
NetCracker: A Peek into the Routing Architecture
of Xilinx 7-Series FPGAs

Morten B. Petersen, Stefan Nikolić and Mirjana Stojilović
EPFL, School of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland

ABSTRACT
Novel applications have triggered significant changes at the system
level of FPGA architecture design, such as the introduction of em-
bedded VLIW processor arrays and hardened NoCs. However, the
routing architecture of the soft logic fabric has largely remained un-
changed in recent years. Since hunger for acceleration of ever more
varied tasks with various power budgets—as well as complications
related to technology scaling—is likely to remain significant, it is
foreseeable that the routing architecture too will have to evolve.
In this work, we do not try to suggest how routing architectures
of tomorrow should look like. Instead, we analyze an existing ar-
chitecture from a popular commercial FPGA family, discussing
the possible origins of various design decisions and pointing out
aspects that may merit future research. Moreover, we present an
open-source tool that greatly eases such analyses, relying only on
data readily available from the vendor CAD tools. Our hope is that
this work will help the academic research community in catching
up with the current developments in industry and accelerate its
contributions to FPGA architectures of the future.
ACM Reference Format:
Morten B. Petersen, Stefan Nikolić and Mirjana Stojilović. 2021. NetCracker:
A Peek into the Routing Architecture of Xilinx 7-Series FPGAs. In Proceed-
ings of the 2021 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’21), February 28-March 2, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3431920.3439285

1 INTRODUCTION
Three decades ago, there were a plethora of FPGA vendors with
vastly different architectures [1]. It was only the comprehensive
studies performed by the academic research community that gave
answers to such questions as whether it is better to base the logic
cell on a Look-Up Table (LUT) or an And-Or gate [2], which are now
taken for granted. Today, but a few vendors remain in business,
programmable fabric becomes a smaller and smaller part of the
FPGA [3, 4], and we largely believe that we have a solid understand-
ing of how it should be designed [5]. But, do we?

Perhaps it is not too surprising that whether a DSP block has
a floating point unit or not can make a big difference in how well
the FPGA performs certain tasks [6], but that architectures with a
sparse cluster input crossbar [7, 8] and without any such crossbar at
all [9] can perform similarly well should probably not be dismissed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8218-2/21/02.
https://doi.org/10.1145/3431920.3439285

as a fact of life. When such major differences appear between the
programmable fabric architectures of the twomajor FPGA vendors—
Intel and Xilinx—we cannot but wonder why that is so?

There exists a substantial body of academic research assessing
various trade-offs that impact the performance of FPGA architec-
tures resembling the Stratix family of Intel [10]. The series of papers
presenting the Stratix architectures [7, 8, 11–13] in turn reveals that
they have been heavily influenced by prior work in academia, in
particular the VPR project from the University of Toronto [7, 14].

Unfortunately, to the best of our knowledge, there has been
comparably little recent research that explored the trade-offs in
Xilinx-like architectures, let alone between them and the Intel-like
ones [15, 16]. This means that a significant portion of knowledge re-
lated to FPGA architecture design that already exists and that could
be of great value in solving future challenges remains unexplored
by the wider community.

Systematic analysis of various trade-offs to find the best set of
choices that may enter the next FPGA architecture goes beyond the
scope of this paper. Instead, we start from the premise that before
an attempt at such an analysis is made, one should understand the
existing architectures that are already proven to be successful.

To facilitate the analysis of an FPGA routing architecture, we
developed NetCracker: a flexible framework consisting of several
built-in passes for various kinds of combinatorial and statistical anal-
ysis of the routing network, which can be easily complemented by
additional user-written passes. NetCracker is fully vendor-agnostic;
it requires only the information about the connections between
FPGA resources, often readily available from the design tools.

NetCracker is one of our two main contributions, presented
in Section 4. The other is applying it to the 7-Series architecture
family, the results of which we report in Sections 5, 6, and 7. Apart
from demonstrating the capabilities of NetCracker, the goal of this
analysis is to identify the similarities with and differences from the
typical assumptions in academia and the public information about
the Intel architectures, and to suggest possible reasons that may
have driven such design choices.

We note here that all the presented conclusions have been ob-
tained by analyzing information readily available from Xilinx de-
sign tools and that we have not had any support in performing the
analysis from the company itself. Hence, the discussion about the
possible reasons behind the design choices is not to be understood
as factual, but as our best effort in interpreting the observations
using results from prior work. The sole purpose of the analysis is
to help shrink the gap between academic research and industrial
reality, and point to some potentially interesting research problems.
The choice of analyzing the 7-Series architecture in particular is due
to it having recently positioned itself as the first high-end family
targeted by a fully open-source CAD flow [17]. This likely means
that the community will show the most interest in understanding
its architecture at the present moment.

https://doi.org/10.1145/3431920.3439285
https://doi.org/10.1145/3431920.3439285


2 RELATEDWORK
Substantial amount of detail about the low-level architecture of
the newer Xilinx chip families has been published in prior work
presenting the state-of-the-art CAD algorithm research results,
coming both from the company itself [18–20], as well as the aca-
demic community participating in Xilinx-organized contests [21,
22]. These contests helped in raising the interest for solving real-
world problems, related to commercial architectures and consider-
ing restrictions and optimization goals previously largely neglected
in academia. To the best of our knowledge, however, they did little
to inspire new architectural research. Rather than discussing the
various considerations that entered the design of the particular
architecture, they only present the details necessary for the algo-
rithmic problems to be well specified, whereafter these details are
considered merely as given facts. While papers focusing on archi-
tecture itself do exist [4, 23], the attention they give to the reasons
behind the routing structure having taken the shape that it has falls
short of that present in the Stratix and Agilex paper series [7, 8, 11–
13, 24, 25], which may partially explain the comparative dominance
of Intel-like architectures in academic FPGA architectural research.

Even more detail is required to program a physical chip, than to
provide legal solutions to synthesis and physical implementation
problems. Some of it is available in official documentation [26],
more can be queried from tools [27], while the rest can be retrieved
through meticulous analysis of correlation between carefully per-
turbed microbenchmarks and the bitstream files generated after
their implementation [28]. The ability to program a recent commer-
cial device with custom tools is invaluable for driving algorithmic
research forward, so it is not surprising that large academic effort
has been put into it [9, 29, 30]. With recent proliferation of FPGAs
into datacenters, autonomous vehicles, and mobile devices, security
and privacy issues slowly gain in importance as well, which makes
it natural for the open source software community to also join the
effort [28, 31, 32]. Many of these projects are using VPR [33] for
placement and routing, and have thus greatly extended the number
of detailed architecture models available in this framework, ubiqui-
tously used for academic research in the field of FPGA architecture
and CAD [9, 17].

The detailed architecture models developed for programming
commercial devices perfectly suit their purpose: programming.
Their availability is not sufficient to drive architectural research,
though. For instance, in the early days of FPGAs, when the chip
size was still modest and CAD tools still in their infancy, it was
not uncommon to resort to manual design to achieve high per-
formance and density [34]. This inevitably meant that low-level
architectural details were available to the end user [35]. However, it
was only when these details were analyzed, categorized, abstracted,
and formalized [36–39] that a general understanding of the various
trade-offs started to emerge. In this work, we build infrastructure
that makes this task easier, hoping that our conclusions will both
contribute to the general understanding of how a good routing ar-
chitecture may be designed and incite future research in the area.

3 PRELIMINARIES
In 7-Series FPGAs, configurable logic blocks (CLBs), transceivers,
DSPs, and other building blocks are arranged in columns. A CLB

6-LUT

A6:1

AX

FF0

AWF 3

FF1

AMUX

A

AQ

O5

O6

6:1

6:1

Figure 1: Logic element of a SLICEL [26]. AX input serves to
bypass the LUT. Carry and wide-function logic, which also
provides the three shared inputs (WF) of the two 6:1 multi-
plexers, is not shown.

SBRSBLSBR

W
N

S
E

SBL

SBL

SBL

SBR

SBR

SBL

SBL

SBR

SBR

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB IP

N1

E1

NW2

N2NW4

W1
W2

(x, y)
S1

Figure 2: Columnar architecture, with examples of cardinal
(horizontal/vertical), noncardinal, and wire stubs (in green).
Highlighted in yellow is the source SB; 𝑥 (resp. 𝑦) coordinate
grows towards east (resp. north).

MID-
RANGE

SHORT-
RANGE

LONG
BYP

BOUNCE
FAN

BOUNCE

FAN
ALT

GFAN
BYP
ALT

LUT
INPUTS

OUTPUTS

GND

Routing
wires

Bounce locally and 
between vertically-adjacent SBs

CLB

Bounce locally

VCC

(Section 7.3)

(Section 7.2)

(Section 7.2)

(Section 7.1)

Figure 3: Types of routing multiplexers (PIPJs) inside a
switch-box, and the connectivity between them.

is composed of two slices, which we will later denote as U and T
(Section 7). A slice is composed of four logic elements—A (shown in
Fig. 1), B, C, and D—each containing a six-input LUT, two storage
elements, wide-function multiplexers, and carry logic.

Each CLB has a dedicated switch-box (SB). In Vivado, SBs are
named either INT_L or INT_R; INT stands for interconnect, whereas
L (left) and R (right) correspond to the location of the CLB with
respect to the SB (Fig. 2). Despite their different names, as we will
show in Section 5, these SBs are, in general, identical.



