
Modifier les
styles du texte
du masque

Efficient solvers for real-time Nonlinear Model Predictive Control (NMPC) are
needed to run on embedded hardware with highly constrained computational
resources. Most existing solvers are based on second-order methods which
are prohibitively expensive for some applications. This project explores a
Sequential Quadratic Programming (SQP) strategy using an ADMM based
Quadratic Program (QP) solver. It is implemented as a generic nonlinear
solver in form of a header-only module, which integrates into PolyMPC, an
open-source C++ library for real-time NMPC. A pseudospectral collocation
based approximation method is used to efficiently solve the OCP, while
forward mode automatic differentiation simplifies the problem construction.
We leverage the flexibility of templated C++ with the Eigen linear algebra
library to solve OCPs without relying on dynamic memory allocation. The
implementation is suitable to run on a microcontroller with Floating Point Unit
(FPU), which was tested on a path following problem of a two-line soft-wing
kite.

ABSTRACT

KEY FEATURES AND PRIMER

SIMULATION RESULTS

REFERENCES

1. Diwale S., Alessandretti A., Lymperopoulos I., Jones C. N., Nonlinear
Adaptive Controller for Airborne Wind Energy Systems. In: American Control
Conference: 4101-4106, IEEE; 2016.

Efficiency: compile-time polymorphism and generic programming in C++
are used to avoid expensive calling of virtual methods.
Modularity: the software does not use any custom defined modelling
language, but rather relies on popular dynamic optimization and linear
algebra frameworks. This allows one to use implemented tracking and path-
following predictive controllers, as well as utilize the building blocks of the
algorithms such as the polynomial interpolation, collocation of differential
equations and quadrature rule approximation of integrals.
Usability: PolyMPC does not use code generation, algorithms are
implemented in a compact and readable way.
Automatic Differentiation: CasADi (forward and backward modes) and
Eigen AutoDiff module (only forward mode, can work on microcontrollers).

École polytechnique fédérale de Lausanne
Petr Listov, Michael Spieler, Colin Jones

PolyMPC: An efficient Tool for Embedded Model
Predictive Control for Fast Mechatronic Systems

𝐿 0
0 𝐿 cos 𝜃

𝜃̇
𝜑̇ =

*𝑅,-
1 0 −𝐸
0 0 0 𝑅,-1 𝑅2,1 𝑣4 − *𝑅,-

𝐸𝑧
0

𝛾̇ = 𝑢8
Where

𝑅2, =
− sin 𝜃 cos𝜑 − sin𝜑 − cos 𝜃 cos𝜑
− sin 𝜃 sin𝜑 cos𝜑 − cos 𝜃 sin𝜑

cos 𝜃 0 − sin 𝜃
𝑅,- =

*𝑅,- 0
0 1

*𝑅,- = cos 𝛾 − sin 𝛾
sin 𝛾 cos 𝛾

Path equations:
𝜃 𝜏 = ℎ + 𝑎 sin 2𝜏
𝜑 𝜏 = 4a cos(2𝜏)

State and control constraints:
0 ≤ 𝜃 𝑡 ≤

𝜋
2

−
𝜋
2 ≤ 𝜑 𝑡 ≤

𝜋
2

Kite model equations:

TESTING ON EMBEDDED PLATFORMS

−𝜋 ≤ 𝛾 𝑡 ≤ 𝜋
−5 ≤ 𝑢8 ≤ 5

Deployment: in-house SQP and QP solvers, no third party libraries
(except Eigen) and dynamic memory allocation for embedded
applications.
Memory Optimization: support for direct and indirect linear algebra
solvers, in-place LDLT decomposition, cheap damped BFGS Hessian
updates, support single and double precision.

#include "control/nmpc.hpp"
#include "kinematic_kite_model.hpp"
#include "polynomials/ebyshev.hpp"
#include "solvers/sqp.hpp"

using Problem = polympc::OCProblem<Kite<double>, Lagrange<double>,
Mayer<double>>;

using Approximation = Chebyshev<3, GAUSS_LOBATTO, double>;
using controller_t = polympc::nmpc<Problem, Approximation, sqp::SQP>;

int main(int argc, char **argv)
{

controller_t kite_controller;

controller_t::State x = {-1, -1, 1.5};
controller_t:Control u;
controller_t::Parameters p(0.5);

kite_controller.setStateBounds(xl, xu); ///set the bounds
kite_controller.setControlBounds(ul, uu);
kite_controller.setParameters(p);

kite_controller.computeControl(x);
kite_controller.getOptimalControl(u);

}

𝑓 𝑥F, … , 𝑥I = J
KLF

I

(𝑎 − 𝑥K)O+ 𝑏(𝑥KQF − 𝑥KO)O

The simulator was run at 100 Hz, and the controller node was set to run at
50Hz with the following parameters: number of collocation points- 12; number
of subintervals- 3, prediction horizon- 1.5 seconds.

