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Abstract: 13 

With the development of new materials and advanced structural analysis, alongside increasing 14 

aesthetic requirements, recent years have witnessed a trend towards longer, taller, and lighter 15 

footbridges. Different from vehicular bridges, footbridges carry relatively small service loads 16 

and are more susceptible to vibrations due to their lower stiffness, damping, and modal mass. 17 

More often than not, vibration serviceability limit state governs the design of footbridges. To 18 

provide an accurate evaluation of vibration serviceability performance of existing bridges 19 

requires techniques that can include modeling and measurement uncertainties. In this paper, a 20 

population-based method called error-domain model falsification (EDMF) is used to assess the 21 

vibration serviceability for two pedestrian bridges: Fort Siloso Skywalk located in Singapore 22 

and the Dowling Hall footbridge located at Tufts University in the United States. The unknown 23 

properties of the footbridges are identified using the ambient vibration data measured on site. 24 

This method is also compared with two other data-interpretation methodologies, i.e., residual 25 

minimization and traditional Bayesian model updating. The findings show that, through 26 

explicitly accounting for measurement and modeling uncertainties, EDMF can provide more 27 

accurate identification and prediction results for vibration serviceability assessment of 28 

pedestrian bridges. 29 
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Introduction 32 

According to the Institution of Structural Engineers’ 2015 survey, 49% out of 27,000 33 

footbridges throughout the world have experienced vibration serviceability problems, while 34 

23% received complaints regarding human comfort (Brownjohn and Darby 2018). This is 35 

because slender footbridges usually have one or more natural frequencies that lie within the 36 

dominant spectrum of common human activities such as walking, running, or jumping (Catbas 37 

and Kijewski-Correa 2013). As a result, footbridge design is often governed by vibration 38 

serviceability limit state rather than the ultimate limit state. The fundamental method is to avoid 39 

structural natural frequencies being within the ranges associated with pedestrian pacing or to 40 

ensure the acceleration levels of the footbridge below prescribed acceptable limits. For 41 

example, in EN 1990/A1 (EN 1990:2002/A1:2005 Eurocode—Basis of structural design. 42 

Application for bridges 2005), the vibration comfort criteria require that the fundamental 43 

frequency of the footbridge shall be less than 5.0 Hz for vertical vibrations and 2.5 Hz for 44 

horizontal and torsional vibrations. 45 

Finite element models are widely used to analyse and predict structural behaviour. However, 46 

due to modelling simplifications and assumptions on unknown structural system properties 47 

(e.g., boundary conditions, material and geometric properties) and deviation introduced in the 48 

construction phase, the model used in the design phase is not an accurate representation of the 49 

built system. Unlike spacecraft, nuclear power plants and wind farms, footbridges are rarely 50 

subjected to experimental validation of design models. Therefore, to better predict the real 51 

behaviour of footbridges, vibration serviceability should be evaluated using the models updated 52 

by on-site measurements and inspections. 53 



In the application of monitoring footbridges, full-scale measurements can be categorized into 54 

two types (Feldmann et al. 2010). Type I refers to the dynamic responses obtained under 55 

deliberate loading (e.g., jumping, jogging and horizontal body swaying of one person or a 56 

group of people). This type of data can be used to directly assess human comfort level for 57 

excitation events. Type II refers to the vibration data obtained from ambient vibration tests, 58 

free vibration tests and forced vibration tests. This vibration data can be used to identify modal 59 

properties (e.g., natural frequencies and mode shapes). 60 

For vibration-based structural identification and response prediction, a ‘three-stage’ approach 61 

(Brownjohn et al. 2011; Byfield and Paramasivam 2012) has been commonly used given the 62 

difficulty of identifying unknown model parameters directly from vibration data. In Stage I, 63 

modal properties are identified using Type II measurements. Those identified properties are 64 

then used as “indirect measurements” in the structural identification in Stage II. Responses are 65 

predicted based on the updated models (the output of Stage II) in Stage III. 66 

Structural identification (or model updating) can be achieved through the modification of 67 

modeling assumptions and tuning model parameters until the model predictions agree well with 68 

the results of on-site tests based on a trial and error approach (Mottershead et al. 2011) (Ren 69 

and Peng 2005). However, this approach is not efficient and may not guarantee an accurate 70 

identification. A commonly adopted procedure is residual minimization to find the parameter 71 

values that yield the “best match” with measurements. The task is posed as an optimization 72 

problem whereby the objective function is the weighted sum of discrepancies between model 73 

predictions and test measurements. For example, Araujo et al. (Araujo et al. 2011) computed 74 

the modal properties from the ambient vibration data using the Eigensystem Realization 75 

Algorithm (ERA). Then they used genetic algorithm to solve the optimization task to find the 76 

optimal parameter values using identified modal properties. However, the formulation of the 77 



objective function is difficult. A popular approach is to assign weighting factors to each of the 78 

dynamic characteristics including natural frequencies and mode shapes (Friswell et al. 1998). 79 

Kim and Park (Kim and Park 2004) introduced multi-objective functions to extremise several 80 

objective terms simultaneously. 81 

Probabilistic finite element model (FEM) updating using Bayesian inference schemes has been 82 

proposed since the 1990s. This method uses Bayesian conditional probability to update the 83 

prior knowledge of model parameters using measurements and inspection (Beck and 84 

Katafygiotis 1998; L. S. Katafygiotis; J. L. Beck 1998). Many applications on bridges can be 85 

found in the literature, for example, (Cheung and Beck 2009, 2010; Yuen et al. 2004, 2006). 86 

