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a b s t r a c t 

It has been well established that Functional Connectomes (FCs), as estimated from functional MRI (fMRI) data, have an individual fingerprint that can be used 

to identify an individual from a population ( subject-identification ). Although identification rate is high when using resting-state FCs, other tasks show moderate to 

low values. Furthermore, identification rate is task-dependent, and is low when distinct cognitive states, as captured by different fMRI tasks, are compared. Here 

we propose an embedding framework, GEFF (Graph Embedding for Functional Fingerprinting), based on group-level decomposition of FCs into eigenvectors. GEFF 

creates an eigenspace representation of a group of subjects using one or more task FCs ( Learning Stage ). In the Identification Stage , we compare new instances of FCs 

from the Learning subjects within this eigenspace (validation dataset). The validation dataset contains FCs either from the same tasks as the Learning dataset or from 

the remaining tasks that were not included in Learning . Assessment of validation FCs within the eigenspace results in significantly increased subject-identification rates 

for all fMRI tasks tested and potentially task-independent fingerprinting process. It is noteworthy that combining resting-state with one fMRI task for GEFF Learning 

Stage covers most of the cognitive space for subject identification. Thus, while designing an experiment, one could choose a task fMRI to ask a specific question and 

combine it with resting-state fMRI to extract maximum subject differentiability using GEFF. In addition to subject-identification, GEFF was also used for identification 

of cognitive states, i.e. to identify the task associated to a given FC, regardless of the subject being already in the Learning dataset or not ( subject-independent task- 

identification ). In addition, we also show that eigenvectors from the Learning Stage can be characterized as task- and subject-dominant, subject-dominant or neither, 

using two-way ANOVA of their corresponding loadings, providing a deeper insight into the extent of variance in functional connectivity across individuals and 

cognitive states. 
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. Introduction 

To date, most studies using fMRI rely on group level analysis where
ata is averaged over subjects within groups ( Fornito et al., 2015 ;
astellanos et al., 2013 ; Crossley et al., 2014 ), potentially ignoring any

ntra-group individual variability ( Seitzman et al., 2019 ). However, im-
roved acquisition parameters and the increased availability of large
atasets ( Van Essen et al . , 2012 , 2013 ; Amunts et al., 2016 ; Allen et al.,
014 ; Miller et al., 2016 ; Okano et al., 2015 ; Poo et al., 2016 ) with
pen data policy have generated opportunities for the development of
ubject-level biomarkers from fMRI, thus opening the possibility of per-
onalized medicine for neuro/psychiatric disorders ( Satterthwaite et al.,
018 ). As clinically useful subject level biomarkers must have high inter-
ubject differentiability, also known as subject fingerprint, recent ef-
orts have gone into capturing and improving individual variability in
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iomarkers based on functional connectivity in fMRI data ( Seitzman et al.,
019 ; Satterthwaite et al., 2018 ; Mars et al., 2018 ; Gratton et al., 2018 ).
ubject- and task-specific signatures have also been found using whole
rain effective connectivity ( Pallarés et al., 2018 ) and dynamic functional
onnectivity ( Xie et al., 2018 ; Amico et al., 2020 ). 

Whole-brain functional connectivity patterns are showing increasing
romise as subject-level biomarkers that can be estimated from fMRI
ata. These patterns can be summarized in the form of a full sym-
etric correlation matrix denominated Functional Connectome (FC).
he development of the FC has given birth to the field of brain func-

ional connectomics which has been extensively used to study brain con-
ectivity across a wide range of brain disorders ( Fornito et al., 2015 ;
ornito and Bullmore, 2015 ; van den Heuvel and Sporns, 2019 ). Re-
ently, it has been shown that FCs have a recurrent and reproducible
ndividual fingerprint ( Satterthwaite et al., 2018 ; Mars et al., 2018 ;
iversity, 315 North Grant Street, Grissom Hall, West-Lafayette, IN 47907, USA. 
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ratton et al., 2018 ; Venkatesh et al., 2019 ), that can be used to iden-
ify an individual from a population of FCs. We refer to this process
s subject-identification (SI) . Using data from the Human Connectome
roject (HCP), individual fingerprints have been shown to exist in all
ight different tasks (resting-state (RS); emotion (EM); gambling (GAM);
anguage (LAN); motor (MOT); relational (REL); social (SOC) and work-
ng memory (WM)), but, apart from resting-state, the SI accuracy was
oderate to low ( Finn et al., 2015 ). 

Following the discovery of a fingerprint in FC, Amico and Goñi in-
roduced the “Identifiability Framework ( If ) ( Amico and Goñi, 2018 )
hich improved the SI accuracy for all eight tasks from the HCP dataset.
sing group-level Principal Component Analysis (PCA) decomposition
f FCs, the framework works as a denoising procedure that uncovers
atent fingerprints; noisy principal components were identified (and re-
oved) by maximizing differential identifiability (similarity of an indi-

idual’s FC across two sessions, relative to its similarity to the rest of
he population). This denoising based on maximizing differential identi-

ability not only improves SI accuracy, but also the capacity to predict
uid intelligence from FCs ( Amico and Goñi, 2018 ). This framework
as been tested to improve individual fingerprint for different scan-
ing lengths ( Amico and Goñi, 2018 ), across scanners, with and without
lobal signal regression ( Bari et al., 2019 ), and across network proper-
ies ( Rajapandian et al., 2020 ). An extension of this framework has been
lso used to assess disease progression ( Svaldi et al., 2018 ). 

Although promising, the existing frameworks ( Finn et al., 2015 ;
mico and Goñi, 2018 ) used for subject-identification are not task-

ndependent , meaning that an FC from one task cannot be used to identify
n individual from a population of FCs from another task even with mod-
rate accuracy rates. Even though the differential identifiability framework

mproves the SI accuracy for each individual task, it does not make the
I process any more task-independent . This could be the result of the dif-
erential identifiability framework trying to make FCs within tasks as
imilar as possible, thus potentially removing components which could
elp with identification across tasks. 

In addition to subject fingerprint, functional connectivity patterns,
nd in turn FCs, have also been shown to vary depending on the cog-
itive state ( Varona and Rabinovich, 2016 ; Varoquaux et al., 2018 ) of
n individual (i.e. task-fingerprinting ) ( Shirer et al., 2012 ; Greene et al.,
018 ; Krienen et al., 2014 ; Salehi et al., 2019 ; Greene et al., 2019 ). Thus,
ask-identification (TI), or the ability to identify the task associated with
 given FC from a population of reference FCs that include a collection
f tasks, has also become a key goal in the field of brain connectomics.
ask identification frameworks have been recently proposed by Xie et al.
2018 ), Pallarés et al. (2018 ) and more recently, Wang et al. (2019 )
sing dynamic functional connectivity, effective connectivity, and deep
earning, respectively. Although useful, these frameworks present some
hallenges. While effective connectivity showed improved identification
erformance with respect to functional connectivity, it requires not only
unctional connectivity but also structural connectivity and a mathe-
atical model of cortical dynamics with its corresponding parameters.
ynamic functional connectivity (dFC) suffers from a subjective and
ata dependent choice of window length ( Hutchison et al., 2013 ). Deep
earning frameworks, although effective in some cases, are black boxes

nd difficult to generalize to new datasets ( Jakubovitz et al., 2019 ). In
ontrast, static functional connectivity is easier to compute and is be-
ng widely used in the network neuroscience community. Existing TI
rameworks are either subject dependent ( Pallarés et al., 2018 ) or can
nly perform task-fingerprinting at the group-level, after removing the
ubject-specific fingerprints (specific independent components) from the
ata ( Xie et al., 2018 ). Thus, the field still lacks a framework that can
erform task-identification on functional connectivity while still preserv-
ng individual level variability necessary for personalized medicine. 

Both subject and task identification can be thought of as object recog-
ition problems. Eigenspace embedding ( Takahashi and Murase, 2014 )
s a common technique used in object recognition, detection, and track-
ng due to its simplicity and effectiveness. Essentially, high dimensional
2 
raining images are used to create a low dimensional eigenspace. Then,
oth training images and target objects are projected into this low di-
ensional eigenspace and distances are computed between target and

raining images to detect and/or track certain objects. A number of
echniques based on this basic principle have been developed to detect
nd recognize human faces ( Sirovich and Kirby, 1987 ; Turk and Pent-
and, 1991 ), recognize 3D objects and estimate their pose ( Murase and
ayar, 1995 ), and identify partially occluded objects and estimate their
ose ( Ohba and Ikeuchi, 1997 ). In short, it is a low cost (in terms of
emory space and processing time) and computationally efficient im-

ge recognition method. 
In this study, we propose a framework based on eigenspace embed-

ing for functional connectome fingerprinting (GEFF). Instead of im-
ges, whole-brain functional connectomes (FCs) are embedded into a
ow dimensional eigenspace and classified based on subjects or tasks.
eparate models are created for SI and TI processes. Our aim is to
chieve four major goals: (i) increase the SI accuracy, (ii) make the SI
rocess potentially task-independent, (iii) perform TI process with high
ccuracy and, (iv) make the TI process subject-independent, while pre-
erving individual level variability in FCs. In essence, we introduce a
ngerprinting framework that, given an FC for a particular individual
erforming a particular task, is able to identify the subject and/or task
ith high accuracy. 

