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Abstract— In many applications, resource-aware devices are
connected through a network, such as in the Internet of Things
and energy hubs. These devices require proper coordination to
achieve a high performance without violation of their resource
limits. In this paper, we propose an asynchronous resource-
aware multi-agent model predictive control to cooperatively
coordinate agents to conduct a common task, whose resource
concern is handled by a self-triggered control scheme. The
consistency and recursive feasibility of the proposed MPC
scheme are investigated. A reliable numerical implementation
is introduced to deal with non-constant sampling times among
agents, which is subsequently validated by a numerical example.

I. INTRODUCTION

Resource-aware devices are ubiquitous in domains such as
the Internet of Things (IoT) and wireless sensing systems.
The actuation/triggering of these devices is limited by some
resource factors, such as battery life or hardware longevity.
Event-triggered [13] and self-triggered control [16] are two
main paradigms to accommodate this issue. Event-triggered
control operates reactively, i.e., it determines the trigger-
ing instants by monitoring a triggering condition. As a
result, sensors are required to update at regular frequencies.
Instead, self-triggered control operates proactively, i.e., it
plans the next trigger time already at the previous trigger
time. It enables both sensors and actuators to update at
non-equidistant sampling instants. Self-triggered control is,
therefore, preferable for resource-aware devices.

Trigger time selection is the key component in self-
triggered controller design. The trigger time can be chosen
as long as possible as in [2], [3]. In [9], [24], trigger
time is optimized in a Model Predictive Control (MPC)
scheme. A mixed-integer problem is solved in [9] in order
to balance control performance and resource consumption.
In [24], a non-convex reformulation [24] is proposed in
which performance is optimized while resources are handled
as constraints.

In practice, resource-aware devices are widely connected
by a network, over which devices are coordinated coopera-
tively, such as energy hubs [7] or the IoT [14]. However, this
coordination has never been investigated properly regarding
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the resource limit. This work focuses on optimizing overall
performance by optimally deploying the resources of each
device. The optimal coordination problem was investigated
under the framework of distributed MPC [5] in the literature,
where agents (i.e., resource-aware devices in this work) have
been manipulated either non-cooperatively [19], [22] or co-
operatively [8], [15], [12]. In this work, we consider the case
where full information of each agent is accessible to all other
agents, such that each agent is self-triggered asynchronously
and optimizes their control inputs and next trigger time
regarding the states and resources of all other agents. The
proposed framework can be applied to a wide category of
tasks such as network traffic coordination constraints by
limited network resources [21] and energy-hub coordination
constraints by energy source physics [17].

The main contribution of this paper is threefold:
• We propose an asynchronous MPC scheme for multi-

resource-aware agent coordination.
• We investigate sufficient conditions for recursive feasi-

bility of the proposed MPC scheme.
• We elaborate on reliable numerical implementation de-

tails of the proposed MPC to address convergence and
scalability issues.

The remainder of this paper is organized as follows: In
Section II, we introduce the dynamics of the system and the
coordination problem of interest. In Section III, the receding
horizon scheme of the proposed MPC is detailed and recur-
sive feasibility is investigated. In Section IV, implementation
details and its distributed form are elaborated. The proposed
MPC is then validated in Section V.

Notation: In this paper, we use notation {ai}Na
i=1 to denote

a finite set of Na elements indexed by i, f(x(t))|t=T denotes
a function f(x(t)) evaluated at time t = T , and Zb

a denotes
[a, b] ∩ Z.

II. SYSTEM MODEL AND PROBLEM STATEMENT

This section presents a tracking coordination problem of
multiple linearly coupled agents.

A. Self-Triggered Agent Model

This paper considers a multi-agent system with M local
resource-aware self-triggered agents, whose control laws are
fixed within two sequential triggering times ti,k and ti,k+1.
In particular, the dynamics of the i-th agent is governed by

∀ t ∈ [0,∞) , ẋi(t) = fi(xi(t), ui(t)), (1)

where xi : R→ Rnx and ui : R→ Rnu denote the state and
control inputs in continuous time. Moreover, fi is assumed



to be differentiable. In direct optimal control [4], a self-
triggered input over a time horizon T i is parametrized by

ui(t) =

N−1∑
k=0

vi,kξk(t,∆i,k) , (2)

where the orthogonal functions ξk ∈ L2[0, T i], k ∈ ZN−1
0 ,

encapsulate the triggering property and are given by para-
metric piece-wise constant functions

ξk(t,∆i,k) =

{
1 t ∈ [ti,k, ti,k+1)

0 otherwise
(3)

with ti,0 = 0, ti,N = T i and

∆i,k = ti,k+1 − ti,k , k ∈ ZN−1
0 .

