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ABSTRACT

We present an approach for tracking fast spatiotemporal cortical dynamics in which we combine white matter connectivity data with source-projected electroen-
cephalographic (EEG) data. We employ the mathematical framework of graph signal processing in order to derive the Fourier modes of the brain structural connectivity
graph, or “network harmonics”. These network harmonics are naturally ordered by smoothness. Smoothness in this context can be understood as the amount of
variation along the cortex, leading to a multi-scale representation of brain connectivity. We demonstrate that network harmonics provide a sparse representation of the
EEG signal, where, at certain times, the smoothest 15 network harmonics capture 90% of the signal power. This suggests that network harmonics are functionally
meaningful, which we demonstrate by using them as a basis for the functional EEG data recorded from a face detection task. There, only 13 network harmonics are
sufficient to track the large-scale cortical activity during the processing of the stimuli with a 50 ms resolution, reproducing well-known activity in the fusiform face
area as well as revealing co-activation patterns in somatosensory/motor and frontal cortices that an unconstrained ROI-by-ROI analysis fails to capture. The proposed
approach is simple and fast, provides a means of integration of multimodal datasets, and is tied to a theoretical framework in mathematics and physics. Thus, network
harmonics point towards promising research directions both theoretically - for example in exploring the relationship between structure and function in the brain - and

practically - for example for network tracking in different tasks and groups of individuals, such as patients.

1. Introduction

Many recent studies in neuroscience have stressed the importance of
spatiotemporal dynamics of brain activity for our understanding of brain
function (Cichy et al., 2016; Northoff et al., 2019; Deco et al., 2019;
Atasoy et al., 2019). Electroencephalography (EEG) records brain activity
with millisecond temporal resolution, allowing, in principle, tracking of
brain dynamics on a behaviorally relevant time scale. Furthermore, EEG
is portable and relatively cheap compared to functional magnetic reso-
nance imaging (fMRI) or magnetoencephalography (MEG), and therefore
has large clinical potential.

Approaches that use fMRI data have revealed many important in-
sights into (ultra-) slow network dynamics (Deco et al., 2013; Taglia-
zucchi et al., 2012; Griffa et al., 2017; Karahanoglu and Van De Ville,
2015; Preti et al., 2017; Lurie et al., 2020), and several approaches tackle
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tracking of fast network dynamics using specifically M/EEG activity
projected into the gray matter source space (Silfverhuth et al., 2012;
Mheich et al., 2015; Quinn et al., 2018; Kabbara et al., 2019; Baker et al.,
2014; Tewarie et al., 2019; Zerouali et al., 2014; Coito et al., 2016;
Brookes et al., 2014). These approaches typically derive functional net-
works directly from the functional data. The issue is that EEG activity is
highly impacted by the effects of volume conduction and the regulari-
zation performed in the lead field models, producing a correlation
structure among the sources that is determined by Euclidean distance
between sources beyond the real functional connectivity that exists be-
tween nearby brain regions. This is true even when measures of func-
tional connectivity are used that reduce this impact (O’Neill et al., 2018),
for example, imaginary coherence (Nolte et al., 2004) or phase lag index
(Stam et al., 2007), both of which remove zero lag phase interactions
between signals, or if functional connectivity is computed after linear
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dependencies between signals are removed via orthogonalization
(Brookes et al., 2012; Colclough et al., 2015).

In this study we propose to use Fourier modes extracted from the
brain structural connectivity (SC) graph, or connectome, i.e. network
harmonics, as an alternative approach. It takes advantage of different
data modalities - functional and structural - and combines them in a
mathematically principled way that is rooted in theory and connects this
approach to physics applications by performing a graph spectral analysis.
In this view, brain regions, as defined by an atlas/a parcellation, form
nodes of a graph which are linked by edges whose weights depend on, in
this case, white matter anatomical connections. Network harmonics
optimally preserve the local graph structure on different scales (Belkin
and Niyogi, 2003), which means that they minimize differences between
neighboring nodes in the graph. This way, they provide building blocks
of functional activity in which anatomically connected regions
co-activate, which has been shown to result in more efficient switching
between patterns (Gu et al., 2018; Tomasi et al., 2013). Importantly, in
network harmonics, two brain regions, or nodes, are not simply assigned
to either the same network or to different networks, but the degree to
which their connectivity patterns to the rest of the graph resemble each
other is taken into account. Thus, a network harmonic can be interpreted
as a connectivity gradient (Margulies et al., 2016; Haak et al., 2018;
Atasoy et al., 2016; Glomb et al., 2019).

Mathematically, network harmonics are computed as the eigenvec-
tors of the graph Laplacian of the structural connectivity (Shuman et al.,
2012; Belkin and Niyogi, 2003). Put another way, network harmonics are
basis functions of the brain network encoded by the structural connec-
tivity matrix. This is equivalent to sine and cosine waves being basis
functions of the unit circle: superpositions of these basis functions
approximate any signal on their domain (the graph or the circle,
respectively) to arbitrary precision (Atasoy et al., 2017), which is the idea
underlying Fourier series. In continuous domains, basis functions of the
Laplace operators are used in many physical applications, for example
pattern formation (Murray, 1988), or the famous example of Chladni’s
vibrating metal plates (Leissa, 1973). Robinson et al. (2016) have shown
that applying spherical harmonics to the brain can explain important
features of large-scale networks from the point of view of neural field
theory.

In this study, we consider EEG activity in the framework of graph
signal processing, i.e. as a signal on the domain of the “brain graph”, and
as such, it can be described by a superposition of the connectivity gra-
dients encoded in network harmonics. This amounts to a graph (spatial)
spectral representation of the EEG signal. Quantifying this spectrum over
time allows to track fast dynamics of large-scale networks.

The idea of network harmonics allows the direct integration of
different sources of data in a single graph. Specifically, the graph
mentioned above, and the network harmonics themselves, are derived
from diffusion MRI, while the functional data were recorded with EEG. It
has been shown that in the domain of network harmonics, structural and
functional connectivity are analytically related, both in fMRI (Abdelnour
etal., 2018; Atasoy et al., 2016; Raj et al., 2020) and MEG (Tewarie et al.,
2019). More generally, SC shapes functional activity, as has been shown
for EEG (Chu et al., 2015; Wirsich et al., 2017; Finger et al., 2016; Glomb
et al., 2020), MEG (Cabral et al., 2014), and fMRI (Deco et al., 2013).

In this paper, we apply the mathematical tools of graph signal pro-
cessing to a multimodal dataset consisting of structural, functional, and
diffusion data, extracting network harmonics as building blocks of large-
scale cortical activity. We first demonstrate that network harmonics
provide a sparser representation of source-level task EEG data than the
region-by-region representation. We find that most of the signal is
captured by the smoothest network harmonics. We show that this
framework, when used to analyze data recorded during a face detection
task, reveals fast dynamics of large-scale networks associated with the
processing of such stimuli. This framework offers a mathematically
principled and multimodal approach to fast spatiotemporal network
dynamics in EEG.
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2. Methods
2.1. EEG data acquisition and preprocessing