Lam et al. (Lam et al. 2015) carried out Bayesian model updating of a coupled-slab system 87 

using an ambient vibration test. Yin et al. (Yin et al. 2010) detected cracks in thin plate 88 

structures using a Bayesian approach based on dynamic responses at only a few points on the 89 

plate. Zheng and Yu (Zheng and Yu 2013) assessed the structural integrity of scoured bridges 90 

based on vibration-based measurements. In a similar way to residual minimization, Bayesian 91 

model updating requires the assignment of relative weighting factors to the contributions of the 92 

mode shape vectors and modal frequencies in the likelihood function (Goller et al. 2012).  93 

Goulet et al. (Goulet et al. 2010) proposed another methodology named error-domain model 94 

falsification (EDMF). They then demonstrated the applicability of this approach for structural 95 

identification and performance monitoring of real structures by applying it to Langensand 96 

Bridge in Switzerland. The predictions from the set of candidate model instances reveal a 97 

reserve capacity of 30% with respect to serviceability requirements (Goulet et al. 2010). 98 

To obtain a better understanding of prediction uncertainties, Goulet et al. (Goulet et al. 2014) 99 

investigated the Grand-Mere Bridge located in Canada and discovered that model 100 

simplification has an important influence on prediction errors. This approach also provides a 101 



less conservative estimate of the remaining fatigue life and reveals that traffic models and 102 

structural model parameters are the most influential sources of uncertainty (Pasquier et al. 103 

2016). This method has also been applied in optimal sensor placement by Papadopoulou et al. 104 

(Papadopoulou et al. 2016) and Bertola et al. (Bertola et al. 2017), leak detection in pipe 105 

networks by Moser et al. (Moser et al. 2018) and wheel-flat detection in the train-track system 106 

by Cao et al. (Cao et al. 2019b). 107 

Although there are comparison studies of various system-identification methodologies, the 108 

performance of these three methodologies (EDMF, residual minimization, and traditional 109 

Bayesian model updating) has not been studied in the scope of vibration serviceability 110 

assessments.  111 

This paper presents the vibration serviceability assessments of two footbridges: Fort Siloso 112 

Skywalk in Singapore and Dowling Hall Footbridge inside Tufts University campus. In each 113 

case study, the three methodologies are compared in terms of their performance for diagnosis 114 

and prognosis.  115 

Background: System identification methods 116 

Residual minimization 117 

Residual minimization, also known as model calibration, involves finding the optimal 118 

parameter values (𝜽#) by adjusting the parameters (𝜽) so that the finite element predictions best 119 

match the measurements. A commonly used function is the sum of the squares of the 120 

differences between predicted (𝐠(𝜽)) and measured values (𝒚), the number of measurements 121 

is denoted as 𝑛!. 122 

𝜽" = 𝐚𝐫𝐠𝐦𝐢𝐧
𝜽

* (g!(𝜽) − 𝑦!)"
#!

!$%
 (1) 



Bayesian model updating 123 

Probabilistic finite element model updating using Bayesian inference has been proposed since 124 

the 1990s. This method uses Bayesian conditional probability to update the prior knowledge 125 

of model parameters using measurements and inspection (Beck and Katafygiotis 1998; L. S. 126 

Katafygiotis; J. L. Beck 1998). The prior probability of physical parameters P(θ) is updated 127 

using a likelihood function P(y|θ) and measured data y. The posterior probability P(θ|y) is 128 

obtained using the normalization constant P(y). 129 

P(θ|y) =
P(y|θ)P(θ)

P(y)  (2) 

Instead of searching for only one solution (maximum a posteriori) as residual minimization, 130 

this approach can also estimate the level of confidence of identified results. This approach may 131 

include a covariance matrix to describe the uncertainty variances and correlation coefficients 132 

for each measurement. In this paper, the traditional Bayesian model updating (tBMU) 133 

employing a zero-mean Gaussian distribution for uncertainty is used for comparison purpose.  134 

Error-domain model falsification 135 

Error-domain model falsification samples thousands of models from a general parametrized 136 

model in which the initial parameter domain is defined by engineering judgment and 137 

preliminary knowledge. A model is accepted when it is supported by evidence (measurements 138 

or inspections) and conversely, falsified when it is not consistent with evidence.  139 

The falsifying criteria are based on “rectangular” threshold bounds, which are determined by 140 

the combination of modeling and measurement uncertainties. For one model instance, if any 141 

residual value between the prediction and the measurement falls outside the threshold bounds, 142 

this model instance is falsified. If the residual values of all comparison points are inside the 143 

threshold bounds, it is considered a candidate model instance. Candidate model set (CMS) are 144 



considered “acceptably correct” according to the current information provided by 145 

measurements and inspections. With more information added, however, some or even all of 146 

the current candidate models may be further falsified. 147 

Let nm be the number of measurements and assume we have already obtained the candidate 148 

parameter values, denoted as θ*=[θ1*,θ2*,⋯,θn*]T , where n  is the number of parameters. For 149 

measurement i, the addition of the prediction response gi(θ
*) calculated by finite element 150 

analysis and modeling uncertainty ϵmodel,i*  should be equal to the true response 𝒯, which should 151 

also be equal to the addition of measurement yi and measurement uncertainty ϵmeas,i*  (Equation 152 

(3)). By rearranging both uncertainties in the right-hand side of the Equation, Equation (4) is 153 

obtained. For a candidate model, the difference between gi(θ
*) and yi should fall inside the 154 

threshold calculated by the combined uncertainty Uc,i. 155 

gi0θ
*1 +	ϵmodel,i* = 𝒯 = yi +  ϵmeas,i* 	 (3) 

gi0θ
*1－yi ＝Uc,i (4) 

Let ϕ be the target confidence level and FUc,i
	#1(𝑥): 𝑥 ∈ [0,1] represent the inverse cumulative 156 

distribution function of the combined uncertainty. The rectangular coverage region defined by 157 

threshold bounds Tlow,i and Thigh,i is found using the Šídák correction and a target reliability 158 

ϕ	(Goulet and Smith 2013). ϕ is commonly set to be 0.95 in civil engineering (Pasquier and 159 

