Modular Multilevel Converters
 Operating Principles and Applications

Prof. Drazen Dujic, Dr. Stefan Milovanóvic
Power Electronics Laboratory
Ecole Polytechnique Fédérale de Lausanne ASIA

MODULAR MULTILEVEL CONVERTERS
 - OPERATING PRINCIPLES AND APPLICATIONS
 - PART 1

Prof. Dražen Dujić, Dr. Stefan Milovanović
École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory (PEL)

Before the virtual coffee break

After the virtual coffee break

Part 1) Introduction and motivation

- MMC Applications
- MMC operating principles
- Modeling and control

Part 2) MMC energy control

- Role of circulating currents
- Branch energy control methods
- Performance benchmark

Part 3) MMC power extension

- MMC scalability
- Branch paralleling
- Energy control

Part 4) MMC research platform

- MMC system level design
- MMC Sub-module development
- MMC RT-HIL development

INTRODUCTION

Non technical one...

Prof. Drazen Dujic

Experience:

2014 - today	École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
$2013-2014$	ABB Medium Voltage Drives, Turgi, Switzerland
$2009-2013$	ABB Corporate Research, Baden-Dättwil, Switzerland
$2006-2009$	Liverpoool John Moores University, Liverpool, United Kingdom
$2003-2006$	University of Novi Sad, Novi Sad, Serbia

Education:

2008 PhD, Liverpoool John Moores University, Liverpool, United Kingdom

2005 M.Sc., University of Novi Sad, Novi Sad, Serbia
2002 Dipl. Ing., University of Novi Sad, Novi Sad, Serbia

Dr. Stefan Milovanovic

Experience:

2020 - today École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Education:
2020 PhD, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2016 M.Sc., School of Electrical Engineering, University of Belgrade, Belgrade, Serbia

POWER ELECTRONICS LABORATORY AT EPFL

- Active since February 2014
- Currently: 14 PhD students, 4 Post Docs, 1 Administrative Ass.
- Funding CH: SNSF, SFOE, Innosuisse
- Funding EU: H2020, S2R JU, ERC CoG
- Funding: Industry OEMs
- www.epfl.ch/labs/pel/

Competence Centre

- Power Electronics Laboratory

PEL RESEARCH FOCUS

MVDC Technologies and Systems

- System Stability
- Protection Coordination
- Power Electronic Converters

ENERGY CONVERSION TECHNOLOGIES AND SYSTEMS

High Power Electronics

- Multilevel Converters
- Solid State Transformers
- Medium Frequency Conversion

Components

- Semiconductor devices
- Magnetics
- Modeling, Characterization

MMC APPLICATIONS

Examples of applications where MMC is already commercialized

TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC

- Decoupled semiconductor switching frequency from converter apparent switching frequency
- Improved harmonic performance \Rightarrow less / no filters
- Series-connection of semiconductors still possible
- Fault blocking capability depending on cell type

Solid State Transformers (SSTs)

- Power density increase w/ conversion \& isolation at higher frequency
- Grid applications / traction transformer w/ different optimization objectives
- MFT design / isolation are the bottlenecks

MV Variable Speed Drives

- Monolithic ML topologies (NPC, NPP, FC, ANPC) are not scalable
- Robicon drive \rightarrow everyone offers it
- Siemens \& Benshaw: MMC drive
- Low $\mathrm{d} v / \mathrm{d} t \Rightarrow$ motor friendly

FACTS

- SFC for railway interties (direct catenary connection)
- STATCOM
- BESS (split batteries)

TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC

- Decoupled semiconductor switching frequency from converter apparent switching frequency
- Improved harmonic performance \Rightarrow less / no filters
- Series-connection of semiconductors still possible
- Fault blocking capability depending on cell type

Solid State Transformers (SSTs)

- Power density increase w/ conversion \& isolation at higher frequency
- Grid applications / traction transformer w/ different optimization objectives
- MFT design / isolation are the bottlenecks

MV Variable Speed Drives

- Monolithic ML topologies (NPC, NPP, FC, ANPC) are not scalable
- Robicon drive \rightarrow everyone offers it
- Siemens \& Benshaw: MMC drive
- Low $\mathrm{d} v / \mathrm{d} t \Rightarrow$ motor friendly

FACTS

- SFC for railway interties (direct catenary connection)
- STATCOM
- BESS (split batteries)

Modularity provides obvious benefits in high power applications!

MMC FOR HVDC

- SIEMENS MMC-based HVDC PLUS
- MMC in HVDC (two substations at different locations)
- Modular design using basic sub-module
- Voltage scalability to very high voltage levels
- Low filtering needs on AC side
- Redundancy is easily implemented
- Half-bridge sub-modules are sufficient

- ABB MMC-based HVDC LIGHT

MMC FOR FACTS

- ABB IGBT-based MMC STATCOM
- MMC as STATCOM (Delta configuration is shown)
- Transformerless solution
- Double star MMC solution is also possible
- Modular
- Easy voltage scalability (no need for tranasformer)
- Redundancy is easily implemented

- Full-bridge sub-modules
- HYOSUNG (left) and LS (right) IGBT-based MMC STATCOMs

MMC FOR RAIL INTERTIES

- SIEMENS IGBT-based MMC for railway interties (SITRAS PLUS)
Δ MMC as SFC for Rail Interties (transformer not shown)
- $15 \mathrm{kV}, 16.7 \mathrm{~Hz}$ or $25 \mathrm{kV}, 50 \mathrm{~Hz}$ rail networks
- With or without transformer
- Fixed frequencies on both side
- Matrix alike principles of operation
- High efficiency
- Full-bridge sub-modules

- ABB IGCT-based MMC for railway interties [1]

MMC FOR VARIABLE SPEED DRIVES

- Direct MMC for VSDs (e.g. hydro applications)
- Indirect-MMC: DC-fed MMC inverter (HB SM)
- Direct-MMC: AC-AC Matrix-alike converter (FB SM)
- Low-frequency operation was troublesome
- Power density is an issue
- Hydro applications based on DMMC

^ SIEMENS MMC VSD GH150

- ABB IGCT-based MMC for hydropower applications (one branch only) [2]

MODULAR MULTILEVEL CONVERTER

Modeling and basic operating principles...