. Methods 

.1. Dataset 

The fMRI dataset used in this study is from the publicly available
uman Connectome Project (HCP). Per HCP protocol, written informed
onsent was obtained from all subjects by the HCP Consortium. Full de-
cription of the acquisition protocol and processing steps is given below.

.2. HCP: functional data 

We assessed the 100 unrelated subjects (54 females, 46 males, mean
ge = 29.1 ± 3.7 years) from the HCP 900 subjects data release ( Van Es-
en et al., 2013 ). This subset of subjects was chosen from the overall
ataset to ensure that no two subjects are family relatives. The crite-
ion to exclude family relatives was crucial to avoid confounding effects
n our analyses due to family-structure co-variables. The resting-state
MRI scans were acquired on two different days (coded as REST1 and
EST 2). Each day, subjects underwent two sessions corresponding to

wo different acquisitions (left to right or LR, and right to left or RL
 Van Essen et al., 2012 ). The seven fMRI tasks were: emotion, gambling,
anguage, motor, relational, social, and working memory. The gambling,
otor and working memory tasks were acquired on the first day, and

he emotion, language, relational and social tasks were acquired on the
econd day. The HCP scanning protocol was approved by the local Insti-
utional Review Board at Washington University in St. Louis. For resting-
tate fMRI, only the two sessions from REST1 were used in this study.
ull details on the HCP dataset have been published previously ( Van Es-
en et al., 2012 ; Glasser et al., 2013 ; Smith et al., 2013 ). 

.3. Brain atlas 

A multi-modal parcellation of the human cerebral cortex, with 180
rain regions in each hemisphere (360 total), was used in this work
 Glasser et al., 2016 ). For completeness, 14 subcortical regions were
dded, as provided by the HCP release (filename Atlas_ROI2.nii.gz).
o do so, this file was converted from NIFTI to CIFTI format using
he HCP workbench software ( Glasser et al., 2016 ; Marcus et al.,
011 ) ( http://www.humanconnecome.org/software/connectome-
orkbench.html , command -cifti-create-label). 

http://www.humanconnecome.org/software/connectome-workbench.html
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.4. HCP preprocessing: functional data 

The data processed using the ‘minimal’ preprocessing pipeline from
he HCP was employed in this work ( Glasser et al., 2013 ). This pipeline
ncluded artifact removal, motion correction, and registration to stan-
ard space. Full details on this pipeline can be found in earlier publi-
ations ( Glasser et al., 2013 ; Smith et al., 2013 ). The main steps were
patial (minimal) preprocessing, both in volumetric and grayordinate
pace (i.e. where brain regions are mapped onto the native mesh corti-
al surface) ( Smith et al., 2013 ); slice-timing correction; minimal high-
ass temporal filtering (using the -bptf option in FSL’s ( Jenkinson et al.,
012 ) fslmaths tool; 2000 s full width at half maximum) applied to both
olumetric and grayordinate forms, effectively removing linear trends
n the data (no low pass filtering was applied in this ‘minimal’ HCP
ipeline); MELODIC ICA ( Jenkinson et al., 2012 ) applied to volumet-
ic data; and using FIX ( Salimi-Khorshidi et al., 2014 ) to identify and
emove artifact components. Artifacts- and motion-related time courses
ere regressed out (i.e. the six rigid-body parameter time series, their
ackwards-looking first differences, and the squares of all 12 result-
ng regressors) of both volumetric and grayordinate data ( Smith et al.,
013 ). 

We added the following steps to the ‘minimal’ HCP processing
ipeline. For resting-state fMRI data: (i) we regressed out the global
ray-matter signal from the voxel time courses ( Power et al., 2014 ),
ii) we applied a bandpass first-order Butterworth filter in forward and
everse directions (0.001 Hz to 0.08 Hz ( Power et al., 2014 ); MATLAB
unctions butter and filtfilt ), and (iii) the voxel time courses were z-scored
nd then averaged per brain region, excluding any outlier time points
hat were outside of 3 standard deviation from the mean ( workbench

oftware, command - cifti-parcellate ). For task fMRI data, we applied the
ame steps as mentioned above but a more liberal frequency range was
dopted for the band-pass filter (0.001 Hz to 0.25 Hz) ( Amico et al.,
018 ), since the connection between different tasks and optimal fre-
uency ranges is still unclear ( Cole et al., 2014 ). 

.5. Estimating individual functional connectomes 

Pearson correlation between the time courses of all possible brain re-
ion pairs (MATLAB command corr ) results in a symmetric correlation
atrix for each fMRI session of each subject. In this paper we would

efer to this object as Functional Connectome (FC). Each task has two
essions – one with left-to-right (LR) and the other with right-to-left (RL)
hase-encoding. To avoid any session bias, for each task separately, FCs
ere chosen randomly from LR and RL sessions such that we had equal
umber of FCs from both in the two sessions. Finally, the resulting indi-
idual FCs were ordered according to the seven resting-state Functional
etworks (FNs), as proposed by Thomas Yeo et al. (2011 ). For com-
leteness, an eighth FN comprising the 14 HCP subcortical regions was
dded (as analogously done in recent papers ( Amico and Goñi, 2018 ;
mico et al., 2017 )). To accomplish this, we used an in-house Matlab
cript that determines, for each brain region, the number of voxels that
elong to a particular resting-state FN. The decision to assign a brain re-
ion to a particular FN was made by a majority rule i.e. the network that
ontained the largest number of voxels for a brain region was assigned to
hat brain region. This reordering was done for visualization purposes
nly, so that any visualization of FCs or FC-related objects would be
omewhat visually interpretable. 

.6. Mathematical notations 

In this section, we would establish a few mathematical notations that
ould be used throughout the paper. Scalar is an italicized letter e.g. a .
 vector is denoted by a bold italicized letter e.g. a , which would be a
olumn vector by default unless otherwise specified. Matrix is denoted
y a capitalized italicized bold letter e.g. A . For any given vector a , the
3 
verage of its entries is denoted by ⟨a ⟩, while its norm or magnitude is
enoted by ∥a ∥. 

If r ∈ [ q ], it means that r accepts integer values from 1 up to q , where
 ∈ { all positive integers }. 

If the i th sample of a set S with cardinality N has a class label where
he set of class labels is [ 𝑞] = { 1 , 2 , … , 𝑞 } , then it would be denoted by
 i ∈ [ q ] N . 

Finally, to express the range of a variable (say n ), we borrow the
otation from Matlab such that: 

 = [ 1 ∶ 2 ∶ 11 , 20 ∶ 5 ∶ 100 ] 

eans that the values of n varies from 1 to 11 in steps of 2, and then
rom 20 to 100 in steps of 5. 

.7. GEFF: a framework for graph embedding for functional fingerprinting 

The GEFF framework consists of two stages: Learning and Identifica-

ion . In the Learning stage, we compute an eigenspace representation
f each learning FC using group-level Principal Component Analysis
PCA) ( Hotelling, 1933 ; Pearson, 1901 ) decomposition. In the Identifica-

ion stage, we first compute average representations (centroids) of each
nderlying class in the learning dataset. Then, using the eigenvectors
omputed in the learning stage, we project each validation FC into the
igenspace and identify it by matching it with one of the class centroids
 Fig. 1 ). It has to be noted that GEFF is somewhat similar in its setup
ith the “Identifiability Framework ( If ) ” proposed by Amico and Goñi

2018 ), but there are key differences. First, there is no reconstruction in
EFF and all the processing takes place in the eigenspace. In addition,
s opposed to the If , GEFF does not require two runs (test/retest FCs) of
he same subject in its setup. The two stages of GEFF are described in
etail below. 

.7.1. Learning stage: eigenspace embedding 

An FC is an m x m symmetric correlation matrix ( m is the number of
rain regions in the parcellation), and hence can be vectorized into a
 = 𝑚 ( 𝑚 − 1 )∕2 dimensional vector by taking the upper triangular part

f the matrix (excluding the main diagonal). Analogously to Amico and
oñi (2018 ), we vectorized all the learning FCs and organized them into
 matrix 

 = 

[
𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 

]
here 

x i is an M-dimensional vectorized learning FC (i ∈ [ N ] ), and 

N is the number of learning FCs. 

To construct an eigenspace, we create a PCA decomposition of the
nput matrix X (MATLAB command pca ) to extract the eigenvectors and
he representations (projections) of x i vectors in(to) the eigenspace. 

