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Abstract 
Over the last decade, Low Intensity Focused Ultrasound Stimulation (LIFUS) has emerged as 

an attractive technology to modulate the activity of deep neural targets without invasive procedures. 
However, the underlying mechanisms by which ultrasonic waves can excite neurons are still unclear, 
which prevents a reliable and targeted application of the LIFUS technology and hinders its translation 
into clinical settings. 

The Neuronal Intramembrane Cavitation Excitation (NICE) model hypothesizes that ultrasound excites 
neurons through the nucleation and resonance of nanoscale membrane structures (bilayer sono-
phores) that can alter membrane capacitance and induce depolarizing currents. The model predic-
tions of LIFUS neuromodulatory effects match a wide range of empirical observations in the brain. 
However, because it neglects cellular morphology, the NICE model cannot address important ques-
tions on the interaction of ultrasonic waves with neural structures.  

In this thesis, I propose several strategies to address these limitations, and to bridge the gap towards 
an experimental validation of this mechanism. 

I begin with an introduction establishing the background, describing the state-of-the-art and issues 
plaguing the field of ultrasound neuromodulation, and motivating the global objectives that will be pur-
sued throughout the thesis.  

In a second part, I provide a mathematical description of the two pillars of the NICE model, namely a 
cavitation model describing mechanical membrane oscillations, and a point-neuron model describing 
the membrane electrical response. In doing so, I also discuss the inherent model assumptions, the 
potential implications for its validity range, and its sensitivity to key parameters. 

In a third part, I present a novel multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) 
model that alleviates the stiffness of the NICE model by numerically separating its two constituent 
time scales. I demonstrate how this approach drastically reduces computational costs and confers 
interpretability to LIFUS neuromodulatory effects in terms of effective membrane dynamics. 

In a fourth part, I present a morphological expansion of the SONIC model (termed morphoSONIC) al-
lowing to simulate intramembrane cavitation in a wide variety of realistic neuron models. With this 
framework, I investigate LIFUS neuromodulatory effects in peripheral nerve fibers. I predict that mye-
linated and unmyelinated axons can be distinctively and selectively recruited by LIFUS, thereby open-
ing exciting avenues for peripheral neuromodulation. 

In a fifth part, I present the results of a parallel collective effort to track down the mechanisms of ultra-
sound neuromodulation in sensory neurons extracted from the medicinal leech. We found that LIFUS 
can reliably induce spiking activity within an optimal intensity range, and identified common and dif-
fering response features between acoustically and electrically evoked spikes. This chapter ends with 
a discussion of the implications of our findings for the validity of the intramembrane cavitation hypoth-
esis. 

The achievements presented in this thesis provide an increased understanding of the mechanisms 
by which ultrasound modulates neural activity, as well as computational tools for their investigation. 
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Moreover, they pave the way towards the development of reliable modeling frameworks to simulate 
ultrasound neuromodulatory effects across spatial, temporal and functional scales, helping to propel 
LIFUS into the clinics. 

Keywords 
ultrasound neuromodulation, intramembrane cavitation, computational modeling, temporal multiscal-
ing, electrophysiological interpretability, morphological expansion, peripheral nerve stimulation, fiber-
selective neuromodulation, medicinal leech, intracellular recording.
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Résumé 
Au cours de la dernière décennie, la stimulation par ultrasons focalisés de faible intensité 

(LIFUS) est apparue comme une technologie prometteuse pour moduler l'activité de structures neu-
rales profondes sans recourir à des procédures invasives. Pour autant, les mécanismes sous-jacents 
par lesquels les ondes ultrasonores peuvent exciter les neurones sont encore abscons, ce qui em-
pêche une application fiable et ciblée de la technologie LIFUS et entrave son transfert dans l’univers 
clinique.  

Le modèle d'excitation neuronale par cavitation intramembranaire (NICE) émet l'hypothèse que les 
ondes ultrasonores excitent les neurones par la nucléation et résonance de structures membranaire 
nanométriques qui peuvent modifier la capacité de la membrane et induire des courants de dépola-
risation. Les prédictions du modèle quant aux effets neuromodulateurs de la stimulation LIFUS con-
cordent avec une vaste gamme d'observations empiriques dans le cerveau. Cependant, du fait qu'il 
néglige la morphologie cellulaire, le modèle NICE n’es pas en mesure de répondre à des questions 
essentielles sur l'interaction des ondes ultrasonores avec les structures neurales. 

Dans cette thèse, je propose plusieurs stratégies pour résoudre ces limitations et combler le fossé 
vers une validation expérimentale de ce mécanisme. 

Je commence par une introduction établissant le contexte, décrivant l'état de l'art et les enjeux du 
domaine de la neuromodulation par ultrasons, et motivant les objectifs globaux qui seront poursuivis 
tout au long de la thèse. 

Dans une seconde partie, je propose une description mathématique des deux piliers du modèle NICE, 
à savoir un modèle de cavitation décrivant les oscillations mécaniques de la membrane, et un modèle 
de neurone ponctuel décrivant sa réponse électrique. Ce faisant, je discute également des hypo-
thèses intrinsèques du modèle, les implications potentielles pour sa plage de validité, et sa sensibilité 
à des paramètres clés. 

Dans une troisième partie, je présente un nouveau modèle de cavitation intramembranaire neuronale 
optimisé multi-échelles (SONIC) qui allège la rigidité du modèle NICE en séparant numériquement 
ses deux échelles de temps constituantes. Je démontre comment cette approche réduit considéra-
blement les coûts de calcul et confère une interprétabilité quant aux effets neuromodulateurs de la 
stimulation LIFUS en termes de dynamique membranaire « efficace ». 

Dans une quatrième partie, je présente une expansion morphologique du modèle SONIC (appelée 
morphoSONIC) permettant de simuler la cavitation intramembranaire dans une grande variété de mo-
dèles de neurones réalistes. Avec cet outil, j'étudie les effets neuromodulateurs de la stimulation 
LIFUS dans les fibres nerveuses périphériques. Je prédis que les axones myélinisés et non myélini-
sés peuvent être recrutés distinctivement et sélectivement par stimulation LIFUS, ouvrant ainsi des 
voies passionnantes pour la neuromodulation périphérique. 

Dans une cinquième partie, je présente les résultats d'un effort collectif parallèle pour traquer les mé-
canismes de neuromodulation par ultrasons dans des neurones sensoriels extraits de la sangsue 
médicinale. Nous avons constaté que la stimulation LIFUS peut induire une activité neuronale de ma-
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nière fiable dans une plage d'intensité optimale, et identifié les caractéristiques communes et diffé-
rentes entre les réponses évoquées par stimulation acoustique et électrique. Ce chapitre se termine 
par une discussion sur les implications de nos résultats quant à la validité de l'hypothèse de cavitation 
intramembranaire. 

Les avancées présentées dans cette thèse permettent de mieux comprendre les mécanismes par 
lesquels les ultrasons modulent l'activité neurale, et fournissent des outils de calcul pour leur investi-
gation. De plus, ils ouvrent la voie au développement de cadres de modélisation fiables pour simuler 
les effets neuromodulateurs des ultrasons à travers les échelles spatiales, temporelles et fonction-
nelles, aidant ainsi à propulser la technologie LIFUS dans l’univers clinique. 

Mots-clés 
Neuromodulation ultrasonique, cavitation intramembranaire, modélisation computationnelle, multis-
caling temporel, interprétabilité électrophysiologique, expansion morphologique, stimulation de nerfs 
périphériques, neuromodulation sélective de fibres, sangsue médicinale, enregistrement intracellu-
laire.
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precomputation cost). (a) Comparison for CW simulations of the RS neuron at 
various sub- and supra-threshold acoustic amplitudes. The excitation threshold is 
also indicated (dashed vertical line). (b) Comparison for CW simulations of the RS 
neuron at various US frequencies with a supra-threshold amplitude (threshold + 20 
kPa). (c) Comparison for CW simulations of the RS neuron with various sonophore 
radii, also at supra-threshold amplitude (threshold + 20 kPa). (d) Comparison for 
simulations of the RS (blue) and LTS (red) neurons (f = 500 kHz, A = 100 kPa, 100 
Hz PRF) at various duty cycles. Dashed horizontal lines indicate characteristic 
durations. ............................................................................................................................... 70 

Figure 22. Cell-type-specific LIFUS behavior maps. Two-dimensional behavior 
maps depicting the firing rate of RS and LTS neurons (32nm sonophore radius, 500 
kHz US frequency) as a function of duty cycle and amplitude, for various PRF, along 
with threshold excitation amplitudes predicted from titration procedures (orange 
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membrane potential (gray) are also depicted for selected combinations of duty cycle 
and amplitude. (a) Behavior maps and selected profiles at 10 HZ PRF. (b) Maps and 
profiles at 100 Hz PRF. (c) Maps and profiles at 1 kHz PRF. ................................. 72 

Figure 23. Influence of sonophore radius and US frequency on excitation thresholds. 
Threshold excitation amplitude as a function of the duty cycle for an RS neuron (solid 
curves) and an LTS neuron (dashed curves), predicted through titration procedures. 
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 ................................................................................................................................................... 74 
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neurons at very low intensities, as predicted by the SONIC model. (a) Temporal 
evolution of firing rate during LIFUS, defined as in (Tarnaud et al., 2018a), for 
increasing acoustic amplitudes. (b) Neural responses elicited at three specific 
amplitudes showing the distinct modes of interaction. Corresponding spatial peak 
pulse averaged intensities, computed as in (Tarnaud et al., 2018a) but with ρl =1075 
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(Otsuka et al., 2004; Tarnaud et al., 2018a). .............................................................. 76 
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(a) Effective membrane potential (top) and charge density (bottom) of a RS neuron 
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kHz, A = 50 kPa, 100 ms duration). Neural responses of a bilayer sonophore and its 
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obtained with a point-like SONIC model using a spatially averaged membrane 
capacitance (grey). (b) Threshold excitation amplitude as a function of sonophore 
membrane coverage, computed with both the point-like (grey) and multi-
compartmental SONIC (dark blue) models, using titration procedures at f = 500 kHz 
(1 s stimulus). .......................................................................................................................... 77 

Figure 26. Morphology, biophysics and incorporation of the SONIC paradigm in 
myelinated and unmyelinated axon models. (A) Schematic of the myelinated axon 
model morphology. (B) Electrical circuit representation of the membrane dynamics 
at the nodes of Ranvier. (C-D) Equivalent morphological and biophysical 
descriptions of the uniform unmyelinated axon. (E) Schematic diagram showing the 
incorporation of the SONIC paradigm into the axon models. ............................. 89 

Figure 27. Evaluation of the SONIC paradigm accuracy in two-compartment 
benchmark models. (A) Schematic description of the two-compartment SONIC 
benchmark and associated divergence evaluation process. (B) Magnitude of the 
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and pressure amplitude in myelinated and unmyelinated fibers, computed using 
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Figure 28. Qualitative nature of exogenous acoustic and electrical fields. (A) 
Normalized two-dimensional acoustic pressure amplitude distribution across the 
propagation plane computed upon sonication by a single-element planar 
transducer immersed in water-like medium, for various combinations of transducer 
radius and US frequency. A white line indicates the fiber’s axis as considered in this 
work. (B) Normalized transverse pressure distribution measured at the transducer’s 
focal distance, for the same combinations of transducer radius and US frequency. 
Dotted lines indicate FWHMs for each distribution. (C) FWHM of the pressure 
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considered in this work. (E) FWHM of the extracellular voltage distribution along the 
fiber axis as a function of the electrode-fiber distance. ........................................ 95 

Figure 29. Typical responses of myelinated and unmyelinated axon models to a 
single US pulse. (A) Time profiles of effective membrane capacitance, effective 
membrane potential, and effective membrane charge density across 
compartments during a typical response of a myelinated axon to a 1 ms sonication 
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distribution as in (A)). (C) Quantification of the membrane and axial currents 
contributions to the first 5 mV of normalized charge build-up in the fiber central 
compartment. (D) Equivalent quantification for the response of the unmyelinated 
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Figure 30. Comparison of strength-duration curves of myelinated and unmyelinated 
axons upon electrical and ultrasonic stimulation. (A) SD curves of representative 
myelinated (10 µm diameter, in orange) and unmyelinated (0.8 µm diameter, in blue) 
axons, depicting the threshold absolute peak extracellular voltage required to elicit 
fiber excitation as a function of pulse duration, for a characteristic 5 mm wide 
Gaussian extracellular voltage distribution. Rheobase and chronaxie values of each 
curve are indicated, as well as distinct areas of fiber recruitment. (B) SD curves of 
representative myelinated and unmyelinated axons for Gaussian extracellular 
voltage distributions of varying widths (1 to 10 mm). Arrows indicate the translation of 
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Figure 31. Underlying mechanisms of distinct rheobase excitabilities in myelinated 
and unmyelinated axons. (A) Effective capacitance variations regulate sub-threshold 
charge build-ups. From left to right: LIFUS-triggered, exponentially converging 
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charge build-ups in myelinated and unmyelinated “node” models for various sub-
threshold pressure amplitudes. Normalized steady-state charge build-ups for each 
“node” model as a function of sub-threshold pressure amplitude, computed from 
full membrane simulations (plain lines) and estimated from the sole relative variation 
in effective membrane capacitance (dashed lines, passive circuit approximation). 
Detailed intra-cycle oscillation profiles of membrane capacitance and membrane 
deflection for each fiber type at their respective threshold levels. (B) Charge-
dependent electrical and molecular pressure regulate threshold sonophore 
kinematics. From left to right: detailed profiles of internal pressure forces regulating 
sonophore cavitation during an acoustic period, driven by cell-type-specific 
threshold acoustic pressures. Detailed profiles of electrical and molecular 
pressures in both fiber types along the physiological range of membrane deflection. 
(C) Schematic diagram showing the causal chain of influence by which resting 
membrane capacitance affects charge-dependent internal pressures, sonophore 
kinematics, effective capacitance variations, and ultimately rheobase excitability.
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yielding “robust” and “sensitive” spiking behaviors. Numbers on the color maps 
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Figure 33. Experimental setup. a) Illustrative scheme of the setup. b) Leech 
dissection and ganglia chain exposition (1). On the top right corner, a detail of the 
extracted leech ganglion pinned onto the PDMS substrate (2). c) Focus on the Petri 
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Figure 34. US parameters and membrane depolarization. a) Definition of response 
and baseline interval for each DC; in case of 100% DC, baseline and response time 
interval is 300 ms; in case of 5% and 50% DC, baseline and response duration are 
equal to tone burst duration for each cycle. The membrane potential variation ΔV 
was defined as the difference between the membrane potential median value 
during stimulus onset (r1 in the figure) and its median value during the preceding 
baseline (b1 in the figure). b) Violin plot (Hintze and Nelson, 1998) of baseline variation, 
defined as the difference between membrane potential pre and post stimulus onset 
(median Bi+1- median Bi), for each pressure amplitude and DC (95 ms at DC 5 %, 50 
ms at DC 50 %, 300 ms at DC 100 %). Asterisks indicate post-hoc significant inter-
DC differences (p<0.05). c) Membrane voltage variation over the three cycles at DC 
5% and 50% for pressure 12kPa. d) Membrane potential variation for each pressure 
amplitude and DC. e) Median membrane voltage variation for each stimulation 
protocol setting. f) Stimulation intensity for each experimental protocol. g) Median 
membrane potential response as a function of the intensity. Color code in f) and g) 
indicates intensity binning: Ispta is binned into five groups: very low ≤ 0.5 mW/cm2 < 
low ≤ 2.5 mW/cm2 < medium ≤ 5 mW/cm2 < high ≤ 10 mW/cm2 <very high, with 
respectively 101, 110, 108, 97, 73 recorded traces. .................................................. 113 
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to preceding spike peak. b) Baseline variation on EL stimulation, defined as 
difference between membrane potential post and pre-current onset. A time window 
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 Introduction 
1.1 The nervous system 
The nervous system is at the core of human life. From its first appearance in early metazoans, this 
system has evolved into a gigantic, interconnected ensemble of cells that enables cognition, learning, 
behavior, and regulates all major processes in the human body.  

The nervous system is made up of specialized cells – called neurons – that can receive, integrate and 
transmit information via specific connections called synapses. Neurons are described as electrically 
excitable cells, that is, they respond to changes in their surrounding electrical field by generating an 
electro-chemical pulse called action potential. This biological process relies on the maintenance of a 
voltage difference between their intracellular and extracellular environment, called membrane poten-
tial. A disruption of this membrane potential by a physiological or external agent triggers the transient 
opening of specific transmembrane proteins – called ion channels – allowing charged particles on 
either side of the membrane to move down their electrochemical gradient, and inducing a sudden rise 
in membrane potential followed by a repolarization. Once generated, the action potential propagates 
in a wave-like fashion along the neuron membrane with little / no attenuation, and can therefore travel 
across large distances (d > 1 m) at relatively high speeds (up to more than 100 m/s). Because of their 
efficient signaling mechanism, neurons have progressively evolved into an organized network – the 
nervous system – that constitutes the predominant communication system of the human body.  

Anatomically speaking, the mammalian nervous system can be divided into two main parts: the cen-
tral nervous system (CNS) comprises the brain and the spinal cord, and the peripheral nervous system 
(PNS) covers all the nerves and ganglia that project from central structures towards limbs and organs. 
Together, these two systems collaborate to regulate a wide range of biological functions. Motor path-
ways innervate muscles to enable the production of synchronized movements. Sensory pathways 
provide the necessary feedback that shapes our perceptions (vision, hearing, smell, taste and touch), 
and can also act as protective alarm systems (nociceptive pathway). Other areas of the cerebral cortex 
enable higher cognitive functions (reasoning, speaking and remembering amongst others), while the 
cerebellum shapes many of our emotions. Finally, the autonomic nervous system (ANS) – a special-
ized division of the PNS – innervates most of our internal organs in order to regulate their activity, 
including cardiac, respiratory, digestive and urinary functions, as well as sexual arousal. 

Unfortunately, this well-oiled machinery sometimes fails to function properly. Neurodegenerative dis-
eases, such as Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), Huntington’s disease or Par-
kinson’s disease to name but a few, induce a progressive degeneration of neurons that can alter a 
variety of cognitive and motor functions. Traumatic injuries such as stroke, traumatic brain injury (TBI) 
and spinal cord injury (SCI), damage nervous structures and / or disrupt neural communication path-
ways. Abnormal patterns of neuronal activity can induce neurological disorders such as epilepsy, but 
also have a role in a wide variety of other conditions such as chronic stress, diabetes, obesity, cardio-
vascular and pulmonary diseases. These disorders impair our ability to move, think, reason, feel, or 
more generally to “function” correctly, and can lead to life-threatening conditions. Moreover, because 
most of these disorders strike primarily in mid to late life, their incidence is expected to grow as the 
world’s population ages.  
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Traditional therapeutic approaches to treat these conditions have historically involved the use of drugs 
and / or surgical interventions. Yet, despite undeniable efficacy, both of these approaches suffer from 
drawbacks and limitations. Drugs travel through the entire circulatory and often have limited specific-
ity, leading to undesired side effects. Surgical interventions are highly invasive, often irreversible, and 
open the door to infections and inflammatory reactions. Hence, alternative approaches are highly de-
sirable. 

1.2 Neuromodulation 
In order to tackle the issues raised above, the last decades have seen the development of alternative 
technologies aiming to dynamically interface with the nervous system and modulate neuronal activity 
in order to restore specific functions, while limiting invasiveness and associated risks. This general 
therapeutic approach, referred to as neuromodulation, finds its origins in the 1950s, with the advent of 
deep brain electrical stimulation (DBS) for treatment of chronic pain (Croft, 1952). It has since then 
branched into a number of declinations, which we will attempt to summarize here. 

 Traditional approaches 
Historically, the central nervous system has been the primary target for neuromodulation, with DBS as 
main therapy. The development of modern DBS is attributed to Alim Benabid, who discovered that he 
could improve symptoms of Parkinson’s disease by stimulating electrically the basal ganglia (Benabid 
et al., 1987). Since then, DBS has been used to treat obsessive compulsive disorder (Abelson et al., 
2005) and Tourette's syndrome (Baldermann et al., 2016), and recent works suggest that DBS could 
be beneficial for many mental health conditions, such as schizophrenia and depression (Schlaepfer 
and Bewernick, 2013). In the last decades, electrical stimulation of the motor and sensory cortex 
trough intra-cortical electrodes has also been investigated to restore the sense of touch in lower and 
upper limbs (Callier et al., 2020; Tomlinson and Miller, 2016).  

In parallel, several research groups studying motor impairment disorders such as spinal cord injury 
(SCI) and stroke proposed that electrical stimulation of the PNS and muscles could restore the lost 
motor function (Bhadra and Peckham, 1997). Several studies have demonstrated the potential of intra-
neural electrodes as well as multi-contact cuff electrodes to elicit stable, accurate and functional 
movement responses (Badia et al., 2011a; Wurth et al., 2017). Conversely, other groups have relied on 
the non-invasive stimulation of muscles – referred to as Functional Electrical Stimulation (FES) – to 
reliably induce movements (Crema et al., 2018; Sharif Razavian et al., 2018), although this technology 
is limited by the significant muscle fatigue it generates (Ibitoye et al., 2016). 

Complementarily, electrical stimulation has also been used for the restoration of sensation in ampu-
tees and patients suffering from sensory deficits (Micera and Navarro, 2009). These approaches have 
been very successful to restore tactile sensations (Raspopovic et al., 2014), and recent efforts have 
been dedicated to the design of less invasive strategies and the encoding of an enriched, multi-modal 
sensory feedback in upper and lower limb amputees (D’Anna et al., 2019; Mendez et al., 2020; Petrini 
et al., 2019; Valle et al., 2018).    

In parallel, several groups have investigated the potential of spinal cord stimulation (SCS) to restore 
motor and sensory functions, exploiting the ability to engage motor pathways pre-synaptically through 
the spinal circuitry in order to induce movements (Capogrosso et al., 2013). This approach has proved 
successful in restoring voluntary locomotion after SCI (Wagner et al., 2018), but can also enable spe-
cific upper limb movements in tetraplegic patients (Sharpe and Jackson, 2014). 
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Finally, the last few years have also seen the emergence of the concept of bioelectronic medicine, i.e. 
use of stimulating and sensing technologies targeting the autonomic nervous system to regulate bi-
ological processes and treat diseases. These technologies are expected to rely on miniature devices 
(so-called electroceuticals) that can use electrical, mechanical, or light stimulation to affect electrical 
signaling within the neural circuits that regulate the body’s organs and functions (Famm et al., 2013). 
Such interfaces could target specific nerve fibers or brain circuits in order to treat a variety of condi-
tions, such as epilepsy, chronic stress, diabetes, obesity, cardiovascular and pulmonary diseases, 
neurological and neuro-motor disorders, and pathologies resulting from chronic inflammation (e.g. 
rheumatoid arthritis) (Famm et al., 2013; Koopman et al., 2016). This highly promising, modern ap-
proach to medicine is currently the object of tremendous efforts to understand and map the neural 
circuits involved in different pathological pathways, and is likely to become a major growth industry in 
the decades to come. 

Overall, most clinical neuromodulation therapies currently available make use of electrical stimulation 
technologies. Yet, despite their apparent maturity, these technologies are not perfect, as they often 
involve invasive and risky surgical procedures, as well as implanted devices that typically induce a 
foreign body response (FBR), thereby deteriorating the communication with neighboring neural struc-
tures over time, and the resulting treatment efficacy (Anderson, 2001; Badia et al., 2011b; Christensen 
et al., 2014; Leventhal et al., 2006; Wurth et al., 2017). 

 Modern approaches 
In the last decades, several alternative technologies have emerged with the aim to overcome the 
drawbacks raised above. Some approaches aim at minimizing the bulkiness and tethering of stimu-
lation devices to reduce their impact on biological tissue and ensure a better bio-integration. A notable 
effort in this direction is the development of miniature, wireless devices relying on piezoelectricity to 
generate or record local electric fields and therefore probe neural circuits (Johnson et al., 2018; Seo et 
al., 2013). However, those technologies still require much development before clinical use. Other ap-
proaches, such a transcranial magnetic stimulation (TMS) and transcranial direct current stimulation 
(tDCS), rely on the delivery of electromagnetic fields through the intact skull in order to modulate cor-
tical activity (Klomjai et al., 2015; Stagg and Nitsche, 2011), with existing clinical applications in the 
treatment of drug-resistant depression (Brunoni et al., 2016; Gaynes et al., 2014) as well as for rehabil-
itation after stroke (Dionísio et al., 2018). However, they suffer from limited spatial selectivity and cannot 
efficiently target deep brain regions. Notably, a recent technique involving temporally interfering elec-
tric fields has shown promise for the noninvasive modulation of deep neural circuits (Grossman et al., 
2017), but uncertainties remain about its working principles and possible side effects. In contrast, tech-
niques such as optogenetics (Boyden, 2011) and magneto-thermal neuromodulation (Chen et al., 
2015), rely on the targeted genetic expression of transmembrane proteins to sensitize specific neu-
rons to a new form of energy that can be delivered from a remote source without affecting surrounding 
tissue, thereby improving anatomical and functional selectivity. However, the intrinsic need for genetic 
manipulation is a major hurdle when it comes to the clinical adoption of these technologies.  

In consequence, efforts are still ongoing to design an optimal neuromodulation technology that can 
elicit a precise, spatially and functionally selective modulation of neural activity, while limiting invasive-
ness and avoiding genetic manipulation. 
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1.3 Ultrasound neuromodulation 
In the last decade, an increasing number of groups have started investigating the potential of Low-
Intensity Focused Ultrasound Stimulation (LIFUS) as a noninvasive neuromodulation modality, follow-
ing promising in vitro results (Tyler et al., 2008). In fact, acoustic energy entails many desirable physi-
cal properties that make it an optimal source of interaction with biological tissue, which are already 
exploited in the clinical setting for ablation therapies and diagnostic imaging (Escoffre and Bouakaz, 
2016; Ghanouni et al., 2015; Hynynen et al., 2004). As such, it appears as an alternative stimulation 
modality that could potentially overcome the obstacles encountered by classical electrical stimula-
tion.  

Here, we will first describe the fundamental physical principles underlying the potential of ultrasound 
(US) for therapeutic applications, and provide an overview of past and present investigations that have 
exploited this form of energy to modulate neural activity.   

 The physics of ultrasound 

1.3.1.1 Acoustic waves 
Sound is defined as the mechanical disturbance of a medium such that small parts of that medium 
(i.e. particles) perform oscillatory movements. This disturbance process does not involve any mass 
transfer, and originates from a local change in the stress or pressure field within the medium. Me-
chanical energy is “embedded” in the medium in the form of elastic strains and vibrations of its con-
stitutive particles, as they are displaced from their equilibrium position. Due to the medium’s elasticity, 
the displacement of a particle induces elastic forces that tend to drive the particle back to its initial 
position. Through this oscillation and the interaction between different particles, acoustic energy can 
propagate across the medium in the form of a wave, referred to as an acoustic wave. Therefore, sound 
requires a medium to travel (be it a gas, liquid, or solid) but cannot propagate in vacuum. 

Acoustic waves propagate as a series of compressions and rarefactions of the medium, thereby dy-
namically modulating the local pressure at a frequency f, known as the carrier frequency. Waves with 
frequencies between 20 Hz and 20 kHz can be perceived by the human ear and are designated as 
(audible) sound, while those with higher frequencies are commonly referred to as ultrasound or ultra-
sonic waves.  

Acoustic waves can also be classified according to the relative direction of particle displacement with 
respect to the direction of wave propagation. Longitudinal waves propagate with a particle motion that 
is parallel to the wave propagation direction, while transverse (or shear) waves travel with a particle 
displacement perpendicular to the wave propagation axis. Interestingly, longitudinal waves propagate 
extremely well through liquids and soft tissues (such as the brain, nerves and vessels), and are thus 
ideally suited for a wide range of biomedical applications. In contrast, standing waves are damped out 
rapidly soft tissues but propagate efficiently through hard tissue like bone, and must therefore be ac-
counted for in applications involving penetration through the skull. 

1.3.1.2 Propagation properties 
Intensity, speed and wavelength. A traveling acoustic wave carries kinetic energy. This energy is com-
monly described in terms of intensity I, which is defined as the energy propagating through unit area 
per unit time, measured in W/m2. For a sinusoidal acoustic wave, that intensity is calculated as: 

(1) 

𝐼𝐼 =
𝑝𝑝2

2𝜌𝜌𝜌𝜌
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where p is the peak pressure amplitude (in Pa), 𝜌𝜌 is the medium’s density (in kg/m3) and c is the speed 
of sound in the medium. The latter is determined from the medium’s density but also from its com-
pressibility 𝜅𝜅 (i.e. the amount of volume change brought by a pressure variation): 

(2) 

𝑐𝑐 = �
1
𝜅𝜅𝜅𝜅

 

In other words, the more compressible and the denser the material, the slower acoustic waves prop-
agate in it. Interestingly, soft biological tissues have densities and acoustic compressibilities very 
close to those of water, resulting in similar propagation speeds (c ≈ 1500 m/s). 

The oscillation frequency and propagation speed of an acoustic wave together determine its wave-
length 𝜆𝜆 (in m), computed as: 

(3) 

𝜆𝜆 =
𝑐𝑐
𝑓𝑓

 

This wavelength describes the distance between two consecutive points of corresponding acoustic 
phase in the propagation medium. For a typical ultrasound frequency of 1 MHz and inside a water-like 
soft tissue, this acoustic wavelength is in the order of the millimeter. 

Absorption and attenuation. As an acoustic wave propagates, some of its kinetic energy is “absorbed” 
by the medium and converted into thermal energy. This absorption process results from distinct 
mechanisms known as viscous losses, heat conduction losses, and relaxation losses, which will not 
be detailed here. Together, these effects contribute to acoustic attenuation, i.e. the exponential de-
crease of the acoustic pressure wave amplitude as it propagates through a medium. 

Reflection, refraction, diffraction and scattering. As it reaches the interface between two media with 
different acoustic properties, an acoustic wave behaves similarly to a ray of light impinging on an op-
tical discontinuity: some of the acoustic energy is reflected (reflected wave) at the interface and prop-
agates back towards the “first” medium, while the remaining energy is transmitted through the acous-
tic barrier into the “second” medium (refracted wave). This refraction process is accompanied by a 
change in intensity and propagation direction of the wave that depend on the incident angle with re-
spect to the interface, and from differences in acoustic properties of the two media. Additionally, as 
they impinge upon an interface with finite length or small openings, acoustic waves tend to diffract, 
i.e. bend around the barrier’s edges and change their trajectories. The latter phenomenon is amplified 
when the acoustic wavelength approaches the order of magnitude of the barrier/opening dimensions.  

Those principles do not only apply at well-defined acoustic barriers between two media, but also in 
inhomogeneous medium, i.e. medium that contains particles of differing acoustic properties. In that 
case, acoustic waves are also scattered, i.e. reflected in various directions of space or delayed in 
phase, as a result of the multiple acoustic discontinuities encountered along their progression. This 
phenomenon is used as a cornerstone mechanism in diagnostic ultrasound, where biological tissue 
can be imaged by processing the backscattering patterns of impinging acoustic waves.  

Interference and standing waves. As two acoustic waves collide in space, they interact either con-
structively or destructively depending on their relative phases. Constructive interference occurs when 
the two waves are in phase and interact to enhance each other, resulting in a combined wave of higher 
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amplitude. Conversely, destructive interference occurs when two waves are out of phase and there-
fore cancel each other’s energy.  

A direct consequence of the interference phenomenon are standing waves. When a wave propagates 
through a confined medium, e.g., a medium surrounded by strong reflectors, it interferes with its own 
reflection. If the distance between the wave source and the reflector is a multiple of 𝜆𝜆/2, this interfer-
ence yields a motion pattern which appears spatially-still but with a temporally varying amplitude. 

The focused ultrasound technology leverages many of the attracting physical properties of acoustic 
waves in order to control the delivery of mechanical energy at a precise spatial location in biological 
tissue (Ghanouni et al., 2015; Kyriakou, 2015). Specifically, by optimizing the geometry of the ultrasonic 
device, acoustic waves can be shaped into a concentric wave-front where each wave propagates 
efficiently through soft tissue and converges towards a common point where they can interact con-
structively, thereby concentrating acoustic energy inside a small focal volume, referred to as acoustic 
focus. Because it relies on the local positive interference of waves propagating in different directions, 
the size of this acoustic focus is on the order of magnitude of the acoustic wavelength, i.e. 100 µm to 
1 mm for typical ultrasonic regimes used in neuromodulation applications (Rabut et al., 2020).  

1.3.1.3 Physical effects 
Acoustic waves interact with the medium in which they propagate through particle motion and pres-
sure variations. This interaction yields a number of different physical effects, which are summarized 
below. 

Thermal effects. Thermal effects are mostly related to the medium’s temperature increase, due to the 
conversion of acoustic energy into heat, discussed above. They only occur at high acoustic intensities 
that are typically not used in ultrasound neuromodulation applications.  

Acoustic radiation and acoustic streaming. At low oscillation amplitudes, both the acoustic pressure 
and the particle velocity of a wave can be assumed to follow a sinusoidal variation over time, meaning 
that changes induced during the compression phase reverse entirely during the rarefaction phase. 
However, at higher amplitudes, nonlinear acoustic effects induce an imbalance, where a higher posi-
tive pressure is observed during the compression phase than negative pressure during the rarefaction 
phase, thereby resulting in a net positive pressure over an acoustic cycle. This positive resultant, re-
ferred to as radiation pressure, tends to push the medium – or the interface between two media – 
along the direction of acoustic propagation, resulting in translational and / or angular displacements. 
Under a linearized regime, radiation force Frad (in N/m3) is calculated as: 

(4) 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 =
2𝛼𝛼𝛼𝛼
𝑐𝑐

  

where 𝛼𝛼 is the medium’s absorption coefficient (in Np/m). It follows that the amplitude of the radiation 
force is proportional to the intensity of the acoustic wave. More interestingly, it is also proportional to 
the absorption coefficient of the medium, a quantity known to increase with ultrasound frequency. 
Hence, radiation force is enhanced at higher frequencies.  

Notably, in a fluid-like medium, this generated radiation force can also set the fluid into motion, a phe-
nomenon referred to as acoustic streaming. This motion can be steady (jet flow) and/or circulatory 
(vortex), and can induce sufficient velocity gradients to perturb or damage the medium. 

Acoustic cavitation. Cavitation occurs when a medium containing microscopic gaseous bodies (or 
microbubbles) is exposed to ultrasound. Upon perturbation by an oscillating acoustic pressure, the 
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gaseous bodies are entrained into a cyclic pattern of alternating expansions and contractions. During 
compression phases, the positive acoustic pressure exerts a force on the bubble shell that tends to 
“push it inwards” and compress its gaseous core, and the whole bubble contracts. Conversely, during 
rarefaction phases, the low pressure allows the bubble to “relax”, its gaseous core decompresses and 
the bubble expands in size. This cyclic process – referred to as stable cavitation – increases the local 
absorption of acoustic energy and can induce microstreaming in the surrounding fluid, thereby caus-
ing highly localized shear stresses that can lead to severe cell damage. Furthermore, because it gen-
erates viscous stresses in the medium, this process is enhanced at low ultrasonic frequencies (f < 1 
MHz). 

Stable cavitation, however, applies only for low-intensity acoustic waves and describes a periodic and 
sustainable microbubble oscillation. For high pressure amplitudes, microbubbles show larger expan-
sions during the rarefaction cycle, but their compression is intrinsically limited by the presence of a 
gaseous core. As a result, the pressure response of the microbubble becomes highly nonlinear, and 
the bubble expands further in size with every rarefaction cycle by means of rectified diffusion, until the 
eventual fragmentation of the bubble shell and the bubble collapse. This phenomenon is called tran-
sient or inertial cavitation, can generate tremendous local increases in acoustic pressure and temper-
atures, but also produce shock waves and high-velocity liquid jets, all of which and can have dramatic 
effects on the surrounding medium / tissue.  

Considering the fluid-like properties of biological tissue, all the above-mentioned physical effects can 
potentially occur upon application of an acoustic perturbation. In turn, all of those effects can give rise 
to a variety of destructive and non-destructive interactions with cells, and more specifically neurons, 
in order to induce physiological responses.  

 Ultrasound parameters 
Before going more in depth, a precise terminology of the stimulation parameters used in ultrasound 
neuromodulation studies is desirable. US protocols are typically defined in a multi-layer fashion.  

• At the fundamental layer (i.e. the shortest time scale), ultrasonic pulses consist of sinusoidal 
acoustic pressure waves with a carrier frequency (f) and a peak-to-peak pressure amplitude 
(p), often described by an equivalent spatial-peak pulse average intensity Isppa.  

• Those pulses are applied for a specific duration (pulse duration, or PD), and repeated at a given 
frequency (pulse-repetition frequency, or PRF) and with a given duty cycle (DC = PD · PRF), 
thereby forming a pulse train, or burst, with a spatial-peak temporal average Ispta = Isppa · DC.  

• Moving towards a larger time scale, such bursts can be repeated at a given frequency (burst-
repetition frequency, or BRF), and again, a given duty cycle, for a total stimulus application du-
ration that can vary from a few milliseconds to several minutes. 

 Neuromodulation by ultrasound: a review of the literature 
Investigations on the effect of ultrasound on excitable tissues date back to the interwar period. How-
ever, little progress was made in the field for most of the 20th century. It is only recently that techno-
logical and scientific advancements have triggered a new wave of interest for this technology, focus-
ing mainly on brain applications. Here, we review those pioneering investigations, as well as those 
carried out during the recent resurgence of the field.  

1.3.3.1 Early investigations 
The first evidence of the bioelectric effect of ultrasound on neural tissue dates back to 1929, when 
Harvey observed twitching of frog’s gastrocnemius muscle upon US irradiation of the sciatic nerve 
(Harvey, 1930). Later on, the Fry brothers carried out a series of pioneering investigations through the 
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1950s, and observed notably the reversible modulation of visually evoked potentials in cats upon US 
stimulation of brain areas (Fry et al., 1958).  

During the 1970s and 1980s, most of the work in the field was performed in the Soviet Union by Gav-
rilov and his colleagues, who focused mainly on the effects of ultrasound stimulation on mechano-
receptors and auditory pathways in humans. They reported evoked tactile and hearing sensations, as 
well as heat and pain sensations when subjects were sonicated at high intensity (Foster and Wieder-
hold, 1978; Gavrilov et al., 1976, 1996; Tsirulnikov et al., 1988).  

Parallel investigations focused on the overall effect of focused ultrasound on brain excitability, with the 
application of low intensity pulses focused on various cortical and thalamic regions of rats, rabbits and 
cats (Koroleva et al., 1986; Velling and Shklyaruk, 1988). Markedly, steady negative potential shifts, 
waves of spreading depression, changes in electrocorticogram amplitude, and modulation of electro-
stimulation thresholds were observed.  

Throughout the second half of the 20th century, a few studies were also conducted on the effect of 
ultrasound on peripheral and central nerve fibers, using stimuli of medium to high intensity (Ispta > 10 
W/cm2) and long sonication durations (seconds to minutes) (Bachtold et al., 1998; Lele, 1963; Mihran 
et al., 1990; Rinaldi et al., 1991; Takagi et al., 1960; Young and Henneman, 1961). While direct nerve 
excitation by ultrasound was not observed, acoustic waves were found to have a profound influence 
on the fibers’ behavior, as they could modulate conduction speed, compound action potentials (CAP) 
amplitudes, and response latencies.  

1.3.3.2 Recent resurgence and growing expansion 
In the turn of the millennium, a few studies sparked a new interest in the field by showing that ultra-
sound, when delivered at low intensity, is able to directly elicit action potentials, as well as resulting 
synaptic activity, in hippocampal neurons cultures and ex vivo mice brains (Muratore et al., 2009; Tyler 
et al., 2008). These groundbreaking studies were followed by many in vivo investigations in anaesthe-
tized rodent and rabbit models, studying the excitatory and inhibitory effects of US stimuli on various 
brain areas through different indicators such as muscle activity, evoked potentials or fMRI (Kim et al., 
2012, 2015, King et al., 2013, 2014; Mehić et al., 2014; Min et al., 2011; Tufail et al., 2010; Yang et al., 
2012; Yoo et al., 2011; Younan et al., 2013). These studies confirmed the ability of ultrasound to engage 
brain circuits and in particular motor pathways, by showing that the sonication of somato-motor corti-
cal areas elicited motor responses in mice, rabbits and rats. More importantly, they explored a wide 
range of stimulation conditions in order to try and provide a better understanding of the interaction 
between the stimulus and the responses.  

Overall, most investigations found a positive relation between the stimulus intensity and duration, and 
the excitatory response strength and likelihood. They also consistently suggested that a stimulation 
period of several tenths of milliseconds was needed to obtain a first response. Interestingly, studies 
using pulsed waves at different duty cycles found out that low duty factors yielded mostly inhibitory 
effects (suppression of visual and somatosensory evoked potentials) in rabbits, rats and humans (Kim 
et al., 2015; Legon et al., 2014; Yoo et al., 2011) while high duty values predominantly elicited excitatory 
effects (Kim et al., 2015). Finally, a majority of these studies emphasized the important influence of 
anesthesia levels on neural excitability, with light levels seemingly more suitable for eliciting excitation.  

Notably, two recent studies on small animal models have demonstrated that LIFUS could also induce 
indirect neuromodulatory effects through an auditory pathway (Guo et al., 2018; Sato et al., 2018), and 
even more recently, such auditory confounds have also been reported in human studies (Braun et al., 
2020; Sanguinetti et al., 2020), thereby raising questions about the selectivity of this stimulation 
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method. However, subsequent studies have reported LIFUS motor responses in chemically of genet-
ically deafened animals (Mohammadjavadi et al., 2018), thereby confirming the direct neuromodula-
tory effects of LIFUS. In parallel, it was shown in humans that such confounds were primarily arising 
from the LIFUS signal envelope and could be effectively masked by the application of an auditory mask 
at the stimulus PRF. Altogether, these studies indicate that potential auditory side effects can be ef-
fectively circumvented if properly accounted for.  

1.3.3.3 Translational studies 
In a translational effort, LIFUS neuromodulatory effects in the brain have been further investigated in 
non-human primates (NHPs) and humans, using transcranial stimulation. The use of larger models (as 
compared to rabbits and rodents), combined with imaging technologies such as x-ray computed to-
mography (CT) and magnetic resonance imaging (MRI), allowed a targeted focusing of acoustic energy 
in order to study precise LIFUS effects in specific brain areas.  

In NHPs, LIFUS applied to the frontal eye field could modulate the firing rate of single neurons, and as 
a result affect visual processings and decision behavior during visuo-motor decision tasks (Hameroff 
et al., 2013; Kubanek et al., 2020; Wattiez et al., 2017). When applied to the somatosensory cortex, it 
could modulate sensory networks observed by functional MRI (Yang et al., 2018). In humans, LIFUS 
directed to the somatosensory cortex was able to both modulate somatosensory evoked potentials 
(and the EEG dynamics) (Legon et al., 2014; Mueller et al., 2014) and directly stimulate the somatosen-
sory region resulting in the generation of limb sensations (Lee et al., 2015a). Moreover, LIFUS directed 
at the frontal-temporal cortex could elicit non-specific mood effects (Deffieux et al., 2013). In all cases, 
effects were found to be very sensitive to the spatial focus of the ultrasound waves, confirming their 
local effect on neural structures.  

In parallel, other groups have studied longer-lasting effects of LIFUS on brain structures, using soni-
cation protocols lasting up to several minutes. In NHPs, stimulation of the amygdala and supplemen-
tary motor area induced significant changes in the connectivity pattern of targeted areas (observed by 
fMRI), enhancing their coupling with other brain regions and reducing their coupling with others (Folloni 
et al., 2019; Verhagen et al., 2019). Changes in functional connectivity have also been reported upon 
prolonged LIFUS application to the pre-frontal cortex in humans (Sanguinetti et al., 2020). Importantly, 
no significant side effects have been observed at the typical intensities used to elicit direct or long-
term neuromodulatory effects (Gaur et al., 2020; Legon et al., 2020). 

1.3.3.4 Investigations in the peripheral nervous system 
In parallel to brain LIFUS investigations, several groups have studied the effects of ultrasound on pe-
ripheral circuits. Early investigations by the Fry brothers showed that the application of US could mod-
ulate the spiking activity of peripheral nerves (Fry and Fry, 1950). These findings have since then been 
confirmed by other studies (Colucci et al., 2009; Juan et al., 2014; Lee et al., 2015b; Lele, 1963; Mihran 
et al., 1990; Tsui et al., 2005), where ultrasound stimuli directly targeting the nerves affected conduc-
tion velocity, action potential shape, and overall spiking activity. However, de novo generation of action 
potentials was not observed, thereby raising concerns about the direct excitability of peripheral nerves 
by ultrasound.   

However, two recent studies targeting peripheral nerves have reported direct excitatory effects. First, 
an ex vivo study on isolated crab leg nerve bundles – composed exclusively of unmyelinated fibers – 
reported that focused ultrasound stimulation (FUS) could directly elicit compound action potentials 
(Wright et al., 2015). Second, an in vivo study on mice reported that FUS targeted at the intact sciatic 
nerve could directly activate myelinated fibers to induce motor responses (Downs et al., 2018). Inter-
estingly, both of these studies used very high acoustic intensities (pressures way over 1 MPa) in order 
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to elicit direct neuronal activity, i.e. more than one order of magnitude than typical excitation thresholds 
reported in the brain (King et al., 2013).  

Overall, the pronounced differences in neuromodulatory effects observed between central and pe-
ripheral structures may point to distinct recruitment mechanisms, although it must be recalled that 
those structures are embedded in different anatomical environments that are targeted in distinct 
ways, which may explain some of those discrepancies. 

 Candidate mechanisms 
Despite a decade of intense investigation and a growing collection of empirical observations, interro-
gations remain about the exact ways by which ultrasound interacts with neural structures in order to 
trigger spiking activity. This lack of precise characterization is primarily due to the number of physical 
effects that ultrasound exerts on biological tissue, but also to the variety of sub-cellular structures that 
may take part in the transduction of mechanical energy into an electrical response. Here, we will review 
the mechanistic hypotheses that have been proposed so far. 

1.3.4.1 Ion channel mechanosensitivity 
The main hypothesis advanced in the literature is that of ion channel mechanosensitivity, i.e. that ul-
trasound, by exerting stress on the surrounding tissue and the cell membrane, may cause the opening 
of ion channels to trigger the entry of cations and induce depolarizations (Tyler, 2011). Many in vitro 
studies have documented this behavior in specifically mechanosensitive channels (Ibsen et al., 2015; 
Prieto et al., 2017; Qiu et al., 2020), but also in voltage-gated ion channels that take part in the typical 
action potential machinery (Kubanek et al., 2016; Tyler et al., 2008). Very recently, an in vitro study has 
further characterized the role of these channels in regulating LIFUS excitation: it was reported that 
LIFUS directed at mouse primary cortical neurons induced the opening of specific mechanosensitive 
channels, prompting an inward calcium flow that, after intracellular amplification, could activate cal-
cium-dependent sodium channels to induce action potentials (Yoo et al., 2020). These findings 
demonstrate that LIFUS-mediated neuromodulatory effects are, at least partially, attributable to the 
mechanosensitive nature of specific transmembrane ion channels. However, the diversity of identified 
responsive ion channels, as well as their heterogeneous expression across neural structures (Sukha-
rev and Corey, 2004), hinders the formulation of a unifying theory that would clarify their interaction 
with ultrasound (i.e. which physical effect(s) of ultrasound these structures are sensitive to, and how 
this sensitivity might then depend on LIFUS parameters) in a quantitative manner.  

1.3.4.2 Direct membrane effects 
In parallel, alternative theories have also been advanced that focus on the direct interaction between 
ultrasound and the neuronal plasma membrane, building on a significant body of evidence describing 
the membrane conformational changes associated with action potentials (Abbott and Howarth, 1973; 
Inoue et al., 1973; Kobatake et al., 1971). Theoretical and empirical studies have shown that changes in 
membrane thickness (Heimburg and Jackson, 2005) and curvature (Petrov, 2002) can modulate the 
electrical state of the membrane (Prieto et al., 2013) in order to trigger action potentials that propagate 
as electromechanical waves. Notably, recent efforts have been pursued to model this electromechan-
ical propagation in a quantitative manner (Chen et al., 2019), although it is not explicitly formulated how 
ultrasonic perturbations can involve the ion channels machinery. It has also been hypothesized that 
mechanical stresses, and the potential extracellular cavitation, induced by ultrasonic stimuli may in-
duce the formation of physical pores in the plasma membrane, thereby providing an alternative way 
for ion entry and depolarization (Blackmore et al., 2019), although the specific involvement of such 
mechanisms with low-intensity ultrasound stimuli remains to be elucidated.  
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1.3.4.3 Intramembrane cavitation 
Finally, it has been hypothesized that the local ultrasound pressure oscillation may induce the nucle-
ation of small gaseous cavities within the membrane itself that, once formed, would undergo periodic 
deflections oscillations at the ultrasound frequency (Krasovitski et al., 2011). This process, referred to 
as intramembrane cavitation, could in turn induce high-frequency, large amplitude oscillations in 
membrane capacitance and membrane potential, thereby triggering depolarizing membrane currents 
that, once integrated over a sufficient time period, could give rise to action potentials (Plaksin et al., 
2014). Notably, this hypothesis has been only advocated on a theoretical basis, and neither the me-
chanical oscillations of the membrane, nor the resulting large-amplitude oscillations of the membrane 
potential, have been directly observed experimentally (although the formation of intramembrane cav-
ities is supported by ex vivo post-sonication observation in epidermal tissue (Krasovitski et al., 2011)).  

