-IID MNIST with the mini-batch
size following a Gaussian distribution N(µ = 100,σ = 33)
(based on the distribution of the output of I-Prof shown in
Figure 12(d)), and set the threshold to the n− th percentile of
the past values. Figure 15 illustrates that a threshold on the
mini-batch size is more effective in pruning the less useful
gradient computations than a threshold on the similarity.
Figure 15(a) shows that even dropping up to 39.2% of the
gradients (with the smallest mini-batch size) has a negligible
impact on the accuracy (less than 2.2%). Figure 15(b) shows
that one can drop 17% of the most similar gradients with an
accuracy impact of 4.8%.
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Figure 15. Threshold-based pruning.

4 Related Work
Distributed ML. Adam [12] and TensorFlow [1] adopt

the parameter server architecture [49] for scaling out on
high-end machines, and typically require cross-worker com-
munication. FLeet also follows the parameter server archi-
tecture, by maintaining a global model on the server. How-
ever, FLeet avoids cross-worker communication, which is
impractical for mobile workers due to the device churn.
A common approach for large-scale ML is to control the

amount of staleness for boosting convergence [19,67]. In On-
line FL, staleness cannot be controlled as this would impact
the model update frequency. The workers perform learning
tasks asynchronously with end-to-end latencies that can dif-
fer significantly (due to device heterogeneity and network
variability) or even become infinite (user disconnects).

Petuum [81] and TensorFlow handle faults (worker
crashes) by checkpointing and repartitioning the model
across the workers whenever failures are detected. In a set-
ting with mobile devices, such failures may appear very
often, thus increasing the overhead for checkpointing and
repartitioning. FLeet does not require any fault-tolerance
mechanism for its workers, as from a global learning per-
spective, they can be viewed as stateless.

Federated learning. In order to minimize the impact on
mobile devices, Standard FL algorithms [8,38,52,72] require
the learning task to be executed only when the devices are
idle, plugged in, and on a free wireless connection. How-
ever, in §3.1, we have shown that these requirements may
drastically impact the performance of some applications.
Noteworthy, techniques for reducing the communication
overhead [38] or increasing the robustness against adversar-
ial users [20,21], are orthogonal to the online characteristic
so they can be adapted forAdaSGD, and plugged into FLeet.

Performance prediction formobile devices. Estimating
the computation time or energy consumption of an appli-
cation running on a mobile device is a very broad area of
research. Existing approaches [10,13,14,35,44,83] target mul-
tiple applications generally executing on a single device.
They typically benchmark the device or monitor hardware
and OS-level counters that require root access. In contrast,
FLeet targets a single application executing in the same way
across a large range of devices. I-Prof poses a negligible
overhead, as it employs features only from the standard An-
droid API to enable Online FL, and requires no benchmarking
of new devices. I-Prof is designed to make predictions for
unknown devices.

Neurosurgeon [40] is a scheduler that minimizes the end-
to-end computation time of inference tasks (whereas FLeet
focuses on training tasks), by choosing the optimal parti-
tion for a neural network and offloading computations to
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the cloud. The profiler of Neurosurgeon only uses workload-
specific features (e.g., number of filters or neurons) to es-
timate computation time and energy, and ignores device-
specific features. By contrast, mobile phones, as targeted
by I-Prof8, exhibit a wide range of device-specific charac-
teristics that significantly impact their latency and energy
consumption (Figure 4).

Systems such as CALOREE [56] and LEO [57] profile mo-
bile devices under different system configurations and train
an MLmodel to determine the ones that minimize the energy
consumption. They rely on a control loop to switch between
these configurations such that the application does not miss
the preset deadline. Due to the restrictions of the standard
Android API, the available knobs are limited in our setup.
For our application (i.e., gradient computation), we show
that a simple resource allocation scheme (§2.4) is preferable
even in comparison with an ideal execution model.

5 Concluding Remarks
This paper presented FLeet, the first system that enables
online ML at the edge. FLeet employs I-Prof, a new ML-
based profiler which determines the ML workload that each
device can perform within predefined energy and compu-
tation time SLOs. FLeet also makes use of AdaSGD, a new
staleness-aware learning algorithm that is optimized for On-
line FL. We showed the performance of I-Prof and AdaSGD
on commercial Android devices with popular benchmarks.
I-Prof can be used for any iterative computation with
embarrassingly-parallel CPU-bound tasks while AdaSGD
is specific to gradient-descent and thus ML applications. In
our performance evaluation we do not focus on network
and scalability aspects that are orthogonal to our work and
addressed in existing literature. We also highlight that trans-
ferring the label and device information (Figure 2) poses a
negligible network overhead compared to transferring the
relatively large FL learning models. Finally, addressing biases
is an important problem even in cloud-based online ML (not
only FL) that we also do not address in this work. For On-
line FL we arguably need to keep some of these biases (e.g.,
recommend more politics to people that wake up earlier). Of
course diversity is also crucial.
Although we believe FLeet to represent a significant ad-

vance for online learning at the edge, there is still room
for improvement. First, for the energy prediction, I-Prof
requires access to the CPU usage that is considered as a se-
curity flaw on some Android builds and thus not exposed
to all applications. In this case, I-Prof requires a set of ad-
ditional permissions that belong to services from Android
Runtime. Second, the transfer of the label distribution from
the worker to the server introduces a potential privacy leak-
age. However, we highlight that the server has access only to

8In their in-depth experimental evaluation the authors of [40] consider a
single hardware platform and not Android mobile devices.

the indices of the labels and not their values. In this paper, we
focus on the protection of the input features and mention the
possibility to deactivate the similarity-based boosting feature
of AdaSGD in the case that this leakage is detrimental. We
plan to investigate noise addition techniques for bounding
this leakage [26] in our future work. Finally, theoretically
proving the convergence of AdaSGD is non-trivial due to
the unbounded staleness and the non Independent and Iden-
tically Distributed (non-IID) datasets among the workers. In
this respect, a dissimilarity assumption similar to [50] may
facilitate the derivation of the proof.
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