128 channel high-density EEG was recorded at 2048 Hz with a 128-
channel Biosemi Active Two EEG system (Biosemi, Amsterdam, The
Netherlands; details on the EEG montage [electrode positions] can be
downloaded from the manufacturer’s website at www.biosemi.com/dow
nload/— Cap_coords_all.xls) at Hopital Cantonal Fribourg from 20
healthy participants (17 females, mean age: 23, age range: 20-29 years)
performing a visual discrimination task. During recording, good signal
quality was guaranteed by keeping the offset between the active elec-
trodes and the Common Mode Sense - Driven Right Leg (CMS-DRL)
feedback loop under a standard value of +20 mV. After each recording
session, individual 3D electrode positions were digitized using an ultra-
sound motion capture system (Zebris Medical GmbH). A subset of these
data have been used in a previous publication (Rubega et al., 2019).
Participants viewed images of faces or scrambled versions of the same
images (Ales et al., 2012), presented for 200 ms, and then responded, by
pressing one of two buttons on a response box, whether they had seen a
face or a scrambled image. One participant was excluded due to too many
motion artifacts, leaving 19 datasets for analysis. Data were preprocessed
using EEGLAB (Delorme and Makeig, 2004). EEGLAB is freely available
for download at sccn.ucsd.edu/eeglab/index.php. First, the time series
were downsampled to 250 Hz (anti-aliasing filter: cut-off frequency =
112.5 Hz; transition bandwidth = 50 Hz) and local detrending (high-pass
filter at 1 Hz, EEGLAB PREP plugin) was applied (Bigdely-Shamlo et al.,
2015). Epochs from 1500 ms before until 1000 ms after stimulus onset
were extracted. Line and monitor noise (at 50 and 75 Hz, respectively, as
well as harmonics of these frequencies) were removed by spectral
interpolation (Leske and Dalal, 2019). Bad epochs (22 + 36 out of 600
per subject) were removed and bad channels (15 + 9 out of 128 per
subject) marked via visual inspection. Next, remaining physiological
artifacts (eye blinks, horizontal and vertical eye movements, muscle
potentials) were removed using FastICA by first marking bad ICs using
Multiple Artifact Rejection Algorithm (MARA) as implemented in
EEGLAB (Delorme and Makeig, 2004). The previously identified bad
channels were not included in this step. Finally, bad channels were
interpolated using the nearest neighbor spline method as implemented in
EEGLAB, and data were re-referenced to the common average before
being globally z-scored.

2.2. Structural images and tissue segmentation

T1-weighted images obtained from the same subjects were acquired
as magnetization prepared rapid-gradient echo (MPRAGE) volumes with
a General Electrics Discovery MR750 3T MRI scanner and a COR FSPGR
BRAVO pulse sequence with flip angle = 9°; echo time = 2.81 ms,
repetition time = 7.27 ms, inversion time = 0.9 s, slice thickness = 1 mm,
head first supine. Segmentation of the MPRAGE volume into gray and
white matter was performed using Connectome mapper 3 (Tourbier
et al., 2020) with Freesurfer 6.0.1, and gray matter brain regions were
subsequently extracted according to the Lausanne 2008 multiscale par-
cellation (Hagmann et al., 2008). Connectome Mapper 3 and the Lau-
sanne multiscale parcellation are available at github.com/connecto
micslab/connectomemapper3. Freesurfer can be downloaded from
surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki.

2.3. Source projection and ROI-time course extraction

In order to project EEG signals recorded on the scalp into the gray
matter, individual head models were created (Brunet et al., 2011) based
on the structural images and segmented tissues explained above.

Inverse solutions were computed using LAURA (Local Autoregressive
Average) with LSMAC (Locally Spherical Model with Anatomical Con-
straints) as implemented in CARTOOL (Brunet et al., 2011; Grave de
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Peralta Menendez et al., 2004). LSMAC is based on a 3-shell head model
that takes into account the local radiuses of the skull, scalp, and brain,
and is simpler and therefore computationally less expensive than
boundary of finite element models (BEM/FEM, respectively (Birot et al.,
2014). It uses a regularization technique based on models of the electrical
generators of the EEG signal (Grave de Peralta Menendez et al., 2004),
and the best regularization parameter is chosen according to the L-curve
(Hansen, 1992). CARTOOL is freely available for download at sites.googl
e.com/site/cartoolcommunity.

Data recorded on the scalp, i.e. in sensor space, were projected to
~5000 dipole locations equally spaced on a 3D-dimensional-grid within
each individual’s gray matter, i.e. into source space. (This gray matter
volume, as well as the other tissue types needed for the individual head
model, were extracted from the structural scans described above.)

The dipole time courses are three-dimensional as they have a
magnitude and a direction in xyz-space, and thus, one-dimensional time
courses for further analysis have to be extracted. We use singular value
decomposition as described in Rubega et al. (2019). First, the main di-
rection of variance for each individual dipole time course is extracted by
averaging over all epochs within a subject and performing singular value
decomposition on the matrix of average activity time courses for a time
window of interest, here, 100-300 ms after stimulus onset, where the
strongest response is expected. The first left-singular vector is the di-
rection of greatest variance. The single trial time courses of each dipole
are then projected onto this direction, preserving most of the variance.
Signs of the first left-singular vectors were aligned across trials and
subjects. Finally, the thus obtained 1-dimensional source time courses are
averaged within each brain region defined by the individual parcellation
in subject space. Importantly, even though parcellations and inverse so-
lutions are based on individual MRI data, and are performed in individual
space (i.e. not transformed into a standardized template space),
one-dimensional region time courses can be averaged across participants,
assuming correspondence between the atlas’s regions. Note that in
principle, the unit of the signal is the same in source space as in sensor
space, i.e. micro-volts. However, due to the many steps in forward
modelling, projecting, and averaging, we merely refer to the signal as
“activity” or “amplitude” and use arbitrary units (a.u.) throughout the
paper.

2.4. Consensus structural connectivity matrix

We use a consensus connectome from 88 healthy participants (70 of
which are available online, (Griffa et al., 2019); mean age 29.7 years,
minimum 18.5, maximum 59.2 years; 34 females), scanned in a 3-T MRI
scanner (Trio, Siemens Medical, Germany) with a 32-channel head-coil.
All subjects are part of an ongoing study on schizophrenia at Centre
Hospitalier Universitaire Vaudois (CHUV) in Lausanne, Switzerland, and
the 18 subjects whose data are not available online were recorded and
preprocessed after the release of the dataset. A diffusion spectrum im-
aging (DSI) sequence (128 diffusion-weighted volumes and a single b0
volume, maximum b-value 8000 s/mm?, 2.2 x 2.2 x 3.0 mm voxel size)
was applied, and DSI data were reconstructed following the protocol
described in Wedeen at al. (2005). In brief, multiple diffusion directions
per voxel were estimated, reconstructing the diffusion probability den-
sity function as the discrete 3D Fourier transform of the signal modulus.
The 3D probability distribution function was then normalized, and the
orientation distribution function (ODF) computed as the radial summa-
tion of the normalized probability distribution function. Thus, the ODF is
defined on a discrete sphere and captures the diffusion intensity in every
direction. An MPRAGE sequence sensitive to white/gray matter contrast
(1-mm in-plane resolution, 1.2-mm slice thickness) was also acquired,
and gray and white matter were segmented from the MPRAGE volume
using Freesurfer and Connectome Mapper 3 (Tourbier et al., 2020).

Individual structural connectivity matrices were estimated using
deterministic streamline tractography on reconstructed DSI data, initi-
ating 32 streamline propagations per diffusion direction, per white
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matter voxel (Wedeen et al., 2008). The number of fibers found between
each voxel at the gray matter/white matter-interface was summed within
each ROI given by the same parcellation used above for the structural and
functional data (Desikan et al., 2006; Hagmann et al., 2008).

Matrices were subsequently averaged across subjects. Note that no
morphing into standard space was necessary, as we averaged using the
atlas parcels. We applied the method introduced in Betzel et al. (2019).
Briefly, this method selects a recurrence threshold (i.e. a threshold on
how many subjects are required to have a non-zero fiber count between a
given pair of brain regions) which preserves the connection density of
single subject SCs for intra- and interhemispheric connections separately.
By doing so, a less conservative threshold is applied to the interhemi-
spheric connections, as they are harder to track and are thus less repro-
ducible across subjects. The resulting connection density in our SC is
25%.

