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TUTORIAL SCHEDULE

Before the virtual coffee break

Part 1) Introduction andmotivation
▶ MMC Applications
▶ MMC operating principles
▶ Modeling and control

Part 2) MMC energy control
▶ Role of circulating currents
▶ Branch energy control methods
▶ Performance benchmark

After the virtual coffee break

Part 3) MMC power extension
▶ MMC scalability
▶ Branch paralleling
▶ Energy control

Part 4) MMC research platform
▶ MMC system level design
▶ MMC Sub-module development
▶ MMC RT-HIL development
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INTRODUCTION
Non technical one...
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PEL RESEARCH FOCUS

MVDC Technologies and Systems
▶ System Stability
▶ Protection Coordination
▶ Power Electronic Converters
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MMCAPPLICATIONS
Examples of applications where MMC is already commercialized
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TREND TOWARDS HIGHLYMODULAR CONVERTER TOPOLOGIES

HVDC

▶ Decoupled semiconductor switching
frequency from converter apparent
switching frequency

▶ Improved harmonic performance⇒
less / no filters

▶ Series-connection of semiconductors
still possible

▶ Fault blocking capability depending on
cell type

Solid State Transformers (SSTs)
▶ Power density increase w/ conversion & isolation at higher frequency
▶ Grid applications / traction transformer w/ different optimization objectives
▶ MFT design / isolation are the bottlenecks
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▶ Siemens & Benshaw: MMC drive
▶ Low dv/dt ⇒motor friendly
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⇒ Modularity provides obvious benefits in high power applications!
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MMC FOR HVDC

▲ MMC in HVDC (two substations at different locations)

▶ Modular design using basic sub-module
▶ Voltage scalability to very high voltage levels
▶ Low filtering needs on AC side
▶ Redundancy is easily implemented
▶ Half-bridge sub-modules are sufficient

▲ SIEMENS MMC-based HVDC PLUS

▲ ABB MMC-based HVDC LIGHT
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MMC FOR FACTS

▲ MMC as STATCOM (Delta configuration is shown)

▶ Transformerless solution
▶ Double star MMC solution is also possible
▶ Modular
▶ Easy voltage scalability (no need for tranasformer)
▶ Redundancy is easily implemented
▶ Full-bridge sub-modules

▲ ABB IGBT-based MMC STATCOM

▲ HYOSUNG (left) and LS (right) IGBT-based MMC STATCOMs
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MMC FOR RAIL INTERTIES

▲ MMC as SFC for Rail Interties (transformer not shown)

▶ 15kV, 16.7Hz or 25kV, 50Hz rail networks
▶ With or without transformer
▶ Fixed frequencies on both side
▶ Matrix alike principles of operation
▶ High efficiency
▶ Full-bridge sub-modules

▲ SIEMENS IGBT-based MMC for railway interties (SITRAS PLUS)

▲ ABB IGCT-based MMC for railway interties [1]
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MMC FOR VARIABLE SPEED DRIVES

▲ Direct MMC for VSDs (e.g. hydro applications)

▶ Indirect-MMC: DC-fed MMC inverter (HB SM)
▶ Direct-MMC: AC-AC Matrix-alike converter (FB SM)
▶ Low-frequency operation was troublesome
▶ Power density is an issue
▶ Hydro applications based on DMMC

▲ SIEMENS MMC VSD GH150

▲ ABB IGCT-based MMC for hydropower applications (one branch only) [2]
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MODULARMULTILEVEL
CONVERTER

Modeling and basic operating principles...
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MODULARMULTILEVEL CONVERTER

▲ Modular Multilevel Converter

▶ Stacking of SMs⇒ reaching high voltage easily
▶ Semiconductor devices of lower voltage rating
▶ High-quality waveforms
▶ Low or almost none filtering requirements
▶ Redundancy and effortless scalability

Control 
Board

Pow
er 

Boar
d

▲ SM developed in PEL

▲ MMC cabinet (hosting±10kV, 0.5MW converter operating with 96 SMs)
PCIM Asia 2020 November 16-18, 2020 Power Electronics Laboratory | 11 of 25



MODULARMULTILEVEL CONVERTER

▲ Modular Multilevel Converter

▶ Stacking of SMs⇒ reaching high voltage easily
▶ Semiconductor devices of lower voltage rating
▶ High-quality waveforms
▶ Low or almost none filtering requirements
▶ Redundancy and effortless scalability

⇒ Benefits at the expense of a high number of switching devices
and complex control structure

Control 
Board

Pow
er 

Boar
d

▲ SM developed in PEL

▲ MMC cabinet (hosting±10kV, 0.5MW converter operating with 96 SMs)
PCIM Asia 2020 November 16-18, 2020 Power Electronics Laboratory | 11 of 25



BASIC SM STRUCTURES

▲ HB SM

S1 S2 VSM

1 0 VC

0 1 0
0 0 [1+ sgn(ibr)]VC/2

1 1 forbidden

0

0.5

1

▲ FB SM

S1 S2 S3 S4 VSM

0 0 0 0 sgn(ibr)VC

1 0 0 1 VC

0 1 1 0 −VC

1 0 1 0 0
0 1 0 1 0

1 1 0 0
forbidden0 0 1 1

1 1 1 1

-1

0

1
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MMCBRANCHMODELING

▲ MMC branch voltage example

▲ Inserted HB SM (nSM = 1) ▲ Bypassed HB SM (nSM = 0)

SM terminal voltages can be summed, leading to

vSM,i = nSM vC,i

Á N∑
i=1

Assuming that vC,i = vbrΣ/N yields

vbr =
N∑

i=1

nSM
vbrΣ

N
=

∑N
i=1 nSM

N︸ ︷︷ ︸
insertion index

m(t)

vbrΣ

Summing the equations set for every individual SM capacitor results in

CSM
dvC,i

dt
= nSM ibr

Á N∑
i=1

CSM

N︸︷︷︸
CbrΣ

dvbrΣ

dt
=

∑N
i=1 nSM

N︸ ︷︷ ︸
m(t)

ibr

V

▲ Averaged model of an MMC branch
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DERIVATION OF EQUIVALENT CIRCUITS

V

V

loo
p 1

.

loo
p 2

.

▲ The MMC leg sufficient for basic modeling

Two KVLs can be formed, yielding

KVL1 :
Vin

2
= vp + Lbr

dip
dt
+ Rbr ip + kLbr

din
dt
+ vA

KVL2 :
Vin

2
= vn + Lbr

din
dt
+ Rbr in + kLbr

dip
dt
− vA

KVL1 −KVL2 :

(1− k)
Lbr

2
d
dt

�
ip − in

�
︸ ︷︷ ︸

io

+
Rbr

2
(ip − in) =

vn − vp

2︸ ︷︷ ︸
vs

−vA

▲ AC equivalent circuit of the observed leg (left); Model of an MMC seen from its AC terminals (right);

KVL1 +KVL2 :

2(1+ k)Lbr
d
dt

� ip + in
2

�
︸ ︷︷ ︸

common-mode
current (ic)

+2Rbr
ip + in

2
= Vin − (vp + vn)︸ ︷︷ ︸

2vc

▲ DC equivalent circuit of the observed leg (left); Model of an MMC seen from its DC terminals (right);

PCIM Asia 2020 November 16-18, 2020 Power Electronics Laboratory | 14 of 25



NATURE OF THE LEG CURRENT COMPONENTS

Leg AC current⇒ io = ip − in

Leg common-mode current⇒ ic = (ip + in)/2


ip = ic + is/2

in = ic − is/2

▲ Illustration of the MMC leg current components

⇒ Seen from the DC terminal, two branches operate in series, while the two operate in parallel when observed from the AC terminal
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AC TERMINAL CURRENT CONTROL (I)

▲ MMC AC side equivalent

Requirements
▶ Perfect synchronization to the AC grid (PLL)

▶ Sufficiently high voltage reserve (total energy control)

Power control in the dq frame

Pg =
3
2

�
vgd igd + vgq igq︸ ︷︷ ︸

=0

�
=

3
2

vgd igd

Qg =
3
2

�
vgq igd︸ ︷︷ ︸
=0

−vgd igq

�
= −3

2
vgd igq

dq transformation can be performed as

�
vd

vq

�
=

2
3

�
cos
�
θg
�

cos
�
θg − 2π/3
�

cos
�
θg − 4π/3
�

−sin
�
θg
� −sin
�
θg − 2π/3
� −sin
�
θg − 4π/3
� �︸ ︷︷ ︸

K

vgA

vgB

vgC

 ,
while the circuit from the left can be described with the following set of equations:vsA

vsB

vsC

=
LAC 0 0

0 LAC 0
0 0 LAC

 d
dt

igA

igB

igC

+
RAC 0 0

0 RAC 0
0 0 RAC

igA

igB

igC

+
vgA

vgB

vgC

+ vn0

11
1

 ,
where LAC = Lg +αLbr/2 and RAC = Rg + Rbr/2.