This mechanistic hypothesis is portrayed by a Neuronal Intramembrane Cavitation Excitation (NICE) 
model that describes the entire process of energy transduction from an ultrasonic perturbation input 
(microsecond pressure oscillation) into an electrical response output (millisecond time course of the 
local membrane potential) in quantitative, mathematical terms. Moreover, the NICE model can explain 
multiple experimental observations:  

• When applied to pyramidal cortical neurons, the NICE model predicts salient features of neu-
ronal responses (latency, excitation thresholds, response strength) and of their dependency 
on LIFUS parameters (frequency, intensity, duration) that correlate with indirect empirical met-
rics of neuronal excitation upon sonication of the motor cortex area in mice (King et al., 2013). 

• Furthermore, when expanded into minimalistic, yet functionally realistic thalamo-cortical neu-
ronal networks, the NICE model predicts a LIFUS parameter dependent enhancement or sup-
pression of cortical activity (due to the cell-type-specificity of ion channel populations) that is 
in good qualitative agreement with a large number of empirical observations in animal models 
and humans (Plaksin et al., 2016).  

However, despite its enticing predictive power, the NICE model suffers from important limitations: 

• This model approximates neurons as discrete points that lack a spatial representation. As 
such, it does not provide a complete picture of the intramembrane cavitation mechanism in 
morphologically realistic neuronal structures, and cannot address physiologically relevant 
questions, such as the influence of intracellular axial coupling and morphological inhomoge-
neity on neuronal responses, the spatiotemporal dynamics of those responses, and the im-
pact of spatial features of the acoustic field on excitability (as is the case for electrical stimula-
tion). 

• The equations underlying the NICE model couple behavior across a wide range of time-scales 
and involve nonlinearities that make numerical integration a challenging and resource inten-
sive task. Simulation of larger systems are typically unaffordable, and so is the exploration of a 
wide range of stimulation parameters. 

• The rapid (ultrasonic frequency) transmembrane capacitance and associated transmembrane 
voltage oscillations result in dramatic fluctuations of the electrophysiological variables, such 
that their evolution cannot be studied and interpreted in terms and by means of classic elec-
trophysiological approaches (channel dynamics, phase plots, bifurcation theory, etc.). 

• On a practical level, solvers for the NICE model are custom-made (e.g., through Python or 
Matlab scripting) and their users cannot benefit from the large resources and infrastructure 
available, e.g., for a package like NEURON (Hines and Carnevale, 1997), for which large collec-
tions of neuron and network models, as well as high performance computing infrastructure 
and an important research community exist. 
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1.3.4.4 Summary and outlook 
Each of the presented candidate mechanisms presents both promising aspects and associated 
drawbacks: 

• Ion channel mechanosensitivity is supported by extensive empirical evidence but implies a 
wide landscape of interactions that have yet to be clarified and quantified.  

• Direct interactions with the plasma membrane are supported by extensive evidence of its in-
trinsic mechano-electrical coupling and are supported by thermo-dynamical analyses, but do 
not specify a clear role for ion channels and may therefore provide an incomplete picture of 
the transduction chain.  

• Intramembrane cavitation predicts both a physical and a biophysical mechanism in a quanti-
tative manner, correlates extensively with high-level empirical data, but lacks direct experi-
mental observation of the phenomenon.  

Hence, the transduction of ultrasonic input into neural responses could stem from various candidate 
mechanisms involving several sub-cellular structures, the relevance of which is not yet fully estab-
lished.  

Notably, the different advanced mechanisms are also linked to different bioeffects of ultrasound. In 
particular, radiation-based mechanisms (such as stress-mediated mechanosensitivity and flexoelec-
tricity) should be enhanced and therefore yield more prominent neuromodulatory effects at higher 
frequencies, which departs from the majority of empirical observations. Oppositely, cavitation-based 
mechanisms (such as sonoporation and intramembrane cavitation) should be stronger and yield more 
pronounced effects at lower frequencies, which is more in line with in vivo observations. Owing to 
these different sensitivities, systematic exploration of large parameter spaces represent a valuable 
approach to infer on the relevance of specific mechanisms (Menz et al., 2019), but this approach has 
remained largely unexploited. 

1.4 Advantages and current limitations of LIFUS 
At this stage, it appears evident that LIFUS offers a multiplicity of advantages as a stimulation and 
neuromodulation modality: 

• First, it relies on acoustic waves that penetrate efficiently through biological tissue, propagate 
with a high degree of directionality, and can interact constructively in favorable conditions. This 
offers the ability to steer and focus acoustic energy around small focal volumes (literally the 
size of a grain of rice) virtually anywhere in the human body, including deep brain targets that 
are unreachable by analogous techniques (TMS, tDCS).  

• Second, because those waves can also propagate through epidermal and bone-like tissue 
(e.g. the skull), LIFUS can be delivered noninvasively through an external device. 

• Third, as it does not involve the application of electrical or magnetic fields, LIFUS constitutes 
the only form of non-ionizing energy that can be focused in deep tissues (Rabut et al., 2020).  

• Fourth, it does not require the use of external chemical or genetic agents employed by other 
modern techniques such as optogenetics and magneto-thermal stimulation.  

• Finally, because it interacts with neurons in a different manner than conventional electrical 
stimulation techniques, LIFUS may offer new types of anatomical, functional and cellular se-
lectivity that have not been achieved so far.  
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However, it is also clear that several factors are still limiting the maturation of this technology: 

• First, the lack of a comprehensive mechanistic understanding of LIFUS neuromodulatory ef-
fects, stemming from the variety of potential mechanisms and the difficulty to reproduce in 
vivo conditions in in vitro environments (Rabut et al., 2020). 

• Second, remaining uncertainties regarding potential side effects and confounds, and how to 
effectively circumvent them.  

• Third, significant disparities between the sensitivities of central and peripheral neural struc-
tures to LIFUS that still remain to be explained.  

• Fourth, the tremendous variability of acoustic environments and stimulation parameters em-
ployed across studies, and the lack of systematic parameter space explorations allowing to 
establish clear relationships between these parameters and neuromodulatory outcomes. 

• As a result of these limitations, the choice of sonication protocols – even in the most recent 
studies – is not mechanistically nor quantitatively informed, which is likely to affect the efficacy 
and specificity of induced effects. 

• Finally, like all relatively new technologies, the long-term viability of LIFUS as a neuromodula-
tion modality in chronic applications remains to be assessed. 

Overall, these limitations emphasize the crucial need for predictive models to help designing stimu-
lation devices and optimizing delivery protocols in order to achieve target and application specific 
neuromodulatory effects. 

At the moment, the community is relying on modeling tools that predict acoustic propagation and 
energy deposition in complex animal and / or human anatomies (Neufeld et al., 2013; Treeby and Cox, 
2010). These tools constitute a great support for experimenters, helping them to optimize their setup 
to reach a given neural target and quantify potential side effects such as diffraction and standing 
waves. However, while they can predict the focus of intervention, such models do not provide any 
insight on the resulting neuromodulatory effects in the targeted and surrounding areas. More specifi-
cally, they do not allow to answer essential questions: 

• Given the multiplicity of potential responsive elements in the cellular membrane and their het-
erogeneous expression across cell types, what sort of cell type specificity can be expected in 
LIFUS-evoked responses, and how does that specificity affect functional and behavioral out-
comes? 

• Within the cell itself, how does the morphological structure affect the location of excitation, the 
potential integration of the initiated response along a dendritic tree, and its propagation along 
axonal projections? 

• In the case of highly connected neural circuits of the brain and spinal cord, how does the stim-
ulation of a given area affect other, functionally and anatomically connected areas? How do 
these network effects scale over time?  

• Can these specificities be exploited to induce new forms of neuromodulation? 
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Hence, knowing where, when, and in which quantity the acoustic stimulus is delivered is not enough. 
In order to formulate reliable predictions, the dynamic effects of ultrasound on realistic neural struc-
tures must be considered. In this context, computational approaches constitute a great tool to drive 
research forward, as they allow to investigate LIFUS-neuron interactions within the frame of a specific 
mechanistic hypothesis, and, in some cases, can quantitatively relate the effects of LIFUS parameters 
on neuronal activity. Moreover, recent examples from other fields have demonstrated that such mod-
els, once embedded in the right computational pipeline, can provide valuable predictions of large 
scale functional and behavioral effects, and greatly accelerate the maturation of neuromodulation de-
vices into the clinics (Wagner et al., 2018). 

To date, the most significant effort in this direction was made by Plaksin et al. with the introduction of 
the NICE model, which showed great potential in predicting general trends of neuromodulatory effects 
in the brain. However, the limited morphological complexity of this model highlights one of the main 
challenges encountered when modeling ultrasound neuromodulatory effects: because LIFUS-neuron 
interactions are complex and involve multiple forms of energy, they cannot be captured by classical, 
highly abstracted neuronal representations used by electrophysiologists. Instead, alternative neuronal 
representations must be designed that account for this additional complexity. These considerations 
bring us to a central question that I will try to address in this work: 

How can we efficiently model ultrasound neuromodulation across all relevant scales? 

1.5 Objectives and outline of the thesis 
In a will to answer the central question formulated above, this thesis focuses on the development of a 
computational framework to capture LIFUS neuromodulatory effects in morphologically-realistic neu-
ronal representations, with a particular focus on peripheral nerve fibers. This general incentive can be 
subdivided into several objectives: 

• Develop a computational neuron model that can formulate predictions of LIFUS neuromodu-
latory effects in an accurate, interpretable and cost-effective manner 

• Develop a methodological and computational pipeline to expand this initial model into multi-
compartmental neuronal representations, in order to provide refined predictions of LIFUS neu-
romodulatory effects in morphologically realistic structures.  

• Exploit this framework to investigate the effects of LIFUS on peripheral nerve fibers, and iden-
tify the optimal sonication parameters required to obtain a reliable neuromodulation of these 
structures 

• Confront the model predictions to empirical data in order to assess the physiological relevance 
of the energy transduction mechanism underlying the modeling developments 

The pursuit of these objectives is organized as follows: 

• Chapter 2 provides a detailed biophysical, mathematical and behavioral description of the in-
tramembrane cavitation theory and the NICE model, which we use as a quantitative theoretical 
basis for the study of ultrasound neuromodulation. It also points out the intrinsic assumptions, 
predictive power, and numerical limitations of the NICE model.  

• Chapter 3 presents our development of a multi-Scale Optimized Neuronal Intramembrane 
Cavitation (SONIC) model that alleviates the numerical limitations presented in Chapter 2 in 
order to enable more efficient simulations. Beyond algorithmic optimization, it also shows how 
this model introduces a more interpretable representation of the underlying mechano-electri-
cal transduction problem, and facilitates its spatial expansion.  

• Chapter 4 presents the development of morphoSONIC, a NEURON-based computational 
framework enabling a stable, accurate and efficient incorporation of the SONIC paradigm into 
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multi-compartmental neuron models. It also showcases the application of this framework to 
the study of intramembrane cavitation in morphologically realistic peripheral axons, yielding 
new predictions with exciting prospects for peripheral ultrasound neuromodulation.  

• Chapter 5 presents the results of an experimental effort to elucidate the mechanisms of ultra-
sound neuromodulation in an ex vivo experimental setting. It also discusses the implications 
of those results regarding the physiological relevance of the intramembrane cavitation hypoth-
esis.  

• Finally, Chapter 6 discusses these methodological and experimental achievements, high-
lights their relevance for the field and suggests direction for future research.  
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 The Neuronal Intramembrane 
Cavitation (NICE) Model 

The Neuronal Intramembrane Cavitation Excitation (NICE) model is an electromechanical 
model composed of two bi-directionally coupled dynamical systems. One the one hand, a mechanical 
model describes the periodic cavitation of nanoscale resonant phospholipidic structures located in 
the membrane of cells – so-called “bilayer sonophores” – at the ultrasound frequency. One the other 
hand, a Hodgkin-Huxley electrical model describes the progressive activation and inactivation of 
specific voltage-gated ion channels to generate membrane currents and induce a neuronal response. 
These two paradigms, although operating at different spatial and temporal scales, can be coupled 
under a specific set of assumptions, thereby providing a deterministic mechanistic hypothesis for 
ultrasound neuromodulatory effects. This chapter provides a detailed mathematical description of the 
mechanical and electrical parts of the NICE model, describing their core components and governing 
equations, but also highlighting the inherent assumptions taken throughout the model’s construction. 
A larger attention is given here to the mechanical part, which constitutes a relatively novel hypothesis.  

2.1 Biomechanical part: the bilayer sonophore model 
The bilayer sonophore model, introduced by (Krasovitski et al., 2011), formulates the hypothesis that 
the plasma membrane of cells can act as an acoustic resonator, and transform the acoustic pressure 
oscillation within the ultrasound range into nanometer scale membrane displacements. This model 
combines theories of bubble dynamics, viscoelasticity, gas diffusion and molecular interactions into 
a comprehensive set of equations, describing the periodic transverse deflections of the membrane 
sonophore structure and the associated variation in its internal gas content. It forms the mechanical 
part of the NICE model.  

 Steady-state system 

2.1.1.1 Geometry 
Consider a flat round patch of bilayer lipid membrane with diameter 2𝑎𝑎, surrounded by a constraining 
circle of transmembrane proteins (Figure 1). This patch is composed of two monolayer leaflets 
considered as viscoelastic solids, each with a thickness 𝛿𝛿0 and an exposed surface area 𝑆𝑆0 = 𝜋𝜋𝑎𝑎2. 
The gap Δ between the two monolayers creates an inter-leaflet space filled with gas (standard air 
composition, i.e. 79% N2 and 21% O2), filling a volume 𝑉𝑉0 = 𝜋𝜋Δ𝑎𝑎2. The extracellular and intracellular 
spaces lying on either side of the bilayer are both considered as an incompressible Newtonian fluid 
saturated with air. Altogether, these three components form the so-called bilayer sonophore (BLS), i.e. 
the fundamental resonating structure at the core of the intramembrane cavitation theory. Thanks to 
its cylindrical symmetry, this three-dimensional structufre can be projected onto a two-dimensional 
(𝑟𝑟, 𝑧𝑧) coordinate system, where 𝑟𝑟 and 𝑧𝑧 respectively denote the in-plane and transverse directions 
with respect to the membrane plane. 
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Figure 1. Schematic description of the resting bilayer sonophore structure. (a) 3D view with the phospholipid head groups 
(red) and lipid chains (cyan), as well as the transmembrane proteins (green). (b). Transverse plane cross-section. 

2.1.1.2 Forces 
The steady-state configuration of the bilayer sonophore results from the balance between three 
pressure forces acting on the leaflets: the static hydrostatic pressure in the surrounding fluid 𝑃𝑃0, the 
gas pressure in the inter-leaflet space 𝑃𝑃𝐺𝐺 , the intermolecular force per area between the leaflets 𝑃𝑃𝑀𝑀. 
Cylindrical symmetry implies that each of these forces acts on both leaflets with equal amplitude but 
opposite directions. 

Gaseous and hydrostatic pressures. The hydrostatic and gas pressures 𝑃𝑃0 and 𝑃𝑃𝐺𝐺 apply normally to 
the leaflet surface but in opposite directions (pointing inward and outward the bilayer respectively). 
Neglecting the effects of pressure accumulation with depth in the infinite fluid, the hydrostatic 
pressure 𝑃𝑃0 is space-invariant. Moreover, assuming that the extracellular and intracellular fluids are 
saturated with air, the leaflet permeability to gas allows the static pressures on both sides of the leaflet 
to equalize, hence for the initial steady-state system 𝑃𝑃𝐺𝐺 = 𝑃𝑃0. Hence, the initial gas molar content in 
the inter-leaflet space can be computed as: 

(5) 

𝑛𝑛𝑔𝑔,0 =
𝑃𝑃0𝑉𝑉0
𝑅𝑅𝑔𝑔𝑇𝑇

 

where 𝑅𝑅𝑔𝑔 and 𝑇𝑇 denote the universal gas constant (in Pa·m3·mol-1·K-1) and the absolute temperature 
(in K) respectively. 

Intermolecular attraction/repulsion pressure. The intermolecular pressure 𝑃𝑃𝑀𝑀 results from close-
range, complex molecular interactions between the amphiphilic molecules of the two phospholipid 
layers of the membrane. Multiple types of interactions do exist at such atomic scales, each of them 
being either of attractive or repulsive nature. While molecular attraction can be mostly explained by 
Van der Waals forces, repulsion effects arise from several types of entropic forces (e.g. undulation, 
peristaltic, protrusion,...) that are hardly distinguishable. However, all these forces exhibit similar 
dependencies on the inverse of the interaction distance, raised to some specific power (Israelachvili, 
1992). Therefore, rather than trying to interpret molecular interaction as the explicit sum of a given set 
of forces, it is defined by a generic Lennard-Jones expression that expresses the local intermolecular 
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pressure as the net difference between a repulsive and an attractive term, both depending on 
molecular distance: 

(6) 

𝑝𝑝𝑀𝑀(𝑑𝑑) =
𝑐𝑐1
𝑑𝑑𝑚𝑚�

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

−
𝑐𝑐2
𝑑𝑑𝑛𝑛�

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

In this expression 𝑐𝑐1 and 𝑐𝑐2 are constants, 𝑑𝑑 denotes the local distance between the two layers, and 
𝑚𝑚 and 𝑛𝑛 are repulsion and attraction exponents respectively. Geometrically speaking, the steady-
state configuration implies the assumption of a uniform inter-leaflet gap across the BLS structure, and 
thus a spatially constant intermolecular pressure. Moreover, this contant pressure must be null in 
order to ensure equilibrium of the unperturbed system. Therefore at 𝑑𝑑 = Δ we must have: 

(7) 

𝑐𝑐1
Δ𝑚𝑚

=
𝑐𝑐2
Δ𝑛𝑛

= 𝑝𝑝Δ 

and the generic expression for the local intermolecular pressure can be rewritten as: 

(8) 

𝑝𝑝𝑀𝑀(𝑑𝑑) = 𝑝𝑝Δ ��
Δ
𝑑𝑑
�
𝑚𝑚
− �

Δ
𝑑𝑑
�
𝑛𝑛
� 

 Perturbation 
Upon application of an external acoustic perturbation 𝑃𝑃𝐴𝐴, the equilibrium of the bilayer patch is 
disrupted. We consider here the case of a rarefactional acoustic pressure (𝑃𝑃𝐴𝐴 < 0) applied to the 
surrounding fluid far away from the bubble and thus adding up to the fluid static pressure 𝑃𝑃0. This 
negative pressure causes the leaflets to pull apart in a symmetric way. 

2.1.2.1 Geometry 
As the leaflets reach for a new equilibrium, they deform to acquire a dome-like shape (Figure 2). We 
denote by 𝑧𝑧(𝑟𝑟) the local deviation of each leaflet from its initial position (along the transverse axis) at 
a distance 𝑟𝑟 from the center of the constraining ring. Considering the circular anchoring of the BLS 
structure, the maximal transversal displacement 𝑍𝑍 of each leaflet at a given time must occur at the 
center of the constraining ring (𝑟𝑟 = 0).  
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Figure 2. Schematic description of the perturbed bilayer sonophore structure. (a) 3D view with the phospholipid head groups 
(red) and lipid chains (cyan), as well as the transmembrane proteins (green). (b). Transverse plane cross-section. 

Furthermore, it is assumed that the curvature of the deformed leaflet is constant across its entire 
surface, or in other words that the deformation of the leaflet exhibits spherical symmetry. With this in 
mind, the radius of curvature 𝑅𝑅 of the upper leaflet is easily derived from the geometry of the system: 

(9) 

𝑅𝑅 =
𝑎𝑎2 + 𝑍𝑍2

2𝑍𝑍
 

It is worth noting that equation (9) defines the curvature radius as a signed measure, i.e. 𝑅𝑅 will take 
negative values for negative deflections. On a more quantitative prospect, minimal curvature radius 
amplitude is reached at 𝑍𝑍 = ±𝑎𝑎, at which point 𝑅𝑅 = 𝑎𝑎. Constant curvature also permits to define the 
local deviation 𝑧𝑧(𝑟𝑟) from the system’s geometry: 

(10) 

𝑧𝑧(𝑟𝑟) = sign(𝑍𝑍) ��𝑅𝑅2 − 𝑟𝑟2 − |𝑅𝑅| + |𝑍𝑍|� 

Notice that just as the apex deflection and the curvature radius, 𝑧𝑧 is also defined as a signed measure 
in order to reflect both positive and negative local deflections. Furthermore, the exposed surface of 
the curved leaflet equals: 
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(11) 

𝑆𝑆 = 𝜋𝜋(𝑎𝑎2 + 𝑍𝑍2) 

and the inter-leaflet space expands to a volume that is the sum of a cylinder and two spherical caps: 

(12) 

𝑉𝑉 = 𝜋𝜋Δ𝑎𝑎2 �1 +
𝑍𝑍

3Δ�
3 +

𝑍𝑍2

𝑎𝑎2�
� 

2.1.2.2 Modified intermolecular pressure. 
In this new configuration, the attraction/repulsion forces do not add out anymore, since the inter-leaflet 
gap varies along the membrane plane. At a distance 𝑟𝑟 from the center of the structure, the local leaflet 
deviation 𝑧𝑧(𝑟𝑟) implies a local inter-leaflet gap 𝑑𝑑(𝑟𝑟) = 2𝑧𝑧(𝑟𝑟) + Δ. Using this new metric, local 
intermolecular pressure can be redefined as: 

(13) 

𝑝𝑝𝑀𝑀(𝑟𝑟) = 𝑝𝑝Δ ��
Δ

2𝑧𝑧(𝑟𝑟) + Δ
�
𝑚𝑚

 − �
Δ

2𝑧𝑧(𝑟𝑟) + Δ
�
𝑛𝑛
� 

Obviously, the amplitude of the local intermolecular pressures will vary across the perturbed BLS 
structure. Therefore, an average intermolecular pressure felt across one leaflet is obtained by 
integration of the local force per unit area over the entire leaflet surface: 

(14) 

𝑃𝑃𝑀𝑀 =
1
𝑆𝑆
�
𝑎𝑎

0
�
2𝜋𝜋

0
𝑝𝑝𝑀𝑀(𝑟𝑟)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

2
𝑎𝑎2 + 𝑍𝑍2

�
𝑎𝑎

0
𝑝𝑝𝑀𝑀(𝑟𝑟)𝑟𝑟𝑟𝑟𝑟𝑟 

In order to quantify the displacement of the system for a given perturbation, two situations will be 
evaluated, for small and large deviations from the equilibrium. The mechanical response of the leaflets 
and the liquid around them voluntarily neglected in the former case (quasi-steady system), while it 
must be considered the latter case (dynamical system). 

 Quasi-steady system 
In this section, we consider the case of a small deviation of the dome center from its planar position 
(|𝑍𝑍| ≤ 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚), and evaluate the new magnitude of the forces applied on the system. 

2.1.3.1 Polytropic gas expansion 
In a quasi-steady system, it is assumed that for a small enough deviation of the leaflet from 
equilibrium, the resulting imbalance is not large enough to generate a diffusion of gas across the 
leaflet. Hence, the gas inside the membrane experiences an polytropic expansion to fill the greater 
volume between the leaflets, thereby reducing the internal pressure. Considering a small change in 
volume, the gas expansion is considered as an isotherm transformation (𝑃𝑃𝑃𝑃 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), hence the 
new internal pressure can be written as: 

(15) 

𝑃𝑃𝐺𝐺 = 𝑃𝑃𝐺𝐺,0
𝑉𝑉0
𝑉𝑉

=
𝑃𝑃𝐺𝐺,0

1 + 𝑍𝑍
3Δ �3 + 𝑍𝑍2

𝑎𝑎2�
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2.1.3.2 Transcendental equation 
Altogether, the force balance equation of the quasi-steady system is expressed as:  

(16) 

𝑃𝑃𝑀𝑀 + 𝑃𝑃𝐺𝐺 − 𝑃𝑃0 − 𝑃𝑃𝐴𝐴 = 0 

Owing to the inherent simplifications of the quasi-steady system, equation (16) does not contain any 
derivative term with respect to time. Therefore, solving the quasi-steady system simply comes down 
to finding the unique value of 𝑍𝑍 that cancels the left-hand side of the equation (termed as the quasi-
steady total pressure, 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑄𝑄𝑄𝑄), for a given external acoustic perturbation 𝑃𝑃𝐴𝐴. However since the variable 
𝑍𝑍 is found both inside and outside an integral form, equation (16) is transcendental and does not bear 
any algebraic solution. Hence it must be solved with numerical methods. 

 Dynamical system 
In this section, we consider a situation of large deviation of the dome center from its planar position 
(|𝑍𝑍| > 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚). In this case, the diffusion of gas across each monolayer, as well as the mechanical 
response of the corresponding leaflet and surrounding liquid, are too important to be neglected: they 
must be taken into account in the force balance equation. 

2.1.4.1 Gas transport across the leaflet 
As the leaflet deviation becomes significant and generates an important imbalance in the static 
pressures on both sides of the leaflets, the resulting transport of gas across monolayers must be 
considered. To do so, the curvature and thickness of the monolayers are neglected: each leaflet is 
considered as a flat disk with radius 𝑎𝑎, fixed on an infinite impermeable plane along the membrane. 
We consider here two cases of gas transport across leaflet, namely radial diffusion in semi-infinite 
space and one-dimensional diffusion through a membrane of fixed thickness, each associated with 
different assumptions. In both cases, equations are derived while considering the diffusion of gas from 
the inter-leaflet space to the surrounding fluid, thereby reducing the internal gas pressure 𝑃𝑃𝐺𝐺 . 
Nonetheless, it is worth noting that the equations are valid for a diffusion in both directions. 

Radial diffusion in semi-infinite space. In this first case, assumption is made that the gas diffuses 
across the leaflet perpendicularly to its surface, and then radially once in the fluid. In this system, 
diffusion through the leaflet membrane is considered to be significantly faster than in the fluid, which 
allows to greatly simplify the diffusive system by considering that the fast membrane diffusion 
dynamics fully complies with the limiting diffusion dynamics in the fluid. Therefore, gas transport 
across the membrane is solely governed by equations of gas diffusion in the surrounding fluid. 
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Figure 3. Cross-sectional scheme illustrating the process of gas transport across the leaflet and radial diffusion into the fluid. 
Arrows represent the unidirectional (blue) and radial (red) diffusion patterns. 

The transition from a unidirectional to a radial motion is handled by considering a hemisphere of radius 
𝑎𝑎 placed on the leaflet disk. Let us define 𝑀𝑀 and 𝑀𝑀′ as the total flux of gas diffusing across the base 
(𝑆𝑆) and the curved (𝑆𝑆′) surfaces of the hemisphere, respectively. The former flux can be related to the 
number of gas molecules (expressed in 𝑚𝑚𝑚𝑚𝑚𝑚) living the inter-leaflet space: 

(17) 

𝑀𝑀 = −
𝑑𝑑𝑛𝑛𝑔𝑔
𝑑𝑑𝑑𝑑

 

while the latter is simply derived from Fick’s first law of diffusion. In a spherically symmetric system, 
the radial diffusion flux density 𝐽𝐽(𝑟𝑟) at a distance 𝑟𝑟 from the source (approximated by the center of the 
disk in our case) is defined as: 

(18) 

𝐽𝐽(𝑟𝑟) = −𝐷𝐷𝑔𝑔𝑔𝑔
𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕

 

where 𝐷𝐷𝑔𝑔𝑔𝑔 is the diffusion coefficient of gas in fluid assumed as constant, and 𝐶𝐶𝐺𝐺(𝑟𝑟) is the local gas 
concentration in the fluid. Hence, the total flux of gas diffusing through 𝑆𝑆′ is simply: 

(19) 

𝑀𝑀′ = 𝑆𝑆′𝐽𝐽(𝑎𝑎) = −𝑆𝑆′𝐷𝐷𝑔𝑔𝑔𝑔 �
𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕

�
𝑟𝑟=𝑎𝑎

 

In the above-defined system, the hemisphere volume formally represents the physical space needed 
to transit from unidirectional to spherical diffusion. For simplification purposes, we can consider this 
transition as an instantaneous process, by virtually reducing the volume of the hemisphere to zero. As 
a consequence, we neglect the surface expansion from 𝑆𝑆 to 𝑆𝑆′ and consider the fluxes 𝑀𝑀 and 𝑀𝑀′ as 
equivalent: 
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(20) 

� 𝑆𝑆 = 𝑆𝑆′
𝑀𝑀 = 𝑀𝑀′

 

Therefore, recalling equations (17) and (19) we have: 

(21) 

𝑑𝑑𝑛𝑛𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝐷𝐷𝑔𝑔𝑔𝑔 �
𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕

�
𝑟𝑟=𝑎𝑎

 

Concretely, equation (21) states that the rate of change of the gas molar content in the inter-leaflet 
space is proportional to the gas concentration gradient in the fluid at a specific radial distance 𝑎𝑎 from 
the source. This concentration gradient remains to be formulated. 

The diffusion of the dissolved gas in the fluid is controlled by Fick’s second law: 

(22) 

𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑔𝑔𝑔𝑔∇2𝐶𝐶𝐺𝐺 

where ∇2 denotes the laplacian operator, and 𝐶𝐶𝐺𝐺 is function of both space and time. In the present 
system, we consider purely radial diffusion in a fluid region bounded internally by a sphere or radius 𝑎𝑎. 
Therefore, equation (22) is expressed in spherical coordinates: 

(23) 

𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑔𝑔𝑔𝑔 �
𝜕𝜕2𝐶𝐶𝐺𝐺
𝜕𝜕𝑟𝑟2

+
2
𝑟𝑟
𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕 �

 

and evaluated for 𝑟𝑟 ≥ 𝑎𝑎. In order to provide a unique solution to this second-order partial differential 
equation, initial and boundary conditions must be provided. Therefore, it is assumed that the initial gas 
concentration at 𝑡𝑡 = 0 is constant across the fluid: 

(24) 

𝐶𝐶𝐺𝐺(𝑟𝑟, 0) = 𝐶𝐶0;         𝑟𝑟 > 𝑎𝑎 

Moreover, we suppose that the concentration at the internal surface is maintained constant: 

(25) 

𝐶𝐶𝐺𝐺(𝑎𝑎, 𝑡𝑡) = 𝐶𝐶𝑠𝑠        𝑡𝑡 > 0 

Considering such conditions, the problem can be solved using Laplace transformation with the 
introduction of a new variable 𝑢𝑢 = 𝐶𝐶𝐺𝐺𝑟𝑟 (Crank, 2009), and the solution takes the form: 

(26) 

𝐶𝐶𝐺𝐺(𝑟𝑟, 𝑡𝑡) − 𝐶𝐶0
𝐶𝐶𝑠𝑠 − 𝐶𝐶0

=
𝑎𝑎
𝑟𝑟

erfc�
𝑟𝑟 − 𝑎𝑎

2�𝐷𝐷𝑔𝑔𝑔𝑔𝑡𝑡
� 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the complement error function. The formulation of the concentration gradient follows 
from (26) by simple derivation: 
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(27) 

𝜕𝜕𝐶𝐶𝐺𝐺
𝜕𝜕𝜕𝜕

= −
𝑎𝑎
𝑟𝑟

(𝐶𝐶𝑠𝑠 − 𝐶𝐶0) �
1
𝑟𝑟

erfc�
𝑟𝑟 − 𝑎𝑎

2�𝐷𝐷𝑔𝑔𝑔𝑔𝑡𝑡
� +

1
�𝜋𝜋𝐷𝐷𝑔𝑔𝑔𝑔𝑡𝑡

e
−� 𝑟𝑟−𝑎𝑎

2�𝐷𝐷𝑔𝑔𝑔𝑔𝑡𝑡
�
2

� 

Finally, evaluating (24) at 𝑟𝑟 = 𝑎𝑎 and inserting into equation (18) yields: 

(28) 

𝑑𝑑𝑛𝑛𝑔𝑔
𝑑𝑑𝑑𝑑

= 𝑆𝑆𝐷𝐷𝑔𝑔𝑔𝑔(𝐶𝐶0 − 𝐶𝐶𝑠𝑠) �
1
𝑎𝑎

+
1

�𝜋𝜋𝐷𝐷𝑔𝑔𝑔𝑔𝑡𝑡
� 

The term 𝐶𝐶𝑠𝑠 of equation (28) deserves particular attention: assuming an instantaneous transition from 
unidirectional to spherical diffusion, the internal boundary of the problem also happens to be the 
interface between the gas and fluid layers. At this interface, Henry’s law states that the amount of gas 
going into solution is proportional to the internal gas pressure: 

(29) 

𝐶𝐶𝑠𝑠 =
𝑃𝑃𝐺𝐺
𝑘𝑘𝐻𝐻

        𝑡𝑡 > 0 

where 𝑘𝑘𝐻𝐻 is Henry’s constant, and the internal pressure 𝑃𝑃𝐺𝐺 can be expressed in terms of the gas molar 
content 𝑛𝑛𝑔𝑔: 

(30) 

𝑃𝑃𝐺𝐺 =
𝑛𝑛𝑔𝑔𝑅𝑅𝑔𝑔𝑇𝑇
𝑉𝑉

 

Considering the total rate of change across the two leaflets, we have: 

(31) 

𝑑𝑑𝑛𝑛𝑔𝑔
𝑑𝑑𝑑𝑑

= 2𝑆𝑆𝐷𝐷𝑔𝑔𝑔𝑔 �𝐶𝐶0 −
𝑃𝑃𝐺𝐺
𝑘𝑘𝐻𝐻
� �

1
𝑎𝑎

+
1

�𝜋𝜋𝐷𝐷𝑔𝑔𝑔𝑔𝑡𝑡
� 

One-dimensional steady-state diffusion through the membrane. In this second case, assumption is 
made of a uniform gas concentration in the surrounding fluid, i.e. that 𝐶𝐶𝐺𝐺(𝑡𝑡) = 𝐶𝐶0 at all times and points. 
Due to this steady-state configuration, the distribution of gas concentration in the fluid can be 
neglected to focus on its unidirectional diffusion across a membrane layer of finite thickness 𝜉𝜉, 
representing the leaflet. Thanks to the assumption formulated above, both 𝐶𝐶𝑠𝑠 and 𝐶𝐶0 can be 
considered as constant for a small enough time interval. After some time, a steady-state is reached 
in which the concentration remains constant at all points of the membrane. Assuming that this steady-
state is instantaneously reached, the diffusion equation in one dimension across the leaflet then 
reduces to: 

(32) 

𝑑𝑑𝐶𝐶𝐺𝐺
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

where 𝑥𝑥 is the direction of diffusion. Integrating with the boundary conditions at both surfaces we get: 
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(33) 

𝐶𝐶𝐺𝐺 − 𝐶𝐶𝑠𝑠
𝐶𝐶0 − 𝐶𝐶𝑠𝑠

=
𝑥𝑥
𝜉𝜉

 

Hence, the rate of change of internal gas molar content simply equals the total flux of gas diffusing 
through the leaflet of surface 𝑆𝑆. Considering the total rate of change across the two leaflets, we have: 

(34) 

𝑑𝑑𝑛𝑛𝑔𝑔
𝑑𝑑𝑑𝑑

 = 2𝑆𝑆𝐷𝐷𝑔𝑔𝑔𝑔
𝑑𝑑𝐶𝐶𝐺𝐺
𝑑𝑑𝑑𝑑

=
2𝑆𝑆𝐷𝐷𝑔𝑔𝑔𝑔
𝜉𝜉

�𝐶𝐶0 −
𝑃𝑃𝐺𝐺
𝑘𝑘𝐻𝐻
� 

2.1.4.2 Rayleigh-Plesset dynamics 
Let us now focus on the dynamics of the leaflets and the surrounding fluid as the BLS structure 
experiences compression or expansion. To do so, we consider a control volume 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 that consists 
of a thin lamina (spherical shell section) containing a small portion of a leaflet as well as the adjacent 
gas and fluid layers. The geometry of the perturbed BLS implies that the leaflet exhibits constant 
curvature inside this small volume. We can thus define 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to exhibit the same curvature as the 
radius, thereby yielding a spherically symmetric local system, for all deflection amplitudes. Assuming 
that this spherical symmetry can be applied to the entire leaflet (including its leaflet extremities), the 
dynamics of the system can be expressed by the same radial differential equations that are used to 
characterize bubble expansion and collapse. For intuitive purposes, we can thus imagine the curved 
upper leaflet to be part of the boundary layer of a spherical bubble of radius 𝑅𝑅 filled with gas and 
immersed in a fluid, subject to Rayleigh-Plesset like dynamics as described in (Church, 1995). An 
important difference with the aforementioned work should nonetheless be mentioned: since the 
position of the upper leaflet extremities is fixed due to membrane anchoring, the center of the 
equivalent bubble necessarily moves in space as the upper leaflet deflection changes, in order to 
ensure spherical symmetry at all times. 

We start by defining a standard (𝑟𝑟,𝜃𝜃,𝜙𝜙) spherical coordinate system where 𝑟𝑟 represents the radial 
distance from the center of the cavity (i.e. the equivalent bubble in our case), and 𝜃𝜃 and 𝜙𝜙 specify the 
polar and azimuthal angles respectively. In order to study the mechanical behaviour of both the 
spherical leaflet and the liquid around it, we define 𝜏𝜏𝑆𝑆 and 𝜏𝜏𝐿𝐿 as their respective stress tensors. As for 
the dynamics, 𝑢𝑢(𝑟𝑟, 𝑡𝑡) denotes the radial velocity of a material element (leafleat of surrounding fluid) at 
a given distance 𝑟𝑟 ≥ 𝑅𝑅(𝑡𝑡). 

Considering both the leaflets and surrounding fliud as incompressible materials, conservation of mass 
is applied. Since the system is spherically symmetric, the inverse-square law requires that 𝑢𝑢(𝑟𝑟, 𝑡𝑡) must 
be inversely proportional to the square of the distance from the center of the cavity (Brennen, 1995). 
Therefore, letting 𝐹𝐹(𝑡𝑡) be some function of time: 

(35) 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) =
𝐹𝐹(𝑡𝑡)
𝑟𝑟2

 

Assuming zero mass transport at the gas-leaflet interface (𝑟𝑟 = 𝑅𝑅), the radial velocity 𝑈𝑈 at this radial 
distance equals the velocity of the cavity’s boundary. Considering our system, this velocity is defined 
as the rate of change of the upper leaflet deflection with time, i.e. 𝑈𝑈(𝑡𝑡) = 𝑑𝑑𝑍𝑍/𝑑𝑑𝑑𝑑. It is worth noting that 
this definition of interface velocity differs from the the standard Rayleigh-Plesset problem, where it is 
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described as 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. This difference arises from the fact that the cavity center does not remain fixed 
in space in our system. Therefore we have: 

(36) 

𝑈𝑈(𝑡𝑡) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝐹𝐹(𝑡𝑡)
𝑅𝑅2

 

Hence we can derive a generic expression for the radial velocity: 

(37) 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) =
𝑅𝑅2

𝑟𝑟2
𝑈𝑈(𝑡𝑡) 

We notice that 𝑢𝑢 is a function of 2 variables: 𝑟𝑟 and 𝑡𝑡. In order to avoid any confusion, we recall here 
that the distance 𝑟𝑟 is not bound to the position of any physical element, contrarily to 𝑅𝑅. Therefore, the 
latter variable depends on time whereas the former does not. We can thus compute the partial 
derivatives of 𝑢𝑢: 

(38) 

⎩
⎨

⎧𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
2𝑅𝑅(𝑡𝑡)
𝑟𝑟2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑈𝑈(𝑡𝑡) +
𝑅𝑅2(𝑡𝑡)
𝑟𝑟2

𝑈̇𝑈(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
2𝑅𝑅2(𝑡𝑡)
𝑟𝑟3

𝑈𝑈(𝑡𝑡)
 

Following from equation (9), the variation of the curvature radius with time can be expressed in terms 
of the boundary velocity: 

(39) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑍𝑍2(𝑡𝑡) − 𝑎𝑎2

2𝑍𝑍2(𝑡𝑡)
𝑈𝑈(𝑡𝑡) = �1 −

𝑅𝑅(𝑡𝑡)
𝑍𝑍(𝑡𝑡)�

𝑈𝑈(𝑡𝑡) 

and the time derivative of 𝑢𝑢 can be rewritten as: 

(40) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
2𝑅𝑅(𝑡𝑡)
𝑟𝑟2 �1−

𝑅𝑅(𝑡𝑡)
𝑍𝑍(𝑡𝑡)�

𝑈𝑈2(𝑡𝑡) +
𝑅𝑅2(𝑡𝑡)
𝑟𝑟2

𝑈̇𝑈(𝑡𝑡) 

Hence, the material derivative of 𝑢𝑢 (i.e. the rate of change of the velocity of a point particle as it moves 
about in space) can be expressed in spherical coordinates as the sum of a time derivative and an 
advective term: 

(41) 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
2𝑅𝑅 �1 − 𝑅𝑅

𝑍𝑍�𝑈𝑈
2 + 𝑅𝑅2𝑈̇𝑈

𝑟𝑟2
−

2𝑅𝑅4𝑈𝑈2

𝑟𝑟5
 

where 𝑍𝑍, 𝑅𝑅 and 𝑈𝑈 are obviously functions of time. Here the time derivative term represents the local 
variation of the radial velocity at a given point in space, while the advective term denotes the change 
in velocity when traveling along 𝑟𝑟. The latter is at the very origin of the nonlinearity of the system. 



The Neuronal Intramembrane Cavitation (NICE) Model 

27 

Conservation of radial momentum. With these definitions in mind, the governing equation of the 
system can be derived. Considering the conservation of radial momentum inside an infinitely small 
volume inside the leaflet (or the surrounding fluid), we apply the differential form of the Navier-Stokes 
equation in spherical coordinates: 

(42) 

𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟2  𝜏𝜏𝑟𝑟𝑟𝑟) −
𝜏𝜏𝜃𝜃𝜃𝜃 + 𝜏𝜏𝜙𝜙𝜙𝜙

𝑟𝑟
 

This equation basically states that the rate of change of the momentum of a point particle in the 
material results from a force that can be divided in two terms (Landau et al., 2011). First, a pressure 
term −𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 representing the pressure gradient force acting per unit volume of the material. Second, 
a stress term (rest of the right-hand side) that denotes shear forces acting inside the material due to 
its viscosity (and, for leaflet, elasticity) attempting to bring the volume shape back into its equilibrium 
state. Although initially derived for fluids, equation (42) is also valid for viscoelastic solids, and is 
therefore applied to the leaflet. 

Because the trace of the stress tensor 𝜏𝜏 is zero for both Newtonian fluids and viscoelastic solids (Lan-
dau et al., 2011), we have 𝜏𝜏𝑟𝑟𝑟𝑟 = −(𝜏𝜏𝜃𝜃𝜃𝜃 + 𝜏𝜏𝜙𝜙𝜙𝜙). Also, we can compute the partial derivative of the 𝑟𝑟2𝜏𝜏𝑟𝑟𝑟𝑟 
term: 

(43) 

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟2𝜏𝜏𝑟𝑟𝑟𝑟) = 2𝑟𝑟𝜏𝜏𝑟𝑟𝑟𝑟 + 𝑟𝑟2
𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕

 

Hence equation (42) can be simplified as: 

(44) 

𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕

+ 3
𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟

 

Integration with a solid surface layer. Considering a [𝑟𝑟1, 𝑟𝑟2] radial interval of homogeneous material 
(constant density), integration of equation (44) yields: 

(45) 

𝑈𝑈2 �2𝑅𝑅 �1 −
𝑅𝑅
𝑍𝑍
��

𝜌𝜌
𝑟𝑟1
−
𝜌𝜌
𝑟𝑟2
� +

1
2
𝑅𝑅4 �

𝜌𝜌
𝑟𝑟24
−
𝜌𝜌
𝑟𝑟14
�� + 𝑈̇𝑈𝑅𝑅2 �

𝜌𝜌
𝑟𝑟1
−
𝜌𝜌
𝑟𝑟2
�

= 𝑃𝑃(𝑟𝑟1) − 𝑃𝑃(𝑟𝑟2) + 𝜏𝜏𝑟𝑟𝑟𝑟(𝑟𝑟2) − 𝜏𝜏𝑟𝑟𝑟𝑟(𝑟𝑟1) + 3�
𝑟𝑟2

𝑟𝑟1

𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟
𝑑𝑑𝑑𝑑 

In order to characterize to global motion of our system, integration is performed in two separate 
intervals, namely from 𝑅𝑅 to 𝑅𝑅∗ = 𝑅𝑅 + 𝛿𝛿0 using the parameters appropriate for the leaflet, and from 𝑅𝑅∗ 
to ∞ with those appropriate for the surrounding fluid. Summing up the two left-hand side terms yields 
an expression representing the time rate of change of the radial momentum carried by the entire 
system (leaflet and surrounding fluid): 
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(46) 

𝐼𝐼1 = �
𝑅𝑅∗

𝑅𝑅
𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑 + �

∞

𝑅𝑅∗
𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑

= �2𝑅𝑅 �1 −
𝑅𝑅
𝑍𝑍
�𝑈𝑈2 + 𝑅𝑅2𝑈̇𝑈� �

𝜌𝜌𝑆𝑆
𝑅𝑅

+
𝜌𝜌𝐿𝐿
𝑅𝑅∗
−
𝜌𝜌𝑆𝑆
𝑅𝑅∗
� −

1
2
𝑅𝑅4𝑈𝑈2 �

𝜌𝜌𝑆𝑆
𝑅𝑅4

+
𝜌𝜌𝐿𝐿
𝑅𝑅∗4

−
𝜌𝜌𝑆𝑆
𝑅𝑅∗4
�

= 𝑈𝑈2 �2𝑅𝑅 �1 −
𝑅𝑅
𝑍𝑍
��
𝜌𝜌𝑆𝑆
𝑅𝑅

+
𝜌𝜌𝐿𝐿
𝑅𝑅∗
−
𝜌𝜌𝑆𝑆
𝑅𝑅∗
� −

1
2
𝑅𝑅4 �

𝜌𝜌𝑆𝑆
𝑅𝑅4

+
𝜌𝜌𝐿𝐿
𝑅𝑅∗4

−
𝜌𝜌𝑆𝑆
𝑅𝑅∗4
��+ 𝑈̇𝑈𝑅𝑅2 �

𝜌𝜌𝑆𝑆
𝑅𝑅

+
𝜌𝜌𝐿𝐿
𝑅𝑅∗
−
𝜌𝜌𝑆𝑆
𝑅𝑅∗
�

= 𝑈𝑈2 �2 �1 −
𝑅𝑅
𝑍𝑍
��
𝜌𝜌𝑆𝑆
𝑅𝑅

+ (𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)
𝑅𝑅
𝑅𝑅∗
� −

1
2�

𝜌𝜌𝑆𝑆 + (𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)
𝑅𝑅4

𝑅𝑅∗4
�� + 𝑈̇𝑈𝑅𝑅 �𝜌𝜌𝑆𝑆 + (𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)

𝑅𝑅
𝑅𝑅∗
�

= 𝑈𝑈2 ��
3
2
−

2𝑅𝑅
𝑍𝑍
�𝜌𝜌𝑆𝑆 + 2(𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)

𝑅𝑅
𝑅𝑅∗
�1−

𝑅𝑅
𝑍𝑍
−

1
4
𝑅𝑅3

𝑅𝑅∗3
��+ 𝑈̇𝑈𝑅𝑅 �𝜌𝜌𝑆𝑆 + (𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)

𝑅𝑅
𝑅𝑅∗
�

= 𝑈𝑈2 ��
3
2
−

2𝑅𝑅
𝑍𝑍
�𝜌𝜌𝑆𝑆 + (𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)

2 �1 − 𝑅𝑅
𝑍𝑍�𝑅𝑅∗

3 − 𝑅𝑅3

2𝑅𝑅∗3
� + 𝑈̇𝑈𝑅𝑅 �𝜌𝜌𝑆𝑆 + (𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆)

𝑅𝑅
𝑅𝑅∗
�

= 𝜌𝜌𝑆𝑆𝑈𝑈2 �
3
2
−

2𝑅𝑅
𝑍𝑍

+ �
𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆
𝜌𝜌𝑆𝑆

�
2 �1 − 𝑅𝑅

𝑍𝑍�𝑅𝑅∗
3 − 𝑅𝑅3

2𝑅𝑅∗3
� + 𝜌𝜌𝑆𝑆𝑅𝑅𝑈̇𝑈 �1 + �

𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆
𝜌𝜌𝑆𝑆

�
𝑅𝑅
𝑅𝑅∗
�

 

while the addition of the right-hand side terms gives the sum of all pressure and shear forces acting 
on the system: 

(47) 

𝐼𝐼2 = �
𝑅𝑅∗

𝑅𝑅
�−

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕

+ 3
𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟
� 𝑑𝑑𝑑𝑑 + �

∞

𝑅𝑅∗
�−

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝜕𝜕

+ 3
𝜏𝜏𝑟𝑟𝑟𝑟
𝑟𝑟
� 𝑑𝑑𝑑𝑑

= 𝑃𝑃𝑆𝑆(𝑅𝑅, 𝑡𝑡) − 𝑃𝑃𝑆𝑆(𝑅𝑅∗, 𝑡𝑡) + 𝑃𝑃𝐿𝐿(𝑅𝑅∗, 𝑡𝑡) − 𝑃𝑃𝐿𝐿(∞, 𝑡𝑡) + 𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟(𝑅𝑅∗, 𝑡𝑡) − 𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟(𝑅𝑅, 𝑡𝑡) − 𝜏𝜏𝐿𝐿,𝑟𝑟𝑟𝑟(𝑅𝑅∗, 𝑡𝑡)

+3�
𝑅𝑅∗(𝑡𝑡)

𝑅𝑅(𝑡𝑡)

𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟

𝑟𝑟
𝑑𝑑𝑑𝑑 + 3�

∞

𝑅𝑅∗(𝑡𝑡)

𝜏𝜏𝐿𝐿,𝑟𝑟𝑟𝑟

𝑟𝑟
𝑑𝑑𝑑𝑑

 

Boundary conditions. We now consider more closely the two interfaces of the system, where 
conservation of momentum can also be applied. At the interface between the gas and the leaflet, two 
external forces act normally to the surface: the internal gas pressure 𝑃𝑃𝐺𝐺 and the average 
intermolecular force pe  r unit area 𝑃𝑃𝑀𝑀. Hence since the system global constraint must be conserved 
we have: 

(48) 

𝑃𝑃𝑆𝑆(𝑅𝑅) − 𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟(𝑅𝑅)�����������
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑃𝑃𝐺𝐺 + 𝑃𝑃𝑀𝑀�����
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

As for the interface between the leaflet and the surrounding fluid, we have: 

(49) 

𝑃𝑃𝑆𝑆(𝑅𝑅∗) − 𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟(𝑅𝑅∗)�������������
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑃𝑃𝐿𝐿(𝑅𝑅∗) − 𝜏𝜏𝐿𝐿,𝑟𝑟𝑟𝑟(𝑅𝑅∗)�������������
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

It is worth noting here that all terms in equations (48) and (49) depend on time. We also notice that the 
contribution of surface tension effects to the global constraint is neglected in both equations. 
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In the case of a dynamical system, the consideration of the mechanical response implies that fluid 
pressure cannot be considered uniform in space anymore. Particularly, the fluid pressure applying 
locally at the interface with the leaflet 𝑃𝑃𝐿𝐿(𝑅𝑅∗, 𝑡𝑡) is greatly influenced by the dynamics of the system. 
Oppositely, the fluid pressure far from the cavity 𝑃𝑃𝐿𝐿(∞, 𝑡𝑡) is not influenced by the system and thus 
remains unchanged, i.e. 𝑃𝑃𝐿𝐿(∞, 𝑡𝑡) = 𝑃𝑃0 + 𝑃𝑃𝐴𝐴(𝑡𝑡). Using these boundary conditions, equation (47) can be 
simplified: 

(50) 

𝐼𝐼2 = 𝑃𝑃𝐺𝐺 + 𝑃𝑃𝑀𝑀 − 𝑃𝑃0 − 𝑃𝑃𝐴𝐴 + 3�
𝑅𝑅∗

𝑅𝑅

𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟

𝑟𝑟
𝑑𝑑𝑑𝑑 + 3�

∞

𝑅𝑅∗

𝜏𝜏𝐿𝐿,𝑟𝑟𝑟𝑟

𝑟𝑟
𝑑𝑑𝑑𝑑 

We can already note that in the current system where positive transverse direction is pointing outward 
the BLS structure, the definition of pressures implies that 𝑃𝑃𝐺𝐺 and 𝑃𝑃𝑀𝑀 drive a positive momentum rate 
while 𝑃𝑃0 and 𝑃𝑃𝐴𝐴 act for a negative momentum rate. Let us now focus on the definition of the radial 
stresses 𝜏𝜏𝑟𝑟𝑟𝑟  for the two layers of interest in our system. 