Smith 2016).  160 

Tlow,i=	FUc,i
	'1 5

1
2 01− 	ϕ

1/nm16 (5) 

Thigh,i=	FUc,i
	'1 51−

1
2 01− 	ϕ

1/nm16 (6) 



In most applications, the modal assurance criterion (MAC) is adopted to estimate the degree of 161 

correlation between the simulated mode shape and the experimental mode shapes. It is 162 

introduced either into the objective function in residual minimization techniques or the 163 

Bayesian-based approach. MAC is a good statistical indicator to pair modes in conjunction 164 

with frequency comparison. However, for example, in full-scale structures, an objective 165 

function with a MAC value equal to 0.99 is not necessarily more consistent with real structural 166 

behavior than an objective function with a MAC value equal to 0.96. One of the reasons is that, 167 

in most finite element models, material properties, geometry and construction quality are 168 

considered to be homogeneous and boundary conditions are assumed to be the same for all 169 

support bearings. These assumptions do not hold for bridges in the built environment (Liu and 170 

Cheung 2020; Nguyen et al. 2013). In practice, values of MAC in excess of 0.8-0.9 can be 171 

accepted as indicators of good consistency (Rainieri and Fabbrocino 2014) (Brownjohn et al. 172 

2003)(Goulet et al. 2013).  173 

Case study I: Fort Siloso Skywalk 174 

Bridge description 175 

Fort Siloso Skywalk in Singapore is an eight-span continuous steel pedestrian bridge with a 176 

concrete deck on the surface (Figure 1). The layout of the bridge is an ‘S’ curve and the total 177 

length is about 181m. The typical intermediate span is 23.5m and the end span is 20m. One 178 

end of the bridge ties to the 38m-height tower while the other end connects to the elevated 179 

ground. The width of the bridge is 3.0m. 180 

Vibration tests and analysis 181 

To measure the dynamic response of this pedestrian bridge, accelerometers (PCB393B12 with 182 

sensitivity of 10V/g and broadband resolution of 8𝜇g) were installed at three locations (A, B 183 

and C) on the surface of the concrete deck along one side of the bridge (Figure 2). At each 184 

location, three uniaxial accelerometers were used to record the vertical/transversal/longitudinal 185 



responses at a sampling rate of 1024Hz. The signals were resampled to 256Hz for data 186 

processing.  187 

The vibration tests include the following three types of events: 188 

Event I: Vertical and lateral jumping of a small group of people to estimate the damping ratio 189 

of the bridge using the free decayed data. 190 

Event II: Ambient vibration (with no human activity) to measure the natural frequencies. 191 

Event III: Random walking test involving 40 people. 192 

The reason that the damping ratio of the bridge is extracted using Event I instead of Event II is 193 

because the damping ratio is amplitude-dependent. Damping ratios obtained through ambient 194 

vibration are usually at least an order of magnitude lower than the serviceability level (Au 195 

2017). 196 

Vertical and lateral jumping  197 

On each span, ten persons were asked to jump (vertically and laterally) and to then remain still 198 

after the jump, causing a free decayed vibration phase. The free decayed signals are used to 199 

estimate the damping ratios in the vertical direction and horizontal direction, respectively. 200 

The accuracy of damping ratio depends on the quality of decayed vibration signal which, in 201 

turn, depends on the synchronization of individuals in jumping and any disturbance due to 202 

human movement after the jump. Assuming that the free vibration response generated by 203 

jumping is dominated by a single vibration mode, the peak amplitudes (𝐴$) of successive cycles 204 

in the decayed vibration can be approximated by the following equation: 205 

𝐴$ =	𝐴% exp[−2𝜋𝜁𝑖]	 (7)	

where 𝜁 is the damping ratio. The above equation can be written as follows: 206 



ln(𝐴$) = ln(𝐴%) − 2𝜋𝜁𝑖	 (8)	

The procedure for quantifying the damping ratios is as follows: 207 

(1) For each span, by plotting ln(𝐴$) versus the number of cycles (𝑖), a linear regression 208 

analysis is carried out to estimate the damping ratio from the negative slope divided by 209 

2𝜋. The derived damping ratios are shown in Table 1, whereby R2 is the coefficient of 210 

determination that shows how well the data fit the linear regression model. 211 

(2) The average damping ratio is determined by: 212 

𝜁 = (𝜁(R)
" + 𝜁*R+

" + 𝜁,R-
")/(R)" + R+" + R+" )	 (9)	

 213 

The damping ratios in the vertical direction and horizontal direction are found to be 2.15% and 214 

0.99%.  215 

Modal analysis 216 

In the ambient vibration test, vibration data from nine accelerometers were recorded for 4 217 

minutes when there was no human activity on the bridge. Bayesian operational modal analysis 218 

(BAYOMA) (Au 2012a; b) is used to analyze the data. In addition to providing the most 219 

probable estimate of modal properties, BAYOMA is able to quantify the associated 220 

uncertainty.  221 

Figure 3 (a) shows the computed power spectral density (PSD) using the recorded data. The 222 

peaks in the PSD spectrum indicate potential modes. To provide a better vision of these modes, 223 

the corresponding singular-value (SV) spectrum is calculated and presented in Figure 3 (b). 224 

The hand-picked initial guesses and frequency bands are listed in Table 2. A total of 12 modes 225 

are identified. Their most probable values (MPV) of natural frequencies and their 226 

corresponding coefficient of variation (COV) are summarized in Table 3. 227 



Structural identification 228 

The footbridge is modeled in ANSYS (ANSYS 2016) (Figure 4). The concrete deck is modeled 229 

by a shell element while the steel element is modeled by a beam element. The main member 230 

of the girder is welded on to a steel plate which is embedded in the reinforced concrete beam 231 

of the tower. The connection between the tower and the foundation is modeled as fixed. The 232 

other end of the footbridge is simply supported by the elevated ground. For P1-P7, the 233 

boundary conditions of each pier are modeled by three linear springs in the vertical, transverse 234 

and longitudinal directions respectively.  235 

In this case study, unknown parameters include Young’s modulus of concrete and steel (𝐸𝐶, 236 