Multiplying both sides of the above expression with K , leads to

vsd = LAC
digd

dt
+ RAC igd − ωg LAC igq︸ ︷︷ ︸

cross-coupling

+ vgd︸︷︷︸
=v̂g

vsq = LAC
digq

dt
+ RAC igq + ωg LAC igd︸ ︷︷ ︸

cross-coupling

+ vgq︸︷︷︸
=0

⇒ To achieve decoupled control, cross-coupling terms should be removed
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AC TERMINAL CURRENT CONTROL (II)

▶ dq quantities are essentially DC⇒ PI controllers can be used
▶ The use feed-forward terms to avoid cross-coupling of the axes

▲ MMC AC current control block diagram

From the control diagram on the left, one can conclude that

v∗sd =∆vsd + vgd −ωg LAC igq︸ ︷︷ ︸
feed-forward

v∗sq =∆vsq + vgq +ωg LAC igd︸ ︷︷ ︸
feed-forward

∆vsd = HPI(i
∗
gd − igd) = LAC

digd

dt
+ RAC igd

∆vsq = HPI(i
∗
gq − igq) = LAC

digq

dt
+ RAC igq,

meaning that decoupled control of d and q currents is indeed obtained.

Obtaining the references in the ABC frame can be performed as

v∗sAv∗sB
v∗sC

=
 cos
�
θg
�

sin
�
θg
�

cos
�
θg − 2π/3
�

sin
�
θg − 2π/3
�

cos
�
θg + 2π/3
�

sin
�
θg + 2π/3
�
�v∗sd

v∗sq

�
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⇒ From the AC current control standpoing, the MMC is not different to conventional 2LVL or other mutlilevel converters
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DC TERMINAL CURRENT CONTROL

▲ MMC DC side equivalent

If the inverter operation is considered, then

LΣDC
diDC

dt
+ RΣDC iDC = VDC − 2

vcA + vcB + vcC

3︸ ︷︷ ︸
vc0

,

where LΣDC = LDC + 2β Lbr/3 and RΣDC = RDC + 2β Lbr/3.

▲ MMC DC current control block diagram

Rectifier operation
▶ MMC represents a current source
▶ Some other stage is controlling the current

▲ Back-to-Back connection power converters

▲ Equivalent circuit describing two B2B connected converters

Control strategy
▶ MMC2 controls its current (inverter mode)

▶ MMC1⇒ 2v(1)c0 = V ∗DC followed the energy control
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THE CONCEPT OF CIRCULATING CURENTS

Observe the MMC DC equivalent circuit, such that vc,i = v∗c0

▲ DC equivalent circuit of a 3PH MMC in case vc,i = v∗c0

 DC terminal current sharing!

ZbrA ̸= ZbrC ̸= ZbrC⇒ icA ̸= icB ̸= icC

Ideally, ic,i =
iDC
3 , however, a more realistic approach implies

ic,i =
iDC

3
+ ic∆,i ,

where ic,i is referred to as the circulating current since

icA + icB + icC = iDC

⇒ ic∆A + ic∆B + ic∆C = 0

In case vc,i = v∗c0 + vc∆,i , the circulating currents can be controlled.
Without the loss of generality, take phase A as an example:

Lbr
d
dt

�
iDC

3

�
+ v∗c0 = Lbr

dicA

dt
+ v∗c0 + vc∆A

Lbr
d
dt

�
ic∆A − iDC

3︸ ︷︷ ︸
ic∆A

�
= −vc∆A

▲ The circuit relevant for circulating current control

v± = 2v∗c0 +
1
3

§
vc∆A + vc∆B + vc∆C

ª
︸ ︷︷ ︸

must be equal to 0
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1
3

§
vc∆A + vc∆B + vc∆C

ª
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must be equal to 0

⇒
Decoupled control of circulating currents∑

i={A,B,C} vc∆,i = 0
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CIRCULATING CURRENTS CONTROL

According to the previous slide

β Lbr
dic∆
dt
= −vc∆A,

allowing for the derivation of control diagram from below.

▲ A leg circulating current control block diagram

v∗c∆A + v∗c∆B + v∗c∆C = −Wcirc(s)
§
(i∗c∆A + i∗c∆B + i∗c∆C)− (ic∆A + ic∆B + ic∆C)︸ ︷︷ ︸

=0 according to the definition

ª

 Decoupled control of circulating currents

The sum of circ. current references must be zero!

Other possible ways to control the circulating currents:
▶ αβ domain (DC components)

β Lbr
di(αβ)c∆

dt
= −v(αβ)c∆

▶ dq frame with positive and negative sequences (as will be seen shortly)
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MMCCONTROL LAYERS

Twomodes of operation:

1. Current source mode (also called inverter mode): transferring active power from the dc terminals to the ac terminals

2. Voltage source mode (also called rectifier mode): transferring active power from the ac terminals to the dc terminals

Two sets of state variables:

1. External state variables (dc-link voltage, grid currents, etc.): knowledge from VSC control is reused

2. Internal state variables (capacitor voltages, circulating currents): specific MMC control

CCC
eB
★

PI
PIR1,2,4

2

Q→iq

GCC
PR1

ΣVC
∆VC

EC

eL
★

ig

icircCL

[0; 0; 0]

3VB

P★

icirc,αβ
FF

DVC

vg
F

vCΣ
Σ

vCΣ
∆

[0; 0; 0]

[0; 0; 2vCΣ0]★

mode
P→id

e-sTd m6

vCΣ0
★ vCΣ

ˆ vCΣ
F vCΣ/ / /

T

Common VSC control
Specific MMC control
Modulation indices
calculation methods

θ'

dq

αβ

▲ Overall MMC control structure
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MODULATION INDEX CALCULATIONMETHODS

Direct modulation
▶ The modulation indices are calculated from the

desired dc average value
▶ The energy controllers are disabled
▶ The odd harmonics and integrator on dc

component in the CCC are disabled
▶ Rely on self balancing of the branch energies [3]

mp =
VB/2− e⋆B/2− e⋆L

v⋆CΣ0

mn =
VB/2− e⋆B/2+ e⋆L

v⋆CΣ0

e-sTd

eL
★

eB
★

VB

vCM

m66
3

3

vCΣ0
★ vCΣ

ˆ vCΣ
F vCΣ/ / /

T

▲ Direct modulation principles

Open-loop control
▶ The modulation indices are calculated from

estimates of the summed branch capacitors in
steady-state [4]

▶ The energy controllers are disabled
▶ The odd harmonics and integrator on dc

component in the CCC are disabled
▶ Self energy balance achieved [5]

mp =
VB/2− e⋆B/2− e⋆L

v̂CΣp

mn =
VB/2− e⋆B/2+ e⋆L

v̂CΣn

Hybrid voltage control
▶ The modulation indices are calculated from

filtered values of the summed branch capacitors
measurements

▶ The energy controllers are disabled
▶ The odd harmonics and integrator on dc

component in the CCC are disabled
▶ Self energy balance achieved [6]

mp =
VB/2− e⋆B/2− e⋆L

vF
CΣp

mn =
VB/2− e⋆B/2+ e⋆L

vF
CΣn

vCΣ
Σ

vCΣ
∆

BPF
2ω₁ 1/2

vCΣ0
★

BPF
ω₁

vCΣp
F

vCΣn
F

▲ Hybrid voltage control

Closed-loop control
▶ The modulation indices are calculated from the actual

measurements of the summed branch capacitors
▶ The energy controllers are enabled
▶ The odd harmonics in the CCC are enabled

eB
★

vCΣ0
★ .2 Cbr

eB·icirc-eL·ig
★ ★★ ★

eB/2·ig-2eL·icirc
★ ★★ ★

1/Cbr

1/Cbr

.1/2

.1/21/s

1/s vCΣp
ˆBPF

2ω₁

BPF
ω₁

eL
★

ig
★

icirc
★

vCΣn
ˆ

▲ Open-loop control
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CONTROL DECENTRALIZATION

Branch level modulation
▶ Each branch handled separately

s1/1:2

Vc1

VcN

sN/2N-1:2N
[6]

[6]

VcΣ

m[Ncells] or
[2Ncells]

[Ncells]

branch

µC

central

µC

Cell level modulation
▶ Each cell has its own modulator

s

s

Vc

Vc
[6]

[6]

VcΣ

m1

[Ncells]

branch

µC

central

µCcell

µC

cell

µC

Vc

m

Phase-leg level modulation
▶ Aim at improving ac-side spectrum and unlocking full modulation method

harmonic performance
▶ Compromises in the circulating current control
▶ SHE / OPP / SVM with 2Ncells + 1 modulation

sp Vcp

sn Vcn

[6]

[3]

VcΣ

m
central

µC

s1/1:2

Vcp1

VcpN

sN/2N-1:2N

[Ncells] or
[2Ncells]

[Ncells]

s1/1:2

Vcn1

VcnN

sN/2N-1:2N

[Ncells] or
[2Ncells]

[Ncells]

phase

µC

Remark µC denotes either a microcontroller, an FGPA, or a combination of both.
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SUMMARY

Modular Multilevel Converter
▶ Modular design easily scalable for higher voltages
▶ Flexible and adaptable for different conversion needs
▶ Efficient
▶ HVDC (early adopters)
▶ STATCOM, FACTS, RAIL INTERTIES, MV DRIVES
▶ Can serve MV and HV applications!
▶ Unlimited research opportunities...[7], [8]

▲ HVDC Light valve hall from ABB.