Viscous stresses. For the Newtonian surrounding fluid, the radial stress only depends on the dynamic 
viscosity 𝜇𝜇𝐿𝐿 and simply evaluates as: 

(51) 

𝜏𝜏𝐿𝐿,𝑟𝑟𝑟𝑟 = 2𝜇𝜇𝐿𝐿
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Hence, the integral term of the fluid radial stress in equation (50) equals: 

(52) 

3�
∞

𝑅𝑅∗(𝑡𝑡)

𝜏𝜏𝐿𝐿,𝑟𝑟𝑟𝑟

𝑟𝑟
𝑑𝑑𝑑𝑑 = −12𝜇𝜇𝐿𝐿𝑅𝑅2𝑈𝑈�

∞

𝑅𝑅∗

𝑑𝑑𝑑𝑑
𝑟𝑟4

= −4𝜇𝜇𝐿𝐿
𝑅𝑅2

𝑅𝑅∗3
𝑈𝑈 

Since the leaflet layer exhibits a viscoelastic behaviour, its radial stress entails both a viscous and an 
elastic contribution. The former simply takes the form: 

(53) 

𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 2𝜇𝜇𝑆𝑆
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

where 𝜇𝜇𝑆𝑆 is the monolayer leaflet dynamic viscosity. The viscous part of the leaflet stress integral term 
in equation (50) thus equals: 

(54) 

3�
𝑅𝑅∗

𝑅𝑅

𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑟𝑟
𝑑𝑑𝑑𝑑 = −12𝜇𝜇𝑆𝑆𝑅𝑅2𝑈𝑈�

𝑅𝑅∗

𝑅𝑅

𝑑𝑑𝑑𝑑
𝑟𝑟4

= −4𝜇𝜇𝑆𝑆𝑈𝑈 �
𝑅𝑅∗3 − 𝑅𝑅3

𝑅𝑅𝑅𝑅∗3
� 

Hence, while shear stresses denote the local viscous constraints applying to the material, their 
integration yield terms that represent global viscous constraints applying on the entire fluid and leaflet 
layers. Since these constraints are expressed in Pascals, we will refer to them as equivalent viscous 
pressures, respectively 𝑃𝑃𝑉𝑉𝑉𝑉 and 𝑃𝑃𝑉𝑉𝑉𝑉 for the leaflet and fluid layers. The term "pressure" is used here for 
convenience, however to avoid confusion it must be recalled that such viscous stresses do not bear 
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the same physical meaning than regular isotropic pressures, since they depend on the velocity of the 
system. Nevertheless, we can define such viscous pressures as: 

(55) 

⎩
⎪
⎨

⎪
⎧𝑃𝑃𝑉𝑉𝑉𝑉 = −4𝜇𝜇𝑆𝑆𝑈𝑈�

𝑅𝑅∗3 − 𝑅𝑅3

𝑅𝑅𝑅𝑅∗3
�

𝑃𝑃𝑉𝑉𝑉𝑉 = −4𝜇𝜇𝐿𝐿
𝑅𝑅2

𝑅𝑅∗3
𝑈𝑈

 

These terms denote the resistance of the system to gradual deformation by shear stress, and 
therefore act against motion regardless of the dynamics of the leaflet. Mathematically speaking, 𝑃𝑃𝑉𝑉𝑉𝑉 
and 𝑃𝑃𝑉𝑉𝑉𝑉 are negative when the sonopohre cavity is expanding (𝑈𝑈 > 0), and they are positive during 
compressive phases (𝑈𝑈 < 0). 

Elastic stress. The latter, elastic contribution of the stretched layer is obtained differently. First, since 
𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is expressed in N/m2, dividing by 𝑟𝑟 and integrating over a radial distance (as in equation 
(50)) will yield a term also expressed in N/m2 representing the global elastic constraint applied on the 
leaflet. Just as for the viscous terms, we refer to this constraint as an equivalent elastic tension 
pressure, noted 𝑃𝑃𝐸𝐸 , for consistency with other terms. Rather than integrating the local elastic stress to 
evaluate this constraint, a model of linear elasticity is applied: 𝑃𝑃𝐸𝐸 is expressed in terms of a 
circumferential tension per unit length, noted 𝑇𝑇𝐸𝐸 , divided by the leaflet curvature (𝐶𝐶 = 1/𝑅𝑅). Thus we 
have: 

(56) 

3�
𝑅𝑅∗

𝑅𝑅

𝜏𝜏𝑆𝑆,𝑟𝑟𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑟𝑟
𝑑𝑑𝑑𝑑: = 𝑃𝑃𝐸𝐸 = −

𝑇𝑇𝐸𝐸
𝑅𝑅

 

The use of a linear elasticity model implies that we neglect the effects of leaflet bending and consider 
that the tension 𝑇𝑇𝐸𝐸 only arises from an increase in the leaflet surface area, or areal strain, noted 𝜖𝜖𝐴𝐴. The 
amount of tension developed for a given areal strain is expressed as: 

(57) 

𝑇𝑇𝐸𝐸 = 𝑘𝑘𝐴𝐴  𝜖𝜖𝐴𝐴 = 𝑘𝑘𝐴𝐴
𝑆𝑆 − 𝑆𝑆0
𝑆𝑆0

 

where 𝑘𝑘𝐴𝐴 denotes the area compression modulus. Since lipid monolayers are essentially two 
dimensional structures, 𝑘𝑘𝐴𝐴 is typically defined only within the leaflet plane. Intuitively, one might expect 
that this modulus would vary linearly with the layer thickness as it would for a thin plate of isotropic 
material. In fact this is not the case and 𝑘𝑘𝐴𝐴 is only weakly dependent on bilayer thickness. The reason 
for this is that the lipids in a fluid bilayer rearrange easily so, unlike a bulk material where the resistance 
to expansion comes from intermolecular bonds, the resistance to expansion in a bilayer is a result of 
the extra hydrophobic area exposed to water upon pulling the lipids apart (Boal, 2012). Therefore, 𝑘𝑘𝐴𝐴 is 
not estimated from bulk parameters but rather measured experimentally. With this in mind, the 
equivalent elastic tension pressure can be expressed as: 

(58) 

𝑃𝑃𝐸𝐸 = −
𝑘𝑘𝐴𝐴
𝑅𝑅
𝑆𝑆 − 𝑆𝑆0
𝑆𝑆0

= −
2𝑘𝑘𝐴𝐴𝑍𝑍3

𝑎𝑎2(𝑎𝑎2 + 𝑍𝑍2)
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The minus sign in equations (56) and (58) is introduced for physical soundness, since the elastic 
tension pressure, by definition, acts against deflection to bring the leaflet back to its unstretched 
position, and must therefore be negative. 

Using the boundary conditions and newly defined pressure terms, we can assemble the governing 
equation of the dynamical bilayer sonophore system: 

(59) 

𝜌𝜌𝑆𝑆𝑈𝑈2 �
3
2
−

2𝑅𝑅
𝑍𝑍

+ �
𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆
𝜌𝜌𝑆𝑆

�
2 �1 − 𝑅𝑅

𝑍𝑍�𝑅𝑅∗
3 − 𝑅𝑅3

2𝑅𝑅∗3
� + 𝜌𝜌𝑆𝑆𝑅𝑅𝑈̇𝑈 �1 + �

𝜌𝜌𝐿𝐿 − 𝜌𝜌𝑆𝑆
𝜌𝜌𝑆𝑆

�
𝑅𝑅
𝑅𝑅∗
�

= 𝑃𝑃𝐺𝐺 + 𝑃𝑃𝑀𝑀 − 𝑃𝑃0 − 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐸𝐸 + 𝑃𝑃𝑉𝑉𝑉𝑉 + 𝑃𝑃𝑉𝑉𝑉𝑉

 

Density considerations. Considering a configuration in which the BLS is part of the thin membrane of 
a nerve cell, further simplifications can be made. In fact, we can assign the densities of the leaflet and 
fluid media to those of a phospholipid-cholesterol mixture at 20°C (1.01 g/cm3, (Johnson and Buttress, 
1973)) and human nerve tissue (1.075 g/cm3, (IT’IS Foundation, 2015)), respectively. Given such similar 
values, the system is simplified by stating that 𝜌𝜌𝑆𝑆 = 𝜌𝜌𝐿𝐿. By doing so, we neglect the effects of the 
density difference between the leaflet and fluid layers on their mechanical response, and equation 
(59) becomes: 

(60) 

𝜌𝜌𝐿𝐿𝑈𝑈2 �
3
2
−

2𝑅𝑅
𝑍𝑍 �+ 𝜌𝜌𝐿𝐿𝑅𝑅𝑈̇𝑈 = 𝑃𝑃𝐺𝐺 + 𝑃𝑃𝑀𝑀 − 𝑃𝑃0 − 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐸𝐸 + 𝑃𝑃𝑉𝑉𝑉𝑉 + 𝑃𝑃𝑉𝑉𝑉𝑉 

Nonlinearity. The first term of (60) introduces a nonlinearity in the equation. This inertial term is directly 
proportional to the square of leaflet radial velocity. Particular attention must be paid here to the 
multiplying factor of the square leaflet velocity, as this term differs by a factor 𝑓𝑓 = 1 − 4𝑅𝑅/3𝑍𝑍 from the 
one obtained by (Krasovitski et al., 2011) whose publication was taken as reference for the present 
work. For the sake of consistency though, it is chosen to use the same simplification in this study. 
Therefore, equation  (60) becomes: 

(61) 

3
2
𝜌𝜌𝐿𝐿𝑈𝑈2 + 𝜌𝜌𝐿𝐿𝑅𝑅𝑈̇𝑈 = 𝑃𝑃𝐺𝐺 + 𝑃𝑃𝑀𝑀 − 𝑃𝑃0 − 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐸𝐸 + 𝑃𝑃𝑉𝑉𝑉𝑉 + 𝑃𝑃𝑉𝑉𝑉𝑉 

Leaflet thickness approximation. At this point, assumption is made that the instantaneous curvature 
radius of the leaflet is significantly greater than its thickness, i.e. 𝑅𝑅 ≫ 𝛿𝛿0. Consequently, a few 
simplifications can be made. First, the leaflet thickness can be neglected when considering the 
viscous response of the fluid. In mathematical terms, this can be viewed as a change in the integration 
interval of the fluid viscous stress, from [𝑅𝑅∗,∞[ to [𝑅𝑅,∞[. Therefore, the fluid viscous pressure is 
approximated by: 

(62) 

𝑃𝑃𝑉𝑉𝑉𝑉 ≃ −
4𝜇𝜇𝐿𝐿𝑈𝑈
𝑅𝑅

 

As for the viscous response of the leaflet, the layer thickness is obviously of critical importance and 
therefore cannot be neglected. In fact, we can see in equation (55) that the leaflet viscous pressure is 
proportional to the difference between 𝑅𝑅∗3 and 𝑅𝑅3. Hence, let us derive a simplified expression for this 
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difference that accounts for the leaflet thickness. Considering 𝛿𝛿0 as a variable and letting 𝑅𝑅 be fixed, 
we define the function 𝑓𝑓(𝛿𝛿0) = 𝑅𝑅∗3(𝛿𝛿0) = (𝑅𝑅 + 𝛿𝛿0)3. For an infinitely thin layer, we can thus derive a 
first-order Taylor polynomial approximation of 𝑓𝑓 around zero: 

(63) 

𝑓𝑓(𝛿𝛿0) ≃ 𝑓𝑓(0) + 𝛿𝛿0𝑓𝑓′(0) = 𝑅𝑅3 + 3𝑅𝑅2𝛿𝛿0 

Using this approximation, the difference between the inner and outer radii can be written as: 

(64) 

𝑅𝑅∗3 − 𝑅𝑅3 = 3𝑅𝑅2𝛿𝛿0 

However, since the denominator of the leaflet viscous pressure term does not represent a direct 
measure of this "difference", the leaflet thickness is neglected therein by approximating that 𝑅𝑅∗3 = 𝑅𝑅3. 
Combining these two assumptions, 𝑃𝑃𝑉𝑉𝑉𝑉 can be approximated as: 

(65) 

𝑃𝑃𝑉𝑉𝑉𝑉 ≃ −
12𝜇𝜇𝑆𝑆𝛿𝛿0𝑈𝑈

𝑅𝑅2
 

Negative deflections. The equations of the dynamical system have been derived under the inherent 
assumption of a negative (rarefactional) acoustic perturbation that caused a outward deflection of the 
leaflets (𝑍𝑍 > 0). Since ultrasound perturbations consist of a sign-changing sinusoidal pressure wave, 
we also need to consider the case of a positive acoustic pressure causing a thinning of the inter-leaflet 
space (𝑍𝑍 < 0). In this configuration, the intuitive representation of the BLS structure as a gas-filled 
bubble immersed in an infinite fluid does not hold anymore. Nonetheless the system is still spherically 
symmetry, therefore it is assumed that equation (61) can apply to the negative deflection range owing 
to some modifications. 

Two points are worth addressing here. As previously mentioned, the leaflet curvature is a signed 
measure and in the case of 𝑍𝑍 < 0 it must be negative. Moreover, the deflection velocity 𝑈𝑈 still points 
outward the BLS structure in this new configuration. Therefore, a positive velocity depicts a leaflet 
whose deflection decreases in amplitude, coming back to its equilibrium state. Oppositely, a negative 
velocity corresponds to a leaflet whose negative deflection is gaining in amplitude. 

With this mind, the static pressure terms (𝑃𝑃𝑀𝑀, 𝑃𝑃𝐺𝐺 , 𝑃𝑃0 and 𝑃𝑃𝐴𝐴) have the exact same meaning and must 
therefore have the same influence on the rate of momentum of the system. In order to act against the 
leaflet negative deflection, the elastic tension pressure must this time be positive. In fact, 𝑃𝑃𝐸𝐸 is by 
definition of opposite sign to that of the curvature radius, and will therefore be positive for 𝑍𝑍 < 0. Finally, 
in order to act against leaflet motion, viscous pressures must be positive for 𝑈𝑈 < 0 and negative for 
𝑈𝑈 > 0. In order to satisfy this criterion, the fluid viscous pressure is redefined as: 

(66) 

𝑃𝑃𝑉𝑉𝑉𝑉 = −
4𝜇𝜇𝐿𝐿𝑈𝑈

|𝑅𝑅|  

Finally, since the leaflet apex acceleration 𝑈̇𝑈 is also points outwards the BLS structure, it must be 
defined such that a positive resultant pressure (right-hand side of equation (61)) drives an increase in 
deflection velocity. In order to fulfill this condition for both positive and negative deflections, equation 
(61) is divided by 𝜌𝜌𝐿𝐿𝑅𝑅 and the curvature radius dividing the right-hand side of the new equation is 
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considered in absolute value. Rcalling that 𝑈𝑈 =  𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, we thus drive a final form of the bilayer 
sonophore dynamical system governing equation:  

(67) 

𝑑𝑑2𝑍𝑍
𝑑𝑑𝑡𝑡2

= −
3

2𝑅𝑅
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2

+
1

𝜌𝜌𝐿𝐿|𝑅𝑅|
[𝑃𝑃𝐺𝐺 + 𝑃𝑃𝑀𝑀 − 𝑃𝑃0 − 𝑃𝑃𝐴𝐴 + 𝑃𝑃𝐸𝐸 + 𝑃𝑃𝑉𝑉𝑉𝑉 + 𝑃𝑃𝑉𝑉𝑉𝑉] 

This second-order differential equation states that the leaflet apex acceleration 𝑈̇𝑈 is the sum of a 
pressure-driven acceleration (right-hand side) and a nonlinear acceleration (−3𝑈𝑈2/2𝑅𝑅). The latter term 
- as currently defined - is of opposite sign to that of 𝑍𝑍 regardless of the deflection dynamics (i.e. the 
sign of 𝑈𝑈) and therefore tends to bring the system to back to its equilibrium, flat configuration at all 
times. Finally, it is worth noting because of its nonlinearity, equation (67) does not bear any analytical 
solution, and will be solved by numerical integration methods. 

2.1.4.3 Embedding in cellular tissue 
So far we have “naively” considered the environment surrounding the BLS structure as a simple 
viscous fluid, in order to derive a system’s governing equations similar to that of Rayleigh-Plesset for 
a spherical bubble. While this assumption can be reasonable for cells directly interfacing a fluidic 
medium (e.g. endothelial cells at the free surface of capillary lumen), it is far from realistic for 
membranes of most cells lying deep in cellular tissue, particularly neurons. As mentioned in (Kraso-
vitski et al., 2011), when the membrane is within or between cells, the periodic expansion of the outward 
leaflet in the bilayer sonophore is associated with pushing and stretching of nearby cellular structures, 
and that additional resistance substantially limits the leaflet expansion amplitude. This effect is 
incorporated into the model as an additional tissue membrane of thickness 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 made of a linear 
viscoelastic isotropic continuum, connected in parallel to the BLS moving leaflet. Here again, bending 
effects are neglected and a linear elasticity model is used that defines the amount of tension 
developed to be proportional to the areal strain of the layer. However, given the 3-dimensional nature 
of the surrounding cellular tissue, its areal expansion modulus should increase linearly with the layer 
thickness. Assuming a purely deviatoric stress (i.e. a stress that distorts the cellular layer without 
inducing any change in volume), the strain to stress ratio of an infinitesimally thin tissue lamina is 
defined as 2𝐺𝐺�, where 𝐺𝐺� is the dynamic shear modulus of the tissue ((Reismann and Pawlik, 1991), p. 
132). Considering the apparent thickness of the layer, we obtain 𝑘𝑘𝐴𝐴,𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝐺𝐺�𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

Due to its viscoelastic nature, cellular tissue subject to mechanical tension is characterized by a 
inherent relaxation time (during which the stress progressively decays to zero as the network relaxes), 
which implies that its effective shear modulus is time-dependent ((Boal, 2012), section 6.5.2). Under 
vibratory conditions such as the ones induced by the moving leaflet, this modulus is more easily 
expressed as a complex number in the frequency domain: 

(68) 

𝐺𝐺�(𝜔𝜔) = 𝐺𝐺𝑠𝑠(𝜔𝜔) + 𝑗𝑗𝐺𝐺𝑙𝑙(𝜔𝜔) 

Here 𝜔𝜔 is the angular vibration frequency, and 𝐺𝐺𝑠𝑠 and 𝐺𝐺𝑙𝑙 respectively denote the shear storage and 
shear loss moduli. The real part is a measure of the elastic energy stored and retrieved from the 
system, while the imaginary part represents the amount of energy dissipated as heat (i.e. the viscous 
portion) ((Boal, 2012), section 6.5.2). While both moduli are frequency dependent, rheology 
experiments on smooth muscle cells (Fabry et al., 2001) predict that (1) the shear loss modulus is 
expected to dominate at high frequencies (𝑓𝑓 > 300 Hz), and (2) 𝐺𝐺𝑙𝑙 is almost linearly dependent on the 
frequency in the ultrasonic range. Hence, we will assume here that 𝐺𝐺� ≃ 𝐺𝐺𝑙𝑙 ∝ 𝑓𝑓. As a further 
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simplification, strain variations along the layer transverse direction (due to bending) are neglected, 
such that the tissue is assumed to experience the exact same areal expansion as the moving leaflet. 
Consequently, the viscoelastic tension per unit length developing in the tissue layer can be expressed 
as: 

(69) 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑘𝑘𝐴𝐴,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜖𝜖𝐴𝐴 = 2𝐺𝐺𝑙𝑙(𝜔𝜔)𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜖𝜖𝐴𝐴 

This tension is then added to that of the leaflet, yielding the following total elastic tension: 

(70) 

𝑇𝑇𝐸𝐸 = (𝑘𝑘𝐴𝐴 + 𝑘𝑘𝐴𝐴,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝜖𝜖𝐴𝐴 

 Assumptions 
In order to obtain a model that is both mathematically valid and of reasonable complexity, several 
assumptions and simplifications have been made regarding the geometry, the applied forces and the 
dynamical behaviour of the system. This section is an attempt to clearly formulate them, and to provide 
justifications when possible. 

BLS structure. First of all, the bilayer sonophore structure is approximated as a disk-shaped surface 
with continuous mechanical anchoring at the radial extremities of both layers. While this structured, 
circular organization can seem unrealistic, analogous distribution patterns are in fact observed in real 
cell membranes as shown in (Lillemeier et al., 2006). Moreover, the spatial extent of a single bilayer 
sonophore structure is assumed to be small compared to the acoustic wavelength, so that the 
acoustic pressure can be considered spatially uniform at a given time. On a more mechanical aspect, 
the effects of leaflet bending upon compression/expansion of the BLS structure, including surface 
tension, are neglected. This is a misrepresentation of reality since biological membranes are found to 
have a bending resistance ((Boal, 2012), section 7.4), however it is supposed here that its influence is 
negligible compared to the one arising from leaflet elastic tension. Furthermore, the model assumes 
that spatially uniform condition exist inside the BLS cavity. While this seems reasonable in terms of 
gas pressure, it is not true for intermolecular forces who vary locally with the inter-leaflet gap and could 
therefore greatly influence the pressure balance, especially for short inter-leaflet distances. Finally, 
perhaps the most impacting assumption is that of spherical symmetry, assumed at all times in order 
to derive the system’s equations. While it can be argued that the range of leaflet deflections 
considered in this model will not produce a high global curvature, tremendous fluctuations can occur 
locally, particularly at the leaflet extremities. In fact, it seems difficult to imagine a perturbed leaflet that 
would conform to a perfect spherical shape, given the anchoring constraints brought by the 
transmembrane proteins. However, accounting for such local variations would greatly complicate the 
problem by introducing some spherical harmonics in the dynamics of the system, and are therefore 
neglected here. 

Surrounding media. As a first and practical approximation, no difference is made between the 
cytoplasmic and extracellular sides of the bilayer sonophore structure, both considered as uniform 
fluid-like media with identical properties (i.e. density and viscosity), expanding to infinity. These two 
assumptions (symmetry and infinite limits) greatly simplify the initial system and allow to derive a 
governing equation (equation (67)) in the first place. In a second phase, an additional layer of 
viscoelastic cellular tissue is added in parallel to the moving leaflet, in order to represent the 
mechanical resistance of the surrounding environment (and possibly also the intracellular cytoplasm) 
to deformation. Although this addition to the model somehow corrects the first assumption, the 
amplitude of the new pressure term greatly depends on the arbitrary choice of effective tissue 
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thickness. In addition, this geometric parameter is expected to vary substantially depending on the 
embedding level of the cells of interest. On a different aspect, it is worth noting that gravitational forces 
are neglected thereby yielding a constant fluid static pressure. 

Homogeneous density. Beyond the approximations made on individual components of the bilayer 
sonophore structure, further simplification of the system is made by neglecting the density difference 
between the membrane monolayers and the surrounding media. 

Quasi-steady approximation. The quasi-steady system governed by equation (16) is obtained by 
neglecting the mechanical response of the leaflet and surrounding fluid. That is, both layers are 
regarded as inertia-free components that do not bear any disinclination to move. Consequently, their 
behaviour is totally determined by the quasi-steady balance equation. While this simplified system 
does not apply for large leaflet deflections and deflection velocities, it allows to solve the initial impact 
of an acoustic perturbation on resting bilayer sonophore structure (𝑍𝑍 = 0) for which the more general 
governing equation fails numerically.  

Leaflet thickness. In order to simplify the governing equation, the viscous pressure terms were 
corrected by either neglecting the leaflet thickness or approximating it with a first-order Taylor 
polynomial. While questions can be raised about the strategy of applying different treatments for a 
single simplification, the underlying assumption that 𝑅𝑅 ≫ 𝛿𝛿0 is reasonable. In fact, a typical circular 
patch of proteins is about 50-100 nm in diameter (Lillemeier et al., 2006), and the corresponding 
sonophore radius is thus more than one order of magnitude greater than the monolayer thickness 
(𝛿𝛿0 = 2 𝑛𝑛𝑛𝑛). 

Nonlinear term. As previously mentioned, the full derivation of the system’s governing equation in 
section 2.4.2 revealed that the nonlinear term differed by a factor 𝑓𝑓 = 1 − 4𝑅𝑅/3𝑍𝑍 compared to that of 
the established bilayer sonophore governing equation ((Krasovitski et al., 2011), supplementary 
material), adapted from the Rayleigh-Plesset equation of a standard gas bubble with an elastic surface 
layer (Church, 1995). In such a system, the bubble center is considered fixed in space and the velocity 
at the interface is simply 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. In the bilayer sonophore system however, the structure is not 
anchored at the virtual center of the bubble but rather on a ring in its periphery. This constraint imposes 
to compute the interface velocity from the leaflet deflection 𝑍𝑍 (the fixed frame metrics in this system), 
as 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. Therefore, the term 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 becomes an indirect measure of the interface velocity, differing 
by a factor 1 − 𝑅𝑅/𝑍𝑍, as shown in equation (39). This change then propagates through the derivation 
process up to equation (60), where the factor becomes 1 − 4𝑅𝑅/3𝑍𝑍. Hence, its seems that the BLS 
equation of (Krasovitski et al., 2011) was directly derived from the final equation of (Church, 1995), 
thereby explaining the absence of the multiplying factor. For the sake of consistency with reference 
studies, it is chosen here to ignore this factor, although it could potentially have a significant influence 
on the dynamics of the system that should be further investigated. 

 Parameters 
Most parameters used in this study are taken directly from the two works of reference on 
intramembrane cavitation by Krasovitski (Krasovitski et al., 2011) and Plaksin (Plaksin et al., 2014). It 
should be mentioned here that these two modeling studies were designed to study the behaviour of 
different tissues for different experimental conditions, namely epithelium at room temperature (around 
20 – 25°C) for the former and brain tissue at physiological conditions (36°C) for the latter. Therefore, 
some parameters of the model differ notably between the two studies, especially those that are 
temperature-sensitive. Consequently, a detailed explanation of the choice of each parameter is 
provided in this section for clarification purposes. 
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First, since the long-term purpose of this analysis is to study the behaviour of peripheral neural tissue 
exposed to ultrasound, the system’s temperature is set to the same physiological conditions as in 
(Plaksin et al., 2014), i.e. 36°C (or 309.15 K). The static pressure term 𝑃𝑃0 is defined as the standard sea 
level atmospheric pressure (neglecting hydrostatic effects), and 𝑅𝑅𝑔𝑔 as the universal gas constant 
((Wong, 1977), p. 203). 

Leaflet parameters. Equation (13) provides a generic expression of local intermolecular pressure with 
unresolved parameters. These are determined by fitting the intermolecular model to empirical data 
for repulsion/attraction forces between amphiphilic bilayers (Helm et al., 1989; Israelachvili, 1992) 
(assuming they are the same as between two leaflets of the same membrane), while imposing a few 
conditions in order to reduce the number of degrees of freedom. While these conditions are not 
specifically detailed in (Krasovitski et al., 2011), it is supposed that the authors chose to arbitrarily set 
the pressure coefficient 𝑝𝑝Δ and inter-leaflet gap Δ to 105 Pa and 1.4 nm respectively, and then used 
least-square fitting on a distance shifted-dataset of ((Helm et al., 1989), fig. 4) to determine the 
repulsion and attraction coefficients as 𝑚𝑚 = 5 and 𝑛𝑛 = 3.3. Given the lack of details on the imposed 
conditions and fitting methods, as well as the sparse literature on the subject, it is chosen to use the 
same parameter values in this work in order to ensure, if not absolute physical validity, consistency 
with reference studies. As for the the thickness of the leaflet itself, it is defined as the approximate 
length of a hydrocarbon chain in a single membrane layer ((Boal, 2012), p. 246). 

Fluid density. The density of the surrounding medium is set to the physiological value of 1075 kg/m3 

reported for human nerve tissue, while its dynamic viscosity is approximated as that of water at 36°C, 
i.e. 7·104 Pa·s (IT’IS Foundation, 2015), which is the value used in (Plaksin et al., 2014). 

Viscosities. Given the sparse literature on cell membrane viscosity measurements, the authors of 
(Krasovitski et al., 2011) and (Plaksin et al., 2014) guessed that a membrane leaflet possesses similar 
viscous properties as standard oils, with a temperature dependent dynamic viscosity in the order of 
[10-2 – 10-1] Pa·s. For consistency, they fixed a ratio of 𝜇𝜇𝑆𝑆/𝜇𝜇𝐿𝐿 = 50 in both studies. The same strategy is 
applied here, with µs = 0.035 Pa·s as in (Plaksin et al., 2014). 

Gas concentration and Henry’s constant. The initial gas concentration (𝐶𝐶0) and Henry’s constant (𝑘𝑘𝐻𝐻) 
are two intricately linked parameters, whose dependency arises from the steady-state definition. Such 
a system is characterized by the equalization of static pressures (𝑃𝑃𝐺𝐺 = 𝑃𝑃0), but also by the absence of 
gas flux across the leaflet (𝑛̇𝑛𝑔𝑔(𝑡𝑡) = 0, i.e. 𝐶𝐶𝑆𝑆 = 𝐶𝐶0). Recalling that the surface concentration 𝐶𝐶𝑆𝑆 is directly 
linked to the inner gas pressure by Henry’s constant (cf. equation (29)), it follows that the product 𝐶𝐶0𝑘𝑘𝐻𝐻 
must necessarily equal the static pressure 𝑃𝑃0. Considering the solubilization of air in water in this case, 
Henry’s constant exhibits a strong temperature dependency. It is easily computed at 25 °C from the 
weighted values of the gas species composing the mixture (Sander, 2015). However at 36°C very few 
(if any) direct measures of kH are available in the literature. Hence, the authors of (Plaksin et al., 2014) 
seem to have used solubility values of oxygen and nitrogen in pure water around 309 K (Geng and 
Duan, 2010; Sun et al., 2001) in order to compute a resulting gas concentration in water of 0.62 mol/m3 
at that temperature. Using this as a reference for 𝐶𝐶0, Henry’s constant is then derived as kH = 1.613 · 
105 Pa·m3·mol-1. Interestingly, the authors of (Plaksin et al., 2014) found a slightly different value for 
Henry’s constant (kH = 1.63 · 105 Pa·m3·mol-1). Nevertheless, the values computed here are used in this 
study. 

Diffusion coefficient. The diffusion coefficient of gas in the surrounding fluid 𝐷𝐷𝑔𝑔𝑔𝑔 also varies between 
the two reference studies due to the temperature difference. Using the diffusion coefficient of air in 
water as a reference, a linear interpolation from the table of (Wise and Houghton, 1966) gives values 
of 2.85·10-9 and 3.68·10-9 m2·s-1 for 25 and 36°C respectively. Pairwise comparison shows that these 



The Neuronal Intramembrane Cavitation (NICE) Model 

37 

values are significantly higher than those used in the two reference studies, which might have 
underestimated the diffusion coefficients. Consequently, a value of 𝐷𝐷𝑔𝑔𝑔𝑔  = 3.68·10-9 m2·s-1 is used in this 
work. As for the thickness of the boundary layer for gas transport across the leaflet, no direct 
measurement can be found in the literature therefore it is chosen to use the same value that was 
guessed by the authors in (Plaksin et al., 2014), i.e. 𝜉𝜉 = 0.5 nm. It is worth noting that this value is four 
times smaller than the actual leaflet thickness used in the geometric model, hence the authors have 
likely considered that the gas transport boundary layer was only constituted by a small fraction of the 
transverse phospholipid structure (probably the more spatially constrained hydrophilic part). 

Membrane elastic modulus. As mentioned in (Krasovitski et al., 2011), the area compression modulus 
of the leaflet can take a wide range of values. In fact, when not subject to high tensile stresses lipid 
membranes strongly undulate under thermal fluctuations (Sens and Safran, 1998). Therefore, 
stretching the leaflet primarily flattens it, overcoming its bending resistance 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, before actually 
inducing an increase in area per molecule and acting against its stretching resistance 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ. 
Experimental measures reveal that for bilayer membranes, 𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 takes significantly lower values 
(around 0.08 N/m (Phillips et al., 2009)) than 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ (mean value of 0.24 N/m measured on lipid 
diOPC bilayers through micropipette pressurization techniques (Rawicz et al., 2000)). Therefore 𝑘𝑘𝐴𝐴 is 
set to 0.24 N/m in the present work, in order to account for both bending and stretching stiffness, 
under the notable assumption that monolayers and bilayers possess similar stretching properties. 
Interestingly, while this value is also mentioned in the supplementary material of (Krasovitski et al., 
2011), this reference chose a significantly lower range of compression moduli for its simulations (0.03 
– 0.12). However, a modulus of 0.24 N/m is also used in (Plaksin et al., 2014). 

Tissue elastic modulus. As previously mentioned, the shear loss modulus 𝐺𝐺𝑙𝑙 of the tissue layer is 
assumed to depend linearly on 𝑓𝑓 for sufficiently high frequencies, based on observations from (Fabry 
et al., 2001). However, neither the authors of (Fabry et al., 2001) or (Krasovitski et al., 2011) provide an 
explicit coefficient, and the depicted modulus profile depicted on (Fabry et al., 2001) (fig. 2) does not 
allow to perform accurate linear regression over the high frequency range (𝑓𝑓 > 100 kHz) since the 
dataset only spans part of the audible range (𝑓𝑓 < 1 kHz). Nevertheless, a linear regression was 
approximated between two characteristic points arbitrarily chosen in the (x, y) logarithmic grid. The 
proportionality constant 𝛼𝛼 = 𝐺𝐺𝑙𝑙/𝑓𝑓 was computed as 7.56 Pa·s. 

Sonophore dimensions. Lastly, the in-plane radius of the BLS structure (i.e. the radius of the leaflet 
boundary), despite being subject to tremendous variation according to TEM measurements on T-cells 
(Lillemeier et al., 2006) was set to 32 nm in (Plaksin et al., 2014). This value was derived from the 
average distance between neighboring proteins in native oocytes (𝑑̅𝑑 = 53 nm) (Pralle, 1998), although 
differences might exist with the membrane organization of neuronal structures (particularly nodes of 
Raniver in myelinated axons). Also, the derivation of sonophore radius was defined by the authors of 
(Plaksin et al., 2014) as half of the unit cell’s diagonal assuming a rectangular grid geometry. While this 
assumption seems reasonable, applying this rule yields to a different value of BLS radius (𝑎𝑎 = 0.5�𝑑̅𝑑 =
37.5 nm) than the one they reported. Nonetheless, the BLS radius is also primarily set to 𝑎𝑎 = 32 nm in 
this study for consistency with (Plaksin et al., 2014). The influence of this parameter on the system, 
shown in (Krasovitski et al., 2011), should nonetheless be kept in mind during further investigations. 

A detailed list of the biomechanical parameters used in the present study is detailed in Table 1, along 
with the source from which it was taken or derived. 

 Parameter  Symbol Value Unit Source 
Temperature  𝑇𝑇 309.15 K (Plaksin et al., 2014) 

Universal gas constant  𝑅𝑅𝑔𝑔 8.314 Pa·m3·mol-1·K-1 (Wong, 1977) 
Thickness of the leaflet  𝛿𝛿0 2 nm (Boal, 2012; Krasovitski et al., 2011) 
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Gap between the two leaflets at equilibrium  Δ 1.4 nm 

(Krasovitski et al., 2011) Attraction/repulsion pressure coefficient  𝑝𝑝Δ 105 Pa 
Exponent in the repulsion term  𝑚𝑚 5 - 
Exponent in the attraction term  𝑚𝑚 3.3 - 
Density of the surrounding fluid  𝜌𝜌𝐿𝐿 1075 kg·m-3 (IT’IS Foundation, 2015) 

Dynamic viscosity of the surrounding fluid  𝜇𝜇𝐿𝐿 7·10-4 Pa·s (IT’IS Foundation, 2015; Plaksin et al., 2014) 
Dynamic viscosity of the leaflet  𝜇𝜇𝑆𝑆 0.035 Pa·s (Plaksin et al., 2014) 

Area compression modulus of the leaflet  𝑘𝑘𝐴𝐴 0.24 N/m (Krasovitski et al., 2011; Phillips et al., 2009; 
Rawicz et al., 2000) 

Tissue layer shear loss modulus coefficient  𝛼𝛼 7.56 Pa·s (Fabry et al., 2001) 
Initial gas molar concentration in fluid  𝐶𝐶0 0.62 mol·m-3 (Boal, 2012; Geng and Duan, 2010; Sun et al., 

2001) Henry’s constant  𝑘𝑘𝐻𝐻 1.613.105 Pa·m3·mol-1 
Static pressure in the surrounding fluid  𝑃𝑃0 105 Pa (Wong, 1977) 

Diffusion coefficient of gas in fluid  𝐷𝐷𝑔𝑔𝑔𝑔  3.68·10-9 m2·s-1 (Wise and Houghton, 1966) 
Boundary layer thickness for gas transport  𝜉𝜉 0.5 nm (Plaksin et al., 2014) 

Table 1: Summary of the biomechanical parameters of the model (symbol, value, unit and source) used in this work. 

 Numerical resolution 
Simulating the model comes down to computing the temporal evolution of the anti-symmetric leaflet 
apex deflection in the sonophore structure, given an acoustic perturbation of specific amplitude and 
frequency. For this purpose, quasi-steady and dynamical systems have been defined for mutually 
exclusive deflection ranges, each one associated with a governing equation that can be solved 
numerically. With this in mind, the resolution procedure should consist of a hybrid iterative algorithm 
alternating between the two governing equations in order to compute the leaflet deflection vector for 
a given set of temporal samples. 

That being said, it is worth recalling that the quasi-steady system bears assumptions that are highly 
questionable from a biomechanical standpoint. Therefore, one can question the need to use this 
simplified system in the first place: why not just use the more comprehensive, dynamical system for 
all conditions? The answer is that this dynamical system, defined under the assumption of spherical 
symmetry, is not adapted to model the dynamics of a flat sonophore structure. In fact, this geometric 
configuration implies an infinite leaflet curvature radius that necessarily restricts the leaflet 
acceleration components to zero (cf. equation (67)). This restriction is of particular concern for any 
system initially at steady-state (𝑍𝑍 = 0, 𝑈𝑈 = 0): the application of an external acoustic perturbation, 
despite producing a net resultant pressure on the leaflet, would not produce any acceleration, and 
therefore no kinematic change on the BLS structure. Any other case would however result in leaflet 
motion, either via its intrinsic velocity (𝑈𝑈 ≠ 0) or because of the net acceleration generated by the 
system imbalance (𝑍𝑍 ≠ 0). 

Considering this problematic, it is chosen to restrict the quasi-steady deflection range to its minimum 
by setting 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 0. By applying this criterion, the quasi-steady system should theoretically be be 
used only once, for the first time step following stimulation offset, in order to give the system some 
momentum. After that, the more comprehensive dynamical system is used. In parallel, the evolution 
of the gas molar content inside the sonophore cavity is calculated using the one-dimensional steady-
state diffusion model for its simplicity and computational speed, as well as for consitency with the 
more recent reference for the NICE model (Plaksin et al., 2014).  

 Dynamical behavior 

2.1.8.1 Typical behavior 
We first provide a qualitative description the model behavior under “typical” conditions, that is, the 
cavitation of a typical sonophore structure (32 nm in-plane radius, no additional tissue layer), upon 
perturbation by a sinusoidal acoustic pressure wave of frequency Fdrive = 500 kHz and amplitude Adrive 
= 0.5 MPa (Figure 4). Rarefactional periods induce a rather smooth sonophore expansion that 
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coincides with an increase the leaflets elastic tension and triggers gas transport into the cavity. As the 
acoustic pressure decreases in magnitude, the sonophore progressively falls back towards its 
equilibrium position, triggering an opposite gas flux towards the surrounding fluids. It is worth noting 
that the expansion apex, as well as the maximal gas accumulation, coincide with the time of peak 
rarefactional acoustic pressure. By constrast, intervals of positive pressure induce a limited and 
vibratory sonophore compression (resulting from the highly nonlinear increase in repulsive molecular 
pressure forces) and virtually no gas transport across the membrane.  

 
Figure 4. Typical behavior of the mechanical model. Leaflet deflection, gas content, and pressures evolutions during the 
simulation of a sonophore with typical in-plane radius (a = 32 nm) with standard stimulation parameters (Fdrive = 500 kHz, 
Adrive = 0.5 MPa).  

2.1.8.2 Influence of sonophore dimensions 
Among all the parameters defining the mechanical model, the sonophore in-plane radius is probably 
one of those subject to the largest variations, as mentioned in section 2.1.6. Hence, we study here the 
influence of this parameter on the dynamics and amplitude of intramembrane cavitation. 

Expectedly, narrow sonophore structures (a = 15 nm, Figure 5a) show a smaller cavitation amplitude 
compared to the typical sonophore. Moreover, high-frequency oscillations in the deflection profile 
observed during compressed phases are greatly reduced. Wide sonophore structures (a = 500 nm, 
Figure 5b) show a greater cavitation amplitude than that of a “typical” sonophore, and more strikingly, 
vibratory dynamics is also observed during expansion phases as a result of the larger system intertia. 
Due to this highly sensitive dynamics and intrinsic inertia, the wider structure takes a few cycles to 
reach a periodically stable behavior. Overall, cavitation amplitude and resulting maximal membrane 
areal strain during rarefactional periods both increase with the sonophore radius (Figure 5c). 
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Figure 5. Impact of sonophore radius on cavitation dynamics. (a) Leaflet deflection, gas content, and pressures evolutions 
during the simulation of a sonophore with small in-plane radius (a = 15 nm) and with standard stimulation parameters (Fdrive 
= 500 kHz, Adrive = 0.5 MPa). (b) Idem, but with a large in-place radius (a = 500 nm). (c) Maximal membrane areal strain as a 
function of sonophore in-plane radius.  

2.1.8.3 Influence of tissue embedding 
Just like the diameter of the BLS structure, the extent of surrounding tissue embedding the resonating 
plasma membrane is also subject to tremendous variation, depending on the location of the target 
nervous cell in the body. Hence, it is also of crucial importance to understand the impact of the 
surrounding tissue embedding the cell on the cavitation dynamics. 

As anticipated, structures with a limited amount of tissue embedding show a highly similar cavitation 
dynamics as an exposed sonphore (Figure 6a). By contrast, deeply embedded sonophores show a 
great reduction in cavitation amplitude caused by the increase in elastic tension (Figure 6b). Overall, 
the maximal areal strain caused by intramembrane cavitation shows an inverse depdendency on the 
tissue embedding depth, where layers thicker than a few microns prevent any significant membrane 
deflection during rarefaction periods (Figure 6c).  

 
Figure 6. Impact of sonophore tissue embedding on cavitation dynamics. (a) Leaflet deflection, gas content, and pressures 
evolutions during the simulation of a sonophore (32nm in-plane radius) with small tissue embedding (0.01 µm), and with 
standard stimulation parameters (Fdrive = 500 kHz, Adrive = 0.5 MPa). (b) Idem, but with a large tissue embedding (100 µm). (c) 
Maximal membrane areal strain as a function of sonophore tissue embedding. 

2.1.8.4 Impact of stimulation parameters 
The previous analyses assessed the sensitivity of the system to anatomical parameters over which 
we have no control. We will now investigate the influence of stimulation parameters on the cavitation 
dynamics, which is a much more exciting prospect given the fact that these parameters can be tuned 
in order to elicit the mechanoelectrical response of interest. 

Simulations in an exposed sonophore show that cavitation magnitude increases monotonically with 
pressure amplitude (with a sharp increase around 20 kPa) and show almost no dependency on stim-
ulation frequency over the 20 kHz – 4 MHz range (Figure 7a). By contrast, embedded sonophores 
show much smaller cavitation amplitudes and a more pronounced dependency on stimulus periodic-
ity: indeed, the frequency-dependency of the tissue elastic modulus generates a higher resistance to 
motion – and thus smaller cavitation amplitudes – at higher frequencies (Figure 7b). 
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Figure 7. Impact of stimulation parameters on cavitation amplitude. Two-dimensional maps showing the maximal membrane 
areal strain during the cavitation of a sonophore (32 nm in-plane radius) as a function of acoustic frequency and amplitude. 
(a) Exposed sonophore. (b) Sonophore embedded in a 10 µm thick tissue layer. 

 Numerical stiffness and computational cost  
Beyond informing on the model’s dynamical behavior, the profiles displayed in section 2.1.8 empha-
size the important numerical stiffness of the bilayer sonophore model. In fact, the presence of highly 
nonlinear internal components influencing the pressure balance (in particular molecular forces) in-
duces the generation of vibratory resonance in the resulting kinematic output at frequencies much 
higher than the fundamental ultrasonic frequency. As a result of this system stiffness, numerical inte-
gration must be carried out with costly integration procedures (implicit, multi-step, variable order solv-
ers (Hindmarsh, 1983; Petzold, 1983)) and to use many time steps per acoustic period (1000 in our 
implementation) to ensure stable integration of intra-cycle system oscillations. Consequently, simu-
lating the model’s oscillatory dynamics over just a few cycles (i.e. a few microseconds) already results 
in significant computation times (in the order of seconds). Considering the fact that this mechanical 
model is to be coupled with an electrical counterpart and simulated over hundreds of milliseconds, 
that intrinsic stiffness represents a significant limitation.  

 Conclusions 
The bilayer sonophore biomechanical model describes the periodic antiphase deflections of the 
membrane phospholipidic leaflets upon perturbation by a sinusoidal acoustic pressure in the ultra-
sonic range. The construction of this model involves specific assumptions about the structure homo-
geneity and spherical symmetry, as well as mathematical simplifications (Taylor expansion, neglecting 
nonlinear acceleration term) that permit the derivation of a solvable differential system. Moreover, 
many of its constituent parameters entail an intrinsic uncertainty due to the lack of physical charac-
terization of the considered phenomenon. Nevertheless, the model predicts clear trends on the im-
pact of structure dimensions, anatomical embedding and stimulation parameters on the resulting 
sonophore cavitation dynamics. 

2.2 Electrical part: the Hodgkin-Huxley formalism 
The Hodgkin-Huxley formalism represents a foundational biophysical model describing the nonlinear 
electrical behaviour of the neuron membrane, allowing it to generate action potentials. It was famously 
introduced in the 1950s by Alan Hodgkin and Andrew Huxley, in a series of historic papers describing 
voltage-clamp experiments on the unmyelinated axon of the giant squid Loligo (Hodgkin and Huxley, 
1952a, 1952d, 1952c, 1952b; Hodgkin et al., 1952). This work was awarded the Nobel Prize in Physiology 
in 1963, and has since then been employed to model the membrane dynamics of a variety of neuron 
types, in both the peripheral (Frankenhaeuser and Huxley, 1964; McIntyre et al., 2002) and central 
(Pospischil et al., 2008) nervous system. It forms the electrical part of the NICE model. 
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 Membrane equivalent electrical circuit 
The Hodgkin-Huxley formalism models the neuronal membrane with an equivalent electrical circuit 
combining capacitive and resistive elements in parallel (Hodgkin and Huxley, 1952a). 

 
Figure 8. Hodgkin-Huxley formalism of a membrane equivalent electrical circuit with Sodium (Na), Potassium (K) and non-
specific leakage (L) ionic conductances (adapted from (Hodgkin and Huxley, 1952a)). 