For the sake of simplicity, we use the notation

ui(t) := ui(t, vi,∆i)

to denote parametrization (2) with parameters

vi := [v>i,0, v
>
i,1, ..., v

>
i,N−1]>

and ∆i := [∆i,0,∆i,1, . . . ,∆i,N−1]> .

With initial state x̂i, the state trajectory evolving under
dynamics (1) is denoted as

x(t) = ζi(t, vi,∆i, x̂i) ∈ Rnx , ∀ i ∈ ZM
1 , (4)

such that the trajectory ζi(·, vi,∆i, x̂i) is parametrized by its
intervals ∆i, its control inputs parameters vi and the initial
state x̂i. In practice, numerical integration can be used to
compute ζi approximately. Moreover, the control constraint
and state constriants are given by

vi,k ∈ Ui , k ∈ ZN−1
0 and ζi(t, vi,∆i, x̂i) ∈ Xi .

A self-triggered agent updates its control law by triggering,
where the trigger time points are limited by a local resource.
When the control input is fixed, the i-th agent recharges its
local resource ri at a constant rate ρi until saturation at ri.
More specifically,{

∀ t ∈ (ti,k, ti,k+1) , ∀ k ∈ ZN−1
0 ,

ṙi(t) = σ(ri − ri(t))ρi ,

where σ denotes a step function with σ(s) = 1, s ≥ 0
and 0 elsewhere. When the control input is updated (i.e.,
the agent is triggered), the local resource discharges by an
amount of µi to pay the update cost. Hence, the resource at
the triggering times ti,k for all k ∈ ZN−1

1 is

ri(ti,k) =


r̂i, k = 0

lim
t→t−i,k

ri(t)− µi(∆i,k−1) k ∈ ZN
1 ,

with initial value r̂i. Here, t → t−i,k denotes the limit from
left1 and µi denotes the update cost depending on the chosen

1Specifically, t→ t−i,k := t→ t−i,k, t < ti,k

interval. Moreover, the resource ri is required to be bounded
within the interval

ri(t) ∈ [ri, ri] .

In general, a resource-aware self-triggered agent can update
its control input when its resource can be charged without
violating the the lower bound ri. Otherwise, it waits until
enough resources are available.

B. Problem Formulation of Multi-Agent Coordination

M self-triggered agents are coordinated to track a com-
mon reference signal zref, which, in practice, might be the
demand of a product or an aggregation signal in a power
grid. However, the triggering times of the M self-triggered
agents are asynchronous. At a given triggering time, only
the triggered agents can update their control law while the
non-triggered agents should maintain their control input until
they are triggered themselves. The corresponding multi-agent
coordination problem is defined as

min
v,∆

M∑
i=1

∫ T i

0

Li(ζi(t, vi,∆i, x̂i), ui(t, vi,∆i))dt (5a)

+

∫ T 0

0

∥∥z(t)− zref(t)
∥∥2

2
dt (5b)

s.t. ∀ t ∈ [0, T 0] , z(t) =

M∑
i=1

Aiζi(t, vi,∆i, x̂i) , (5c)

∀i ∈ ZM
i

{
ζi(t, vi,∆i, x̂i) ∈ Xi, ∀t ∈ [0, T i]

vi,k ∈ Ui, ∀ k ∈ ZN−1
0 ,

(5d)

∀ i ∈ ZM
i ,

{
∀ k ∈ ZN−1

0 , ∀ t ∈ (ti,k, ti,k+1)

ṙi(t) = σ(ri − ri(t))ρi, ri(0) = r̂i
(5e)

∀ i ∈ Ac ,

ri,1(ti,1) = lim
t→t−i,1

ri(t)− µi(∆i,0 + ∆̂−i ) ,

∆i,0 + ∆̂−i ∈ [∆i,∆i] ,

ri(ti,k) ∈ [ri, ri] , k ∈ ZN
1

∆i,k−1 ∈ [∆i,∆i] , k ∈ ZN
2

∆i,0 = ∆̂+
i , vi,0 = v̂i

(5f)

∀ i ∈ A , ∀ k ∈ ZN
1 ,

{
ri(ti,k) ∈ [ri, ri]

∆i,k−1 ∈ [∆i,∆i] ,
(5g)

where the cooperative state z ∈ Rnz couples M agents
linearly in (5c) and matrices Ai ∈ Rnx×nz model the
effectiveness of each agent. The global cost (5b) penalizes
the tracking error against the common reference signal zref(t)
over [0, T 0]. Moreover, Li denotes the local stage cost in (5a)
over the local time horizon [0, T i]. T 0 is fixed by the user
and we require T 0 ≤ T i, ∀i ∈ ZM

1 . The choice of T 0 will
be discussed in Section III-B.