MODULAR MULTILEVEL CONVERTER

- SM developed in PEL

MODULAR MULTILEVEL CONVERTER

- SM developed in PEL

BASIC SM STRUCTURES

- HB SM

- FB SM

S_{1}	S_{2}	S_{3}	S_{4}	V_{SM}
0	0	0	0	$\operatorname{sgn}\left(i_{\mathrm{br}}\right) V_{\mathrm{C}}$
1	0	0	1	V_{C}
0	1	1	0	$-V_{\mathrm{C}}$
1	0	1	0	0
$-\frac{0}{1}-$	$-\frac{1}{1}-$	$-\frac{0}{0}$	$-\frac{1}{0}--\frac{0}{-}---$	
0	0	1	1	forbidden
1	1	1	1	

MMC BRANCH MODELING

SM terminal voltages can be summed, leading to

$$
v_{\mathrm{SM}, i}=n_{\mathrm{SM}} v_{\mathrm{C}, i} \quad / \sum_{i=1}^{N}
$$

- MMC branch voltage example

- Inserted HB SM $\left(n_{\mathrm{SM}}=1\right)$

- Bypassed HB SM ($\left.n_{\text {SM }}=0\right)$

Assuming that $v_{\mathrm{C}, i}=v_{\mathrm{br} \Sigma} / N$ yields

$$
v_{\mathrm{br}}=\sum_{i=1}^{N} n_{\mathrm{SM}} \frac{v_{\mathrm{br} \Sigma}}{N}=\underbrace{\frac{\sum_{i=1}^{N} n_{\mathrm{SM}}}{N}}_{\substack{\text { insertion index } \\ m(t)}} v_{\mathrm{br} \Sigma}
$$

Summing the equations set for every individual SM capacitor results in

$$
C_{\mathrm{SM}} \frac{\mathrm{~d} v_{\mathrm{C}, i}}{\mathrm{~d} t}=n_{\mathrm{SM}} i_{\mathrm{br}} \quad / \sum_{i=1}^{N}
$$

$$
\underbrace{\frac{C_{\mathrm{SM}}}{N}}_{C_{\mathrm{br} \Sigma}} \frac{\mathrm{~d} v_{\mathrm{br} \Sigma}}{\mathrm{~d} t}=\underbrace{\frac{\sum_{i=1}^{N} n_{\mathrm{SM}}}{N}}_{m(t)} i_{\mathrm{br}}
$$

- Averaged model of an MMC branch

- The MMC leg sufficient for basic modeling

Two KVLs can be formed, yielding

$$
\begin{aligned}
& \mathrm{KVL}_{1}: \quad \frac{V_{\mathrm{in}}}{2}=v_{\mathrm{p}}+L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{p}}}{\mathrm{~d} t}+R_{\mathrm{br}} i_{\mathrm{p}}+k L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{n}}}{\mathrm{~d} t}+v_{\mathrm{A}} \\
& \mathrm{KVL}_{2}: \quad \frac{V_{\mathrm{in}}}{2}=v_{\mathrm{n}}+L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{n}}}{\mathrm{~d} t}+R_{\mathrm{br}} i_{\mathrm{n}}+k L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{p}}}{\mathrm{~d} t}-v_{\mathrm{A}}
\end{aligned}
$$

$\mathrm{KVL}_{1}-\mathrm{KVL}_{2}$:

$$
(1-k) \frac{L_{\mathrm{br}}}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \underbrace{\left(i_{\mathrm{p}}-i_{\mathrm{n}}\right)}_{i_{\mathrm{o}}}+\frac{R_{\mathrm{br}}}{2}\left(i_{\mathrm{p}}-i_{\mathrm{n}}\right)=\underbrace{\frac{v_{\mathrm{n}}-v_{\mathrm{p}}}{2}}_{v_{\mathrm{s}}}-v_{\mathrm{A}}
$$

- AC equivalent circuit of the observed leg (left); Model of an MMC seen from its AC terminals (right);
$\underline{K V L_{1}+K V L_{2}}:$

$$
2(1+k) L_{\mathrm{br}} \frac{\mathrm{~d}}{\mathrm{~d} t} \underbrace{\left(\frac{i_{\mathrm{p}}+i_{\mathrm{n}}}{2}\right)}_{\begin{array}{c}
\text { common-mode } \\
\text { current }\left(i_{N}\right)
\end{array}}+2 R_{\mathrm{br}} \frac{i_{\mathrm{p}}+i_{\mathrm{n}}}{2}=V_{\mathrm{in}}-\underbrace{\left(v_{\mathrm{p}}+v_{\mathrm{n}}\right)}_{2 v_{\mathrm{c}}}
$$

Δ DC equivalent circuit of the observed leg (left); Model of an MMC seen from its DC terminals (right);

NATURE OF THE LEG CURRENT COMPONENTS

\(\left.\begin{array}{ll}Leg \mathrm{AC} current \Rightarrow \& i_{\mathrm{o}}=i_{\mathrm{p}}-i_{\mathrm{n}}

Leg common-mode current \Rightarrow \& i_{\mathrm{c}}=\left(i_{\mathrm{p}}+i_{\mathrm{n}}\right) / 2\end{array}\right\}\)| $i_{\mathrm{p}}=i_{\mathrm{c}}+i_{\mathrm{s}} / 2$ |
| :--- |
| $i_{\mathrm{n}}=i_{\mathrm{c}}-i_{\mathrm{s}} / 2$ |