In this circuit, the capacitance Cm represents the ability of the membrane to be polarized by the accu-
mulation of charged particles (i.e. ions) of opposite signs on either side of its very thin layer, yielding a 
capacitive current Ic. Transverse conductances (gx) represent the permeability of specific populations 
of constituent ion channels, allowing ions to flow across the membrane, driven by the difference be-
tween the membrane potential Vm and their respective reversal potential (Ex, determined for each ion 
mix from the Nernst equation). The total current through the membrane is then given by the sum of 
capacitive and ionic terms:  

(71) 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼𝐶𝐶 + 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

+�𝑔𝑔𝑖𝑖
𝑖𝑖

(𝑉𝑉𝑚𝑚 − 𝐸𝐸𝑖𝑖) 

 Ionic conductances 
Just like in the original formalism, most Hodgkin-Huxley models include voltage-gated conductances 
for Sodium and Potassium currents that regulate the action potential dynamics, as well as a non-spe-
cific “leakage” conductance to account for the passive component of the membrane response. How-
ever, other types of conductances (e.g. Calcium, Chloride) can also be found in specific cell types. 

Non-leakage ionic conductances are typically modeled as a maximal conductance (relating to the 
number of specific ion channels present in the cell membrane) regulated by the product of one or 
multiple gating variables xi, representing the probability of constitutive elements of the channels 
(called “gates”) to be in an open permissive state, raised to a specific power (i.e. the number of each 
gating element): 

(72) 

𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑥𝑥��� · �𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

𝑖𝑖
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Sodium conductances are typically represented by 2 gating variables (mxh formalism) to account for 
inactivation mechanisms, while potassium conductance only requires a single variable (nx formalism). 
The evolution of each gating variable is described by a two-state kinetic scheme, where transitions 
between the open state (x) and the closed state (1 – x) are governed by specific voltage-dependent 
activation and inactivation rate constants (𝛼𝛼𝑥𝑥 and 𝛽𝛽𝑥𝑥, respectively): 

(73) 

1 − 𝑥𝑥���
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑥𝑥⇌
𝛽𝛽𝑥𝑥

𝑥𝑥⏟
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

Under this formalism, the evolution of the gating variable is given by: 

(74) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑥𝑥(𝑉𝑉𝑚𝑚) ∙ (1 − 𝑥𝑥) − 𝛽𝛽𝑥𝑥(𝑉𝑉𝑚𝑚) ∙ 𝑥𝑥 

An equivalent paradigm exists that models the gating variable evolution as a function of a steady state 
probability (𝑥𝑥∞ = 𝛼𝛼𝑥𝑥

𝛼𝛼𝑥𝑥+𝛽𝛽𝑥𝑥
) and a time constant (𝜏𝜏𝑥𝑥 = 1

𝛼𝛼𝑥𝑥+𝛽𝛽𝑥𝑥
): 

(75) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑥𝑥∞(𝑉𝑉𝑚𝑚)− 𝑥𝑥
𝜏𝜏𝑥𝑥(𝑉𝑉𝑚𝑚)

 

 Dynamical behavior 
The Hodgkin-Huxley formalism is, by definition, a way of representing the electrical behavior of neu-
ronal membranes using a particular set of constitutive elements and associated differential equations. 
That is, there is not one Hodgkin-Huxley model, but rather a collection of them, derived across neuron 
types and species, and each associated with a specific set ionic currents and gating parameters. 
Hence, to give a good appreciation of the versatility of this formalism, we present here two examples 
HH-type models representing two neurons with fundamentally different function roles, and that are 
used in subsequent chapters of this work: 

• The original Hodgkin-Huxley model derived for unmyelinated peripheral axons (Hodgkin and 
Huxley, 1952a), characterized by a fast action potential dynamics allowing to efficiently transmit 
information over large distances (Figure 9a) 

• A more recently derived regular spiking model for pyramidal neurons of the mammalian cortex 
(Pospischil et al., 2008), with a slower action potential dynamics with allowing to integrate 
complex dendritic inputs into a “meaningful” electrical information (Figure 9b) 
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Figure 9. Characteristic examples of point-neuron models using the Hodgkin-Huxley formalism. (a) Unmyelinated peripheral 
axon responding to a very short intracellular current injection with a single action potential lasting. (b) Cortical regular spiking 
neuron responding to a sustained intracellular stimulus with a characteristic spike train. 

2.3 Bi-directional coupling 
In sections 2.1 and 2.2, we introduced the two core components of the NICE model, namely a universal 
mechanical model of intramembrane cavitation, and a cell-type-specific electrical model of mem-
brane dynamics. Here, we describe how these two models are connected together by a bi-directional 
piezoelectric effect to yield a dynamical system that transforms acoustic stimuli into electrical re-
sponses.  

The mechano-electrical transduction is obtained by direct piezoelectric effect: the periodic deflec-
tions of the sonophore leaflets induce dynamic changes in the local membrane thickness, which in 
turn affect the cell membrane capacitance (Gross et al., 2011) and the resulting membrane potential. 
Reversibly, electro-mechanical transduction is caused by the intrinsic polarity of neuronal membranes 
where the attraction between charged particles on either side of the bilayer generates an electrical 
pressure that perturbs the cavitation kinetics. 

 Mechano-electrical coupling 
Given its dielectric properties and plane-like conformation, the cell membrane can be reasonably ap-
proximated as a parallel-plate capacitor composed of two monolayer leaflets acting as electrical 
“plates”. A generic formula for this type of capacitor is given by:  

(76) 

𝐶𝐶 =
𝜀𝜀0𝜀𝜀𝑟𝑟𝐴𝐴
𝑑𝑑

 

Where C is the capacitance, 𝜀𝜀0 is the permittivity of space (dielectric constant) and 𝜀𝜀𝑟𝑟 the relative per-
mittivity of the dielectric material, A is its surface area and d the separation distance between the two 
parallel plates (Giancoli, 2008). Considering the inter-leaflet gap Δ (defined in section 2.1.1.1) as the 
plate separation distance, the resting membrane capacitance per unit area thus equals: 
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(77) 

𝐶𝐶𝑚𝑚0 =
𝜀𝜀0𝜀𝜀𝑟𝑟
Δ

 

However, upon perturbation by an acoustic pressure, the sonophore periodic deflections affect the 
inter-leaflet gap (𝑑𝑑(𝑟𝑟) =  2𝑧𝑧(𝑟𝑟) + Δ, see section 2.1.2.1) and the resulting local membrane capacitance: 

(78) 

𝐶𝐶𝑚𝑚(𝑟𝑟) =
𝜀𝜀0𝜀𝜀𝑟𝑟

2𝑧𝑧(𝑟𝑟) + Δ
= 𝐶𝐶𝑚𝑚0

Δ
2𝑧𝑧(𝑟𝑟) + Δ

 

Integrating equation (78) over the entire sonophore surface area, we obtain an average value for the 
sonophore membrane capacitance as a function of the leaflet apex deflection: 

(79) 

𝐶𝐶𝑚𝑚(𝑍𝑍) =
1
𝜋𝜋𝑎𝑎2

� � 𝐶𝐶𝑚𝑚0
Δ

2𝑧𝑧(𝑟𝑟) + Δ 

2𝜋𝜋

0

𝑎𝑎

0
𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑚𝑚0

Δ
a2
�𝑍𝑍 +

𝑎𝑎2 − 𝑍𝑍2 − 𝑍𝑍 ∙ Δ
2𝑍𝑍

ln �
2𝑍𝑍 + 𝛥𝛥
𝛥𝛥

�� 

Figure 10 depicts the profile the relative average sonophore capacitance as a function of apex leaflet 
deflection. Notably, capacitance decreases towards zero as the sonophore expands, and increases 
above its resting value as the sonophore compresses (which is in accordance with equation (76)). 
Moreover, equation (79) ensures that 𝐶𝐶𝑚𝑚(𝑍𝑍 = 0) = 𝐶𝐶𝑚𝑚0. 

 
Figure 10. Relative variation of membrane capacitance as a function of leaflets deflection. 

 Electro-mechanical coupling 

2.3.2.1 Electrical pressure 
Due to their intrinsic polarity, neuronal membranes accumulate charged particles of opposite signs 
on either side of the bilayer, thereby creating an electric force that attracts the two leaflets towards 
each other. Here again, the magnitude of this force can be derived by considering the cell membrane 
as a parallel plate capacitor, with the two leaflets acting as individual electrode plates and separated 
by a distance Δ. 

Because the leaflets separation is very small compared to their in-plane surface, the capacitor’s elec-
tric field can be regarded as homogenous and normal to the membrane plane. In that case, the field 
intensity inside the membrane Em receives equal contributions from both sides (𝐸𝐸𝑚𝑚 = 𝐸𝐸+ + 𝐸𝐸−;  𝐸𝐸+ =



The Neuronal Intramembrane Cavitation (NICE) Model 

46 

𝐸𝐸−). Moreover, its magnitude is given by the potential difference between the electrodes (i.e. the trans-
membrane voltage Vm in this case), divided by the separation distance between the plates: 

(80) 

𝐸𝐸𝑚𝑚 =
𝑉𝑉𝑚𝑚
Δ

 

The force acting on each plate is then proportional to the charge it stores and to the component of the 
electric field produced by the other plate: 

(81) 

𝐹𝐹𝑄𝑄 = 𝑄𝑄𝐸𝐸+ = 𝑄𝑄
𝑉𝑉𝑚𝑚
2Δ

 

Dividing equation (81) by the membrane surface area, we obtain a formula for the “electrical pressure” 
exerted on the membrane: 

(82) 

𝑃𝑃𝑄𝑄 =
𝑄𝑄𝑚𝑚𝑉𝑉𝑚𝑚

2Δ
 

where Qm is the membrane charge density (in nC/cm2). By definition, this variable is the product of 
resting transmembrane potential and membrane capacitance: 

(83) 

𝑄𝑄𝑚𝑚 = 𝐶𝐶𝑚𝑚𝑉𝑉𝑚𝑚 

Inserting equations (77) and (83) into equation (82), we thus obtain the formula for the electrical pres-
sure on the resting neuronal membrane: 

(84) 

𝑃𝑃𝑄𝑄0 =
𝑄𝑄𝑚𝑚2

2𝜀𝜀0𝜀𝜀𝑟𝑟
 

Now, as the sonophore is deformed by the acoustic perturbation, the same electrical force is applied 
over a larger surface area. Hence, equation (84) must be adapted to account for this relative change, 
in order to yield a deflection and charge dependent formula for the electric pressure: 

(85) 

𝑃𝑃𝑄𝑄(𝑍𝑍,𝑄𝑄𝑚𝑚) =
𝑆𝑆0
𝑆𝑆
𝑃𝑃𝑄𝑄0 =

𝑎𝑎2

𝑍𝑍2 + 𝑎𝑎2
·

𝑄𝑄𝑚𝑚2

2𝜀𝜀0 ∙ 𝜀𝜀𝑟𝑟
 

Figure 11 depicts the profile electrical pressure as a function of membrane charge density, for two 
different deflection states: a sonophore at rest (Z = 0) and during a significant expansion phase (Z = 
a). In both cases, electrical pressure increases with the square of membrane charge density. The in-
verse dependency on leaflets deflection is also observable, yielding larger pressures for small / no 
deflection. 
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Figure 11. Electrical pressure acting on the bilayer membrane as a function of charge density, for a sonophore at rest (Z = 0) 
and during an expansion phase (Z = a).  

Note that when considering electrical pressure in the pressure balance that regulates the sonophore 
cavitation dynamics, a preceding minus sign is added for consistency with other constraining forces. 

2.3.2.2 Modified molecular pressure 
We saw in section 2.1.1.2 that the steady-state equilibrium of the sonophore results from the balance 
of gaseous, hydrostatic and molecular pressure forces summing up to yield a zero resultant pressure. 
More specifically, gas transport through the leaflets ensures that 𝑃𝑃𝐺𝐺 = 𝑃𝑃0, and molecular pressure is 
intrinsically defined to cancel out at Z = 0 (see equation (13)). In the case of neurons however, the 
polarized nature of the resting membrane introduces a non-negligible electrical pressure, and yielding 
a modified condition for the mechanical steady-state: 

(86) 

𝑃𝑃𝐺𝐺 − 𝑃𝑃0 + 𝑃𝑃𝑀𝑀 − 𝑃𝑃𝑄𝑄 = 0 

Obviously, gas equilibration still applies in this cases, and equation (86) can thus be reduced to: 

(87) 

𝑃𝑃𝑀𝑀(𝑍𝑍 = 0) = 𝑃𝑃𝑄𝑄(𝑍𝑍 = 0,𝑄𝑄𝑚𝑚0) 

Notably, with the traditional definition of molecular pressure, equation (87) has no solution if 𝑄𝑄𝑚𝑚0 ≠ 0. 
Hence, to maintain a stable equilibrium for a charged membrane, a modified expression of local inter-
molecular pressure is defined here as: 

(88) 

𝑝𝑝𝑀𝑀(𝑟𝑟) = 𝑝𝑝Δ ��
Δ∗

2𝑧𝑧(𝑟𝑟) + Δ
�
𝑚𝑚

− �
Δ∗

2𝑧𝑧(𝑟𝑟) + Δ
�
𝑛𝑛

� 

where Δ is the inter-leaflet gap for a membrane at resting charge density, and Δ* the same inter-leaflet 
gap in the absence of charges, determined numerically to satisfy equation (87). 

 Dimensional considerations 
At this stage, it appears important to consider the scales involved in this bidirectional coupling. The 
Hodgkin-Huxley formalism provides a deterministic, macroscopic approximation of the gating dynam-
ics of large ion channels populations over micro or millimeter scale membrane areas (Catterall et al., 
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2012). That approximation becomes invalid for problems of smaller dimensions – such as a nanome-
ter-scale sonophore and its direct vicinity – where the stochastic gating dynamics of individual ion 
channels plays a very significant role (Chow and White, 1996; Faisal et al., 2005; Fink and Noble, 2009). 
This spatial discrepancy is resolved in the NICE model by considering a large scale mechano-electri-
cal transduction, i.e. that resulting from the synchronized cavitation of a population of sonophores over 
a membrane area sufficiently large that its electrical dynamics can be captured by a macroscopic 
approximation. That is, the sonophore population is modeled as a density mechanism – akin to the 
mathematical representation of ion channels populations – and membrane capacitance is calculated 
as a weighted mean of the resting and dynamic capacitances: 

(89) 

𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑚𝑚(𝑡𝑡)𝑓𝑓𝑠𝑠 + 𝐶𝐶𝑚𝑚0(1− 𝑓𝑓𝑠𝑠) 

 where fs is the active area fraction), influencing an equipotential membrane patch. 

 Differential system 
The construction of the NICE model relies on the bidirectional coupling of two dynamical systems, 
each described by a system a governing differential equations (equations (34) and (67) for the me-
chanical part, and equations (71) and (74) for the electrical part). Therefore, a naïve approach to its nu-
merical resolution would be to simply couple these two systems under a single differential scheme, 
accounting for a time-varying capacitance, as well as the electrical and modified molecular pressures. 
However, one must remember that the definition of the capacitive current in the classical Hodgkin-
Huxley formalism is made under the assumption of constant membrane capacitance. With the intro-
duction of a time-varying capacitance, this current becomes: 

(90) 
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and equation (71) must be adapted accordingly. Altogether, the governing differential system of the 
NICE model becomes: 
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where 𝑃𝑃𝑀𝑀∗  is the modified molecular pressure.  

2.4 Dynamical behavior 
Having established the governing equations of the NICE model, we can now focus on its dynamical 
behavior.  
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 Typical behavior 
We present here a typical example of the predicted response of a cortical regular spiking neuron to 
an acoustic stimulus (f = 500 kHz, A = 50 kPa, Figure 12).  

 
Figure 12. Typical response of a cortical regular spiking neuron to a continuous wave ultrasound stimulus (500 kHz, 50 kPa, 
150 ms stimulus). From top to bottom: temporal profiles of acoustic pressure, membrane deflection, membrane capacitance, 
membrane potential and membrane charge density. Inset: zoom over a 4 µs interval spanning two acoustic cycles.    

This mechano-electrical response can be broken down into separate phases, occurring across a 
broad range of time scales: 

• Upon stimulation onset, the sinusoidal acoustic pressure wave generates alternating expan-
sions and compressions of the sonophore and the ultrasound frequency. Note that expansion 
is loosely limited by elastic tension, while compression is strongly restricted by repulsive mo-
lecular forces, which creates an asymmetric deflection profile (see section 2.1.8.1).  

• This intramembrane cavitation induces local, periodic oscillations in membrane capacitance, 
which also shows a significant asymmetry (Cm decreases down to 30% of its resting value 
during expansion phases, and increases only by 10% during compression phases). 

• Asymmetric capacitance oscillations cause large-amplitude oscillations of the local trans-
membrane (𝑉𝑉𝑚𝑚 = 𝑄𝑄𝑚𝑚/𝐶𝐶𝑚𝑚) potential that manifest as a large hyperpolarization (down to -200 
mV) during expansion phases, and a slight depolarization during compression phases.  

• Large hyperpolarizations trigger depolarizing leakage currents (𝐼𝐼𝐿𝐿 = 𝑔𝑔𝑙𝑙(𝑉𝑉𝑚𝑚 − 𝐸𝐸𝐿𝐿)) that aim to 
bring the transmembrane potential back towards its resting value. In doing so, they induce an 
incremental raise in the membrane charge density. This process is reversed during compres-
sion phases, where slight depolarizations induce hyperpolarizing leakage currents. However, 
the significant asymmetry of voltage deviations during these two half-cycles induces an im-
balance in leakage currents towards depolarization, thereby causing a net increase in charge 
density over an acoustic period.  
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• Eventually, this imbalance perpetuates over consecutive acoustic cycles, and induces a pro-
gressive increase in charge density until the neuron’s spiking threshold is met and the action 
potential machinery (Sodium and Potassium channels) kicks off. 

• The high frequency, large amplitude modulation of the membrane potential affects the gating 
kinetics of voltage-gated ion channels, thereby producing a high frequency spike train. 

• The stimulus offset causes a quasi-instantaneous mechanical stabilization of the membrane. 
Under the absence of a mechanical drive, the neuron stops firing and the membrane progres-
sively falls back to its resting electrical state.  

 Dependency on stimulus parameters 
The NICE model predicts that the progressive integration of asymmetric, microsecond-scale me-
chanical membrane oscillations induces a slow-scale depolarization towards the spiking threshold 
and eventually, a sustained firing activity. The efficiency of this mechano-electrical transduction di-
rectly depends on the amplitude of the predicted intramembrane cavitation. Therefore, the depend-
ency of the NICE model on sonication parameters can be intuitively deduced from the behavior of the 
sole mechanical model, described in section 2.1.8.4. A summary of its main dependencies is provided 
here, taken from the original paper describing the NICE model (Plaksin et al., 2014), where acoustic 
intensity is defined as 𝐼𝐼 = 𝑃𝑃𝐴𝐴𝐴𝐴

2

2𝜌𝜌𝜌𝜌
, with 𝜌𝜌 and c the medium’s density and speed of sound, respectively. 

• Excitation thresholds increase slightly with US frequency within the 0.2 – 2 MHz range, and 
then more sharply above 2 MHz, as a result of the increased viscoelastic resistance to motion 
that limits sonophore expansion (Figure 13a).  

• Excitation thresholds decrease with increasing stimulus durations, since a longer stimulus in-
tegration requires less charge increase per cycle to reach the same spiking threshold (Figure 
13b). 

• For this specific neuron, stimulus durations of about 45 ms yield an optimal trade-off between 
low acoustic intensity and short stimulus duration, resulting in a minimum stimulation energy 
to reach the spiking threshold (Figure 13c). 

• Following an initial build-up phase, the neuron enters a non-adaptive tonic firing regime (num-
ber of spikes increases linearly with stimulus duration), whose rate increases with the stimulus 
intensity (Figure 13d-e).  

• Increasing stimulus intensities amplify cavitation amplitude and yield more asymmetric de-
flection profiles that elicit more charge increase per acoustic cycle. This enhanced mechano-
electrical transduction accelerates depolarization and thus decreases response latency (Fig-
ure 13f). 
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Figure 13. Dependency of the NICE model behavior of a cortical regular spiking neuron on continuous wave stimulation pa-
rameters (adapted from (Plaksin et al., 2014)). (a) Threshold acoustic intensity required to excite the neuron with a 30 ms 
stimulus, as a function of US frequency. (b, c) Threshold excitation intensity, and equivalent energy, as a function of stimulus 
duration (f = 350 kHz). (d) Number of detected spikes as a function of stimulus intensity and duration (f = 350 kHz). (e) Elicited 
firing rate as a function of stimulus intensity for various US frequencies from 250 kHz to 1 MHz. Response latency as a 
function of stimulus intensity for various US frequencies as in (e). 

2.5 Predictive power 
As stated in chapter 1, one of the – if not the biggest – incentives for the use of the NICE model resides 
in its predictive power.  

At the single neuron level, the NICE model predicts that continuous-waves LIFUS entrains cortical 
regular spiking neurons into a tonic firing regime – after some latency period – where the number of 
spikes increases with duration. Given the lack of availability of direct neuronal recordings upon soni-
cation at the time of their investigation, Plaksin et al. opted to compare their modeling predictions to 
a higher-level recording metrics: the success rate of motor responses elicited by LIFUS directed at 
the motor cortical area of mice (King et al., 2013). To this end, they fitted a sigmoidal function of only 
two parameters (determined from a Buckingham-Pi dimensional analysis (Buckingham, 1914; Plaksin 
et al., 2014)) linking the number of spikes predicted by the NICE model to the experimental success 
rate (Figure 14). The resulting predictions in motor response likelihood offered a very interesting level 
of qualitative agreement with experimental results, over a wide range of ultrasound frequencies (span-
ning the sub-MHz range) and pressure amplitudes. 
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Figure 14. Comparison of NICE model predictions and in vivo brain stimulation measurements (King et al., 2013) (adapted 
from (Plaksin et al., 2014)). Success rates for eliciting motor responses versus US intensity at different frequencies (continu-
ous stimulation for 40 000 acoustic cycles). Top: NICE model success rate predictions obtained by feeding the number of 
predicted spikes for a regular spiking (RS) neuron into a fitted sigmoid function. Bottom: success rate computed  from meas-
ured hindlimb EMG activity upon sonication of the motor cortex in mice (experimental results from (King et al., 2013)). 

Note that the larger success rates observed here at lower frequencies do not come from a higher 
efficacy per se , but rather from the fact that stimulus durations were set to a fixed number of acoustic 
cycles (n = 40 000) thereby yielding longer stimuli at lower frequencies. Nonetheless, those results 
do make sense in the context of the NICE model where the number the spikes is predicted to increase 
linearly with stimulus duration. 

Later on, Plaksin et al. refined those predictions by considering a larger, heterogeneous population of 
cortical neurons arranged into minimalistic, yet functionally-realistic spiking network model composed 
of one type of excitatory neuron (RS) and two types of inhibitory neurons: fast spiking (FS) and low-
threshold spiking (LTS) (Vierling-Claassen et al., 2010). By simulating this network upon sonication, 
they found that different combinations of stimulus amplitude and duty cycle could entrain (cortical 
activation) or silence (cortical suppression), by acting differently on specific ion channels present in 
the different neurons. More importantly, simulations revealed a clear bifurcation between these two 
sub-regions of the parameter space, where and identified activation and suppression regions agreed 
remarkably well with an extensive body of empirical observations in animal models and humans (Plak-
sin et al., 2016) (Figure 15). 
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Figure 15. Phase plane diagram of single-neuron responses predicted by the NICE model to varying US stimulation duty-
cycle and intensity versus experimental cortical neuromodulation parameters (adapted from (Plaksin et al., 2016)). The phase 
diagram boundaries denote threshold intensities for US-mediated responses (f = 0.69 MHz, 500 ms stimulus) from excita-
tory regular spiking (RS, green dashed lines indicating 10 Hz and 1 kHz PRFs) and inhibitory low-threshold spiking interneu-
rons (LTS, red dashed lines, changes only slightly for different PRFs, not shown). These boundaries separate the phase dia-
gram into regions where either the inhibitory LTS neurons are activated alone (red, “suppression zone”) or the RS and the 
LTS neurons are jointly activated leading to net network stimulation (green, “activation zone”). The superposed bars indicate 
the experimental parameter ranges used in seven published cortical ultrasonic neuromodulation studies, color-coded ac-
cording to the mediated responses: Ref. 1 ((King et al., 2013); bars with diagonal lines), Ref. 2 ((Yoo et al., 2011)), Ref. 3 ((Kim et 
al., 2015)), Ref. 4 ((Kim et al., 2012)), Ref. 5 ((Kim et al., 2014)), Ref. 6 ((King et al., 2014)), and Ref. 7 ((Tufail et al., 2011)). The 
excitation parameters reported for (King et al., 2013) were those that caused stimulation success rates significantly higher 
than their noise floor (≈20%), with low-frequency CW intensities corrected for the expected formation of standing waves 
(Plaksin et al., 2014). 

2.6 Conclusions 
The electromechanical NICE model formulates quantitative predictions on how the plasma mem-
brane can progressively transform acoustic perturbations into electrical responses and neuronal spik-
ing activity. To this aim, it relies on the bidirectional coupling of two dynamical systems evolving at 
different time scales, where microsecond mechanical oscillations of the plasma membrane affect the 
millisecond development of a neuronal electrical response, and vice-versa. Although purely theoreti-
cal and despite a lack of validation at the cellular level, the NICE model can explain a number of fea-
tures of high-level LIFUS neuromodulatory effects (latency, threshold) obtained in the brain across the 
literature, making it an attractive target for the development of modeling frameworks.  

However, the intimate electromechanical coupling of this model also produces a very stiff differential 
system in which detailed intra-cycle (i.e. sub-µs) variations must be integrated to compute the neu-
ronal response of interest (typically over tens / hundreds of ms), resulting in a tremendous computa-
tional burden (several days to run a single simulation on a traditional laptop). This intrinsic burden limits 
the ability to scan efficiently of the stimulation and physiological parameter space, but also to scale 
up modeling predictions towards clinically relevant scales.  

 





 

55 

 The multi-Scale Optimized In-
tramembrane Cavitation (SONIC) model 

Chapter 2 describes the internal components, parameters, governing equations and typical 
behavior of the NICE model, as well as its dependency on stimulation parameters. It also emphasizes 
that the model entails a significant numerical stiffness that hinders both its efficiency of use and the 
reliability of its predictions. 

This chapter presents a strategy based on temporal multiscaling to drastically reduce the numerical 
stiffness of the NICE model, allowing the exploration of dense, multi-dimensional parameter spaces, 
and facilitating its expansion towards the morphological scale. This effective variant, called the multi-
Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model, is the first original contribution 
presented in this thesis. 

 

The contents of this chapter are adapted from the manuscript Lemaire, T., Neufeld, E., Kuster, N., and 
Micera, S., “Understanding ultrasound neuromodulation using a computationally efficient and inter-
pretable model of intramembrane cavitation” published in Journal of Neural Engineering, 16, 046007 
(2019). 

Personal contributions as first author: conceptualized the study, implemented the model, performed 
the simulations, analyzed the results, prepared the figures and wrote the manuscript. 
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3.1 Abstract 
Objective. Low-intensity focused ultrasound stimulation (LIFUS) emerges as an attracting technology 
for noninvasive modulation of neural circuits, yet the underlying action mechanisms remain unclear. 
The neuronal intramembrane cavitation excitation (NICE) model suggests that LIFUS excites neurons 
through a complex interplay between microsecond-scale mechanical oscillations of so-called sono-
phores in the plasma membrane and the development of a millisecond-scale electrical response. 
This model predicts cell-type-specific responses that correlate indirectly with experimental data, but 
it is computationally expensive and difficult to interpret, which hinders its potential validation. Here, we 
introduce a multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model to achieve fast, 
accurate simulations and confer interpretability in terms of effective electrical response. Approach. 
The NICE system is recast in terms of smoothly evolving differential variables affected by cycle aver-
aged internal variables that are a function of sonophore size and charge density, stimulus frequency 
and pressure amplitude. Problem separation allows to precompute lookup tables for these functions, 
which are interpolated at runtime to compute coarse-grained, electrophysiologically interpretable and 
spatially distributed predictions of neural responses. Main Results. The SONIC model accelerates 
computation by more than three orders of magnitude, accurately captures millisecond-scale electrical 
responses of various cortical and thalamic neurons and offers an increased interpretability to the ef-
fects of ultrasonic stimuli in terms of effective membrane dynamics. Using this model, we explain how 
different spiking behaviors can be achieved in cortical neurons by varying LIFUS parameters, and in-
terpret predictions of spike amplitude and firing rate in light of the effective electrical system. We 
demonstrate the substantial influence of sonophore size on excitation thresholds, and use a na-
noscale spatially extended SONIC model to suggest that partial sonophore membrane coverage has 
a limited impact on neuronal excitability. Significance. By providing an electrophysiologically interpret-
able description, the SONIC model clarifies cell-type-specific LIFUS neuromodulation according to 
the intramembrane cavitation hypothesis. 

3.2 Introduction 
Ultrasound (US)-based therapeutic applications, such as diagnostic imaging and thermal ablation 
therapies, are now widely accepted in the clinical field (Escoffre and Bouakaz, 2016; Kyriakou et al., 
2014). Low-intensity focused ultrasound stimulation (LIFUS), employing the same technology but with 
different sonication parameters (carrier frequency, peak pressure amplitude, duration, pulse repetition 
frequency, and duty cycle), has recently emerged as a very compelling modality for neuromodulation 
therapies. Owing to their mechanical nature, US waves can be accurately directed through biological 
tissue, offering the ability to concentrate the acoustic energy to a deep focal spot (Ghanouni et al., 
2015; Kyriakou et al., 2014). Moreover, numerous experiments on both animal models and humans 
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have demonstrated that transcranial LIFUS is able to either excite, inhibit, or modulate the electrical 
activity of neurons in the central nervous system (CNS) (Deffieux et al., 2013; Kim et al., 2015; King et 
al., 2013; Legon et al., 2014; Mueller et al., 2014; Tyler et al., 2008; Younan et al., 2013). Furthermore, 
exhaustive explorations of different sonication parameters on the motor cortex of mice have shown 
that stronger stimulus intensities and durations increase the probability of a motor response without 
affecting the duration or strength of the response, thereby suggesting a threshold excitation mecha-
nism associated with the US intensity (King et al., 2013). LIFUS could therefore trigger a local and con-
trollable neuromodulatory effect on various neural targets, using a distant and possibly noninvasive 
sonication device. However, in order for LIFUS to become a reliable neuromodulation technology, we 
must elucidate the fundamental mechanism(s) by which US waves interact with neural tissue at the 
cellular scale, how these mechanisms may vary across neural structures and how optimal sonication 
parameters change with it. 

Several theories have emerged to try to decipher this interaction. Among them, the neuronal in-
tramembrane cavitation excitation (NICE) model (Plaksin et al., 2014) hypothesizes that incoming US 
waves induce the cavitation of specific nanometer-scale phospholipidic structures (so-called “bilayer 
sonophores”) within plasma membranes. This model provides quantitative predictions of cell-type-
specific neural responses upon US exposure that result in excitation or inhibition of cortical networks 
depending on LIFUS parameters (Plaksin et al., 2016). These predictions agree with the results of nu-
merous in vitro experiments and in vivo studies sonicating the CNS of various animal models (Kim et 
al., 2012, 2014, 2015; King et al., 2013; Tufail et al., 2011; Yoo et al., 2011). Yet, the model is purely theo-
retical and built around the intramembrane cavitation hypothesis, whose direct mechanical and elec-
trical manifestations have yet to be observed experimentally. Moreover, the intrinsic electromechani-
cal coupling of the model entails important computational limitations. From an algorithmic standpoint, 
the explicit modeling of mechanical membrane oscillations with microsecond-scale periodicity re-
sults in a very stiff differential system that severely hinders numerical integration. From an analysis 
standpoint, the bidirectional coupling between mechanical and electrical variables evolving at differ-
ent time scales produces a singular electrical response that can be difficult to interpret under the 
classical frame of neural dynamics. These limitations have so far prevented systematic, large-scale 
explorations of the LIFUS parameter space with the NICE electromechanical model, and its efficient 
integration in realistic applications involving the simultaneous solving of coupled differential systems, 
such as multi-compartmental morphological models and neuron population models. 

In this study, we present a coarse-grained variant of the NICE electromechanical model – the so-called 
multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model – that allows the interpre-
tation of the millisecond-scale dynamics of neural responses upon US exposure in terms of effective 
membrane dynamics. We show that the SONIC model can provide accurate predictions of cell-type-
specific neural responses with respect to the detailed NICE model, while significantly decreasing 
computation times. We then exploit the SONIC model explore systematically the dense, multidimen-
sional LIFUS parameter space, and analyze responses of different neuron types with an advanced 
electrophysiological understanding. Finally, we use a nanoscale spatially extended SONIC model to 
study the impact of partial sonophore coverage on predicted neural responses and expected excita-
bility. 

3.3 Methods 

 The NICE electromechanical model 
The NICE electromechanical model (Krasovitski et al., 2011; Plaksin et al., 2014, 2016) is a mathematical 
model consisting of a system of first- and second-order differential equations describing the dynamic 
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mechanical and electrical behavior of a bilayer sonophore that cavitates upon sonication while being 
anchored by surrounding transmembrane proteins (Figure 16(a)). 

 

Figure 16. Description of the NICE electromechanical model. (a) Schematic representation of a bilayer sonophore structure 
(phospholipidic layers, inner cavity and surrounding transmembrane proteins) with the associated differential variables Z 
(apex deflection) and ng (internal gas molar content). The local transmembrane potential Vm and electric pressure PQ resulting 
from charge distributions on both sides of the membrane (green and red dots) are also indicated. (b) Electrical circuit repre-
sentation of the local membrane dynamics, with the same transmembrane potential, a deflection-dependent capacitance 
Cm, and cell-type-specific Hodgkin-Huxley ionic conductances and reversal potentials. 

3.3.1.1 NICE mechanical model 
The mechanical part of the NICE electromechanical model predicts that incoming US waves generate 
a dynamic pressure imbalance that drives alternating expansions and compressions of sonophore 
structures, to oscillate at the US frequency. This cyclic behavior is captured by a second-order partial 
differential equation (akin to the Rayleigh-Plessey equation of bubble cavitation (Plesset, 1949)) de-
scribing the antiphase apex deflection Z of the sonophore inner and outer leaflets, and a first-order 
equation describing the variation of internal gas content ng: 
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where R(Z) and S(Z) represent the curvature radius and surface area of a sonophore leaflet and Qm the 
local membrane charge density around the sonophore (for a definition of all other parameters see 
Table 2). Ultimately, the normal acceleration of a leaflet apex depends on the resultant of the applied 
acoustic pressure PA, the constant hydrostatic pressure P0 around the membrane, and several intrin-
sic pressure forces, defined as in (Krasovitski et al., 2011; Plaksin et al., 2014): 

• the elastic membrane tension pressure developed in the two leaflets: 𝑃𝑃𝑆𝑆(𝑍𝑍) = − 𝑘𝑘𝑆𝑆
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• the viscous pressure in the extra-membrane medium: 𝑃𝑃𝑉𝑉𝑉𝑉 �
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𝑆𝑆(𝑍𝑍)∫ ∫ 𝐴𝐴𝑟𝑟 ∙ (𝛾𝛾𝑥𝑥  – 𝛾𝛾𝑦𝑦) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎

0
2𝜋𝜋
0  with 𝛾𝛾 =

𝛥𝛥∗

2𝑧𝑧(𝑟𝑟)+𝛥𝛥(𝑄𝑄𝑚𝑚0)
 

• the internal gas pressure in the cavity: 𝑃𝑃𝐺𝐺(𝑍𝑍,𝑛𝑛𝑔𝑔) = 𝑛𝑛𝑔𝑔∙𝑅𝑅𝑔𝑔∙𝑇𝑇
𝑉𝑉(𝑍𝑍)

 

• the electric pressure exerted on the sonophore by charges on either side of its membrane: 

𝑃𝑃𝑄𝑄(𝑍𝑍,𝑄𝑄𝑚𝑚) = −𝑆𝑆0
𝑆𝑆

𝑄𝑄𝑚𝑚2

2𝜖𝜖0∙𝜖𝜖𝑟𝑟
 

Here, S0 represents the leaflet surface area at rest, V(Z) the sonophore volume, r the in-plane distance 
from the sonophore center, z(r) the local deflection at this distance, and Δ(Qm0) the charge-dependent 
gap between the two leaflets of the sonophore when the neuron is at rest (computed by canceling out 
PM and PQ at Z = 0). 

Parameter Symbol Unit Value Source(s) 

Sonophore radius (default value) a nm 32.0 (Plaksin et al., 2014) 
Temperature T K 309.15 (Pospischil et al., 2008) 

Universal gas constant Rg Pa∙m3∙mol-1∙K-1 8.314 (Wong, 1977) 
Thickness of the leaflet δ0 nm 2.0 (Boal, 2012; Krasovitski et al., 

2011) 
Gap between the two leaflets on an uncharged 

membrane 
Δ* nm 1.4 

(Krasovitski et al., 2011) Intermolecular pressure coefficient Ar Pa 105 
Exponent in the intermolecular repulsion term x - 5.0 
Exponent in the intermolecular attraction term y - 3.3 

Density of the extramembrane medium ρl kg∙m-3 1075 (IT’IS Foundation, 2015) 
Dynamic viscosity of the extramembrane medium µl Pa∙s 7∙10-4 (Plaksin et al., 2014) Dynamic viscosity of the leaflet µs Pa∙s 0.035 

Area compression modulus of the bilayer membrane kS N∙m-1 0.24 (Krasovitski et al., 2011; Phillips et 
al., 2009; Rawicz et al., 2000) 

Gas concentration in the extra-membrane medium  Cg mol∙m-3 0.62 (Geng and Duan, 2010; Plaksin et 
al., 2014; Sun et al., 2001) Henry’s constant kH Pa∙m3∙mol 1.613∙105 

Hydrostatic pressure in the extra-membrane me-
dium 

P0 Pa 105 (Wong, 1977) 

Diffusion coefficient of air in the extra-membrane 
medium 

Dgl m2∙s-1 3.68∙10-9 (Wise and Houghton, 1966) 

Effective thickness of boundary layer between ex-
tramembrane medium and intramembrane space for 

gas transport 

ξ nm 0.5 (Plaksin et al., 2014) 

Vacuum permittivity ε0 F∙m-1 8.854∙10-12 (Mohr et al., 2008) 
Relative permittivity of the intramembrane cavity εr - 1 (Plaksin et al., 2014) 

Resting membrane capacitance Cm0 µF∙cm-2 1.0 (Pospischil et al., 2008) 
Table 2. Parameters of the NICE mechanical model. 

3.3.1.2 NICE electrical model. 
The electrical part of the NICE electromechanical model predicts that the alternating expansions and 
compressions of a cavitating sonophore induce local, periodic oscillations in the plasma membrane 
capacitance (given by 𝐶𝐶𝑚𝑚(𝑍𝑍) = 𝐶𝐶𝑚𝑚0Δ

a2
�𝑍𝑍 + 𝑎𝑎2−𝑍𝑍2−𝑍𝑍∙Δ

2𝑍𝑍
ln �2𝑍𝑍+𝛥𝛥

𝛥𝛥
�� as in (Plaksin et al., 2014)), which in turn 

cause large-amplitude oscillations of the transmembrane potential Vm near the resonating structure. 
The detailed effects of such voltage variations on neuronal excitation are cell-type-specific and cap-
tured by a modified Hodgkin-Huxley differential system (Figure 16(b)), where the evolution of the local 
membrane potential Vm depends not only on the contribution of several ionic currents with specific 
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conductances gi and reversal potentials Ei, but also on a so-called capacitive displacement current 
(𝐼𝐼𝐶𝐶 =  𝑉𝑉𝑚𝑚

𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

) originating from the capacitance oscillations: 

(93) 

𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

= −
1
𝐶𝐶𝑚𝑚

�𝑉𝑉𝑚𝑚
𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

+ �𝑔𝑔𝑖𝑖 ∙ (𝑉𝑉𝑚𝑚 − 𝐸𝐸𝑖𝑖)
𝑖𝑖

�  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝛼𝛼𝑥𝑥(𝑉𝑉𝑚𝑚) ∙ (1 − 𝑥𝑥) − 𝛽𝛽𝑥𝑥(𝑉𝑉𝑚𝑚) ∙ 𝑥𝑥

𝑥𝑥∞(𝑉𝑉𝑚𝑚) − 𝑥𝑥
𝜏𝜏𝑥𝑥(𝑉𝑉𝑚𝑚)

 

In this system, non-leakage ionic conductances are regulated by the product of one or multiple gating 
variables x, whose evolution is regulated by specific voltage-dependent activation and inactivation 
rate constants (αx and βx, respectively), or by a steady state probability x∞ and a time constant τ x (also 
both voltage-dependent). Sodium (m and h) and delayed rectifier potassium (n) currents gating varia-
bles have been defined with the former paradigm (Pospischil et al., 2008), while that of slow non-
inactivating (p) and calcium (s and u) currents are defined with the latter one (Plaksin et al., 2016; Po-
spischil et al., 2008). 

It should be noted that the electric pressure term PQ depends directly on the membrane charge den-
sity, and therefore varies over the course of neural activation. As a result, the mechanical and electrical 
differential systems are bidirectionally coupled. 

 A multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) model 
The NICE mechanical model (described in (Plaksin et al., 2014)) and the Hodgkin-Huxley models of 
cortical regular spiking (RS), fast spiking, low-threshold spiking (LTS), thalamic reticular, and thalamo-
cortical neurons (described in (Plaksin et al., 2016)), as well as Subthalamic Nucleus (STN) neurons 
(described in (Otsuka et al., 2004; Tarnaud et al., 2018a)) have been implemented in Python 3.6 and 
coupled together, using identical equations and parameters as in the references. Model equations 
are solved here with the odeint function from the scipy.integrate Python library (http://www.scipy.org) 
that uses a fixed step, variable order solver automatically selecting between nonstiff (Adams) and stiff 
(BDF) methods based on dynamic monitoring of the integrated system (Hindmarsh, 1983; Petzold, 
1983). Numerical simulation of a RS neuron with typical sonophore in-plane radius (32 nm) and LIFUS 
parameters (500 kHz carrier frequency, 100 kPa pressure amplitude) reveals the extreme stiffness of 
the differential system. In consequence, the algorithm requires to use many time steps per acoustic 
period (1000 in our implementation) to ensure stable integration of intra-cycle system oscillations, and 
results in tremendous computation times (>> 1 day for a 150 ms CW stimulus). Therefore, we introduce 
here multiple optimization steps to reduce the computational cost of the algorithm. 

3.3.2.1 Lennard-Jones approximation of intermolecular pressure. 
Profiled simulations of the mechanical model in isolation reveal that the spatial integration of intermo-
lecular pressure PM is by far the longest internal computation at each iteration. However, despite its 
complexity, this integrated pressure term depends solely on leaflet deflection and the nature of its 
profile is similar to that of its local counterpart. Therefore, a precomputing step is defined wherein a 

Lennard-Jones expression of the form 𝑃𝑃𝑀𝑀� (𝑍𝑍) = 𝐴𝐴𝑟𝑟�  �� 𝛥𝛥∗�

2𝑍𝑍+𝛥𝛥(𝑄𝑄𝑚𝑚)
�
𝑥𝑥�

 −  � 𝛥𝛥∗�

2𝑍𝑍+𝛥𝛥(𝑄𝑄𝑚𝑚)
�
𝑦𝑦�
� is fitted to the inte-

grated profile and then used as a new predictor of intermolecular pressure during the iterative numer-
ical resolution (Figure 17(a)). This simplification allows to reduce computation times by more than one 

http://www.scipy.org/
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order of magnitude, without significantly affecting the resulting deflection profiles (RMSE = 0.8% of 
cavitation extent over one acoustic period for typical simulation conditions mentioned above). 

 
Figure 17. Description of the model simplification and optimization steps. (a) Comparison of spatially integrated (green) and 
fitted approximation (dashed red) of intermolecular pressure profiles for a realistic range of deflections. (b) Explicit represen-
tation of the electrical system recasting, along with a comparison of the short-term evolution of the membrane potential (Vm) 
and charge density (Qm) upon sonication (500 kHz, 100 kPa), showing remarkably different stiffness. (c) Schematic repre-
sentation of the coarse-graining and precomputing pipeline. Mechanical simulations are run until periodic stabilization of Z 
and ng, at which point the membrane capacitance Cm, transmembrane potential and voltage-gated rate constants are com-
puted over the last acoustic cycle. The average value of Vm and rate constants are then stored into lookup tables. The pro-
cess is repeated for various combinations of sonophore radii (a), US frequencies (f), acoustic pressure amplitudes (A) and 
membrane charge densities. (d) Schematic representation of the hybrid integration of the electrical system. Lookup tables 
are interpolated at a specific sonophore radius, US frequency and acoustic amplitude to yield 1D projected vectors of effec-
tive variables in the Qm space, which are then used alternatively to interpolate effective variables during US-ON and US-OFF 
periods, respectively. 

3.3.2.2 Recasting of the electrical system. 
Simulations of the detailed NICE electromechanical model predict that while the local membrane po-
tential of a cavitating sonophore undergoes large-amplitude oscillations, the membrane charge den-
sity and the ion channel gating variables around that structure evolve much more smoothly over the 
course of neural activation ((Plaksin et al., 2014) and Figure 17(b)). Therefore, the distinct electrical sys-
tem is first recast as function of charge (using the transformation Qm = Cm∙Vm), thereby removing the 
capacitive displacement current term and yielding a new scheme composed only of smooth differen-
tial variables: 
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(94) 
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𝑄𝑄𝑚𝑚
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As Qm/Cm is still rapidly oscillating, the evolution of electrical differential variables during US-ON peri-
ods is then expressed as a function of “effective” internal variables (using this time the rate constants 
formulation for all gates, with αx = x∞/τ x and βx = 1/τ x - αx), obtained by averaging their rapid oscillatory 
part over an acoustic period T. This is only possible because the differential variables evolve smoothly 
and allows to capture the millisecond-scale system evolution without explicitly resolving intra-cycle 
oscillations: 

 (95) 

�
𝑑𝑑𝑄𝑄𝑚𝑚
𝑑𝑑𝑑𝑑

�
∗

= −�𝑔𝑔𝑖𝑖 ∙ �
∫ 𝑄𝑄𝑚𝑚
𝐶𝐶𝑚𝑚(𝑍𝑍)

𝑇𝑇
0 𝑑𝑑𝑑𝑑

𝑇𝑇���������
𝑉𝑉𝑚𝑚∗

− 𝐸𝐸𝑖𝑖�
𝑖𝑖

 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
∗

=
∫ 𝛼𝛼𝑥𝑥
𝑇𝑇
0 � 𝑄𝑄𝑚𝑚

𝐶𝐶𝑚𝑚(𝑍𝑍)� 𝑑𝑑𝑑𝑑

𝑇𝑇�����������
𝛼𝛼𝑥𝑥∗

 ∙ (1 − 𝑥𝑥) −
∫ 𝛽𝛽𝑥𝑥
𝑇𝑇
0 � 𝑄𝑄𝑚𝑚

𝐶𝐶𝑚𝑚(𝑍𝑍)� 𝑑𝑑𝑑𝑑

𝑇𝑇�����������
𝛽𝛽𝑥𝑥∗

 ∙ 𝑥𝑥 

We shall refer to Vm
* as the effective membrane potential and to αx

* and βx
* as effective rate constants. 

3.3.2.3 Precomputation and hybrid integration of effective solutions. 
As they depend directly on the sonophore deflection profile and thus indirectly on the sonophore ge-
ometry, LIFUS parameters and electromechanical coupling, effective variables are precomputed for 
various combinations of sonophore radii (a), US frequencies (f), acoustic peak pressure amplitudes (A) 
and membrane charge densities – covering the LIFUS parametric space, sonophore geometrical 
range and membrane physiological range – and then stored in 4D lookup tables to be linearly interpo-
lated at runtime (Figure 17(c)). For each combination, a short simulation of the mechanical system is 
performed until a limit cycle is reached (detected by thresholding the root mean square error between 
two consecutive cycles of both Z and ng), and effective variables are then computed over the last 
acoustic cycle. The required granularity of lookup tables was determined by visually inspecting the 
nonlinearity of effective variables along each dimension. Lookups are computed here for 3 character-
istic sonophore radii (16, 32 and 64 nm), 7 carrier frequencies (20, 100 and 500 kHz, 1, 2, 3 and 4 MHz), 
pressure amplitudes including 0 Pa and 50 logarithmically distributed values between 0.1 and 600 
kPa, and cell-type-specific ranges of physiologically realistic, linearly distributed charge densities 
(from Vm0∙Cm0 - 25 to 50 nC/cm2 with a 1 nC/cm2 step). 

Effective solutions are computed by interpolating effective variables at (a, f, A) and (a, f, 0) to yield 1D 
projected vectors in the Qm space, which are then used to interpolate effective variables and solve 
equation (95) during US-ON and US-OFF periods, respectively (Figure 17(d)). The same odeint solver 
as for the detailed NICE model is used, however the absence of rapid oscillations allows to use a 
constant time step far greater than a typical acoustic period (dt = 50 µs). 
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For the sake of simplicity, this new model variant involving electrical system recasting and coarse-
graining, precomputation of effective variables and hybrid numerical integration using lookup interpo-
lation tables will be referred to as SONIC model later on. 

 Comprehensive characterization of neural responses 

3.3.3.1 Spike detection and derived metrics. 
Incident neural spikes are detected on charge density profiles as local maxima using prominence 
thresholding, and neighboring local minima are used to define the spike boundaries. Spike amplitude 
is defined as the smallest differential between the local maximum and the neighboring local minima. 
Latency is defined as the delay between the stimulus onset and the occurrence of the first spike, and 
firing rate as the average of reciprocals of inter-spike intervals, accounting only for spikes occurring 
during the stimulus interval. 