To uncover the routing architecture of 7-Series FPGAs, we choose
the Artix-7 XC7A35T as the target device; its relatively small foot-
print facilitates full-device analysis. Then, we start by selecting an
SB and extracting information on the number, length, and direction
of all direct connections that emanate from it. This is illustrated in
Fig. 2 and addressed in detail in Section 6. We will see that, besides
the horizontal and vertical wires in cardinal directions, there are
wires in noncardinal directions—we will refer to them as diagonal—
and wire stubs (secondary destinations of a wire).

In Vivado, the terminals of global (intercluster) routing wires are
named by the wire direction (exclusively either cardinal or intercar-
dinal) and length, i.e., the Manhattan distance between the source
and the destination SBs. For example, the terminals of all wires
going westwards and spanning four columns will have WW4 in
their name. Similarly, the terminals of all wires of length six (LEN-6)
going southeast will have SE6 in their name. The drawbacks of this
naming scheme are that it hides the information on the precise
vertical and horizontal offset between the wire terminals (e.g., SE6
does not uniquely define the 𝑥 and 𝑦 offsets) and that it does not
capture the location of the secondary destinations. Hence, we in-
troduce a more accurate naming scheme, in which all wire sources
and destinations are named using a direction vector (𝑥,𝑦), where 𝑥
(resp. 𝑦) is the horizontal (resp. vertical) offset of the destination SB
with respect to the source SB. For example, a source (the output of
an SB) is named (0, 6) if it drives a wire going north and terminating
at an SB six rows away. At the same time, a destination (the input
of an SB) is named (0, 6) if it receives a wire coming from south,
originating at an SB six rows away.

In Xilinx terminology, routing switches are programmable inter-
connect points (PIPs). A collection of PIPs that drive a signal forms
a routing multiplexer, while a collection of routing multiplexers
forms a switch-box. A signal can enter or exit an SB through a
so-called PIP junction (PIPJ).

Analyzing the fan-ins and fan-outs of all PIPJs in a representative
SB, we arrive at the diagram shown in Fig. 3. Each node in this graph
represents a subset of all PIPJs, grouped by name and functionality;
these subsets are disjoint. A directed edge connects two nodes if
there exists at least one PIPJ in the first subset that can drive a PIPJ
in the other subset. In Fig. 3, we cluster the nodes into three groups:
those interfacing routing wires, those interfacing LUT inputs and
CLB outputs, and the somewhat special bounce PIPJs. In Section 7,
we describe and discuss in detail the connections visualized in Fig. 3.

4 NETCRACKER
The analyses performed in this work have been unified into a
Python-based tool we name NetCracker and make openly avail-
able [40]. The architecture of NetCracker is shown in Fig. 4.

At its input, NetCracker expects a file in json format, describ-
ing a directed graph with switch-box PIPJs as vertices and their
incoming and outgoing connections as edges. To add a physical di-
mension to the graph, the (𝑥,𝑦) coordinates of both the driving and
the receiving ends of each edge are required as well. This format is
vendor-independent and thus any FPGA routing network adhering
to it may be analysed. The data required to create an input file are
often readily available in vendor CAD tools.

SB
.json

Build internal SB
representation

Vendor-independent
graph representation

Pass scheduler

Pass execution
PIP junction type

Adjacency

SB diversity

Channel width

Built-in
analysis passes

dependency

Analysis query

.data

.img

Pass
artifacts

Ne Cracker

Figure 4: NetCracker architecture.

NetCracker organizes its analyses in a number of passes that
execute on one or more SBs. Each pass may produce a set of arti-
facts (plots, statistics, etc.) to facilitate further qualitative analysis
by the user, or to enable the execution of other passes. Having
each pass being able to produce and consume the results of other
passes allows them to be organized in a dependency graph. Given
an analysis request, specified by the user through a command-line
interface, NetCracker schedules the required set of passes. This im-
plementation approach allows each pass to be as atomic as possible
and facilitates extending NetCracker with new analyses.

As an example, given a file sbs.json, containing the description
of an arbitrary number of SBs, and an analysis query of SB-diversity
(finding the number and types of different SBs in the input file), the
following sequence of operations is executed:

sbs = load_switchboxes("sbs.json")
foreach sb in sbs:

pipj_type(sb)
adjacency(sb) # depends on pipj_type

sb_diversity(sbs) # depends on adjacency

Note that pass sb_diversity (Section 4.2) runs only once.Whereas
pipj_type (Section 4.1) and adjacency (Section 4.2) are both passes
which execute on a single SB, sb_diversity executes on all SBs,
using the adjacency result of each of them.

In what follows, we elaborate on some of the NetCracker built-
in passes: the routing channel width and composition pass, the
adjacency pass, and the SB-diversity pass.

4.1 Routing Channel Width and Composition
While parsing the input directed graph, NetCracker classifies the
PIPJs as inputs, outputs, bidirectional (inputs and outputs) or en-
tirely internal to the SB. This is done in the pass called PIP junction
type in Fig. 4. Next, it infers the direction vector of every output
PIPJ to find the number and length of all wires emanating from the
corresponding switch-box.

For finding the channel widths and composition, NetCracker as-
sumes that all SBs have the exact same external connectivity pattern
(e.g., all have the same number of LEN-2 wires going south). This
assumption, our analyses show, generally holds in 7-Series FPGAs;
the exceptions are SBs in the vicinity of hardened resources or de-
vice edges. Then, in the first approximation, NetCracker computes
the routing channel width as the sum of products of the number
of cardinal wires of a given length and their length. To account
for the contribution of diagonal wires, NetCracker takes the 𝑥 and



𝑦 components of their direction vector and updates the routing
channel widths accordingly. The results of the channel width and
composition analysis will be presented and discussed in Section 6.

4.2 Adjacency Analysis Pass
The main feature of NetCracker is the ability to expose the connec-
tions between PIPJs of a switch-box at various levels of abstraction.
The resulting insight into the topology of the switch-box itself
can lead to a better understanding of the motivations behind the
switch-box and the routing network design. To do that, NetCracker
implements the adjacency analysis pass, which can be invoked
to inspect the connectivity between either individual PIPJs or be-
tween various sets of PIPJs. The latter is achieved by labelling and
clustering the directed graph describing the switch-boxes.

PIPJ clustering may be vendor-specific or vendor-independent.
To implement a Xilinx-specific clustering, we apply some additional
knowledge of PIPJ characteristics to the adjacency analysis pass.
Specifically, we leverage that the names of switch-box PIPJs in Vi-
vado naturally carry distinguishing features, such as wire direction
or length, allowing us to implement index and direction clustering.
For example, let us consider the following two sets of PIPJs driv-
ing LEN-2 and LEN-4 wires towards north-east: NE2BEG0, NE2BEG1,
NE2BEG2, NE2BEG3 and NE4BEG0, NE4BEG1, NE4BEG2, NE4BEG3. Ap-
plying the index clustering results in sets [4]-NE2BEG and [4]-
NE4BEG, both of size four (the number inside the square brackets),
whereas applying the direction clustering results in a single set
[8]-NE of size eight. An example of a vendor-independent cluster-
ing is direction-vector clustering, where all PIPJs with connections
external to the SB under analysis (e.g., routing wire sources or
destinations) are clustered based on their corresponding direction
vector, introduced in Section 3. To avoid ambiguity between the
terms direction clustering and direction-vector clustering, we shall
refer to the former simply as clustering by name.

NetCracker saves adjacency analysis results as matrices, with
elements corresponding to the number of connections between
individual PIPJs, PIPJ clusters, or a mix of them.

Apart from creating a basis for the visual inspection of the SB
topology at various levels of abstraction, adjacency analysis results
are used by another NetCracker pass called switch-box diversity. In
this pass, the adjacency analysis is applied on all input SBs, and its
results compared to find differences between them.

5 SWITCH-BOX DIVERSITY
In our first experiment, we query the SB diversity analysis in
NetCracker. The results are shown in Fig. 5, where each color,
except white, corresponds to a unique switch-box (white regions
are free of SBs).

Initially, we exclude the PIPJs connected to long wires (defined
in Section 6.3). The results, in left subfigure, show that the SBs
connected to IOs, BRAMs, DSPs, or other resources different than
CLBs, are not identical to the SBs connected to CLBs (in yellow).
The reason for this is that PIPJs normally interfacing CLB inputs
and outputs are often unused when the SB is not connected to a CLB.
This same figure confirms that the left and right SBs in Fig. 2 are
identical, as mentioned in Section 3. Additionally, contrary to the
VTR model of Intel Stratix IV architecture [33, 42], we observe no

GTP-
adjacent

DSP-
adjacent

BRAM-
adjacent

CMT-
adjacent

Clock region
boundaries

IO-
adjacent

Figure 5: Distribution of switch-box types across the Artix-7
XC7A35T FPGA [41]. Each color represents a unique switch-
box. White regions are free of switch-boxes. In the left (resp.
right) subfigure, long-wire PIPJs are excluded from (resp. in-
cluded in) the analysis.

periodic pattern of alternating types of SBs. After this, we include
the long-wire PIPJs (right subfigure). The change of colors on all
four sides of the device signals that SBs adapt to long wires reaching
the edges of the device.