Vdc

+5kV

-5kV

400V

▲ Galvanically Isolated Modular Converter [7]

iap

ian

0

ia
iT1

ibp

ibn

B1

DC/AC  

Lbr

ioiR

A

S1 S3 S5

S4 S6 S2

AC/DC

B
C

A1

A2

DC/AC

B2

ib

MMC2

MMC1

T1

√3 N
2

N
2

N
2

Vin

2

Vin

2

Vo

T2

iT2

▲ High Power DC-DC Converter Employing Scott Transformer Connection [8]
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TUTORIAL SCHEDULE

Before the virtual coffee break

Part 1) Introduction andmotivation
É MMCApplications
É MMCoperating principles
É Modeling and control

Part 2) MMC energy control
É Role of circulating currents
É Branch energy control methods
É Performance benchmark

After the virtual coffee break

Part 3) MMC power extension
É MMC scalability
É Branch paralleling
É Energy control

Part 4) MMC research platform
É MMC system level design
É MMCSub-module development
É MMCRT-HIL development
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CONTROL OF THEMMC
INTERNAL ENERGY

Different methods, properties, comparison...
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THE BRANCH ENERGY CONTROL (I)

Î MMCenergy flow

Total energy control:
É Inverter⇒DC side
É Rectifier⇒AC side

? Is total energy control sufficient?

Î Illustration of the need for additional energy ctrl.

Branch power analysis is conducted on the leg level [1], [2], [3], [4].

Pp =
dWp

dt
= vp ip =
�

vc − vs

��
ic +

io
2

�
Pn =

dWn

dt
= vn in =
�

vc + vs

��
ic − io

2

�
Coordinate transformation is performed as

WΣ =Wp +Wn

W∆ =Wp −Wn


dWΣ
dt

= 2vc ic − vo io =
�

vc0 + vc∆ − vs

��
iDC

3
+ ic∆ +

io
2

�
dW∆
dt

= vc io − 2vs ic =
�

vc0 + vc∆ + vs

��
iDC

3
+ ic∆ − io

2

�
Assuming that no circulating currents are generated, while vs = v̂s cos

�
ωg t − γ� and io = îo cos

�
ωg t −δ� yields

dWΣ
dt

����
no circ.

= 2vc0
iDC

3
− vs io ≈ VDC

iDC

3
− v̂s îo

2
cos(γ−δ)︸ ︷︷ ︸

=0

− v̂s îo
2

cos
�
2ωg t − γ−δ�︸ ︷︷ ︸

oscillating@2ωg

dW∆
dt

����
no circ.

= −2v̂s
iDC

3
cos
�
ωg t − γ�+ îovc0 cos

�
ωg t −δ�︸ ︷︷ ︸

oscillating@1ωg

Î Steady state appearance of the upper and lower branch energies normalizedwith respect to the branchmean energy.
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THE BRANCH ENERGY CONTROL (II)

É Circulating currents can be used tomaintain the internal energy balance
É Average values of energies are the only ones of interest

The leg common-mode current can be expressed as

ic =
iDC

3
+ Ic∆︸︷︷︸

circ.
DC

+ î∼c∆ cos
�
ωg t − ζ�︸ ︷︷ ︸
circ.
AC

,

which further leads to

dWΣ
dt
≈ VDC Ic∆ + VDC

iDC

3
− v̂s îo

2
cos(γ−δ)︸ ︷︷ ︸

=0

+2vc∆
iDC

3
+ 2vc∆ ic∆︸ ︷︷ ︸

negligible

dW∆
dt
≈ −v̂s î

∼
c∆ cos(γ− ζ) + vc∆ io︸︷︷︸

negligible

.

If γ= ζmeaning that circ. current AC component is in phasewith the leg AC voltage, then

dWΣ
dt
≈ VDC Ic∆

dW∆
dt
≈ −v̂s î

∼
c∆

Two balancing directions can be identified

É Horizontal direction (total energy stored in the leg)
É Vertical direction (difference of branch energies)

Î Illustration of the horiz. balancing principle

Time [ms]
0 5 10 15 20

-1

0

1

Î Illustration of the vert. balancing principle
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THE BRANCH ENERGY CONTROL (III)

Reference
mapping

Î Control block diagram of theMMCenergy balancing [4]

 
An important detail∑
∆v∗c,i = 0must hold at all times!

In other words, an appropriate circulating current reference mapping must be performed, otherwise, the DC link cur-
rent control becomes influenced by the branch energy balancing.
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MMCCONTROL SCHEME SUMMARY

⇒ Suitable choice of variables leads to a complete decoupling among the control layers
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COMPARISONOF DIFFERENT
ENERGY BALANCINGMETHODS

What are the approaches reported so far andwhat do they have in common?
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SUMMARYOF THEMETHODS ANALYZED HEREWITH

Method 1 [2] Method 2 [5] Method 3 [6]

Horizontal
balancing

SVD-based
approach

Circ. currents ctrl.
in theαβ- domain

Circ. currents ctrl.
in theαβ- domain

Vertical
balancing

SVD-based
approach

Injection of
reactive components
into circ. currents

Circ. currents+/−
sequence control
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REFERENCEMAPPING AND THE NULL-SPACE CONCEPT (I)

Important considerations:

É Leg energy balancing is initially done in ”per leg” fashion
É Energy unbalances can take any arbitrary values

⇒ The expression
∑

i={A,B,C} i∗c∆,i = 0 is not necessarily true!

For themoment, observe an exemplary 1PHMMC, where

i∗c∆A + i∗c∆B 6= 0

(a) (b)

Î Equivalent circuit of a 1PH-MMC seen from the DC terminals

É Vector notation

I∗ =
�

i∗c∆A

i∗c∆B

�

In the observed case, themathematical formulation of the problem can be expressed as�
1 1
�︸ ︷︷ ︸

Ti

�
i∗c∆A

i∗c∆B

�
︸ ︷︷ ︸

IM

= 0

All the vectors IM , satisfying the above requirement, reside in the null-space (kernel) of matrix Ti .

Two core steps:

É Identify the null-space of Ti

É Project the vector I∗ onto the ker(Ti) to obtain IM

(a) Inappropriately generated circulating current reference vector (b) Mapping of the vector I∗ onto the null-space of Ti to obtain IM
Î Circulating current referencemapping procedure
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REFERENCEMAPPING AND THE NULL-SPACE CONCEPT (II)

unit-length vector

Î Illustration of the referencemaping procedure (2-D problem)

É Vector vN is referred to as the null-space basis
É Scalar product⇒ projection

In the observed case, it is easy to identify the basis of ker(Ti) as

vN =
1p
2

�
1
−1

�
Subsequently, projection of I∗ onto ker(Ti) is obtained as

|IM|= vT
N I∗ = 1p

2

�
1 −1
��2

0

�
=
p

2

In the final step, assign the direction to the calculated projection

IM = vN vT
N I∗︸︷︷︸
|IM |

=

�
1
−1

�

1

0

-11

0

-2
-1

2

0
0-1-2 1 2

mapping

(a) Inappropriately generated circulating current reference vector

mapping1

0

-11

0

-2
-1

2

0
0-1-2 1 2

(b) Mapping of the vector I∗ onto the null-space of Ti to obtain IM
Î Illustration of the referencemaping procedure (3-D problem)

For the 3PH-MMC, themappingmatrix is Ti =
�
1 1 1
�
and ker(Ti) is a plane.
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(b) Mapping of the vector I∗ onto the null-space of Ti to obtain IM
Î Illustration of the referencemaping procedure (3-D problem)

For the 3PH-MMC, themappingmatrix is Ti =
�
1 1 1
�
and ker(Ti) is a plane.

⇒
Observation
If Ti is a 1× q matrix, where q is the number of MMC phase legs, then
dim(ker(Ti)) = q− 1.