3.3.3.2 Systematic exploration of the LIFUS parameter space. 
A typical LIFUS protocol comprises five distinct stimulation parameters: US frequency, acoustic peak 
pressure amplitude, pulse repetition frequency (PRF), duty cycle (DC), and duration, all of which sub-
stantially affect the mechanical and electrical response of a neuron. The latter also depends heavily 
on the cell-type-specific ion channel population and on the acoustic properties of the immediate an-
atomical environment. Hence, LIFUS optimization is a complex problem that requires the exhaustive 
characterization of the effects of multiple, possibly co-dependent, parameters over a high-dimen-
sional space – a challenge that goes far beyond what is experimentally feasible. In this context, com-
putational models can constitute a powerful tool to study the effect of a specific set of parameters in 
an isolated manner, provided they can be used efficiently. 

The NICE electromechanical model predicts that cell-type-specific sensitivities to LIFUS can be clas-
sified into two main categories, depending on the presence or absence of a voltage-gated depolari-
zation current active at sub-threshold charge levels (Plaksin et al., 2016). Therefore, the parameter 
space is systematically explored for RS and LTS neurons – that provide a typical use case for each 
category – by varying the following stimulation parameters: sonophore radius (5 logarithmically dis-
tributed values from 16 to 64 nm), US frequency (500 kHz and 4 MHz), acoustic peak pressure ampli-
tude (30 logarithmically distributed values from 10 to 600 kPa), PRF (10, 100 and 1000 Hz) and duty 
cycle (1 to 100% with a 1% step). Stimulus duration is fixed to 1 s in order to analyze all relevant features 
of neural responses (excitation thresholds, firing rate adaptation, bursting behaviors, etc.). Two-dimen-
sional behavior maps are then produced by plotting firing rates of resulting responses as a function of 
duty cycle and pressure amplitude, since neural activation across cell types is found to be mostly 
sensitive to these parameters, presumably along with the sonophore radius. 

 A multi-compartmental SONIC model to study spatially-distributed nanoscale in-
teractions 

Because it is recast as a differential system akin to the familiar Hodgkin-Huxley formulation, the SONIC 
model can be easily extended into multiple spatial compartments. Considering the inherent assump-
tions of the intramembrane cavitation theory, the first (most evident) expansion scale to consider is 
that of the sonophore itself, in interaction with its direct surroundings. Therefore, a nanoscale multi-
compartmental SONIC model is developed to study the impact of that interaction on the local neural 
response. It consists of two radially symmetric membrane sections (Figure 18): a bilayer sonophore 
(compartment S) of radius a, surrounded by a LIFUS-insensitive circular membrane patch (compart-
ment I) expanding from a to an outer radius b. The ratio of sonophore membrane area (πa2) divided by 
the total membrane area (πb2) is designated as the sonophore coverage fraction (fs = a2/b2). Compart-
ments S and I are modeled electrically by voltage gated RC circuits, representing the local effective 
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transmembrane dynamics of an RS neuron in the LIFUS-modulated sonophore region and the LIFUS-
insensitive surrounding membrane. Both compartments are linked to ground in the extracellular me-
dium, and connected to each other within a sub-membrane intracellular space of depth deff by a cy-
lindrical resistor RSI. The resistor value is approximated by considering an element that spans between 

the middle radial coordinates of compartments S and I, such that 𝑅𝑅𝑆𝑆𝑆𝑆 =  ∫ 𝜌𝜌
2𝜋𝜋∙𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒∙𝑟𝑟

𝑑𝑑𝑑𝑑
𝑎𝑎+𝑏𝑏
2

𝑎𝑎
2

=

𝜌𝜌
2𝜋𝜋∙𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒

ln �𝑎𝑎+𝑏𝑏
𝑎𝑎
�, where the cytoplasmic resistivity ρ is set to the typical value of 100 Ω∙ cm (McNeal, 

1976). Finally, deff is arbitrarily set to 100 nm, i.e. within the order of magnitude of a typical sonophore 
diameter. 

 
Figure 18. Schematic representation of the nanoscale multi-compartmental SONIC model. A bilayer sonophore of radius a 
(S, in light grey) is surrounded by a LIFUS-insensitive circular membrane patch (I, in dark grey) expanding between a and an 
outer radius b = a/√fs, where fs represents the sonophore coverage fraction of the total membrane area. Both sections are 
modeled electrically by voltage gated RC circuits, linked to ground in the extracellular medium, and connected to each other 
within a sub-membrane intracellular space of depth deff by a cylindrical resistor RSI. 

In this cylindrically geometric model, the effective variation of membrane charge density in each com-
partment results from (1) transmembrane currents triggered by the local effective membrane potential 
variations, and (2) effective intracellular currents between the two compartments as a result of differ-
ences in local effective membrane potential: 𝐼𝐼𝑆𝑆𝑆𝑆∗ = 1
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where local ionic conductances are regulated by independent sets of gating variables defined as in 
equation (95). 
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This multi-compartmental model has been implemented NEURON (Hines and Carnevale, 1997), by 
using the precomputed lookup tables from an RS neuron (see Figure 17) to compute membrane cur-
rents, and a custom intracellular connection scheme explicitly casted in terms of Vm* to compute in-
tracellular currents. 

The hypothesis of a unique, transmembrane potential variation across the entire membrane patch is 
also considered. This hypothesis was previously assessed with a point-like NICE model by only con-
sidering an attenuated version of the membrane capacitance oscillations resulting from the cavitating 
sonophore (𝐶𝐶𝑚𝑚(𝑡𝑡) = 𝑓𝑓𝑠𝑠 ∙ 𝐶𝐶𝑚𝑚𝑆𝑆(𝑡𝑡) + (1 − 𝑓𝑓𝑠𝑠) ∙ 𝐶𝐶𝑚𝑚0), thereby reducing the variation range of the trans-
membrane potential (Plaksin et al., 2016). Here, a point-like SONIC model is developed in parallel that 
uses lookup tables derived from mechanical simulations with this spatially averaged capacitance. 

3.4 Results 

 LIFUS-dependent effective variables 
In this section, effective profiles of membrane capacitance, membrane potential and ion channels rate 
constants of an RS neuron are interpolated from the corresponding pre-computed lookup tables (see 
section 3.3.2.3 and Figure 17(c)) at various acoustic amplitudes, US frequencies, and sonophore radii, 
and evaluated as a function of membrane charge density. 

3.4.1.1 Effective membrane potential and rate constants are significantly amplified as a func-
tion of acoustic pressure amplitude. 

In the absence of acoustic perturbation, the mechanical state of the sonophore is solely dependent 
on gas content and charge density. As the latter increases in magnitude, augmentation of the electri-
cal pressure compresses the sonophore and increases its membrane capacitance. As a result, the 
profile of the unperturbed effective membrane potential Vm

* = Qm/Cm is an odd function of Qm that 
deviates slightly from linearity (Figure 19(a)). For small acoustic perturbations (A < 50 kPa), the ampli-
tude of intra-cycle oscillations is still heavily dependent on the electrical pressure. Hence, the sono-
phore expansions and the resulting capacitance drops throughout acoustic cycles are considerably 
reduced as the magnitude of membrane charge density increases. Thus, the effective membrane 

capacitance 𝐶𝐶𝑚𝑚∗ = �1
𝑇𝑇 ∫

𝑑𝑑𝑑𝑑
𝐶𝐶𝑚𝑚(𝑍𝑍)

𝑇𝑇
0 �

−1
 displays an inverse bell-shaped profile as a function of charge, and 

the resulting effective membrane potential, despite conserving its odd symmetry, is amplified at in-
termediate values of │Qm│ before converg ing asymptotically towards its unperturbed counterpart as 
charge magnitude is further increased. Larger acoustic perturbations (A > 50 kPa) induce greater 
sonophore expansions and capacitance drops within intra-cycle oscillations, during which the influ-
ence of the electrical pressure is heavily reduced. This means that the Cm

* profile is shifted towards 
lower values and exhibits little dependency on the charge density within the physiological range. Con-
sequently, the Vm

* charge profile is amplified and transitions towards another quasi-linear regime. This 
amplification generates larger deviations from reversal potentials, and thus stronger ionic currents. 
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Figure 19. Modulation of charge-dependent effective variables as a function of acoustic pressure amplitude, US frequency 
and intrinsic sonophore radius. Effective variables of an RS neuron are displayed as a function of membrane charge density, 
with a color code corresponding to the modulating variable at which they were derived (color bar depicted on top). The orig-
inal, non-modulated variables (dashed black lines) are also depicted for comparison. (a) Dependence on acoustic pressure 
amplitude (32 nm radius sonophore, f = 500 kHz). (b) Dependence on US frequency (32 nm radius sonophore, A = 50 kPa). 
(b) Dependence on intrinsic sonophore radius (f = 500 kHz, A = 50 kPa). 

As voltage-gated rate constants are nonlinear functions of the membrane potential, their effective 
counterparts cannot be derived directly from Vm

* and must be explicitly computed. For small acoustic 
perturbations, they also deviate from their original counterpart at intermediate charge values and re-
converge asymptotic towards it as we reach the borders of the physiological range. For large acoustic 
perturbations, all profiles are widely amplified around one extremity of the range due to their exponen-
tial nature, with the exception of the sigmoidal βh profile. In particular, αm

* and αn
* are amplified for pos-

itive charge values which corresponds to faster openings of the sodium m-gate and potassium n-gate 
during action potentials. Hence, increasing acoustic amplitude also amplifies rate constants, which is 
likely to trigger faster gating variations. 

3.4.1.2 Effective variables are significantly amplified as a function of the sonophore radius. 
For intermediate values of acoustic pressure amplitude (here 50 kPa), varying the sonophore radius 
within a realistic range around its default value (16 < a < 64 nm) produces significant changes in the 
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effective variables profiles (Figure 19(b)). Expectedly, larger sonophores yield more pronounced sono-
phore expansions (as shown in (Krasovitski et al., 2011)) and related capacitance drops, thereby ampli-
fying the effective membrane potential profile in a charge-symmetric manner, as obtained when in-
creasing acoustic amplitude. It results in a similar amplification of all effective rate constants. Oppo-
sitely, smaller sonophores have narrower periodic expansions, which limits the amplification of effec-
tive variables. The consequences of the dependence of effective variables on sonophore radius in 
terms of neuronal excitability are discussed in section 3.4.5.1. 

 Model validation 
In this section, we evaluate the ability of the SONIC model to accurately reproduce membrane charge 
density profiles generated with the detailed NICE model (based on the charge-casted NICE electro-
mechanical model described in equations (92) and (94)) for a variety of LIFUS conditions. For cases 
requiring the identification of sub- and supra-threshold regimes, a binary search to find the excitation 
threshold amplitude was conducted with the SONIC model and the appropriate neuron type, US fre-
quency, and sonophore radius. 

3.4.2.1 The model accurately captures predicted cell-type-specific excitation thresholds and 
responses to CW stimuli. 

Under typical continuous-wave (CW) LIFUS conditions (f = 500 kHz, 150 ms stimulus), the SONIC 
model accurately captures both passive responses of an RS neuron at sub-threshold amplitudes, and 
non-adaptive high-frequency tonic spike trains elicited at supra-threshold amplitudes (Figure 20(a), 
top). In the latter regime, amplitude-dependent variations in response latency, firing rate, and spike 
amplitude within the tonic train are picked up with a remarkable accuracy up to 600 kPa (Figure 20(a), 
bottom), a value far exceeding the pressure amplitudes used in recent neuromodulation studies on 
the CNS (Kubanek, 2018). However, the model fails to capture the exact threshold amplitude at which 
the neuron transitions from a passive response to an active spiking behavior: integration with the de-
tailed NICE model does not yield excitation at the threshold amplitude determined with the SONIC 
model (Figure 20(a), top). It can be assumed that this arises from the high nonlinearity of the effective 
membrane potential at low acoustic pressure amplitudes and negative charge densities (Figure 19(a)), 
yielding inaccurate linear interpolations during the build-up phase. 
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Figure 20. Validation of the SONIC model against the detailed NICE model. Membrane charge density profiles from simula-
tions with the detailed NICE model (light solid curves) and SONIC model (dark dashed curves) of different neurons under 
various LIFUS conditions are compared, along with derived spiking metrics (latency, firing rate and spike amplitude). (a) Top: 
comparison of charge density profiles of a RS neuron under CW sonication (f = 500 kHz) for sub-threshold (AT - 5 kPa), 
threshold (AT) and supra-threshold (AT + 20 kPa) acoustic pressure amplitudes. Bottom: comparison of derived spiking met-
rics for varying supra-threshold pressure amplitudes. (b) Top: comparison of charge density profiles of a RS neuron under 
CW sonication at supra-threshold amplitude (threshold + 20 kPa) with f = 20 kHz and f = 4 MHz. Bottom: comparison of 
derived spiking metrics for varying carrier frequencies from 20 kHz to 4 MHz. (c) Top: comparison of charge density profiles 
of a RS neuron under CW sonication at supra-threshold amplitude (threshold + 20 kPa) with 16 and 64 nm radius sonophores 
at f = 500 kHz. Bottom: comparison of derived spiking metrics for varying sonophore radii from 16 to 64 nm. (d) Top: com-
parison of charge density profiles of RS (blue) and LTS (red) neurons under pulsed-wave (PW) sonication (f = 500 kHz, A = 
100 kPa, 100 Hz PRF) at 5% DC. Bottom: comparison of derived spiking metrics for varying duty cycles from 5 ‒ 100% . (e) 
Top: comparison of charge density profiles of a LTS neuron under PW sonication (f = 500 kHz, A = 100 kPa, 5% DC) with 
PRF of 10 Hz, 100 Hz, 1 kHz and 10 kHz. Bottom: comparison of derived spiking metrics for varying PRF from 10 Hz to 10 kHz. 

The model accuracy for supra-threshold amplitudes is conserved as the carrier frequency increases 
up to several MHz (Figure 20(b), top). However, significant differences in spike amplitude (and to a 
lesser extent in latency and firing rate) appear as the frequency approaches the lower bound of the 
US domain (Figure 20(b), bottom). In fact, at such low frequencies, the order-of-magnitude of the intra-
cycle oscillations dynamics approaches that of the gating kinetics of sodium and potassium ion chan-
nels, thereby inducing large intra-cycle gating variations that modulate the membrane charge density 
at the US frequency and cause considerable oscillations in the detailed solution (Figure 20(b), inset). 



The multi-Scale Optimized Intramembrane Cavitation (SONIC) model 

69 

As can be expected, these oscillations are absent from the effective solution because of the intrinsic 
cycle-averaging strategy of the SONIC model, but the resulting spiking behavior stays qualitatively 
correct. This intra-cycle interference (and the resulting divergence) vanishes at- frequencies higher 
than 100 kHz. This supra-threshold accuracy is also conserved for the sonophore radii bounding the 
lookup interval (16 and 64 nm): the larger radius yields similar reductions in latency and spike ampli-
tude and increases in firing rate, and vice-versa (Figure 20(c), top). Interestingly, simulations of the 
SONIC model at intermediate radii that are not present in the lookup tables yield identical latencies 
than those obtained with the detailed NICE model, but higher firing rates and spike amplitudes (Figure 
20(c), bottom). This inaccuracy suggests that while the effective membrane potential governing the 
initial charge build-up exhibits a rather linear dependency on the sonophore radius, effective rate con-
stants depend nonlinearly on this variable, hence a higher resolution of the lookup tables in this di-
mension would be needed to produce quantitatively identical results. Nonetheless, spiking patterns 
stay qualitatively similar. Thus, the SONIC model can estimate cell-type-specific threshold excitation 
amplitudes with a precision in the order of kPa, and accurately captures the amplitude, frequency and 
sonophore radius dependencies of neural responses to CW stimuli. Note that these observations 
translate to other neuron types since they all share the same mode of interaction with CW stimuli (data 
not shown), except for the STN neuron type which was validated separately (see section 3.5.1.3). 

3.4.2.2 The model accurately captures predicted cell-type-specific responses to PW stimuli. 
Under typical PW stimulation conditions (f = 500 kHz, A = 100 kPa, 100 Hz PRF), the SONIC model 
accurately captures cell-type-specific, DC-dependent changes in latency and firing rate of RS and 
LTS neurons, which are good representatives of the two main types of sensitivities to pulsed LIFUS 
protocols according to predictions from the NICE model (Plaksin et al., 2016). In particular, at very low 
duty cycles, both the passive response of a RS neuron and the sparse firing of a LTS neuron are ac-
curately reproduced (Figure 20(d), top). In the latter case, a minor divergence is initiated and amplified 
during US-OFF periods, which is likely due to the great sensitivity of the charge-casted system to initial 
conditions of early depolarization phases as well as intrinsic differences in the computation of mem-
brane capacitance between the NICE and SONIC models. This divergence is also found for the RS 
neuron that starts firing at 50% DC and yields small inaccuracies in the reported firing rates (Figure 
20(d), bottom), despite producing very similar spiking behaviors. The SONIC model accuracy is mostly 
preserved throughout variations in PRF for a LTS neuron at 5% DC (Figure 20(e)), with two notable 
exceptions around 1 kHz and at 10 kHz. In the former case, the model inaccuracy is probably due to a 
particular pulse-spike synchronization that amplifies divergence of the effective solution ‒ in fact, a 
slight divergence in the charge build-up phase can shift spike occurrence by one or several pulses, 
thereby offsetting the entire downstream response dynamics. In the latter case, however, divergence 
likely arises from the increasing number of ON-OFF transitions and the decrease of pulse duration 
down to the order of magnitude of the integration time step of the SONIC model, limiting the number 
of iterations per pulse and thereby the accuracy of the effective solution. Thus, the SONIC model ac-
curately captures the duty cycle and PRF dependencies of cell-type-specific neural responses to PW 
stimuli, relevant to different gating mechanisms. 

 The SONIC model boosts algorithmic efficiency by at least 3 orders of magnitude 
The algorithmic acceleration provided by the presented SONIC model is assessed by comparing 
computation times of SONIC simulations with that of detailed NICE simulations, performed on the 
same computer (24-core, 2.1 GHz clock rate server, 126 GB RAM, Ubuntu 16.04.3 operating system). 

For typical CW stimulation parameters (f = 500 kHz), the detailed solution of the NICE model is com-
puted in approx. 1 day, while the effective solution of the SONIC model is solved in less than 1 min. 
(Figure 21(a)), which corresponds to a gain in efficiency of more than 3 orders of magnitude. 
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Figure 21. Quantification of the SONIC model acceleration. Comparison of computation times for 250 ms simulations under 
various LIFUS conditions, with the detailed NICE model (light gray) and SONIC model (dark gray, along with the fixed precom-
putation cost). (a) Comparison for CW simulations of the RS neuron at various sub- and supra-threshold acoustic amplitudes. 
The excitation threshold is also indicated (dashed vertical line). (b) Comparison for CW simulations of the RS neuron at various 
US frequencies with a supra-threshold amplitude (threshold + 20 kPa). (c) Comparison for CW simulations of the RS neuron 
with various sonophore radii, also at supra-threshold amplitude (threshold + 20 kPa). (d) Comparison for simulations of the 
RS (blue) and LTS (red) neurons (f = 500 kHz, A = 100 kPa, 100 Hz PRF) at various duty cycles. Dashed horizontal lines 
indicate characteristic durations.  

The computation times of SONIC simulations show a significant increase between the sub- and su-
pra-threshold regimes. This illustrates the stiffer differential system resulting from an active electrical 
response, as the employed LSODA solver uses an adaptive integration scheme that takes an increas-
ing number of internal steps at each iteration as the system stiffness augments. Conversely, the com-
putation times of NICE simulations augment linearly with acoustic amplitude and do not exhibit a 
sharp transition between those two regimes, as the full electromechanical model possesses a huge 
intrinsic stiffness that is hardly affected by the presence of an active electrical response, but rather by 
the increase in magnitude of intra-cycle oscillations. 

Expectedly, computation times of the NICE model increase as the stimulus carrier frequency in-
creases, owing to the algorithm’s frequency-dependent integration time step, while those of the 
SONIC model do not exhibit any dependency on that parameter (Figure 21(b)). The NICE model takes 
longer to compute supra-threshold simulations for very small sonophore radii – which could indicate 
an increase in the system’s nonlinearity for such small structures – and is otherwise rather constant 
across values of a. Conversely, the SONIC model takes longer to compute supra-threshold simula-
tions (threshold + 20 kPa, where the threshold is determined for each value of a by a titration proce-
dure) as the sonophore radius increases. This results from the greater sensitivity of larger sonophores 
to pressure amplitude, meaning that responses in the supra-threshold range transition faster towards 
tonic, high-frequency firing (see Figure 20(c)), which produces stiffer differential systems 20 kPa above 
the excitation threshold. 

For PW stimuli, NICE computation times increase as the stimulus duty cycle increases, for both ac-
tively and passively responding neurons (Figure 21(d)), as a result of the longer LIFUS-ON total duration. 
SONIC computation times show less sensitivity to that parameter, but more intra-neuron variability: 
computation times for the actively responding LTS neuron are on average twice that of the RS neuron 
that is less activated, thereby confirming the influence of electrical variables on the effective system’s 
stiffness. 

Overall, the gain in algorithmic efficiency provided by the SONIC model must be mitigated as it comes 
with an initial cost: the time required to inform the lookup tables necessary to run SONIC simulations 
is in the order of 2-3 days. However, this precomputation cost is fixed and can be significantly de-
creased by a trivial parallelization, which is impossible with the detailed NICE model. 
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 Cell-type-specific excitability and spiking activity depends on multiple LIFUS pa-
rameters 

The different sensitivities of the RS and LTS neurons to LIFUS have been previously characterized in 
(Plaksin et al., 2016). This section aims at providing an interpretation of their respective recruitment 
mechanisms, based on the newly introduced effective membrane dynamics, and at using behavior 
maps to establish detailed trends of their firing behavior in different regions of the parameter space. 
It should be noted that a typical behavior map (i.e., 3000 simulations, see Methods section) was gen-
erated here in about 30 hours, a process that would have taken more than 10 years with the detailed 
NICE model. 

3.4.4.1 Regular spiking neurons are recruited by leakage currents above a critical ultrasonic 
dose. 

In the sub-threshold state where the membrane charge density is below the neuron’s spiking thresh-
old QT, LIFUS-ON periods of sufficient intensity trigger a strong effective hyperpolarization of several 
tens of millivolts that closes all voltage-gated ion channels, but also triggers a depolarizing leakage 
current (proportional to the difference Vm

* - Eleak) that increases the membrane charge density (Figure 
22(a), insets i-ii). At each pulse offset, the sudden mechanical stabilization of the membrane prompts 
an effective depolarization that crosses the leakage reversal potential and brings the membrane po-
tential above its pre-pulse level, yet remaining in the sub-threshold state. Hence, the leakage current 
changes polarity and the charge density decreases. As a result, the net charge variation over a PRI 
depends on the combination of pressure amplitude and duty cycle (referred to as US dose) that de-
termines the magnitude and duration of LIFUS-ON effective depolarization, and is positive for US 
doses above a certain threshold. As the charge density progressively approaches QT, effective hy-
perpolarizations and depolarizations are shifted towards higher potential values, which diminishes the 
imbalance between the LIFUS-ON and LIFUS-OFF charge variations, ultimately reducing the net 
charge increase per PRI. Above a critical US dose, the imbalance stays positive as the charge crosses 
QT, at which point the sodium channels begin to open and drive further charge increase. 
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Figure 22. Cell-type-specific LIFUS behavior maps. Two-dimensional behavior maps depicting the firing rate of RS and LTS 
neurons (32nm sonophore radius, 500 kHz US frequency) as a function of duty cycle and amplitude, for various PRF, along 
with threshold excitation amplitudes predicted from titration procedures (orange curves). Temporal profiles of membrane 
charge density (black) and effective membrane potential (gray) are also depicted for selected combinations of duty cycle and 
amplitude. (a) Behavior maps and selected profiles at 10 HZ PRF. (b) Maps and profiles at 100 Hz PRF. (c) Maps and profiles 
at 1 kHz PRF. 

3.4.4.2 Low-threshold spiking neurons can be recruited at lower ultrasonic doses thanks to 
calcium currents. 

The LTS neuron is intrinsically easier to bring to a supra-threshold state due to its higher resting po-
tential, and is thus generally activated at lower amplitudes than the RS neuron (Figure 22, bottom 
maps). Moreover, in the sub-threshold state, the sudden effective depolarization at pulse offsets trig-
gers the transient opening of intrinsic low-threshold calcium voltage-gated channels during LIFUS-
OFF periods, producing a depolarizing current that can overcome the effect of the hyperpolarizing 
leakage current and drive further depolarization of the membrane towards QT. As a result, the LTS 
neuron can be excited at far lower duty cycles than the RS neuron with sub-MPa amplitudes (Figure 
22(a), inset iii). 
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3.4.4.3 Cortical neurons can be entrained into different spiking behaviors depending on PRF 
values. 

When a regular or low-threshold spiking neuron reaches the supra-threshold state (Qm > QT), the ef-
fective gating kinetics of sodium and potassium channels during LIFUS-ON periods trigger a high-
frequency, non-adaptive train of action potentials with a high spiking frequency (>> 100 Hz) and re-
duced spike amplitude (<< 70 nC/cm2), as seen in Figure 20(a-c). During LIFUS-OFF periods, the sys-
tem’s behavior mainly depends on its electrical state at the preceding pulse offset: a decreasing 
membrane charge at the transition tends to induce repolarization, whereas an increasing membrane 
charge triggers further depolarization towards an action potential of “standard” amplitude through the 
traditional (i.e., unmodulated) membrane dynamics of the neuron. 

For low PRFs allowing complete membrane repolarization between consecutive pulses, both neurons 
exhibit a similar, typical behavior (Figure 22(a)): US doses just above their respective excitation thresh-
old see each pulse trigger exactly one spike (insets i and iii), whereas at higher doses each pulse 
necessarily triggers a burst of spikes (insets ii and iv). Notice that the transition between those spiking 
patterns is sharper for the RS neuron. 

At intermediate PRFs that induce an accumulative depolarization effect between consecutive pulses, 
both neurons exhibit more complex spiking patterns (Figure 22(b)). Just above the excitation threshold, 
a large number of pulses is required to trigger a single spike. This number decreases as the US dose 
is increased. For particular US doses, the rate of sub-threshold charge increase is such that after mul-
tiple preceding pulses, the neuron’s excitation threshold is reached exactly at the time of a pulse on-
set, such that a burst of spikes can be fired within the pulse, enriching the firing rate spectrum with a 
high-frequency component. Interestingly, because the RS neuron’s leakage-driven sub-threshold 
build-up is quasi-linear, it synchronizes its bursting activity with a multiple of the PRI (referred to as 
nPRI-locked bursting) in a robust manner throughout the stimulus (Figure 22(b), inset ii). Moreover, this 
behavior is achieved at specific combinations of duty cycle and pressure amplitude seen as distinct 
stripes of higher firing rate on the behavior map, corresponding to different multiples of the PRI, and 
surrounded by regions of cyclic spiking activity (Figure 22(b), insets i and ii). This clustered pattern of 
nPRI-locked bursting cannot be obtained for the LTS neuron, because of the nonlinear, influence of 
the T-type calcium current on the sub-threshold charge build-up. However, as the latter current en-
hances sensitivity to LIFUS, the LTS neuron can synchronize its spiking activity with the stimulus by 
firing exactly one spike for each pulse at high US doses (Figure 22(b), inset iv). This behavior (referred 
to as PRI-locked spiking) is seen over a large region of the considered amplitude-DC space, (which 
suggests that it could be reliably elicited), something that is not obtained with the RS neuron for the 
range of considered acoustic amplitudes. When further raising the acoustic dose, both neuron types 
fire a burst of spikes at each pulse. 

At high PRF for which PRI is in the order of magnitude of spike duration, synchronization phenomena 
do not occur and both neurons show less regular responses (Figure 22(c)). At low US doses slightly 
above their respective excitation threshold, both neuron fire sparse spikes at a variable rate (Figure 
22(c), insets i and iii). At higher US doses, this high-frequency pulsing protocol tends to constrain the 
membrane charge density to a supra-threshold regime and yields very high firing rates for both neu-
rons (Figure 22(c), insets ii and iv), similar to those obtained by continuous stimulation. 
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 Excitation thresholds are sensitive to LIFUS parameters and sonophore geome-
try 

Visual inspection of effective variables reveals the significant influence of both US frequency and 
sonophore radius on a neuron’s effective electrical system (Figure 19(b-c)), and ultimately on its elec-
trical response. Hence, this section analyzes the influence of these two parameters on excitation 
thresholds, assessed using titration procedures. 

3.4.5.1 Neuronal excitability shows substantial sensitivity to the sonophore radius. 
For an RS neuron, augmenting the sonophore radius to twice its reference value (64 nm) induces larger 
cavitation that amplifies the effective membrane potential (Figure 19(c)) and the resulting leakage-
driven sub-threshold depolarization, thereby shifting the excitation threshold significantly towards 
lower US doses (Figure 23(a), solid curves). This decrease is particularly important at low duty cycles 
(e.g., > 3-fold decrease from 180 to 45 kPa at 20% DC). Oppositely, diminishing the sonophore radius 
to half its reference value (16 nm) induces a tremendous increase in threshold amplitudes. Again, this 
augmentation is particularly marked at low duty cycles (e.g., > 5-fold increase from 110 to 600 kPa at 
25% DC, below which it becomes impossible to excite the neuron with amplitudes in our lookup 
range). However, the augmentation is also substantial at high duty cycles (e.g., from 30 to 65 kPa at 
100% DC). 

 

Figure 23. Influence of sonophore radius and US frequency on excitation thresholds. Threshold excitation amplitude as a 
function of the duty cycle for an RS neuron (solid curves) and an LTS neuron (dashed curves), predicted through titration 
procedures. (a) Effect of sonophore radius (f = 500 kHz). (b) Effect of US frequency (a = 32 nm). 

The effects are smaller on an LTS neuron (Figure 23(a), dashed curves): doubling or halving the sono-
phore radius respectively shift the excitation threshold towards lower or higher US doses for small 
duty cycles (below 20% DC). For larger duty cycles, the neuron’s excitability is very robust to changes 
in sonophore extent (less than 5 kPa variation across the 3 conditions). 

3.4.5.2 US frequencies above 1 MHz reduce neuronal excitability. 
As anticipated from Figure 19(b), sub-MHz variations of the US frequency do not induce significant 
changes in the threshold excitation profiles of both neurons (Figure 23(b)). However, increasing the 
frequency up to 4 MHz induces stronger viscous stresses that limit the amplification of the effective 
membrane potential (Figure 19(b)) and the resulting leakage-driven sub-threshold depolarization, 
thereby shifting the excitation threshold towards slightly higher US doses. This effect is only relevant 
on large sonophores (here 32 and 64 nm radius) experiencing higher viscous stresses during cavita-
tion. It is also more prominent in RS neurons than in LTS neurons, as the latter cell type is more de-
pendent on LIFUS-ON periods to reach its spiking threshold. 
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3.5 Discussion 

 Interpretability of the SONIC model 

3.5.1.1 The SONIC model provides interpretability to the LIFUS-modulated spiking dynamics 
of cortical neurons. 

The high degree of similarity between detailed and effective solutions of the NICE and SONIC elec-
tromechanical models, respectively, reveals that membrane charge density and ion channels gating 
variations during a LIFUS neural response can be expressed as a function of “effective” membrane 
potential and rate constants, averaged over acoustic cycles. These effective variables all exhibit a 
dependency on Qm in the absence of acoustic perturbation, and they are amplified upon sonication to 
an extent that depends on acoustic pressure amplitude, US frequency and sonophore membrane 
span. 

The amplification of effective variables explains key features of the specific dynamics observed in both 
cortical RS and LTS neurons during LIFUS-ON periods (Figure 20(a-c)). 1) Given that sodium and po-
tassium have reversal potentials of opposite signs (50 and -90 mV, respectively), Vm

* amplification 
primarily increases the deviation from ENa and thus the magnitude of the depolarizing sodium current 
when Qm < 0, and deviation from EK and the magnitude of the hyperpolarizing potassium current when 
Qm > 0. This sign-dependent, ion-specific current amplification limits the charge density variation 
range, ultimately reducing the amplitude of the depolarization and hyperpolarization peaks reached 
during action potential trains. 2) The amplification of (i) αm

* and αn
* for positive charge densities and (ii) 

βm
* and βn

* for negative charge densities accelerate the opening and closing of the sodium and po-
tassium activation gates during action potentials, further enhancing their temporal dynamics. 3) αh

* 
amplification triggers faster reactivation of the sodium h-gate upon repolarization, which effectively 
eliminates recovery periods between spikes, thereby considerably increasing the firing frequency to 
a rate far superior to what can be evoked with electrical stimulation. 4) αp

* amplification accelerates 
the p-gate opening upon occurrence of the first spike, yielding a very fast firing rate adaptation within 
the first few spike intervals, and is therefore responsible for the non-adaptive nature of LIFUS-triggered 
spike trains. Hence, the SONIC model provides interpretability to the high-frequency and non-adap-
tive nature of spike trains in cortical RS and LTS neurons upon CW LIFUS. 

3.5.1.2 The SONIC model captures complex trends of LIFUS responses depending on multiple 
parameters. 

Due to its associated computational burden, the NICE model only allows for sparse explorations of 
the LIFUS parameter space. While such explorations can reveal crucial information (e.g. cell-type-spe-
cific, DC-dependent excitation thresholds obtained by titration procedures), denser explorations such 
as the ones performed in this study allow to capture finer trends in neural responses, and to assess 
the influence of parameters such as the PRF on those trends. Here, we showed that low PRFs can 
entrain both neuron types into regular firing behaviors, transitioning from isolated spikes to cyclic 
bursting at the PRF as US doses are increased. Higher PRFs yield more complex behaviors, from 
dose-specific synchronization phenomena at 100 Hz to a more continuous interaction at 1 kHz. 

3.5.1.3 The SONIC model captures subtle neuromodulatory effects over narrow regions of the 
LIFUS space. 

Interestingly, a recent computational study of the NICE model for STN neurons suggests that CW 
LIFUS can also induce other, subtle neuromodulatory effects on these spontaneously firing neurons 
(Tarnaud et al., 2018a). Markedly, the authors predict that increasing levels of US doses successively 
elicit (1) steady increase in the firing rate of the neuron above its physiological baseline, (2) further in-
crease of the firing rate with significant spike-frequency and spike-amplitude adaptation, and (3) gen-
eration of silenced plateau potentials after a transient period of adaptation. While those transitions 
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between qualitatively distinct modes of LIFUS-neuron interaction occur over a narrow range of low 
acoustic amplitudes (A < 25 kPa), they are remarkably captured by the SONIC model (Figure 24). 

 
Figure 24. Distinct neuromodulatory effects of CW LIFUS (f = 500 kHz) on STN neurons at very low intensities, as predicted 
by the SONIC model. (a) Temporal evolution of firing rate during LIFUS, defined as in (Tarnaud et al., 2018a), for increasing 
acoustic amplitudes. (b) Neural responses elicited at three specific amplitudes showing the distinct modes of interaction. 
Corresponding spatial peak pulse averaged intensities, computed as in (Tarnaud et al., 2018a) but with ρl =1075 kg∙m-3, are 
shown for comparison. Electrical model parameters were taken from (Otsuka et al., 2004; Tarnaud et al., 2018a). 

 Effects of partial sonophore membrane coverage on neural responses 
Sonophore membrane coverage is a key parameter of the NICE model likely to vary across a wide 
range of possible values. The influence of this parameter was previously assessed using a point-like 
NICE model with spatially-averaged capacitance, i.e. assuming that neural response is only sensitive 
to the spatial average of membrane potential variations. Here, instead, we assess the influence of 
partial sonophore membrane coverage using a nanoscale multi-compartmental SONIC model (see 
section 3.3.4) that considers the spatial co-distribution of sonophores with ion channels, as well as 
the effects of local intracellular currents, on an RS neuron’s response. 

For typical CW LIFUS parameters (f = 500 kHz, A = 50 kPa, 100 ms duration) and with 50% membrane 
coverage, the stimulus onset creates an instantaneous effective capacitance drop and hyperpolari-
zation of the local sonophore membrane potential (Figure 25(a)). This creates an effective voltage im-
balance with the unaffected surroundings, which drives significant intracellular currents. As these cur-
rents rapidly equilibrate the effective membrane potential across the 2 compartments, they also drive 
fast and significant changes in membrane charge density, increasing Qm locally around the sonophore 
and decreasing it in the periphery. During the stimulus, the sonophore mechanical resonance induces 
leakage membrane currents that progressively increase the membrane charge density locally, but 
also in the periphery through the action of intracellular currents that equilibrate effective membrane 
potentials. After approximately 40 ms, Qm around the sonophore eventually reaches the threshold 
value that drives the opening of local voltage-gated ion channels and triggers a spike train. As intra-
cellular currents still maintain the Vm

* spatial equilibrium, QT is also reached in the surrounding mem-
brane where voltage-gated ion channels also open. Both compartments then fire synchronized spike 
trains but with different Qm variation ranges, since their effective electrical systems are not identically 
modulated by the stimulus. As the sonication stops, the sonophore membrane capacitance instanta-
neously returns to its resting value, which synchronizes charge density across the entire membrane 
patch. 
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Figure 25. Effects of partial sonophore membrane coverage on neural responses. (a) Effective membrane potential (top) and 
charge density (bottom) of a RS neuron with 50% sonophore membrane coverage in response to CW sonication (f = 500 
kHz, A = 50 kPa, 100 ms duration). Neural responses of a bilayer sonophore and its periphery computed with the nanoscale 
multi-compartmental SONIC model are depicted (solid dark and dashed light blue, respectively), as well the single response 
obtained with a point-like SONIC model using a spatially averaged membrane capacitance (grey). (b) Threshold excitation 
amplitude as a function of sonophore membrane coverage, computed with both the point-like (grey) and multi-compart-
mental SONIC (dark blue) models, using titration procedures at f = 500 kHz (1 s stimulus). 

This model involves several simplifications. First, it assumes that ion channels are present in the direct 
vicinity of a sonophore structure and respond to local changes in membrane potential, regardless of 
the global membrane fraction covered by such structures. Second, it assumes that these ion channels 
(in particular leakage channels) are present in sufficient number to drive a local depolarization up to 
the spiking threshold that may excite an entire neuron. Third, it neglects other intracellular driving 
forces that may be relevant at this nanometer scale, including the intracellular diffusion of ion particles 
following their concentration gradient. Fourth, it only consists of two compartments without further 
spatial discretization, and may therefore fail to capture the effects of a more continuous interaction 
between a sonophore and its surroundings. Fifth, it includes arbitrary choices such as the simplistic 
assumption of cylindrical symmetry, the value of effective sub-membrane depth and that of the intra-
cellular resistor. Nevertheless, this model suggests that local depolarization around a sonophore gen-
erates intracellular currents that predominate overwhelmingly over membrane currents to synchro-
nize the membrane electrical state in a very robust manner, unaffected by changes in key model pa-
rameters. In fact, while the choice of effective sub-membrane depth in this multi-compartmental 
model is indeed arbitrary, a sensitivity analysis shows that a decrease by several orders of magnitude 
below the nanometer range would be required in order to start observing desynchronized responses. 

Critically, the point-like SONIC model considering a spatially-averaged potential across the entire 
membrane patch (see section 3.3.4) only predicts a sub-threshold response for identical parameters. 

 Influence of sonophore size and density on neural excitability 
Simulations of the NICE model in reference studies (Plaksin et al., 2014, 2016) were all performed by 
assuming a constant sonophore radius of 32 nm – a value derived from the averaged distance be-
tween neighboring proteins in native oocytes (Pralle, 1998). While the order of magnitude of this pa-
rameter can be deemed reasonable, it is likely to vary significantly across organisms, cell types, and 
morphological sections of a given cell. Moreover, it is shown here that this parameter affects both the 
gating dynamics and the threshold excitation amplitudes of our neuron models, and is thus likely to 
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play a key role in the excitability of most neuron types. In particular, it might shift the region of cortical 
suppression predicted in (Plaksin et al., 2016) to smaller or higher US doses. 

Sonophore membrane coverage is another key variable likely to vary across a wide range of possible 
values. However, past simulations were mostly performed assuming 100% coverage, which is argu-
ably unrealistic. The effect of partial coverage on neural response was only assessed for a single value 
of 75%, with a pressure amplitude far above the neuron’s excitation threshold (Plaksin et al., 2016), 
using a point-like NICE model with a spatially-averaged capacitance. With this model, membrane 
charge density can only be brought above the spiking threshold by the progressive action of trans-
membrane depolarizing currents which, for an RS neuron under CW sonication, directly depend on 
the amplitude of LIFUS-triggered effective capacitance drop. As the sonophore membrane coverage 
decreases, the spatially-averaged drop is substantially dampened. This attenuates the effective vari-
ables of the electrical system, which raises excitation thresholds (Figure 25(b)). Under this paradigm, 
neuronal excitability is very sensitive to the density of sonophores: 75% coverage is enough to double 
the threshold excitation amplitude, and below 50% no pressure amplitude within the considered 
LIFUS range is able to excite the neuron. 

The nanoscale multi-compartmental SONIC model – that considers spatially distributed voltage vari-
ations and ion channels gating – reveals an additional mechanism by which Qm can be raised locally 
towards the spiking threshold. In fact, upon stimulus offset, the effective sonophore hyperpolarization 
generates local intracellular currents converging from the surrounding, unaffected membrane region 
that induce a rapid and substantial rise in the sonophore membrane charge density (Figure 25(a)). This 
effect is amplified for small fractions of sonophore coverage as the predominance of the unaffected 
membrane drives stronger intracellular currents towards the sonophore. However, this predominance 
also hinders the subsequent progressive charge increase once Vm* has reached a spatial equilibrium. 
Nevertheless, this additional mechanism contributes to maintaining a very robust neuronal excitability 
as sonophore densities decreases (Figure 25(b)): excitation threshold amplitudes are hardly affected 
above 10%, and even a coverage fraction as low as 1% raises the threshold excitation amplitude by 
less than a factor 3. 

The predicted effects of partial sonophore coverage on neural excitability are highly dependent on 
inherent model assumptions. The point-like SONIC model, considering spatially-averaged US effects 
on the membrane, predicts that neuronal excitability is very sensitive to that parameter, and that low 
sonophore densities (fs < 50%) may prevent the recruitment of cortical neurons with typical LIFUS 
protocols. Conversely, the multi-compartmental SONIC model developed here, considering spatially-
distributed US effects on the membrane, predicts that the US excitability of cortical neurons is very 
robust to partial sonophore membrane coverage. More generally, the predictions of the latter model 
seem to agree with the experimental observation that US neuromodulation can be found in a diverse 
range of neural targets, despite important variabilities in their membrane structure. This observation 
suggests that the acoustic impact is likely to mechanistically interact with localized features of the 
structure (the sonophores in the case of the intramembrane cavitation hypothesis). 

 Relevance for experimental validation 
Despite predicting LIFUS parameter-dependent trends of neural activation and inhibition that match 
with indirect responses (e.g. hindlimb motor activity, mesoscale cortical activity) observed experimen-
tally (Plaksin et al., 2014, 2016), one major limitation of the NICE electromechanical model is the lack 
of direct experimental validation at the cellular level, and in particular, direct observation of intramem-
brane cavitation, given the nanometer-scale extent of the hypothesized bilayer sonophores. Record-
ing local oscillations in membrane thickness or transmembrane potential might be elusive, as this 
would require a sensing technology of high spatial (< 100 nm) and temporal (<< 1 µs) resolution with 
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enough sensitivity to detect thickness variations of a few nanometers. However, the predicted de-
pendency of excitation thresholds, response latencies, neural firing rates and spike amplitudes on 
LIFUS parameters are testable features that could (1) provide indirect validation of the NICE electro-
mechanical hypothesis and (2) constrain specific model parameters with significant associated vari-
ability, such as the sonophore radius and density. In this context, our SONIC model defines effective 
membrane dynamics as a more interpretable frame of reference, supporting the design of such vali-
dation experiments and providing additional insight on how exactly LIFUS modulates ion channel gat-
ing dynamics. 

 Generalizability and integration 
The presented coarse-graining approach can be adapted to any neuron model with conductance-
based membrane dynamics, provided that response time constants of its constituent voltage-gated 
ion channels are in the millisecond range. The translation into effective channel models could be fur-
ther simplified by neglecting the small-scale changes in deflection profiles across different neuron 
types, and thus deriving cell-type-specific effective variables from a single precomputed table of me-
chanical deflections. Moreover, while we focused here on single neuron characterization, SONIC mod-
els of several neuron types could easily be coupled together with synaptic connections in order to 
design realistic, yet computationally efficient representations of cortical and/or peripheral neural net-
works responding to LIFUS. These network models could be used to increase our understanding of 
the influence of different LIFUS parameters on large-scale neural response as in (Plaksin et al., 2016). 
Alternatively, they could guide the design of studies on the causal role of certain brain regions in spe-
cific behaviors and behavioral disorders, as LIFUS currently emerges as very compelling technology 
for causal brain mapping (Kubanek, 2018). 

 Advantage over other simplification strategies 
The authors of the NICE electromechanical model have already proposed approaches to tackle the 
computational inefficiency of the original differential system (equations (92) and (93)), and speed up 
the numerical integration of solutions. A hybrid resolution scheme was developed that takes ad-
vantage of the weak influence of the electrical system on the mechanical one: the full electromechan-
ical system is periodically integrated (every 500 µs) for a few acoustic cycles until quasi-static (oscil-
latory) stabilization of the mechanical variables, which are then assumed to remain unchanged for the 
rest of the 500 µs interval, allowing to integrate a simplified system with reduced stiffness for a large 
portion of the solution (Plaksin et al., 2014). A later simplification was devised that represents the os-
cillations of sonophore membrane capacitance by a simple sinusoid at the US frequency, thereby 
dispensing from integrating the mechanical part of the model (Plaksin et al., 2016). However, as both 
simplifications explicitly model the high-frequency, large-amplitude oscillations of the transmem-
brane potential, their integration time step must stay significantly smaller than the acoustic period to 
ensure convergence, which represents a strongly limiting factor for algorithmic optimization. Con-
versely, the time step used in our SONIC model is completely independent from the stimulus fre-
quency, and only limited by the order of magnitude of the response time constants of constituent ion 
channels (as well as the PRI). Moreover, despite yielding excitation profiles that are qualitatively similar 
to that of the detailed NICE model, the sinusoidal capacitance-driven model does not properly capture 
the asymmetry of capacitance oscillations that dictates the dynamics of the initial charge build-up 
phase during CW stimulation; therefore, it cannot provide an accurate estimate of the response la-
tency and excitation threshold for such protocols. On the other hand, our SONIC model considers this 
asymmetry during the precomputation of lookup tables, and can therefore reliably predict these exci-
tation metrics. Obviously, this precomputation step is time consuming but it stays within the same 
order of magnitude as that required to run a single simulation of the detailed model. Moreover, it is a 
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fixed cost, meaning one precomputation then allows to explore the entire parameter space. Further-
more, PRF and duty cycle do not need to be considered at this stage, which reduces the problem 
dimensionality. Finally, as it consists of a high number of small, independent mechanical simulations, 
precomputation can be easily optimized by parallelization (in fact, on our 24-core server, the parallel-
ized process only takes 2 to 3 hours per neuron type). 

3.6 Conclusion 
In this study, we derived an effective coarse-grained variant of the NICE electromechanical model that 
greatly accelerates numerical simulations while preserving the accuracy of computed solutions and 
offering electrophysiological interpretability. This so-called SONIC model was used to explore sys-
tematically the LIFUS parametric space and establish cell-type-specific behavior maps, by recasting 
LIFUS responses under the frame of an “effective” neural dynamics. We also expanded the SONIC 
model into a nanoscale multi-compartmental representation to study the impact of the electrical in-
teractions between LIFUS receptive sub-cellular structures and their surroundings on the neural re-
sponse. In ongoing work, we are conducting sonication experiments on isolated leech ganglia and 
analyzing the electrical responses of specific neurons to LIFUS with intracellular recordings, in order 
to verify the trends in effective spiking dynamics suggested by the model and provide indirect valida-
tion and quantification of the intramembrane cavitation mechanism. We are also expanding the 
SONIC model into cell-morphological neuron representations in order to study the effects of LIFUS on 
different neural structures in a more realistic manner. 
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 Intramembrane cavitation at the 
morphological scale 

Chapter 3 presents an effective variant of the NICE model – called SONIC – that allows to 
compute neuronal responses to acoustic perturbations as a function of a pre-computed, cycle-aver-
aged impact of the mechanical oscillations on the electrical system. This model accelerates model 
simulations while maintaining numerical accuracy, and therefore allows to explore dense parametric 
spaces in a time-efficient manner. Moreover, through charge-casting and temporal multi-scaling, the 
SONIC paradigm isolates a smoothly-evolving electrical system that is readily available for spatial ex-
pansion. 

This chapter introduces a set of mathematical and computational tools that together enable the in-
corporation of the SONIC paradigm into multi-compartmental neuron models, and therefore to study 
intramembrane cavitation at the morphological scale. It is built on a modified electrical cable repre-
sentation of neurons that ensures numerical accuracy and stability, and that can be readily applied to 
a variety of neuron models. A demonstrative application of this framework to morphologically realistic 
models of peripheral axons is presented, revealing that myelinated and unmyelinated axons are ex-
pected to respond with different sensitivities to ultrasound stimuli, and that this difference can be ex-
ploited for various therapeutic applications. This morphological expansion framework – called mor-
phoSONIC – and the model predictions on ultrasound neuromodulatory effects in peripheral axons, 
both constitute original contributions presented in this thesis. 