For the analysis of the channel width and composition and the SB
internal connectivity (Sections 6 and 7), we choose the right SB at
location X15Y128. Being among the most numerous SBs (in yellow),
the chosen SB is a representative sample of all SBs interfacing CLBs.

6 ROUTING CHANNELS
Typically, routing channel width and composition (the number
and length of wires it contains) have been regarded as important
characteristics of an FPGA routing architecture. To find them, we
supply NetCracker with a representative switch-box of the target
FPGA device (Section 5).

6.1 Short-Range and Mid-Range Connections
Fig. 6 shows where, with respect to the source switch-box, LEN-
1 wires terminate and how many there are. Looking at its left
subfigure—drawn from the name clustering—we see a perfectly
symmetric pattern. However, the direction-vector clustering re-
veals real target locations, exposing a slightly less regular pattern
and the presence of stubs. We also note here that the reduced num-
ber of connections ending in the vertically adjacent SBs is the result
of two PIPJs (NL1BEG_N3 and SR1BEG_S0) whose name would sug-
gest that they drive a LEN-1 wire, whereas they are local routing
multiplexers1, rerouting signals between local PIPJs.

As we will soon see, out of any single wire type, those of LEN-1
are by far the most numerous. This is in a stark contrast with typical

1Uncovered by the adjacency analysis pass in NetCracker (Section 4.2).



0

+1

+2

-2

-1

+10-1-2 +2

7

7

6

1

1

8

1 1

1 1

1 1

0

+1

+2

-2

-1

+10-1-2 +2

8

8

8

1

8
stub

stub direction

destination

source

Figure 6: Short-range connections. Left, clustering by name;
right, direction-vector clustering. Axes show the offset be-
tween the destination and the source SB. The values inside
each nonempty cell correspond to the number of connec-
tions terminating there.

5

4

4

4

+3+2+10-1-2-3-4 +4

4 44 4

4

4

4

4

0

+1

+2

+3

+4

-4

-3

-2

-1

+5

+6

-6

-5

1

1

1

1

1

1 5

4

4

4

+3+2+10-1-2-3

1

4

4

4

4

4

0

+1

+2

+3

+4

-4

-3

-2

-1

+5

-5

1

1

1 1

stub stub directiondestinationsource

Figure 7:Mid-range connections under direction-vector clus-
tering. Left, cardinal; right, diagonal. Axes show the offset
between the destination and the source SB.

academic assumptions that incorporating LEN-1 wires results in a
suboptimal design choice [37], as well as with Intel architectures,
which incorporate general LEN-1 wires only in the most recent Ag-
ilex architecture [8, 25]. The fact that in previous Intel architectures
clusters were able to communicate with two adjacent SBs in the
same row, as well as that there were direct connections between the
outputs of one cluster and the local interconnect of its immediate
neighbors [8, 11], could have contributed to this difference.

End locations of the mid-range connections (longer than LEN-1
and shorter than LEN-12) are shown in Fig. 7. We can see perfect
symmetry when it comes to the primary targets of both the cardinal
and the diagonal connections, even exceeding that of the LEN-1
wires. There is no directional bias in terms of wire counts, which
goes in hand with the previous academic conclusions [43]. The span
of the vertical wires is slightly larger than that of the horizontal
ones (as is the vertical offset of the diagonal wires, compared to
their horizontal offset). Assuming that this is an artifact of the CLB
tile layout aspect ratio being different from 1:1, as in the Stratix
architectures [7], we may suspect that the 7-Series FPGAs have a
tile layout whose width exceeds its height.

6.2 Secondary Destinations
So far, our discussion has focused on the primary destinations
of each wire. However, there are also the secondary destinations
(stubs), allowing a wire to branch into an SB other than the one
where it finally terminates. Essentially, the stubs are equivalent to
the intermediate taps (points that do not coincide with the two ends
of the wire, fromwhich a signal can branch to other SBs/connection-
boxes, but from which the wire cannot be driven) in academic
and Intel architectures. The main difference, however, is that very
few wires have a stub (e.g., one in four), while the others have a
single termination point. On the other hand, academic architectures
typically assume intermediate taps at regular intervals, uniformly
specified for all wires of a particular type. The same was true for
Intel, until the latest Agilex, which removed taps altogether [25].

Those wires that do have stubs, have them only to an SB imme-
diately adjacent to the terminating one. This eases intermediate
buffering of the wire, if applied, as there are no constraints on hav-
ing an even number of inverters between two taps. If, in the layout,
the neighboring SBs are abutted [44], which is likely the case, then
the same via can be used to descend through the metal stack for
both the terminus and the stub, and what remains is but a very
short connection at a lower metal layer, leading to a very small
increase in the capacitive load. Speaking of abutting, we should also
note that all stubs are designed in such a way that they land in the
same column as the primary target. If this were not the case, stubs
could not profit from abutting and they would not be as cheap as
they likely are with the present situation.

The existence of wire stubs slightly increases the variety of
achievable wire lengths in the vertical direction and the number of
bends in the horizontal direction. It also allows covering a net with
a fanout of two using a single wire, assuming that the placer places
the sinks of the same net near each other, which is rather natural. If
we observe the distribution of fanout of a typical circuit, we can see
that for a vast majority of nets, this will already be sufficient [45],
even if they are fully global. This is likely a reason why even some
LEN-1 wires have stubs (Fig. 6).

Although it is difficult to say how much exactly an architec-
ture could benefit from such a tapping scheme, we should note the
impossibility of arriving at it by exploring only uniform spacing be-
tween intermediate taps and varying their count [46], which makes
it less surprising that this scheme, to the best of our knowledge,
has not yet been explored in an academic setting.

Finally, we should note that another potential reason for exis-
tence of a comparatively large number of LEN-1 wires lies precisely
in the lack of intermediate taps, which prevents using, e.g., a LEN-6
wire to connect two adjacent SBs. A similar reason recently com-
pelled Intel to introduce such short wires [25].

6.3 Long-Range Connections
The 7-Series FPGAs also contain long wires: LEN-12 in both vertical
and horizontal directions, and LEN-18 in vertical directions. This
again hints at the thought that the CLB tile is wider than taller.

What is interesting about the long wires is that they appear to
be bidirectional, perhaps because they are routed on upper metal
layers, where the pitch is wider and, consequently, the space is
limited. A similar shift from unidirectional to bidirectional long



Table 1: Horizontal (H) and vertical (V) routing channel
width and composition. Asterisk denotes bidirectionalwires.
Data in the last column considers cardinal wires only.

Length Total Cardinal
1 2 4 6 12 18 width only

H 32 48 32 0 12* 0 124 74
V 32 16 64 48 12* 18* 190 108

wires has already been reported for Intel Arria 10 [24]. This suggests
that the typical assumption that unidirectional wires are always
superior [47] should probably be revisited in the context of wires
whose span substantially exceeds the previously assumed four, with
multiplexer-based drivers only at the ends, and high utilization of
thicker metal layers.

Long wires are also an exception in terms of intermediate taps:
apart from the vertical LEN-12 wires, which have no taps, all the
others tap into one switch-box half-way to the end of the wire.

6.4 Channel Widths
For comparison with classical architectures, we report routing chan-
nel widths in Table 1. We note, however, that with such a large
diversity of the available wire lengths and, with the absence of
intermediate taps that prevents using the wires for anything but
the connections between their endpoints, the classical notion of
channel width likely has little sense: the router simply has much
less flexibility in using the six tracks induced by a single LEN-6
wire leaving each SB than it has in using another set of six tracks
induced by six individual LEN-1 wires leaving that same SB. Rather
than being a design target, the equivalent channel width was likely
merely a limiting factor deciding whether a certain set of wire
types and counts can actually be implemented. Hence, we believe
it is more appropriate to focus on the various wire types and their
counts as we did in the previous sections. This is only exacerbated
by the presence of diagonal wires. To the best of our knowledge,
the concept of diagonal connections, existing at least since Virtex-II
(2001) [48], has not yet been a subject of a comprehensive academic
study, although similar ideas have been researched [49–51].

7 ADJACENCY ANALYSIS
After seeing the types of connections between switch-boxes, let us
now elaborate on the connectivity internal to an SB. We run a num-
ber of adjacency analyses in NetCracker and visualize the results
as heat maps of the corresponding adjacency matrices (Figs. 8, 10,
11, 12, 13, 14, 16, and 17). For plotting, we useMorpheus [52]. In the
following subsections, the results are discussed in detail.

7.1 Wire-to-Wire Connections
Fig. 8 shows all possible connections between short- and mid-range
wires through the representative SB. A row corresponds to a set of
inputs (PIPJs receiving signals); a column corresponds to a set of out-
puts (PIPJs driving signals). The numbers inside square brackets are
the set sizes. Black stands for a complete absence of programmable
connections between the input and output sets; red stands for 16,
the highest number of connections found.