2.5. Network harmonics and graph visualization

The basic idea is that co-activation patterns on the connectivity graph
that describes the brain can be used as “building blocks” of brain activity
on the same domain. These building blocks are obtained as the harmonic
basis functions, or harmonic modes, of the structural connectivity, i.e. by
performing an eigenvalue decomposition of the SC’s graph Laplacian. In
these basis functions, local distances on the graph are preserved (Belkin
and Niyogi, 2003), such that strongly connected pairs of brain regions
exhibit similar values in the eigenvectors (see also Fig. 1c). When
interpreting the eigenvectors as building blocks of brain activity, this
preservation of structural connections results in connected nodes being
co-activated. The graph Laplacian is the graph equivalent of the second
spatial derivative (i.e., the Laplace operator) in the continuous domain,
whose eigenvectors are well-known in some cases: in the case of the
circular domain, they form the Fourier basis functions (i.e., sine and
cosine waves), spherical harmonics in the case of the sphere (Robinson
et al., 2016).

The network harmonics used in this paper are computed as the ei-
genvectors of the normalized graph Laplacian. We compute the
normalized graph Laplacian L from the SC C as follows:

L=I—-A""2ca™'? @

A is the diagonal weighted degree matrix A; = 2j Cy, I is the identity
matrix. The resulting matrix L, the normalized graph Laplacian, has ones
in its diagonal and negative entries for pairs that have non-zero con-
nectivity in C. Each row and column sums to 0. L is a positive semi-
definite matrix and can therefore be decomposed into eigenvectors and
eigenvalues as L = UAUT with column eigenvectors u; such that U = [ug,
U, ..., uy), and eigenvalues 4; such that A = diag(4, 42, ..., ). The
resulting eigenvectors U form an orthonormal basis just like sine and
cosine waves do in the classical Fourier transform. The first 4 eigenvec-
tors are shown in Fig. 1b and the first 10 in Figure S1. The i-th eigenvalue
is a measure of the smoothness of the i-th eigenvector because

Aiut; = Lu; 2)

per definition of the eigendecomposition. Then

hi = uf Luy = [[Vou|l; = > Cix[ui(k) /Ay — () /451", 3
I

where Vg is the gradient operator on the graph (L = Vg Vg). Hence, 4; is
a measure of how much wu; varies across connected vertices. This
quadratic form is known as the Dirichlet energy of the signal u;. For more
details, please refer to (Shuman et al., 2012).

The graph Laplacian can be approximated using only the M<N
smoothest eigenvectors and -values as:

L~Ly = UyAnU," 4)
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Fig. 1. a: Illustration of workflow, from left to right. The structural connectivity matrix encodes a graph in which each node is a brain region defined by a parcellation
(see brain surface below matrix; brain regions, nodes, and matrix rows/columns are color-coded) and edges are defined by white matter connectivity. The graph
Laplacian is computed from this matrix, and network harmonics are obtained as eigenvectors of this graph Laplacian. The eigenvectors are ordered by ascending
eigenvalue. b: The first four network harmonics in vector form (magnified from panel a), projected onto the surface of the brain, and in graph representation. Colors
visualize arbitrary units, i.e. the weights in the orthonormal eigenvectors. c: The graph Laplacian can be reconstructed as a weighted sum of rank-1 matrices defined by
the outer products of its eigenvectors. Large values of equal sign in the eigenvector (network harmonic) lead to large positive weights in the outer product (red entries
in the illustration). d: The correlation between the (upper or lower triangle) of the reconstructed matrices Y obtained from the outer products and the original graph
Laplacian Y is used to quantify how well the eigenvectors capture the SC, both when they are used cumulatively (circles) and on their own (crosses). Open blue circles
and black crosses mark non-significant correlations for each case. e: Two brain regions, here: inferior parietal, are close together in network harmonic 2 (x-axis), but far
apart in network harmonic 3 (y-axis), illustrating how network harmonics capture integration and segregation in multiple dimensions.

Here, Uy = [u1,Uy,...,uy] and Ay = diag(41,42,...,4m). In order to
quantify how well each sequence of eigenvectors or each single eigen-
vector captures the brain network, we compute the correlation between
the entries which have non-zero values in the Laplacian (existing con-
nections) - denoted by Y - and the same entries in the reconstruction,
denoted by Y.

The graph representation shown in Fig. 1 was obtained using net-
workx’ spectral_layout() function, which returns node positions based on
the first two eigenvectors. The toolbox including documentation is
available on networkx.github.io/documentation/stable/index.html.

Randomized graphs were obtained using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010) function “null_model_und_sign.m”.

The Brain Connectivity Toolbox can be freely downloaded from sites
.google.com/site/bctnet/.

2.6. Graph fourier transform

The EEG time series of each subject is an array of dimensionality N x
T x E, where N is the number of brain regions (N = 68), T is the number
of time points (T = 625 for 2.5 s of data with sampling frequency of 250
Hz), and E is the number of epochs (or trials), which varies across par-
ticipants. Each N x 1 column of this array is an activation pattern s,
indexed by epoch/trial e and time (t); activation pattern here refers to the
amplitude of the one-dimensional ROI signal extracted as explained
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above, i.e. the electrical activity projected into the gray matter. We refer
to this representation of the signal as the “original” representation. The
activation patterns are transformed into the spectral represenation (i.e.,
using the eigenvectors derived from the normalized graph Laplacian as
described above), a transformation that is known as graph Fourier
transform (GFT) in the graph signal processing (GSP) literature (Shuman
et al., 2012):

50 =U"5 0 )

Here, U is the N x N matrix which contains in its columns the network
harmonics/eigenvectors of the graph Laplacian, the superscript T marks
the transpose (U is always real-valued), and - denotes the dot product.

s.(t) is an activation pattern. 5, is therefore an N x 1 vector containing
GFT weights that quantify the contribution of each network harmonic to
this particular pattern, or in other words, its graph Fourier spectrum. We
refer to this representation of the signal as “graph frequency” or “spec-
tral” domain. Note that the “original” domain in terms of N brain regions
is a representation of the signal in space and time, and by applying the
GFT, we perform a Fourier transformation along the spatial dimension. In
principle, a classical Fourier transform could simultaneously be applied
along the temporal dimension. In both cases, this transformation con-
stitutes a change of basis, as no information is lost. For the GFT along the
spatial domain as used here, the original signal can be reconstructed
using the inverse GFT:

s=U-35Y 6)

Here, U can be substituted by Uy in a similar way as in equation (4).
Arbitrary sets of network harmonics (eigenvectors) can be used, resulting
in a “reduced”, or “filtered”, reconstructed signal. In this study, we apply
this approach when reconstructing the EEG signal in the “original”
domain using only a subset of network harmonics that we identify as
significantly contributing to the signal, as described below in section
“Statistical analysis of network harmonic activations (sliding window
analysis)”.