 

The contents of this chapter are adapted from the manuscript Lemaire, T., Vicari E., Neufeld, E., Kuster, 
N., and Micera, S., “MorphoSONIC: a morphologically realistic intramembrane cavitation model reveals 
fiber specific recruitment by ultrasound”, currently under review. 

Personal contributions as first author: conceptualized the study, implemented the model, performed 
the simulations, analyzed the results, prepared the figures and wrote the manuscript. 
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4.1 Abstract 
Objective. Low-Intensity Focused Ultrasound Stimulation (LIFUS) is emerging as a promising technol-
ogy for the remote modulation of neuronal activity, but an incomplete mechanistic characterization 
hinders its clinical maturation. Intramembrane cavitation has been proposed as a candidate mecha-
nism, but it has only been studied in single or two-compartment computational neuron models. Here, 
we present a computational framework to investigate this mechanism in multi-compartmental, mor-
phologically realistic neuron models, and use it to study ultrasound neuromodulation of peripheral 
nerve fibers. Approach. We recast NEURON’s internal cable representation to enable the simulation 
of multi-compartment models with temporally and spatially varying membrane capacitance. This al-
lowed to seamlessly incorporate the multi-Scale Optimized Neuronal Intramembrane Cavitation 
(SONIC) paradigm across an arbitrary number of connected compartments, while simultaneously en-
suring numerical stability and accuracy. Within this framework, we then implemented single-cable 
models of myelinated and unmyelinated peripheral axons in order to compute their response to spa-
tially-varying pressure fields. Main results. Our findings show that LIFUS offers distinct parametric sub-
spaces to selectively recruit myelinated and/or unmyelinated axons by leveraging fiber-specific dif-
ferences in membrane electromechanical coupling. This fiber-specific activation is conserved across 
a wide range of acoustic field distributions and consistently explains recent empirical findings. More-
over, LIFUS can modulate the spiking activity of both fiber types over physiologically relevant regimes 
and within safe exposure limits. Significance. These findings suggest that LIFUS can preferentially 
target nociceptive and sensory fibers, opening up new opportunities for peripheral therapeutic appli-
cations currently not addressable by electric stimulation. More generally, our framework can be readily 
applied to other neural targets in order to investigate electrophysiologically relevant LIFUS neuromod-
ulatory effects and guide the development of application-specific LIFUS protocols. 

4.2 Introduction 
Ultrasound (US)-based approaches have been increasingly adopted over the past decades for a vari-
ety of noninvasive therapeutic interventions (Escoffre and Bouakaz, 2016). These therapies rely on the 
mechanical nature of acoustic waves that propagate efficiently through biological tissue and can be 
accurately steered to concentrate mechanical energy within small volumes (∼mm3) around deep an-
atomical targets. In recent years, several in vitro and in vivo studies have shown that such acoustic 
waves can also be used to reversibly modulate the activity of various neural targets with remarkable 
spatial accuracy (Blackmore et al., 2019). These findings have propelled the development of low-in-
tensity focused ultrasound stimulation (LIFUS) as a novel technology to achieve noninvasive, selective 
and reversible neuromodulation of virtually any neural structure.  
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Yet, despite a decade of intense investigation, several open issues have impeded the development 
of LIFUS as a clinically relevant technology. The variety of known physical effects of acoustic waves in 
biological tissue implies a wide range of possibilities for how neurons may translate mechanical en-
ergy into electrical responses, including membrane piezoelectricity (Heimburg and Jackson, 2005), 
flexoelectricity (Petrov, 2002) and mechanosensitive channels activation (Tyler, 2011). At the same 
time, distinguishing these candidate mechanisms in experimental settings and establishing their pre-
dominance over the multi-dimensional LIFUS parameter space remains a challenge. Consequently, it 
is difficult to provide a mechanistic perspective that would clarify and guide the heterogeneous and 
sometimes conflicting collection of neuromodulatory effects (excitatory and inhibitory, short and long 
term, localized and large-scale, reversible and permanent) obtained across animal models, neural tar-
gets, and experimental designs. 

In light of these challenges, computational approaches have become helpful tools to increase the 
understanding of LIFUS-neuron interactions, as they allow a specific candidate mechanism to be ex-
amined. A significant effort made by Plaksin et al., who introduced the Neuronal Intramembrane Cav-
itation Excitation (NICE) model, described a candidate mechanism in which LIFUS induces the cavita-
tion of specific phospholipidic structures (so-called bilayer sonophores), thereby dynamically altering 
membrane capacitance and triggering action potentials. This model predicts cell-type-specific LIFUS 
responses of cortical and thalamic neurons (Plaksin et al., 2016) that correlate indirectly with a range 
of empirical results obtained in the central nervous system (CNS) (Kim et al., 2012; King et al., 2013; 
Tufail et al., 2011; Yoo et al., 2011). 

The NICE model, however, entails a significant numerical stiffness that has so far limited its applica-
tions to point-neuron studies (Plaksin et al., 2014, 2016; Tarnaud et al., 2018a) that could not address 
physiologically relevant questions, such as the influence of intracellular axial coupling and morpholog-
ical inhomogeneity on neuronal responses, the spatiotemporal dynamics of those responses, and the 
impact of spatial features of the acoustic field on excitability (as is the case for electrical stimulation). 
Hence, a multi-compartmental model of intramembrane cavitation incorporating morphological de-
tails would be highly beneficial to increase our understanding of LIFUS neuromodulation by intramem-
brane cavitation in a more realistic setting.  

In a recent study, we developed a multi-Scale Optimized Neuronal Intramembrane Cavitation (SONIC) 
model that alleviates the numerical stiffness of the NICE model by integrating the coarse-grained evo-
lution of effective electrical variables as a function of a pre-computed, cycle-averaged impact of the 
oscillatory mechanical system (Lemaire et al., 2019), thereby drastically reducing computational costs 
while maintaining numerical accuracy. Building on this effective paradigm, we present morphoSONIC, 
a novel framework to simulate intramembrane cavitation into morphologically realistic neuron models. 
This framework leverages the optimized modeling and numerical integration pipelines of the NEURON 
simulation environment (Hines and Carnevale, 1997), and provides an alternative implementation of its 
internal cable representation as a hybrid (charge and voltage casted) electrical circuit that is numeri-
cally compatible with the SONIC model. 

Specifically, we exploit this framework to investigate the mechanisms of ultrasonic neuromodulation 
in myelinated and unmyelinated peripheral fibers, using previously validated single-cable axon mod-
els (Reilly et al., 1985; Sundt et al., 2015). First, we provide an in-depth analysis of predicted LIFUS 
neuronal responses and recruitment mechanisms in both fiber types. Second, we characterize their 
LIFUS excitability by evaluating strength-duration (SD) “signatures” across a wide range of model and 
stimulation parameters and compare those signatures to those traditionally obtained with electrical 
stimulation. Third, we identify key morphological features underlying the distinct LIFUS sensitivities of 
myelinated and unmyelinated axons. Finally, we analyze cell-type-specific neuronal responses upon 
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repeated acoustic exposure and identify pulsing protocols yielding a robust modulation of spiking ac-
tivity. 

4.3 Methods 

 The NICE model 
The NICE electromechanical model developed by Plaksin et al. (Plaksin et al., 2014) provides a math-
ematical formulation of the intramembrane cavitation hypothesis. Mechanically, the periodic cavitation 
of a single bilayer sonophore is described by two differential variables: the deflection of a leaflet apex 
from its resting position in the transmembrane plane (Z) and the internal gas content in the sonophore 
cavity (ng). The resting leaflet position results from a pressure balance between several static pressure 
forces, namely the elastic tension developing in the leaflets (PS), attractive and repulsive intermolecular 
forces between leaflets (PM), internal gas pressure in the sonophore cavity (PG), the electrical pressure 
resulting from the membrane polarity (PQ), and a constant hydrostatic term (P0). Upon perturbation by 
a time-varying acoustic pressure PA(t), the dynamic pressure imbalance drives a normal acceleration 
that deforms the leaflets in antiphase, generates viscous forces in the membrane (PVS) and surround-
ing medium (PVL), and triggers gas transport across the cavity. These oscillatory dynamics are cap-
tured by the following differential system (all pressure terms and parameters are defined in (Lemaire 
et al., 2019)): 
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Electrically, the development of an electrical response across the membrane is captured by a modi-
fied Hodgkin-Huxley differential system, describing the evolution of the membrane charge density 
(Qm) as the negative sum of voltage-dependent ionic currents with specific conductances gi and re-
versal potentials Ei. In this system, time-varying ionic conductances are the product of one or multiple 
gating variables (x, with x ∈ {m, h, n, p, …}), whose evolution is regulated either by a voltage-dependent 
activation and inactivation rate constants (αx and βx, respectively) or by a steady state probability x∞ 
and a time constant τ x (also both voltage-dependent), yielding the following system (note that charge-
casting was introduced in (Lemaire et al., 2019)): 
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The coupling between these two systems is modelled by a bi-directional piezoelectric effect. Mech-
ano-electrical transduction results from the periodic deflections of the sonophore leaflets, inducing 
high frequency oscillations in the local membrane capacitance (given by 𝐶𝐶𝑚𝑚(𝑡𝑡) = 𝐶𝐶𝑚𝑚0Δ
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��, as in (Plaksin et al., 2014)). Considering a larger, macroscale portion of 
membrane area, local fluctuations of membrane capacitance around individual sonophores influence 
the spatial average of membrane capacitance, calculated as a weighted mean of the resting and dy-
namic capacitances (𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑚𝑚(𝑡𝑡)𝑓𝑓𝑠𝑠 + 𝐶𝐶𝑚𝑚0(1− 𝑓𝑓𝑠𝑠), where fs is the sonophore membrane coverage 
fraction). This global fluctuation then causes large-amplitude oscillations of the transmembrane po-
tential in the compartment of interest (𝑉𝑉𝑚𝑚 = 𝑄𝑄𝑚𝑚/𝐶𝐶𝑚𝑚 in equation (98)). Reversibly, electro-mechanical 
transduction results from progressive changes in the membrane electrical polarity that dynamically 
modify the electrical pressure exerted on the sonophore leaflets and the resulting pressure balance 
(PQ in equation (97)), thereby influencing the sonophore cavitation dynamics.  

 The SONIC model 
The SONIC model (Lemaire et al., 2019) uses temporal multiscaling to separate the two relevant time 
scales of the NICE model, namely microsecond-scale mechanical oscillations and millisecond-scale 
development of neuronal responses. It is based on the observation that ion channel gates – whose 
time constants are typically in the millisecond range – do not follow large-amplitude, high-frequency 
variations of transmembrane potential observed in the NICE model, but rather adapt to the temporal 
average of voltage oscillations over an acoustic cycle. As a result, the evolution of membrane charge 
density and ion channels gating variables can be expressed as a function of an effective membrane 
potential (Vm

*) and effective activation and inactivation rate constants (αx
* and βx

*, respectively, for each 
gating variable x), representing the average value of their original, voltage-dependent counterparts (Vm, 
αx and βx, respectively) over an acoustic cycle: 

(99) 

𝑑𝑑𝑄𝑄𝑚𝑚
𝑑𝑑𝑑𝑑

= −�𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 ∙ (𝑉𝑉𝑚𝑚∗ − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖)
𝑖𝑖𝑖𝑖𝑖𝑖

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑥𝑥∗  ∙ (1 − 𝑥𝑥) − 𝛽𝛽𝑥𝑥∗  ∙ 𝑥𝑥 

The SONIC model uses a sequential approach to compute electrical responses of a given neuron type 
to various LIFUS stimuli. First, a parallelized precomputation step is performed (once per neuron type) 
in which the mechanical system (equation (97)) is simulated for various combinations of sonophore 
radii (a), US frequencies (fUS), acoustic peak pressure amplitudes (AUS), and membrane charge densi-
ties, covering the LIFUS parametric space, sonophore geometrical range and membrane physiologi-
cal range. Each simulation is run until a limit cycle is detected, at which point, the profile of oscillating 
membrane capacitance over the last acoustic cycle is extracted, dampened for a range of sonophore 
membrane coverage fractions, and used to compute effective variables stored in multi-dimensional 
lookup tables. Second, the electrical response of the neuron to a given LIFUS stimulus is rapidly com-
puted at runtime by interpolating effective variables at (a, fs, fUS, AUS) and (a, fs, fUS, 0) to yield 1D projected 
vectors in the Qm space, which are then used to interpolate effective variables and solve equation (98) 
during US-ON and US-OFF periods, respectively. 

 A hybrid multi-compartmental, multi-layer electrical circuit 
In its most basic form, the multi-compartmental expansion of point-neuron NICE / SONIC models 
requires the addition of axial current terms contributing to the evolution of charge density in each 
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compartment (see (Lemaire et al., 2019), equation 5). However, that formulation only considers intra-
cellular axial coupling, and is therefore not adapted to “double-cable” models that account for both 
intra and extracellular longitudinal coupling. More importantly, the use of explicit current terms repre-
senting axial coupling is prone to yielding numerical instabilities in the presence of tightly connected 
sections or abrupt changes in voltage gradients. Hence, in this study, we derived a hybrid multi-com-
partmental multi-layer electrical circuit that is applicable to both myelinated and unmyelinated struc-
tures with temporally and spatially varying membrane capacitances, and compatible with reference 
numerical integration schemes and simulation environments. 

The circuit model is composed of multiple longitudinal compartments, each represented by a pair of 
intracellular and extracellular voltage nodes (Vi and Vx, respectively) on either side of the plasma mem-
brane with time-varying capacitance Cm(t). The voltage difference across the plasma membrane Vm* 
= Vi - Vx influences the opening and closing of distinct ion channels, ultimately giving rise to a net 
membrane ionic current Iion. On the extracellular side, a transverse resistor-capacitor (RC) circuit of 
conductance gx and capacitance Cx represents the myelin membrane and connects the extracellular 
node to the extracellular driving voltage Ex, which is usually grounded but can also have a value im-
posed by an external electrical field. Longitudinally, neighboring nodes are connected intracellularly 
and extracellularly by axial conductors (Ga and Gp, respectively). All variables and parameters of the 
circuit are described in Table 3.  

Parameter / Variable Symbol Unit 
Intracellular voltage Vi mV 
Extracellular voltage Vx mV 
Transmembrane voltage Vm mV 
Transmembrane charge density Qm nC/cm2 
Extracellular driving voltage Φe mV 
Membrane capacitance Cm µF/cm2 
Intracellular stimulation current Is mA/cm2 
Net transmembrane ionic current Iion mA/cm2 
Intracellular axial conductance Ga S 
Capacitance of surrounding extracellular membrane (e.g. myelin) Cx µF/cm2 
Transverse conductance of surrounding extracellular membrane (e.g. my-
elin) 

gx S/cm2 

Extracellular axial conductance (e.g. periaxonal space) Gp S 
Membrane area of the compartment  Am cm2 

Table 3. Parameters and variables of the hybrid multi-compartmental, multi-layer electrical circuit. 

For any compartment k connected to a set of neighboring compartments, the application of Kirchhoff’s 
law at the corresponding intracellular and extracellular nodes yields the following current balance 
equations: 

(100) 

𝐶𝐶𝑚𝑚𝑘𝑘
𝑑𝑑𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
+ 𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝐶𝐶𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
 +  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  =  𝐼𝐼𝑠𝑠𝑘𝑘  +  

1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑎𝑎
𝑘𝑘𝑘𝑘 �𝑉𝑉𝑖𝑖

𝑗𝑗  −  𝑉𝑉𝑖𝑖𝑘𝑘�
𝑗𝑗�������������

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

𝐶𝐶𝑥𝑥𝑘𝑘
𝑑𝑑𝑉𝑉𝑥𝑥𝑘𝑘

𝑑𝑑𝑑𝑑
 + 𝑔𝑔𝑥𝑥𝑘𝑘  �𝑉𝑉𝑥𝑥𝑘𝑘  −  𝜙𝜙𝑒𝑒𝑘𝑘� =  𝐶𝐶𝑚𝑚𝑘𝑘

𝑑𝑑𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
 +  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  +

1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑝𝑝
𝑘𝑘𝑘𝑘 (𝑉𝑉𝑥𝑥

𝑗𝑗  −  𝑉𝑉𝑥𝑥𝑘𝑘)
𝑗𝑗�������������

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

Using 𝑉𝑉𝑖𝑖  = 𝑉𝑉𝑚𝑚  +  𝑉𝑉𝑥𝑥, and re-arranging the terms, we find: 
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(101) 

𝐶𝐶𝑚𝑚𝑘𝑘
𝑑𝑑𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
+ 𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝐶𝐶𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
+

1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑎𝑎
𝑘𝑘𝑘𝑘 �𝑉𝑉𝑚𝑚𝑘𝑘  −  𝑉𝑉𝑚𝑚

𝑗𝑗�
𝑗𝑗

+  
1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑎𝑎
𝑘𝑘𝑘𝑘 �𝑉𝑉𝑥𝑥𝑘𝑘  −  𝑉𝑉𝑥𝑥

𝑗𝑗�
𝑗𝑗

 =  𝐼𝐼𝑠𝑠𝑘𝑘 − 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  

𝐶𝐶𝑥𝑥𝑘𝑘
𝑑𝑑𝑉𝑉𝑥𝑥𝑘𝑘

𝑑𝑑𝑑𝑑
− �𝐶𝐶𝑚𝑚𝑘𝑘

𝑑𝑑𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
+ 𝑉𝑉𝑚𝑚𝑘𝑘

𝑑𝑑𝐶𝐶𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑 �
+ 𝑔𝑔𝑥𝑥𝑘𝑘  𝑉𝑉𝑥𝑥𝑘𝑘 +

1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑝𝑝
𝑘𝑘𝑘𝑘 �𝑉𝑉𝑥𝑥𝑘𝑘  −  𝑉𝑉𝑥𝑥

𝑗𝑗�
𝑗𝑗

=  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  + 𝑔𝑔𝑥𝑥𝑘𝑘𝜙𝜙𝑒𝑒𝑘𝑘 

By substituting transmembrane voltage for transmembrane charge density (𝑄𝑄𝑚𝑚(𝑡𝑡) = 𝐶𝐶𝑚𝑚(𝑡𝑡) ∙
𝑉𝑉𝑚𝑚(𝑡𝑡); 𝑑𝑑𝑄𝑄𝑚𝑚

𝑑𝑑𝑑𝑑
= 𝐶𝐶𝑚𝑚

𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝑉𝑉𝑚𝑚
𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

), and defining 𝐼𝐼𝑒𝑒𝑘𝑘 =  𝑔𝑔𝑥𝑥𝑘𝑘𝜙𝜙𝑒𝑒𝑘𝑘 as the extracellular driving current, we obtain: 

(102) 

𝑑𝑑𝑄𝑄𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
+

1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑎𝑎
𝑘𝑘𝑘𝑘  �

𝑄𝑄𝑚𝑚𝑘𝑘

𝐶𝐶𝑚𝑚𝑘𝑘
 −

𝑄𝑄𝑚𝑚
𝑗𝑗

𝐶𝐶𝑚𝑚
𝑗𝑗 �

𝑗𝑗

+  
1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑎𝑎
𝑘𝑘𝑘𝑘 �𝑉𝑉𝑥𝑥𝑘𝑘  −  𝑉𝑉𝑥𝑥

𝑗𝑗�
𝑗𝑗

 =  𝐼𝐼𝑠𝑠𝑘𝑘 − 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  

𝐶𝐶𝑥𝑥𝑘𝑘
𝑑𝑑𝑉𝑉𝑥𝑥𝑘𝑘

𝑑𝑑𝑑𝑑
−
𝑑𝑑𝑄𝑄𝑚𝑚𝑘𝑘

𝑑𝑑𝑑𝑑
+ 𝑔𝑔𝑥𝑥𝑘𝑘  𝑉𝑉𝑥𝑥𝑘𝑘 +

1
𝐴𝐴𝑚𝑚𝑘𝑘

�𝐺𝐺𝑝𝑝
𝑘𝑘𝑘𝑘 �𝑉𝑉𝑥𝑥𝑘𝑘  −  𝑉𝑉𝑥𝑥

𝑗𝑗�
𝑗𝑗

=  𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  + 𝐼𝐼𝑒𝑒𝑘𝑘 

By applying the above equations to a model of n compartments connected in series, we obtain a 
hybrid charge-voltage partial differential equation system of size 2n that can be described as: 

(103) 

𝐶𝐶
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  𝐺𝐺(𝑡𝑡) ∙ 𝑦𝑦(𝑡𝑡) =  𝐼𝐼(𝑡𝑡) 

where: 

• y is a hybrid vector of transmembrane charge density and extracellular voltage, and dy/dt its 
temporal derivative; 

• C is a constant matrix composed of both capacitance terms (multiplying voltage elements of 
dy/dt) and “identity” terms (multiplying charge elements of dy/dt); 

• G(t) is a time-varying matrix composed of both conductance terms (multiplying voltage ele-
ments of y) and “frequency” terms (conductance by capacitance ratios in MHz, multiplying 
charge elements of y); and 

• I(t) is a time-varying vector of stimulation and membrane currents 

This matrix formulation allows for the use of implicit methods to solve the differential equation prob-
lem, thus providing an enhanced stability over explicit schemes.  

Moreover, by mapping the first n elements of the y vector to transmembrane charge density nodes 
and the following n elements to extracellular voltage nodes, we can describe the C, G and I terms of 
the system as combinations of block matrices and vectors, i.e.: 

(104) 

𝐶𝐶 =  �
𝐼𝐼𝑛𝑛 0
−𝐼𝐼𝑛𝑛 [𝐶𝐶𝑥𝑥]� ,𝐺𝐺(𝑡𝑡) =  

⎣
⎢
⎢
⎡�

𝐺𝐺𝑎𝑎
𝐴𝐴𝑚𝑚 ∙ 𝐶𝐶𝑚𝑚(𝑡𝑡)� �

𝐺𝐺𝑎𝑎
𝐴𝐴𝑚𝑚

�

0 [𝑔𝑔𝑥𝑥] + �
𝐺𝐺𝑝𝑝
𝐴𝐴𝑚𝑚

�⎦
⎥
⎥
⎤

, 𝐼𝐼(𝑡𝑡) = �
[𝐼𝐼𝑠𝑠(𝑡𝑡)] − [𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)]
[𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)] + [𝐼𝐼𝑒𝑒(𝑡𝑡)]�, 

where: 
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• 𝐼𝐼𝑛𝑛 is an n-by-n identity matrix; 
• [𝐶𝐶𝑥𝑥] is an n-by-n diagonal matrix of transverse extracellular membrane (e.g. myelin) capaci-

tance; 
• �𝐺𝐺𝑎𝑎

𝐴𝐴𝑚𝑚
� and �𝐺𝐺𝑝𝑝

𝐴𝐴𝑚𝑚
� are n-by-n tridiagonal matrices of intracellular and extracellular axial conduct-

ance, respectively, where each row is normalized by the corresponding node’s membrane 
area; 

• � 𝐺𝐺𝑎𝑎
𝐴𝐴𝑚𝑚∙𝐶𝐶𝑚𝑚(𝑡𝑡)

� is an n-by-n tridiagonal matrix of intracellular axial conductance where each row is 
normalized by corresponding node’s membrane area and each column is dynamically normal-
ized by the time-varying membrane capacitance of the corresponding node; 

• [𝑔𝑔𝑥𝑥] is an n-by-n diagonal matrix of transverse extracellular membrane (e.g. myelin) conduct-
ance; and 

• [𝐼𝐼𝑠𝑠(𝑡𝑡)], [𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)] and [𝐼𝐼𝑒𝑒(𝑡𝑡)] are n-sized, time-varying vectors of intracellular stimulation cur-
rents, transmembrane ionic currents and extracellular driving currents, respectively. 

We implemented this hybrid system in NEURON (Hines and Carnevale, 1997), a reference computa-
tional environment for neuronal  simulations that uses a very similar matrix formulation to enable nu-
merical integration by implicit schemes.  However, since that environment is not designed for models 
of varying capacitance or for hybrid charge-voltage casting, we employed three main adaptation strat-
egies. First, a unit capacitance was set to all membrane mechanisms, thereby implicitly setting the 𝐼𝐼𝑛𝑛 
upper block matrix and effectively transforming NEURON’s internal variable 𝑣𝑣 as an alias to transmem-
brane charge density. Second, pressure amplitude and charge density dependent lookup tables of 
effective SONIC terms (transmembrane potential and ion channels rate constants obtained from orig-
inal SONIC lookup tables (Lemaire et al., 2019)) were dynamically inserted into these mechanisms to 
compute the evolution of voltage, ion channels states and ionic currents via bilinear interpolation 
(thereby implicitly setting the 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 upper block vector). Third, a “Linear Mechanism” object was imple-
mented that defines alternative C’, G’ and I’ terms to complete the hybrid circuit setup once the 
model’s compartments and their connections are defined: 

(105) 

𝐶𝐶′ =  �0 0
0 [𝐶𝐶𝑥𝑥]� ,𝐺𝐺′(𝑡𝑡) =  

⎣
⎢
⎢
⎡�

𝐺𝐺𝑎𝑎
𝐴𝐴𝑚𝑚 ∙ 𝐶𝐶𝑚𝑚(𝑡𝑡)� �

𝐺𝐺𝑎𝑎
𝐴𝐴𝑚𝑚

�

�
𝐺𝐺𝑎𝑎

𝐴𝐴𝑚𝑚 ∙ 𝐶𝐶𝑚𝑚(𝑡𝑡)� �
𝐺𝐺𝑎𝑎
𝐴𝐴𝑚𝑚

�+ [𝑔𝑔𝑥𝑥] + �
𝐺𝐺𝑝𝑝
𝐴𝐴𝑚𝑚

�⎦
⎥
⎥
⎤

, 𝐼𝐼′(𝑡𝑡) = � 0
[𝐼𝐼𝑒𝑒(𝑡𝑡)] + 𝐼𝐼𝑠𝑠(𝑡𝑡)�. 

It should be noted that the terms −𝐼𝐼𝑛𝑛 and [𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)] in the lower block are replaced by equivalent axial 
conduction and intracellular stimulation current terms (using the equality of the upper block) to remove 
the need to access the net membrane current (a hidden NEURON variable). Numerical integration is 
then carried out by NEURON’s embedded general sparse matrix solver (a differential-algebraic solver 
with a preconditioned Krylov method from the SUNDIALS package (Hindmarsh et al., 2005)) using a 
variable time step with a pure absolute error tolerance criterion (𝜖𝜖 = 10−3), while dynamically updating 
Cm-dependent terms in the G’ matrix throughout the simulation. Compared to previous approaches 
using explicit axial current terms (Lemaire et al., 2019), this implicit integration scheme offers in-
creased numerical stability. 

 Myelinated and unmyelinated morphological axon models 
Peripheral nerve fibers represent privileged, accessible neuromodulation targets, for which multiple 
studies have demonstrated the paramount influence of cellular morphology on the resulting excitabil-
ity by electrical fields (McNeal, 1976; Rattay, 1986). As such, they are natural candidates for the study 
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of LIFUS effects in morphologically realistic models. To this aim, we used single-cable axonal repre-
sentations allowing for a numerically valid incorporation of the SONIC paradigm while maintaining a 
certain level of morphological realism. 

Our myelinated axon model was based on the spatially-extended nonlinear node (SENN) model de-
veloped by Reilly et al. (Reilly et al., 1985). This model represents myelinated axons as a set of nodes 
with active membrane dynamics based on the Frankenhaeuser-Huxley equations for a Xenopus 
Ranvier node (Frankenhaeuser and Huxley, 1964) including fast sodium (INa), delayed-rectifier potas-
sium (IKd), non-specific delayed (IP) and non-specific leakage (ILeak) currents, connected by intracellular 
resistors representing the myelinated internodes (Figure 26A-B). This representation omits specific 
features of myelinated axons (namely transmembrane internodal dynamics and extracellular longitu-
dinal coupling), but it incorporates enough morphological complexity to provide quantitatively accurate 
predictions of their excitability by electrical fields. In fact, it represents a standardized model for elec-
tromagnetic exposure safety assessment (Reilly, 2011). Our unmyelinated axon model was based on 
the work of Sundt et al. (Sundt et al., 2015), representing the continuous unmyelinated neurite as a set 
of nodes containing fast Sodium (INa), delayed-rectifier Potassium (IKd), and leakage (ILeak) membrane 
currents, also connected by intracellular resistors (Figure 26C-D). 

 
Figure 26. Morphology, biophysics and incorporation of the SONIC paradigm in myelinated and unmyelinated axon models. 
(A) Schematic of the myelinated axon model morphology. (B) Electrical circuit representation of the membrane dynamics at 
the nodes of Ranvier. (C-D) Equivalent morphological and biophysical descriptions of the uniform unmyelinated axon. (E) 
Schematic diagram showing the incorporation of the SONIC paradigm into the axon models. 

The selected axon models were validated numerically by verifying specific physiological features 
(spike amplitude, conduction velocity, threshold excitation current for various pulse widths) against the 
reference literature (Reilly et al., 1985; Sundt et al., 2015), using NEURON’s native voltage-based con-
nection scheme with constant membrane capacitance. For the unmyelinated model, a convergence 
study was carried out to determine the optimal spatial discretization. Unmyelinated compartments 
were progressively and uniformly shortened from 1 mm to 5 µm, and an optimal segment length was 
defined as the maximal length for which all physiological features were within 5% of their converging 
values (obtained for the shortest segment length). As the optimum segment length exhibited a clear 
dependency on fiber diameter, we performed a piecewise linear fit within the 0.5 – 1.5 µm range to 
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obtain a fiber diameter-dependent formulation: 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = min�16.4 𝜇𝜇𝑚𝑚−1 · 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 9.1 𝜇𝜇𝜇𝜇; 22 𝜇𝜇𝜇𝜇�. Fi-
nally, we validated our hybrid circuit implementation by comparing direct voltage traces, as well as 
physiological features, to those obtained with the “native” implementation. 

Membrane equations of both models were adapted to 36°C by applying a Q10 correction with a factor 
of 3 (as in (Sundt et al., 2015)), and lookup tables of SONIC effective variables were generated for the 
membrane circuits of both models to enable their simulation upon acoustic perturbations (Figure 26E). 

Beyond the differences in morphologies and ion channel populations, the two models have different 
resting membrane capacitances (𝐶𝐶𝑚𝑚0𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 µF/cm2, 𝐶𝐶𝑚𝑚0𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 µF/cm2), thereby implying variations 
in their charge density by a factor of 2 for identical voltages. Therefore, to allow for an unbiased com-
parison of electrical responses across the two models, charge-density based criteria and derived out-
puts were divided by the resting capacitance of the associated model, referred to as the “normalized 
charge density” (in mV). 

 Modeling of exogenous acoustic and electrical stimuli 
In order to evaluate the effect of exogenous electrical and ultrasonic stimulation on isolated fibers, we 
modeled the propagation of both electrical and acoustic fields from a realistic remote excitation 
source to the target through a homogenous intraneural medium. To this end, we considered a 3-di-
mensional (𝑥𝑥,𝑦𝑦, 𝑧𝑧) coordinate system in which the fiber was aligned on the x axis and centered at the 
origin. 

For ultrasonic stimulation, we considered a single-element planar acoustic transducer with a center 
in the 𝑥𝑥𝑥𝑥 plane and a normal vector along the 𝑧𝑧-axis, and a homogenous, water-like propagation me-
dium (density 𝜌𝜌 = 1000 kg/m3, speed of sound 𝑐𝑐 = 1500 m/s). We modeled acoustic distribution in 
the 𝑥𝑥𝑥𝑥 propagation plane using the Distributed Point Source Method (DPSM) (Yanagita et al., 2009), 
which provides accurate approximations of the Rayleigh-Sommerfeld integral (RSI) in homogenous 
medium. That is, assuming a uniform particle velocity normal to the transducer surface of amplitude 
𝑣𝑣0, the acoustic peak pressure amplitude at each field point (𝑥𝑥, 𝑧𝑧) for an acoustic frequency 𝑓𝑓 can be 
computed as: 

(106) 

𝑃𝑃𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑧𝑧) = �−𝑗𝑗𝑗𝑗𝑗𝑗𝑣𝑣0�
𝑒𝑒𝑗𝑗𝑘𝑘𝑓𝑓𝑑𝑑

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑆𝑆
�, 

where j is the unit imaginary number, 𝑘𝑘𝑓𝑓 = 2𝜋𝜋𝜋𝜋/𝑐𝑐 is the wave number, and 𝑑𝑑 =

�(𝑥𝑥 − 𝑥𝑥𝑑𝑑𝑑𝑑)2 + (𝑧𝑧 − 𝑧𝑧𝑑𝑑𝑑𝑑)2 + 𝑦𝑦𝑑𝑑𝑑𝑑2   is the distance between the field point and a surface element 𝑑𝑑𝑑𝑑. We 

numerically approximated this integral as the sum of individual contributions of a finite set of 𝑀𝑀 uni-
formly distributed point sources – each associated with a surface area Δ𝑆𝑆 – arranged in a concentric 
fashion on the transducer surface: 

(107) 

𝑃𝑃𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑧𝑧) = �−𝑗𝑗𝑗𝑗𝑗𝑗𝑣𝑣0Δ𝑆𝑆�
𝑒𝑒𝑗𝑗𝑘𝑘𝑓𝑓𝑑𝑑𝑖𝑖

𝑑𝑑𝑖𝑖

𝑀𝑀

𝑖𝑖=1

�. 

Here again, we performed a sensitivity analysis to determine the optimal density of point sources re-
quired to achieve a good prediction accuracy. Starting with a low source density (10 samples / mm2), 
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the predicted pressure distribution along the central 𝑧𝑧 axis was evaluated against the corresponding 
closed form RSI solution (𝑃𝑃(𝑧𝑧) = 𝜌𝜌𝜌𝜌𝑣𝑣0 �𝑒𝑒𝑗𝑗𝑘𝑘𝑓𝑓𝑧𝑧 − 𝑒𝑒𝑗𝑗𝑘𝑘𝑓𝑓√𝑧𝑧2+𝑟𝑟2 �, with 𝑟𝑟 the transducer radius), and source 
density was increased until the variation of the root mean square error (RMSE) fell below a threshold 
value (10 kPa). We then selected the minimal value satisfying that criterion over a wide frequency range 
(500 kHz – 5 MHz), yielding an optimal density of 217 samples / mm2. 

Finally, we evaluated pressure distributions along the transverse 𝑥𝑥 axis at the acoustic focal distance 
(calculated as 𝑧𝑧𝑓𝑓 = 𝑓𝑓𝑟𝑟2

𝑐𝑐
− 𝑐𝑐

4𝑓𝑓
) for each combination of transducer radius and US frequency. 

For electrical stimulation, we considered a point source electrode located in the 𝑥𝑥𝑥𝑥 plane and an ani-
sotropic conductivity tensor characteristic of the mammalian endoneurium (longitudinal resistiv-
ity 𝜌𝜌𝑥𝑥 = 175 Ω ∙ 𝑐𝑐𝑐𝑐, transverse resistivity 𝜌𝜌𝑦𝑦𝑦𝑦 = 1211 Ω ∙ 𝑐𝑐𝑐𝑐) (Ranck and Bement, 1965). Extracellular 
potentials at each field point (𝑥𝑥, 𝑧𝑧) were computed with the formula: 

(108) 

𝜙𝜙𝑒𝑒(𝑥𝑥, 𝑧𝑧) =
𝐼𝐼

4𝜋𝜋�(𝑥𝑥0 − 𝑥𝑥)2
𝜌𝜌𝑦𝑦𝑦𝑦2

+ 𝑧𝑧02
𝜌𝜌𝑥𝑥 ∙ 𝜌𝜌𝑦𝑦𝑦𝑦

 

, 

where I is the injected current and (𝑥𝑥0, 𝑧𝑧0) are the electrode coordinates, and equivalent sets of intra-
cellular currents were used to simulate the influence of the extracellular electric field, as in (McIntyre 
et al., 2002). 

Note that equations (107) and (108) provide closed-form expressions to predict the qualitative nature 
of ultrasonic and electric field distributions along a fiber, thereby allowing general trends about the 
impact of those distributions on axon excitability to be established. However, they only consider prop-
agation within a homogeneous medium, which is a limitation. 

 Two-compartment SONIC benchmarks 
A recent study has shown that in multi-compartmental structures, the presence of large axial currents 
could introduce significant intra-cycle charge redistribution mechanisms, thereby inducing a signifi-
cant divergence of the SONIC paradigm (Tarnaud et al., 2020). Thus, we aimed to establish the con-
ditions of this divergence and whether it applies to the models of this study. To this end, we designed 
two-compartment benchmark models of intramembrane cavitation in which mechanical perturbation 
is modeled as a pure sinusoidal oscillation of membrane capacitance around its resting value with a 
specific amplitude in each compartment (𝐶𝐶𝑚𝑚𝑘𝑘 (𝑡𝑡) =  𝐶𝐶𝑚𝑚0 (1 + 𝛾𝛾𝑘𝑘

2
sin(2𝜋𝜋𝑓𝑓𝑈𝑈𝑈𝑈𝑡𝑡)), with k being the compart-

ment index and 𝛾𝛾𝑘𝑘 the relative oscillation range, Figure 27A). This simplified perturbation produces 
neuronal responses in cortical models that are qualitatively comparable to those obtained with a de-
tailed intramembrane cavitation model ((Plaksin et al., 2016), Fig. 9) and therefore facilitates the as-
sessment of SONIC accuracy in the presence of a high-frequency, spatially-varying acoustic pertur-
bation – arising either from pressure amplitude gradients or variations in sonophore coverage – with-
out requiring the tedious integration of the mechanical model. For each tested condition, SONIC ac-
curacy was assessed by (i) simulating the benchmark under the NICE and SONIC paradigms using 
frequency-dependent time steps (dtSONIC = 1 / fUS, dtNICE = 0.01 / fUS), (ii) cycle-averaging the NICE sim-
ulation output and (iii) computing the maximal RMSE (𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚, in mV) between normalized charge density 
profiles of the SONIC solution and the cycle-averaged NICE solution. 
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Figure 27. Evaluation of the SONIC paradigm accuracy in two-compartment benchmark models. (A) Schematic description 
of the two-compartment SONIC benchmark and associated divergence evaluation process. (B) Magnitude of the intra-cycle 
relative capacitance oscillation range as a function of stimulus frequency and pressure amplitude in myelinated and unmy-
elinated fibers, computed using axon-specific bilayer sonophore models at their respective resting charge density. White 
lines indicate cell-type-specific excitation threshold levels. (B) SONIC divergence (maximum RMSE between normalized 
charge density profiles resulting from SONIC and cycle-averaged NICE simulations) in a symmetric two-compartment pas-
sive model (Cm0 = 1 µF/cm2, ELeak = -70 mV), as a function of the model’s electrical time constants (𝜏𝜏𝑚𝑚 = 𝐶𝐶𝑚𝑚0/𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝜏𝜏𝑎𝑎𝑎𝑎 =
𝐶𝐶𝑚𝑚0𝐴𝐴𝑚𝑚/𝐺𝐺𝑎𝑎), for a typical US frequency (500 kHz) and sinusoidal oscillation drive (γ = (1.2, 0.8)). Acoustic periodicity, critical 
divergence level (1 mV), and fiber passive properties are indicated on the two-dimensional logarithmic color maps. Insets (i) 
and (ii) provide examples of NICE, cycle-averaged NICE, and SONIC charge density profiles for diverging conditions. Mini-
mized maps evaluate SONIC divergence in the same model but for varying capacitance oscillation amplitudes and gradients, 
as well as varying US frequencies. (C) SONIC divergence in a two-compartment benchmark model of the myelinated axon 
for various combinations of oscillation pairs (f = 500 kHz, 1 ms stimulus). A critical divergence level (1 mV) is indicated on the 
color map. Insets (i-iii) provide examples of NICE, cycle-averaged NICE, and SONIC charge density profiles for various char-
acteristic drive combinations. (D) Equivalent divergence evaluation in a two-compartment benchmark model of the unmye-
linated axon (10 ms stimulus). 

We first designed a generic benchmark composed of two passive compartments with identical ge-
ometries and passive membrane properties (Cm0 = 1 µF/cm2, Vm0 = ELeak = -70 mV). Membrane and 
axial conductances were mapped to equivalent time constants (𝜏𝜏𝑚𝑚 = 𝐶𝐶𝑚𝑚0/𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝜏𝜏𝑎𝑎𝑎𝑎 =
𝐶𝐶𝑚𝑚0𝐴𝐴𝑚𝑚/𝐺𝐺𝑎𝑎, respectively), and simulation durations were fixed to five times the longest time constant 
in order to ensure steady-state convergence, while ensuring at least 10 acoustic cycles. Then, we 
designed axon-specific benchmarks composed of two identical compartments with axon-specific 
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morphological properties and full membrane dynamics of each fiber type. Physiologically relevant 
simulation durations known to elicit spiking activity in each model (1 ms and 10 ms for the myelinated 
and unmyelinated cases, respectively) were used. 

4.4 Results 

 The SONIC paradigm enables accurate simulations in multi-compartmental axon 
models.  

We used two-compartment benchmarks to evaluate the accuracy of the SONIC paradigm in spatially-
extended representations. These benchmarks used a simplified capacitance sinusoidal drive that can 
be intuitively mapped to original sonication parameters: for both axon models, relative capacitance 
oscillation ranges increased monotonically with acoustic pressure and showed little modulation by 
US frequency over the 20 kHz – 4 MHz range (Figure 27B), with rheobase excitation thresholds occur-
ring around γ = 0.3 for the central, most-exposed node (see Figure 31).  

First, we investigated the influence of model and stimulus properties on the accuracy of the SONIC 
paradigm in predicting sub-threshold depolarization – a critical aspect of neuronal responses – using 
a passive benchmark model (see Methods). We evaluated SONIC divergence for various combina-
tions of model membrane and axial time constants, providing quantitative estimates of the time taken 
by leakage and axial currents to respond to variations in transmembrane and longitudinal intracellular 
voltage gradients, respectively. 

For a typical driving frequency (500 kHz) and supra-threshold oscillation ranges (γ = [1.2, 0.8]), the 
divergence of the SONIC paradigm showed a rather symmetrical dependency on both axial and mem-
brane conductances (Figure 27C). Strong electrical conductances (i.e., short time constants) increase 
the sensitivity of the electrical system to the oscillatory mechanical drive to a point that currents in-
stantaneously “convert” part of the capacitive displacement energy into fast-charge redistribution dur-
ing an acoustic period, thereby impacting the net charge variation over that period. We can differenti-
ate two distinct mechanisms of intra-cycle charge redistribution. On the one hand, leakage currents 
opposing intra-cycle deviations from reversal potentials create a transmembrane charge redistribu-
tion that reduces the net charge increase at each cycle, hindering the slow scale charge build-up in 
each compartment (Figure 27C, inset (i)). On the other hand, intracellular currents opposing intra-cycle 
voltage gradients create an axial charge redistribution across the two compartments that reduces the 
net charge gradient achieved over a cycle, ultimately limiting the magnitude of effective charge den-
sity gradients over time (Figure 27C, inset (ii)). Neither of these redistribution mechanisms were cap-
tured by the SONIC paradigm, which resulted in a divergent sub-space (𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 > 1 mV) for strong 
enough conductances. Conversely, weaker conductances (i.e. larger time constants) ensured minimal 
intra-cycle charge redistribution and outlined a sub-space of SONIC convergence (𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 < 1 mV). A 
clear bifurcation between these two sub-spaces emerged as the membrane and / or axial time con-
stant approached the order of magnitude of the acoustic period. 

Interestingly, the accuracy of the SONIC paradigm also depended on intrinsic stimulus features. On 
the one hand, both stronger amplitudes and larger gradients of capacitance oscillations amplified in-
tra-cycle charge redistributions (and SONIC divergence) within the divergence sub-space, but they 
did not significantly affect the bifurcation time constant. Whereas, increasing oscillation frequencies 
expanded the convergence sub-space to shorter time constants, but did not significantly affect the 
magnitude of SONIC divergence within the divergence sub-space. Together, these findings sug-
gested that the critical condition for SONIC convergence is that the model’s time constants should 
be longer than the drive periodicity ({𝜏𝜏𝑚𝑚, 𝜏𝜏𝑎𝑎𝑎𝑎} > 1/𝑓𝑓𝑈𝑈𝑈𝑈). The passive properties of both axon models 
used in this study satisfied this criterion, except at very low drive frequencies (f = 20 kHz). 
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Second, we investigated the applicability of the SONIC paradigm for the particular axon models used 
in this study. For this, we used two-compartment models with axon-specific morphological properties 
and full membrane dynamics, and evaluated SONIC divergence across a symmetric two-dimensional 
space of capacitance oscillation pairs with a drive frequency of 500 kHz. 

As expected, limited drive oscillation amplitudes triggered passive build-ups in charge density in both 
models that were accurately captured by the SONIC paradigm (Figure 27D-E). As the capacitance 
oscillation amplitude reached a critical threshold in one compartment (𝛾𝛾𝑡𝑡ℎ𝑟𝑟 = 0.7 and 0.9 for myelin-
ated and unmyelinated benchmarks, respectively), both models then transitioned towards an active 
response. A few regions of SONIC inaccuracy appeared in the myelinated case around the transition 
threshold, where the timing of the action potential (AP) generation was especially sensitive to the sub-
threshold build-up dynamics and therefore tended to amplify subtle differences in initial build-ups be-
tween the two paradigms (Figure 27D, insets (i)-(ii)). However, those differences vanished at higher 
oscillation amplitudes which elicited a more robust spiking dynamics (faster build-up, reduced post-
spike oscillations) (Figure 27D, inset (iii)). It is also worth noting that SONIC inaccuracies were restricted 
to very few combinations of capacitance oscillation amplitudes, which corresponded to a narrow 
range of stimulus amplitudes. In the unmyelinated case, the slower intrinsic membrane dynamics and 
limited axial coupling enabled a robust SONIC accuracy across the entire explored oscillation range 
(Figure 27E, insets (i)-(iii)). 

Taken together, these findings suggested that the SONIC model can provide accurate predictions of 
neuronal responses in single cable peripheral axon models across the entire LIFUS parameter space 
with the exception of very low US frequencies (f < 100 kHz) and can thus be reliably applied to inves-
tigate intramembrane cavitation in those models. 

 Exogenous acoustic and electric sources produce normal field distributions 
along fibers 

The simulation of spatially extended morphological models by artificial exogenous fields traditionally 
requires the spatial distribution of a perturbation variable across the model’s compartments to be 
solved. Thus, we aimed to analyze the nature of acoustic pressure and extracellular voltage distribu-
tions obtained from simplified, yet realistic configurations.  

First, we used the distributed point source method (DPSM, see Methods) to predict acoustic propa-
gation from a single element planar transducer in a water-like medium (Yanagita et al., 2009). Normal-
ized pressure distributions in the propagation plane showed a high degree of directionality, with sig-
nificant amplitudes concentrating along the main lobe normal to the transducer surface (Figure 28A). 
Both larger transducer diameters and higher frequencies induced a more pronounced near-field ef-
fect and shifted the focal distance further away from the source. At their respective focal distance, all 
configurations produced Gaussian-like pressure distributions along the transverse axis (Figure 28B), 
as confirmed by D’Agostino and Pearson’s statistical normality test on all distributions. Moreover, the 
full width at half maximum (FWHM) of these distributions increased linearly with the transducer radius 
and showed little modulation by US frequency (Figure 28C). 
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Figure 28. Qualitative nature of exogenous acoustic and electrical fields. (A) Normalized two-dimensional acoustic pressure 
amplitude distribution across the propagation plane computed upon sonication by a single-element planar transducer im-
mersed in water-like medium, for various combinations of transducer radius and US frequency. A white line indicates the 
fiber’s axis as considered in this work. (B) Normalized transverse pressure distribution measured at the transducer’s focal 
distance, for the same combinations of transducer radius and US frequency. Dotted lines indicate FWHMs for each distribu-
tion. (C) FWHM of the pressure amplitude distribution along the fiber axis as a function of the transducer radius, for two 
characteristic US frequencies. (D) Normalized two-dimensional voltage distribution across a two-dimensional plane gener-
ated by a point-source electrode placed in a nerve-like anisotropic medium. A white line indicates the fiber’s axis as consid-
ered in this work. (E) FWHM of the extracellular voltage distribution along the fiber axis as a function of the electrode-fiber 
distance.  

Second, used a point-source electrode approximation (see Methods) to predict extracellular voltage 
fields in a nerve-like environment (Ranck and Bement, 1965). Resulting distributions also showed 
some degree of directionality due to the medium anisotropic properties (Figure 28D). Distributions 
were somewhat simpler than for the acoustics case, with voltage amplitude decreasing as a function 
of distance from the electrode as a result of the increasing resistive path. Nevertheless, voltage dis-
tributions along the transverse axis were also “Gaussian-like”, and their width linearly increased as a 
function of the distance from the electrode (Figure 28E). 
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These results obtained using realistic propagation models show that both ultrasonic and electrical 
sources produce normal distributions of the perturbation variable along the fiber’s longitudinal axis, 
and that the “width” of those distributions can be controlled with a single parameter (transducer radius 
and electrode distance, respectively). Therefore, to assess the impact of stimulus spatial distribution 
on fiber excitability in a controlled manner and allow a direct comparison across the two simulation 
modalities, we sampled exogenous fields directly from Gaussian distributions of varying widths and 
amplitudes for the study of single, isolated fibers. In the following, the FWHM of the field distribution 
is referred to as the stimulus “beam width”. 