The triggering interval is bounded by [∆i,∆i]. Moreover,
the asynchronous triggering scheme discussed at the begining



of this section is handled by (5f) and (5g), where agents
are divided into two groups. One group includes agents that
are triggered at the current time instant, dubbed A, while
another group includes the non-triggered ones, denoted by
Ac = ZM

1 \A. Before their next trigger in ti,1 = ∆̂+
i ,

the non-triggered agents in Ac will maintain their current
control law with parameter vi,0, which is determined at its
last trigger ∆̂− ago, where ∆̂− denotes the time difference
between the last triggering time and the current time instant.
In closed loop, the first two constraints in (5f) ensure that the
resource of the non-triggered agents is consistent from its last
trigger up to its next trigger. This is required for recursive
feasibility in Section III-B, together with initial conditions
∀i ∈ Ac , ∆i,0 = ∆̂+

i , vi,0 = v̂i . The online update of
∆̂+ and v̂i will be elaborated on in the next section.

Remark 1 As opposed to the global coordination error (5b)
cost, the local cost Li in general does not penalize the
tracking error. If this was the case, the resulting problem
would become a challenging bi-level optimization, which
could be investigated as a multi-follower problem [25], [17].

III. SELF-TRIGGERED MODEL PREDICTIVE CONTROL

The receding horizon scheme of the proposed multi-
agent coordination is detailed in this section. Additionally, a
sufficient condition for recursive feasibility is investigated.

A. Algorithm

Algorithm 1 outlines an asynchronous self-triggered MPC
algorithm for multi-agent coordination.

Algorithm 1 MPC Scheme
Initialization:
• Set the current time instant to tc = 0 and set A = ZM

1 .
• Each agent sets ∆̂−i = 0, ∆̂+

i = 0.
Online:

1) At time tc, each agent measures their current state x̂i
and resource level r̂i.

2) Solve Problem (5) and obtain solution (v∗i ,∆
∗
i ) for all

i ∈ ZM
1 .

3) Set the time shift ∆s = mini ∆∗i,0.
4) Each agent applies ui(t, v

∗
i ,∆

∗
i ) within the interval

[tc, tc + ∆s] and shifts the horizon with tc ← tc + ∆s.
5) Set A = ∅ and update A as follows:

For i = 1 : M do
• If ∆∗i,0 = ∆s, set A← A ∪ {i} and ∆̂−i = 0.
• Else, set v̂i = v∗i,0 and

∆̂−i = ∆̂−i + ∆s , ∆̂+
i = ∆∗i,0 −∆s .

End
6) Set Ac = ZM

1 \A and go to Step 1).

Step 1) and 2) of Algorithm 1 are the standard MPC
scheme [18] solving (5) based on the current measurement
of states and resource levels. Step 3) sets the time shifting
as the minimal triggering time ∆∗i,0 over i, which yields

an asychronous triggering pattern online. Then, each agent
applies the optimized control input to the real process within
[tc, tc + ∆s] and shifts its horizon with ∆s in Step 4). In
Step 5) and 6), the sets of triggered/non-triggered agents
A/Ac and their trigger time registers ∆̂−i , ∆̂+

i are updated.
In Algorithm 1, the triggering time sequence in closed

loop among M self-triggered agents are not synchronized,
since only |A| agents triggered at each time tc. The triggered
agents at tc only optimize the manipulable parts, including:
• Trajectories of the triggered agents from current time tc

up to their end time T i.
• Trajectories of the non-triggered agents from their next

scheduled trigger tc + ∆̂+
i to their end time T i.

Remark 2 In this paper, we shift the horizon forward to the
first of the next scheduled trigger times of all agents. How-
ever, other ways to shift the horizon are also conceivable.
For example, one could shift the horizon to the last of the
next scheduled trigger times, such that all the agents are
triggered at least once. We conjecture that with the same
assumptions as presented in this paper, recursive feasibility
could be established for this case as well.