2.7. Statistical analysis of L1-norm

For the analysis of the sparsity of the signal, we tested how well the
representation of the signal in each of the two domains - i.e. “original”
domain, with N brain regions, and graph frequency, or spectral, domain,
with N network harmonics (see Fig. 2a), captures the difference between
pre- and post-stimulus intervals. We picked 50 time points (200 ms)
immediately preceding stimulus onset (—200 to 0 ms), and an interval
around the peak inflection following the stimulus (140-340 ms). We
computed the difference vectors between the two intervals (post minus
pre) in both domains (“original” domain: difference between average
amplitude of N = 68 brain regions during these intervals; spectral
domain: GFT weights of the network harmonics: difference between
average GFT weights of N = 68 network harmonics during these in-
tervals). We computed the average distance vector after normalizing each
individual’s vector’s power (L2-norm) to 1 in order to remove differences
in overall power and focus on the pattern of activation differences. We
computed the L1-norm of the average distance vectors for each domain,
i.e. the sum of the absolute values of all entries of the vector. In order to
evaluate whether the difference between the L1-norms was significant,
we conducted a permutation test with n = 10,000 permutations, in which
we switched the difference vectors between the two domains for a
randomly selected subset of the subjects. Thus, we re-computed the
average difference vectors from sets of individual difference vectors
which contained vectors from both domains. We computed the p-value as

p=(m+1)/(n+1), )

where n is the number of permutations and m is the number of

Neurolmage 221 (2020) 117137

permutations in which the difference between the L1-norms computed
from permuted distances exceeded the empirical one.

We furthermore quantified the effect size of this difference. Since we
used a nonparametric significance test, we did not use the usual method
of Cohen’s d, as it relates to the t-statistic and assumes normal distribu-
tion of the underlying variables. Instead we employed the approach
described in Kraemer and Andrews (1982), which allows to compute a
nonparametric effect size which is nonetheless interpretable in the same
way as a t-statistic due to a transformation to normal distribution in the
last step. The method is described in more detail in the next subsection.

2.8. Statistical analysis of network harmonic activations (sliding window
analysis)

For the results shown in Figs. 3 and 4, we used a permutation test in
order to identify network harmonics/brain regions that were more
strongly activated (with positive or negative weight) during each post-
stimulus window compared to a fixed pre-stimulus window. The post-
stimulus windows covered the time course from 0 to 600 ms post stim-
ulus onset, with a width of 50 ms (13 samples) and a 50% overlap be-
tween adjacent windows. We chose this approach in order to reduce
noise and to control the number of multiple comparisons, while still
preserving a good temporal resolution which allows direct assignment of
significance to a certain time window and network/brain region.

We computed individual differences for each post-stimulus window
and then averaged across subjects, after normalizing each individual
difference vector to length 1 in order to avoid the average being biased by
subjects with higher signal power. The permutation consisted in
switching, for a randomly selected subset of subjects, the pre- and post-
stimulus intervals (i.e., the sign of the difference vector) and subse-
quently recomputing the average. The p-value was computed as the
fraction of permuted averages showing a larger or equally large differ-
ence in activation as the empirical average. This was done on a single
network harmonic/brain region level. We used a significance level of
0.05, corrected for multiple comparisons (N network harmonics/brain
regions and 23 sliding windows).

We also computed the nonparametric effect sizes for all time windows
of the network harmonics that exhibited time windows of significant
activation. This was done using the method described in Kraemer and
Andrews (1982) in the following manner for the comparison between
pre- and post-stimulus intervals (illustrated in Figure S2A), and analo-
gously for the comparison between faces and scrambled images:

1. Compute the difference in GFT weights between the (fixed) pre-
stimulus interval and the selected post-stimulus sliding window.
Obtain the L2-norm of the difference vector, and use it to normalize
the pre- and post-stimulus GFT weights. This is necessary in order to
make GFT weights comparable across subjects, and to make pre- and
post-stimulus GFT weights comparable (left vs. right panel of
Figure S2A).

2. For a given network harmonic, select the median normalized pre-
stimulus GFT weight. From the set of normalized pre-stimulus GFT
weights, ordered along the subject dimension, select two more values
to the left and right of the median, resulting in five “typical”
normalized pre-stimulus GFT weights (red dots in Figure S2A, “pre”).

3. Determine the normalized post-stimulus GFT weights of the same
subjects (red dots in Figure S2A, “post™).

4. Compute the median of these five normalized post-stimulus GFT
weights. This can be seen as the “typical response” (blue dotted line in
right panel of Figure S2A).

5. Determine the proportion of subjects whose normalized pre-stimulus
GFT weights are smaller (“worse™) than the typical response (all
subjects below the dotted line on the “pre” side in Figure S2A). This
can be seen as the proportion of subjects whose post-stimulus acti-
vation of the chosen network harmonic was larger than their pre-
stimulus activation; i.e. the proportional effect size. If the effect size



K. Glomb et al.

Neurolmage 221 (2020) 117137

0 4 — e E 80
a o — :" : — F o =
- . e -
1 ! e e
g 201 - 1 1 - 1= 40
3 — ] | — ¢
@ 30+ | 1 1 20 S
- l - —
c e, ] ——_
T 40 - 1 1 "_' 0o =
Q | I y— ‘§
50 - 1 1 o pre=am -20 5
1 I -
60- _—— | | a0
L 1
-1500 -1000 -500 0 500
0 | 4-!!—_—_| s T
—~ = 1 1 —_— —r— 150
—— |, | —— ¢
§ 204 : | - 100 g
E 1 ! i =
2 301 1 ! = i 50 g
T 40 Bidn i i -
(] 7 (7]
Z - 1 : U
2 50 1 | 1 1 =
I ! - -50 ©
60 9 | 1 1
- : L i ! -100
-1500 -1000 -500 0 500
time [ms]
b N
0.0014 L4 @ original post-pre -
2 00012 4 ® frequency post-pre
)
o 0.0010 -
=
- 0.0008 -
L
= 0.0006 -
>
£ 0.0004 -
L]
0.0002 -
0.0000 T T — -
] 10 20 30 40 50 60 70
brain regions (sorted)fnetwork harmonicID
0.741 \
pre
.......... post
L1-norm of post-pre
g 0.6 e
] X
) 81
.2 0.5 A1
L
© 7
E £ I
3 0.4 2 61 % X
d
‘ —— random graphs 5 1
0.3 —— SC graph ) ® group
----- 90% of power 41 x subjects ®
0 20 40 60 original graph frequency
# network harmonics domain

(caption on next page)



K. Glomb et al.

Neurolmage 221 (2020) 117137

Fig. 2. a: EEG signal averaged over all trials and all subjects in its original domain (top panel, rows are brain regions) and in the graph frequency/spectral domain
(bottom panel, rows are network harmonics/eigenvalues). The windows which were used to assess the sparsity of the signal are marked as colored rectangles (dashed
lines: pre-stimulus interval, solid lines: post-stimulus interval), as well as the interval in which the stimulus was presented (black bar, 0-200 ms) and the mean and
standard deviation of the reaction times (solid and dashed black lines, respectively) across all trials and subjects. b: Signal averaged over the time points within the
windows marked in panel a in the “original” and in the graph frequency domain. Brain regions are ordered by amplitude, network harmonics are ordered by
eigenvalue. GFT: graph Fourier transform. ¢: Power captured cumulatively as more network harmonics are added, for the SC-derived graph (red line) and for 100
randomized graphs (gray lines). The dotted line marks 90% of the overall power. d: Illustration of how the L1-norm captures sparsity of the signal.The smaller the L1-
norm, the more compact the signal, even as the L2-norm (power) remains the same. e: Difference between the L1-norms of the signals shown in panel b, both averaged
over subjects, and, for illustration, for each subject. The star marks a significant difference between the means as assessed by a permutation test (see Methods).

is 1, this value is replaced by 1/(S+1), if it is S, it is replaced by S/
(S+1) in order to avoid problems in the following step.

6. In order to obtain a measure that is readily interpretable in the same
way as t-statistics, the nonparametric effect size is computed by
evaluating the inverse cumulative standard normal distribution at the
value of the proportional effect size. Note that if the effect is in the
other direction, i.e. the GFT weight is significantly reduced, this will
simply result in a negative effect size.