 LIFUS modulates membrane capacitance to excite myelinated and unmyelinated 
axons 

In this section, we describe “typical” predicted responses of myelinated and unmyelinated axons to 
ultrasound stimulation. We selected standard axon models using representative diameters for each 
axon population (10 µm and 0.8 µm for myelinated and unmyelinated fibers, respectively), and as-
sumed a uniform sonophore depiction across the model non-insulated compartments (i.e. Sundt un-
myelinated membrane and SENN Ranvier nodes). We chose a typical sonophore radius (a = 32 nm) 
used in previous studies (Lemaire et al., 2019; Plaksin et al., 2014, 2016) and a physiologically plausible 
sonophore coverage fraction (fs = 80%) falling within a range of conserved excitability in cortical point-
neuron models (see (Lemaire et al., 2019), Fig. 10). Importantly, those parameters were chosen ad-hoc, 
without re-tuning or post-hoc adjustments. We also considered “standard” acoustic perturbations, 
using a typical US frequency (500 kHz) and sampling acoustic pressures stemming from a 5 mm-
wide Gaussian distribution (i.e. qualitatively equivalent to the distribution generated by a 10 mm diam-
eter single-element planar transducer at focal distance at this frequency) with a peak amplitude of 120 
kPa (i.e. significantly above excitation thresholds of both axons). Finally, we examined responses to 
pulse durations for which the rheobase regime is approached for each fiber type (1 ms and 10 ms for 
the myelinated and unmyelinated fibers, respectively, see next section). To better identify mecha-
nisms of axonal recruitment by US pulses, we quantified the time required to reach a normalized 
charge build-up of 5 mV in the central compartment for each response and computed the contribution 
of each individual current to this initial build-up. 

For both models, the sonication pulse onset generated instantaneous drops in effective membrane 
capacitance in the axon compartments, whose magnitude increased with the amplitude of the local 
acoustic pressure, thereby amplifying the absolute value of transmembrane voltage and inducing hy-
perpolarization (Figure 29A-B). Due to the Gaussian distribution of acoustic pressure along the axon, 
central compartments experienced a stronger hyperpolarization than peripheral ones, which intro-
duced a longitudinal gradient in transmembrane voltage along the fiber. 
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Figure 29. Typical responses of myelinated and unmyelinated axon models to a single US pulse. (A) Time profiles of effective 
membrane capacitance, effective membrane potential, and effective membrane charge density across compartments dur-
ing a typical response of a myelinated axon to a 1 ms sonication (500 kHz frequency, 5 mm-wide Gaussian pressure distri-
bution aligned on the fiber with a spatial peak of 120 kPa). (B) Equivalent time profiles during the typical response of an un-
myelinated axon to a 10 ms sonication (identical pressure distribution as in (A)). (C) Quantification of the membrane and axial 
currents contributions to the first 5 mV of normalized charge build-up in the fiber central compartment. (D) Equivalent quan-
tification for the response of the unmyelinated axon’s central compartment. 

At the central compartment where hyperpolarization is the largest, leakage currents arose to bring 
transmembrane voltage towards the leakage reversal potential, thereby inducing a build-up in local 
charge density. The considerably higher density of leakage channels in the Ranvier node compared 
to the unmyelinated membrane (𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 300 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) induced much larger leakage currents (Figure 
29C-D). Moreover, significant axial currents also arose in the myelinated axon, driven by large voltage 
gradients between the central and neighboring Ranvier nodes. Together, these two depolarizing cur-
rents yielded a much faster membrane charge build-up in the myelinated axon, yielding shorter re-
sponse latencies. These differences are reflected in the times required to achieve a normalized 
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charge build-up of 5 mV in the central compartment (9 µs and 1.7 ms for myelinated and unmyelinated 
fibers, respectively).  

For a long enough sonication, membrane charge density increased until a spiking threshold was 
reached, prompting the opening of Sodium ion channels and thereby triggering an AP in the central 
compartment that started travelling bi-directionally towards the axon extremities. As expected, both 
axons exhibited marked differences in conduction velocities: fast saltatory conduction in the large di-
ameter myelinated axon allowed the AP to reach the extremities of the axon in less than 1 ms, whereas 
that process took more than 10 ms in the slowly conducting unmyelinated axon. As the sonication 
outlasted the AP duration in the myelinated axon, affected nodes transitioned into a “plateau potential” 
regime (stabilization of membrane charge density around a depolarized value). 

Finally, the sonication offset removed the mechanical membrane perturbation, and effective mem-
brane capacitances instantaneously reverted to their resting values, triggering a rapid reduction in 
transmembrane voltage magnitudes. The myelinated axon then simply repolarized back to its equi-
potential resting state, while the AP propagated towards peripheral extremities in the unmyelinated 
axon. 

The effect of electro-mechanical coupling was visible across neuronal responses. During the sub-
threshold charge build-up, the decrease in electrical pressure (a constraining force on the bilayer 
sonophore, proportional to 𝑄𝑄𝑚𝑚2 ) amplified membrane deflections, which further reduced the effective 
membrane capacitance (an effect more pronounced on the myelinated axon). In addition, the propa-
gating spike induced a wave of time-varying electrical pressure that also modulated the effective 
membrane capacitance. 

 LIFUS can selectively recruit myelinated and unmyelinated axons 
In the previous section, we showed that ultrasonic axon recruitment requires the membrane charge 
density to be brought locally above a spiking threshold to engage voltage-gated channels. Yet, the 
underlying mechanisms eliciting this charge build-up differ significantly from those of electrical stim-
ulation (McNeal, 1976; Rattay, 1986). Therefore, we aimed to determine if the two stimulation modalities 
could produce distinct excitability patterns. To this end, we computed excitation thresholds for various 
pulse durations ranging from 10 µs to 1 s (using binary search procedures) to construct strength-du-
ration (SD) curves. 

First, we evaluated the excitability of representative myelinated and unmyelinated axons (10 µm and 
0.8 µm diameters, respectively) with a typical stimulus width (5 mm). With electrical stimulation, 
threshold peak extracellular voltages required to elicit a travelling AP decreased with increasing pulse 
duration, and then reached an asymptotical (so-called “rheobase”) regime for long enough pulses 
(Figure 30A). In line with previous modeling studies (Lubba et al., 2019; Tarnaud et al., 2018b), excitation 
thresholds for the myelinated axon were lower than those of the unmyelinated axon over the entire 
range of pulse durations. This result can be explained by two main factors. For short pulses where the 
speed of the depolarization predominantly determines when / if the spiking threshold is reached, my-
elinated axons can be recruited because of short membrane time constants, whereas unmyelinated 
axons fail to respond fast enough. Conversely, for long pulses approaching the rheobase regime, tran-
sient features become less critical and longitudinal gradients of the applied extracellular voltage be-
come the main determinant of axonal excitability (Warman et al., 1992). Here again, myelinated axons 
are easier to recruit because of their insulated internodes that effectively discretize the voltage field 
at sparsely distributed Ranvier nodes, thereby producing stronger longitudinal gradients at the central 
node than those encountered across the continuous membrane of unmyelinated axons. With ultra-
sonic stimulation, threshold peak acoustic pressure amplitudes required for excitation also decreased 
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with increasing pulse durations and reached a rheobase regime for long enough pulses (Figure 30B). 
Similarly as with electrical stimulation, short membrane and axial time constants conferred a low re-
sponse latency to myelinated axons (see Figure 29), thereby allowing excitation by short ultrasonic 
pulses to which unmyelinated axons failed to respond. Surprisingly however, for longer pulse durations 
(𝑃𝑃𝑃𝑃 ≥  10 𝑚𝑚𝑚𝑚), the SONIC paradigm predicted lower excitation thresholds in unmyelinated axons than 
in myelinated axons. 

 
Figure 30. Comparison of strength-duration curves of myelinated and unmyelinated axons upon electrical and ultrasonic 
stimulation. (A) SD curves of representative myelinated (10 µm diameter, in orange) and unmyelinated (0.8 µm diameter, in 
blue) axons, depicting the threshold absolute peak extracellular voltage required to elicit fiber excitation as a function of pulse 
duration, for a characteristic 5 mm wide Gaussian extracellular voltage distribution. Rheobase and chronaxie values of each 
curve are indicated, as well as distinct areas of fiber recruitment. (B) SD curves of representative myelinated and unmyelin-
ated axons for Gaussian extracellular voltage distributions of varying widths (1 to 10 mm). Arrows indicate the translation of 
the chronaxie point in the SD space for increasing stimulus width. (C) SD curves both fiber types of upon stimulation with a 
characteristic voltage distribution, for varying fiber diameters within the physiological range of each population (myelinated: 
5 to 20 µm, unmyelinated: 0.2 to 1.5 µm). Arrows indicate the translation of the chronaxie point in the SD space for increasing 
fiber diameter. (D) SD curves of representative myelinated and unmyelinated axons, depicting the threshold peak acoustic 
pressure amplitude required to elicit fiber excitation as a function of pulse duration, for a characteristic 5 mm wide Gaussian 
acoustic pressure distribution and US frequency (fUS = 500 kHz), using typical values of sonophore radius (a = 32nm) and 
sonophore coverage fraction (fs = 80 %) in the model’s compartments. SD curves using equivalent “node” models located 
under the stimulus peak are also indicated (light blue and orange curves), as well as rheobase and chronaxie values of each 
curve, and distinct areas of fiber recruitment. (E) SD curves of representative myelinated and unmyelinated axons with typical 
US frequency and sonophore parameters for Gaussian pressure distributions of varying widths (1 to 10 mm). (F) SD curves 
both fiber types with typical US frequency, pressure distribution and sonophore parameters, for varying fiber diameters within 
the physiological range of each population. (G) SD curves of equivalent “node” models of both fiber types with typical sono-
phore parameters and pressure distributions for varying US frequencies (20 kHz to 4 MHz). (H) SD curves of “node” models 
with typical pressure distribution, US frequency and sonophore coverage fraction for varying sonophore radii (16 to 64 nm). 
(I) SD curves of “node” models with typical pressure distribution, US frequency and sonophore radius, for varying sonophore 
coverage fractions (50 to 100 %). 

Second, we characterized the impact of stimulus beam width and fiber diameter on excitability by 
systematically exploring relevant parameter ranges and using the “chronaxie point” (i.e. the pulse du-
ration at which the threshold is twice the rheobase, see Figure 30A-B) as a reference point to measure 
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the rigid translation of SD curves in the (pulse duration – stimulus amplitude) space. With electrical 
stimulation, narrowing stimulus beam widths enhanced excitability of myelinated and unmyelinated 
axons by producing stronger longitudinal gradients in extracellular voltage (Figure 30C). These 
stronger gradients primarily translated SD curves towards lower thresholds, but they also slightly di-
minished chronaxie durations. Very narrow beams produced an inversion of rheobase values, and 
unmyelinated axons became easier to recruit with long enough pulses. In a mirroring manner, increas-
ing fiber diameters also enhanced excitability in both axon types (Figure 30D) as a result of (i) a larger 
intracellular conductance amplifying depolarization in response to a given extracellular voltage gradi-
ent, and (ii) in myelinated axons, an increased internodal spacing (𝐿𝐿 =  100𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) that further amplifies 
longitudinal gradients between consecutive Ranvier nodes. Again, both of these effects induced con-
siderable shifts of SD curves towards lower thresholds and slightly reduced chronaxie durations in 
both axon types. Conversely, with ultrasonic stimulation, SD curves were remarkably consistent 
across a range of stimulus beam widths, as well as across the physiological range of fiber diameters 
of both populations, with only very slight variations in the chronaxie point and no clear trend emerging 
(Figure 30E-F). 

The relatively low sensitivity of ultrasonic excitation thresholds to stimulus beam width and fiber diam-
eter suggest that excitability patterns are primarily dictated by the magnitude of the peak acoustic 
pressure along the axon, rather than by the beam shape or the axial properties of the axon. To verify 
that hypothesis, we carried out the same excitability analysis in point-neuron models representing 
isolated neuronal compartments of the two axon models, namely a SENN Ranvier node and a Sundt 
unmyelinated segment, referred to as “node” models. We found almost identical SD curves between 
the node and full axon models (Figure 30D), thereby confirming that excitation is primarily mediated 
by the localized action of acoustic pressure on the cellular membrane. At first glance, these results 
seem to challenge the observation that axial currents contribute significantly to the initial charge build-
up at the central node of myelinated axons upon sonication (Figure 29), and may therefore indicate 
the presence of a sharp transition in the mechanical response of the membrane to intensifying acous-
tic fields, bringing axons from passive to active responses within narrow amplitude ranges. Neverthe-
less, these results suggest that LIFUS-triggered excitation is primarily a local phenomenon – at least 
in these models – that can be accurately predicted without considering extended morphological de-
tails.  

Given the high accuracy of node models in predicting cell-type-specific excitation thresholds, we lev-
eraged their computational efficiency to explore the impact of acoustic frequency, sonophore size and 
sonophore coverage on neuronal excitability. In line with previous modeling results in CNS neurons 
(Lemaire et al., 2019; Plaksin et al., 2014) we found that US frequency does not significantly affect ex-
citation thresholds apart from a slight increase above 1 MHz due to higher viscous stresses limiting 
sonophore cavitation (Figure 30G). Moreover, increasing sonophore radii induced mainly a “horizontal” 
shift of excitability towards shorter durations (Figure 30H), while increasing sonophore coverage frac-
tions reduced both threshold baselines and chronaxie durations (Figure 30I). 

 Resting membrane capacitance governs fiber excitability for long pulse dura-
tions 

Strength-duration analyses revealed that unmyelinated axons exhibited lower excitation thresholds 
for long ultrasonic pulses, a trend robust to variations in model and stimulus parameters. Thus, we 
aimed to investigate the underlying mechanisms supporting this enhanced excitability using cell-
type-specific node models, which proved to be appropriate benchmark tools to study ultrasonic neu-
ronal recruitment (Figure 30). 
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For sub-threshold acoustic amplitudes and rheobase pulse durations, both the myelinated and the 
unmyelinated nodes responded to sonication with a build-up in charge density towards a more depo-
larized steady state (Figure 31A). Increasing the acoustic amplitude enhanced the magnitude of this 
build-up until the node’s spiking threshold was reached and an AP was fired. Interestingly, the expo-
nential convergence of sub-threshold charge build-ups indicated that they were mostly mediated by 
passive currents, and could therefore be approximated by a simple RC membrane circuit with a single 
leakage conductance. Under this approximation, the steady-state charge build-up is proportional to 

the variation of effective membrane capacitance (𝐶𝐶𝑚𝑚∗ = � 1
𝑇𝑇𝑈𝑈𝑈𝑈
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≈ −𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑉𝑉𝑚𝑚∗ − 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) 

(Δ𝑄𝑄𝑚𝑚)∞ ≈ (𝐶𝐶𝑚𝑚∗ − 𝐶𝐶𝑚𝑚0)𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 
For both cell types, the passive circuit approximation can accurately predict the magnitude of steady-
state charge build-up across a cell-type-specific range of sub-threshold acoustic amplitudes. This 
high prediction accuracy confirms that sub-threshold dynamics is almost entirely governed by the 
drop in effective capacitance. 

 
Figure 31. Underlying mechanisms of distinct rheobase excitabilities in myelinated and unmyelinated axons. (A) Effective 
capacitance variations regulate sub-threshold charge build-ups. From left to right: LIFUS-triggered, exponentially converging 
charge build-ups in myelinated and unmyelinated “node” models for various sub-threshold pressure amplitudes. Normalized 
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steady-state charge build-ups for each “node” model as a function of sub-threshold pressure amplitude, computed from full 
membrane simulations (plain lines) and estimated from the sole relative variation in effective membrane capacitance 
(dashed lines, passive circuit approximation). Detailed intra-cycle oscillation profiles of membrane capacitance and mem-
brane deflection for each fiber type at their respective threshold levels. (B) Charge-dependent electrical and molecular pres-
sure regulate threshold sonophore kinematics. From left to right: detailed profiles of internal pressure forces regulating sono-
phore cavitation during an acoustic period, driven by cell-type-specific threshold acoustic pressures. Detailed profiles of 
electrical and molecular pressures in both fiber types along the physiological range of membrane deflection. (C) Schematic 
diagram showing the causal chain of influence by which resting membrane capacitance affects charge-dependent internal 
pressures, sonophore kinematics, effective capacitance variations, and ultimately rheobase excitability. 

Both the myelinated and unmyelinated nodes required similar normalized charge build-ups to reach 
the spiking threshold (5.0 and 5.9 mV respectively), which corresponded to comparable relative vari-
ations in effective membrane capacitance (-6.3 and -5.2 %). Moreover, looking at intra-cycle dynam-
ics, the resemblance of these effective cycle-averaged values arose from analogous oscillation pro-
files of membrane capacitance over an acoustic period (normalized oscillation ranges of 0.32 and 
0.30, respectively). Recalling that capacitance is defined here as a deflection-dependent variable (see 
Methods section), this cross-model analogy could be mapped further back to cavitation profiles. Sur-
prisingly, however, these similar membrane deflections were achieved at significantly different acous-
tic pressure amplitudes (91 kPa and 28 kPa, respectively). This discrepancy indicates variations in the 
internal kinetic system regulating sonophore cavitation dynamics in each node model. 

Closer inspection of the detailed oscillation profile and resulting signal energy of each internal pres-
sure component at these cell-type-specific amplitudes revealed several interesting features (Figure 
31B). First, the relatively small cavitation magnitudes and velocities for these threshold levels (|𝑍𝑍| <
0.5 𝑛𝑛𝑛𝑛,�𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� < 1 𝑐𝑐𝑐𝑐/𝑠𝑠) did not generate significant viscoelastic stresses on the membrane and sur-

rounding medium. Moreover, this cavitation dynamics allowed for an instantaneous equilibration of 
gaseous and hydrostatic pressures on both sides of the sonophore cavity through transmembrane 
gas transport, thereby yielding identical energy levels for these pressure components across the two 
models. In contrast, both electrical and molecular pressures showed much larger energy levels for the 
myelinated sonophore model than for its unmyelinated counterpart. More specifically, the molecular 
pressure profile was shifted towards more positive values and showed higher oscillation amplitudes, 
whereas the electrical pressure profile was constant across a cycle but shifted towards more negative 
values. Together, these two pressure components are responsible for the cell-type-specificity of 
sonophore cavitation kinetics. 

These changes in dynamic pressure oscillations can be mapped back to distinct profiles over a refer-
ence range of membrane deflections, allowing for the elucidation of the mechanisms of cell-type-
specific rheobase excitability: 

• The electrical pressure accounts for the attraction forces between the electric ion charges on 
the membrane leaflets, and is defined as 𝑃𝑃𝑄𝑄(𝑍𝑍,𝑄𝑄𝑚𝑚) = − 𝑆𝑆0

𝑆𝑆(𝑍𝑍)
𝑄𝑄𝑚𝑚2

2𝜖𝜖0∙𝜖𝜖𝑟𝑟
. Therefore, both electrical 

pressure profiles show a weak dependence on membrane deflection, and a constant magni-
tude ratio across the deflection range ( 𝑃𝑃𝑄𝑄,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑄𝑄,𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 5.8), corresponding exactly to the square of 

the ratio of threshold charge densities across the two models ( 𝑄𝑄𝑡𝑡ℎ𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑄𝑄𝑡𝑡ℎ𝑟𝑟,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
= 2.4). The latter ratio 

primarily arises from variations in a fundamental biophysical property: the resting specific mem-
brane capacitance of the myelinated axon is twice as high as that of the unmyelinated axon 
(see Methods). This increased capacitance allows the myelinated membrane to accumulate 
twice as much charges for identical transmembrane voltages, thereby increasing the electrical 
pressure on the membrane and hindering sonophore expansion around threshold levels. 

• The intermolecular pressure is defined by a Lennard-Jones expression integrated across the 
sonophore surface: 𝑃𝑃𝑀𝑀(𝑍𝑍) = 1

𝑆𝑆(𝑍𝑍)∫ ∫ 𝐴𝐴𝑟𝑟 ∙ (𝛾𝛾𝑥𝑥  – 𝛾𝛾𝑦𝑦) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
0

2𝜋𝜋
0  with 𝛾𝛾 = 𝛥𝛥∗

2𝑧𝑧(𝑟𝑟)+𝛥𝛥(𝑄𝑄𝑚𝑚0)
. All parameters 
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of this expression are fixed except for 𝛥𝛥∗, the gap between the two membrane leaflets in the 
absence of charges. This parameter is calculated from a model-specific equilibrium state that 
depends on resting charge density, and therefore shows cell-type-specificity: the more nega-
tive resting charge density of the myelinated axon – mainly resulting from its larger capacitance 
– results in a smaller computed gap compared to the unmyelinated axon (1.1 nm vs 1.3 nm, 
respectively). Slight changes in this key parameter have profound implications on the resulting 
molecular pressure profiles: the smaller gap in the myelinated model reduces the amplitude of 
the negative (i.e. attractive) peak, and more importantly, shifts the transition towards positive 
(i.e. repulsive) pressure to a more positive deflection value, thereby producing much larger val-
ues of repulsive intermolecular pressure and hindering sonophore compression during an 
acoustic cycle around threshold levels. 

The resting membrane capacitance is thus a crucial parameter that indirectly regulates the rheobase 
excitability of peripheral axons. This regulation is explained by a causal chain of influence (Figure 31C), 
can be summarized as follows: the resting capacitance influences both the resting value and the var-
iation range of membrane charge density, thereby influencing charge-dependent internal pressures. 
That is, with larger capacitance, electrical pressure becomes more constraining during expansion 
phases and intermolecular pressure becomes more repulsive during compression phases. Together, 
these two pressure amplifications restrict the cavitation dynamics, and thus require higher acoustic 
pressures to attain similar membrane deflection and resulting relative capacitance oscillation ranges. 
In terms of cycle-averaged dynamics, higher pressures are needed to reach a given relative drop in 
effective capacitance, which almost entirely regulates the sub-threshold charge build-up. Given that 
both axon models require similar relative charge build-ups to reach their spiking threshold, rheobase 
excitability is then predominantly determined by the electrical modulation of cavitation dynamics, and 
hence by the resting membrane capacitance. In light of this mechanism, the enhanced excitability of 
unmyelinated axons for long pulse durations is explained by their smaller resting capacitance. 

 Pulsed LIFUS robustly modulates axon spiking activity 
In the previous sections, we analyzed response and excitability patterns of axon models upon appli-
cation of isolated ultrasonic pulses. In the following, we investigated how the repeated application of 
such pulses can be used to modulate the spiking activity of axons over time. To do so, we simulated 
full axon models (using the standard model parameters defined in previous sections) upon the appli-
cation of 10 consecutive sonication pulses (setting the stimulus beam width to one fifth of the fiber 
length), detected propagated APs on membrane charge density traces of axon extremities, and com-
puted the resulting firing rate as the reciprocal of the average inter-spike interval over the simulation 
window. 

We first evaluated the impact of pulsing parameters on spiking activity for a fixed acoustic pressure 
distribution with a peak amplitude of 300 kPa (a value falling safely above single pulse excitation 
thresholds of both axon models). Given the important differences in the LIFUS response time con-
stants observed between myelinated and unmyelinated axons, we explored a relevant range of pulse 
durations around the axon’s single pulse chronaxie for each model.  

Myelinated axons responded with very low latency but only fired a single spike for each acoustic pulse, 
followed by a stabilization to a plateau potential regime. As a result, they could be driven very robustly 
to follow the pulse repetition frequency (PRF) up to approximately 1 kHz over a wide range of pulse 
durations (Figure 32A, inset (i)). At higher stimulus rates, repeated pulses started to interfere with the 
cell’s refractory period, thereby preventing spike generation and / or propagation on average every 
two pulses, causing the axon to synchronize with the half-PRF (inset (ii)). At even higher stimulus rates, 
only very short pulses enabled a sustained firing activity, as the axon progressively reached its physi-
ological limit at around 1 kHz (inset (iii)). 
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Figure 32. Modulation of spiking activity by pulsed sonication in myelinated and unmyelinated axons. (A) Average firing rate 
elicited in each axon type by a Gaussian acoustic pressure distribution covering one fifth of the fiber length, using default 
sonophore parameters (a = 32nm, fs = 80%) and US frequency (fUS = 500 kHz), for various pulse durations and pulse repe-
tition frequencies. Dashed lines indicate half, one time and double of the stimulus rate. Detailed spatiotemporal profiles of 
membrane charge density are indicated for characteristic spiking regimes of each fiber type, along with detailed profiles of 
the stimulus spatial distribution (vertical) and temporal application (horizontal). (B) Average firing rate (normalized by pulse 
repetition frequency) elicited in each fiber type as a function of duty cycle and peak acoustic pressure amplitude for cell-
type-specific pulse repetition frequencies yielding “robust” and “sensitive” spiking behaviors. Numbers on the color maps 
indicate characteristic regimes of normalized firing rate. 

In contrast, unmyelinated axons responded with higher latency, but could fire multiple spikes for pro-
longed sonication. Consequently, their behavior at low PRFs strongly depended on the pulse duration: 
short pulses (PD < 5 ms) did not induce any response, intermediate pulses (5 < PD < 10 ms) induced 
PRF-locking (inset (iv)), and long enough pulses (PD >= 10 ms) induced spiking activity at double or 
even higher multiples of the stimulus rate (inset (v)). At intermediate stimulus rates (20 Hz < PRF < 
100 Hz), temporal summation of sub-threshold responses enabled recruitment by short pulses at half 
the PRF or below. Above 100 Hz, the range of available pulse durations was progressively restricted 
to shorter values that only allowed the fiber to fire at half the stimulus rate or below (inset (vi)), until a 
physiological limit was reached around a firing rate of 200 Hz. 

Having established that pulsing parameters trigger cell-type-specific patterns of spiking activity, we 
aimed to investigate whether these neuromodulatory effects also depend on stimulus intensity. 
Hence, we simulated each axon type across a two-dimensional space of duty cycles (DC, from 0 to 
100%) and peak pressure amplitudes (from 10 to 600 kPa), and for each combination, computed the 
resulting firing rates normalized by the PRF. 

At low PRFs allowing a robust pulse-spike synchronization (identified from Figure 32A for each axon 
type), neuromodulatory effects were surprisingly consistent across a wide range of supra-threshold 
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stimulus amplitudes (Figure 32B). The myelinated axon fired exactly one spike per pulse for 𝐷𝐷𝐷𝐷 ∈
[0.02, 0.95] (i.e. for pulses long enough to allow a first response yet distant enough to avoid destructive 
interaction with the refractory period), independently of stimulus amplitude. In contrast, the unmyelin-
ated axon initiated a first response at slightly larger DCs and then exhibited three distinct spiking re-
gimes with 1, 2 and 3 spikes per pulses as DC increased up to 1. A slight dependency on stimulus 
amplitude was noted here, as larger pressures shifted transitions between the different spiking re-
gimes to lower duty cycles. 

At high PRFs allowing only sub-stimulus rate spiking activity (see again Figure 32A), neuromodulatory 
effects were more intricate, and showed more dependency on stimulus amplitude. In this high-fre-
quency regime (PRF = 2.6 kHz), the myelinated axon’s firing rate approached a maximum of 0.5 times 
the PRF over a wide duty cycle interval (𝐷𝐷𝐷𝐷 ∈ [0.04, 0.70]). At larger duty cycles, spiking was only elic-
ited for sparse DC-amplitude combinations allowing an optimal trade-off between fast depolarization 
to US stimuli and limited destructive interaction with the refractory period. Surrounding regions did not 
allow such a trade-off and could only trigger a single spike, after which the axon could not reset to fire 
again. In contrast, the unmyelinated axon’s spiking activity was maximized for an optimal sub-region 
of intermediate duty cycles where the firing rate approached the stimulus rate (PRF = 200 Hz). Inter-
estingly, larger pressures offered a wider span of this optimal DC interval. Higher duty cycles (up to 
100%) also generated spiking activity but also significantly interfered with the axon’s ongoing mem-
brane dynamics and were thus less effective. 

4.5 Discussion 
In this study, we used a novel computational framework to formulate several important predictions on 
the effects and mechanisms of US neuromodulation by intramembrane cavitation in peripheral fibers. 
First, single US pulses are capable of inducing de novo action potentials in both myelinated and un-
myelinated peripheral axons. Second, these two fiber types share a common US recruitment mecha-
nism: the stimulus onset induces a local drop in effective membrane capacitance at the acoustic fo-
cus and triggers passive depolarizing currents that raise charge density towards the spiking threshold. 
Third, while the two fiber types show a robust excitability across a wide range of carrier frequencies 
and acoustic pressure fields, they exhibit distinct sensitivities to temporal features of US stimuli. My-
elinated axons exhibit a low (sub-millisecond) response latency due to their short membrane time 
constant and can therefore be excited by very short US pulses for which unmyelinated axons are un-
responsive. However, for longer stimuli, unmyelinated axons can be excited at lower acoustic intensi-
ties than myelinated axons. Interestingly, this enhanced excitability in the rheobase regime is not 
caused by the absence of myelin, but rather, it is attributable to a smaller specific membrane capaci-
tance (𝐶𝐶𝑚𝑚0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 µF/cm2, 𝐶𝐶𝑚𝑚0
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 µF/cm2). To the best of our knowledge, the biological origin of this 

capacitance difference remains undocumented. However, we found the magnitude ratio of this spe-
cific parameter to be conserved across a wide collection of biophysical models of myelinated and 
unmyelinated axons (Frankenhaeuser and Huxley, 1964; McIntyre et al., 2002; Tarnaud et al., 2018b), 
which supports the reliability of our conclusions. Fourth, the application of repeated US pulses induces 
a sustained spiking activity in both fiber types, the rate of which can be modulated by adjusting pulsing 
parameters. Particularly, myelinated axons robustly follow the stimulus rate over a wide range of PRFs, 
pulse durations and supra-threshold stimulus amplitudes, while unmyelinated axons show more com-
plex dependencies on pulse durations / duty cycle and acoustic intensities. Moreover, both fiber types 
can be entrained into firing rates that are comparable to those resulting from electrical stimulation 
(Krauthamer and Crosheck, 2002), with myelinated axons showing a much higher upper limit (FR > 1 
kHz) than their unmyelinated counterparts (FR < 180 Hz). The latter finding must be interpreted with 
caution, as the SENN myelinated axon model ignores subtle spiking adaptation phenomena and 
hence probably overestimates the physiological limit of the myelinated axon’s firing rate. Importantly, 
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robust neuromodulatory effects can be obtained with both fiber types at relatively low duty cycles (DC 
< 50%) that prevent significant tissue heating. Together, these predictions define a comprehensive 
theoretical basis that can guide the design of US neuromodulation protocols.  

 Applicability of the SONIC paradigm in multi-compartmental models 
The SONIC paradigm relies on the assumption that membrane charge density and ion channel kinet-
ics evolve at a much slower speed than microsecond-scale capacitance oscillations, thereby allowing 
for the accurate integration of neural responses using pre-computed cycle-averaged quantities of 
fast-oscillating variables. While that assumption is valid for point-neuron models (Lemaire et al., 2019), 
a recent study using a nanoscale two-compartment model have shown that under tight axial coupling 
conditions, strong intracellular currents mediate a significant intra-cycle charge redistribution that in-
fluences local membrane dynamics in a way that is not captured by the SONIC paradigm, resulting in 
overestimated sub-threshold charge build-ups and underestimated excitation thresholds (Tarnaud et 
al., 2020). It was also demonstrated that this numerical inaccuracy could be resolved by taking into 
account a limited number of Fourier components from precomputed oscillatory variables (as opposed 
to the SONIC approach that only considers their first component). Those findings raise legitimate con-
cerns about the applicability of the SONIC paradigm in multi-compartmental models and prompted 
us to examine the conditions of its applicability, and whether it can be accurately used with the axon 
models of this study.  

First, using a generic passive benchmark, we showed that SONIC accuracy is impacted by both in-
trinsic model properties and stimulus features, but also that this paradigm shows robust convergence 
if the underlying (membrane and axial) time constants of the considered neuron model are longer than 
the stimulus periodicity. Second, using axon-specific benchmarks, we demonstrated that the SONIC 
paradigm can accurately compute passive and active neural responses of both axon models of this 
study, across a vast majority of the LIFUS parameter space. 

In the case of the unmyelinated axon, the axial time constant is a direct product of the spatial discreti-
zation of a continuous membrane (𝜏𝜏𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑚𝑚0𝜌𝜌𝑎𝑎

𝐿𝐿2

𝐷𝐷
, with 𝐿𝐿 the compartment length). Hence, for small 

enough compartments, this time constant may become smaller than the stimulus periodicity and 
therefore sensitize the electrical system to intra-cycle variations. However, increasing the model res-
olution would also eliminate the spatial gradient in acoustic pressure across consecutive compart-
ments, effectively eradicating the axial currents at the origin of SONIC divergence. In fact, the selected 
compartment length in this study (see Methods section) is in the order of 10-2 mm, i.e. already two 
orders of magnitude smaller than millimeter-scale pressure field variations. 

Whether SONIC convergence can extend to other morphological models remains an open question, 
in particular as neurons of the CNS have a much slower membrane dynamics than peripheral axons 
(membrane time constants in the order of tens of milliseconds (Pospischil et al., 2008)) but possess 
tightly connected and heterogeneous morphological sections that may induce significant axial charge 
redistribution. In this case, a more computationally taxing approach considering extended Fourier de-
composition might be required to achieve an acceptable level of accuracy. 

 Generalizability of the morphoSONIC framework 
Due to its intrinsic mechanoelectrical coupling, the NICE model is inherently tedious to simulate. In 
fact, capacitance oscillations induced by the mechanical membrane resonance introduce a high fre-
quency capacitive displacement current (𝐼𝐼𝐶𝐶 = 𝑉𝑉𝑚𝑚

𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

) that greatly increases the associated numerical 
stiffness. We first observed that this stiffness could be reduced by recasting the differential system in 
terms of charge density (Lemaire et al., 2019). This strategy has since been employed in another study 
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implementing the NICE model (Tarnaud et al., 2020), and is also at the core of the SONIC paradigm. 
Unfortunately, neither time-varying capacitance nor charge casting are natively supported by standard 
neuronal simulation environments such as NEURON. Consequently, computational studies on in-
tramembrane cavitation have been implemented in custom software (Matlab or Python) and restricted 
to single and two-compartment models, partly because sub-optimal integration routines yield exorbi-
tant simulation times and / or numerical instabilities for larger models. 

Here, we derived a hybrid (charge and voltage casted) variant of the cable equation that is numerically 
reconcilable with both the NICE and SONIC paradigms and implemented it as an independent module 
that can be seamlessly integrated within the NEURON simulation environment. As such, the proposed 
approach provides a general solution to the problem of time-varying capacitance that is applicable to 
a wide variety of model types (single and double cable) and morphological structures (compartment 
number, branching patterns) seen across the central and peripheral nervous systems. Notably, this 
approach could also be used with enriched membrane mechanisms including lookup tables for addi-
tional Fourier components, as in (Tarnaud et al., 2020). Moreover, the choice of a NEURON-based 
implementation offers several advantages. First, it leverages NEURON’s optimized numerical integra-
tion pipelines while offering an appreciable abstraction level to the underlying differential systems. 
Second, it is applicable to a wide collection of biophysical models – as well as other resources – made 
available by the NEURON community (McDougal et al., 2017) with limited adaptation effort. Finally, alt-
hough it has been used here with Gaussian field distributions approximating analytical solutions to 
simple physical problems, the morphoSONIC framework can easily be combined with finite-element-
method (FEM) approaches. This refined multi-scale approach would enable the coupled simulation of 
complex acoustic propagation, pressure field distribution, and resulting neuronal responses inside 
anatomically accurate inhomogeneous tissue (such as the brain or the nerve environment). 

 Comparison with empirical findings 
As stated before, one of the major findings of this modeling study is that short US pulses are capable 
of inducing de novo action potentials in both myelinated and unmyelinated peripheral axons. This 
modeling prediction is in agreement with experimental observations from two recent studies showing 
that in vivo sonication of the mouse intact sciatic nerve directly activates myelinated fibers to induce 
motor responses (Downs et al., 2018), and that ex vivo sonication of unmyelinated crab leg nerve bun-
dles generates compound action potentials (Wright et al., 2017). Interestingly, these studies reported 
significantly higher excitation thresholds (3.2 MPa and 1.8 MPa peak pressures around the fiber loca-
tion for myelinated and unmyelinated axons, respectively) than the ones predicted here. Such differ-
ences could potentially arise from the intrinsic embedding of fibers within the neural tissue, increasing 
viscoelastic stresses on the membrane, and therefore hindering its mechanical resonance to acous-
tic perturbations (Krasovitski et al., 2011), a phenomenon that was not considered here. In fact, active 
neural responses in the extracted crab leg nerve bundles coincided with the presence of inertial cav-
itation in the surrounding medium, which may indicate higher thresholds for intramembrane cavitation 
in this specific environment. Nonetheless, considering that both studies employed minimal stimulus 
durations that fall within the fibers predicted rheobase regimes (4 ms and 8 ms for the myelinated and 
unmyelinated cases, respectively), the lower relative range of reported excitation thresholds for unmy-
elinated fibers corroborates our modeling predictions. Moreover, shorter response latencies were ob-
served in myelinated fibers (Δt < 1 ms) than in unmyelinated fibers (𝛥𝛥𝑡𝑡��� ≈ 3.2 ms), which is also in agree-
ment with our findings. Significant variability in success rate and response latency was observed in 
the ex vivo crab leg nerve preparation, which is a departure from the deterministic nature of single 
fiber responses predicted by our current model. Nevertheless, the similarities in qualitative behavior 
between our theoretical results and these empirical observations provide a first indication that in-
tramembrane cavitation could be a physiologically relevant US neuromodulation mechanism also in 
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the peripheral nervous system. A more definitive answer to that question will require further experi-
mental investigations, including a thorough comparison of excitation thresholds across fiber types 
and diameters within the same nerve environment and across a wide range of pulse durations and 
acoustic beam widths.   

 Therapeutic implications 
Beyond mechanistic investigation, our findings further emphasize the potential of LIFUS as a nonin-
vasive neuromodulation technology and its applicability to peripheral structures. In fact, we predict 
that LIFUS can be used to robustly modulate the spiking activity of both myelinated and unmyelinated 
fibers, meaning that it could be used to encode sensory information or elicit motor responses. In this 
context, the lack of clear dependency of LIFUS excitation thresholds on fiber diameter represents a 
disadvantage, as it excludes the possibility to discriminate across different populations of myelinated 
fibers and, hence, to target a specific peripheral pathway. However, the ability to selectively target 
unmyelinated C-fibers, which carry pain and temperature afferent signals, ushers in the possibility to 
encode new types of sensory information in artificial limbs without interfering with other haptic, i.e. 
tactile (Petrini et al., 2019; Raspopovic et al., 2014; Valle et al., 2018) and proprioceptive (D’Anna et al., 
2019), modalities. To the best of our knowledge, this feature has never been achieved with standard 
electrical stimulation techniques. The encoding of temperature information would be particularly in-
teresting to enrich the sensory feedback in neuroprosthetic devices and improve user experience 
(Mendez et al., 2020). 

4.6 Conclusion 
In this study, we present a novel computational framework to investigate the mechanisms of US neu-
romodulation by intramembrane cavitation in morphologically realistic neuron models, using the NEU-
RON simulation environment. The new framework is used to predict cell-type-specific responses of 
myelinated and unmyelinated peripheral axons to acoustic pressure fields. These predictions are in 
qualitative agreement with recent empirical observations, and open new avenues for the use of US as 
a neuromodulation technology in the peripheral nervous system. Yet, closer quantitative comparison 
with experimental data will be necessary to further validate or reject the underlying mechanism. Fur-
thermore, we plan to couple our modular framework with acoustic propagation models to formulate 
more detailed predictions of neural responses upon sonication by realistic acoustic sources and to 
inform the development of application-specific ultrasonic devices. 
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 Confrontation to the experi-
mental setting 

Chapter 2 introduces the NICE model, an electromechanical model formulating the hypoth-
esis that ultrasound neuromodulatory effects are mediated – at least partially – by intramembrane 
cavitation. Chapters 3 and 4 deal with computational investigations to improve the efficiency, inter-
pretability and scalability of the NICE model. Yet, despite their intrinsic value, these investigations re-
main purely theoretical, and do not provide definite answers about the validity of the underlying bio-
physical hypothesis.  

This chapter presents an attempt at confronting the accumulated modeling predictions to empirical 
data, and from a more collective standpoint, an effort to elucidate the cellular mechanisms of ultra-
sound neuromodulation in the experimental setting. To this aim, investigations were carried out on a 
tractable invertebrate model, the medicinal leech (Hirudo medicinalis), that has been heavily used in 
neurophysiological investigations. Intracellular electrodes were used to record voltage responses of 
anatomically and functionally identified sensory neurons during ultrasound (and alternatively electrical) 
stimulation, with the goal of identifying nominal response features and comparing them to modeling 
predictions.  

This empirical investigation – a collective effort led by Dr. Francesca Dedola – constitutes a parallel 
contribution presented in this thesis. 

  

Sections 5.1 to 5.4 of this chapter are adapted from the manuscript by *Dedola, F., *Severino, F.P.U., 
Meneghetti, N., Lemaire, T., Cafarelli, A., Ricotti, L., Menciassi, A., Cutrone, A., Mazzoni, A., and Micera, 
S, “Ultrasound Stimulations Induce Prolonged Depolarization and Fast Action Potentials in Leech Neu-
rons” published in IEEE Open Journal of Engineering in Medicine and Biology 1, 23–32 (2020). 

Personal contributions as third author: proposed the experimental setup, designed the experimental 
protocol, participated in experiments, contributed to writing the manuscript (introduction and discus-
sion). 

Section 5.6 provides a more contextual interpretation of the results within the development of this 
thesis, and the confrontation of empirical data to modeling predictions.  
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Ultrasound stimulations induce prolonged depolari-
zation and fast action potentials in leech neurons 
*Francesca Dedola1, *Francesco Paolo Ulloa Severino2, Nicolò Meneghetti1, Théo Le-

maire3, Andrea Cafarelli1, Leonardo Ricotti1, Arianna Menciassi1, Annarita Cutrone1, Al-

berto Mazzoni1, Silvestro Micera1,3 

1 The Biorobotics Institute, Scuola Superiore Sant’Anna (SSSA), Pisa, Italy  
2 Neuroscience Area, International School for Advanced Studies, Trieste, Italy 
3 Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of Engi-
neering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 

5.1 Abstract 
Objective: Ultrasound (US) stimulation carries the promise of a selective, reversible, and noninvasive 
modulation of neural activity without the need for genetic manipulation of neural structures. However, 
the mechanisms of US-induced generation of action potentials (APs) are still unclear. Here we address 
this issue by analyzing intracellularly recorded responses of leech nociceptive neurons to controlled 
delivery of US. Results: US induced a depolarization linearly accumulating in time and outlasting the 
duration of the stimulation. Spiking activity was reliably induced for an optimal US intensity range. 
Moreover, we found that APs induced by US differ in smaller amplitude and faster repolarization from 
those induced by electrical stimulation in the same cell but display the same repolarization rate. Con-
clusions: These results shed light on the mechanism by which spikes are induced by US and pave 
the way for designing more efficient US stimulation patterns. 

5.2 Introduction 
Ultrasound (US) stimulation is an efficient mean to interact noninvasively with the human body. Beyond 
its conventional use as an imaging modality (Tanter and Fink, 2014), US is now also applied for thera-
peutic interventions such as ablation therapies and blood-brain barrier reversible opening for drug 
delivery (Escoffre and Bouakaz, 2016). Such applications rely on the specific nature of acoustic waves 
that can be accurately steered through biological tissue, offering the ability to concentrate acoustic 
energy within small volumes (~mm3) around deep anatomical targets (Kyriakou et al., 2014). 

Low-intensity low-frequency ultrasound (LILFU) can elicit APs in ex-vivo mouse brain and hippocampal 
slice cultures (Tyler et al., 2008). US neuromodulatory effects have been recently studied on various 
neural targets (Fomenko et al., 2018) with a clear translation path from ex-vivo preparations (Kubanek 
et al., 2016; Tyler et al., 2008; Wright et al., 2017), to animal models (Gulick et al., 2017; Juan et al., 2014; 
Kim et al., 2012, 2015; King et al., 2013; Kubanek et al., 2018; Lee et al., 2016a, 2015b) including non-
human primates (Deffieux et al., 2013; Wattiez et al., 2017; Yang et al., 2018), and human subjects (Lee 
et al., 2015a, 2016b, Legon et al., 2014, 2018b, 2018a; Mueller et al., 2014). 

However, while the ability of US to modulate neural activity has been extensively confirmed, discrep-
ancies remain about the exact influence of each stimulation parameter (carrier frequency fc, peak pres-
sure amplitude, stimulation duration, pulse-repetition frequency and duty cycle (DC)) on neural activity, 
and behavioral responses. Hence, despite a decade of intense investigation, the underlying mecha-
nism of action by which US triggers neuronal excitation/inhibition is still unclear and a predictive model 
relating the effects on neurons with the US parameters is missing.  
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Here, in order to tackle these issues, we investigated neural responses to controlled US in a simple 
nervous system: the medicinal leech (Hirudo medicinalis). This invertebrate model can generate a 
broad range of behaviors (Garcia-Perez, 2007; Mazzoni et al., 2005), but possesses a simple nervous 
system that can be easily accessed to extract individual ganglia, the anatomical organization of which 
is highly conserved across specimens (Muller, 1981). Neurons within a ganglion are functionally char-
acterized and identifiable by their position, size, and electrophysiological profile (Kristan et al., 2005; 
Titlow et al., 2013), and offer very reliable responses to electrical (EL) stimulation. Finally, it is possible 
to record viable neural responses from an isolated ganglion for extended periods of time (Titlow et al., 
2013). 

Using this animal model, we systematically explored the US parameter space and recorded direct 
individual neural responses in isolated leech ganglia, in a controlled environment where the number 
and influence of external factors was kept to a minimum. We aimed at identifying relevant acoustic 
parameters governing neural responses, evaluating excitation thresholds, and comparing obtained 
spike waveforms with that of EL evoked spikes. We focused our analysis on nociceptive (N) mecha-
nosensory cells that exhibit a robust and well-characterized response to EL stimulation, and whose 
characteristics are predominantly due to the abundance on the membrane of Na+ channels, which 
have been recently indicated to be influenced by US (Kubanek et al., 2016). 

5.3 Results 
We developed a setup (Figure 33a-d) to stimulate cells with ultrasound from isolated leech ganglia 
(Figure 33b-c). We analyzed responses of N mechanosensory neurons to US (see Materials and Meth-
ods and Figure 33e for details) comparing them to the responses to EL stimulation. We first analyzed 
US-induced subthreshold depolarization, then US-induced firing activity, and finally US-induced AP 
characteristics were compared with those of EL triggered spikes. 
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Figure 33. Experimental setup. a) Illustrative scheme of the setup. b) Leech dissection and ganglia chain exposition (1). On 
the top right corner, a detail of the extracted leech ganglion pinned onto the PDMS substrate (2). c) Focus on the Petri dish 
with a pinned ganglion (1) and the glass capillary containing the Ag/AgCl electrode for intracellular recording (2). d) The Petri 
dish with the pinned ganglion was positioned on top of the experimental setup (1). The setup included a US transducer (2) 
immersed in a tank (3) full of degassed deionized water used for US, and an electrophysiology setup. A micromanipulator (4) 
allows for fine positioning of the electrodes on ganglion surface. In this configuration two electrodes (5.1 - 5.2) are connected 
to the electrophysiology setup for recording. A light source (6) and an optical microscope (7) are used for cell identification 
and impalement. e) Temporal protocol of US: DC 5% (blue), T-on is 5 ms, T-off 95 ms; DC 50% (yellow), T-on 50 ms, T-off 
50 ms; DC 100% (brown), T-on 100 ms. The tone burst duration is equal to T-on in case of pulsed stimulation and the pulse 
repetition period (PRP) is 100 ms; the stimulation duration (SD) is of 300 ms for the 3 temporal protocols. Each stimulation 
(SD 300 ms) is repeated 3 times during a recording session whit an inter stimulation interval (ISI) of 20-30 s. In the inset, 
temporal evolution of US (violet); transducer central frequency is 490 kHz. 

 Subthreshold responses to US stimulation 
We delivered low-intensity, 490 kHz US in blocks of 3 stimuli of 100 ms each, with a DC of 5, 50 or 
100% (continuous stimulation, all reported in Figure 33e) and a root mean square pressure (Prms) of 8, 
12, 16 or 20 kPa (see Materials and Methods for details). The spatial mapping of the pressure within 
the acoustic field was measured using a hydrophone and the Prms was evaluated in the Petri dish 
containing the pinned ganglia (Figure S2 and Figure S3). The response and baseline intervals were 
defined respectively as the on-state of the stimulation (tone burst duration) and an interval of the same 
duration preceding the stimulus onset (Figure 34a). Note that the US-induced depolarization outlasted 



Confrontation to the experimental setting 

113 

the tone burst duration for pulsed protocols and the duration of continuous stimulation (Figure 34a). 
Post- and pre- stimulus membrane voltages were compared (Bi, Figure 34a); increase in the mem-
brane potential associated to the stimulus depended on both pressure and DC, but not on their inter-
action (two-way ANOVA, p=0.0272, p<0.0001, p=0.32 respectively) (Figure 34b). For EL triggers, 
membrane potential during the 100 ms post-stimulus time was lower than the pre-stimulation level, 
in stark contrast to what observed for US (Figure S1). 

 
Figure 34. US parameters and membrane depolarization. a) Definition of response and baseline interval for each DC; in case 
of 100% DC, baseline and response time interval is 300 ms; in case of 5% and 50% DC, baseline and response duration 
are equal to tone burst duration for each cycle. The membrane potential variation ΔV was defined as the difference between 
the membrane potential median value during stimulus onset (r1 in the figure) and its median value during the preceding 
baseline (b1 in the figure). b) Violin plot (Hintze and Nelson, 1998) of baseline variation, defined as the difference between 
membrane potential pre and post stimulus onset (median Bi+1- median Bi), for each pressure amplitude and DC (95 ms at 
DC 5 %, 50 ms at DC 50 %, 300 ms at DC 100 %). Asterisks indicate post-hoc significant inter-DC differences (p<0.05). c) 
Membrane voltage variation over the three cycles at DC 5% and 50% for pressure 12kPa. d) Membrane potential variation 
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for each pressure amplitude and DC. e) Median membrane voltage variation for each stimulation protocol setting. f) Stimula-
tion intensity for each experimental protocol. g) Median membrane potential response as a function of the intensity. Color 
code in f) and g) indicates intensity binning: Ispta is binned into five groups: very low ≤ 0.5 mW/cm2 < low ≤ 2.5 mW/cm2 < 
medium ≤ 5 mW/cm2 < high ≤ 10 mW/cm2 <very high, with respectively 101, 110, 108, 97, 73 recorded traces. 