𝐸𝑆), the equivalent density of the deck and steel (𝐷𝐶,	𝐷𝐸), logarithm of transversal stiffness of 237 

bearings (log T), logarithm of vertical stiffness of bearings (log V) and logarithm of 238 

longitudinal stiffness of bearings (log L), as listed in Table 4. The range of 𝐸𝐶 is referenced 239 

from Cao et al. (2019a). The ranges of log T, log V, and log L are set based on pile and plate 240 

load tests as well as soil-structure interaction analysis used in the design. The range of 𝐸𝑆 is set 241 

to be ± 5% lower and upper bounds around the nominal value (Pasquier et al. 2014). The 242 

ranges of 𝐷𝐸 and 𝐷𝐶 are set based on engineering judgment. Uniform distributions are assigned 243 

to the initial ranges of these parameters based on the principle of maximum entropy (Jaynes 244 

2003). 245 

Although 12 modes are detected through operational modal analysis, some of the measured 246 

mode shapes (only at location A-C) are not enough to match with the simulated ones using 247 

FEM (eight-span mode shapes). As a result, only six modes are paired based on MAC criterion 248 

between the measured and simulated mode shapes (shown in Figure 5).  249 

Modeling and measurement uncertainties are summarized in Table 5. The measurement 250 

uncertainty related to modal analysis is taken from the study presented in the previous section 251 



(Table 3).  Additional uncertainty accounts for all other sources that individually have 252 

negligible influence, for example, round off of numbers (Goulet et al. 2010). Other 253 

uncertainties are estimated according to Cao et al. (2019a), Goulet (2012). Due to the lack of 254 

more detailed information, all uncertainties are assigned as uniform distributions based on the 255 

principle of maximum entropy. In EDMF, evaluation of existing structures usually requires an 256 

iterative falsification process because the selection of EDMF settings varies from case to case 257 

(Pasquier and Smith 2016). In the first trial, 1000 model instances generated by Latin 258 

hypercube sampling are calculated using finite element analysis. After falsification, 17 259 

candidate models are obtained. In the second trial, 3000 model instances are calculated. After 260 

falsification, 62 candidate models are obtained. Increasing the sample size from 1000 to 3000, 261 

the ratio of candidate models remains approximately the same, i.e., about 2% of the initial 262 

model instances. If adding more model instances significantly changes the proportion of 263 

candidate models , a substantial increase in sample size is required. In this case study, since the 264 

proportion of candidate models has already converged, there is no need to increase the sample 265 

size. The trial using 3000 model instances is presented herein as the final result since it results 266 

in more candidate models. The identification results are presented in Figure 6 where each grey 267 

line represents an initial model instance, and each red line represents a candidate model. It is 268 

shown that only the ranges of 𝐸)  and log V are reduced after identification. This is because, in 269 

the test, accelerometers were installed only in the first three spans of the eight-span bridge due 270 

to practical constraints. Based on the limited information provided by measurements, EDMF 271 

is only able to reduce the ranges of two parameters. 272 

Before proceeding to the vibration serviceability assessment using the candidate models, a 273 

validation is conducted to determine whether the structural identification is reasonable. Since 274 

the real parameter values are not available in full-scale structures, a cross-validation strategy 275 

is conducted. 276 



Validation is carried out six times. Each time, one mode out of the six modes is held out from 277 

the measurement set and is assumed as unknown. Using the remaining five modes, EDMF is 278 

carried out to obtain the candidate models which are then used to predict the natural frequency 279 

of the “unknown” mode. The range of the real natural frequency of the “unknown” mode (ith 280 

mode) is obtained by adding the measured value yi and the measurement uncertainty ϵ!*+,,$ 281 

(see the right-hand side of Equation (3)). If this range overlaps with the range that is obtained 282 

by adding the predictions gi(θ) and the prediction uncertainty ϵ!./*0,$ (see the left-hand side 283 

of Equation (3)), structural identification is considered to be validated. Otherwise, the 284 

identification is not successful. The cross-validation results for EDMF are summarized in Table 285 

6 and presented in Figure 11. In Figure 11, the measurement uncertainty is highlighted as the 286 

grey area along with the measurement (black line). It is shown that in every scenario, the 287 

measurement falls within the prediction provided by EDMF (rectangular pink area). Thus 288 

EDMF is shown to be able to provide accurate identification results.  289 

Vibration serviceability limit assessment  290 

As shown in previous sections, the first lateral mode has a natural frequency of around 1 Hz 291 

and a modal damping ratio of 0.99%. The first vertical mode has a natural frequency of around 292 

5 Hz and a modal damping ratio of 2.15%. According to Human Induced Vibrations of Steel 293 

Structures (HiVoSS) (Feldmann et al. 2010), for lateral vibration, the natural frequency falls 294 

into the critical range (0.5 Hz ≤ 𝑓1#0+2*3+0 ≤ 1.2 Hz). A further assessment of maximum 295 

acceleration is required. 296 

For each candidate model, a uniformly distributed harmonic load model 𝑝(𝑡) is applied to the 297 

bridge according to the critical lateral mode shape. 𝑝(𝑡) is calculated as follows (Feldmann et 298 

al. 2010): 299 

𝑝(𝑡) = 𝑃 cos(2𝜋𝑓,𝑡) 𝑛4Ψ (10)	



where 𝑃 is the component of the force due to a single pedestrian with a walking step frequency 300 