B. Properties of the MPC scheme

This section discusses recursive feasibility of Problem (5)
in Algorithm 1, First, it is assumed that there exists a feasible
∆̃i, for all i ∈ ZM

1 , which does not drain the resource. In
order to introduce this assumption, we denote sets

Di := {∆|ρi∆− µi(∆) ≥ 0} ,
and Ci := Di ∩ [∆i,∆i] .

Assumptions We assume that
A1 The set Ci is nonempty for all i.
A2 There exists a ∆d

i ∈ Ci such that ri−µ(∆d
i ) ≥ ri for

all i ∈ ZM
1 and (N − 1) ·∆i ≥ T 0 .

A3 The sets Xi for all i ∈ ZM
1 are control forward

invariant, i.e., for any given x̂i ∈ Xi and ∆d
i ∈ Ci

there, exists a vdi ∈ Ui such that

∀ t ∈ [0, T i] , ζi(t, v
d
i ,∆i, x̂i) ∈ Xi .

Theorem 1 Let A1–A3 be satisfied. If the MPC optimiza-
tion problem (5) is feasible at current time tc, then under
Algorithm 1, it is feasible at time tc + ∆s with ∆s as well.

Proof. Let us denote the optimal solution of (5) at time tc
as (v∗i ,∆

∗
i ) for all i ∈ ZM

1 . Then, we show the recursive
feasibility of (5) by the following two steps.

1) For the non-triggered agents i ∈ Ac at time tc+∆s, we
can construct a feasible solution for (5) at time tc+∆s

as ṽi = v∗i and

∆̃i = [∆∗i,0 −∆s,∆∗i,1, ....,∆
∗
i,N−1]> . (6)

According to the construction of constraint (5f), we
have that ∆̃i is feasible for both (5e) and (5f) for all



i ∈ Ac. The time horizon T i at tc + ∆s of ∆̃i is

T i =

N−1∑
k=0

∆∗i,k −∆s ≥ T 0 ,

where the last inequality holds because ∆∗i,0 > ∆s

and A2, and thus fulfills the requirement on T i.
Moreover, ζi(t, ṽi, ∆̃i, x̂i)|t=tc+∆s is consistent with
the trajectory from tc, i.e., with ζi(t, v

∗
i ,∆

∗
i , x̂i)|t=tc ,

thus (v+
i ,∆

+
i ) is feasible for constraint (5d).

2) For the triggered agents i ∈ A at time tc + ∆s, we
can construct ṽi = [v∗Ti,1 , . . . , vi,N−1, v

d
i ], and ∆̃i =

[∆∗i,1,∆
∗
i,2, ....,∆

∗
i,N−1,∆

d
i ] is a feasible solution for

constraints (5e) and (5g), because r(ti,N ) ≥ r(ti,N−1)
due to A1 and A2. The resulting time horizon at T i at
tc + ∆s is

T i =

N−1∑
k=1

∆∗i,k + ∆d
i

Ass 2
≥ T 0 .

Moreover, based on A3, vdi ensures that
ζi(t, ṽi, ∆̃i, x̂i)|t=tc+∆s is still feasible for
constraint (5d) from ti,N−1 to ti,N . �

Theorem 1 establishes recursive feasibility of Problem (5)
in Algorithm 1, where the non-triggered agents can reuse
their solution from the last trigger, while the triggered agents
rely on forward invariance of the constraint set.

IV. NUMERICAL IMPLEMENTATION DETAILS

This section elaborates on how to implement Algorithm 1
numerically. Note that Problem (5) is non-trivial to solve
because of the asynchronous update among agents.

A. Integration among Different Time Grids

In practice, the state trajectory xi(t) (i.e., ζi(t, vi,∆i, x̂i))
is only represented by some finite evaluations at different
time stamps, called the local time grid. Triggering times
{ti,k}Nk=0 are used as local time grid in our implementation
and hence {x(ti,k)}Nk=0 are critical points used to represent
the whole trajectory from x̂i to x(T i). Meanwhile, the
numerical representation of the cooperative state z(t) also
requires a global time grid. As the local time grid is a
decision variable in the optimization problem (5), the choice
of the global time grid is critical. It is intuitive to combine
all local time grids {ti,k}Nk=0 to a global time grid. However,
since the local time grids are decision variables, the resulting
optimization problem has poor numerical robustness [23],
i.e., high sensitivity and low dual feasibility. Instead, we
propose to resolve this issue by using a fixed global time
grid and approximating the trajectories of each agent by a
piece-wise polynomial. We denote the global time grid as
{t0,k}Nc

k=0 with Nc denoting number of grid points.
The value of the dynamics of the i-th agent at its local

time grid xi(ti,k) is evaluated by (4) through numerical
integration. The trajectory of the ith agent is interpolated as