[4
]-
N
N
6

[4
]-
E
E
4

[4
]-
S
S
6

[4
]-
W
W
4

[4
]-
N
E
6

[4
]-
S
E
6

[4
]-
S
W
6

[4
]-
N
W
6

[4
]-
N
N
2

[4
]-
E
E
2

[4
]-
S
S
2

[4
]-
W
W
2

[4
]-
N
E
2

[4
]-
S
E
2

[4
]-
S
W
2

[4
]-
N
W
2

[8
]-
N
1

[8
]-
E
1

[8
]-
S
1

[8
]-
W
1

[5]-SS6
[5]-WW4
[5]-NN6
[4]-EE4

[5]-SW6
[5]-NW6
[4]-NE6
[4]-SE6

[5]-SS2
[5]-WW2
[5]-NN2
[4]-EE2

[5]-SW2
[5]-NW2
[5]-NE2
[4]-SE2

[9]-S1
[10]-W1
[9]-N1
[10]-E1

0 1684

IN

OUT

[4
]-
(0
,6
)

[4
]-
(4
,0
)

[4
]-
(0
,-
6
)

[4
]-
(-
4
,0
)

[4
]-
(2
,4
)

[4
]-
(2
,-
4
)

[4
]-
(-
2
,-
4)

[4
]-
(-
2
,4
)

[4
]-
(0
,2
)

[4
]-
(2
,0
)

[4
]-
(0
,-
2
)

[4
]-
(-
2
,0
)

[6
]-
(1
,1
)

[6
]-
(1
,-
1
)

[5
]-
(-
1
,-
1)

[5
]-
(-
1
,1
)

[8
]-
(0
,1
)

[7
]-
(1
,0
)

[8
]-
(0
,-
1
)

[1
0]
-(
-1
,0
)

[1
]-
(0
,-
5
)

[1
]-
(-
2
,-
3)

[1
]-
(-
4
,-
1)

[1
]-
(-
2
,3
)

[1
]-
(-
2
,1
)

[1
]-
(0
,5
)

[2
]-
(0
,0
)

[4]-(0,-6)
[4]-(-4,0)
[4]-(0,6)
[4]-(4,0)

[4]-(-2,-4)
[4]-(-2,4)
[4]-(2,4)
[4]-(2,-4)

[4]-(0,-2)
[4]-(-2,0)
[4]-(0,2)
[4]-(2,0)

[5]-(-1,-1)
[5]-(-1,1)
[6]-(1,1)
[6]-(1,-1)

[8]-(0,-1)
[10]-(-1,0)
[8]-(0,1)
[7]-(1,0)

[1]-(0,-5)
[1]-(-2,-3)
[1]-(-4,-1)
[1]-(-2,3)
[1]-(-2,1)
[1]-(0,5)
[2]-(0,0)

IN

OUT

0 1684

Figure 8: Short-range to mid-range adjacency analysis. Top,
clustering by name; bottom, direction-vector clustering.

In the top part of Fig. 8, PIPJs are clustered by name. As such, the
input sets sometimes have more members than the corresponding
output sets, because of the way wire stubs (Figs. 6 and 7) are named.
We see remarkably regular connectivity patterns, fully exposed only
if stubs are not ignored. One could think that these regular patterns
were, at some point in time, the actual design goal. In the bottom
part of Fig. 8, direction-vector clustering is used (Section 4.2); this
figure shows the reality, which, although slightly different, retains
most of the regularity of the clustering by name. The difference
could be a consequence of physical layout constraints—preventing
or making the initial pattern too costly to implement—or it could
have been intentionally introduced to create new routing opportu-
nities at a small loss of regularity.

Immediately visible is that the number of wires each wire can
drive (approximated by the sum of elements in one row over the cor-
responding input set size) vastly surpasses three, a value typically
chosen in academia [46]. Focusing on the cardinal mid-range wires
(LEN-2, LEN-4, LEN-6), we see that in almost all cases, they drive
a LEN-1 wire of each type including those going in the direction
from which the mid-range wire came, thus allowing for reaching



S
B

S
B

LV
0

LV
9

LV
18

......

(x, y + 9) (x, y) (x, y - 9)

(a) Vertical LEN-18 wires (rotated by 90◦).

S
B

S
B

LV
B
0

LV
B
1
2 ......

(x, y + 6) (x, y) (x, y - 6)

(b) Vertical LEN-12 wires (rotated by 90◦).

SB ... ...

(x - 6, y)

LH
0

LH
6

LH
12

(x, y)

SB

(x + 6, y)

(c) Horizontal LEN-12 wires.

Figure 9: Topology of bidirectional long wires and the names of associated PIPJs. In red, input-only intermediate taps.

1 8420

[1]-LV18
[1]-LV0
[1]-LVB12
[1]-LVB0
[1]-LH12
[1]-LH0

[1
]-
LV
9

[1
]-
LV
0

[1
]-
LV
18

[1
]-
LV
B
0

[1
]-
LV
B
12

[1
]-
LH
0

[1
]-
LH
12

[1
]-
LH
6

[5
]-
S
S
6

[5
]-
S
W
6

[5
]-
W
W
4

[5
]-
N
W
6

[5
]-
N
N
6

[4
]-
N
E
6

[4
]-
E
E
4

[4
]-
S
E
6

[5
]-
S
S
2

[5
]-
W
W
2

[5
]-
N
N
2

[4
]-
E
E
2

[5
]-
S
W
2

[5
]-
N
W
2

[5
]-
N
E
2

[4
]-
S
E
2

[9
]-
S
1

[1
0]
-W
1

[9
]-
N
1

[1
0]
-E
1

[1
]-
LV
18

[1
]-
LV
0

[1
]-
LV
B
12

[1
]-
LV
B
0

[1
]-
LH
12

[1
]-
LH
0

[4
]-
N
N
6

[4
]-
N
E
6

[4
]-
E
E
4

[4
]-
S
E
6

[4
]-
S
S
6

[4
]-
S
W
6

[4
]-
W
W
4

[4
]-
N
W
6

[4
]-
N
N
2

[4
]-
E
E
2

[4
]-
S
S
2

[4
]-
W
W
2

[4
]-
N
E
2

[4
]-
S
E
2

[4
]-
S
W
2

[4
]-
N
W
2

[8
]-
N
1

[8
]-
E
1

[8
]-
S
1

[8
]-
W
1

[1]-LV9
[1]-LV0
[1]-LV18
[1]-LVB0
[1]-LVB12
[1]-LH0
[1]-LH12
[1]-LH6

IN

OUT

IN

OUT

[1]-(0,18)
[1]-(0,-18)
[1]-(0,12)
[1]-(0,-12)
[1]-(12,0)
[1]-(-12,0)

[4
]-
(0
,-
6
)

[4
]-
(-
2
,-
4)

[4
]-
(-
4
,0
)

[4
]-
(-
2
,4
)

[4
]-
(0
,6
)

[4
]-
(2
,4
)

[4
]-
(4
,0
)

[4
]-
(2
,-
4
)

[4
]-
(0
,-
2
)

[4
]-
(-
2
,0
)

[4
]-
(0
,2
)

[4
]-
(2
,0
)

[5
]-
(-
1
,-
1)

[5
]-
(-
1
,1
)

[6
]-
(1
,1
)

[6
]-
(1
,-
1
)

[8
]-
(0
,-
1
)

[1
0]
-(
-1
,0
)

[8
]-
(0
,1
)

[7
]-
(1
,0
)

[1
]-
(0
,-
9
)

[1
]-
(0
,9
)

[1
]-
(0
,1
8)

[1
]-
(0
,-
1
8)

[1
]-
(0
,1
2)

[1
]-
(0
,-
1
2)

[1
]-
(1
2,
0)

[1
]-
(-
1
2,
0)

[1
]-
(-
6
,0
)

[1
]-
(6
,0
)

[1
]-
(0
,-
5
)

[1
]-
(-
2
,-
3)

[1
]-
(-
4
,-
1)

[1
]-
(-
2
,3
)

[1
]-
(-
2
,1
)

[1
]-
(0
,5
)

[2
]-
(0
,0
)

[4
]-
(0
,6
)

[4
]-
(2
,4
)

[4
]-
(4
,0
)

[4
]-
(2
,-
4
)

[4
]-
(0
,-
6
)

[4
]-
(-
2
,-
4)

[4
]-
(-
4
,0
)

[4
]-
(-
2
,4
)

[4
]-
(0
,2
)

[4
]-
(2
,0
)

[4
]-
(0
,-
2
)

[4
]-
(-
2
,0
)

[6
]-
(1
,1
)

[6
]-
(1
,-
1
)

[5
]-
(-
1
,-
1)

[5
]-
(-
1
,1
)

[8
]-
(0
,1
)

[7
]-
(1
,0
)

[8
]-
(0
,-
1
)

[1
0]
-(
-1
,0
)

[1
]-
(0
,1
8)

[1
]-
(0
,-
1
8)

[1
]-
(0
,1
2)

[1
]-
(0
,-
1
2)

[1
]-
(1
2,
0)

[1
]-
(-
1
2,
0)

[1
]-
(0
,-
5
)

[1
]-
(-
2
,-
3)

[1
]-
(-
4
,-
1)

[1
]-
(-
2
,3
)

[1
]-
(-
2
,1
)

[1
]-
(0
,5
)

[2
]-
(0
,0
)

[1]-(0,9)
[1]-(0,18)
[1]-(0,-18)
[1]-(0,12)
[1]-(0,-12)
[1]-(12,0)
[1]-(-12,0)
[1]-(6,0)

1 8420

IN

OUT

IN

OUT

Figure 10: Long-range adjacency analysis. Top, clustering by
name; bottom, direction-vector clustering.

intermediate CLBs with only one additional hop; this additionally
improves routability in the absence of intermediate taps. Cardi-
nal mid-range wires have access to almost twice as many LEN-1
wires in the same direction (e.g., four inputs (0, 2), arriving from
south, can make eight connections to the four outputs (0, 1), going
north), which favors routing straight connections as opposed to
making bends. When it comes to connectivity with other mid-range
cardinal wires, the usual principle of lack of connections to wires
going in the direction from which the driving wire came, as this
would result in unnecessary metal wastage, generally holds [36].
In particular, there are no connections to wires whose destination
entirely coincides with the origin of the driving wire.