- Illustration of the MMC leg current components

Seen from the DC terminal, two branches operate in series, while the two operate in parallel when observed from the AC terminal

AC TERMINAL CURRENT CONTROL (I)

- MMC AC side equivalent

Requirements

- Perfect synchronization to the AC grid (PLL)

- Sufficiently high voltage reserve (total energy control)

Power control in the $d q$ frame

$$
\begin{aligned}
& P_{g}=\frac{3}{2}(v_{g d} i_{g d}+\underbrace{v_{g q} i_{g q}}_{=0})=\frac{3}{2} v_{g d} i_{g d} \\
& Q_{g}=\frac{3}{2}(\underbrace{v_{g q} i_{g d}}_{=0}-v_{g d} i_{g q})=-\frac{3}{2} v_{g d} i_{g q}
\end{aligned}
$$

$d q$ transformation can be performed as

$$
\left[\begin{array}{l}
v_{\mathrm{d}} \\
v_{\mathrm{q}}
\end{array}\right]=\underbrace{\frac{2}{3}\left[\begin{array}{rrr}
\cos \left(\theta_{\mathrm{g}}\right) & \cos \left(\theta_{\mathrm{g}}-2 \pi / 3\right) & \cos \left(\theta_{\mathrm{g}}-4 \pi / 3\right) \\
-\sin \left(\theta_{\mathrm{g}}\right) & -\sin \left(\theta_{\mathrm{g}}-2 \pi / 3\right) & -\sin \left(\theta_{\mathrm{g}}-4 \pi / 3\right)
\end{array}\right]}_{K}\left[\begin{array}{c}
v_{\mathrm{gA}} \\
v_{\mathrm{gB}} \\
v_{\mathrm{gC}}
\end{array}\right],
$$

while the circuit from the left can be described with the following set of equations:

$$
\left[\begin{array}{c}
v_{\mathrm{sA}} \\
v_{\mathrm{sB}} \\
v_{\mathrm{sC}}
\end{array}\right]=\left[\begin{array}{ccc}
L_{\mathrm{AC}} & 0 & 0 \\
0 & L_{\mathrm{AC}} & 0 \\
0 & 0 & L_{\mathrm{AC}}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
i_{\mathrm{gA}} \\
i_{\mathrm{gB}} \\
i_{\mathrm{gC}}
\end{array}\right]+\left[\begin{array}{ccc}
R_{\mathrm{AC}} & 0 & 0 \\
0 & R_{\mathrm{AC}} & 0 \\
0 & 0 & R_{\mathrm{AC}}
\end{array}\right]\left[\begin{array}{l}
i_{\mathrm{gA}} \\
i_{\mathrm{gB}} \\
i_{\mathrm{gC}}
\end{array}\right]+\left[\begin{array}{c}
v_{\mathrm{gA}} \\
v_{\mathrm{gB}} \\
v_{\mathrm{gC}}
\end{array}\right]+v_{\mathrm{n} 0}\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]
$$

where $L_{\mathrm{AC}}=L_{\mathrm{g}}+\alpha L_{\mathrm{br}} / 2$ and $R_{\mathrm{AC}}=R_{\mathrm{g}}+R_{\mathrm{br}} / 2$.

Multiplying both sides of the above expression with K, leads to

$$
\begin{aligned}
& v_{\mathrm{sd}}=L_{\mathrm{AC}} \frac{\mathrm{~d} i_{\mathrm{gd}}}{\mathrm{~d} t}+R_{\mathrm{AC}} i_{\mathrm{gd}}-\underbrace{\omega_{g} L_{\mathrm{AC}} i_{\mathrm{gq}}}_{\text {cross-coupling }}+\underbrace{v_{\mathrm{gd}}}_{=v_{\mathrm{g}}} \\
& v_{\mathrm{sq}}=L_{\mathrm{AC}} \frac{\mathrm{~d} i_{\mathrm{gq}}}{\mathrm{~d} t}+R_{\mathrm{AC}} i_{\mathrm{gq}}+\underbrace{\omega_{g} L_{\mathrm{AC}} i_{\mathrm{gd}}}_{\text {cross-coupling }}+\underbrace{v_{\mathrm{gq}}}_{=0}
\end{aligned}
$$

To achieve decoupled control, cross-coupling terms should be removed

AC TERMINAL CURRENT CONTROL (II)

- $d q$ quantities are essentially $\mathrm{DC} \Rightarrow \mathrm{PI}$ controllers can be used
- The use feed-forward terms to avoid cross-coupling of the axes

- MMC AC current control block diagram

From the control diagram on the left, one can conclude that

$$
\begin{aligned}
& v_{\mathrm{sd}}^{*}=\Delta v_{\mathrm{sd}}+\underbrace{v_{\mathrm{gd}}-\omega_{g} L_{\mathrm{AC}} i_{\mathrm{gq}}}_{\text {feed-forward }} \\
& v_{\mathrm{sq}}^{*}=\Delta v_{\mathrm{sq}}+\underbrace{v_{\mathrm{gq}}+\omega_{g} L_{\mathrm{AC}} i_{\mathrm{gd}}}_{\text {feed-forward }} \\
& \Delta v_{\mathrm{sd}}=H_{\mathrm{PI}}\left(i_{\mathrm{gd}}^{*}-i_{\mathrm{gd}}\right)=L_{\mathrm{AC}} \frac{\mathrm{~d} i_{\mathrm{gd}}}{\mathrm{~d} t}+R_{\mathrm{AC}} i_{\mathrm{gd}} \\
& \Delta v_{\mathrm{sq}}=H_{\mathrm{PI}}\left(i_{\mathrm{gq}}^{*}-i_{\mathrm{gq}}\right)=L_{\mathrm{AC}} \frac{\mathrm{~d} i_{\mathrm{gq}}}{\mathrm{~d} t}+R_{\mathrm{AC}} i_{\mathrm{gq}}
\end{aligned}
$$