ζ̃i(t) =

Np∑
n=1

φ(l,n)(t)bn(t), (7)

where φ(l,n) is an lth order Lagrange polynomial and bn
is a bumper function. In particular, φ(l,n) is the Lagrange
polynomial interpolating l + 1 evaluations of the system
states x on local grid points from ti,l(n−1) to ti,ln, i.e., of
{xi(ti,k)}lnk=l(n−1). The function bn is defined as

bn(t) =


1, t ∈ (ti,l(n−1), ti,ln)

0.5, t ∈ {ti,l(n−1), t
ln
i }

0, else
. (8)

Notice that bn and ξi in (3) are different and they cannot
be interchanged with each other. This interpolated trajectory
is of at most lth order globally, and hence has a lower
sensitivity in the optimization than one single N th order
Lagrange polynomial. In general, function bn selects a region
within which a low order polynomial is applied, meanwhile,
its value at the end points {ti,l(n−1), ti,ln} ensures continuity
at the sampling time.

With the help of the trajectory interpolation, the coordi-
nation error (5b) can be integrated by evaluation of z(t) and
zref(t) at the global time grid {t0,k}Nc

k=0. For example,

z(t0,k) =

M∑
i=1

Aiζ̃(t0,k) .

B. Problem Discretization

The discontinuity in the resource dynamics is a main con-
cern in solving the MPC Problem (5). It can be discretized
as discussed in [24] in the form

ri(ti,k+1) = ri(ti,k) + ρi∆i,k − µi(∆i,k)

such that the evolution can be summarized as

ri(ti,k) = r̂i +

k−1∑
m=1

(ρi∆i,m − µi(∆i,m))

for all k ∈ ZN−1
0 . Then, we write the local constraint sets

Λi =



∆i ∈ RN

vi ∈ RNnu

xi ∈ R(N+1)nx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀ k ∈ ZN
0

{
xi,k = ζ̃i(ti,k)

xi,k ∈ Xi

}


ri,1(ti,1) =r̂i + ρ∆i,0

−µi(∆i,0 + ∆̂−i ) ,

∆i,0 + ∆̂−i ∈[∆i,∆i] ,

∆i,0 = ∆̂+
i , vi,0 = v̂i ,


∀ k ∈ ZN

1


ri(ti,k) ∈ [ri, ri]

∆i,k ∈ [∆i,∆i]

vi,k ∈ Ui




for all i ∈ Ac and

Λi =


∆i ∈ RN

vi ∈ RNnu

xi ∈ R(N+1)nx

∣∣∣∣∣∣∣∣∣∣∣∣

∀ k ∈ ZN
0

{
xi,k = ζ̃i(ti,k)

xi,k ∈ Xi

}

∀ k ∈ ZN
0


ri(ti,k) ∈ [ri, ri]

∆i,k ∈ [∆i,∆i]

vi,k ∈ Ui







for all i ∈ A. Based on the discussion above, Problem (5)
can be then formulated in discrete-time as

min
∆,s,v,z

Nc∑
k=0

‖zk − zref
k ‖22 +

M∑
i=1

`i(vi,∆i) (9a)

s.t. ∀ k ∈ ZNc
0 , zk =

M∑
i=1

Aiζ̃(t0,k) , (9b)

∀ i ∈ ZM
1 , (si, vi,∆i) ∈ Λi . (9c)

Problem (9) has a particular distributed structure, where the
local decision variables (xi, vi,∆i) are only coupled via the
affine equality constraints (9b) over xi while having fully
decoupled inequality constraints (9c). Here, the decoupled
cost of each agent is given by

`i(vi,∆i) =

N−1∑
k=0

Li(ζ(ti,k, vi,∆i, x̂i), ui(ti,k, vi,∆i)) .

Remark 3 (Online Solver) Solving (9) in a limited sam-
pling time requires an efficient and fast online solver. In
practice, as each agent prefers to preserve their local privacy
while Problem (9) is a structured optimization problem as
discussed above, distributed optimization has its potential
to exploit this structure and solve (9) via neighbor-to-
neighbor communication, which is always required in a large
scale multi-agent systems. For instance, a recently proposed
algorithm, called augmented Lagrangian based alternating
direction inexact Newton (ALADIN) method [10] was devel-
oped for solving optimization problems in the form of (9).
ALADIN has already been applied to solve coordination
problems arising in different multi-agent systems such as
smart building coordination [20], traffic coordination [11]
and so on. Future work will develop this novel method for
solving (9) as an online solver.