However, it is reasonably to wonder

? How to generalize the referencemapping procedure?
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SINGULAR VALUE DECOMPOSITION

É Descriptions in [7], [8]
É Diagonalization of a non-squarematrix as

Ti =
�
UR UN

�
︸ ︷︷ ︸

U
(m×m)

 Σ(r×r)
0

0 0

�V T
R

V T
N

�
︸ ︷︷ ︸

V T
(n×n)

A few important remarks:

É All the vectors from U are linearly independent (orthogonal)
É All the vectors from V are linearly independent (orthogonal)
É All the entries ofΣ are real

Let one look for the product

TivN,i = URΣ V T
R vN,i︸ ︷︷ ︸

orthogonal
vectors

= 0

⇒Matrix VN comprises a set of orthonormal bases of ker(Ti)

Relying on the previously presented logic, the referencemapping can be obtained as

IM = VNV T
N I∗

For the case of the 3PHMMC

V T
N =

√√2
3

�
1 −1/2 −1/2
0
p

3/2 −p3/2

�

Since Ti =
�
1 . . . 1
�

1×q
, it can be shown (detailed description in [4]) that

VNV T
N =


1

. . .

1


︸ ︷︷ ︸

identity q×q
matrix

−1
q


1 . . . 1
...

...
1 . . . 1


q×q

,

nomatter how VN is chosen. Consequently:

IM = I∗ − 1
q

q∑
i=1

I∗i,1︸ ︷︷ ︸
average value

Î Referencemapping in the 3PHMMC [2], [9]
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APPLICATION OF SVD TO THE VERTICAL BALANCING PROBLEM - METHOD 1

Î Horizontal balancing control block diagram (SVDmethod)

Interestingly, V T
N actually performs the Clarke transformation!

V T
N =

√√2
3

�
1 −1/2 −1/2
0
p

3/2 −p3/2

�
From here, it is straightforward to show that

V⃗ ∗c∆ =W=
circ(s)
�

VN
HΣ(s)
V ∗DC

(W⃗ ∗Σαβ − W⃗Σαβ )− I⃗c∆

�
Multiplyingwith V T

N from the left yields

V⃗ ∗c∆αβ =W=
circ(s)
�

HΣ(s)
V ∗DC

(W⃗ ∗Σαβ − W⃗Σmαβ )− I⃗c∆αβ

�
.

Î Horizontal balancing control block diagram (αβ transformation based) [5], [6]
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⇒ Irrespective of the reference frame, the same behavior is experienced in terms of horizontal balancing dynamics!
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APPLICATION OF SVD TO THE VERTICAL BALANCING PROBLEM - METHOD 1

Î Control block diagram concerning energy balancing in vertical direction (ABC frame)

Method properties:

É Control conducted per every leg individually
É Mappingmatrix generated through the SVD utilization
É H∆(s) can be either P- or PI- controller
É Information on voltage vs is always available in the controller

Observation in the complex domain, leads to

i⃗∼M = VNV T
N

H∆(s)
v̂s

e− jγ

1 0 0
0 a2 0
0 0 a


︸ ︷︷ ︸

A

W∆A

W∆B

W∆C

 ,

where a = e j 2π
3 . Moreover,

VNV T
N =

1
3

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Fortescue transformation of i⃗∼∗M should output only positive and negative sequences.

Fpn0 =
1
3

1 a a2

1 a2 a
1 1 1


IfW ∗

∆{A/B/C} = 0, whereasτm ≈ 0, theni∼m+i∼m−
i∼m0

= H∆(s)
v̂s

e− jγ ×


1p
3

W∆0
1p
6

�
W∆α + jW∆β )

0

 ,
whileαβ0 quantities were obtained bymeans of thematrix from below.

Kαβ0 =

√√2
3

 1 − 1
2 − 1

2

0
p

3
2 −p3

2
1p
2

1p
2

1p
2
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VERTICAL BALANCING - METHOD 2

Repeat the previous
procedure in all phases

For an observed phase,
neutralize its balancing
component by injecting
reactive currents in the

adjacent phases

Acquire a set of 
references which sum

up to zero

Î Vert. bal. procedure based on the injection of orthogonal components

É Injection of reactive currents
É Sumof circ. current references equal to zero
É Control structure similar toMethod 1

Mappingmatrix is changedwith respect toMethod 1.

Mm =

 1 j ap
3
− j a2p

3

− j a2p
3

1 j ap
3

j ap
3
− j a2p

3
1



IfW ∗
∆{A/B/C} = 0, whereasτm ≈ 0, then

i⃗∼M =
H∆(s)

v̂s
e− jγMm

1 0 0
0 a2 0
0 0 a

W∆A

W∆B

W∆C

 Fpn0−−−→
Kαβ0

i∼m+i∼m−
i∼m0

= H∆(s)
v̂s

e− jγ ×


1p
3

W∆0
2p
6

�
W∆α + jW∆β
�

0



Î Control block associated to the balancingmethod described above
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VERTICAL BALANCING - METHOD 3

É Direct control of the energy unbalances in theαβ0 domain (V T
N = Kαβ )

É The use of+/− circ. current sequences (similar approach followed in [10], [11])

Î Positive and negative seq.

Circ. currents in theABC frame can be obtained asic∆A

ic∆B

ic∆C

= K T
αβ

�
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

�
︸ ︷︷ ︸

counterclockwise
rotation

�
i+c∆d
i+c∆q

�
+ K T

αβ

�
cos(θ ) sin(θ )
− sin(θ ) cos(θ )

�
︸ ︷︷ ︸

clockwise
rotation

�
i−c∆d
i−c∆q

�
.

According to [6], the following expressions can be established:

P∆α = − 2p
6

v̂s i
−
c∆d P∆β = +

2p
6

v̂s i
−
c∆q P∆0 = − 2p

3
v̂s i
+
c∆d

⇒ Decoupled control of relevant energy components

Î Block diagram derived according to the equations on the left

É Controllers H∆{α/β/0}(s) can be tuned independently!

É i+c∆q can be controlled to zero

É For simplicity reasons assume that H∆{α/β/0}(s) = H∆(s)

Fpn0

ic∆A

ic∆B

ic∆C

=
i∼m+i∼m−

i∼m0

= H∆(s)
v̂s

e− jγ ×
 1p

2
W∆0

W∆α + jW∆β
0
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−
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É Controllers H∆{α/β/0}(s) can be tuned independently!

É i+c∆q can be controlled to zero

É For simplicity reasons assume that H∆{α/β/0}(s) = H∆(s)

Fpn0

ic∆A

ic∆B

ic∆C

=
i∼m+i∼m−

i∼m0

= H∆(s)
v̂s

e− jγ ×
 1p

2
W∆0

W∆α + jW∆β
0



?

Problem statement
How to compare the vertical balancing methods
presented so far?
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VERTICAL BALANCINGMETHODS COMPARISON (I)

Method 1i∼m+i∼m−
i∼m0

= H∆(s)
v̂s

e− jγ ×


1p
3

W∆0
1p
6

�
W∆α + jW∆β )

0


Method 2i∼m+i∼m−

i∼m0

= H∆(s)
v̂s

e− jγ ×


1p
3

W∆0
2p
6

�
W∆α + jW∆β
�

0


Method 3i∼m+i∼m−

i∼m0

= H∆(s)
v̂s

e− jγ ×
 1p

2
W∆0

1(W∆α + jW∆β )
0


Circ. current+/− sequences can be expressed as

i∼m+ =
H∆(s)

v̂s
e− jγ × k+W∆0

i∼m− =
H∆(s)

v̂s
e− jγ × k−(W∆α + jW∆β ),

allowing for the representation in a tabular form

Method 1 Method 2 Method 3

k+
1p
3

1p
3

1p
2

k− 1p
6

2p
6

1

Î An alternative way of generating circulating current references achieving the energy balance in vertical direction

In general, the expressions

i+c∆d = R

�√√3
2

e jγ i∼m+
�

i+c∆q = I

�√√3
2

e jγ i∼m+
�

i−c∆d = R

�√√3
2

e jγ i∼m−
�

i−c∆q = −I
�√√3

2
e jγ i∼m−
�

hold, while i+c∆q = 0. From here, one can obtain system of equations provided below.

i+c∆d =

√√3
2

k+
H∆
v̂s

W∆0 i−c∆d =

√√3
2

k−
H∆
v̂s

W∆α i−c∆q = −
√√3

2
k−

H∆
v̂s

W∆β .

Combining the above systemwith

P∆α = − 2p
6

v̂s i
−
c∆d P∆β = +

2p
6

v̂s i
−
c∆q P∆0 = − 2p

3
v̂s i
+
c∆d

yields

P∆α = −k−H∆W∆α = −k1αH∆W∆α
P∆β = −k−H∆W∆β = −k1βH∆W∆β

P∆0 = −p2k+H∆W∆0 = −k10H∆W∆0.
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VERTICAL BALANCINGMETHODS COMPARISON (II)

According to previous derivations, the expression

P∆{α/β/0} = −k1{α/β/0}H∆W∆{α/β/0}

can be established, whereas

Coefficient Method 1 Method 2 Method 3

k1α
1
2

q
2
3

q
2
3 1

k1β
1
2

q
2
3

q
2
3 1

k10

q
2
3

q
2
3 1

Furthermore, the relationship from below can be obtained.

P∆{α/β/0} = k2{α/β/0} v̂s ic∆{d−/q−/d+}

k20 = −2/
p

3 and k2{α/β} = ∓2/
p

6

⇒ Generalized control block diagram

Î Ageneral control block diagram concerning vertical balancing of theMMCenergies.