meaning that decoupled control of d and q currents is indeed obtained.
Obtaining the references in the $A B C$ frame can be performed as

$$
\left[\begin{array}{c}
v_{\mathrm{SA}}^{*} \\
v_{\mathrm{sB}}^{*} \\
v_{\mathrm{sC}}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\theta_{g}\right) & \sin \left(\theta_{g}\right) \\
\cos \left(\theta_{g}-2 \pi / 3\right) & \sin \left(\theta_{g}-2 \pi / 3\right) \\
\cos \left(\theta_{g}+2 \pi / 3\right) & \sin \left(\theta_{g}+2 \pi / 3\right)
\end{array}\right]\left[\begin{array}{c}
v_{\mathrm{sd}}^{*} \\
v_{\mathrm{sq}}^{*}
\end{array}\right]
$$

AC TERMINAL CURRENT CONTROL (II)

- $d q$ quantities are essentially $\mathrm{DC} \Rightarrow \mathrm{PI}$ controllers can be used
- The use feed-forward terms to avoid cross-coupling of the axes

- MMC AC current control block diagram

From the control diagram on the left, one can conclude that

$$
\begin{aligned}
& v_{\mathrm{sd}}^{*}=\Delta v_{\mathrm{sd}}+\underbrace{v_{\mathrm{gd}}-\omega_{g} L_{\mathrm{AC}} i_{\mathrm{gq}}}_{\text {feed-forward }} \\
& v_{\mathrm{sq}}^{*}=\Delta v_{\mathrm{sq}}+\underbrace{v_{\mathrm{gq}}+\omega_{g} L_{\mathrm{AC}} i_{\mathrm{gd}}}_{\text {feed-forward }} \\
& \Delta v_{\mathrm{sd}}=H_{\mathrm{PI}}\left(i_{\mathrm{gd}}^{*}-i_{\mathrm{gd}}\right)=L_{\mathrm{AC}} \frac{\mathrm{~d} i_{\mathrm{gd}}}{\mathrm{~d} t}+R_{\mathrm{AC}} i_{\mathrm{gd}} \\
& \Delta v_{\mathrm{sq}}=H_{\mathrm{PI}}\left(i_{\mathrm{gq}}^{*}-i_{\mathrm{gq}}\right)=L_{\mathrm{AC}} \frac{\mathrm{~d} i_{\mathrm{gq}}}{\mathrm{~d} t}+R_{\mathrm{AC}} i_{\mathrm{gq}}
\end{aligned}
$$

meaning that decoupled control of d and q currents is indeed obtained.
Obtaining the references in the $A B C$ frame can be performed as

$$
\left[\begin{array}{c}
v_{\mathrm{sA}}^{*} \\
v_{\mathrm{sB}}^{*} \\
v_{\mathrm{sC}}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\theta_{g}\right) & \sin \left(\theta_{g}\right) \\
\cos \left(\theta_{g}-2 \pi / 3\right) & \sin \left(\theta_{g}-2 \pi / 3\right) \\
\cos \left(\theta_{g}+2 \pi / 3\right) & \sin \left(\theta_{g}+2 \pi / 3\right)
\end{array}\right]\left[\begin{array}{c}
v_{\mathrm{sd}}^{*} \\
v_{\mathrm{sq}}^{*}
\end{array}\right]
$$

DC TERMINAL CURRENT CONTROL

- MMCDC side equivalent

Rectifier operation

- MMC represents a current source
- Some other stage is controlling the current

- Back-to-Back connection power converters

- Equivalent circuit describing two B2B connected converters

Control strategy

- MMC_{2} controls its current (inverter mode)
- $\mathrm{MMC}_{1} \Rightarrow 2 v_{\mathrm{c} 0}^{(1)}=V_{\mathrm{DC}}^{*}$ followed the energy control
- MMC DC current control block diagram

THE CONCEPT OF CIRCULATING CURENTS

Observe the MMC DC equivalent circuit, such that $v_{\mathrm{c}, i}=v_{\mathrm{c} 0}^{*}$

\triangle DC equivalent circuit of a 3 PH MMC in case $v_{\mathrm{c}, i}=v_{\mathrm{c} 0}^{*}$

$$
\begin{aligned}
& \text { DC terminal current sharing! } \\
& Z_{\mathrm{brA}} \neq Z_{\mathrm{brC}} \neq Z_{\mathrm{brC}} \Rightarrow i_{\mathrm{cA}} \neq i_{\mathrm{cB}} \neq i_{\mathrm{cC}}
\end{aligned}
$$

Ideally, $i_{\mathrm{c}, i}=\frac{i_{\mathrm{DC}}}{3}$, however, a more realistic approach implies

$$
i_{\mathrm{c}, i}=\frac{i_{\mathrm{DC}}}{3}+i_{\mathrm{c} \Delta, i},
$$

where $i_{\mathrm{c}, i}$ is referred to as the circulating current since

$$
\begin{aligned}
& i_{\mathrm{cA}}+i_{\mathrm{cB}}+i_{\mathrm{cC}}=i_{\mathrm{DC}} \\
\Rightarrow & i_{\mathrm{c} \Delta \mathrm{~A}}+i_{\mathrm{c} \Delta \mathrm{~B}}+i_{\mathrm{c} \Delta \mathrm{C}}
\end{aligned}=0
$$

THE CONCEPT OF CIRCULATING CURENTS

Observe the MMC DC equivalent circuit, such that $v_{\mathrm{c}, i}=v_{\mathrm{c} 0}^{*}$