𝑓,. For lateral calculation, 𝑃= 35 N. 𝑓, = 1 Hz is the fundamental frequency of the lateral mode 301 

of the footbridge. 𝑛4 is the equivalent number of pedestrians on the loaded surface. The values 302 

of 𝑛4 and the reduction coefficient Ψ are taken from (Feldmann et al. 2010). For each candidate 303 

model, the maximum lateral acceleration under the harmonic force is calculated (Figure 7). 304 

Then, the modelling uncertainty (Table 7) is added to the candidate models’ predictions, 305 

following Equation (3).  306 

As mentioned in the previous section, the only available information of model parameters, 307 

modeling uncertainties, and measurement uncertainties are their lower and upper bounds. 308 

Uniform distributions are assigned to them through the principle of maximum entropy. In 309 

reality, it is very rare that more sophisticated distributions for dominant modeling uncertainties 310 

can be justified. For practical reasons, all values between the lower and upper prediction 311 

bounds have the same probability of occurrence. In this case study, the maximum acceleration 312 

obtained using EDMF is within the range of [0.0223 m/s2, 0.0770 m/s2] with a uniform 313 

distribution. The lateral comfort level of this bridge is comfort class CL1 which requires the 314 

lateral acceleration being smaller than 0.1 m/s2. According to the design guideline (Feldmann 315 

et al. 2010), the lock-in phenomenon will be triggered if the lateral acceleration is within the 316 

range of [0.1 m/s2, 0.15 m/s2]. For this bridge, there is no such risk.  317 

To verify the prediction accuracy, a random walking test was conducted (Event III). According 318 

to the design guideline, the pedestrian density is 0.5 P/m2 based on pedestrian traffic class TC3 319 

characterized by “still unrestricted walking; overtaking can intermittently be inhibited”. About 320 

35 people were scattered over an area of approximately 70 m2 for the typical span of 23.5 m 321 

and width of 3 m. In this test, 40 people walked randomly in a group with no attempt to 322 

synchronize their walking pace (Figure 8). The peak values of the measured accelerations at 323 



Point A, B and C and the corresponding comfort levels are summarized in Table 8. The 324 

maximum lateral acceleration is 0.079 m/s2 based on 40 people walking in the test. Scaling 325 

down to 35 people as required in the design guideline, the lateral acceleration is approximately 326 

0.069 m/s2 which is within the predicted range by EDMF’s [0.0223 m/s2, 0.0770 m/s2]. The 327 

comfort levels at all three measurement points on the bridge are CL1 which is the same as the 328 

model predictions.  329 

Comparison with residual minimization and traditional Bayesian model updating 330 

In residual minimization (RM), the optimal solution of parameters is obtained by minimizing 331 

the discrepancy between measurements and simulations. The objective adopted in this section 332 

is: 333 

𝜽" = 𝐚𝐫𝐠𝐦𝐢𝐧
𝜽

* (g!(𝜽) − 𝑦!)"
#!

!$%
	 (11)	

where 𝑛!= 6, g$(𝜽)  and 𝑦$  are the natural frequency derived from FEM simulations and 334 

measurements respectively. The optimization is carried out using Adaptive Single-Objective 335 

method provided in Ansys Workbench (Lee 2018). This method combines an optimal space-336 

filling design, a Kriging response surface and mixed-integer sequential quadratic programming 337 

(Exler and Schittkowski 2007). In Figure 9, the optimal solution is indicated by a blue dashed 338 

line. 339 

In traditional BMU, the prior knowledge of the model parameters is updated based on Bayes’ 340 

theorem. The uncertainty is assumed to have an independent zero-mean Gaussian distribution 341 

for each mode. For mode 𝑖, the standard deviation is 𝜎$ = (𝑈566*3 − 𝑈0.7*3)/6, where 𝑈566*3 342 

and 𝑈0.7*3 are the upper and lower bounds of combined uncertainties used in EDMF. This 343 

ensures that the range of combined uncertainty falls within three standard deviations of 344 

Gaussian distribution, accounting for 99.7% values of the whole distribution. The Metropolis 345 

algorithm (Chib and Greenberg 1995) is used to estimate the posterior distribution. Specifically, 346 



the proposal distribution is a multivariate uniform distribution whereby in each dimension, the 347 

lower and upper bounds are set to be ± 1/20 of the total length of its initial parameter range 348 

(see Table 4).  To reduce the correlation between samples in a Markov chain, As a burn-in 349 

period, samples between the starting point and 10,000th point are discarded in the generated 350 

sequence. The resulting posterior distributions of parameters are shown in blue histograms in 351 

Figure 9. In EDMF, each candidate model is assumed to have an equal probability of 352 

occurrence. The EDMF results are shown in the rectangular area in Figure 9.  353 

Figure 10 presents the predictions of maximum acceleration using the three methods 354 

considered. Using the optimal parameter set obtained through RM, the maximum lateral 355 

acceleration under the harmonic lateral loads is 0.033 m/s2, which is far below the acceleration 356 

obtained in the test (0.069 m/s2). The 5th percentile and 95th percentile bounds of the 357 

acceleration predicted using traditional BMU are 0.0236 m/s2 and 0.0702 m/s2, which cover 358 

the acceleration obtained in the test. In summary, in this case study, EDMF and traditional 359 

BMU are able to provide predictions that are consistent with experimental observation whereas 360 

RM underestimates it.  361 

The cross-validation test carried out for EDMF is also performed for RM and traditional BMU 362 

(tBMU). As shown in Figure 11, in Scenario 2 and Scenario 5, RM successfully predicts the 363 

natural frequency of Mode 2 and Mode 5. But in the remaining scenarios, the predictions are 364 

far away from the measurements. In all six scenarios, tBMU is able to provide accurate 365 

identifications of the “unknown” modes because the predictions by tBMU (blue histogram) 366 

overlap with the measurements (black lines) with the measurement uncertainties (grey areas). 367 