For the comparison between the two conditions (faces and non-faces/
scrambled), replace “pre-” and “post-“interval with “faces” and “scram-
bled” intervals taken from the same post-stimulus sliding window. Also in
this case, the normalization by the L2-norm of the difference vector is
performed prior to computing the effect size.

Effect sizes are classified as for Cohen’s d, i.e. effect sizes up to 0.01
are very small, up to 0.20, small, up to 0.50, medium, up to 0.80, large,
up to 1.20, very large, and up to 2.0, huge.

3. Results

3.1. Network harmonics: building blocks of brain activity derived from
structural connectivity

We use a multimodal approach to large-scale spatiotemporal dy-
namics, building on the finding that functional connectivity (FC) is partly
explained by the structure of anatomical long-range connectivity
(structural connectivity, SC) in the brain, both in fMRI and M/EEG
(Vincent et al., 2007; Hagmann et al., 2008; Honey et al., 2009; Dam-
oiseaux and Greicius, 2009; Deco et al., 2013; Cabral et al., 2014; Goni
et al., 2014; Tewarie et al. 2014, 2019; Atasoy et al., 2016; Meier et al.,
2016; Glomb et al., 2017; Abdelnour et al., 2018; Chu et al., 2015;
Wirsich et al., 2017). The key is the mathematical framework of graph
signal processing (GSP) which provides mathematical tools that allow to
extract harmonic basis functions from the SC, which then serve to obtain
a graph-spectral representation of the data (Shuman et al., 2012). We
term these basis functions network harmonics. The technique that we use
to extract network harmonics is illustrated in Fig. 1a. The first step is to
compute a consensus (average) SC matrix (see Methods), which encodes
a graph whose nodes are the brain regions and whose edges are
white-matter connections (illustrated below the SC matrix in Fig. 1a).
Next, the graph Laplacian is obtained from the SC matrix in one simple
step; it encodes the same information as the SC. Finally, the eigenvectors
of the graph Laplacian are obtained. These eigenvectors are basis func-
tions of the SC graph, i.e., the network harmonics. Fig. 1b shows the first
four network harmonics, corresponding to the smallest four eigenvalues.
The first ten network harmonics are shown in Figure S1. For illustrative
purposes, we show the network harmonics using three equivalent rep-
resentations: as a color-coded eigenvector, where each element corre-
sponds to a brain region; projected onto the brain surface, i.e. the
elements of the vector plotted in anatomical space; and as node weights
using the same graph shown in Fig. la.

In these representations, nodes that have a similar color are nodes
that are close (i.e., similar) in “connectivity space”: they share patterns of
connectivity to the network as a whole, on a certain scale (graph fre-
quency). Note that this graph frequency is a spatial frequency, unlike in
the most common case of obtaining the Fourier spectrum of a temporal

signal. In the remainder of the paper, we will use the term “graph fre-
quency” to clearly distinguish it from the more common use of temporal
frequencies. The number of graph frequency bins is determined by the
number of brain regions in the parcellation (here, N = 68).

Starting from the eigendecomposition, the underlying graph can be
interpreted as a superposition of rank-1 matrices obtained by computing
the outer product of each eigenvector with itself, weighted by its corre-
sponding eigenvalue (Fig. 1c). Large positive values in this outer product
(which is an N by N - matrix just like the Laplacian/SC itself) only occur
where two entries of the eigenvector which both have large weights of
the same sign are multiplied together. Thus, two brain regions which are
close together on the eigenvector encode a strong connection. We illus-
trate this point further by computing the correlation between the su-
perposition of outer products - the reconstruction - and the original graph
Laplacian (see Methods for details). Fig. 1d shows that adding low-
frequency network harmonics results in a negative correlation between
these matrices, —0.75 being the minimum, reached when using the first
21 network harmonics. Note that positive weights corresponding to
connected regions result in a negative correlation to the (all-negative)
Laplacian edge weights. Thus, the 21 lowest graph frequency network
harmonics are most important for capturing integration in the SC-derived
brain network. On the other hand, the correlation jumps from 0.03 when
using 61 network harmonics to 1 when all network harmonics are used,
indicating that the network harmonics with the highest graph fre-
quencies meaningfully capture segregation (positive correlation to the
graph Laplacian).

The first network harmonic, shown in Fig. 1b, possesses, per defini-
tion, the lowest graph frequency. The difference between pairs of nodes
which are connected according to the SC matrix is minimized. Formally,
the sum of differences between connected pairs is quantified by the
smoothness of each eigenvector (see Methods); thus, the ordering of
network harmonics by graph frequency results from their ordering by
smoothness. Indeed, the first network harmonic is the square root of the
weighted degree of each node. The second one describes a connectivity
gradient along the frontal to occipital axis of the brain; the third separates
the two hemispheres; the forth network harmonic divides the parietal
lobe from the rest of the brain. As the eigenvalue increases, the graph
frequency also increases, resulting in finer-grained subdivisions of the
cortex. Smoothness is thought to be meaningful because evolutionarily, it
makes sense that connected regions should also be functionally related
and should thus co-activate (Gu et al., 2018; Tomasi et al., 2013). It is
important to clarify that while some of the network harmonics are easily
interpretable, as in the examples given above, this is not always the case
as the SC-derived brain graph is complex. Instead, network harmonics
should be understood as analytically obtained building blocks which
function cumulatively, as illustrated above with the correlation between
reconstructed and original connectivity matrices.

Fig. le illustrates that, as a result of this multi-scale network repre-
sentation, two nodes can be very similar in one network harmonic, and
very dissimilar in another, indicating that on one graph frequency, the
two regions have similar connectivity patterns, while on another, they
have dissimilar patterns. This reflects the fact that each brain region
fulfills multiple functions which can only be understood in conjunction
with inputs and outputs from other brain regions, i.e., a functional
network (Fox et al., 2005).

Taken together, the network harmonics used here capture the multi-
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Fig. 3. Network harmonic tracking during face detection task. a: EEG signal averaged over all brain regions and trials (event-related potential). Blue curve: average
over all subjects. Gray curves: single subjects. b: Time courses of network harmonics for time windows in which they show a significant (de-)activation compared to
pre-stimulus baseline. The gray boxes mark time windows (w) for which surface renderings are shown in panel d. c: Illustration of how activity (amplitude) patterns
are reconstructed as a weighted sum (superposition) of those network harmonics that are identified as significant in the statistical analysis. The example of window 9 is
shown: there is one GFT weight (5;) for each of the N = 68 network harmonics i. GFT weights (5;) quantify the contribution of each network harmonic i to the activity
pattern. The white stars mark those that are significant, the others are not significant (n.s.) and are not included in the weighted sum. The resulting reconstructed
activity pattern is different from the full activity pattern because not all network harmonics are included. d: Surface renderings for four selected time windows. The
activity patterns (amplitudes) reconstructed only from the significant network harmonics (as illustrated in panel ¢) are shown in the top row. In cases where the first
network harmonic was significant, this activity pattern is also shown as a superposition of this first network harmonic and the sum of all other significant network
harmonics (rows 2 and 3). The bottom row shows significant brain regions obtained with the same analysis done with the original signal (time courses as in panel b
s‘hown in Figure S3). FFA: fusiform face area. Precuneus and medial orbito-frontal regions are nodes of the default mode network (Raichle, 2015).

scale and hierarchical properties of brain networks (Betzel and Bassett,
2017; Yeo et al., 2011).