\triangle DC equivalent circuit of a 3PH MMC in case $v_{\mathrm{c}, i}=v_{\mathrm{c} 0}^{*}$

$$
\begin{aligned}
& \text { DC terminal current sharing! } \\
& Z_{\mathrm{brA}} \neq Z_{\mathrm{brC}} \neq Z_{\mathrm{brC}} \Rightarrow i_{\mathrm{cA}} \neq i_{\mathrm{cB}} \neq i_{\mathrm{cC}}
\end{aligned}
$$

Ideally, $i_{\mathrm{c}, i}=\frac{i_{\mathrm{DC}}}{3}$, however, a more realistic approach implies

$$
i_{\mathrm{c}, i}=\frac{i_{\mathrm{DC}}}{3}+i_{\mathrm{c} \Delta, i}
$$

where $i_{\mathrm{c}, i}$ is referred to as the circulating current since

$$
\begin{aligned}
& i_{\mathrm{cA}}+i_{\mathrm{cB}}+i_{\mathrm{cC}}=i_{\mathrm{DC}} \\
\Rightarrow & i_{\mathrm{c} \Delta \mathrm{~A}}+i_{\mathrm{c} \Delta \mathrm{~B}}+i_{\mathrm{c} \Delta \mathrm{C}}
\end{aligned}=0
$$

In case $v_{\mathrm{c}, i}=v_{\mathrm{c} 0}^{*}+v_{\mathrm{c} \Delta, i}$, the circulating currents can be controlled. Without the loss of generality, take phase A as an example:

$$
\begin{gathered}
L_{\mathrm{br}} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{i_{\mathrm{DC}}}{3}\right)+v_{\mathrm{c} 0}^{*}=L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{cA}}}{\mathrm{~d} t}+v_{\mathrm{c} 0}^{*}+v_{\mathrm{c} \Delta \mathrm{~A}} \\
L_{\mathrm{br}} \frac{\mathrm{~d}}{\mathrm{~d} t}(\underbrace{i_{\mathrm{c} \Delta \mathrm{~A}}-\frac{i_{\mathrm{DC}}}{3}}_{i_{\mathrm{c} \Delta \mathrm{~A}}})=-v_{\mathrm{c} \Delta \mathrm{~A}}
\end{gathered}
$$

- The circuit relevant for circulating current control

$$
v_{ \pm}=2 v_{\mathrm{c} 0}^{*}+\frac{1}{3} \underbrace{\left\{v_{\mathrm{c} \Delta \mathrm{~A}}+v_{\mathrm{c} \Delta \mathrm{~B}}+v_{\mathrm{c} \Delta \mathrm{C}}\right\}}_{\text {must be equal to } 0}
$$

Decoupled control of circulating currents

$$
\sum_{i=\{A, B, C\}} v_{\mathrm{c} \Delta, i}=0
$$

CIRCULATING CURRENTS CONTROL

According to the previous slide

$$
\beta L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{c} \Delta}}{\mathrm{~d} t}=-v_{\mathrm{c} \Delta \mathrm{~A}}
$$

allowing for the derivation of control diagram from below.

- A leg circulating current control block diagram

$$
v_{\mathrm{c} \Delta \mathrm{~A}}^{*}+v_{\mathrm{c} \Delta \mathrm{~B}}^{*}+v_{\mathrm{c} \Delta \mathrm{C}}^{*}=-W_{\mathrm{circ}}(s)\{\left(i_{\mathrm{c} \Delta \mathrm{~A}}^{*}+i_{\mathrm{c} \Delta \mathrm{~B}}^{*}+i_{\mathrm{c} \Delta \mathrm{C}}^{*}\right)-\underbrace{\left(i_{\mathrm{c} \Delta \mathrm{~A}}+i_{\mathrm{c} \Delta \mathrm{~B}}+i_{\mathrm{c} \Delta \mathrm{C}}\right)}_{=0 \text { according to the definition }}\}
$$

Decoupled control of circulating currents

The sum of circ. current references must be zero!

Other possible ways to control the circulating currents:

- $\alpha \beta$ domain (DC components)

$$
\beta L_{\mathrm{br}} \frac{\mathrm{~d} i_{\mathrm{c} \Delta}^{(\alpha \beta)}}{\mathrm{d} t}=-v_{\mathrm{c} \Delta}^{(\alpha \beta)}
$$

- $d q$ frame with positive and negative sequences (as will be seen shortly)

MMC CONTROL LAYERS

Two modes of operation:

1. Current source mode (also called inverter mode): transferring active power from the dc terminals to the ac terminals
2. Voltage source mode (also called rectifier mode): transferring active power from the ac terminals to the dc terminals

Two sets of state variables:

1. External state variables (dc-link voltage, grid currents, etc.): knowledge from VSC control is reused
2. Internal state variables (capacitor voltages, circulating currents): specific MMC control

^ Overall MMC control structure

MODULATION INDEX CALCULATION METHODS

Direct modulation

- The modulation indices are calculated from the desired dc average value
- The energy controllers are disabled
- The odd harmonics and integrator on dc component in the CCC are disabled
- Rely on self balancing of the branch energies [3]

$$
\begin{aligned}
\mathrm{m}_{p} & =\frac{V_{B} / 2-\mathrm{e}_{B}^{\star} / 2-\mathrm{e}_{L}^{\star}}{v_{C \Sigma 0}^{\star}} \\
\mathrm{m}_{n} & =\frac{V_{B} / 2-\mathrm{e}_{B}^{\star} / 2+\mathrm{e}_{L}^{\star}}{v_{C \Sigma 0}^{\star}}
\end{aligned}
$$

- Direct modulation principles

Closed-loop control

- The modulation indices are calculated from the actual measurements of the summed branch capacitors
- The energy controllers are enabled
- The odd harmonics in the CCC are enabled