Analytically, eigenvectors are obtained by solving the following
quation: 

̄
 ̄𝑿 

𝑻 
𝒖 𝑖 = 𝜆𝑖 𝒖 𝑖 

here 

̄
 = [ 𝒙 1 − ⟨𝐱 𝟏 ⟩, 𝒙 2 − ⟨𝐱 𝟐 ⟩, … , 𝒙 𝑁 − ⟨𝐱 𝐍 ⟩] , and 

 i represents an M-dimensional eigenvector of the �̄� ̄𝑿 

𝑻 
covariance matrix,

ith a corresponding eigenvalue 𝜆i . 
Eigenvectors 𝑼 = [ 𝒖 1 , … , 𝒖 𝑁 ] are arranged in descending order of

heir eigenvalues, which is equivalent to descending order of their ex-
lained variance. For any value of k ≤ N , the M -dimensional vectorized
C x i can be projected to the eigenspace using the following equation: 

 

𝑘 
𝑖 
= 

[
𝒖 1 , … , 𝒖 𝑘 

]𝑇 
�̄� 𝑖 

here 

̄  𝑖 = 𝒙 𝑖 − ⟨𝐱 𝐢 ⟩, and 

 

𝑘 
𝑖 

is the k-dimensional representation of x i in the eigenspace. 

Using this procedure, we obtained k -dimensional representations for
ll learning FCs, for 𝑘 = 1 , 2 , … , 𝑁 . 
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Fig. 1. GEFF, the identification framework. GEFF consists of two stages: Learning and Identification. During the Learning Stage (LS), all learning FCs are vectorized, 

organized together (a) and then projected into the eigenspace using PCA (b). During the Identification Stage, we compute average representations (centroids) of each 

underlying class in the learning dataset (c). Then each validation FC is projected into the eigenspace using eigenvectors from the Learning Stage (d) and is identified 

by matching its projection with one of the class centroids (c). 
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.7.2. Identification stage: nearest centroid classifier 

The identification process is essentially a multi-class classification
roblem where the objective is to label an FC in the validation data to
ne of the classes in the learning data. In this work, we used the Nearest
entroid Classification with the idea that an average representation of
 class (subject or task) would be more robust and generalizable than
ndividual samples of that class. 

For a given value of k ∈ [ N ], we had class-labeled learning samples
.e. { ( 𝒚 𝑘 1 , 𝑧 1 ) , … , ( 𝒚 𝑘 

𝑁 
, 𝑧 𝑁 ) } , 

where 

𝒚 𝑘 
𝑖 

is the k-dimensional eigenspace representation of the i-th learning FC

i ∈ [ N ] ), 
and z i ∈ [ Z ] N is the corresponding class label. 

Using these samples, we computed per-class centroids: 

 

𝑘 
𝑙 
= 

1 ||𝐶 𝑙 ||
∑
𝑖 ∈𝐶 𝑙 

𝒚 𝑘 
𝑖 

here 

𝒄 𝑘 
𝑙 

is the k-dimensional centroid of class l ∈ [ Z ] , 
C l is the set of indices of samples belonging to the class l ∈ [ Z ] , and 

| C l | is the number of samples or size of the class l ∈ [ Z ] . 
For SI and TI processes, classes correspond to the subjects and the

asks included in the learning dataset, and these centroids are average

epresentations of the subjects and tasks in the eigenspace, respectively.
For a given validation FC, we first vectorized it into an M -

imensional vector w . We then obtained a k -dimensional vector g k by
rojecting w to the eigenspace constructed in the learning stage using
he following equation: 

 

𝑘 = 

[
𝒖 1 , … , 𝒖 𝑘 

]𝑇 
�̄� 

here 

̄
 = 𝒘 − ⟨𝐰 ⟩. 

To provide an alternative and perhaps more intuitive perspective,
ne may also think of this process as a multi-linear regression: 

̄
 = 𝑼 𝑘 𝜷 + 𝜺 

here 

�̄� is the dependent variable or the validation FC, 

𝑼 𝑘 = [ 𝒖 1 , … , 𝒖 𝑘 ] represents the transposed independent variables or the

igenvectors, 
4 
𝜷 = 𝒈 𝑘 is the k-dimensional vector of estimated coefficients, and 

ɛ is the residual noise. 

A validation FC ( g k ) was identified as belonging to class l ∗ that min-
mized the distance between g k and the class centroid 𝒄 𝑘 

𝑙 
: 

 

∗ = 

𝑎𝑟𝑔𝑚𝑖𝑛 

𝑙 
𝑑𝑖𝑠𝑡 

(
𝒈 𝑘 , 𝒄 𝑘 

𝑙 

)
here 

𝒄 𝑘 
𝑙 

is the centroid for class l ∈ [ Z ] , and 

‘dist’ represents the distance function that was used to compute distance

etween the input g k and the class centroids. 

In our case, we used the cosine distance which is given by the follow-
ng equation: 

𝑖𝑠𝑡 ( 𝒙 , 𝒚 ) = 1 − cos 𝜃 = 1 − 

⟨𝐱, 𝐲 ⟩
‖𝒙 ‖ ⋅ ‖𝒚 ‖

here 

⟨x , y ⟩ is the dot product of vectors x and y . 

For high dimensional data, to measure closeness or distance between
wo unit vectors, a natural choice, empirically, would be the angle be-
ween them, or the cosine of that angle ( Koch, 2012 ). Although the
ramework was also tested with correlation distance and Euclidean dis-
ance and similar results were found (results not shown). 

We repeated the identification process for all the validation FCs and
he identification rate was defined as 

 𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 

𝑁 𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑙 𝑦 𝑙 𝑎𝑏𝑒𝑙 𝑒𝑑 𝑣𝑎𝑙 𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐹 𝐶𝑠 

𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐹 𝐶𝑠 

Using this generic definition of accuracy, we can also compute SI
r TI rates for subsets of validation dataset for all possible values of
igenspace dimensionality 𝑘 = 1 , 2 , … , 𝑁 , which depends on how FCs
re split into learning and validation data and is described in more detail
elow. 

.8. Subject identification (SI) process 

For each of the 100 unrelated subjects, we had eight different fMRI
asks (including resting-state), as described above. For each task, we had
wo runs, here referred to as Test and Retest. For resting-state, we had
our runs in total, two runs per session, but we only used the two runs
rom session 1 to balance the dataset with task fMRIs. For simplicity, we
ill refer to resting-state as a task, unless stated clearly otherwise. 



K. Abbas, E. Amico, D.O. Svaldi et al. NeuroImage 221 (2020) 117181 

 

i  

o  

d  

v  

u  

w  

t
 

1  

s  

t  

r  

f  

s  

t

𝑿

w

 

e  

a  

d  

i  

a

𝒀

w

 

I

𝑪

w

 

e

 

t
 

o  

t  

t  

o  

w

 

 

 

l  

t

 

 

 

 

 

2

 

j  

T  

a  

H  

t  

c  

t  

(  

d
 

t  

t  

s  

r
 

s  

l

𝑿

w

 

u  

f

𝒀

w

 

j  

p

𝑪

w

 

j
 

a  

w

 

 

 

l

 

 

 

r  

i  
For SI statistics, we must consider the dependence between subjects
n the sample. For instance, if two subjects A and B are very close to each
ther, B might be misclassified as A. But, if A was not in the learning
ataset, it is possible that B would have been classified correctly. A con-
enient procedure to assess variability in the identification process is to
se random cross-validation resampling ( Efron and Tibshirani, 1993 ),
ith each resample comprising random draws without replacement of

he box containing the group of subjects. 
Within every cross-validation run, we randomly picked 80% of the

00 subjects ( 100 ∗ 0 . 8 = 80 ) as our learning subjects from the Test ses-
ion ( It must be emphasized that for any task, FCs from the two runs (left-

o-right vs right-to-left phase or LR vs RL) of the original HCP dataset were

andomly assigned to either the Test or the Retest. That is why choosing FCs

rom only Test is essentially choosing FCs randomly from the two available

essions of LR and RL ). For every subject, we picked T ∈ [7] number of
ask FCs, which resulted in 𝑁 = 80 ∗ 𝑇 FCs in the learning dataset i.e. 

 = 

[
𝒙 1 1 , 𝒙 

1 
2 , … , 𝒙 1 

𝑇 
, ………… , 𝒙 80 1 , 𝒙 

80 
2 , … , 𝒙 80 

𝑇 

]

here 

𝒙 
𝑗 

𝑖 
is the vectorized FC for the jth subject and the ith task. 

Then, as described above, we apply PCA to X in order to create an
igenspace and compute k -dimensional eigenspace representations for
ll the learning FCs for a given value of k ( k represents the eigenspace
imensionality or the number of eigenvectors chosen for the projection
n the order of descending eigenvalues or equivalently, explained vari-
nce) i.e. 