To commence the comparison, once can assume that

H∼circ(s) =
1

1+ sτc
Hmf(s) = e−sτm ≈ 1− s τm

2

1+ s τm
2

H∆(s) = kp∆.

Establishing the function G(s) allows for a straightforward analysis throught the root-locusmethod.

G(s) =
H∼circ(s)Hmf(s)

s
=

N(s)
D(s)

All the poles can be identifed by solving
================⇒ D(s) + kp∆k1{α/β/0}N(s) = 0.

For themoment, assume theW∆0 component is analyzed. Hence, k10 = 1.

If kp∆→ 0, zeros[D(s)]⇒poles[W∆0/W
∗
∆0]

σ1 = 0

σ2 = − 2
τm

σ3 = − 1
τc

If kp∆→∞, zeros[N(s)]⇒poles[W∆0/W
∗
∆0]

n1 =
2
τm
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⇒ Generalized control block diagram

Î Ageneral control block diagram concerning vertical balancing of theMMCenergies.

To commence the comparison, once can assume that

H∼circ(s) =
1

1+ sτc
Hmf(s) = e−sτm ≈ 1− s τm

2

1+ s τm
2

H∆(s) = kp∆.

Establishing the function G(s) allows for a straightforward analysis throught the root-locusmethod.

G(s) =
H∼circ(s)Hmf(s)

s
=

N(s)
D(s)

All the poles can be identifed by solving
================⇒ D(s) + kp∆k1{α/β/0}N(s) = 0.

For themoment, assume theW∆0 component is analyzed. Hence, k10 = 1.

If kp∆→ 0, zeros[D(s)]⇒poles[W∆0/W
∗
∆0]

σ1 = 0

σ2 = − 2
τm

σ3 = − 1
τc

If kp∆→∞, zeros[N(s)]⇒poles[W∆0/W
∗
∆0]

n1 =
2
τm

 Time constantsτ
c andτ

m can stand in any arbitrary order⇒An example is required
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VERTICAL BALANCINGMETHODS COMPARISON (III)

Î Parameters of the converter used for further analyses

Rated
power

Output
voltage

Grid
voltage

Number of SMs
per branch

Nominal SM
voltage

SM
capacitance

Branch
inductance

Branch
resistance

PWMcarrier
frequency

Fundamental
frequency

(S∗) (VDC) (vg) (N ) (VSM ) (CSM ) (Lbr) (Rbr) ( fc) ( fo)

1.25MVA 5kV 3.3kV 6 1kV 3.36mF 2.5mH 60mΩ 1kHz 60Hz

In the setup used to verify the results presented henceforward

τm ≈ 375µs and τc ≈ 1

f circ
bw

= 1ms,

resulting in the diagram presented bellow.

−8 −6 −4 −2 0 2 4 6 8 10 12

·103

−6

−4

−2

0

2

4

6
·103

σc σ1σ2σ3 n1

Re(s)

Im(s)

Î Root locus constructed based on the function G(s)

Apparently, there exists an optimal gain k∗p∆ guaranteeing the fastest and strictly aperiodic re-
sponse! To calculate k∗p∆ , one should substitute the solution of

dD(s)
ds

N(s)− dN(s)
ds

D(s) = 0,

which is actually s = σc , into

k∗p∆ = − D(σc)
N(σc)

.

In the analyzed example, k∗p∆ ≈ 642!
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VERTICAL BALANCINGMETHODS COMPARISON (III)

Î Parameters of the converter used for further analyses

Rated
power

Output
voltage

Grid
voltage

Number of SMs
per branch

Nominal SM
voltage

SM
capacitance

Branch
inductance

Branch
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frequency
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In the setup used to verify the results presented henceforward
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= 1ms,

resulting in the diagram presented bellow.
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Apparently, there exists an optimal gain k∗p∆ guaranteeing the fastest and strictly aperiodic re-
sponse! To calculate k∗p∆ , one should substitute the solution of

dD(s)
ds

N(s)− dN(s)
ds

D(s) = 0,

which is actually s = σc , into

k∗p∆ = − D(σc)
N(σc)

.

In the analyzed example, k∗p∆ ≈ 642!

? Is this gain realistic?

Assuming that∆W0 = 0.1W ∗br , whereW ∗br ≈ CSMV ∗2brΣ/(2N), one can realize that

îc∆0 = kp∆
0.1
p

3W ∗br

2v̂s
≈ 210A,

which is approximately 70% of the converter nominal AC current amplitude!
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VERTICAL BALANCINGMETHODS COMPARISON (III)
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Assuming that∆W0 = 0.1W ∗br , whereW ∗br ≈ CSMV ∗2brΣ/(2N), one can realize that

îc∆0 = kp∆
0.1
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3W ∗br
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 The g
ain g
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re no
r con
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e kp∆
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VERTICAL BALANCINGMETHODS COMPARISON (IV)

−8 −6 −4 −2 0 2 4 6 8 10 12

·103

−6

−4

−2

0

2

4

6
·103

σc σ1σ2σ3 n1

Re(s)

Im(s)

Î Root locus constructed based on the function G(s)

Since kp∆� k∗p∆ one can conclude thatσ1� σc . From the equation

D(s) + kp∆k1{α/β/0}︸ ︷︷ ︸
k′p

N(s) = 0,

the following observations can bemade
É The higher k′p the further the poleσ1 from the imaginary axis

É For fixed kp∆ , the system dynamics depends on k1{α/β/0}

Î Reminder - values of coefficients determining the balancing dynamics of
energy componentsW∆α ,W∆β andW∆0 , respectively.

Coefficient Method 1 Method 2 Method 3

k1α
1
2

q
2
3

q
2
3 1

k1β
1
2

q
2
3

q
2
3 1

k10

q
2
3

q
2
3 1

−60 −40 −20 0 20
−1

−0.5

0

0.5

1
·103

kp∆ = 50

Re(s)

Im
(s

)

M1 M2 M3

−60 −40 −20 0 20
−1

−0.5

0

0.5

1
·103

kp∆ = 50

Re(s)

Im
(s

)

M1 M2 M3

−400 −200 0
−1

−0.5

0

0.5

1
·103

kp∆ = 250

Re(s)

Im
(s

)

M1 M2 M3

−400 −200 0
−1

−0.5

0

0.5

1
·103

kp∆ = 250

Re(s)

Im
(s

)

M1 M2 M3

Î Position of poles in the closed loop functionW∆{α/β/0}/W ∗∆{α/β/0} for two different gains kp∆
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VERTICAL BALANCINGMETHODS COMPARISON (IV)
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Î Position of poles in the closed loop functionW∆{α/β/0}/W ∗∆{α/β/0} for two different gains kp∆⇒ Moving
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′
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VERTICAL BALANCINGMETHODS COMPARISON - IMPORTANT REMARKS
É Controllers in theαβ0 domain (Method 3) do not have to be identically tuned

É ForMethods 1 and 2, every leg has its own controller, however, controllers are tuned identically

É The gain kp∆ does not have to be fixed

É Methods 1 and 2 can be derived fromMethod 3 if

H (method 3)
c∆0 = H (method 1/2)

∆ × k(method 1/2)
10

k(method 3)
10

H (method 3)
c∆{α/β} = H (method 1/2)

∆ × k(method 1/2)
1{α/β}
k(method 3)

1{α/β}

É Method 3 can be derived fromMethod 2 if the gains are increased by the factor
q

3
2 (if H∆{α/β/0}(s) = H∆(s)).

É Method 3 cannot be derived fromMethod 1

É Average energies responsewas considered (for branch voltage ripple optimization, please refer to [12], [10], [1], [13])

Î Reminder - values of coefficients determining the balancing dynamics
of energy componentsW∆α ,W∆β andW∆0 , respectively.

Coefficient Method 1 Method 2 Method 3

k1α
1
2

q
2
3

q
2
3 1

k1β
1
2

q
2
3

q
2
3 1

k10

q
2
3

q
2
3 1
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HIL VERIFICATION

Î Parameters of the converter used for further analyses

Rated
power

Output
voltage

Grid
voltage

Number of SMs
per branch

Nominal SM
voltage

SM
capacitance

Branch
inductance

Branch
resistance

PWMcarrier
frequency

Fundamental
frequency

(S∗) (VDC) (vg) (N ) (VSM ) (CSM ) (Lbr) (Rbr) ( fc) ( fo)

1.25MVA 5kV 3.3kV 6 1kV 3.36mF 2.5mH 60mΩ 1kHz 60Hz

É Converter with parameters provided above (identical to [14])

É Real industrial ABB PEC800 controller
É Master & Slave PECs (flexibility in reconfiguration)
É PECMI (v/i measurements)
É Control HUB (SM signals aggregation and reference processing)
É COMBIO (Realays/Switches/Monitoring)
É More details in Part 4.