In this case study, both EDMF and tBMU are validated while RM fails to pass the validation 368 

test (Table 9). 369 



Case study II: Dowling Hall footbridge 370 

Bridge description 371 

Dowling Hall footbridge is located at the Tufts University campus. It is a two-span footbridge 372 

connecting the Dowling Hall and the main campus. The steel frame footbridge is 44m long and 373 

3.7m wide with a composite deck (concrete with wire-welded fabric and steel corrugated slab). 374 

The bridge is supported by an abutment on the campus side and pier structures at the center 375 

and at the Dowling Hall side. A continuous structural monitoring system is installed on this 376 

bridge; details can be found from (Moser and Moaveni 2013). Six vibration modes of the 377 

footbridge with natural frequencies of 4.68 Hz (vertical mode), 5.99 Hz (vertical mode), 7.16 378 

Hz (torsional mode), 8.94 Hz (torsional mode), 13.19 Hz (vertical mode) and 13.73 Hz (vertical 379 

mode) are identified (Moser and Moaveni 2013).  380 

Structural identification 381 

In the finite element analysis using Ansys (ANSYS 2016), the composite deck is idealized as 382 

a concrete deck with equivalent weight and stiffness and modeled by Shell-181 elements. Shell-383 

181 element is a four-node element with six degrees of freedom at each node. The steel 384 

members are modeled using Beam-188 element which is based on Timoshenko beam theory 385 

including shear deformation effects. The six vibration modes, which are paired with the 386 

experimental results based on MAC criterion, are identified in FEM simulations shown in 387 

Figure 12.  388 

After sensitivity study, unknown parameters to be identified include Young’s modulus of 389 

bridge deck (𝐸), the equivalent density of bridge deck (𝐷), the logarithm of vertical stiffness 390 

of the abutment support (log VA), the logarithm of vertical stiffness at the middle support (log 391 

VM) and the logarithm of longitudinal stiffness of the side support (log LS) (Table 10). The 392 



initial ranges of the stiffness of the supports are estimated based on a previous study (Moaveni 393 

and Behmanesh 2012). The range of 𝐷 is set to be ±15% (engineering judgement) from the 394 

equivalent density calculated based on design drawings. The lower bound and upper bound of 395 

𝐸 is taken from (Cao et al. 2019a). The models and measurement uncertainties are summarized 396 

in Table 11. The modeling uncertainty is larger than the one used in the first case study (Fort 397 

Siloso Skywalk). This is because in the modeling of the Dowling Hall Footbridge, the 398 

composite deck (with wire-welded fabric and steel corrugated deck) is idealized as a concrete 399 

slab with equivalent weight and stiffness. The temperature effects on the natural frequencies 400 

have been studied by Moser and Moaveni (Moser and Moaveni 2013), where natural 401 

frequencies are seen to vary at most by 8% in the time period studied. Other uncertainties are 402 

referenced from (Cao et al. 2019a).  403 

In the first trial of EDMF, 1000 model instances are generated  using Latin Hypercube sampling 404 

in the parameter domain. EDMF results in 9 candidate models. In the second trial, the number 405 

of initial model instances is increased to 3000 and 27 candidate models are obtained. The 406 

proportion of candidate models has converged and thus the EDMF results based on 3000 model 407 

instances are presented.  As shown in Figure 13, the vertical axes represent parameter values 408 

and predictions of natural frequencies. Each blue line represents a candidate model. The red 409 

area represents the threshold calculated for each natural frequency. The identified ranges of 410 

parameter values are listed in Table 12.  411 

In a similar way to the first case study, the cross-validation process is conducted for Dowling 412 

Hall footbridge. For each scenario, the natural frequency of one mode is assumed to be 413 

unknown. Parameter values are identified using the rest of modes with EDMF. The evaluation 414 

is carried out by comparing the predictions provided by identified parameter values with the 415 

measurement of the “unknown” mode. The results are summarized in Table 13 and Figure 16. 416 



It is shown that for all the six scenarios, the measured natural frequency for each “unknown” 417 

mode falls within the prediction bounds provided by EDMF. In this way, EDMF is again shown 418 

to be able to provide accurate identification of parameter values. 419 

Vibration serviceability assessment 420 

The design guide for vibration serviceability assessment jointly published by the American 421 

Institute of Steel Construction and the Canadian Institute of Steel Construction (Murray et al. 422 

1997) is used for Dowling Hall Footbridge. The fundamental frequency of this bridge is larger 423 

than 3Hz, which meets the design guide. Unlike the first case study, only ambient vibration 424 

tests were carried out for this bridge. As a result, other vibration checks will follow the 425 

procedure in the design guide that provides vibration criteria for walking and rhythmic 426 

excitations. For this outdoor footbridge, only the peak acceleration under walking excitation 427 

has to be checked. Following the design guide, the peak acceleration due to walking is around 428 

0.017g, which does not exceed the allowable acceleration of 0.05g. Hence, this footbridge is 429 

considered to have satisfied the vibration serviceability limit state. 430 

The vibration serviceability assessment of this bridge is also carried out according to HiVoSS 431 

(Feldmann et al. 2010) as it provides a more detailed guideline than the USA practice. For 432 

Dowling Hall Footbridge, the natural frequency of vibration falls inside the range of 2.5Hz and 433 

4.6Hz. This indicates that the bridge might be excited to resonance by the second harmonic of 434 

pedestrian load. Following the requirement in HiVoSS (Feldmann et al. 2010), a uniformly 435 

distributed harmonic load model vertical load 𝑝(𝑡) is applied to the bridge according to the 436 

critical vertical mode shape. For each candidate model, the maximum vertical acceleration 437 

under the harmonic force is calculated. As shown in Figure 15, EDMF’s prediction is within 438 

the range of [0.109 m/s2, 0.156 m/s2] with a uniform distribution. This falling into the CL1 439 

comfort class which requires the maximum vertical acceleration is smaller than 0.5 m/s2. This 440 



bridge is thus considered to be satisfactory under the vibration serviceability limit state.  441 