Diagonal wires (LEN-2, LEN-6) introduce a challenge in deciding
which types of turns to support. We can observe that cardinal mid-
range wires mostly do not drive LEN-2 diagonal wires that return
to the half-plane of the driving wire source (with the boundary

perpendicular to the direction of the drivingwire). A possible reason
for that could be that the CLBs which would be reachable by such
connections are already reachable through the appropriate stubs of
the LEN-1 wires. Looking at LEN-6 diagonal wires, all 90◦-rotations
of the E → SW connection exist, whereas those returning to the
half-plane of the driver source are generally absent.

It is worth noting that the LEN-1 wires—likely routed at lower
metal layers—very seldom drive LEN-4 and LEN-6 wires, which
goes in hand with the conclusions of previous academic studies [53].

Let us now turn to long wires. Their respective connections
are shown in Fig. 10. The labeling of long-wire PIPJs is explained
in Fig. 9. We see that each long wire, including the intermediate
input-only taps, drives one LEN-4 and one LEN-6 wire and none of
the LEN-1 or LEN-2 wires. The LEN-12 horizontal and the LEN-18
vertical wires also drive all other long wires, whereas the LEN-
12 vertical wire drives none of them. LEN-12 vertical wires also
have more drivers coming from the short- and mid-range than
any other long wire type. The combination of these two features
probably makes them the fastest option for long distance vertical
communication, because they allow increased access flexibility with
lower capacitive loading, both due to the fewer sinks at the end
and the lack of the intermediate tap. Perhaps the influence of such
individually optimized connections on the critical path delay of the
implemented designs is something that merits future investigation.

7.2 ALT and BOUNCE Connections
A signal carried by a global routing wire and arriving to the SB con-
nected to the destination CLB, must pass through the PIPJ driving
the target CLB input. In the absence of programmable connection
between the incoming wire and the target PIPJ (e.g., distributed
RAM data or control input) the signal may need to be rerouted
to arrive from another global routing wire. To address this issue,
the SBs in 7-Series FPGAs use a number of highly-interconnected
PIPJs, called BYP-ALTs (BAs), FAN-ALTs (FAs), BYP-BOUNCEs
(BBs), FAN-BOUNCEs (FBs), and GFANs.

Figs. 11, 12, and 13, show that BYP-ALTs and FAN-ALTs receive
signals from LEN-1 and LEN-2 wires (never from the longs), from
CLB outputs, and GFANs. Analyzing the connections further, we
find that each BYP-ALT drives one of the BYP-BOUNCEs and one
of the bypass inputs (AX in Fig. 1), whereas each FAN-ALT drives
one of the FAN-BOUNCEs and one of the distributed RAM inputs.

BYP-BOUNCEs and FAN-BOUNCEs having fan-in of one sug-
gests that those PIPJs are buffers or even simply labels for the short
local connections. They pass their signal to at most two distinct
LUT inputs (Fig. 14) or bounce it back to BYP-ALTs and FAN-ALTs,
from where the path search to the desired CLB input can continue.



FA
0

FA
1

FA
2

FA
3

FA
4

FA
5

FA
6

FA
7

B
A
0

B
A
1

B
A
2

B
A
3

B
A
4

B
A
5

B
A
6

B
A
7

F
B
0

F
B
1

F
B
2

F
B
3

F
B
4

F
B
5

F
B
6

F
B
7

B
B
0

B
B
1

B
B
2

B
B
3

B
B
4

B
B
5

B
B
6

B
B
7

G
FA
N
0

G
FA
N
1

[5]-SS6
[5]-SW6
[5]-WW4
[5]-NW6
[5]-NN6
[4]-NE6
[4]-EE4
[4]-SE6

[5]-SS2
[5]-WW2
[5]-NN2
[4]-EE2

[5]-SW2
[5]-NW2
[5]-NE2
[4]-SE2

[9]-S1
[10]-W1
[9]-N1
[10]-E1

IN

OUT

1 8420

FA
0

FA
1

FA
2

FA
3

FA
4

FA
5

FA
6

FA
7

B
A
0

B
A
1

B
A
2

B
A
3

B
A
4

B
A
5

B
A
6

B
A
7

F
B
0

F
B
1

F
B
2

F
B
3

F
B
4

F
B
5

F
B
6

F
B
7

B
B
0

B
B
1

B
B
2

B
B
3

B
B
4

B
B
5

B
B
6

B
B
7

G
FA
N
0

G
FA
N
1

[4]-(0,-6)
[4]-(-2,-4)
[4]-(-4,0)
[4]-(-2,4)
[4]-(0,6)
[4]-(2,4)
[4]-(4,0)
[4]-(2,-4)

[4]-(0,-2)
[4]-(-2,0)
[4]-(0,2)
[4]-(2,0)

[5]-(-1,-1)
[5]-(-1,1)
[6]-(1,1)
[6]-(1,-1)

[8]-(0,-1)
[10]-(-1,0)
[8]-(0,1)
[7]-(1,0)

[1]-(0,-5)
[1]-(-2,-3)
[1]-(-4,-1)
[1]-(-2,3)
[1]-(-2,1)
[1]-(0,5)
[2]-(0,0)

1 8420

IN

OUT

Figure 11: Adjacency of short- and mid-range wires and
ALTs/BOUNCEs. Top, clustering by name; bottom, direction-
vector clustering.

FA
4

FA
2

FA
5

FA
1

FA
0

FA
6

FA
7

FA
3

B
A
1

B
A
4

B
A
3

B
A
6

B
A
0

B
A
5

B
A
2

B
A
7

F
B
0

F
B
1

F
B
2

F
B
3

F
B
4

F
B
5

F
B
6

F
B
7

B
B
0

B
B
1

B
B
2

B
B
3

B
B
4

B
B
5

B
B
6

B
B
7

1 8420

G
FA
N
0

G
FA
N
1

U:A
U:CMUX
T:AQ

U:B
U:DMUX
T:BQ

U:C
U:AMUX
T:CQ

U:D
U:BMUX
T:DQ

T:A
T:CMUX
U:AQ

T:B
T:DMUX
U:BQ

T:C
T:AMUX
U:CQ

T:D
T:BMUX
U:DQ

IN

OUT

Figure 12: Adjacency of CLB outputs and ALTs/BOUNCEs.

GFANs can be driven by one of the BYP-BOUNCEs; perhaps
more interestingly, they are the entry points for global clocks and
the ground (GND in Fig. 3). As drivers, GFANs behave exactly like
BYP-BOUNCEs and FAN-BOUNCEs.

Besides the above discussed PIPJs, we find additional eight SB
inputs, labeled FAN-BOUNCE SOUTH and BYP-BOUNCE NORTH

FA
2

FA
5

FA
1

FA
6

FA
7

FA
3

FA
4

FA
0

B
A
0

B
A
1

B
A
2

B
A
3

B
A
4

B
A
5

B
A
6

B
A
7

F
B
0

F
B
1

F
B
2

F
B
3

F
B
4

F
B
5

F
B
6

F
B
7

B
B
0

B
B
1

B
B
2

B
B
3

B
B
4

B
B
5

B
B
6

B
B
7

1 8420

G
FA
N
0

G
FA
N
1

FA0
FA1
FA2
FA3
FA4
FA5
FA6
FA7

BA0
BA1
BA2
BA3
BA4
BA5
BA6
BA7

FB0
FB6
FB2
FB4
FB7
FB3
FB1
FB5
FB0-SOUTH
FB4-SOUTH
FB2-SOUTH
FB6-SOUTH

BB7
BB6
BB3
BB2
BB5
BB0
BB1
BB4
BB7-NORTH
BB2-NORTH
BB3-NORTH
BB6-NORTH

GFAN0
GFAN1

IN

OUT

Figure 13: Adjacency of ALTs and BOUNCEs.

U
:A
5

U
:B
5

U
:C
1

U
:D
1

T:
A
3

T:
B
3

U
:A
4

U
:B
4

U
:C
6

U
:D
6

T:
A
2

T:
B
2

U
:C
4

U
:D
4

U
:A
6

U
:B
6

T:
C
2

T:
D
2

U
:C
5

U
:D
5

U
:A
1

U
:B
1

T:
C
3

T:
D
3

T:
A
5

T:
B
5

T:
C
1

T:
D
1

U
:A
3

U
:B
3

T:
A
4

T:
B
4

T:
C
6

T:
D
6

U
:A
2

U
:B
2

T:
C
4

T:
D
4

T:
A
6

T:
B
6

U
:C
2

U
:D
2

T:
C
5

T:
D
5

T:
A
1

T:
B
1

U
:C
3

U
:D
3

FB0
FB2
FB5
FB6
FB1
FB7
FB3
FB4-SOUTH
FB0-SOUTH
FB2-SOUTH
FB4
FB6-SOUTH

BB3
BB7
BB2
BB4
BB5
BB1
BB6-NORTH
BB0
BB3-NORTH
BB7-NORTH
BB2-NORTH
BB6

GFAN0
GFAN1

1 8420

IN

OUT

Figure 14: Adjacency of ALTs/BOUNCEs and LUT inputs.

in Fig. 15. Thanks to them, CLBs can drive the vertically-adjacent
LUTs, without having to exit on a LEN-1 wire at all. Additionally,
BYP-BOUNCE NORTH PIPJs open the way to the bypass inputs of
the neighboring CLB.