3.2. Network harmonics derived from structural connectivity provide a
sparser basis for the EEG signal

As with sine and cosine waves of different frequencies in the well-
known Fourier transform used for one-dimensional continuous time se-
ries, network harmonics form an orthonormal basis in which any signal
can be approximated to arbitrary precision. We use source-projected EEG
task data from a visual task which involves detecting images of faces (see
Methods). In this view, network harmonics provide building blocks of the
cortical activation patterns observed during task performance. “Activa-
tion pattern” here refers to a set of all N = 68 brain regions’ signal am-
plitudes - or activities - measured at a certain point ¢t in time (amplitudes
are obtained by projecting EEG activity from the scalp into the gray
matter [see Methods for details]).

Using the network harmonics in this way, the EEG signal is trans-
formed into the orthonormal function basis given by the network har-
monics via the graph Fourier transform (GFT, Shuman et al., 2012,
Fig. 2a). This results in a spectral representation of the activation patterns
in terms of GFT weights which quantify how much each network har-
monic contributes to the activation pattern. One such spectral repre-
sentation is obtained for each point in time. In the inverse direction, each
activation pattern can be reconstructed as a weighted sum of the network
harmonics, without loss of information.

In Fig. 2b, the average signal amplitude of each brain region is shown
in blue for the time window marked with solid lines in Fig. 2a, after the
pre-stimulus activation pattern has been removed (marked by the dashed
lines in Fig. 2a). We have ordered the brain regions by amplitude in order
to show the comparison with the GFT weights of the spectral represen-
tation, which are shown in red and which are naturally ordered by their
eigenvalue. The distribution of activity is different from that of GFT
weights (note that the overall power - L2-norm - is the same, which al-
lows us to directly compare the two domains in this way). While in the
original signal, activity is distributed throughout the entire cortex, in the
domain of the network harmonics, the GFT weights fall off quickly as the
eigenvalue increases: the first 10 network harmonics capture 57% of the
power, and the first 15 network harmonics are sufficient to capture 90%
of the power (red line in Fig. 2c). In other words, most of the activity is
captured by the first few - smoothest - network harmonics.

We compare this capacity of the SC graph to capture important sta-
tistical dependencies in the EEG signal to that of 100 randomized graphs,
in which the sequence of node strengths (sum over all edges connected to
a node) is preserved. Since the node identities are the same, and repre-
sent brain regions in the same way as the SC-derived graph, the EEG
signal can indeed be expressed perfectly by the random network har-
monics extracted from a given random graph if all N = 68 network
harmonics are used; however, since the underlying graph does not reflect
the true structure of the “brain graph”, we expect this representation to
be less efficient. We find that in all of the randomized graphs, the number
of network harmonics (ordered by eigenvalues) that is necessary to
capture 90% of the power of the signal exceeds that of the SC graph
(Fig. 2c, gray lines), with a median number of necessary network

harmonics of 46 (minimum: 34, maximum: 60) as opposed to 15 when
the real, SC-derived network harmonics are used.

Next, we directly test whether the graph frequency domain provides a
quantifiable advantage over the original signal domain. It is not possible
to compare the two domains in terms of how many dimensions (i.e.,
number of brain regions in the case of the “original” domain, number of
network harmonics in the case of the graph frequency domain) are
necessary to capture a certain amount of power of the signal, as it would
be unclear which brain regions should be removed from the activation
patterns, and how that should be interpreted. Instead, we employ the
concept of sparsity, which is used in the framework of compressed
sensing (Candes et al., 2006; Candes and Romberg, 2006). Sparsity
quantifies the intuitive idea that a “good” function basis allows the signal
to be captured by a low number of dimensions. In practice, this is ach-
ieved by optimizing the L1-norm of the signal representation, i.e. the sum
of absolute values in the signal (Ramirez et al., 2013). Note that the
power of the signals (L2-norm) is the same, which makes this a valid
comparison, as no information is lost when the signal is transformed
between the two domains. Fig. 2d illustrates how the L1-norm is used to
quantify sparsity. We compute the L1-norm of the signals as shown in
Fig. 2b, which represent the difference between pre- and post-stimulus
intervals (windows in Fig. 2a) in both signal domains. The L1-norm of
the network harmonics-based difference vector is significantly smaller
than the L1-norm of the difference vector of the original signal (Fig. 2e,
mean distances significantly different on a level of a = 0.05 [two-sided
test], Monte Carlo simulations with 10,000 permutations). Computing
the nonparametric effect size corresponding to this difference indicates a
very large effect (effect size of 1.6, see Methods for details). This is
consistent with the idea that the difference between the two intervals is
captured by fewer dimensions in the network harmonics-representation
than is the case in the original representation.

This suggests that the ordering by smoothness captures important
features of the functional signal; that the least smooth network harmonics
may be representing predominantly noise; and that thus, the domain of
network harmonics could be used for dimensionality reduction and
filtering.

3.3. Network harmonics are able to track EEG task activity

We next investigate whether network harmonics are a functionally
meaningful basis that is able to explain spatiotemporal dynamics of brain
activity recorded during a face detection task. Note that the fact that
network harmonics form an orthonormal basis means that any signal on
the graph, and hence any EEG activation pattern, can be perfectly
captured. Our question is therefore, first, whether a small number of
network harmonics suffices, because this would mean that the SC-
derived network harmonics are related to functional networks/co-
activation patterns present in the functional data (Abdelnour et al.,
2018; Meier et al., 2016; Tewarie et al., 2014). Second, whether this
approach provides any advantage over the more conventional approach
of testing each brain region one by one for significance.

We transform EEG data into the space spanned by the network har-
monics for each point in time from the average over trials of each subject
(Fig. 2a). This results in N time courses of GFT weights, one for each
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network harmonic (Fig. 2a). Next, we identify those network harmonics
that significantly contribute to the processing that takes place in response
to the visual stimulus by applying a permutation test (see Methods) that
compares the pre-stimulus to post-stimulus GFT weights averaged over
50 ms sliding windows (50% overlap, see Methods for details).

Fig. 3a and b shows the source-space visual evoked potentials (signals
averaged over all brain regions; VEPs) and the time courses of the
network harmonics with significantly different GFT weights, respec-
tively. Only 13 out of 68 network harmonics contribute significantly
(Fig. 3b). Figure S2B shows that the nonparametric effect sizes for all the
network harmonics and time windows which were identified as signifi-
cant are huge (>1.2) or very large (>0.8) with the exception of network
harmonic 33 in the very last time window, where the effect size was large
(>0.5; see Methods).

Next, we use only the significant GFT weights to reconstruct cortical
activation patterns from which non-significant distributed patterns of
activity have been removed, as illustrated in Fig. 3c; i.e., we compute the
sum of only the significant network harmonics, weighted by their GFT
weights (see Methods, equation (6)). This resulting reconstructed signal
is thus again in the “original” domain, i.e. it is an activation pattern
consisting of amplitudes (“activity™). Fig. 3d shows surface renderings of
activation patterns that were reconstructed using only the significant
network harmonics (by applying the inverse GFT). There are two in-
tervals that exhibit significant network harmonics, an early one
(~50-125 ms after stimulus onset) and a later one (~210-430 ms).
During the early time interval, there is a general increase in activation
(amplitude), especially in the occipital cortex. The right fusiform area
(FFA) is visible, consistent with the finding that face processing is lat-
eralized to the right hemisphere (Meng et al., 2012; Rossion et al., 2003).
The later time interval exhibits initially a strong activation in prefrontal
areas following the end of the stimulus presentation at 200 ms, and later,
starting at around 300 ms, activity in the somatosensory/motor areas
corresponding to preparation of the motor response.