C. Tricks for Initialization

We observed that Problem (5) is highly sensitive to
initialization. A proper initialization trick is therefore in-
troduced. One can imagine that the coordination problem
actually assigns sub-tracking references zref

i (t) to each agent,
even though finding zref

i (t) is at least as difficult as solv-
ing the original MPC problem (5). This viewpoint still
allows a feasible initialization of the agents’ trajectories
{xi(ti,k), ri(ti,k)}N−1

k=0 and local decision variables vi,∆i.
One can give an initial guess of zref

i (t), such that

zref(t) =

M∑
i=1

zref
i (t),∀t ∈ [0, T ].

Without loss of generality, we assume that if the i-th agent
is triggered at tc, its initialization is the optimal solution to
the following optimization problem:

min
vi,∆i,si

`i(vi,∆i) +

Nc∑
k=0

‖Aixi,k − zref
i (t0,k)‖22

s.t. (si, vi,∆i) ∈ Λi .

(10)

After initialization of the local agents, the coordination error
can be calculated accordingly.

D. Discussion

One might suggest enforcing end time synchronization,
which in turn means that T 0 = T i, ∀i, j ∈ {1, . . . ,M}. In
theory, this formulation enables the end time of coordination
error T 0 to be T i, which should result in better closed-loop
performance. However, this formulation leads to significantly
lower numerical stability because the extra constraints propa-
gate sensitivity through the whole trajectory. This is the same
reason why we interpolate the agents’ trajectories with piece-
wise polynomials with local control instead of one single
polynomial with global control [6].

V. NUMERICAL EXAMPLE

The following simulation is implemented by CASADI [1]
with IPOPT [23]. We consider coordination of two double
integrators, whose dynamics are

ẋ(t) =

[
1 0
0 0

]
x(t) +

[
0
1

]
v(t),

with input constraints v(t) ∈ [−2, 2]. The resource dynamics
for both agents have parameters ρ = 1, r = 0 and r = 1. In
this numerical example, we consider that the first agent has
less effective contribution to the output but a lower update
cost, while the second agent has more effective contribution
to the output but pays more update cost. In particular, for
the first agent, A1 = [1, 0] and µ1(∆) = 0.3 with output
constraints A1x1 ∈ [−0.5, 0.5], while for the second agent,
A2 = [2, 0], µ2(∆) = 0.5 with A2x2 ∈ [−1, 1]. The end
time for the coordination error T is set to 3.2 s while the
local cost functions are set to Li(t) = ui(t)

Tui(t).
The tracking of a step-like signal is shown in Figure 1.

The corresponding resource levels for each agent are shown
in Figure 2 (top), and the inter-trigger times are depicted
in Figure 2 (bottom). It is observed that the resources are
mainly consumed when the reference signal changes and the
system tends to use the second agent to track a fast tracking
signal while uses the first agent to stabilize the output, More
specifically, in Figure 2 (bottom), when the reference signal
changes at 0 s, 5 s and 12 s, the inter-trigger time of the
second agent drops significantly and ramps out last. However,
when the system output almost converges, Agent 1 has more
frequent triggers (for example from 6 s-10 s and 1 s-5 s in
Figure 2 (bottom)). This observation is aligned with our
intuition that the fast agent is triggered for fast change while
slower agent is triggered for slow convergence.

Even though recursive feasibility was analyzed in Sec-
tion III, stability of the closed loop is not clear yet, especially
for the local agents. The output trajectories of the local
agents Aixi(t) in the aforementioned example are shown in
Figure 1, in which both systems converge when the common
output z converges at first and the third step signal, while
in the second step signal, the local agents’ trajectories have
not yet converged. To ensure stability of the local agents, a
tracking problem has to be enforced in the local cost Li(t),
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Fig. 1. Tracking of step-like reference signal.
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Fig. 2. Resource (top) and inter-trigger times (bottom) of local agents.

which is another layer of bi-level optimization as discussed
in Remark 1.

VI. CONCLUSIONS

In this paper, an asynchronous resource-aware multi-agent
self-triggered MPC is proposed to optimally coordinate all
agents to conduct a common task cooperatively regarding
their system dynamics limited by their resource limits. The-
oretical questions with respect to the consistency and re-
cursive feasibility have been answered. A reliable numerical
implementation has been detailed and validated by a toy
example. Guarantees for stability and a larger scale real-
world application will be covered in the future works.
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