 

𝑘 = 

[
𝒚 1 1 , 𝒚 

1 
2 , … , 𝒚 1 

𝑇 
, ………… , 𝒚 80 1 , 𝒚 

80 
2 , … , 𝒚 80 

𝑇 

]

here 

Y 

k is the matrix of k-dimensional projections of all the learning FCs. 

For the SI process, ‘subjects’ are the classes i.e. 𝑍 = 80 . So, in the
dentification Stage, one centroid is computed per subject i.e. 

 

𝑘 
𝑠𝑢𝑏𝑗 

= 

{
𝒄 𝑘 1 , 𝒄 

𝑘 
2 , … , 𝒄 𝑘 80 

}

here 

𝑪 

𝑘 
𝑠𝑢𝑏𝑗 

is the matrix of all subject-centroids in the k-dimensional

igenspace. 

These centroids reflect an average representation of subjects across
asks which was then utilized in the identification process. 

In each cross-validation resample, the validation dataset comprised
f new FCs (additional runs of the learning tasks or external tasks) of
he same subjects employed in the learning dataset. FCs in the valida-
ion dataset always included all tasks for all learning subjects. Hence,
verall it always comprised of 80 ∗ 8 = 640 FCs. The validation dataset
as subdivided into two categories: 

(1) Within-Learning-Tasks: new FCs that belonged to the tasks that
were included in the learning dataset 

(2) Across-Tasks: new FCs that belonged to the tasks that were not

included in the learning dataset. 

All the validation FCs were projected into the eigenspace and were
abelled by identifying the nearest ‘subject centroid’ as described in de-
ail in the Methods section. 

The SI process was performed for: 

(1) Within-Learning-Tasks and Across-Tasks, separately 
(2) 100 random cross-validation resamples 
(3) all the values of eigenspace dimensionality i.e. 𝑘 = 1 , 2 , … , 𝑁 ,

and 
(4) different number of learning tasks i.e. 𝑇 = 1 , 2 , … , 7 . For a given

value of T , the process was repeated for all possible permutations
of tasks in the learning dataset. For instance, if 𝑇 = 2 , there are

( 8 2 ) = 28 possible permutations in which we can pick two tasks out
of eight. So, the process was repeated for all 28 permutations. n

5 
.9. Task identification (TI) process 

Like the SI process, we must consider the dependence between sub-
ects in the sample. Although here the consideration is slightly different.
wo subjects A and B from the same task when averaged, could create
 ‘better’ average representation of the task than say subjects B and C.
ere the word ‘better’ means a representation that is more generalizable

o the rest of the sample and hence would perform better in the identifi-
ation stage. As done during the SI process, variability in the identifica-
ion process was assessed by using random cross-validation resampling
 Efron and Tibshirani, 1993 ), with each resample comprising random
raws of subjects without replacement. 

Additionally, we should consider the number of subjects per task in
he learning dataset, because intuitively a larger sample of subjects per
ask could create a ‘better’ average representation of the task than a
maller one. So, we need to explore the TI process over a range with
espect to the number of subjects per task in the learning dataset. 

Within each cross-validation run, n number of subjects from the Test

ession are chosen randomly per task. So, the total number of FCs in the
earning dataset would be 𝑁 = 8 𝑛 , since there are in total 8 tasks i.e. 

 = 

[
𝒙 1 1 , 𝒙 

1 
2 , … , 𝒙 1 

𝑛 
, ………… , 𝒙 8 1 , 𝒙 

8 
2 , … , 𝒙 8 

𝑛 

]

here 

𝑥 
𝑗 

𝑖 
is the vectorized FC for the jth task and the ith subject. 

Then, just as we did in the SI process, an eigenspace was created
sing PCA and all the learning FCs were projected into the eigenspace
or a given value of k i.e. 

 

𝑘 = 

[
𝒚 1 1 , 𝒚 

1 
2 , … , 𝒚 1 

𝑛 
, ………… , 𝒚 8 1 , 𝒚 

8 
2 , … , 𝒚 8 

𝑛 

]

here 

Y 

k is the set of k-dimensional projections of all the learning FCs. 

For the TI process, classes are the different ‘tasks’, instead of ‘sub-
ects’ i.e. 𝑍 = 8 . So, in the Identification Stage, one centroid was com-
uted per task i.e. 

 

𝑘 
𝑡𝑎𝑠𝑘 

= 

{
𝒄 𝑘 1 , 𝒄 

𝑘 
2 , … , 𝒄 𝑘 8 

}

here 

𝑪 

𝑘 
𝑡𝑎𝑠𝑘 

is the set of all task-centroids in the k-dimensional eigenspace. 

These centroids reflect an average representation of tasks across sub-
ects which was then utilized in the identification process. 

The validation dataset comprised of the FCs from the Retest session for
ll the subjects and all the tasks ( 100 ∗ 8 = 800 ). The validation dataset
as subdivided into two categories: 

(1) Within-Learning-Subjects: new FCs that belonged to the same
subjects that were included in the learning dataset, and 

(2) Different-Subjects: new FCs that belonged to all the other sub-
jects that were not included in the learning dataset. 

All the validation FCs were projected into the eigenspace and were
abelled by identifying the nearest ‘task’ centroid. 

The SI process was performed for: 

1. Within-Learning-Subjects and Different-Subjects 
2. 100 cross-validation resamples 
3. all the values of eigenspace dimensionality i.e. 𝑘 = 1 , 2 , … , 𝑁 ,

and 
4. different number of subjects per task i.e. 𝑛 =

[ 2 ∶ 1 ∶ 20 , 30 ∶ 10 ∶ 80 ] . 

Null Model Evaluation for the framework 

For both the SI and the TI processes, a null model was evaluated by
andomly permuting the class labels of the learning dataset and repeat-
ng the identification process. Class labels for validation dataset were
ot permuted. 
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.10. Comparative analysis: SI and TI using original FCs 

As a comparative analysis, the SI and TI processes were also per-
ormed using the original FCs (Orig FCs). The learning and validation

atasets were created the same way and the process was repeated for the
ame values of different parameters. Instead of averaging the eigenspace
epresentations, Orig FCs were averaged across tasks and subjects for the
I and the TI processes, respectively. The second major difference was in
he way the FCs in the validation dataset were compared to the learning
ataset. 

First, the averaged representations of subjects or tasks (for SI and TI
espectively) were vectorized and organized into a matrix i.e. 

 𝑠𝑢𝑏𝑗 = 

[
𝒄 1 , 𝒄 2 , … , 𝒄 80 

]
( for SI ) 

nd 𝑪 𝑡𝑎𝑠𝑘 = [ 𝒄 1 , 𝒄 2 , … , 𝒄 8 ] (for TI) 
where c i is an averaged FC. 
All the FCs in the validation dataset were also vectorized. A given

ectorized validation FC, y , was identified as belonging to class l ∗ that
aximized the similarity between the input y and the averaged FC for

he class centroid c l : 

 

∗ = 

𝑎𝑟𝑔𝑚𝑎𝑥 

𝑙 
𝑑 
(
𝒚 , 𝒄 𝑙 

)

here l ∈ [ Z ] , the set of all class labels, c l is the averaged FC for the l-th class,

nd 𝑑( 𝒚 , 𝒄 ) = 

∑
𝑗 ( 𝑦 𝑗 − ̄𝒚 )( 𝑐 𝑗 − ̄𝒄 ) √∑

𝑗 ( 𝑦 𝑗 − ̄𝒚 ) 
2 
√∑

𝑗 ( 𝑐 𝑗 − ̄𝒄 ) 
2 

is the Pearson’s correlation coefficient

 Galton, 1886 ; Bravais, 1844 ) between y and c . 

A direct comparison between traditional process of identification (for
nstance Finn et al. (2015 ) or Venkatesh et al. (2019 )) with GEFF is only
ossible when we use only one FC per subject in the learning stage. For
wo or more FCs per subject in the learning dataset, we used averaged-
cross-tasks FCs instead, as described in detail above. This was necessary
o we could keep the comparative analysis with Orig FCs consistent with
EFF, but also make qualitative comparisons with the previous litera-

ure. 

.11. Characterization of eigenvectors in terms of their subject- and 

ask-fingerprint 

We did a post-hoc analysis to characterize each eigenvector sepa-
ately in terms of its subject- and/or task fingerprint. The idea was to see
f eigenvectors, separately, indeed hold subject- and/or task-fingerprint
nd if there are different regimes of eigenvectors based on subject- and
ask-specificity. 

For this process, FCs for all the subjects and for all the tasks from the
est and the Retest session ( 1600 = 2 × 100 × 8 FCs) were vectorized and
hen organized into a matrix X : 

 = 

[
𝒙 1 , 𝒙 2 , … , 𝒙 𝑁 

]

here 

x i is an M-dimensional vectorized FC (i ∈ [ N ] ), and 

N = 2 × ∗ 100 ×8 = 1600 is the total number of FCs. 