We also checked whether the membrane potential response to US stimulation (ΔV), defined as the 
negative difference between the median membrane potential during baseline and its value during the 
interval with tone burst stimulation (Figure 34a), was different across the three consecutive stimulation 
cycles for 5 and 50 % DC. We found that there was no significant inter-cycle difference in the re-
sponse for fixed value of pressures. For instance, for 12 kPa (see Figure 34c) a two-way ANOVA failed 
to detect a significant difference in the response across the cycle numbers (F=0.38, p=0.68) as well 
as a significant effect of the cycle number x DC interaction (F=0.17, p=0.85), while there was a signif-
icant difference among the DCs (F=7.19, p=0.0082). Similar results were obtained for all pressure 
levels (results not shown). Consequently, in the following analysis we will always consider the average 
response amplitude over all cycles. 

The relationship between the stimulation features and the peak membrane potential depolarization 
was then investigated for the various combinations of pressure and DCs. The membrane potential 
depolarization response ΔV was found to increase with both DC and pressure parameters (Figure 
34d-e). This is coherent with the fact that during each stimulation the effect of US on the membrane 
potential is integrated over time (see for instance Figure 34a). A two-way ANOVA with factors DC and 
Prms detected a significant difference in ΔV across different DCs (p ≪ 0.0001) and pressures (p = 
0.0002), as well as for the DC x Prms interaction (p = 0.021) (Figure 34b). 

To measure the total acoustic exposure, taking into account the pulsed protocol, the spatial-peak 
temporal-average Intensity (Ispta) for each stimulation was then computed as 

(110) 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟
2

𝜌𝜌𝑐𝑐
𝐷𝐷𝐷𝐷 

where 𝜌𝜌 and c are approximated to the density and the speed of sound of the water (see the experi-
mental setup in Figure 33). It was found that membrane depolarization ΔV associated to US grew 
linearly with Ispta (R2=0.78, p=0.0001, Figure 34g). 

We concluded that the US triggered sub-threshold membrane potential depolarization did not depend 
simply on the temporal peak stimulation intensity but rather on its integral over time: the effects of the 
stimulation accumulate linearly. In the following sections, we consider the effect of the stimulations 
only as a function of Ispta. 

 Spiking activity in response to US stimulation 
A key experimental result of our work is that US induced spiking activity in 27 over the 44 recorded N 
cells (see a representative recorded trace in Figure 35a). In order to compare the different spike-trig-
gering mechanisms we alternated US and EL stimulations able to induce firing activity (Figure 35b). 
Note that the latency was longer for US than for EL stimulation, coherently with our hypothesis of a 
cumulative effect of US, as if the accumulation of the effect over time required to trigger the action 
potential determined the latency. Coherently with results in Figure 34, the success rate (spike elicita-
tion probability) averaged over all neurons depended on both pressure and DC: a two-way ANOVA 
with factors DC and pressure detected a significant difference between the DCs (F=6.02, p=0.003) 
as well as the pressures (F=2.84, p=0.039), but only a tendency toward DC x pressure interactions 
(F=6.18, p=0.082). Indeed, the stimulation success rate was proportional to the intensity (R2=0.36, 
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p=0.0442, Figure 35c). Analysis of the spiking activity in the intervals preceding and following the 
stimulation showed that success rate was always higher than at baseline not only during the stimula-
tion, but also in the following hundreds of ms (Figure S4), highlighting the presence of a long-lasting 
effect of US on spiking activity. Spiking activity during stimulation steadily increased with stimulation 
intensity (R2=0.96, p<0.01) and a similar, although not significant, trend was observed for post-stimu-
lation activity (R2=0.59, p=0.09). 

 
Figure 35. US parameters and firing activity. a) Example of N cell intracellular membrane potential (green) during US (red 
diamond) or EL (grey triangle) stimulations. Red line indicates US trigger. Black line indicates EL stimulation trigger. The re-
sponse to EL stimuli is recorded to compare the spikes characteristics with the US induced and to verify cell health. A time 
interval of 20-30 s between consecutive stimulations allows the cell to recover. b) Zoom of the US trigger signal (red and the 
EL triggered signal (black); recorded membrane potential (green). c) Success rate as a function of the intensity, binned into 5 
groups. The considered spike detection time window for each stimulation lasted 400 ms from the stimulus onset (stimulus 
duration of 300 ms + 100 ms post stimulation). d) Distribution of latency as a function of DC of all US-triggered spikes. e) 
Distribution across neurons of intensity associated to the first response. Intensity ranges are defined as in Fig. 2f: very low ≤ 
0.5 mW/cm2 < low ≤ 2.5 mW/cm2 < medium ≤ 5 mW/cm2 < high ≤ 10 mW/cm2 <very high. 

Another important result came from the latency analysis, measured as the time delay from the tone 
burst onset to the AP peak. We found that the median of latency distributions increased with the DC 
(Figure 35d), and the most likely value was close to the duration of the tone burst in case of 5% and 
50% DC. This is coherent with the fact that the membrane potential grows monotonically during US 
stimulation, and consequently the highest probability of firing is at the end of the stimulation. Indeed, 
a shorter duty cycle was associated to a smaller fraction of responding neurons (Figure 35c) due to 
the smaller depolarization associated to the lesser cumulative effect. In other words, when we in-
creased the duty cycle we triggered a far larger number of cells, but all the cells that responded only 
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with the longer duty cycle will respond at the end of the duty cycle, hence shifting the latency distribu-
tion toward larger values. In case of 100% DC the latency was always shorter than stimulation dura-
tion, probably because a saturation effect was reached. These results again indicate that the effect of 
US accumulate over time. 

Interestingly, the latency distributions confirmed that a large fraction of spikes was fired after the end 
of tone bursts indicating that US can induce long lasting effects even tens of ms after its end. This 
highlights a key difference with EL-triggered spikes, whose peak occurred immediately after current 
onset as expected (Figure 35a, Figure S1a). 

We also computed the minimal intensity required to elicit spiking activity across all neurons. The re-
sulting distribution showed a maximal probability at moderately high intensities (Figure 35e). Several 
cells indeed exhibited sufferance in the range we labeled as ‘very high’. This suggests that for each 
cell there might be an intrinsic intensity dependent activation threshold and a higher intensity suffer-
ance threshold; however, there is large variability among tested cells. 

We wondered if mechanosensitivity was a sufficient condition to have US-triggered APs. We stimu-
lated then another kind of leech mechanoreceptor, the P cells (n=23, see Materials and Methods for 
details), which is physiologically sensitive to lighter stimuli than the N cells. We found that the mem-
brane potential response was linearly correlated with the intensity of the stimulus also for P cells, 
(R2=0.74, p=0.0007, Figure S5a), but such responses were much smaller than those elicited by the 
same intensities in N cells (paired t-test p=0.0001, Figure S5b). Due to this weak sensitivity of the 
membrane potential to US, the occurrence of action potentials was a very rare event (n=6 out of 222 
stimulations, Figure S5c). This shows that, notwithstanding the common function and the presence of 
mechanosensitive channels in both kind of cells, N cells displayed a significantly stronger sensitivity 
to US than P cells. 

 Comparison between US- and EL-induced APs 
We established that US is able to modulate membrane potential and trigger APs. To further charac-
terize the specific effect of US, we compared with the same set of stimulations used in the previous 
section the shape of the APs triggered by US (n=166 spikes) and EL (n=155 spikes) stimulations. As 
previously observed (Figure 34a-b), US produced long lasting effects on membrane voltage. We thus 
focused on fast transient characteristics, i.e. AP amplitude and duration, respectively defined as the 
voltage difference between AP peak and the subsequent minimum, and the duration of the decaying 
phase at half amplitude, referred as early re-polarization phase (Figure 36a). 
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Figure 36. AP features in US and EL stimulation. a) Shape of APs triggered by US (left 5 spikes) and EL (right 3 spikes) stim-
ulation extracted from the trace in Fig. 3a. Left US plot shows definitions of amplitude (from peak to subsequent minimum 
value) and duration of early repolarization (width at half amplitude of declining phase). b) Left: median, interquartile range and 
dispersion of first spikes triggered by US (orange), following spikes triggered by USs (brown), the union of the two sets (red), 
and spike triggered by EL stimulation (grey). Right: comparison between the probability distributions of the durations of the 
different sets of spikes. Subplot in the center indicates significant differences between distributions. c) Analysis of the distri-
butions of the amplitudes of the four spike categories defined in b). d) Analysis of the distributions of the amplitude/duration 
ratios of the four spike categories defined in b). 

The first APs triggered by US on each stimulus window (n=94/166 spikes) and the following were an-
alyzed separately to check for possible memory-effects of US; first-triggered APs do not always cor-
respond to first US stimulus (tone burst during stimulus nor first stimulus on recorded trace). The total 
dataset of US triggered APs showed significantly shorter duration (2.35±0.45 ms) compared to EL 
triggered APs (2.87±0.7 ms, KW test, p =6·10-6) (Figure 36b). We observed that duration of the early 
repolarization phase of following US triggered APs (2.17±0.4 ms) was shorter than that of first US trig-
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gered APs (2.39±0.5 ms, KW test, p=0.014). Considered separately, durations of both first and follow-
ing US triggered APs were significantly shorter than those of EL triggered APs, also with statistically 
significant differences (respectively p=0.01 and p=4·10-7 KW test). Significant differences were also 
observed when comparing AP amplitudes (Figure 36c). Overall the total dataset of US triggered APs 
(64±45 mV) showed a significantly smaller amplitude compared to those of EL triggered APs (79±15 
mV, p=1·10-4). The amplitude of the following US triggered APs (55±16 mV) was lower than that of first 
US triggered APs (70±47 mV), with a statistically significant difference (KW test p=0.01). Taken sepa-
rately, both first and following US triggered APs were significantly smaller than EL triggered APs, alt-
hough statistically significant difference was only found for the latter comparison (respectively p=0.14 
and p=4·10-7). Note that also these differences in AP shape could be associated to the ‘long lasting 
effect’ of US compared to the EL (see Conclusions). 

We further investigated spiking responses to US taking into account not only the dimensions, but also 
the shape of the APs, comparing the ratio between amplitude and duration of the AP, which is propor-
tional to the slope of the decay phase of the APs (Figure 36d). Interestingly, and coherently with the 
fact that both amplitude and duration were found to have higher values for EL triggered than US trig-
gered APs, we found that the ratio follows the same trend and belongs to the same distribution. We 
found no statistically significant difference between the ratios of EL triggered APs (27.4±12 mV/ms) 
and US triggered APs (25.6±11.5 mV/ms, KW test, p>0.5). Moreover, there was no difference between 
first (25.5±13 mV/ms, KW test, p>0.5), and following US-triggered spikes (25.7±9 mV/ms, KW test, 
p=0.26). 

5.4 Discussion 
Despite the increasing amount of research on the effects of US stimulation on the nervous system, 
the biophysical dynamics underlying the generation of AP following US stimulation is still unclear. Sev-
eral small animal models have been used to test US stimulation thanks to the possibility to perform 
experiments in a very controlled context. We selected the leech Hirudo Medicinalis for our studies as 
it is a consolidated neurophysiological model suitable for the analysis of such complex mechanisms. 
Moreover, the isolated leech ganglion preparation (Figure 33) was found to be suited for performing 
intracellular recording during US stimulation. 

We have shown that US has a direct depolarization effect and elicits spiking activity in leech N neu-
rons. Our work is the first study establishing useful guidelines for US stimulation of excitable cells, 
showing that the induced activity depends on the applied acoustic Ispta (Figure 34 and Figure 35). 

More in detail, it was demonstrated that the effects of US leading to increased membrane depolariza-
tion for higher pressure amplitude and increasing DC can be summarized by the Ispta (Figure 34f), and 
that this metrics linearly modulates sub-threshold depolarization (Figure 34g) and is proportional to 
spike probability (Figure 35c). Crucially, sonication produced long lasting effects on membrane voltage 
(Figure 34a-b), leading to increased spiking activity outlasting the stimulation (Figure S5, Figure 35d).  

These results also establish well-defined relationships between US driving parameters and ensuing 
spiking activity, which might be useful in the design of future experiments. In particular, while duty 
cycle duration and intensity can be independently modulated, all that matters seem to be their prod-
uct. This can have practical consequences, as choosing to achieve a given response by doubling the 
intensity (if a fast response is needed) or by doubling the stimulus duration (to avoid damages to the 
cell). 

Finally, US- and EL-triggered spiking activity were compared by considering fast transient character-
istics, i.e. the amplitude and early repolarization duration of the AP. Interestingly, we found that US-
induced APs differ from EL-induced ones both in amplitude and early repolarization duration, but not 
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in the ratio between these two quantities. The combination of these results suggests that the mech-
anism inducing spikes in the two cases may involve the same ion channels as the waveform shape is 
preserved. First US triggered APs amplitude is higher than the following ones, probably as a conse-
quence of the residual depolarization effect produced by the sonication. 

Several works suggest that US acts on voltage gated ion channels (Kubanek et al., 2016; Muratore et 
al., 2009, 2012; Tyler et al., 2008). However, the exact dynamics of this interaction is still unclear. 
Leech N neurons exhibit standard AP dynamics, with a Na+-driven depolarization phase followed by 
a slow K+-driven repolarization phase (Stewart et al., 1989). The fact that US-triggered APs show qual-
itatively similar waveforms to those of EL-triggered APs (Figure 35b) with quantitatively similar repolar-
ization rates (Figure 36d), likely indicates that upon sonication, both Na+ and K+ channels conserve 
standard kinetics. It is thus unlikely that US exerts an indistinct, long-lasting action on these ion chan-
nels, as that would rather drive membrane voltage towards a stable plateau potential. Hence, a distinct 
ion channel population likely mediates our observation of US-triggered sub-threshold depolarization 
(Figure 34). As this depolarization linearly depends on the stimulus intensity but not on its specific 
temporal pattern of application, we hypothesize that the affected channels exhibit a rather slow tem-
poral kinetics, such as that of mechanosensitive channels that are natively expressed in leech N cells. 
The hypothesis that US can regulate the activity of mechanosensitive ion channels was previously 
proposed (Kubanek et al., 2016). Moreover, the possible long-lasting effect of US on such channels 
could likely explain the observation of an accumulative depolarizing effect during second and third US 
stimuli, resulting in a lower amplitude of the APs. The fact that more than 50% of the recorded cells 
responded with spikes to US suggests a threshold mechanism associated to US stimulus intensity. 
These results are in accordance with in vitro studies (Muratore et al., 2009, 2012), which observed in 
different regions of rat hippocampal slice cultures that US induced intensity dependent responses, 
and hypothesized a threshold mechanism and a fatigue effect associated to US stimulus intensity. 
Moreover, the high variability of responses and success rates observed across recorded cells, simi-
larly as in previous studies (Kim et al., 2015; Lee et al., 2016a; Muratore et al., 2009, 2012), could be 
explained by different densities of mechanosensitive ion channels expressed in the same cell type. 
Possible future experiments addressing the identification of the channels affected by US could in-
clude patch clamp recordings, gene protein expression and channel silencing. 

More specifically, a possible explanation to the different sensitivity to US of P and N cells could lie on 
the recent finding of frequency specificity of the classes of mechanosensory neurons in the leech 
(Fischer et al., 2017). In this work the authors find that N cells are effectively low-pass filtering voltage 
oscillations while P cells act as high pass filters. Therefore, as US-induced membrane potential de-
flections have slow time scales even when the pulses are short lived (Figure 34a), the P cells are not 
sensitive to this stimulation. Moreover, the integration of the depolarizing effect of the US reported in 
the subthreshold responses of our paper is in line with a low-pass filter voltage membrane behavior. 
This finding shows that the temporal scale of the stimulation could also have a strong effect even 
when the cells show an excellent mechanosensitivity and opens the possibility to selectively modu-
late different mechanoreceptors according to their specific frequency sensitivity. 

The parameter set tested in the present work is limited to three DCs (5-50 and 100%) and four low 
pressure levels (8-12-16-20 kPa), in accordance with ranges considered safe for human US imaging 
(Lee et al., 2004). Stimulation center frequency has been set to 490 kHz in accordance with previous 
studies (King et al., 2013; Kubanek et al., 2016). Further studies are needed to observe the effect of 
different stimulation protocols. It is in fact likely that the inhibition and excitation effects could have 
different thresholds, as the stimulation could be more effective on different types of channels, or mem-
brane proteins, which coexist in the same cell.  
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We achieved so far only a neurophysiological characterization of the responses associated to US in a 
specific kind of cells, not only providing another proof that US neuronal activity modulation is possible, 
but also assessing some operational rules that might apply also to other neuronal populations. We 
are currently conducting studies on other animal preparations to assess the generality of our research 
and investigate more deeply ion channel dynamics upon US to further understand the working princi-
ple that stands behind US neuromodulation. 

This work lays the ground for future studies on ultrasonic stimulation and eventually their use in non-
invasive neuroengineering biomedical applications. 

5.5 Materials and methods 

 Animals and preparation 
Leeches (Hirudo medicinalis) were purchased from Ricarimpex (Eysines, France) and kept at 5°C in 
tap water dechlorinated by aeration for 24 h. They were dissected in chilled Ringer’s solution with the 
following composition (mM): 115.0 NaCl, 1.8 CaCl2, 4.0 KCl, 12.0 glucose, 10 Tris maleate, buffered to 
pH 7.4 with NaOH. A longitudinal incision was performed on the dorso-medial side of the animal to 
expose the chain of ganglia. Surrounding tissues, including the ventral main blood vessel, were care-
fully removed without touching the nervous tissues (Figure 33b). In parallel, a custom recipient was 
made by removing via laser cut the plastic bottom of a Petri dish and replacing it with a 25 µm thick 
US transparent polystyrene membrane (Goodfellow, Huntington, Cambridge, UK), subsequently 
coated with PDMS (ratio of monomer:curing agent = 5:1); the membrane was cut and removed from 
the bottom after PDMS polymerization. Finally, a ventral ganglion was extracted, fixed ventral side up 
on the custom recipient via metal pins located on the roots and connectives, and kept in fresh Ringer’s 
solution (Figure 33a-c).  

Previous attempts to measure membrane voltage with current clamp recordings evidenced the ability 
of US to elicit action potentials on CA1 pyramidal neurons (Tyler et al., 2008), and on Xenopus oocytes 
(Kubanek et al., 2016), but the cell seal during sonication was not stable. The authors postulated then 
that the resonance of the intracellular electrode was responsible for the ineffectiveness of the exper-
iments at low US frequency. Here we observed instead that electrode instability and subsequent cell 
leakage could also be caused by the induced relative movement of the cultured cells/oocytes (poor 
adhesion and fluctuation in the medium) with respect to the substrate and the glass capillaries, origi-
nating during US. To overcome this limitation, we applied several counter-measures detailed below. 
To further verify that cell seal was maintained during US sessions, EL stimuli were applied and cell 
health was monitored; we observed that the EL response in US-irresponsive cells was not affected by 
the US stimulus and was preserved after the whole protocol execution. To ensure stable cell seal, we 
secured the micromanipulator for electrophysiology recordings on a rigid support and decided to rec-
ord from the intact ganglion stretched and secured through metal pins on a thin PDMS substrate. In 
order to reduce substrate vibrations due to sonication, we increased the crosslinker concentration 
from 10:1 to 5:1, obtaining a good stability of the sample during the experimental sessions, as no vibra-
tion artifacts were observed on the recorded traces. 

 Intracellular recordings 
Nociceptive (N) cells in the isolated ganglion were impaled by a sharp glass capillary filled with 3 M 
potassium chloride, containing an Ag/AgCl electrode (input resistance ≈ 10 MΩ) to record intracellular 
potential and deliver electrical pulses (Figure 33a, inset). The ground connection was placed at the 
border of the Petri dish, immersed in the Ringer’s solution. Recorded signals were amplified with Ax-
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oclamp-2b amplifiers (Axon Instruments, Foster City, CA, USA), digitized, stored in a personal com-
puter and analyzed with the pCLAMP8 software (Axon Instruments, Foster City, CA, USA). Nociceptive 
(N) cells and pressure (P) cells of leech ganglion were identified in different sessions under optical 
microscope and impaled. A total of 47 N and 23 P cells were employed in this study. 

 Ultrasound and electrical stimulation 
US was applied on leech ganglion by using a 44 mm diameter PZT (Lead zirconate titanate) unfocused 
transducer (Precision Acoustics LTD, Dorchester, UK) immersed in a polymethyl methacrylate (PMMA) 
tank filled with degassed deionized water, atop of which the recipient containing the ganglion was 
placed. The transducer was driven by a waveform generator (Agilent 33220A Keysight Technologies, 
Santa Rosa, CA, USA) in series with a 50 dB gain radio frequency power amplifier (240L, Electronics 
& Innovation, Rochester, NY, USA). The US beam reached the ganglion (placed at a distance of 165 
mm from the surface of the transducer) from the dorsal side. Note that the whole ganglion was within 
the ultrasound field. Sinusoidal tone bursts at 490 kHz, with pressure amplitude from 8 to 20 kPa were 
delivered at a pulse repetition frequency (PRF=1/PRP) of 10 Hz, for a total stimulus duration of 300 ms. 
The duty cycle (DC) was fixed at 5%, 50%, 100% (Figure 33e), therefore the spatial-peak temporal-
average intensity (Ispta) varied from 0.2 to 27 mW/cm2 (Figure 34f). According to our estimates the dis-
placement of the whole ganglion due to ultrasound waves should be at most 6 µm (Obrienjr, 2007) . 

Each recording session consisted at least of three identical US windows of 300 ms, and electric 
pulses were used to generate a single spike in N cells prior and after each US. The US protocol was 
interrupted if no response to electrical stimuli was observed. The considered spike detection time 
window for each stimulation lasted 400 ms from the stimulus onset (stimulus duration of 300 ms + 
100 ms post stimulation). Electrical stimuli were manually provided with a variable duration (ranging 
from 0.25 to 1 s) and amplitude (current ranging from 1 to 5 nA). 

 Ultrasound calibration 
The US transducer was characterized in free field conditions both in terms of US pressure field map-
ping and intensity vs. driven voltage calibration. 

The acoustic field was mapped by measuring the generated pressure with a 2 mm PVDF needle hy-
drophone (Precision Acoustics, Dorchester, Dorset, UK) at different locations, using a three-axis step-
by-step motorized positioning frame (XYZ BiSlide, Velmex, Bloomfield, NY, USA). A dedicated Lab-
VIEW program (National Instruments, Austin, TX, USA) allowed synchronization between the wave 
generator, motors and signal acquisition from an oscilloscope (7034 B, InfiniiVision, Agilent Technol-
ogies). 

Additionally, the root mean square pressure (Prms) and the spatial peak pulse average intensity (Isppa = 
Prms2/(𝜌𝜌𝜌𝜌)) were evaluated at the experimental distance of 165 mm at different driving voltages, where 
𝜌𝜌 and c are approximated to the density and speed of sound of water, respectively. The driven voltage 
was measured at the output of the power amplifier. Spatial peak temporal average Intensity (Ispta) was 
easily derived by multiplying the Isppa and the duty cycle (DC) used in the stimulation protocol. 

Finally, in order to consider possible acoustic reflection and attenuation phenomena due to the exper-
iment setup configuration, additional intensity measurements were performed by positioning the hy-
drophone tip inside the custom recipient used during experiments. Free field and the experimental 
setup measurements are reported in Figure S2; transducer characterization results are reported in 
Figure S3. 
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 Data analysis and statistics 
The recorded traces were analyzed with MATLAB R2017b (MathWorks, Inc., Natick, MA, USA). No 
band-pass filtering was applied to the measured intracellular potential to keep the original waveform 
for each cell; the considered signal window was de-trended (1st order polynomial function) before the 
peak analysis. Amplitude and early repolarization duration of the spikes were measured: the amplitude 
is defined as the difference between the peak voltage value and the subsequent minimum; the early 
repolarization duration is measured at half prominence in the drop phase of the spike, to avoid the 
possible artifact on membrane potential due to the stimulation start, which is particularly effective on 
low amplitude spikes. The threshold for spikes detection was set to 15 mV above baseline; subthresh-
old spikes were also analyzed. 

Statistical significance in spike characteristics differences between US and electrically triggered 
spikes and subthreshold spike analysis (membrane voltage variation between the three stimulation 
bursts and the difference for each input pressure among duty cycles) was evaluated using the Kruskal-
Wallis one-way ANOVA test. A p-value of 0.05 indicated a significant difference in the analyzed distri-
butions; datasets were plotted with the violin plot method (Hintze and Nelson, 1998), which allows for 
the visualization of the full distribution of the dataset. Response latency, defined as the time difference 
between the US stimulus start and the subsequent spike peak event, was also analyzed. 

5.6 Perspective: confrontation of model predictions to experimental 
data 

The content of this chapter is adapted from a published study by Dedola et al. (Dedola et al., 2020) 
that aimed at providing a general characterization of LIFUS neuromodulatory effects at the cellular 
scale, without focusing on a particular mechanistic hypothesis.  

Here, I provide a more detailed interpretation of the presented results in the context of the model 
developments and validation pursued in this thesis. 

 Limitations of the experimental approach for model validation  
Despite revealing interesting features of LIFUS-evoked depolarization and action potential dynamics, 
the acquired empirical data did not allow to confirm (or infirm) the relevance of intramembrane cavita-
tion as an ultrasound neuromodulation mechanism. This is due to four main experimental constraints: 

• First, the use of intracellular electrodes directly impaling the neuronal membrane is prone to 
yield recording instabilities, as reported by other groups (Collins and Mesce, 2020; Tyler et al., 
2008). In fact, by disturbing mechanically the targeted tissue, LIFUS can cause the recording 
electrode to resonate, resulting in a loosening of the electrode seal, or even a loss of contact 
with the recorded neuron. This instability has significantly constrained or parametric explora-
tion of pressure amplitudes: first action potentials were observed around 10 kPa, and the re-
cording viability dropped drastically for pressures above 30 kPa. Given the substantial influ-
ence of pressure amplitude on neuronal responses predicted by the NICE and SONIC models, 
the impossibility to reliably assess the influence of that parameter is an important limitation. 

• Second, the presence of an air-water interface located just after the biological sample along 
the acoustic propagation path (Figure 33a) is prone to yield significant reflection patterns to-
wards the recording targets, and therefore implies a lack of control of the stimulus delivery. 
This also hinders a potential comparison with modeling predictions. 
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• Third, the inter-stimulus interval between electrical and ultrasonic stimuli did not allow for a 
robust membrane stabilization between all recordings (see for instance Figure 35a at time 
55s). As a result, confounding factors may well exist that influenced our excitability and action 
potential dynamics analyses. 

• Fourth, we performed these investigations in mature sensory neurons, which is highly relevant 
from a translation stand-point, but also implies the presence of a multiplicity of membrane 
elements (including ion channel populations) of which we cannot determine the level of func-
tional expression. As a result, it is very difficult to attribute LIFUS excitability to a particular ele-
ment.  

• Fifth, the absence of comprehensive biophysical characterization of the targeted ganglionic 
neurons (noxious and pressure cells) in the literature prevents the adaptation of the SONIC 
model to formulate tailored predictions for these particular cells. Hence, we cannot perform 
quantitative comparisons between model predictions and experimental data.  

 Qualitative comparison: similarities and differences between modeling predic-
tions and empirical data 

Nevertheless, several qualitative features of recorded neuronal responses agree with the general 
trends predicted by the NICE and SONIC models: 

• First, the gradual accumulation of membrane depolarization during sub-threshold stimulation 
suggests that neural responses originate from the progressive integration of a depolarizing 
“force” over time, rather than a stochastic “all-or-nothing” response. This observation corre-
lates with the NICE prediction that the net charge imbalance over an acoustic cycle (resulting 
from asymmetric membrane deflections) progressively raises the charge density upon soni-
cation. 

• Second, the persistence of depolarizing effects after the stimulus offset is reminiscent of the 
action of T-type Calcium channels present in low-threshold spiking cortical neurons. In fact, 
the NICE model predicts that those channels offer an additional source of charge build-up 
during US-OFF periods. 

• Third, the distinct (i.e. statistically different) shapes of spikes elicited inside electrical and ultra-
sonic stimulation windows suggest that those two modalities engage the action potential ma-
chinery in different manners. More specifically, while standard electrical pulses raise the mem-
brane potential to activate ion channels, ultrasonic stimulation may offer a more intricate per-
turbation that effectively modulates the ion channels gating kinetics, and thereby changes the 
resulting spike shapes. This observation is in line with the predictions of the SONIC model in 
cortical neurons (see sections 3.4.1 and 3.5.1.1).  

Conversely, some experimental observations depart significantly from the predictions of the NICE and 
SONIC models: 

• First and foremost, we did not observe a sharp membrane hyperpolarization upon sonication 
onsets, which is a universal feature predicted by the NICE model. The absence of recorded 
hyperpolarization could be explained by the inability of the electrode to detect high-frequency 
voltage variations, although a low-pass filtered hyperpolarization would still be expected. It 
could also be explained by a sparse distribution of sonophores across the membrane yielding 
a strongly dampened capacitance modulation, but here again, a spatially-averaged hyperpo-
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larization should be observable. Another potential explanation could be that we recorded ac-
tion potentials away from the site of their elicitation, in an acoustically unperturbed location. 
However, that possibility is also unlikely, as our calibration data predicts that the acoustic focus 
should encompass the entire ganglion (Figure S3).  

• Second, the variability in neuronal responses across repeated sonication trials within a given 
cell tends to indicate a stochastic behavior, which departs from the deterministic nature of the 
NICE and SONIC models. Notably, the inclusion of alternative gating schemes in these mod-
els, accounting for the intrinsic stochasticity of ion channels, could provide a more reliable in-
sight regarding the robustness of neuronal responses in the context of intramembrane cavi-
tation (Fox, 1997; Orio and Soudry, 2012). 

 Implications  
Although these empirical findings obtained in an invertebrate model provide valuable insights of LIFUS 
neuromodulatory effects at the cellular level, they did not allow for a direct comparison with modeling 
predictions. These limitations emphasize the need to design a more tailored experimental validation 
approach. 

At the same time, the sharp disparities observed between empirical data and modeling predictions 
highlight the fact that the NICE model, despite its enticing predictive power for large-scale neuromod-
ulatory effects, cannot explain some of the main features observed at the cellular level. In fact, some 
of our experimental findings seem to point more towards a mechanosensitivity mechanism of LIFUS 
neuromodulation, which converges with an extensive collection of empirical evidence (see Chapter 1). 
However, this mechanistic hypothesis, like several others, is still not captured phenomenologically by 
equivalent biophysical models. Moving forward, the development of such quantitative formalisms to 
describe these alternative mechanisms will be of crucial importance, in order to provide a more com-
plete picture of LIFUS neuromodulatory effects across neural targets, acoustic environments and son-
ication parameters. 
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 Discussion  
In this thesis, I aimed at developing a computational framework to investigate the effects of 

low-intensity ultrasound stimulation (LIFUS) in neuronal structures, focusing on intramembrane cavi-
tation as a mechanistic hypothesis. Building upon the existing NICE model, I developed a multi-layer 
computational framework enabling the formulation of refined, interpretable and scalable modeling 
predictions. Using this framework, I investigated the neuromodulatory effects of LIFUS in morpholog-
ically realistic peripheral neural structures. Finally, I confronted modeling predictions to experimental 
data, and discussed the potential implications for the model validity. In what follows, I will discuss 
these main achievements, inserting them in a broader context and suggesting potential directions for 
future research. 

6.1 Summary and discussion 

 Motivations for the initial choice of biophysical mechanism 
Among several proposed mechanisms for LIFUS evoked neural responses, I focused on the in-
tramembrane cavitation hypothesis and the associated NICE model. Despite a lack of direct empirical 
observations of the underlying mechanistic hypothesis, and the recent emergence of strong evidence 
for other mechanisms (Kubanek et al., 2016; Menz et al., 2019; Yoo et al., 2020), this model provides a 
unique theoretical framework with the highest level of predictive power about large-scale LIFUS neu-
romodulatory effects observed up to this day (Plaksin et al., 2016). Moreover, the NICE model consti-
tutes the first notable computational effort at modeling LIFUS-neuron interactions in a quantitative, 
deterministic manner, and as such, it represents a valuable starting point to more elaborated model-
ing endeavors. 

 Methodological achievement 1: substantial improvements of intramembrane 
cavitation models 

The NICE model laid out a valuable theoretical groundwork for computational studies on LIFUS-neuron 
interactions. Yet, several drawbacks hindered its usability for clinically relevant predictions. First, the 
computational complexity of the NICE model makes extensive explorations of LIFUS parameter 
spaces a very tedious process. Second, while offering a highly detailed temporal dynamics of neuronal 
response profiles, it does not provide the necessary abstraction level to interpret how LIFUS modu-
lates those responses. Chapter 3 describes how we addressed those limitations by implementing the 
SONIC model. Using a temporal multiscaling approach, we decoupled numerically the two constitu-
tive scales of the NICE model, which resulted in an effective electrical system providing substantial 
computational gains while guaranteeing numerical accuracy. This enhanced algorithmic efficacy al-
lowed us to carry out extensive, systematic explorations of the LIFUS parameter space with a dense 
granularity. We could for instance generate cell-type-specific behavior maps for various combinations 
of stimulation parameters, but also investigate the impact of sonophore dimensions on excitation 
thresholds. Moreover, the SONIC model depicts neuronal responses in terms of an effective mem-
brane dynamics that can be directly reconciled with classical electrophysiology, thereby enhancing 
its interpretability. For instance, we could describe how different spiking behaviors can be achieved in 
cortical neurons by varying LIFUS parameters, and explain how LIFUS modulation of the effective elec-
trical system could affect the resulting spike amplitude and firing rate of neuronal responses. Finally, 
the reduced computational cost and separation of scales introduced in the SONIC model facilitate its 
spatial expansion, which we exemplified by introducing the first two-compartment model of intramem-
brane cavitation, in order to study the impact of partial sonophore coverage on neuronal excitability. 
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These results constitute a step forward regarding the usability, efficacy and interpretability of biophys-
ical models of LIFUS-neuron interaction.  

 Methodological achievement 2: expansion of model predictions to the morpho-
logical scale 

The findings presented in Chapter 3 were, for the most part, limited to the behavior of a single mem-
brane segment lacking spatial extent, thereby providing an incomplete picture of LIFUS-neuron inter-
actions and limiting the accuracy of model predictions. Indeed, typical LIFUS devices typically induce 
non-uniform pressure fields, the spatial features of which could play a central role in shaping neural 
excitation, as observed with electrical stimulation (McNeal, 1976; Rattay, 1986). Therefore, I devised a 
strategy to incorporate the effective SONIC paradigm into multi-compartmental neuron models, and 
implemented it as a NEURON-based computational framework, termed morphoSONIC (Chapter 4). 
The choice of NEURON as a development environment was motivated by the popularity of this simu-
lation platform amongst neuroscientists, but also because NEURON features optimized numerical 
pipelines (in particular, implicit schemes and variable time steps) to handle the stable integration of 
complex multi-compartmental models formulated as matrix-based differential systems. The latter 
point is of particular importance in the context of the NICE model, which has proved particularly difficult 
to expand in the absence of optimized partial differential solvers. Unfortunately, neither charge casting 
nor time-varying capacitance – two core features of the SONIC paradigm – are natively supported in 
NEURON. Therefore, I derived a hybrid (charge and voltage casted) variant of the cable equation that 
is numerically reconcilable with both the NICE and SONIC paradigms and implemented it as an inde-
pendent module that can be seamlessly integrated within NEURON. This approach provides a general 
solution to model circuit systems with time-varying capacitance, which is applicable to a wide variety 
of neuron models, within a reference simulation environment. As such, it also benefits from the wide 
collection of biophysical models made available by the NEURON community (McDougal et al., 2017), 
all of which can now be adapted to study LIFUS neuromodulatory effects with minimal effort. Finally, 
following up on a recent study pointing out limitations of the SONIC paradigm in the presence of tight 
axial coupling conditions (Tarnaud et al., 2020), I have established the general conditions of its ap-
plicability in multi-compartmental models. In particular, I have demonstrated that the SONIC paradigm 
can be accurately applied in single-cable axon models. Notably, the generalizability of the multi-com-
partmental modeling approach that I have devised means that it could also be used with more com-
plex representations of the SONIC effective membrane dynamics, as proposed in (Tarnaud et al., 
2020), in order to guarantee numerical accuracy across a wider range of axial coupling conditions. 

 Application: new predictions of LIFUS neuromodulatory effects on peripheral 
nerve fibers 

As a first demonstrative application, I have exploited the morphoSONIC framework to investigate the 
ultrasound neuromodulation of peripheral nerve fibers with spatially-varying pressure fields (Chapter 
4). This study highlighted three main results. First, single LIFUS pulses are capable of inducing de 
novo action potentials in both myelinated and unmyelinated peripheral axons. Second, LIFUS fiber 
recruitment is driven by a stimulus-evoked drop in effective membrane capacitance at the acoustic 
focus, which triggers passive depolarizing currents that raise charge density towards the spiking 
threshold. Third, myelinated and unmyelinated fibers exhibit distinct sensitivities to temporal features 
of LIFUS stimuli, which allows to selectively recruit either fiber population, a feature that has not yet 
been achieved by any other stimulation technique. These predictions of fiber-specific excitability offer 
a certain degree of qualitative agreement with recent empirical observations on both fiber types 
(Downs et al., 2018; Wright et al., 2017), and constitute an exciting prospect for the use of LIFUS as a 
selective peripheral neuromodulation technology.  
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 Addressing the challenges identified in Chapter 1  
The above results resolve the large majority of the challenges (bullet lists) identified in the introduction 
of this thesis, particularly section 1.3.4.3 regarding the modeling of intramembrane cavitation as a can-
didate mechanism for LIFUS neuromodulation, and in section 1.4 concerning issues affecting the mat-
uration and adoption of this technology.  

Pursuing the specific objectives defined in section 1.5 has resulted in two main methodological 
achievements that provide an answer to the central question raised in section 1.4 (“how can we effi-
ciently model ultrasound neuromodulation across all relevant scales?”). More specifically, we can now 
answer some essential questions raised in section 1.4, within the context of a particular mechanistic 
hypothesis: 

• Given the multiplicity of potential responsive elements in the cellular membrane and their het-
erogeneous expression across cell types, what sort of cell type specificity can be expected in 
LIFUS-evoked responses, and how does that specificity affect functional and behavioral out-
comes? 

Can these specificities be exploited to induce new forms of neuromodulation? 

LIFUS evoked neuronal responses do show a high level of cell-type-specificity both in central 
and peripheral neural circuits. In the latter case, this specificity can be leveraged to engage a 
particular neural pathway selectively (e.g. unmyelinated C-fibers for sensory encoding) 

• Within the cell itself, how does the morphological structure affect the location of excitation, the 
potential integration of the initiated response along a dendritic tree, and its propagation along 
axonal projections? 

LIFUS-triggered excitation seems to be primarily a local phenomenon mediated by the acous-
tic perturbation of the cellular membrane, and occurs in morphological segments that contain 
both active voltage-gated ion channels and enough spared membrane to allow for sonophore 
cavitation. 

6.2 Perspectives 
The presented achievements have addressed the main issues raised in the beginning of this thesis. 
On that basis, we can now envision several perspectives, detailed below.  

 Experimental validation and model refinement 
The value of a modeling framework is strongly dependent on the validity of its inherent assumptions. 
In that sense, the NICE, SONIC and morphoSONIC ensemble of models would greatly benefit from 
the experimental validation of the intramembrane cavitation hypothesis. Notably, a recent in vitro study 
employing high-speed imaging and genetically encoded voltage indicators (GEVIs) reported that the 
mechanical deformations and large scale hyperpolarization of the membrane upon sonication onset 
predicted by the NICE model could not be observed experimentally (Yoo et al., 2020). However, both 
methods would arguably fail to detect those mechano-electrical variations if they are sparsely distrib-
uted across the neuronal membrane, as would be the case with a low sonophore density. Furthermore, 
we suggested in Chapter 3 that the intracellular electrical coupling between a sonophore and the sur-
rounding membrane could induce significant depolarizing forces, allowing an isolated sonophore to 
entrain a larger membrane patch towards the spiking threshold. Hence, I argue that those empirical 
observations do not completely rule out intramembrane cavitation as a possible neuromodulation 
mechanism, and suggest here two approaches for a more unequivocal assessment. 
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Looking closely at the internal dynamics of the NICE model, it appears that leakage channels are the 
fundamental membrane element that allow neurons to translate the capacitance-mediated hyperpo-
larization into a depolarizing transmembrane ionic current, in order to bring the membrane charge 
density (and the transmembrane voltage) toward the spiking threshold. This pivotal role stems from 
the fact that those leakage channels are constitutively open and can thus conduct across the entire 
voltage physiological range, while most voltage-gated ion channels are closed in highly hyperpolar-
ized conditions (Plaksin et al., 2014). Therefore, I argue that the validity of the intramembrane cavitation 
hypothesis could be tested in vitro by selectively knocking out leakage channels (through pharmaco-
logical or genetic agents) and comparing LIFUS-evoked neural responses to a native condition. Ideally, 
such an experiment could be performed on a variety of primary cultured neurons, using previously 
calibrated all optical voltage-sensitive readouts (e.g. GEVIs) allowing robust recordings, and in an 
acoustically transparent medium allowing for a controlled stimulus delivery and mimicking in vivo con-
ditions. Complementarily, a “bottom-up” approach could be devised that involves the genetic expres-
sion of leakage channels in non-excitable cells (e.g. HEK293T cells, Xenopus oocytes), in order to 
quantify precisely the impact of these channels on the time course of the transmembrane voltage 
upon sonication. Moreover, exploiting the quasi-linear voltage dependency of leakage channels, one 
could easily infer on their functional expression and derive associated parameters such as reversal 
potential and passive conductance using current clamp techniques. This would allow to construct 
cell-specific versions of the SONIC model, whose predictions could be tested against experimental 
readouts of LIFUS-evoked responses. 

Furthermore, the morphological expansion of intramembrane cavitation models has enabled the gen-
eration of new model predictions at a larger scale, which could be used to design an indirect experi-
mental validation of the mechanism. In particular, our predictions of fiber-specific neural excitability in 
peripheral structures are easily verifiable using appropriate nerve preparations and recording tech-
niques. In fact, we are planning to use a micro-fabricated “nerve-on-a-chip” platform to record LIFUS-
evoked responses from explanted heterogeneous nerve bundles (Gribi et al., 2018), and to assess the 
differential recruitment of distinct fiber populations by discriminating between their conduction veloc-
ities. 

 Framework application to other neural targets 
With SONIC and morphoSONIC, I have presented here two methodological developments that offer 
an effective way to model one of the mechanistic hypotheses of LIFUS-neuron interaction. So far, this 
framework has only been applied to peripheral nerve fibers, because of their relatively limited morpho-
logical complexity, but also because they constitute prized neuromodulation targets. However, this 
framework could also be applied to study the effects of ultrasonic waves on other neural targets, par-
ticularly in the brain where the correlation between NICE model predictions and empirical data is ex-
tensive, and in the spinal cord that remains a largely unexplored LIFUS neuromodulation target. In the 
former case, it would for instance be highly interesting to investigate which morphological regions of 
a cortical neuron are most sensitive to LIFUS stimuli and trigger a first response, and how the stimulus 
can potentially perturb the propagation of an elicited action potential towards other brain areas.  

 Towards multi-scale modeling 
So far, most modeling efforts have focused on investigating LIFUS-neuron interactions in simplified 
cellular representations, i.e. without morphological considerations. While it allows to predict general 
trends of elicited effects, this approach fails at providing a full picture of neural responses. By enabling 
the modeling of a candidate mechanism within morphologically realistic structures with a three-di-
mensional representation, the morphoSONIC framework addresses that limitation. But also, it enables 
the realistic modeling of larger-scale neuronal ensembles (along with their synaptic connections) that 
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portray functionally relevant circuits beyond the individual neuron (e.g. nerve bundles, brain and spinal 
networks). Such modeling efforts would provide an answer to the remaining central question raised at 
the beginning of this thesis (“In the case of highly connected neural circuits of the brain and spinal cord, 
how does the stimulation of a given area affect other, functionally and anatomically connected areas? 
How do these network effects scale over time?”). They would also allow to predict high level LIFUS 
neuromodulatory effects that are closer to experimental readouts (e.g. compound action potentials, 
local field potentials, large scale electrical dipoles, fMRI and electro-encephalographic patterns). 

 Towards hybrid, multi-physics modeling 
At the beginning of this thesis, I highlighted the importance of numerical acoustics physics solvers in 
predicting where, when, and in which quantity the acoustic stimulus is delivered. The modeling devel-
opments presented in this thesis constitute an optimal complement to these tools, in that their cou-
pling will allow to predict the entire phenomenological chain of events following the application of a 
given LIFUS stimulus, from the initial acoustic propagation to the large scale functional and / or be-
havioral outcome, and its eventual experimental readout. As they allow to safely and efficiently explore 
stimulation parameter spaces, such multi-physics platforms will be instrumental to guide the devel-
opment of target-specific sonication devices and application-specific LIFUS protocols, in order to ob-
tain refined neuromodulatory effects. In doing so, they will support the translation of LIFUS into the 
clinical setting. 

 Therapeutic perspectives 
Ultrasound constitutes an optimal energy modality to permeate, perturb, and “communicate” with bi-
ological tissue. These enticing physical properties, along with the recently accumulated evidence of 
ultrasound neuromodulatory effects, emphasize the immense potential of LIFUS as a neuromodula-
tion technology that could be applied in a variety of settings. First and foremost, as a noninvasive brain 
stimulation technique, where the focusing depth and spatial resolution of LIFUS should allow to probe 
arbitrary neural circuits to understand their function, but also to treat neurological disorders in both 
superficial and deep brain regions. In the peripheral nervous system, LIFUS could enable different 
types of functional selectivity than those enabled by conventional techniques (as highlighted in this 
work), thereby opening new opportunities for enriched sensory encoding and more effective periph-
eral neuroprostheses. Looking forward, LIFUS could also be adapted to target pathways of the auto-
nomic nervous system with minimal invasiveness, and therefore offer a valuable neuromodulation 
technique for various applications in bioelectronic medicine.  
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Supplementary material for Chapter 5 
Supplementary materials display five figures. Figure S1 (related to Figure 34) concerns the estimation 
of observation time and membrane potential baseline variations for EL stimulation. Figure S2 and Fig-
ure S3 (related to Figure 33) concern US calibration setup and results. Figure S4 (related to Figure 35c) 
focuses on the analysis of US-APs success ate as a function of acoustic intensity and stimulus onset 
and offset. Figure S5 (related to Figure 34 and Figure 35) concerns the comparison between P and N 
cells in response to ultrasonic stimulation. 

 
Figure S1 (related to Figure 34). Estimation of observation time and membrane potential baseline variations. a) Analysis of 
the EL stimulations to estimate the probability of spike detection after the end of the stimulus; only few cells showed spikes 
during the considered post stimulation time interval (100 ms). The dotted line corresponds to the end of EL trigger. Time 
measured from 100 ms after trigger end to preceding spike peak. b) Baseline variation on EL stimulation, defined as differ-
ence between membrane potential post and pre-current onset. A time window of 100 ms is considered for post and pre-
stimulation baseline analysis. Membrane voltage after EL stimulation is lower on the considered observation window. 
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Figure S2 (related to Figure 33). US calibration setup. a) left: calibration into the experimental setup; right: free field calibration 
setup. b) Scheme of the calibration measurement system. c) Detailed block representation of US/acquisition setup. 
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Figure S3 (related to Figure 33). US calibration results. a) 2D spatial mapping of normalized peak-to-peak pressure produced 
by the transducer in free field. Transducer focus is at 140 mm. Asterisk indicates the distance between the transducer and 
target employed during experiments, i.e. 165 mm. b) On left, hydrophone root-mean-square pressure (Prms) signal vs driving 
voltage; low pressure calibration of the transducer shows that pressure is linear with the input voltage. The signal measured 
in the experimental setup is attenuated with respect to the free field condition. On right, calculation of spatial-peak pulse-
average intensity, Isppa; free field (blue), experimental setup (red). The measure has been conducted at 165 mm from trans-
ducer surface. c) Example of time variation of the pressure signal in free-field (blue) and experimental setup (red). It can be 
observed that the second is attenuated and a post stimulus onset effect is introduced by the experimental setup. 
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Figure S4 (related to Figure 35c). Action potential success rate as a function of acoustic intensity (binned into 5 groups) and 
of US stimulus onset and offset. Blue: AP success rate during US stimulus (i.e., during a time window of 300ms following US 
stimulus onset). Red: AP success rate during a window of length equal to the stimulus duration (i.e., 300 ms) but preceding 
the stimulus onset. Yellow: AP success rate during a window of length equal to the stimulus duration (i.e., 300 ms) but fol-
lowing the stimulus offset.  
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Figure S5 (related to Figure 34 and Figure 35). Comparison between responses to US of P and N mechanoreceptors. a) Left: 
Same as Figure 2e for P cells stimulation. Empty square indicates that no cell responded to that particular parameters com-
bination. Right: Figure 2e rescaled for clearer comparison. b) Comparison of average membrane potential deflection for P 
and N cells across stimulation intensities. c) Same as Figure 3c, displaying spike responses from P and N cells. 
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