É Identical gains kpΣ = kp∆ = 50

⇒ Control structure identical to the real prototype

(a) Front view (b) Rear view

Î HIL system used for result verification purposes
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HIL VERIFICATION - HORIZONTAL BALANCING

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Î Unbalance scenarios used for results verification purpose
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HIL VERIFICATION - VERTICAL BALANCING

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Î Unbalance scenarios used for results verification purpose
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SUMMARY

É Control of average energies

É Three decoupled layers of balancing
É Total energy control
É Horizontal balancing
É Vertical balancing

É Different options with regards to the choice of bal. methods

É Chosen approach affects the energy balancing dynamics

Time [ms]
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TUTORIAL SCHEDULE

Before the virtual coffee break

Part 1) Introduction andmotivation
É MMC Applications
É MMC operating principles
É Modeling and control

Part 2) MMC energy control
É Role of circulating currents
É Branch energy control methods
É Performance benchmark

After the virtual coffee break

Part 3) MMC power extension
É MMC scalability
É Branch paralleling
É Energy control

Part 4) MMC research platform
É MMC system level design
É MMC Sub-module development
É MMC RT-HIL development
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MMCPOWER CAPACITY
EXTENSION
Boosting the power through branch paralleling...
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MODULARMULTILEVEL CONVERTER POWER SCALING

Î Conventional 3PH MMC

É Series connection of SMs
É Extremely flexible in terms of voltage scaling
É Convenient if application voltage is freely selected

Î MMC power scaling [1], [2], [3]

É Existing SM design is assumed
É Linear S = f (V ) change for a given current rating
É Current capacity ↑⇒ new characteristics

Î SM designed at PEL

,

Î MMC branch voltage scaling
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MODULARMULTILEVEL CONVERTER POWER SCALING

Î Conventional 3PH MMC

É Series connection of SMs
É Extremely flexible in terms of voltage scaling
É Convenient if application voltage is freely selected

Î MMC power scaling [1], [2], [3]

É Existing SM design is assumed
É Linear S = f (V ) change for a given current rating
É Current capacity ↑⇒ new characteristics

Î SM designed at PEL

,

Î MMC branch voltage scaling

⇒ Increasing the MMC power capacity at fixed operating voltage requires its current handling capabilities boost!
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COMMONMMCCURRENT CAPACITY INCREASEMETHODS

Î Paralleling semiconductor modules [4], [5]

É Special design considerations
É Cell frame size does not change
É Possible heat sink oversizing?

Î Paralleling SMs [6], [7]

É Additional inductor is needed
É Additional terminal for the capacitors
É Special gate driver structure

Î Paralleling converters [8], [9], [10]

É Well known principle
É Problem is shifted to the control domain
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É Additional inductor is needed
É Additional terminal for the capacitors
É Special gate driver structure

Î Paralleling converters [8], [9], [10]

É Well known principle
É Problem is shifted to the control domain
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COMMONMMCCURRENT CAPACITY INCREASEMETHODS

Î Paralleling semiconductor modules [4], [5]

Power PCB

Î Exemplary cell design; Current capacity - Irated

É Special design considerations
É Cell frame size does not change
É Possible heat sink oversizing?

Î Paralleling SMs [6], [7]

Power PCB

Î Cell designed for paralleling

É Additional inductor is needed
É Additional terminal for the capacitors
É Special gate driver structure

Î Paralleling converters [8], [9], [10]

É Well known principle
É Problem is shifted to the control domain

Paralleled MMC branches⇒ System simplification

Î Paralleling branches [2], [3], [11]

⇒ If the branches are paralleled, there is no need to go through a new design process to accomplish the MMC power extension
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MODELING

Î MMC with paralleled (sub)branches

Î Branch equivalent circuit

vbrΣ =
1
M

M∑
i=1

vbr,i and
1

Zbr
=

1

Zbr,1
+

1

Zbr,2
+· · ·+ 1

Zbr,M

Î Equivalent circuit of the converter operating with parallel (sub)branches

É Equivalent circuit≡Conventional MMC

É All state of the art control considerations still hold

É New layers of control to be added?
É Unequal SBR parameters
É SBR energy balance
É SBR current balance

É Voltage quality improvement due to paralleling
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Î Equivalent circuit of the converter operating with parallel (sub)branches

É Equivalent circuit≡Conventional MMC

É All state of the art control considerations still hold

É New layers of control to be added?
É Unequal SBR parameters
É SBR energy balance
É SBR current balance

É Voltage quality improvement due to paralleling

⇒ The SBR energy balancing problem is somewhat similar to the horizontal balancing of the conventional MMC
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CONTROL - SBR BALANCING

Î Equivalent circuit of the branch

Lbr
d
dt

�
ibr,i − ibr

M︸ ︷︷ ︸
∆ibr,i

�
+ Rbr

�
ibr,i − ibr

M

�
= vbrΣ − vbr,i

Should vbr,i be chosen like: vbr,i = v∗brΣ +∆vbr,i

Lbr
d
dt
∆ibr,i + Rbr∆ibr,i = −∆vbr,i

É Equal current sharing obtained by means of∆vbr,i

É Total branch voltage must not be corrupted!∑M
i=1∆vbr,i = 0

Î SBR current balancing controller

Energy vs. current sharing⇒ an important aspect to consider!

Î Power extension triangle
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Should vbr,i be chosen like: vbr,i = v∗brΣ +∆vbr,i

Lbr
d
dt
∆ibr,i + Rbr∆ibr,i = −∆vbr,i

É Equal current sharing obtained by means of∆vbr,i

É Total branch voltage must not be corrupted!∑M
i=1∆vbr,i = 0

Î SBR current balancing controller

Energy vs. current sharing⇒ an important aspect to consider!

Î Power extension triangle

 Current balancing is not enough!

SBR powers are different⇒ capacitor energy (voltage) divergence
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CONTROL - SBR BALANCING

Î Typical voltage/current waveforms of an SBR

(Sub)branch power equation

Psbr = vsbr isbr

= V DC
sbr IDC

sbr + v∼sbr i
∼
sbr

Taylor series expansion

Psbr = Pnom
sbr + ∆PDC

sbr︸ ︷︷ ︸
≈ 1

2 V ∗DC∆IDC
sbr

+ ∆PAC
sbr︸ ︷︷ ︸

depends on∆Lbr

Î SBR energy controller

Î The branch voltage components represented through the superposition principle
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CONTROL - SBR BALANCING

Î Typical voltage/current waveforms of an SBR

(Sub)branch power equation

Psbr = vsbr isbr

= V DC
sbr IDC

sbr + v∼sbr i
∼
sbr

Taylor series expansion

Psbr = Pnom
sbr + ∆PDC

sbr︸ ︷︷ ︸
≈ 1

2 V ∗DC∆IDC
sbr

+ ∆PAC
sbr︸ ︷︷ ︸

depends on∆Lbr

Î SBR energy controller

Î The branch voltage components represented through the superposition principle

⇒ Additional control layer included in order to ensure the energy balance among the SBRs
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CONTROL - SBR BALANCING

Î Converter control layers

É Additional control layer (conventional MMC control is retained as can be seen on the left-hand side)
É Decoupling from the higher control levels ensured by means of

∑M
i=1∆vbr,i = 0

É Independent on the number of paralleled SBRs (the same approach for both odd and even M )
É Power scalability depending solely upon the control system limitations
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SIMULATION RESULTS

Rated power Input voltage No. of cells/SBR Cell rated voltage Cell capacitance No. of paralleled SBRs SBR inductance SBR resistance Sw. frequency
(P) (Vin) (N ) (Vcell) (Ccell) (M ) (Lbr) (Rbr) ( fsw)

Left 1MW 5kV 5 1kV 0.83mF 2 5mH 60mΩ 999Hz
Right 1.5MW 5kV 5 1kV 0.83mF 3 7.5mH 60mΩ 999Hz

Î Simulation results in case M = 2 Î Simulation results in case M = 3
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SIMULATION RESULTS

Î Leg A upper and lower SBR currents (top) along with SBR voltages (bottom) in case M = 2

Î Leg A upper and lower SBR currents (top) along with SBR voltages (bottom) in case M = 3
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SIMULATION RESULTS

Î Leg A lower (left) and upper (right) SBR currents and energies in case M = 2

Î Leg A lower (left) and upper (right) SBR currents and energies in case M = 3
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SIMULATION RESULTS

There are two relevant questions one might ask:

É How aggressive is the SBR energy balancing controller?
É Should current rating of the SMs be increased owing to the presence of SBR energy balancing?

∆I∗br,i =∆Wbr,iΣ

︸ ︷︷ ︸
Energy

error

· H∆W

︸︷︷︸
Controller

TF

· 2

V ∗DC︸ ︷︷ ︸
several

kV
Î SBR energy control (recap)

1

Î References provided by the SBR energy balancing controller (M = 2)

Î References provided by the SBR energy balancing controller (M = 3)

É ∆I∗br,i < 10% îbr (Modest response!)