One advantage of using the network harmonics in this analysis is that
the observed activation pattern can be understood as a superposition of
network harmonics. Specifically, it is useful to remove the contribution of
the first, smoothest network harmonic which results from a non-specific
increase in cortical activation (Fig. 3d, second row). This way, the acti-
vation of visual areas in the occipital cortex in general, and of the right
FFA in particular, in the early time interval is even more prominent
(Fig. 3d, w4, third row). In the later time interval, an increase in GFT
weight of the first network harmonic is present up to around 300 ms.
When discounting this increase, deactivation of superior frontal regions
starting at ~230 ms, and activation of precuneus and medial orbito-
frontal regions - both prominent nodes of the default mode network
(Raichle, 2015) - starting at 210 ms is revealed (Fig. 3d, w9 and w10,
third row).

We conduct the same analysis in the original signal domain, i.e. using
brain regions instead of network harmonics. The bottom row in Fig. 3d
shows a series of surface renderings that mark the brain regions whose
amplitudes are found to be significantly different from the pre-stimulus
interval within the analyzed time windows (see Figure S3 for all signif-
icant time courses). While in the early time interval, the activation of the
FFA is present as observed in the activity patterns resulting from recon-
struction from significant network harmonics, this is not the case for the
activation of frontal regions nor for the activity in somatosensory/motor
regions around 200 ms.

3.4. Network harmonics for distinguishing between faces and non-faces

So far, we have shown results for the processing of images of faces. In
the same experiment, roughly the same number of trials involved
showing scrambled versions of these images (see Methods for details).
We used network harmonics to identify differences between these two
conditions, which is a way to determine which components of the
observed spatiotemporal dynamics are specific to images of faces, as
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opposed to visual stimuli in general. Thus, we compute the difference
between EEG activity found during “face” trials and subtract activity
from “scrambled” trials. Fig. 4a and b shows the VEPs and the significant
network harmonics’ time courses, respectively.

We identify three intervals which exhibit significantly different GFT
weights between the two trial types and reconstruct activity patterns
(amplitudes) by transforming back into the “original” domain as above.

In the earliest interval (~25-100 ms; note that the time window
starting at 25 ms extends up to 75 ms), we observe a positive amplitude
pattern in the reconstructed cortical activity (Fig. 4c, w2, first to third
row), indicating stronger overall activation of almost the entire cortex in
“face” trials as opposed to “scrambled” trials. Removing the first network
harmonic’s contribution as above, we find that the remaining contrib-
uting network harmonics superimpose to exhibit a strong activation
specifically of the right FFA in “face” trials (Fig. 4c, w2, third row). We
also compute the nonparametric effect size (see Methods for details) and
find that the effect size is huge (>1.2) for network harmonic 10 (see
Figure S1 for a surface rendering of this network harmonic), while it is
very large (>0.8) for all other involved network harmonics except
network harmonic 35, for which the effect is only large (>0.5) to medium
(>0.2).

In the middle interval (~100-230 ms), the polarity of superior frontal
regions reverses from positive (stronger activation in “face” trials) to
negative (stronger activation in “scrambled” trials) over the course of the
4 time windows that make up this interval (Fig. 4c, w6 and w8, first row).
Looking at the first network harmonic, which only contributes during the
second half of this interval (w8), it becomes clear that an overall decrease
of activation contributes to this observation. In this interval, the effect
size is huge for network harmonics 2, 10, 11, 12, 15, 28, and 41 for the
time window extending from 125 to 175 ms, and even longer for network
harmonics 10, 11, 28, and 41 specifically. During these time windows,
negative activation is observed in the FFA (Fig. 4c, w6). This corresponds
to the well-known N170, a strong negative inflection which is robustly
observed when images of faces are presented (Bentin et al., 1996; Eimer,
2000). Effects are further very large (>0.8) or large (>0.5) for network
harmonics 1, 9, and 58. Only small or very small effects are observed for
the earlier time window of this interval (100-150 ms).

In the late interval (~280-460 ms), there is a pattern that is consistent
with overall less activity in “face” trials as opposed to “scrambled” trials,
with this deactivation becoming stronger in occipital areas over the
course of the interval (Fig. 4c, w15, first row). When removing again the
contribution of the first network harmonic, it is revealed that starting at
~340 ms, there is stronger activity in frontal regions in “face” trials, as
well as in somatosensory/motor regions (Fig. 4c, w15, third row), indi-
cating there may be a difference in response behavior between the con-
ditions. In terms of effect sizes, network harmonics 1, 2, 5, 9, 10, 12, and
16 exhibit huge effect sizes (>1.2), most extensively for network har-
monics 2, 5, 9, and 10. Most other network harmonics whose activation is
significantly different between “faces” and “scrambled” trials in this in-
terval have a very large effect size (>0.8), with the exception of the early
time window (starting at 310 ms), for which effect sizes are very small
(>0.01) to medium (>0.2).

As before, analysis of the original signal (using the brain regions
themselves) does reveal stronger activation of the FFA in “face” trials in
the early time interval, but in the later two intervals, none of the frontal
or somatosensory/motor differences are present.

4. Discussion

Spatiotemporal dynamics of large-scale networks in the brain have
been shown to be highly relevant both in the healthy human brain as well
as in many brain disorders. EEG is a powerful tool for mapping and un-
derstanding fast network dynamics in the human brain, as it does not
only record direct brain activity on a sub-millisecond time scale, but is
also comparatively cheap as well as portable, and thus, at least in theory,
well-suited for clinical applications. However, EEG suffers from the



K. Glomb et al.

effects of volume conduction, which makes it difficult to compute func-
tional connectivity and derive valid functional networks from it.

We introduce network harmonics - Fourier basis functions of the brain
structural connectivity graph - as building blocks of EEG source-level
activity. We leverage well-understood tools from graph signal process-
ing, and the theory of harmonic modes, to map fast, large-scale cortical
dynamics in source-projected EEG data. In particular, graph signal pro-
cessing allows us to obtain meaningful “building blocks” of functional
activity from the graph of structural connectivity without the need to
compute functional connectivity.

We explicitly show that network harmonics meaningfully capture
integration and segregation in the brain network graph, and demonstrate
their efficiency compared to the ROI-by-ROI-representation of the EEG
signal. We conduct a statistical analysis of EEG data recorded during a
face detection task, which we perform in the domain of network har-
monics. We show that a few network harmonics are sufficient to capture
task dynamics.

4.1. Combining data modalities to probe the structure-function relationship
in brain networks

Using network harmonics in the way described here combines data
from multiple modalities, namely we decompose functional (EEG) data
using building blocks derived from structural connectivity (diffusion
MRI). Our main finding is that EEG functional activity can be efficiently
expressed as a superposition of co-activation patterns directly extracted
from structural connectivity, adding to the evidence which suggests that
function is shaped by structure in the brain on a macroscopic scale, and
confirming that this finding extends to EEG (Chu et al., 2015; Finger
et al., 2016; Wirsich et al., 2017; Glomb et al., 2020).

Our approach also offers a number of practical advantages. On the
one hand, it is unnecessary to compute functional connectivity, which is
impacted by volume conduction, i.e., the spread of electric fields through
brain tissue that results in spurious statistical relationships between time
series recorded from different brain regions. On the other hand, it allows
us to take a statistical approach which does not rely on making any prior
assumptions on where in the brain differences are expected. Instead, we
use information on integration and segregation between brain regions as
encoded in the structural connectivity matrix. This also means that we
identify significant patterns of co-activation involving the entire cortex,
while in an approach where each ROI is treated independently, the ac-
tivity in all non-significant brain regions is essentially ignored. This is in
line with the idea that cognitive functions are fulfilled not by single re-
gions, but by networks (Fox et al., 2005). In a similar vein, even though in
many applications, the cortex is partitioned into a fixed number of
non-overlapping networks (Yeo et al., 2011), it has long been appreciated
that the brain network, both functional and structural, consists of over-
lapping hierarchical modules (Betzel and Bassett, 2017). Thus, we take
advantage of the multi-scale, hierarchical network structure encoded in
the SC matrix in order to decompose and analyze EEG functional data.