Open-loop control

- The modulation indices are calculated from estimates of the summed branch capacitors in steady-state [4]
- The energy controllers are disabled
- The odd harmonics and integrator on dc component in the CCC are disabled
- Self energy balance achieved [5]

$$
\begin{aligned}
\mathrm{m}_{p} & =\frac{V_{B} / 2-\mathrm{e}_{B}^{\star} / 2-\mathrm{e}_{L}^{\star}}{\hat{\mathrm{v}}_{C \Sigma p}} \\
\mathrm{~m}_{n} & =\frac{V_{B} / 2-\mathrm{e}_{B}^{\star} / 2+\mathrm{e}_{L}^{\star}}{\hat{\mathrm{v}}_{C \Sigma n}}
\end{aligned}
$$

Hybrid voltage control

- The modulation indices are calculated from filtered values of the summed branch capacitors measurements
- The energy controllers are disabled
- The odd harmonics and integrator on dc component in the CCC are disabled
- Self energy balance achieved [6]

$$
\begin{aligned}
\mathrm{m}_{p} & =\frac{V_{B} / 2-\mathrm{e}_{B}^{\star} / 2-\mathrm{e}_{L}^{\star}}{\mathrm{v}_{C \Sigma p}^{\mathrm{F}}} \\
\mathrm{~m}_{n} & =\frac{V_{B} / 2-\mathrm{e}_{B}^{\star} / 2+\mathrm{e}_{L}^{\star}}{\mathrm{v}_{C \Sigma n}^{\mathrm{F}}}
\end{aligned}
$$

- Hybrid voltage control

[^0]
CONTROL DECENTRALIZATION

Branch level modulation

- Each branch handled separately

Cell level modulation

- Each cell has its own modulator

Remark μ C denotes either a microcontroller, an FGPA, or a combination of both.

Phase-leg level modulation

- Aim at improving ac-side spectrum and unlocking full modulation method harmonic performance
- Compromises in the circulating current control
- SHE / OPP / SVM with $2 N_{\text {cells }}+1$ modulation

SUMMARY

Modular Multilevel Converter

- Modular design easily scalable for higher voltages
- Flexible and adaptable for different conversion needs
- Efficient
- HVDC (early adopters)
- STATCOM, FACTS, RAIL INTERTIES, MV DRIVES
- Can serve MV and HV applications!
- Unlimited research opportunities...[7], [8]

- HVDC Light valve hall from ABB.

A Galvanically Isolated Modular Converter [7]

- High Power DC-DC Converter Employing Scott Transformer Connection [8]

BIBLIOGRAPHY

[1] D. Weiss et al. "IGCT based Modular Multilievel Converter for an AC-AC Rail Power Supply." PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2017, pp. 1-8.
[2] M. Vasiladiotis et al. "IGCT-Based Direct ACIAC Modular Multievel Converters for Pumped Hydro Storage Plants." 2018 IEEE Energy Conversion Congress and Exposition (ECCE). 2018, pp. $4837-4844$.
[3] S. Cui et al. "Principles and dynamics of natural arm capacitor voltage balancing of a direct modulated modular multilevel converter"." 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia). June 2015, pp. 259-267.
[4] L. Angquistet al. "Open-Loop Control of Modular Multilevel Converters Using Estimation of Stored Energy." IEEE Transactions on Industry Applications 47.6 (Nov. 2011), pp. 2516-2524.
[5] A. Antonopoulos et al. "Global Asymptotic Stability of Modular Multievel Converters." IEEE Transactions on Industrial Electronics 61.2 (Feb. 2014), pp. 603-612.
[6] L. Harnefors et al. "Global Asymptotic Stability of Current-Controlled Modular Multilevel Converters." IEEE Transactions on Power Electronics 30.1 (Jan. 2015), pp. 249-258.
[7] A. Christe and D. Duic. "Galvanically isolated modular converter." IET Power Electronics 9.12 (2016), pp. 2318-2328.
[8] S. Milovanovic and D. Duic. "MMC-Based High Power DC-DC Converter Employing Scott Transformer." PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. June 2018, pp. 1-7.

Modular Multilevel Converters
 Operating Principles and Applications

Prof. Drazen Dujic, Dr. Stefan Milovanóvic
Power Electronics Laboratory
Ecole Polytechnique Fédérale de Lausanne ASIA

MODULAR MULTILEVEL CONVERTERS
 - OPERATING PRINCIPLES AND APPLICATIONS
 - PART 2

Prof. Dražen Dujić, Dr. Stefan Milovanović
École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory (PEL)

Before the virtual coffee break

After the virtual coffee break

Part 1) Introduction and motivation

- MMC Applications
- MMC operating principles
- Modeling and control

Part 2) MMC energy control

- Role of circulating currents
- Branch energy control methods
- Performance benchmark

Part 3) MMC power extension

- MMC scalability
- Branch paralleling
- Energy control

Part 4) MMC research platform

- MMC system level design
- MMC Sub-module development
- MMC RT-HIL development

CONTROL OF THE MMC INTERNAL ENERGY

Different methods, properties, comparison...

THE BRANCH ENERGY CONTROL (I)

- MMC energy flow

Total energy control:

- Inverter \Rightarrow DC side
- Rectifier $\Rightarrow A C$ side
? Is total energy control sufficient?

- Illustration of the need for additional energy ctrl.