Comparison with residual minimization and traditional Bayesian model updating 442 

Similar to Fort Siloso Skywalk, Equation (11) is used as the objective function for residual 443 

minimization. The optimal parameter set is E = 40 GPa, D = 2646 kg/m3, log VA = 7.60, log 444 

VM = 7.96 and log LS = 8.82. The method used in RM and tBMU is the same as the ones used 445 

in Fort Siloso Skywalk. The uncertainties used in tBMU are also following the same rule in 446 

Fort Siloso Skywalk. Figure 14 shows that the ranges of the posterior distribution using 447 

traditional BMU (blue histogram) are larger than the parameter range obtained using EDMF 448 

(pink area). This is because compared with traditional BMU, EDMF accounts for the biased 449 

uncertainty. As a result, EDMF is able to narrow the ranges of the parameter values.  450 

Figure 15 presents the predicted maximum acceleration using the identification results of the 451 

three methods. The prediction by the optimal parameter set using RM is 0.121 m/s2. Traditional 452 

BMU gives a much larger range than EDMF. The 5th and 95th percentile range of the traditional 453 

BMU (0.110 m/s2 to 0.268 m/s2) is 3.4 times of the ranges calculated using EDMF (0.109m/s2 454 

to 0.156 m/s2). This is because EDMF includes biased uncertainty in the identification process, 455 

but traditional BMU is unable to do so. As a result, the predictions by EDMF identification 456 

results are much narrower than the predictions by the traditional BMU.  457 

Cross validation is also carried out for RM and BMU to evaluate their accuracy in structural 458 

identification. The results are shown in Figure 16. In all scenarios except Scenario 3, RM’s 459 

predictions are far away from the measurements. In Scenario 3, RM’s prediction is close to but 460 

still outside the measurement bounds. Thus, RM fails to predict the “unknown” mode in all 461 

scenarios. In Scenario 1 and Scenario 5, tBMU’s predictions (blue histogram) are outside the 462 

measurement bounds, failing to predict the correct value of f1 and f5. The conclusions are 463 

summarized in Table 14. In this case study, Both RM and tBMU fails to pass cross validation 464 



while EDMF is validated. In this case, the identification results obtained by RM and tBMU 465 

and further predictions of maximum acceleration are not considered to be valid.  466 

Conclusions 467 

This paper focuses on vibration serviceability assessment for pedestrian bridges based on 468 

model falsification. Two pedestrian bridges, namely Fort Siloso Skywalk (Singapore) and 469 

Dowling Hall footbridge (USA), have been studied. The performance of model falsification 470 

has also been compared with the other two commonly used methods. The significance of using 471 

model falsification and the findings for the two case studies are summarized as follows.  472 

• Accounting for both modeling and measurement uncertainties, model falsification is 473 

able to provide accurate parameter identification and response prediction. The 474 

assessment based on model falsification on the maximum acceleration is consistent 475 

with experimental observations. It successfully assessed the human comfort class of 476 

vibrations in two pedestrian bridges which have different critical vibration modes 477 

(lateral mode for the first case study and vertical mode for the second case study). 478 

• The widely use method of residual minimization is unable to identify parameter values 479 

accurately in the presence of modeling and measurement uncertainties, potentially 480 

underestimating the real response of the bridge. 481 

• Traditional Bayesian model updating with zero-mean Gaussian likelihood function is 482 

able to provide accurate parameter identification for the first case study but not for the 483 

second case study – because of biased uncertainty. This would lead to a very wide range 484 

of predictions and thus cannot provide valuable information for decision makers. 485 
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Table 1: Damping ratios based on decayed vibration after jumping 

Jump direction Span 𝜁 (%) R2 

Vertical 

A 1.87 0.9625 
B 1.55 0.8056 
C 2.94 0.9535 

R2-weighted 2.15 

Horizontal 

A 1.35 0.7662 
B 0.71 0.8665 
C 0.96 0.9251 

R2-weighted 0.99 
 

Table 2: Frequency band (hand-picked) for modal identification 

Mode Frequency band (Hz) Mode Frequency band (Hz) 
Lower Upper Lower Upper 

1 0.78 1.18 7 5.26 5.66 
2 1.32 1.82 8 5.60 6.00 
3 1.72 2.12 9 6.24 6.4 
4 2.55 2.95 10 6.73 7.13 
5 3.73 4.13 11 6.98 7.38 
6 4.82 5.22 12 8.06 8.46 

Table 3: Summary of modal identification results 

Mode 𝑓 (Hz)  Mode 𝑓 (Hz) 
 MPV COV (%)  MPV COV (%) 
1 1.00 0.19 7 5.46 0.10 
2 1.56 0.34 8 5.81 0.11 
3 1.90 0.18 9 6.45 0.11 
4 2.75 0.24 10 6.97 0.21 
5 3.93 0.10 11 7.13 0.14 
6 5.03 0.07 12 8.27 0.05 

  



Table 4: Parameter initial ranges 

Parameter  Description  Lower 
bound 

Upper 
bound 

𝑬𝑪 (MPa) Young’s modulus of concrete 20,000 40,000 

𝑬𝑺 (MPa) Young’s modulus of steel 199,500 220,500 

𝑫𝑪 (kg/m3) Equivalent density of the deck 2280 2520 

𝑫𝑺 (kg/m3) Density of steel 7458 8243 

log V (N/m) Logarithm of the vertical stiffness 
of the support 

8 10 

log T (N/m) Logarithm of the transversal 
stiffness of the support 

7 9 

log L (N/m) Logarithm of the longitudinal 
stiffness of the support 

7 9 

Table 5: Uncertainty sources of natural frequencies 

Uncertainty sources Uncertainty range (%) on natural 
frequency 

Modelling uncertainties 

Model simplifications and FE 
method 

[−5, 3] 