7.3 CLB Connections
7.3.1 LUT Inputs. Fig. 16 shows that all 48 LUT inputs can be
driven directly from the global routing, as has been indicated be-
fore [9, 23]. Therefore, there is no reduction of CLB input bandwidth
typical of the academic and Intel architectures [7, 46]. Lifting this
packing constraint potentially eases flat placement of LUTs using
scalable techniques, such as analytical [18, 54], although it could
prevent some area savings in the input multiplexing circuitry.

When clustering PIPJs by name, we find again a very regular
pattern: each LUT input can be driven by one LEN-2 and two LEN-1
wires from each direction. The direction-vector clustering (bottom



CLB
LUT INPUTS

OUTPUTS

FAN-ALT

BYP-ALT BYP-BOUNCE
NORTH

SB

FAN-BOUNCE
SOUTH

CLB
LUT INPUTS

OUTPUTS

FAN-ALT BYP-BOUNCE

BYP-ALTFAN-BOUNCE BYP-BOUNCE
NORTH

SB

FAN-BOUNCE
SOUTH

Y + 1

Y

X

W
N

S
E

Figure 15: Vertically adjacent SBs can connect via FAN-
BOUNCE NORTH and BYP-BOUNCE SOUTH. Top, full con-
nectivity; bottom, equivalent and simplified connectivity,
for FAN-BOUNCEs and BYP-BOUNCEs have fan-in of one.

U
:A
5

U
:B
5

U
:C
1

U
:D
1

T:
A
3

T:
B
3

U
:A
4

U
:B
4

U
:C
6

U
:D
6

T:
A
2

T:
B
2

U
:C
4

U
:D
4

U
:A
6

U
:B
6

T:
C
2

T:
D
2

U
:C
5

U
:D
5

U
:A
1

U
:B
1

T:
C
3

T:
D
3

T:
A
5

T:
B
5

T:
C
1

T:
D
1

U
:A
3

U
:B
3

T:
A
4

T:
B
4

T:
C
6

T:
D
6

U
:A
2

U
:B
2

T:
C
4

T:
D
4

T:
A
6

T:
B
6

U
:C
2

U
:D
2

T:
C
5

T:
D
5

T:
A
1

T:
B
1

U
:C
3

U
:D
3

[5]-SS2
[5]-WW2
[5]-NN2
[4]-EE2

[5]-SW2
[5]-NW2
[5]-NE2
[4]-SE2

[9]-S1
[10]-W1
[9]-N1
[10]-E1

1 8420

IN

OUT

[4]-(0,-2)
[4]-(-2,0)
[4]-(0,2)
[4]-(2,0)

[5]-(-1,-1)
[5]-(-1,1)
[6]-(1,1)
[6]-(1,-1)

[8]-(0,-1)
[10]-(-1,0)
[8]-(0,1)
[7]-(1,0)

[1]-(0,-5)
[1]-(-2,-3)
[1]-(-4,-1)
[1]-(-2,3)
[1]-(-2,1)
[1]-(0,5)
[2]-(0,0)

1 8420

Figure 16: Adjacency of wires and LUT inputs. Top, clus-
tering by name; bottom, direction-vector clustering. Wires
longer than LEN-2 are omitted for they do not connect to
CLB inputs.

of Fig. 16) once again breaks this regularity to an extent. Only LEN-
1 and LEN-2 wires driving the LUT inputs goes in hand with the
conclusions of the previous studies [53]. However, we discover that
the possibility for some LUT inputs to be driven by LEN-4 or even
LEN-6 wires is, in fact, given indirectly; this is achieved through
the additional level of multiplexing, concealed behind NL1BEG_N3
and SR1BEG_S0, the two special PIPJs mentioned in Section 6.1.

7.3.2 CLBOutputs. Connectivity between the CLB outputs and the
routing wires is shown in Fig. 17. A typical output drives one mid-
and two short-range wires of each type, reflecting their twice higher
count. Long wires are generally not directly driven by the CLB,
which is again in accordance with the previous conclusions [53].
This time again, we discover that some CLB outputs can drive LEN-
18 vertical wires, albeit through an additional level of multiplexing,
concealed behind SR1BEG_S0 PIPJ (Section 6.1).

1 8420

[4
]-
N
N
6

[4
]-
N
E
6

[4
]-
E
E
4

[4
]-
S
E
6

[4
]-
S
S
6

[4
]-
S
W
6

[4
]-
W
W
4

[4
]-
N
W
6

[4
]-
N
N
2

[4
]-
E
E
2

[4
]-
S
S
2

[4
]-
W
W
2

[4
]-
N
E
2

[4
]-
S
E
2

[4
]-
S
W
2

[4
]-
N
W
2

[8
]-
N
1

[8
]-
E
1

[8
]-
S
1

[8
]-
W
1

[1
]-
LV
18

[1
]-
LV
0

[1
]-
LV
B
12

[1
]-
LV
B
0

[1
]-
LH
12

[1
]-
LH
0

U:A
U:CMUX
T:AQ

U:B
U:DMUX
T:BQ

U:C
U:AMUX
T:CQ

U:D
U:BMUX
T:DQ

T:A
T:CMUX
U:AQ

T:B
T:DMUX
U:BQ

T:C
T:AMUX
U:CQ

T:D
T:BMUX
U:DQ

IN

OUT

[4
]-
(0
,6
)

[4
]-
(2
,4
)

[4
]-
(4
,0
)

[4
]-
(2
,-
4
)

[4
]-
(0
,-
6
)

[4
]-
(-
2
,-
4)

[4
]-
(-
4
,0
)

[4
]-
(-
2
,4
)

[4
]-
(0
,2
)

[4
]-
(2
,0
)

[4
]-
(0
,-
2
)

[4
]-
(-
2
,0
)

[6
]-
(1
,1
)

[6
]-
(1
,-
1
)

[5
]-
(-
1
,-
1)

[5
]-
(-
1
,1
)

[8
]-
(0
,1
)

[7
]-
(1
,0
)

[8
]-
(0
,-
1
)

[1
0]
-(
-1
,0
)

[1
]-
(0
,1
8)

[1
]-
(0
,-
1
8)

[1
]-
(0
,1
2)

[1
]-
(0
,-
1
2)

[1
]-
(1
2,
0)

[1
]-
(-
1
2,
0)

[1
]-
(0
,-
5
)

[1
]-
(-
2
,-
3)

[1
]-
(-
4
,-
1)

[1
]-
(-
2
,3
)

[1
]-
(-
2
,1
)

[1
]-
(0
,5
)

[2
]-
(0
,0
)

U:A
U:CMUX
T:AQ

U:B
U:DMUX
T:BQ

U:C
U:AMUX
T:CQ

U:D
U:BMUX
T:DQ

T:A
T:CMUX
U:AQ

T:B
T:DMUX
U:BQ

T:C
T:AMUX
U:CQ

T:D
T:BMUX
U:DQ

IN

OUT

1 8420

Figure 17: Adjacency of CLB outputs and wires. Top, cluster-
ing by name; bottom, direction-vector clustering.

U
:A
5

U
:B
5

U
:C
1

U
:D
1

T:
A
3

T:
B
3

U
:A
4

U
:B
4

U
:C
6

U
:D
6

T:
A
2

T:
B
2

U
:C
4

U
:D
4

U
:A
6

U
:B
6

T:
C
2

T:
D
2

U
:C
5

U
:D
5

U
:A
1

U
:B
1

T:
C
3

T:
D
3

T:
A
5

T:
B
5

T:
C
1

T:
D
1

U
:A
3

U
:B
3

T:
A
4

T:
B
4

T:
C
6

T:
D
6

U
:A
2

U
:B
2

T:
C
4

T:
D
4

T:
A
6

T:
B
6

U
:C
2

U
:D
2

T:
C
5

T:
D
5

T:
A
1

T:
B
1

U
:C
3

U
:D
3

U:A
U:CMUX
T:AQ

U:B
U:DMUX
T:BQ

U:C
U:AMUX
T:CQ

U:D
U:BMUX
T:DQ

T:A
T:CMUX
U:AQ

T:B
T:DMUX
U:BQ

T:C
T:AMUX
U:CQ

T:D
T:BMUX
U:DQ

1 8420

IN

OUT

Figure 18: Adjacency of CLB outputs and LUT inputs.

