=PL

PolyMPC: An efficient Tool for Embedded Model

Predictive Control for Fast Mechatronic Systems

Petr Listov, Michael Spieler, Colin Jones

Ecole polytechnique fédérale de Lausanne

ABSTRACT

Efficient solvers for real-time Nonlinear Model Predictive Control (NMPC) are
needed to run on embedded hardware with highly constrained computational
resources. Most existing solvers are based on second-order methods which
are prohibitively expensive for some applications. This project explores a
Sequential Quadratic Programming (SQP) strategy using an ADMM based
Quadratic Program (QP) solver. It is implemented as a generic nonlinear
solver in form of a header-only module, which integrates into PolyMPC, an
open-source C++ library for real-time NMPC. A pseudospeciral collocation
based approximation method is used to efficiently solve the OCP, while
forward mode automatic differentiation simplifies the problem construction.
We leverage the flexibility of templated C++ with the Eigen linear algebra
library to solve OCPs without relying on dynamic memory allocation. The
iImplementation is suitable to run on a microcontroller with Floating Point Unit
(FPU), which was tested on a path following problem of a two-line soft-wing
kite.

KEY FEATURES AND PRIMER

Efficiency: compile-time polymorphism and generic programming in C++
are used to avoid expensive calling of virtual methods.

Modularity: the software does not use any custom defined modelling
language, but rather relies on popular dynamic optimization and linear
algebra frameworks. This allows one to use implemented tracking and path-
following predictive controllers, as well as utilize the building blocks of the
algorithms such as the polynomial interpolation, collocation of differential
equations and quadrature rule approximation of integrals.

Usability: PolyMPC does not use code generation,
Implemented in a compact and readable way.

algorithms are

Automatic Differentiation: CasADi (forward and backward modes) and
Eigen AutoDiff module (only forward mode, can work on microcontrollers).

Ftrsstm) =) [(@= x4 bGris = %77
i=1

10-3 4 —4— Eigen dp
—4— Eigen sp
—4— CasADi

10! 102 103 104
input variables

Deployment: in-house SQP and QP solvers, no third party libraries
(except Eigen) and dynamic memory allocation for embedded
applications.

Memory Optimization: support for direct and indirect linear algebra
solvers, in-place LDLT decomposition, cheap damped BFGS Hessian
updates, support single and double precision.

"control/nmpc.hpp"
"kinematic_kite_model.hpp"
"polynomials/ebyshev.hpp”
"solvers/sqp.hpp"

using 5 : < <double>, <double>,
<double>>;

using . <3, GAUSS LOBATTO, double>;

using = ’ < , , SQP>:

int main(int argc, char **argv)

{

controller_t kite controller;

controller_t::State x = {-1, -1, 1.5};
controller_t:Control u;
controller_t::Parameters p(0.5);

kite controller.setStateBounds(xl, xu); ///set the bounds
kite_controller.setControlBounds(ul, uu);
kite controller.setParameters(p);

kite controller.computeControl(x);
kite controller.getOptimalControl(u);

B Modifier les }
styles du texte
du masque

SIMULATION RESULTS

Kite model equations:

8 chs 9]3) = Ruk [(1) 8 _OE] Ri REN Vo ~ Rik [%Z]

V= Uy
Where

—sinfcosp —sing —cosfcos@ _ _

Rey = |—sinfsing cosp —cosOsing| Ryg = [RNK O] Ryx = [C‘_)SV —siny

cos 6 0 —sinf 0 1 Sy oSy
Path equations: State and control constraints:
0(t) =h + asin(27) 0 < 0(t) < g —nT<y(lt)<nm
@ (1) = 4a cos(27) _g < o) < g —5< u, <5

The simulator was run at 100 Hz, and the controller node was set to run at
50Hz with the following parameters: number of collocation points- 12; number
of subintervals- 3, prediction horizon- 1.5 seconds.

Kite trajeciory

— — Refarence path

Normalised frequency

Computational delay, [ms]

TESTING ON EMBEDDED PLATFORMS

Name Odroid XU4 Nucleo-F767Z1
Platform Samsung Exynos5422 STM32F767Z1
CPU 8x ARM Cortex™-A15/A7 ARM Cortex 'M-M7
Architecture ARMv7-A (32bit) ARMv7E-M (32bit)
Acceleration FPU, NEON SIMD, DSP FPU (DP+SP), DSP
Clock 2GHz 216MHz
RAM 2GB LPDDR3 512KB SRAM
Storage 16GB eMMC/SDCard 2MB flash
OS Ubuntu 18.04 bare metal
Dimensions 83mm x 58mm 133mm x 70mm
Power consumption 10W - 20W <1.5W
Platform Solve time[ms] Factor
Intel Core i7 2.8 GHz 5.83 1.0
ARM Cortex-A15 19.21 3.3
ARM Cortex-M7 349.00 59.9
REFERENCES

1. Diwale S., Alessandretti A., Lymperopoulos I., Jones C. N., Nonlinear
Adaptive Controller for Airborne Wind Energy Systems. In: American Control
Conference: 4101-4106, IEEE; 2016.