To construct an eigenspace, we input X to PCA (MATLAB command
ca ) to extract the eigenvectors and the representations (projections) of
 i vectors in(to) the eigenspace (much in the same way as we did in the
earning Stage for GEFF, Fig. 1 a-b): 

 = 

[
𝒖 1 , 𝒖 2 , … , 𝒖 𝑁 

]
, 𝑎𝑛𝑑 

 = 

[
𝒚 𝑁 1 , 𝒚 

𝑁 
2 , … , 𝒚 𝑁 

𝑁 

]

here 

u i is an M-dimensional eigenvector, 

𝒚 𝑁 
𝑖 

is the N-dimensional projection of the M-dimensional vector x i into

he N-dimensional eigenspace, and (i ∈ [ N ] ). 
6 
The matrix Y can be expanded as: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑦 𝑁 11 𝑦 𝑁 21 … 𝑦 𝑁 
𝑁1 

𝑦 𝑁 12 𝑦 𝑁 22 … 𝑦 𝑁 
𝑁2 

⋮ ⋮ ⋱ ⋮ 

𝑦 𝑁 1 𝑁 𝑦 𝑁 2 𝑁 … 𝑦 𝑁 
𝑁𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
here each column is an N-dimensional projection ( 𝒚 𝑁 

𝑖 
) in the N-dimensional

igenspace. 

These projections can be thought of as coordinates in an N -
imensional eigenspace, spanned by the N eigenvectors. Hence, the i -th
ow contains the weights or loadings of all the projections correspond-
ng to the i -th eigenvector. Since each column corresponds to an FC that
elongs to a specific task or a subject, the weights corresponding to each
igenvector can also be grouped by tasks or subjects. 

We characterized each eigenvector individually, in terms of its
ubject- and/or task-fingerprint, using two-way ANOVA on the corre-
ponding weights, where the ‘task’ was treated as a fixed-effect factor
hile the ‘subject’ as a random-effect factor. This analysis was repeated

or all 1,600 eigenvectors and the corresponding p -values and F -statistics
ere computed. The p -values were corrected for multiple comparisons
sing Bonferroni correction across the 1,600 ANOVAs performed. An
igenvector was declared task- and/or subject-dominant if the corre-
ponding p -values was < 0.01( Bonferroni corrected ) and subsequently
ased on the magnitude of corresponding F -stat. 

. Results 

In this study, we proposed the Graph Embedding for Functional Fin-
erprinting (GEFF) framework. GEFF was employed to perform subject-

nd task-identification (SI and TI, respectively) using the 100 unrelated
ubjects from the HCP 900 subject data release. GEFF consisted of two
tages: 1) Learning and 2) Identification. In the Learning stage , we com-
uted an eigenspace representation of each FC in the learning dataset
sing group-level PCA decomposition. In the Identification stage , we com-
uted average representations (centroids) of each underlying class (sub-
ects or tasks) in the learning dataset. Then, using eigenvectors com-
uted in the Learning Stage, we projected each validation FC into the
igenspace and identified it by matching its projection with one of the
lass centroids ( Fig. 1 ). 

Both the SI and TI processes were repeated using original FCs (Orig
Cs), where average representations of the underlying classes (subjects
r tasks) were computed by averaging the corresponding FCs. The class
f each validation FC was identified by matching it (using correlation;
ee Section 2.10 . for details) with one of these averaged FCs. 

.1. Subject identification (SI) 

SI process was performed using different number of task FCs per sub-
ect in the learning dataset, which we labeled as LS (i) , 𝑖 = 1 , 2 , … , 7 . To
ssess the robustness of the results and statistical comparisons between
he two frameworks (Orig FCs and GEFF), SI rates were computed for
00 random cross-validation resamples. For each cross-validation re-
ample, 80% of the subjects (for each learning task) were randomly
hosen without replacement from the Test session to create the learn-
ng dataset. SI rates were then computed for new FCs of the same sub-
ects when 1) FCs belonged to same tasks as the learning tasks (Within-
earning-Tasks) and 2) when FCs belonged to tasks different than the
earning tasks (Across-Tasks). 

Whenever possible, we show the SI rates separately for the cases
here resting-state was part of the learning dataset (RS + ) from the cases
here it was not (RS ‒). Even though this choice is somewhat intuitive

onsidering resting-state fMRI is by design different than task fMRIs, we
ill provide a more practical reason when we discuss the SI results with

wo task FCs per subject in the learning dataset i.e. LS (2) . 
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Fig. 2. Subject-Identification (SI) rates with only one task in the Learning dataset (LS (1) ) for Orig FCs and GEFF . SI rates for each Learning task at the maximum 

eigenspace dimensionality (i.e. 80) when the validation dataset contains new FCs from the same task as the learning stage dataset i.e. Within-Learning-Task (a) and 

when the validation dataset is made up of new FCs from tasks not included in the learning stage dataset i.e. Across-Tasks (d). The bars show the mean and the error 

bars show the standard error of mean (SEM) across the cross-validation resamples. (b) and (e) show the SI rate curves with increasing eigenspace dimensionality for 

Within-Learning-Tasks and Across-Tasks when only FCs from resting-state are chosen as the learning dataset (RS + ). On the other hand, (c) and (f) show similar curves 

for Within-Learning-Tasks and Across-Tasks when resting-state is not included in the learning dataset (RS –). The solid lines show the mean SI rate across learning tasks 

and the shaded regions show the SEM. 
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We should also highlight that variation around the mean behavior
whether across cross-validation resamples or learning tasks permuta-
ions) was so small (in most cases) that it was hidden behind the mean
olid lines. 

.1.1. SI using only one learning task: LS (1) 

At the maximum eigenspace dimensionality, GEFF improved SI rates
ver Orig FCs for each task and for both Within-Learning-Task and
cross-Tasks scenarios ( Fig. 2 a, 2 d). Within-Learning-Task SI rates were
0% for GEFF using resting-state, gambling, language, relational, and
ocial tasks. For resting-state, SI rate was exactly 100% across all the
ross-validation resamples ( Fig. 2 a). Even for emotion, motor, and work-
ng memory task, where the SI rates were lower than 90%, they were still
ignificantly higher than their Orig FCs counterparts (e.g. an improve-
ent of around 30% for motor task) ( Fig. 2 a). Even though Across-Tasks

I rates were considerably lower (with the highest for relational and
orking memory tasks: ~60%), they were significantly higher than SI

ates using Orig FCs ( Fig. 2 d). 
SI rates increased monotonically with increasing eigenspace dimen-

ionality ( Fig. 2 b–c, 2e–f). Interestingly, Within-Learning-Task SI rates
or resting-state saturate at 100% using only 75% (60/80) of maximum
igenspace dimensionality ( Fig. 2 b). For Within-Learning-Task SI rates,
EFF required less than half of the maximum eigenspace dimension-
lity to cross the Orig FCs SI rates ( Fig. 2 b–c). On the other hand,
EFF Across-Tasks SI rates required more than half but less than 75% of
7 
he maximum eigenspace dimensionality to cross the Orig FCs SI rates
 Fig. 2 e–f). 

.1.2. SI using two learning tasks: LS (2) 

At the maximum eigenspace dimensionality, Within-Learning-Tasks
I rates for GEFF were 98% for all permutations across learning tasks
 Fig. 3 a). Interestingly, SI rates for validation FCs from resting-state
ere considerably lower when resting-state was not part of the learn-

ng dataset ( Fig. 3 b). On the other hand, if we included resting-state in
he learning dataset, along with one other task, we saw that SI rates for
ll the validation tasks were very high, whether those tasks were part of
he learning dataset ( Fig. 3 a) or not ( Fig. 3 b). Combination of resting-
tate with motor task in the learning dataset seemed to be an exception
s it resulted in lower SI rates for relational and social task ( 70 − 80% ).
his special behavior of resting-state compelled us to separate the cases
here resting-state was part of the learning dataset from cases where it
as not. 