É
∑M

i=1∆I∗br,i = 0

É
∑M

i=1∆v∗br,i = 0⇒ no interference with higher control loops
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1

Î References provided by the SBR energy balancing controller (M = 2)

Î References provided by the SBR energy balancing controller (M = 3)

É ∆I∗br,i < 10% îbr (Modest response!)

É
∑M

i=1∆I∗br,i = 0

É
∑M

i=1∆v∗br,i = 0⇒ no interference with higher control loops

⇒ No need for SM current rating upgrade!
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SUMMARY

É MMC power extension as a main motivation

É Simple and cheap (no need for major redesign of the converter parts)

É The challenge is shifted to the control domain

É State of the art control methods + Additional loops

É Possible AC voltage quality improvement
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Before the virtual coffee break

Part 1) Introduction andmotivation
▶ MMC Applications
▶ MMC operating principles
▶ Modeling and control

Part 2) MMC energy control
▶ Role of circulating currents
▶ Branch energy control methods
▶ Performance benchmark

After the virtual coffee break

Part 3) MMC power extension
▶ MMC scalability
▶ Branch paralleling
▶ Energy control

Part 4) MMC research platform
▶ MMC system level design
▶ MMC Sub-module development
▶ MMC RT-HIL development
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MMCRESEARCH PLATFORM
High power university lab prototype and versatile HIL system
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ONGOINGMMCRELATED ACTIVITIES

Pump Hydro Storage Research Platform
▶ MMC based AC/AC converter
▶ Interface between SG and local AC grid

PEL
AC grid

MMC1 MMC2 SM
6 kV 6 kV

LAC

▲ MMC-Based AC/AC Converter for Pump Hydro Applications

Flexible DC Source (FlexDCS)
▶ MMC Based DC Source rated at 0.5 MVA
▶ Reconfiguration unit allows series/parallel operation
▶ Four quadrant operation

▶ Flexible voltage source in a range±10 kV DC
▶ Flexible current source in a range±100 A DC

LAC

VDC

LAC

MMC1

MMC2

AC grid
0.4/3.3/3.3 kV

reconfiguration

▲ Flexible DC Source Topology [1]

MMC

6kV MVAC link

400V LVAC

IMSM
ABB
ACS2000

12-pulse
Rectifier

10kV MVDC link

PHSP Hydraulic Part - EmulationPHSP Electric Part - DUT

PHSP RT-HIL Emulation

PEL MV lab

4Q Robicon

4Q Grid Simulator

6k
V 

M
VA

C 
lin

k

1)

2) 3)4)5)

6)

7)

▲ Pumped Hydro Storage Plants - Research Platform
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MMC – CONVERTER LAYOUT

MMC demonstrator ratings are:
▶ 500 kVA
▶ 10 kVdc↔ 400 Vac or 6.6 kVac
▶ 16 low voltage cells per branch⇒ 32 cells per phase (cabinet)⇒ 96 cells in total
▶ Industrial central controller and communication (ABB AC PEC 800)

branch
phase-leg

10
kV

dc

400Vac

400Vac

multi-windings
transformer

Yd11y0

phase-leg 1
cabinet

GND

phase-leg 2
cabinet

phase-leg 3
cabinet

control
cabinet

GIMC trafo
cabinet

▲ DC/3-AC MMC Converter Layout [2]
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MMC – SUBMODULE OPTIMIZATION

Submodule
▶ 1.2 kV / 50 A full-bridge IGBT module
▶ Ccel l = 2.25 mF

Thermal design
▶ Cell level: detailed FEM
▶ Cabinet level: simplified FEM

▲ CFD simulations

Semiconductor losses
▶ Virtual Submodule concept has been utilized [3]
▶ Closed-loop waveforms are approached by analytical waveforms
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▲ Time benchmark
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INSULATION COORDINATION (I)

System partitioning

branch
phase-leg

10
kV

dc

400Vac

400Vac

multi-windings
transformer

Yd11y0

phase-leg 1
cabinet

GND

phase-leg 2
cabinet

phase-leg 3
cabinet

control
cabinet

GIMC trafo
cabinet

Standards
▶ UL840 for cell PCB (< 1 kV)
▶ IEC61800-5-1 (AC motor drives)

▶ Pollution degree 2: “Normally, only non-conductive pollution occurs. Occasionally,
however, a temporary conductivity caused by condensation is to be expected,
when the PDS is out of operation.”

▶ Overvoltage category II: “Equipment not permanently connected to the fixed
installation. Examples are appliances, portable tools and other plug-connected
equipment.”

Zones definition [4]

SM1 SM2 SM3 SM4

SM5 SM6 SM7 SM8

SM9 SM10 SM11 SM12

SM13 SM14 SM15 SM16

Zone 1
Zone 2
Zone 3
Zone 4

xr

xv

xc xh

rb

Zone 1
Zone 2
Zone 3
Zone 4

xc xr

xr

xv

Zone 1 (ins. coord. inside a SM’s enclosure) system voltage: 1 kVac

Zone 2 (ins. coord. branch)
▶ Horizontal system voltage: 1 kVac
▶ Vertical system voltage: 3.6 kVac

Zone 3 (ins. coord. branch - cabinet (at GND)) system voltage: 6.6 kVac

Zone 4 (ins. coord. for LV circuits) system voltage: 0.4 kVac

Zone 2
▶ Box at dc- cell’s potential (floating)
▶ Box corner radius: 3 mm
▶ MKHP (high CTI material) drawer holding 4 cells

▲ E-field FEM simulations for drawer design
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INSULATION COORDINATION (II)

✓ MV MMC converter laboratory prototype layout compliant with:
▶ UL840 (for cell)
▶ IEC 61800-5-1

✓ Complete AC dielectric withstand tests on real prototype [4]

▲ Cabinet of one phase-leg (32 cells) in Faraday cage during insulation coordination testing

▲ AC dielectric withstand test result

▲ Drawer holding 4 cell (MKHP material)
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MMC – CONVERTER LAYOUT

MMC demonstrator ratings are:
▶ 500 kVA (2 x 250 kVA)
▶ ± 10 kVdc↔ 2 x 3.3 kVac

▶ 8 low voltage cells per branch⇒ 16 cells per MMC phase⇒ 58 cells in total - per MMC
▶ Industrial central controller and communication (ABB AC PEC 800)

▲ Flexible DC Source Converter Layout
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MMCMECHANICS

▲ MMC CAD development

▲ MMC - Actual mechanical assembly

▲ MMC coupled air-core branch inductors

HoneycombHeater DUT T° Logger

Air flow sensor

T° Controller

▲ MMC Submodule thermal heat-run test setup [5]

PCIM Asia 2020 November 16-18, 2020 Power Electronics Laboratory | 9 of 26



MMCSUB-MODULE
Low voltage based sub-module including cell controller
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MMCSUB-MODULE – STRUCTURE

Key Features
▶ Low voltage power components
▶ Full-bridge sub-module structure
▶ Sub-module rated voltage - 625 V
▶ Sub-module insulation coordination - 900 V
▶ Two interconnected PCBs: Power PCB and Control PCB

▲ MMC Sub-module Structure: Yellow parts - Control PCB

▲ Developed MMC FB sub-module based on the 1.2kV IGBTs
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MMCSUB-MODULE – POWER PCB

▶ Power processing part
▶ Semikron full-bridge IGBT module 1.2 kV/50 A
▶ Bank of electrolytic capacitors Csm= 2.25 mF
▶ Protection devices: Bypass thyristor, relay and OVD
▶ Current and voltage measurements
▶ Hybrid balancing circuitry
▶ Hardware reconfiguration (HR)

▲ MMC Sub-module Structure: Yellow parts - Control PCB

▲ Overview of the Power PCB
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MMCSUB-MODULE – CONTROL PCB

▶ Flyback based auxiliary power supply
▶ +5V Output, used as a control feedback
▶ +80V Protection supply
▶ +15V Gate drivers supplies
▶ +15V Self-supply output

▶ DSP based main SM Controller
▶ Communication with upper level control
▶ Voltage and current measurements
▶ Monitoring the SM condition
▶ Decentralized modulation

▶ Gate drivers
▶ Protection logic

▶ Protection activation from upper level control
▶ Protection activation from DSP
▶ Protection activation by overvoltage detection

▶ Fiber-optical communication link

▲ MMC Sub-module Structure: Yellow parts- Control PCB

▲ Overview of the Control PCB
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AUXILIARY SUB-MODULE POWER SUPPLY (I)

Possible concepts
▶ Externally supplied

▶ Single wire loop
▶ Siebel
▶ Inductive power transfer

▶ Internally supplied
▶ Tapped inductor Buck
▶ Flyback

Choice [6]
▶ Flyback with 6 isolated secondaries

▶ 1× 5 V, 4 W for the controller supply (V+5V). This
output is tightly regulated in closed-loop.