Branch power analysis is conducted on the leg level [1], [2], [3], [4].

$$
\begin{aligned}
& P_{\mathrm{p}}=\frac{\mathrm{d} W_{\mathrm{p}}}{\mathrm{~d} t}=v_{\mathrm{p}} i_{\mathrm{p}}=\left(v_{\mathrm{c}}-v_{\mathrm{s}}\right)\left(i_{\mathrm{c}}+\frac{i_{\mathrm{o}}}{2}\right) \\
& P_{\mathrm{n}}=\frac{\mathrm{d} W_{\mathrm{n}}}{\mathrm{~d} t}=v_{\mathrm{n}} i_{\mathrm{n}}=\left(v_{\mathrm{c}}+v_{\mathrm{s}}\right)\left(i_{\mathrm{c}}-\frac{i_{\mathrm{o}}}{2}\right)
\end{aligned}
$$

Coordinate transformation is performed as

$$
\left.\begin{array}{l}
W_{\Sigma}=W_{\mathrm{p}}+W_{\mathrm{n}} \\
W_{\Delta}=W_{\mathrm{p}}-W_{\mathrm{n}}
\end{array}\right\} \quad \begin{aligned}
& \frac{\mathrm{d} W_{\Sigma}}{\mathrm{d} t}=2 v_{\mathrm{c}} i_{\mathrm{c}}-v_{\mathrm{o}} i_{\mathrm{o}}=\left(v_{\mathrm{c} 0}+v_{\mathrm{c} \Delta}-v_{\mathrm{s}}\right)\left(\frac{i_{\mathrm{DC}}}{3}+i_{\mathrm{c} \Delta}+\frac{i_{\mathrm{o}}}{2}\right) \\
& \frac{\mathrm{d} W_{\Delta}}{\mathrm{d} t}=v_{\mathrm{c}} i_{\mathrm{o}}-2 v_{\mathrm{s}} i_{\mathrm{c}}=\left(v_{\mathrm{c} 0}+v_{\mathrm{c} \Delta}+v_{\mathrm{s}}\right)\left(\frac{i_{\mathrm{DC}}}{3}+i_{\mathrm{c} \Delta}-\frac{i_{\mathrm{o}}}{2}\right)
\end{aligned}
$$

Assuming that no circulating currents are generated, while $v_{\mathrm{s}}=\hat{v}_{\mathrm{s}} \cos \left(\omega_{g} t-\gamma\right)$ and $i_{\mathrm{o}}=\hat{i}_{\mathrm{o}} \cos \left(\omega_{g} t-\delta\right)$ yields

$$
\left.\frac{\mathrm{d} W_{\Sigma}}{\mathrm{d} t}\right|_{\text {no circ. }}=2 v_{\mathrm{c} 0} \frac{i_{\mathrm{DC}}}{3}-v_{\mathrm{s}} i_{\mathrm{o}} \approx \underbrace{V_{\mathrm{DC}} \frac{i_{\mathrm{DC}}}{3}-\frac{\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{o}}}{2} \cos (\gamma-\delta)}_{=0}-\underbrace{\frac{\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{o}}}{2} \cos \left(2 \omega_{\mathrm{g}} t-\gamma-\delta\right)}_{\text {oscillating } @ 2 \omega_{\mathrm{g}}}
$$

$$
\left.\frac{\mathrm{d} W_{\Delta}}{\mathrm{d} t}\right|_{\text {no circ. }}=\underbrace{-2 \hat{v}_{\mathrm{s}} \frac{i_{\mathrm{DC}}}{3} \cos \left(\omega_{\mathrm{g}} t-\gamma\right)+\hat{i}_{\mathrm{o}} v_{\mathrm{c} 0} \cos \left(\omega_{\mathrm{g}} t-\delta\right)}_{\text {oscillating } @ 1 \omega_{\mathrm{g}}}
$$

Branch energy [p.u]

- Steady state appearance of the upper and lower branch energies normalized with respect to the branch mean energy.

THE BRANCH ENERGY CONTROL (I)

- MMC energy flow

Total energy control:

- Inverter \Rightarrow DC side
- Rectifier $\Rightarrow A C$ side
? Is total energy control sufficient?

- Illustration of the need for additional energy ctrl.

Branch power analysis is conducted on the leg level [1], [2], [3], [4].

$$
\begin{aligned}
& P_{\mathrm{p}}=\frac{\mathrm{d} W_{\mathrm{p}}}{\mathrm{~d} t}=v_{\mathrm{p}} i_{\mathrm{p}}=\left(v_{\mathrm{c}}-v_{\mathrm{s}}\right)\left(i_{\mathrm{c}}+\frac{i_{\mathrm{o}}}{2}\right) \\
& P_{\mathrm{n}}=\frac{\mathrm{d} W_{\mathrm{n}}}{\mathrm{~d} t}=v_{\mathrm{n}} i_{\mathrm{n}}=\left(v_{\mathrm{c}}+v_{\mathrm{s}}\right)\left(i_{\mathrm{c}}-\frac{i_{\mathrm{o}}}{2}\right)
\end{aligned}
$$

Coordinate transformation is performed as

$$
\left.\begin{array}{l}
W_{\Sigma}=W_{\mathrm{p}}+W_{\mathrm{n}} \\
W_{\Delta}=W_{\mathrm{p}}-W_{\mathrm{n}}
\end{array}\right\} \quad \begin{aligned}
& \frac{\mathrm{d} W_{\Sigma}}{\mathrm{d} t}=2 v_{\mathrm{c}} i_{\mathrm{c}}-v_{\mathrm{o}} i_{\mathrm{o}}=\left(v_{\mathrm{c} 0}+v_{\mathrm{c} \Delta}-v_{\mathrm{s}}\right)\left(\frac{i_{\mathrm{DC}}}{3}+i_{\mathrm{c} \Delta}+\frac{i_{\mathrm{o}}}{2}\right) \\
& \frac{\mathrm{d} W_{\Delta}}{\mathrm{d} t}=v_{\mathrm{c}} i_{\mathrm{o}}-2 v_{\mathrm{s}} i_{\mathrm{c}}=(v \\
&
\end{aligned}
$$