It is important to mention that these building blocks are not
conceptually equivalent to “brain states”. Instead, a combination of
network harmonics is assumed to contribute simultaneously at any given
point in time, and the degree to which each network harmonic contrib-
utes is allowed to vary on a continuous scale. In this sense, our approach
does not assume abrupt changes between states, in contrast to, for
example, microstates (Van de Ville, Britz, and Michel, 2010), or Hidden
Markov Model-based approaches (Baker et al., 2014; Quinn et al., 2018),
where each point in time is assigned to exactly one state.

Furthermore, the relationship between structure and function in the
human brain is one of the major topics of contemporary neuroscience
which is also pursued in the field of connectomics. Converging evidence
suggests that functional connectivity is in part determined by structural
connectivity, one of the most robust findings being that brain regions
which have a direct anatomical link in the SC have stronger FC than those
that do not (Chu et al., 2015; Finger et al., 2016; Glomb et al., 2020).
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Furthermore, generative models often use SC as an underlying scaffold
that shapes the simulated functional activity (Deco et al., 2013; Honey
et al., 2009; Messé et al., 2015; Wang et al., 2019). Our approach could
easily be used, for example, to explore the impact of alterations in the SC
on the resulting network harmonics and their relationship to simulated
FC. Beyond these basic findings, harmonic modes of the SC have been
shown to explain patterns of activity-dependent disease propagation (Raj
et al., 2012), and recent work done with fMRI suggests that the degree to
which functional activity is aligned with harmonic modes of the SC is
relevant for cognitive flexibility (Medaglia et al., 2018) and functional
specialization (Preti and Van De Ville, 2019). Note that the lower spatial
resolution and SNR of EEG, compared with fMRI, make these results only
partially applicable here. Specifically, it is likely that network harmonics
with a high graph frequency are not meaningful for the functional data,
as local activity is always highly dependent on the activity of neighboring
regions. This is in line with our finding that high graph frequency net-
works contribute very little to the task activity.

As an outlook, combining several data modalities is an approach that
is becoming more and more popular in the field of personalized medi-
cine, where large amounts of data are compiled for the same individual
for the purpose of diagnosis, treatment planning, and prognosis via ma-
chine learning techniques. While the present study analyzes data on the
group level, our approach holds the potential to be developed for the
individual level by using information from individual connectomes (here
we used a consensus connectome from a different group of subjects), as
well as including microstructural information from structural scans.

4.2. Harmonic modes provide a powerful theoretical framework

On the methodological side, network harmonics are firmly rooted in
the theoretical framework of harmonic modes, linking them to Fourier
basis functions in other domains such as sine and cosine waves on the
circle and spherical harmonics on the sphere (Robinson et al., 2016;
Gabay et al., 2018). A basic property of harmonic modes is that they are
ordered by smoothness, and in the context of neural data, this means that
they provide a multi-scale representation of the brain, reflecting the hi-
erarchical organization of brain networks (Margulies et al., 2016; Betzel
and Bassett, 2017; Glomb et al., 2019).

Graph signal processing provides well-developed tools to study sig-
nals using harmonic modes on graph domains (Shuman et al., 2012). This
allows for our method to be simple and fast. Here we have only used the
most basic of these tools, and more advanced possibilities remain to be
explored, in particular, designing and applying filters in the spatial
spectral domain in order to remove noise, and to explore the relationship
between temporal and spatial frequencies in a joint spectral
representation.

Beyond the link to basis function sets in other domains (circle,
sphere), eigenvectors of the Laplacian are encountered when solving
differential equations that link space and time in continuous domains, for
example, the wave equation or the diffusion equation. In this theoretical
context, the eigenvectors of the Laplacian are the spatial solutions; for
example, in vibrating systems, they constitute standing wave patterns.
There is also a direct theoretical link between the normalized graph
Laplacian and Markov chains, i.e. a model of temporal evolution. The link
to the temporal domain is established via the wave speed, i.e., the speed
with which a wave propagates in space. In the brain, the link between
spatial and temporal frequencies is conceivably established by the delays
between brain regions derived from conduction speeds and fiber lengths/
geodesic distances, which have been shown to crucially shape neural
activity (Cabral et al., 2014). This way, the network harmonics shown
here have a theoretical link to temporal frequencies, even though we do
not explicitly consider conduction speeds. Although conduction speeds
cannot be assumed to be uniform across the brain, in theory, each
network harmonic could be linked to a (range of) temporal frequencies.
Recent work has shown that oscillations, which play a major role in EEG
analysis and in the functioning of the brain in general (Fries, 2015;
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Klimesch, 1996; Basar et al., 2000) might in part be explained by har-
monic modes of the SC (Raj et al., 2020). An appropriate model could
enable estimation of these speeds. Research in this direction is just
beginning to emerge (Gabay, Babaie-Janvier, and Robinson, 2018; Ata-
soy et al., 2017; Atasoy et al., 2016; Raj et al., 2020).

4.3. Limitations

The main limitation of network harmonics is that the structural
connectivity matrix contains many false-positives as well as false-
negatives, the latter especially when it comes to long-range and cross-
hemispheric connections. This is also the reason why we used a
consensus SC matrix instead of individual connectomes - taking into
account information from the whole population makes the connections
more reliable. At the same time, even if diffusion MRI and tractography
algorithms were able to correctly identify all white matter connections in
an individual brain, the fiber counts obtained in this manner do not
(necessarily) correspond to the effective impact that one brain region has
over another; likewise, connections in the SC are undirected. Therefore,
the network harmonics used here cannot be seen as canonical at this
point, as it is still unclear in how far they depend on the exact method-
ology and quality of the SC graph used.

Furthermore, while we do not compute functional connectivity and
thereby “sidestep” the issue of volume conduction to some degree, its
impact is of course not removed from the functional data, and spurious
correlations between nearby brain regions are still going to be reflected
in the combinations of network harmonics that are found for each point
in time. This also reveals a more general problem, regarding the absence
of ground truth, which makes it difficult to validate any method that aims
at tracking network activity. Showing relations to behavioral measures,
including alterations in patient populations, would be useful here and
should be addressed by future work.

Lastly, the nodes of the network harmonics are defined based on a
standardized parcellation (Desikan et al., 2006). It is unclear whether the
size, number and shape of the brain regions defined in this atlas are
optimal for EEG source analysis in general (Farahibozorg et al., 2018),
and for network harmonics in particular. Future work could test whether
optimization of the parcellation towards higher sensitivity and specificity
to the signal of interest is possible.

4.4. Conclusions and future work

In this study, we show how network harmonics establish a link be-
tween connectomics and a rich and general mathematical theory. We
demonstrate that graph signal processing is a methodological framework
which is easy to use, statistically powerful, and holds a large potential for
exploring the relationship between structure and function, specifically in
the context of EEG. Future work is necessary in order to understand how
basis functions derived from structural or functional connectivity relate
to each other, but also to the cortical microstructure, to behavioral
measures, and to alterations in disorders. On the other hand, applying the
framework described here to a multitude of tasks is straightforward and
should produce new insights into large-scale dynamics as measured with
source-projected high-density EEG.

Of particular interest is the relationship between temporal and spatial
frequencies, for which EEG data with their high temporal resolution
should prove particularly valuable. Graph signal processing provides the
tools and theory necessary to pursue this direction, and should be linked
to modelling work being done in this direction.
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