Just as observed with one learning task, SI rates increased mono-
onically with increasing dimensionality ( Fig. 3 c–f). Within-Learning-
asks SI rates saturated at 98% using only 75% (120/160) of maximum
igenspace dimensionality when resting-state was included in the learn-
ng dataset (RS + ; Fig. 3 c), and at 92% when resting-state was not in-
luded (RS –; Fig. 3 d). When resting state was not included in the dataset,
verage Across-Tasks SI rates were 80% (RS –; Fig. 3 f) and increased to
0% when resting-state was included (RS + ; Fig. 3 d). 
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Fig. 3. Subject Identification (SI) rates with two tasks in the Learning stage dataset (LS (2) ) for Orig FCs and GEFF. SI rates for each permutation of two tasks 

in the Learning dataset at the maximum eigenspace dimensionality (i.e. 160) when the validation dataset contains new FCs from the same two tasks as the Learning 

dataset i.e. Within-Learning-Tasks (a) and when the validation dataset is made up of new FCs from tasks not included in the Learning dataset i.e. Across-Tasks (b). SI 

rate curves with increasing eigenspace dimensionality, when one of two tasks in the Learning dataset is resting-state (RS + ) are shown in (c) and (e), respectively, 

for Within-Learning-Tasks and Across-Tasks . On the other hand, (d) and (f) show similar curves for Within-Learning-Tasks and Across-Tasks when resting-state is not 

included (RS –) in the Learning dataset. The solid lines show the mean SI rate across all Learning tasks permutations and the shaded regions show the standard error 

of mean (SEM). Two black rectangles in each row of (b) correspond to the two tasks that were used in the Learning stage for that particular case. 
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It should be noted that Across-Tasks SI rates never reached a sat-
ration point ( Fig. 3 d, 3 f). Also, for both Within-Learning-Tasks and
cross-Tasks, GEFF required less than half of the maximum eigenspace
imensionality to cross the Orig FC SI rates ( Fig. 3 c–f). We should also
ighlight that without RS in the learning dataset, six or more tasks are
equired to reach similar Across-Task SI rates as with RS and one other
ask in the learning dataset (Figure S1; bottom row). We explore this in
ore detail in the next subsection. 

At this point, we have shown that using GEFF improved SI rates for
ll tasks individually (LS (1) ; Fig. 2 ) and we achieved close to perfect SI
ates using only two tasks in the learning dataset (LS (2) ) when the learn-
ng and validation FCs come from the same tasks ( Fig. 3 a). In addition,
I process can be made potentially task-independent using only two tasks
n the learning dataset, if one of the tasks is resting-state, although the
orresponding rates are 90% which can still be improved ( Fig. 3 b, 3 d).
or this purpose, we considered Across-Tasks SI rates using more than
wo tasks in the learning dataset. 

.1.3. Across-tasks SI rates using more than two learning tasks: LS (i) 

 3 ≤ i ≤ 7 ) 
With resting-state included in the learning dataset (RS + ), we reached

cross-Tasks SI rates of 95% with three and 98% with four learning
asks. Beyond that, the improvement in SI rates was marginal (Figure
1; top row). Interestingly, when resting-state was not included (RS ‒),
I rates do increase with increasing learning tasks, but achieve a max-
mum of 92% ( Fig. 4 ; bottom row) (compared to 98% with only four
earning tasks in RS + ). With increasing number of tasks in the learn-
ng dataset, the percentage of maximum eigenspace dimensionality re-
uired to cross the Orig FC SI rates and to achieve saturation, decreased
Figure S1). Finally, Across-Tasks SI rates increased for Orig FC with in-
reasing learning tasks (just like GEFF) when resting-state is included
8 
n the learning tasks (RS + ) (Figure S1; top row) but decreased when
esting-state is not included (RS ‒) ( Fig. 4 ; bottom row). 

.1.4. Summarizing the SI results 

GEFF improved the subject identification rates over Orig FCs across
he board: 1) whether the validation FCs belong to the same tasks as
he learning tasks or not (Within-Learning-Tasks or Across-Tasks) and
) whether the learning tasks include resting-state or not (RS + or RS ‒)
 Fig. 4 ). We also show that a qualitatively optimal point for GEFF with
espect to subject identification accuracy would be when we have two
earning tasks and one of those is resting-state (white asterisk, Fig. 4 ). In
ddition, we show that an average individual representation, whether
t was created using Orig FCs or with GEFF, resulted in a much better
ndividual fingerprint ( Fig. 4 ; Within-Learning-Tasks) and became more
eneralizable to external tasks ( Fig. 4 ; Across-Tasks). Finally, the SI rates
or the null model under any condition are very low and numerically
imilar to the chance level of identification ( Fig. 2 –3 ). 

.2. Task identification (TI) 

.2.1. TI rate profiles with respect to number of subjects per task 

The first step in TI process was to see how the TI rates change with
umber of subjects per task in the learning dataset. This process was
epeated for a wide range ( 𝑛 = [ 2 ∶ 1 ∶ 20 , 30 ∶ 10 ∶ 80 ] ) of number of
ubjects per task. To assess the robustness of the results and for statistical
omparisons between the two frameworks (Orig FCs and GEFF), TI rates
ere computed for 100 cross-validation resamples. Within each cross-
alidation resample, n (where 𝑛 = [ 2 ∶ 1 ∶ 20 , 30 ∶ 10 ∶ 80 ] ) number of
ubjects (for all tasks and resting-state) were chosen at random from the
est session to create the learning dataset. TI rates were then computed
or new FCs from the same tasks when 1) FCs belonged to the same
ubjects as the ones included in the learning dataset (Within-Learning-
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Fig. 4. A summary of Subject Identification (SI) results for Orig FCs (left) and GEFF (right). For GEFF, the SI rates correspond to the maximum eigenspace 

dimensionality for a given number of tasks in the learning dataset (LS (i) ). White asterisk marks a qualitatively optimal setting for GEFF, where both Within-Learning- 

Tasks and Across-Tasks SI rates are very high while minimizing the learning tasks to 2. 

Fig. 5. Task Identification (TI) rate curves with increasing number of subjects per task in the Learning Stage dataset for Orig FCs and GEFF. TI rates shown 

were computed at the maximum eigenspace dimensionality. Left panel shows the TI rate curves when validation dataset contains new FCs from the same subjects as 

the ones included in the Learning dataset i.e. Within-Learning-Subjects . Right panel, on the other hand, shows the TI rate curves when validation dataset is made up 

of new FCs from subjects not included in the Learning dataset i.e. Different Subjects . Solid lines with dots show the mean TI rates across cross-validation resamples, 

while the shaded areas around the mean show the standard error of the mean (SEM). Note that the SEM is so small that it’s hidden behind the solid mean lines. 
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ubjects) and 2) when FCs belong to all the other subjects that were not

ncluded in the learning dataset. 
We observed that at 20 subjects per task in the learning dataset, the

I rates reach a plateau for both Within-Learning-Subjects and Different-
ubjects, although there was marginal increase with GEFF with increas-
ng number of subjects per task ( Fig. 5 ). TI rates using Orig FCs satu-
9 
ated around 91% and were always lower than corresponding TI rates
or GEFF which saturated around 99%. 

It should be highlighted that TI rates for GEFF were computed at
he maximum eigenspace dimensionality for each value of n . Also, the
tandard error of mean across cross-validation resamples was so low that
t is hidden behind the mean lines ( Fig. 5 ). 
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Fig. 6. Characterization of individual eigenvectors. Top panel with black dots shows the explained variance of each eigenvector individually. The middle and the 

bottom panels show the group effects ( F -statistic) for task and subject groups, respectively, computed using two-way ANOVA on each eigenvector weights. In these 

two panels, the black dots with orange boundary highlight eigenvectors with significant group effects ( p < 0.01; Bonferroni corrected across the 1600 eigenvectors), 

while the gray dots show the non-significant ones. 
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.2.2. TI using 20 subjects per task 

After establishing that TI rates reach a saturation point after 20
ubjects per task, we assessed the TI rates at 𝑛 = 20 in more detail.
e observed that TI rates for GEFF cross the Orig FC TI rates with

ust 27.5% (44/160) and 30% (48/160) of the maximum eigenspace
imensionality for Within-Learning-Subjects (Figure S2) and for
ifferent-Subjects (Figure S3), respectively. We noticed that the TI rates

or GEFF saturated after 50% (80/160) of the maximum eigenspace
imensionality at 95% and 94% for Within-Learning-Subjects and
ifferent-Subjects respectively (Figure S2 and S3). Another important
bservation was that the TI rate rises sharply with the first three
igenvectors and then steadily increases with increasing dimensionality
Figure S2 and S3). This observation highlights the importance of the
rst few eigenvectors in the TI process, which will be discussed again in
he next section ( Characterization of Eigenvectors ). Finally, the confusion
atrices shown in Figures S2 and S3 highlight that when the TI rates

mprove with increasing eigenspace dimensionality, they do so for all
he tasks. This also shows that certain tasks (e.g. emotion, gambling,
elational) are harder to identify than others (e.g. resting-state, social). 

We should also highlight that the TI rates for the null model are very
ow and numerically similar to the chance levels of identification rates
 Fig. 5 ; Figure S2-S3). 

.3. Characterization of eigenvectors in terms of their Subject- and 

ask-fingerprint 

Using all 1,600 (2 ×100 ×8) FCs from Test and Retest sessions, we
omputed the 1,600 eigenvectors and their corresponding weights us-
ng group-level PCA (see Methods). To ascertain the task- and subject-
pecificity of a given eigenvector, two-way ANOVA was applied to its
orresponding weights using ‘task’ and ‘subject’ as the two group effects.
his process was repeated for all 1,600 eigenvectors and the correspond-

ng p -values were Bonferroni corrected. 
We observed that the eigenvectors can be divided into three regimes:

) Task- and Subject-Dominant, 2) Subject-Dominant, and 3) Neither
 Fig. 6 ). The Task- and Subject-Dominant regime consists of the first
0 − 20 eigenvectors which explain 80 − 90% of the variance in the data.
hen, we observed a second wave of eigenvectors which constitute the
ubject-Dominant regime. This regime lasts till around 300 eigenvectors
10 
nd is followed by the Neither regime which is neither task- nor subject-
pecific. 