Mesh refinement [0, 2] 

Additional uncertainty [−1, 1] 

Measurement 
uncertainties 

Modal analysis results Shown in Table 3 

Additional uncertainty [−1, 1] 

 

Table 6: Cross validation of structural identification (Fort Siloso Skywalk) 

Scenario  “Unknown” Mode Prediction range with uncertainty (Hz) Validation 

1 Mode 1 [0.79, 1.08] Yes 

2 Mode 2 [1.46, 1.76] Yes 

3 Mode 3 [1.83, 2.28] Yes 

4 Mode 4 [4.69, 5.63] Yes 



5 Mode 5 [6.43, 7.55] Yes 

6 Mode 6 [7.21, 8.68] Yes 

 

Table 7: Modelling uncertainties of maximum accelerations (Fort Siloso Skywalk) 

Modelling uncertainty sources Uncertainty range (%) 

Model simplifications and FE method  [−5, 3] 

Mesh refinement  [0, 2] 

Additional uncertainty  [−1, 1] 

Table 8: Peak accelerations for walking 

 

Location  Lateral 
acceleration 

(mm/s2) 

Point A 67 

Point B 79 

Point C 69 

Comfort Level CL1 

 
Table 9: Validation of structural identification (comparison of three methods) 

Case Study  EDMF RM tBMU 

I: Fort Siloso Skywalk Yes No Yes 

  



Table 10: Parameter initial ranges 

Parameter  Description  Lower 
bound 

Upper 
bound 

𝑬 (MPa) Young’s modulus of the equivalent 
deck 

20,000 40,000 

𝑫 (kg/m3) Equivalent density of the deck 2635 3565 

log VA  

(N/m) 

Logarithm of the vertical stiffness 
of the support at the abutment  

7 9 

log VM  

(N/m) 

Logarithm of the vertical stiffness 
of the support at the middle 

7 9 

log LS  

(N/m) 

Logarithm of the longitudinal 
stiffness of bearing at the side 

support  

7 9 

 

Table 11: Uncertainty sources of dynamic measurements 

Uncertainty source Uncertainty range (%) on 
natural frequency 

Modelling 
uncertainties 

Model simplifications and FE 
method  

[−8, 5] 

Mesh refinement  [0, 2] 

Additional uncertainty  [−1, 1] 

Measurement 
uncertainties  

Temperature and environment 
effects 

Referenced from (Moser 
and Moaveni 2013) 

Additional uncertainty  [−1,1] 

Table 12: Identified Parameter ranges 

Parameter  Lower 
bound 

Upper 
bound 

𝑬 (MPa) 25,743 39,763 

𝑫 (kg/m3) 2640 2,953 

log VA  7.08 8.77 

log VM  7.79 8.94 



log LS  7.87 8.97 

Table 13: Cross validation of structural identification (Dowling Hall footbridge) 

Scenario  “Unknown” mode Prediction range with uncertainty (Hz) Validation  

1 Mode 1 [4.58, 5.96] Yes 

2 Mode 2 [5.73, 7.55] Yes 

3 Mode 3 [6.21, 8.07] Yes 

4 Mode 4 [7.02, 10.35] Yes 

5 Mode 5 [10.30, 13.71] Yes 

6 Mode 6 [12.02, 16.13] Yes 

 

Table 14: Cross validation of structural identification (comparison of three methods) 

Case Study  EDMF RM tBMU 

II: Dowling Hall Footbridge Yes No No 
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Figure 1: Photo of Fort Siloso Skywalk 

 



 

Figure 2: Configuration and photos of accelerometers: (a) plan view; (b) elevation view; (c) 

accelerometers installed at location A-C 

 

 



 

Figure 3: (a) Power spectra; (b) singular-value spectra 

 

 

 

Figure 4: Finite element of Fort Siloso Skywalk 

 



 

Figure 5: Paired modes 

 

 

 

Figure 6: Candidate models of Fort Siloso Skywalk 

 



 

Figure 7: Maximum acceleration under lateral excitation using CMS (Fort Siloso Skywalk) 

 

 

Figure 8: Photo of random walking test 

 



 

Figure 9: Posterior distribution of parameter values obtained using tBMU (blue histogram), 

EDMF (pink area) and residual minimization (blue dashed line) (Fort Siloso Skywalk): (I) Ec; 

(II) Es; (III) Dc; (IV) Ds; (V) log V; (VI) log T; (VII) log L 

 



 

 

 

Figure 10: Maximum lateral accelerations predicted using tBMU, EDMF and residual 

minimization (RM) (Fort Siloso Skywalk) 

 

 

 



  

Figure 11: Cross validation results of EDMF, tBMU and RM for Fort Siloso Skywalk: 

(I) Scenario 1; (II) Scenario 2; (III) Scenario 3; (IV) Scenario 4; (V) Scenario 5; (VI) 

Scenario 6 

 

 



 

Figure 12: Results of modal analysis in ANSYS for the Dowling Hall footbridge 

 

 

 

Figure 13: Candidate models of the Dowling Hall footbridge 

 



 

Figure 14: Posterior distribution of parameter values obtained using tBMU (blue 

histogram), EDMF (pink area) and residual minimization (blue dashed line) (the 

Dowling Hall footbridge) : (I) E; (II) D; (III) log VA; (IV) log VM; (V) log LS 

 

 

 



 

Figure 15: Maximum vertical accelerations predicted using RM, tBMU and EDMF 

(the Dowling Hall footbridge) 

 



 

Figure 16: Cross validation results of EDMF, tBMU and RM for the Dowling Hall 

Footbridge: (I) Scenario 1; (II) Scenario 2; (III) Scenario 3; (IV) Scenario 4; (V) 

Scenario 5; (VI) Scenario 6 

 