Eight distinct equivalence classes of CLB outputs exist (Fig. 17).
Although this number exactly matches the number of LUTs in the
CLB and the type of the outputs in each class exactly matches those
in each logic element (Fig. 1), we can see that the classes are not in
fact formed by the outputs of individual logic elements, but rather
come from entirely distinct ones. This could perhaps increase the
flexibility of the connections between logic elements in different
CLBs, in the absence of a crossbar. Permutations simply have to be
considered closer to the source in that case, similarly to the new
Agilex with the reduced input multiplexing capabilities [25]. Also
potentially interesting is that the combinational outputs in each



class come from the same slice (U or T), whereas the registered one
comes from the other. This could reflect the physical distance of
the driven wires from the actual location of the drivers and the fact
that the registered output already cuts a timing path and is thus
more likely to tolerate higher delay.

7.3.3 Feedback Connections. The feedback adjacency matrix is
shown in Fig. 18.We can observe that the output equivalence classes
from the previous section are preserved. Each LUT input is driven
by all three elements of a single driver class. Inputs are themselves
grouped into similar equivalence classes. Each O6 output can reach
all LUTs in the same slice, directly or via the 6:1 multiplexer of the
logic element (e.g., AMUX in Fig. 1), while it can reach half of the
LUTs in the remaining slice through each of them; in other words,
each 6-LUT can reach all LUTs in the entire CLB. In fractured mode,
one of the 5-LUTs can again reach all LUTs in the entire CLB, while
the other 5-LUT can reach all LUTs in the same slice and half the
LUTs in the other. Although very sparse, this connectivity pattern
allows almost arbitrary connectivity between LUTs in absence of
congestion.

No two inputs of the same LUT are in the same class, meaning
that although any LUT can reach any other LUT in the CLB through
the feedback connections, it cannot reach just any desired input.
Of course, when the inputs are logically equivalent, such input tar-
geting may not even be necessary. Even if the inputs are logically
equivalent, the typical academic model of an LUT containing a tree
decoder [55] would assume that there is a large difference in the
input delays, as is the case in the Intel architectures [56]. Having
a possibility of connecting drivers to multiple LUT inputs of dif-
ferent speeds can be crucial for meeting the timing constraints in
those circumstances. In 7-Series CLBs, this possibility does exist, via
FAN-ALTs and BYP-ALTs. However, given the delay penalty of us-
ing multiple levels of multiplexing, we suspect that the alternative
routes are rather targeting distributed RAM logic. Consequently,
7-Series LUTs may have a balanced input-delay profile, possibly
owing to the full-CMOS-based decoder design with further op-
timizations towards such balancing [57]. This is another aspect
that could change the usual assumptions entering the design of
programmable interconnect and thus merits further investigation.

7.4 Multiplexers
So far, our discussion has focused on the various types of wires that
exist in the 7-Series FPGAs and the switching possibilities between
them. Multiplexers that actually perform the switching have been
altogether neglected. In this section, we attempt to cast some light
on them and how they might differ from the typical assumptions.

Let us start from the logic element internals. The two 6:1 muxes
of Fig. 1 might seem a strange choice since a standard 2-level im-
plementation of a 6:1 multiplexer would require 5 SRAM cells [58],
whereas adding only one more would increase the number of avail-
able inputs to nine. It turns out, however, that the specificities of a
6:1 multiplexer allow it to be implemented using only three SRAM
cells, still with two levels of steering switches [59]. The two muxes
in Fig. 1 share five out of six inputs, which favors diffusion sharing
and makes the combined layout even more compact [59].

Turning to the wire driver multiplexers of the SBs, they are all
20:1, which would again appear as an unintuitive choice in that it

is close to but not quite a perfect square. Young again shows that a
20:1 multiplexer can be controlled by only five SRAM cells, instead
of the typically assumed nine [58], albeit, this time with three levels
of steering switches [59].

Finally, each LUT input can select from a set of 25 inputs, one of
which is VDD. Due to the aforementioned efficiency of the 6:1 and
20:1 multiplexers, we trust that it is not a single 25:1 multiplexer
driving an LUT input, but rather a 20:1 bringing in most of the
external inputs, followed by a smaller 6:1 that provides fast prop-
agation of three feedback signals (in Fig. 18). The remaining two
inputs of the 6:1 multiplexers could act as fast inputs from the global
routing, which is a number that has been previously suggested as
sufficient [11]. Besides the feedbacks, each LUT input equivalence
class (Section 7.3.3), shares 18 of the 22 external drivers, providing
ample possibilities for pairing multiplexers in a way that would
maximize diffusion sharing.

If our assumptions hold, this is likely another instance of layout
efficiency being of prime importance during architectural design,
which is something not often seen in academia where the majority
of studies rely on simplistic transistor-counting models [55]. Not
onlywould this change the assumptions on area cost ofmultiplexers,
but it could also change the assumptions on the delay penalties they
induce, due to the existence of three steering switches on paths
through most of them. Finally, although wider multiplexers are
penalized in a typical academic architectural study, to the best of
our knowledge, it was never attempted to tailor the detailed routing
architecture towards a particular, efficient multiplexer size—it was
rather the multiplexer size that came as a result of a particular
detailed architecture design. A similar statement could be made
about maximizing input sharing between adjacent multiplexers.
We are not aware of that ever being an actual optimization goal. In
fact, even the area models which account for impact of diffusion
sharing between transistors within the same multiplexer do not
consider what is the impact of diffusion sharing between pairs of
multiplexers [60]. Perhaps an even more important factor today
that could stimulate input sharing as an objective, is an increased
possibility to share vias [25].

8 CONCLUSION
In this work, we presented NetCracker—a flexible framework for
extracting the characteristics of FPGA routing architectures and
raising them to a level of abstraction that facilitates general un-
derstanding. Our conjectures are that, in order to stand up to the
challenges of technology scaling and ever more demanding accel-
eration tasks, the FPGA routing architecture will have to evolve
and that the broader research community could be of great use in
making this evolution successful. The main premise on which this
work was based is that understanding existing routing architec-
tures is necessary for providing the right basis for innovation. We
believe that NetCracker is timely in making this learning process
easier and more efficient, which we tried to demonstrate on the
previously unexplored 7-Series architecture family of Xilinx. Our
hope is that the conclusions presented here already make a small
first step towards narrowing the gap between academic research
and industrial reality—a gap which has been considerably widened
in the last few years.



REFERENCES
[1] J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-

programmable gate arrays,” Proceedings of the IEEE, vol. 81, no. 7, pp. 1013–29,
Jul. 1993.

[2] S. Singh, J. Rose, P. Chow, and D. Lewis, “The effect of logic block architecture on
FPGA performance,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 281–87,
Mar. 1992.

[3] D. Lewis and J. Chromczak, “Process technology implications for FPGAs (invited
paper),” in 2012 International Electron Devices Meeting, San Francisco, CA, USA,
Dec. 2012, pp. 25.2.1–4.

[4] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive compute
acceleration platform: Versal architecture,” in Proceedings of the 27th ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA,
Feb. 2019, pp. 84–93.

[5] R. Nijssen, “FPGAs will never be the same again: How the newest FPGA archi-
tectures are totally disrupting the entire FPGA ecosystem as we know it,” in Pro-
ceedings of the 28th ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Seaside, CA, USA, Feb. 2020, p. 172.

[6] “Understanding peak floating-point performance claims (white paper),” Available:
www.intel.com, Intel Corporation, 2017.

[7] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C. Mc-
Clintock, B. Pedersen, G. Powell, S. Reddy, C. Wysocki, R. Cliff, and J. Rose, “The
Stratix routing and logic architecture,” in Proceedings of the 11th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA,
Feb. 2003, pp. 12–20.

[8] D. Lewis, G. Chiu, J. Chromczak, D. Galloway, B. Gamsa, V. Manohararajah,
I. Milton, T. Vanderhoek, and J. V. Dyken, “The Stratix™ 10 highly pipelined FPGA
architecture,” in Proceedings of the 24th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Monterey, CA, USA, Feb. 2016, pp. 159–68.

[9] E. Hung, F. Eslami, and S. J. E. Wilton, “Escaping the academic sandbox: Realizing
VPR circuits on Xilinx devices,” in Proceedings of the 21st IEEE Symposium on
Field-Programmable Custom Computing Machines, Seattle, WA, USA, Apr. 2013,
pp. 45–52.

[10] J. Luu, “Architecture-aware packing and CAD infrastructure for field-
programmable gate arrays,” Ph.D. dissertation, University of Toronto, 2014.

[11] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Galloway,
M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClintock, K. Padalia,
B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens, R. Yuan,
R. Cliff, and J. Rose, “The Stratix II logic and routing architecture,” in Proceedings
of the 13th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Monterey, CA, USA, Feb. 2005, pp. 14–20.

[12] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, and P. Pan,
“Architectural enhancements in Stratix-III™ and Stratix-IV™,” in Proceedings of
the 17th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, USA, Feb. 2009, pp. 33–42.

[13] D. Lewis, D. Cashman, M. Chan, J. Chromczak, G. Lai, A. Lee, T. Vanderhoek,
and H. Yu, “Architectural enhancements in Stratix V™,” in Proceedings of the
21st ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, USA, Feb. 2013, pp. 147–56.

[14] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA
research,” in Proceedings of the 7th International Conference on Field-Programmable
Logic and Applications, London, UK, Sep. 1997, pp. 213–22.

[15] Z. Li, Y. Xiao, Y. Zhang, Y. Pang, C. Hu, J. Wang, and J. Lai, “An automatic
transistor-level tool for GRM FPGA interconnect circuits optimization,” in Pro-
ceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, VA, USA,
May 2019, pp. 93–98.