It should be noted here that there are no hard boundaries between
hese regimes. A task dominant eigenvector can have subject-specificity
e.g. the first 10 eigenvectors) and vice versa. However, it is notewor-
hy that ordering the eigenvectors by their explained variance sepa-
ated them into task- and subject-dominant regimes, instead of task-
nd subject-specificity spuriously distributed across the range of 1,600
igenvectors. 

. Discussion 

In this paper, we proposed an embedding framework for FC
ngerprinting called GEFF: Graph Embedding for Functional Fin-
erprinting. We employed this framework to perform Subject- and
ask-Identification (SI and TI respectively) using functional con-
ectomes. Compared with existing frameworks, not only did GEFF
onsiderably improve the SI and TI rates, it also made the SI and TI
rocesses, respectively, task- and subject-independent . GEFF proved
o be a highly accurate and potentially universal FC fingerprinting
ramework which allowed us to robustly estimate individual fingerprint
nd decode cognitive states from FCs. We also showed that resting-state
ombined with one other task covers the entire cognitive space in terms
f individual fingerprinting. We also characterized the learning stage
igenvectors, and found that they can be delineated into task- and/or
ubject-dominant regimes by simply arranging them in the descending
rder of their explained variance. 

.1. Creating an average individual representation using multiple task FCs 

mproves individual fingerprint 

An average individual representation, whether it was created using
riginal FCs in the connectivity domain or with GEFF in the eigenspace,
esulted in a much better individual fingerprint, especially when the
Cs being identified belonged to the same tasks that were used to create
he average representations. By adding more tasks to create the average
epresentations, the individual fingerprint became more accurate and
eneralizable to external tasks. This result aligns with previous work
f Gao et al. (2019 ) where they show that combining multiple FCs im-
roves predictive estimates of phenotypic measures. 
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For original FCs (Orig FCs), there was one exception to this trend.
hat happened when resting-state was not included to create the
verage representations and the FCs being identified belonged to the
asks different from the ones used to create the average. The fingerprint
ecame worse when more and more FCs were used to create the aver-
ge. This is partially explained by the fact that some of the validation
Cs that we were trying to identify in these cases were resting-state
Cs. As we would explore in more detail later, it is hard to identify
esting-state FCs when the average representations are created using
nly non-resting-state tasks. The more tasks we used to create the aver-
ge representations, the fewer tasks (including resting-state) were left
or identification. This resulted into a higher percentage of resting-state
Cs in the validation data, which in turn caused a decrease in the finger-
rinting accuracy. We did a post-hoc analysis to investigate this further.
hen resting-state is removed from the validation FCs, the fingerprint-

ng accuracy increases with increasing number of tasks participating in
he average representations (Figure S4). However, this argument didn’t
old when 5 or more tasks were used for average representations, as the
dentification rates slightly decreased for Across-Tasks. In other words,
he individual fingerprint became less generalizable to external tasks
ith 5 or more tasks in the Learning dataset. We should also emphasize

hat this behavior was only observed for original FCs and when resting-
tate was excluded while computing the average representations for
ndividuals. With GEFF, the individual fingerprint became always more
ccurate and generalizable to external tasks when more tasks (with and
ithout resting-state) were used for average individual representations.

.2. Individual fingerprinting achieved almost 100% accuracy with GEFF 

hen individual FCs being compared are from the same tasks 

When performing individual fingerprinting for Within-Task FCs,
EFF exhibited near perfect performance. Using GEFF, the FC finger-
rint was universally improved (90% accuracy for most tasks), with a
erfect fingerprint (100% accuracy) for resting-state. In addition, when
ore than one task was used in GEFF to create an average representation

f individuals, individual fingerprinting was nearly perfect for any com-
ination of tasks (98% accuracy) as long as the new FCs that were being
ompared with the average representations belonged to the same tasks
s the ones used to create the average representation. This widely out-
erformed the canonical method for performing FC fingerprinting using
orrelation between FCs belonging to the same task. Using this canoni-
al approach, only resting-state FCs had a reasonable fingerprint (85%
ccuracy) while all the other tasks performed poorly (70% for all tasks;
motion and motor 50%). Although canonical fingerprints did improve
hen we created the average individual representations with original
Cs (except for Across-Tasks), GEFF always outperformed by a margin
 10 − 20% ) for all possible number and combination of tasks. 

Finn et al. (2015 ) reported a mean identification accuracy of 93.65%
or resting-state using Pearson correlation, which is higher than 85%
hat we obtained ( Fig. 2 a; RS). Recently, Venkatesh et al. (2019 ) ob-
ained 77.5% identification rate with RS when using correlation as a
imilarity metric. Given that the HCP data has four runs for RS, two
n each day, Finn et al. (2015 ) concatenated the time-series of the two
uns acquired on the same day and used that to compute a single FC.
lthough not analytically equivalent, this process results in FCs that
re very similar to the ones obtained by averaging the two FCs from the
ame day into a single FC. Altogether this suggests that averaging across
everal runs of the same task produces a more representative FC, which
esults in higher fingerprinting accuracies. In this work, however, we
nly used the two runs from one of the two days and kept the two runs
eparate. The identification accuracy still increased to a perfect 100%
ith GEFF. 

Finally, a geometry-aware approach for comparing FCs, within a sin-
le task, was recently proposed. This method outperformed the canoni-
al methods of using correlation-based similarity metric across all tasks
 Venkatesh et al., 2019 ). It is noteworthy that GEFF outperforms this
11 
pproach as well across all tasks (e.g. an improvement of around 20%
or emotion, gambling, and relational tasks for Subject Identification). 

.3. Individual fingerprinting with GEFF is potentially task-independent 

This work provides strong evidence to suggest that GEFF makes in-
ividual fingerprinting task independent. When we used two or more
asks (one of those being resting-state) to create an average individ-
al representation, we found that GEFF was able to correctly identify a
alidation FC ( ≥ 90%) even when it belonged to a task not included
o construct the average individual representation. Assuming the task-
ndependent nature of GEFF, specific FCs with embeddings that fall far
way from the average representation of a given subject might indi-
ate suboptimal quality of its estimation. This also supports that per-
aps each subject has a baseline functional architecture that undergoes
ubtle changes in terms of functional reconfiguration when performing
 cognitive task ( Cole et al., 2014 ; Duong-Tran et al., 2019 ). Therefore,
erhaps it is not the task but the individual functional baseline that ex-
lains most of the observed variability in functional connectivity across
Cs. 

It must be emphasized that GEFF was potentially task-independent only
hen one of the tasks used to create the average individual representa-

ion was resting-state. When resting-state is not used to create the av-
rage, the fingerprinting accuracy drops considerably (by as much as
0% in one case). When resting-state is part of the average, by adding
ore and more tasks into the average, the fingerprinting accuracy ap-
roaches perfection (100%). On the other hand, when resting-state is
xcluded from the average, we found that even though the fingerprint-
ng accuracy increases with increasing number of tasks in the average,
t reaches a plateau at 92%. An average representation created from ex-
lusively non-resting-state tasks is not entirely generalizable to identify
esting-state FCs, as mentioned before in Section 4.1 . This suggests that
esting-state connectivity captures a fingerprint of an individual which
s somewhat orthogonal to other tasks, as described in a little more detail
elow. 

.4. Resting-state and one task cover the entire cognitive space for 

ndividual fingerprint 

When we used two tasks to create average individual representations
centroids) in GEFF, if one of the two was resting-state, we found that
he resultant average representation had a strong individual fingerprint
ithin the same tasks and was also highly generalizable to the exter-
al tasks. There were eight tasks implemented and acquired in the HCP
ataset, all of them targeting different cognitive capacities as well as
eural circuits ( Van Essen et al., 2012 , 2013 ), and hence providing with
 fair representation of individual’s cognitive space ( Varona and Ra-
inovich, 2016 ; Varoquaux et al., 2018 ). Considering the breadth and
ariety of tasks assessed, our results suggest that one resting-state and
ne non-resting-state task would potentially be enough to fingerprint an
ndividual anywhere in the cognitive space, i.e. when GEFF is used for
hese or potentially any other set of fMRI tasks. 