▶ 4× 15 V, 1.5 W for the IGBT gate drivers (VGD1..4)
▶ 1× 80 V, 15 W for 15 s operation when activated

for the protection circuit (Vprot)

VGD1..4

Vprot

V+5V

Vcell

UCC
28C44

V+15V

V+15V

Csn Rsn

Cd

1

2

6

7

4

3

5

8..14

9..15

Planar trafo design
▶ PCB windings (isolation requirements!)
▶ Planar ferrite cores with custom gapping

(COSMO ferrites)

Matlab design tool
▶ Account for flux fringing [7]
▶ BH curve for CF297
▶ Jiles-Atherton parametrization
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FEM
▶ Validate Matlab design
▶ 3D model for accurate leakage flux
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AUXILIARY SUB-MODULE POWER SUPPLY (II)

Transformer assembly
▶ 14 copper layers PCB
▶ Custom gapped ferrite E+I core

AC dielectric withstand test
▶ Way below threshold level of 10pC

Tests

Vcell

VCMD

VDD

V+5V

UVLO turn-on
threshold

V+15V gets energized

▲ Start-up

Vcell

VCMD Vsense

Vprot

VDD

V+5V

VGD1,3

▲ Steady-state operation

Vcell

VCMD

VDD

V+5V

UVLO turn-o�
threshold

loss of regula-
ting capability

▲ Shut-down (slow dv/dt from Delta power-supply
used to emulate the cell)

PCIM Asia 2020 November 16-18, 2020 Power Electronics Laboratory | 14 of 26



MMCSUB-MODULE POWER TESTS

Extensive testing has been done:
▶ Power tests
▶ Thermal heat-runs
▶ Over current tests
▶ Loss of power supply
▶ DC link over voltage
▶ Terminal over voltage
▶ Short-circuit tests
▶ ...

▲ Developed MMC FB sub-module

0.02 0.04 0.06 0.08 0.1 0.12 0.14

-50

0

50

time [s]

DC voltage [V]

AC voltage [V]

AC current [A]

▲ MMC SM over current test

0.22 0.24 0.26 0.28 0.3 0.32 0.34
time [s]

DC voltage [V]

AC voltage [V]

AC current [A]

▲ MMC SM over voltage test

0.52 0.54 0.56 0.58 0.6 0.62 0.64

500

-500

0

time [s]

DC voltage [V]

AC voltage [V]

AC current [A]

PS voltage [V]

▲ Power supply under voltage detection

1 2 3 4 5 6 7 8 9 10
10-6

DC voltage [V]

AC voltage [V]

AC current [A]

time [s]

▲ Short circuit test (Desat detection)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

time [s]

DC voltage [V]

AC voltage [V]

AC current [A]

GD voltage [V]

▲ Gate Driver failure
AC voltage [V]

time [s]

▲ AC terminals over voltage detection
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MMCDIGITAL TWIN
RT-Box based distributed HIL system
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MMC – RT-HIL SYSTEM (I)

▲ Submodule layout

Submodule
▶ Full-Bridge IGBT module
▶ Capacitor bank
▶ Protection circuitry
▶ Balancing circuit
▶ Auxiliary power supply

ABB controller
▶ 2× PEC 800 (Master/Slave config.)
▶ PECMI (measurements)
▶ COMBIO (relays, switches, etc.)
▶ HUB (data gateway)

FOL

Interfacing the RT Box

SM Control!

▲ SM control board adapted for HIL testing ▲ RT Boxes used to host up to eight MMC control cards ▲ Application (Grid) RT Box
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MMC – RT-HIL SYSTEM (I)

▲ Submodule layout

Submodule
▶ Full-Bridge IGBT module
▶ Capacitor bank
▶ Protection circuitry
▶ Balancing circuit
▶ Auxiliary power supply

ABB controller
▶ 2× PEC 800 (Master/Slave config.)
▶ PECMI (measurements)
▶ COMBIO (relays, switches, etc.)
▶ HUB (data gateway)

FOL

Interfacing the RT Box

SM Control!

▲ SM control board adapted for HIL testing ▲ RT Boxes used to host up to eight MMC control cards ▲ Application (Grid) RT Box

⇒ Power part, excluding the balancing circuitry and power supply, is modeled in the RT Box⇒VIRT
UAL

POW
ER P

ROC
ESSI

NG
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MMC – RT-HIL SYSTEM (II)

MMC LegMMC Branch

Vin

La

MMC branch voltage

0

Vin

▲ Modular Multilevel Converter

▲ Channels available on the RT Box

Description
No. of channels/

connectors
Voltage

range

Analog Inputs 16 −10V . . . 10V
Analog Output 16 −10V . . . 10V

Digital Inputs 32 3.3V or 5V
Digital Outputs 32 3.3V or 5V

SFP Connectors 4 N.A.

 Limitation in the number of DIs
One RT Box hosts up to 8 SMs!

PECMI

COMBI IO

Branch Cn
1...8

[8] [8]

Branch Ap
1...8

[8] [8]

Branch Bp
1...8

[8] [8]

Branch Cp
1...8

[8] [8]

Branch An
1...8

[8] [8]

Branch Bn
1...8

[8] [8]

Ethernet
switch

PC

Master 
PEC

Slave
PEC

Control
HUB

POF - UART

Ethernet

SFP

POF - ML

POF - MLDL

Electrical

Application

Interface boardRT Box

▲ Wiring communication scheme of a system comprising one MMC serving an arbitrary application
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MMC – RT-HIL SYSTEM (III)

System summary
▶ 6 RT-Boxes - one per Branch of the MMC
▶ 1 RT-Box - Application (AC and DC side)
▶ ACS 800 PEC - ABB Industrial controller
▶ ABB other peripheral control boards
▶ Integrated into IT cabinet

▲ Application (Grid) RT Box

Control 
Board

Modelling

Pow
er 

Boar
d

Interface
board

Adjusted
control-boards

RT Box

To_Controller

From_Controller

Branch RT Box

Adjustment

▲ Transformation of MMC cell into digital twin equivalent system
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MMC – RT-HIL SYSTEM (IV)

1...8

Front Rear

▲ Digital Twin - Realized RT-HIL system for control verification purpose: (left) front view; (middle) wiring scheme; (right) back view.
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MMC – RT-HIL SYSTEM (V)

MMCRT-HIL extended version
▶ 4 RT-HIL cabinets - one per MMC
▶ 48 cells per one RT-HIL cabinet
▶ Various reconfigurations are possible

▲ RT Box hosting application

▲ RT Box hosting eight MMC sub-modules ▲ Digital Twins - Four RT-HIL systems allowing for various topological reconfigurations
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CONTROL SW TESTING
Results recorded from the HIL platform
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RECORDEDWAVEFORMS (I)

▲ Simulated converter param.
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▲ Converter charging process presented through several stages
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▲ A fraction of the interval referred to as the passive charging
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RECORDEDWAVEFORMS (II)

▲ Simulated converter param.
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▲ Converter operation at no load (PDC = 0)
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▲ Converter operation at full load (PDC = 1MW)
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RECORDEDWAVEFORMS (III)

▲ Simulated converter param.
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▲ Branch operation at full load
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RECORDEDWAVEFORMS (III)

▲ Simulated converter param.

Rated
power (S∗) 1MVar

Output
voltage (VDC)

5kV

Grid
voltage (vg)

3.3kV

No. of SMs
per branch (N )

6

SM
capacitance (Csm)

3.36mF

Branch
inductance (Lbr)

2.5mH

Brach
resistance (Rbr)

60mΩ

PWM carrier
frequency ( fpwm)

1kHz

Fudamental
frequency ( fo)

60Hz

Charging
resistors (Rch)

210Ω

−2000

−1000

0

In
st

.
br

.
vo

lt
ag

e
[V
]

v1
v2

0

100

200

300

SM
ca

p.
vo

lt
ag

e
[V
]

vSM1 vSM2 vSM3

vSM4 vSM5 vSM6

−15

0

15

B
ra

nc
h

cu
rr

en
t
[A
]

0

1

2

3

T
H

Y
_

O
N

(1
.
.
.
6
)

−5
0

5

0

1

2

3

R
E
L
_

O
N

(1
.
.
.
6
)

0 0.1 0.2 0.3 0.4

0

0.5

1

Time [s]

pr
ot

(1
.
.
.
6
)

▲ Passive charging of a branch
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▲ Branch operation at full load⇒ The RT model and control SW behave according to the expectations
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SUMMARY

MMC research platform
▶ Electrical and mechanical design
▶ Insulation coordination
▶ Control development
▶ Testing independently HW and SW
▶ RT-HIL modeling and development
▶ Achieving flexibility for various applications
▶ Supporting future research activities

▲ MMC - Actual mechanical assembly

▲ PEL developed MMC sub-module

▲ Digital Twins - Four RT-HIL systems allowing for various topological reconfigurations
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THANK YOU FOR YOUR ATTENTION
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