[16] Z. Jiang, C. Y. Lin, L. Yang, F. Wang, and H. Yang, “Exploring architecture param-
eters for dual-output LUT-based FPGAs,” in Proceedings of the 24th International
Conference on Field-Programmable Logic and Applications, Munich, Germany, Sep.
2014, pp. 1–6.

[17] (2020) Symbiflow [Online]. Available: symbiflow.github.io/.
[18] T. Ahmed, P. D. Kundarewich, and J. H. Anderson, “Packing techniques for Virtex-

5 FPGAs,” ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 2, no. 3, pp. 18:1–24, Sep. 2009.

[19] H. Fraisse, A. Joshi, D. Gaitonde, and A. Kaviani, “Boolean satisfiability-based
routing and its application to Xilinx UltraScale clock network,” in Proceedings
of the 24th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Monterey, CA, USA, Feb. 2016, pp. 74–79.

[20] H. Fraisse and D. Gaitonde, “A SAT-based timing driven place and route flow
for critical soft IP,” in Proceedings of the 28th International Conference on Field-
Programmable Logic and Applications, Dublin, Ireland, Aug. 2018, pp. 8–15.

[21] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal, “Routability-driven
FPGA placement contest,” in Proceedings of the 2016 on International Symposium
on Physical Design, Santa Rosa, CA, USA, Apr. 2016, pp. 139–43.

[22] S. Yang, C. Mulpuri, S. Reddy, M. Kalase, S. Dasasathyan, M. E. Dehkordi, M. Tom,
and R. Aggarwal, “Clock-aware FPGA placement contest,” in Proceedings of the
2017 ACM on International Symposium on Physical Design, Portland, OR, USA,

Mar. 2017, pp. 159–64.
[23] S. Chandrakar, D. Gaitonde, and T. Bauer, “Enhancements in UltraScale CLB

architecture,” in Proceedings of the 23rd ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Monterey, CA, USA, Feb. 2015, pp. 108–16.

[24] J. Tyhach, M. Hutton, S. Atsatt, A. Rahman, B. Vest, D. Lewis, M. Langhammer,
S. Shumarayev, T. Hoang, A. Chan, D.-M. Choi, D. Oh, H.-C. Lee, J. Chui, K. C. Sia,
E. Kok, W.-Y. Koay, and B.-J. Ang, “Arria™ 10 device architecture,” in Proceedings
of the IEEE Custom Integrated Circuit Conference, San Jose, CA, USA, May 2015,
pp. 1–8.

[25] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer, T. Vander-
hoek, G. Zgheib, and I. Ganusov, “Architectural enhancements in Intel® Agilex™
FPGAs,” in Proceedings of the 28th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Seaside, CA, USA, Feb. 2020, pp. 140–49.

[26] Xilinx Inc., 7 Series FPGAs Configurable Logic Block User Guide (UG474), Sep. 2016.
[27] ——, Vivado Design Suite Tcl Command Reference Guide (UG835), May 2019.
[28] C. Wolf and M. Lasser. (2020) Project IceStorm. Available: http://www.clifford.at/

icestorm/.
[29] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc:

Towards an open-source tool flow,” in Proceedings of the 19th ACM/SIGDA Inter-
national Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, Feb.
2011, pp. 41–44.

[30] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings,
“RapidSmith: Do-it-yourself CAD tools for Xilinx FPGAs,” in Proceedings of the 21st
International Conference on Field-Programmable Logic and Applications, Chania,
Greece, Sep. 2011, pp. 349–55.

[31] (2020) Project X-ray [Online]. Available: github.com/SymbiFlow/prjxray/.
[32] (2020) Project Trelis [Online]. Available: github.com/SymbiFlow/prjtrellis/.
[33] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P. Legault, E. Sha,

A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Patros, J. Luu, K. B. Kent, and
V. Betz, “VTR 8: High-performance CAD and customizible FPGA architecture
modelling,” ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 13, no. 2, pp. 9:1–9:60, May 2020.

[34] B. F. Fawcett, “User-programmable gate arrays: Design methodology and devel-
opment systems,” Microprocessors and Microsystems, vol. 13, no. 5, pp. 321–27,
Jun. 1989.

[35] Xilinx Inc., The Programmable Gate Array Data Book, 1989.
[36] J. Rose and S. Brown, “Flexibility of interconnection structures for field-

programmable gate arrays,” IEEE Journal of Solid-State Circuits, vol. 26, no. 3, pp.
277–82, Mar. 1991.

[37] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and buffering to
optimize speed and density,” in Proceedings of the 7th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, Feb. 1999,
pp. 59–68.

[38] ——, “How much logic should go in an FPGA logic block,” IEEE Design and Test of
Computers, vol. 15, no. 1, pp. 10–15, Jan. 1998.

[39] A. DeHon, “Balancing interconnect and computation in a reconfigurable comput-
ing array (or, why you don’t really want 100% LUT utilization),” in Proceedings of
the 7th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, USA, Feb. 1999, pp. 69–78.

[40] (2020, Dec.) NetCracker: Programmable routing architecture analysis framework.
[Online]. Available: http://doi.org/10.5281/zenodo.4306244

[41] Xilinx Inc., 7 Series FPGAs Data Sheet (ds180), Sep. 2020.
[42] Z. Seifoori, H. Asadi, and M. Stojilović, “A machine learning approach for power

gating the FPGA routing network,” in Proceedings of the IEEE International Con-
ference on Field Programmable Technology, Tianjin, China, Dec. 2019, pp. 10–18.

[43] V. Betz and J. Rose, “Directional bias and non-uniformity in FPGA global routing
architectures,” in Proceedings of the International Conference on Computer Aided
Design, San Jose, CA, USA, Nov. 1997, pp. 652–59.

[44] C. Mead and L. Conway, Introduction to VLSI Systems. Reading, Mass.: Addison-
Wesley, 1980.

[45] M. Hutton, “Characterization and parameterized generation of digital circuits,”
Ph.D. dissertation, University of Toronto, 1997.

[46] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, 1999.

[47] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver wires in
FPGA interconnect,” in Proceedings of the IEEE International Conference on Field
Programmable Technology, Brisbane, NSW, Australia, Dec. 2004, pp. 41–48.

[48] Virtex-II Platform FPGA Handbook, Xilinx Inc., 2001.
[49] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, and E. Bozorgzadeh,

“HARP:Hard-wired routing pattern FPGAs,” in Proceedings of the 13th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA,
Feb. 2005, pp. 21–29.

[50] X. Sun, H. Zhou, and L. Wang, “Bent routing pattern for FPGAs,” in Proceedings
of the 29th International Conference on Field-Programmable Logic and Applications,
Barcelona, Spain, Sep. 2019, pp. 9–16.

[51] A. Roopchansingh and J. Rose, “Nearest neighbour interconnect architecture
in deep submicron FPGAs,” in Proceedings of the IEEE Custom Integrated Circuit
Conference, Orlando, FL, USA, May 2002, pp. 59–62.

www.intel.com
symbiflow.github.io/
http://www.clifford.at/icestorm/
http://www.clifford.at/icestorm/
github.com/SymbiFlow/prjxray/
github.com/SymbiFlow/prjtrellis/
http://doi.org/10.5281/zenodo.4306244


[52] J. Gould. (2020) Morpheus. Available: software.broadinstitute.org/morpheus.
[53] O. Petelin and V. Betz, “The speed of diversity: Exploring complex FPGA routing

topologies for the global metal layer,” in Proceedings of the 26th International
Conference on Field-Programmable Logic and Applications, Lausanne, Switzerland,
2016, pp. 1–10.

[54] W. Li and D. Z. Pan, “A new paradigm for FPGA placement without explicit
packing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 11, pp. 2113–26, Nov. 2019.

[55] C. Chiasson and V. Betz, “COFFE: Fully-automated transistor sizing for FPGAs,” in
Proceedings of the IEEE International Conference on Field Programmable Technology,
Kyoto, Japan, Dec. 2013, pp. 34–41.

[56] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven Titan: Enabling
large benchmarks and exploring the gap between academic and commercial CAD,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 8, no. 2,
pp. 10:1–18, Mar. 2015.

[57] M. Chirania, “Lookup table with relatively balanced delays,” US Patent 7471,104
B1, 2008.

[58] D. Koch, Partial Reconfiguration on FPGAs, ser. Lecture Notes in Electrical Engi-
neering. Springer-Verlag New York, 2013, vol. 153.

[59] S. P. Young, “Six-input multiplexer with two gate levels and three memory cells,”
US Patent 5 744 995, 1998.

[60] F. F. Khan, “Towards accurate FPGA area models for FPGA architecture evalua-
tion,” Ph.D. dissertation, Ryerson University, 2017.

software.broadinstitute.org/morpheus

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 NetCracker
	4.1 Routing Channel Width and Composition
	4.2 Adjacency Analysis Pass

	5 Switch-box Diversity
	6 Routing Channels
	6.1 Short-Range and Mid-Range Connections
	6.2 Secondary Destinations
	6.3 Long-Range Connections
	6.4 Channel Widths

	7 Adjacency Analysis
	7.1 Wire-to-Wire Connections
	7.2 ALT and BOUNCE Connections
	7.3 CLB Connections
	7.4 Multiplexers

	8 Conclusion
	References