As mentioned in the previous section (4.3), an average individual
epresentation created exclusively using non-resting-state tasks, does
ot fully generalize to the resting-state. But if we use one resting-state
nd one non-resting-state task, the resultant individual fingerprint is po-
entially universal across the whole cognitive space. All of this suggests
hat resting-state and all other tasks form two orthogonal axes of a cog-
itive space in terms of fingerprinting. This fits well with the idea of an
intrinsic architecture ” and a “task-general architecture ” proposed by
ole et al. (2014 ). 

Even though we observed high fingerprinting accuracy by com-
ining any non-resting-state task with resting-state, certain tasks per-
ormed better than others. For instance, motor task performed the worst,
hile relational task performed the best when combined with resting-

tate. This is in agreement with previous results that show that dif-
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erent tasks seem to possess different levels of individual fingerprint
 Venkatesh et al., 2019 ; Finn et al., 2015 ) and that the individual dif-
erentiability that is obtained by combining multiple tasks depends very
uch on the tasks themselves ( Gao et al., 2019 ). 

Based on these observations, we suggest that when designing an ex-
eriment that relies on individual differentiability, the experimenter
hould acquire one resting-state and one non-resting-state to cover as
uch individual cognitive space as possible. One could tailor the non-

esting-state task to ask a desired question but then combine it with
esting-state to extract maximal individual fingerprint. 

.5. Individual fingerprinting and sample size 

We observed that identifications rates based on FC Orig decrease as
ample size increases from 20 to 80 subjects (see Figure S5). It is note-
orthy that we did not observe such adverse sample size effect when
sing GEFF. This was true for all different scenarios that we studied. Fur-
hermore, we noticed that identification rate increases with sample size
hen resting-state is excluded from the learning stage and identifica-

ion is performed for external tasks. We do not have a clear explanation
or this phenomenon. Larger datasets should be assessed for stablishing
ore detailed and generalizable conclusions on the effect of sample size

nd GEFF identification rates. 

.6. Task fingerprinting: robust and generalizable representation of a task 

oes not require a larger sample size 

Using original FCs or GEFF, we show that the task identification ac-
uracy levels off around 20 subjects per task to create the average task
epresentation. With merely 20 samples per tasks, we can create a task
epresentation that is highly accurate (91% for Orig FCs and 96% for
EFF) and highly generalizable to external subjects (90% for Orig FCs
nd 94% for GEFF). GEFF still outperformed Orig FCs for any number
f subjects per task, despite the fact that the performance gap for task
dentification was not as pronounced as the gap for individual identifi-
ation. Note that when assessing TI for more than 20 subjects per task,
EFF TI continued to rise, reaching 98% with 80 subjects per task, while
rig FCs TI did not exhibit improvement. 

While it had been noted that regressing out a task stimulus sig-
al, convolved with the hemodynamic response, results in very minor
hanges in task FCs when compared to resting-state FCs ( Cole et al.,
014 ), a new framework, recently proposed by Cole et al. (2019 ) finds
ignificant differences. In this study, we chose not to regress out con-
olved task signal from the task time-series during the preprocessing.
hus, it is possible that the task identification is partially driven by the
ifferences in activation patterns rather than differences in functional
onnectivity ( Cole et al., 2019 ). However, the objective of this study
as to show that regardless of the process used to compute FCs, GEFF
ould make the comparisons between those FCs more accurate by em-
edding them into the eigenspace. For future studies that use GEFF for
ask identification, but where the main objective is to enhance under-
tanding of the task structure and its relationship with cognition and
ehavior, one could consider modeling the effects of task events before
omputing FCs. 

It is worth highlighting at this point that we can think of SI and
I processes as two sides of the same coin. Given an eigenspace repre-
entation of a sample and an unknown FC, we can identify either the
ndividual, the task or both, simply by the way we compute the average
epresentations in the eigenspace. For SI, we would compute an average
ndividual representation for each subject and figure out the identity of
he unknown FC. On the other hand, for TI, using the same eigenspace,
e would compute an average task representation for each task and fig-
re out the task identity. In other words, we argue that GEFF framework
an perform task identification while still preserving the individual-level
ariability. 
12 
.7. Task identification is high for all tasks with GEFF 

With only 20 subjects per task to create the average task representa-
ion, GEFF was able to identify all eight tasks with an average accuracy
f 94.8%, which is comparable to the 93.7% accuracy achieved by a
eep learning framework ( Wang et al., 2019 ). All the tasks had iden-
ification accuracies above 90%, except emotion (86%). Even for ex-
ernal subjects, the average accuracy was 92.4%. Although, we should
ighlight that in Wang et al. (2019 ), the sample size is much larger
 𝑁 = 1034 ) than in this study ( 𝑁 = 100 ). We would emphasize again
hat GEFF was tested here with only eight tasks but we show that this
ramework has the potential to be universal in decoding large number
f cognitive states simultaneously. Thus, GEFF could be employed to
rack a dynamically changing mental state with high accuracy in a rela-
ively straightforward manner. In addition, using dynamic FC, we could
lso use GEFF to create a dynamic eigenspace profile of a subject doing
ifferent tasks. 

.8. The eigenspace displays ‘task- and subject-dominant’ and 

subject-dominant’ regimes 

By characterizing eigenvectors based on their task- and/or subject-
pecificity, we were able to show that they can be delineated into task-
nd subject-dominant and subject-dominant regimes, simply by order-
ng them in descending order of explained variance. We observed that
he first 10 eigenvectors which explained around 80% of the variance
n the data, were highly task- and subject-specific, while there was a
econd wave of eigenvectors from 10 − 300 that were subject-specific.
nterestingly, most of the eigenvectors were neither task- nor subject-
pecific. At first glance, this might seem to contradict the findings of
ratton et al. (2018 ), where they observed that functional brain net-
orks are dominated by stable group and individual factors and that a
articular cognitive state does not play a big part. However, it is note-
orthy that the first dominant regime of eigenvectors is not just task-

ominant but rather task- and subject-dominant , as there are important
ubject-fingerprints as well in those eigenvectors. 

The delineation of eigenvectors into three aforementioned regimes
as also observed with randomly chosen subsets of eight tasks (results
ot shown). The number of components that belongs to each regime
as indeed dependent on the number of tasks included in the analysis,
ut the three regimes were always present as long as more than one task
as included in the analysis. Based on these results, this pattern of three

egimes seems generalizable to any number of tasks, but further analyses
re needed to assess the number and nature of fMRI tasks included and
heir impact on the task- and/or subject-dominant regimes . 

We should emphasize here that this organization of eigenvectors
nto specificity regimes was not intuitive to us beforehand. The task-
nd subject-specificity could easily have been spuriously distributed
cross the spectrum or there could easily have been no task- or subject-
ominant eigenvectors. The fact that by simply ordering eigenvectors in
escending order of their explained variance, they are delineated into
hese regimes is an interesting phenomenon. 

.9. Future work 

We aim to reproduce these findings with a larger sample size to esti-
ate the effects of increasing number of subjects and tasks on the robust-
ess and task-independence of GEFF. We can potentially also use GEFF
ith dynamic FCs and create dynamic eigenspace profiles of individu-
ls to see if those profiles provide any additional information about the
ndividual and how that individual reconfigures with changing mental
tates within a task. We also need to test this framework with different
arcellation sizes. GEFF could be used to track disease progression over
ime and lead to more personalized medicine. In addition, GEFF could
e applied to effective connectivity data in much the same as functional
onnectivity data. 
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.10. Limitations 

GEFF was tested with a relatively modest sample size of 100 subjects,
lthough we would like to test this framework with larger datasets. In
ddition, we only used one parcellation and it has been shown that par-
ellation size has an effect on the FC fingerprint. New FCs cannot be
dded dynamically to the dataset with GEFF, as it requires a group-level
ecomposition to create an eigenspace. So, every time a new FC is added
o the dataset, a reconstruction of the eigenspace and a subsequent up-
ated projection of all the data is needed. Also, since whole FCs are
mbedded as points in a high-dimensional eigenspace, we cannot dis-
ern the contribution of individual brain regions to the identification
ccuracy. The cognitive space of the subjects was explored through the
ight available fMRI tasks in the HCP dataset. Datasets with even more
MRI tasks will allow better exploration of subject and task fingerprints
ithin the GEFF framework. 

. Conclusion 

In summary, we propose a graph embedding framework, i.e. GEFF,
hat is extremely accurate in comparing functional connectomes. We
emonstrate this by showing very high subject- and task-identification
ccuracies using the HCP 100 unrelated subjects dataset. We also show
hat GEFF is potentially task-independent for subject-identification and
ubject-independent for task-identification. In other words, the average
epresentation created by GEFF for a subject or task is highly generaliz-
ble to external data. In addition, we show that eigenvectors can be char-
cterized as task- and/or subject-dominant, which provides a deeper in-
ight into the extent of variance of functional connectivity across indi-
iduals and cognitive states. GEFF is a robust and potentially universal
dentification framework that can serve as a potential benchmark for FC
ngerprinting and as an exploratory tool to track the cognitive dynamics

n an individual. 
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