Assuming that no circulating currents are normers are ${ }_{v_{s}}=\hat{v}_{s} \cos \left(\omega_{g} t-\gamma\right)$ and $i_{0}=\hat{i}_{0} \cos \left(\omega_{g} t-\delta\right)$ yields

$$
\left.\frac{\mathrm{d} W_{\Sigma}}{d^{2}}\right|_{\text {ality, additinal energy }} ^{\frac{c o n t r o l l e r s}{3}-v_{\mathrm{s}} i_{0}} \approx \underbrace{V_{\mathrm{DC}} \frac{i_{\mathrm{DC}}}{3}-\frac{\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{o}}}{2} \cos (\gamma-\delta)}_{=0}-\underbrace{\frac{\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{o}}}{2} \cos \left(2 \omega_{\mathrm{g}} t-\gamma-\delta\right)}_{\text {oscillating @2 } \omega_{\mathrm{g}}}
$$

$$
\left.\frac{\mathrm{d} W_{\Delta}}{\mathrm{d} t}\right|_{\text {no circ. }}=\underbrace{-2 \hat{v}_{\mathrm{s}} \frac{i_{\mathrm{DC}}}{3} \cos \left(\omega_{\mathrm{g}} t-\gamma\right)+\hat{i}_{\mathrm{o}} v_{\mathrm{c} 0} \cos \left(\omega_{\mathrm{g}} t-\delta\right)}_{\text {oscillating } @ 1 \omega_{\mathrm{g}}}
$$

Branch energy [p.u]

- Steady state appearance of the upper and lower branch energies normalized with respect to the branch mean energy.

THE BRANCH ENERGY CONTROL (II)

- Circulating currents can be used to maintain the internal energy balance
- Average values of energies are the only ones of interest

The leg common-mode current can be expressed as

$$
i_{\mathrm{c}}=\frac{i_{\mathrm{DC}}}{3}+\underbrace{I_{\mathrm{c} \Delta}}_{\substack{\text { circ. } \\ \mathrm{DC}}}+\underbrace{\hat{i}_{\mathrm{c} \Delta}^{\sim} \cos \left(\omega_{g} t-\zeta\right)}_{\substack{\text { circ. } \\ \mathrm{AC}}}
$$

which further leads to

$$
\begin{aligned}
& \frac{\mathrm{d} \overline{W_{\Sigma}}}{\mathrm{d} t} \approx V_{\mathrm{DC}} I_{\mathrm{c} \Delta}+\underbrace{V_{\mathrm{DC}} \frac{i_{\mathrm{DC}}}{3}-\frac{\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{o}}}{2} \cos (\gamma-\delta)}_{=0}+\underbrace{\overline{2 v_{\mathrm{c} \Delta} \frac{i_{\mathrm{DC}}}{3}}+2 v_{\mathrm{c} \Delta} i_{\mathrm{c} \Delta}}_{\text {negligible }} \\
& \frac{\mathrm{d} \overline{W_{\Delta}}}{\mathrm{d} t} \approx-\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{c} \Delta}^{\sim} \cos (\gamma-\zeta)+\underbrace{\overline{v_{\mathrm{c} \Delta} i_{\mathrm{o}}}}_{\text {negligible }} .
\end{aligned}
$$

If $\gamma=\zeta$ meaning that circ. current AC component is in phase with the leg AC voltage, then

$$
\begin{aligned}
& \frac{\mathrm{d} \overline{W_{\Sigma}}}{\mathrm{d} t} \approx V_{\mathrm{DC}} I_{\mathrm{c} \Delta} \\
& \frac{\mathrm{~d} \overline{W_{\Delta}}}{\mathrm{d} t} \approx-\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{c} \Delta}^{\sim}
\end{aligned}
$$

Two balancing directions can be identified

- Horizontal direction (total energy stored in the leg)

- Illustration of the horiz. balancing principle

ム Illustration of the vert. balancing principle

- Vertical direction (difference of branch energies)

THE BRANCH ENERGY CONTROL (II)

- Circulating currents can be used to maintain the internal energy balance
- Average values of energies are the only ones of interest

The leg common-mode current can be expressed as

$$
i_{\mathrm{c}}=\frac{i_{\mathrm{DC}}}{3}+\underbrace{I_{\mathrm{c} \Delta}}_{\substack{\text { circ. } \\ \mathrm{DC}}}+\underbrace{\hat{i}_{\mathrm{c} \Delta}^{\sim} \cos \left(\omega_{g} t-\zeta\right)}_{\substack{\text { circ. } \\ \mathrm{AC}}},
$$

which further leads to

$$
\frac{\mathrm{d} \overline{W_{\Sigma}}}{\mathrm{d} t} \approx V_{\mathrm{DC}} I_{\mathrm{c} \Delta}+\underbrace{V_{\mathrm{DC}} \frac{i_{\mathrm{DC}}}{3}-\frac{\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{o}}}{2} \cos (\gamma-\delta)}_{=0}+\underbrace{\overline{2 v_{\mathrm{c} \Delta} \frac{i_{\mathrm{DC}}}{3}}+\overline{2 v_{\mathrm{c} \Delta} i_{\mathrm{c} \Delta}}}_{\text {negligible }}
$$

$$
\frac{\mathrm{d} \overline{W_{\Delta}}}{\mathrm{d} t} \approx-\hat{v}_{\mathrm{s}} \hat{i}_{\mathrm{c} \Delta}^{\sim} \cos (\gamma-\zeta)+\underbrace{\overline{v_{\mathrm{c} \Delta} i_{\mathrm{o}}}}_{\text {negligible }}
$$

If $\gamma=\zeta$ meaning that circ. current AC comnn-iling currents \quad, with the leg AC voltage, then

$$
\begin{aligned}
& \Rightarrow \text { Circulating curre, with the leg AC voltage, then } \\
& \frac{\mathrm{d} \overline{W_{\Sigma}}}{\mathrm{d} t} \approx V_{\mathrm{DC}} I_{\mathrm{c} \Delta} \\
& \frac{\mathrm{~d} \overline{W_{\Delta}}}{\mathrm{d} t}
\end{aligned}
$$

Two balancing directions can be identified

- Horizontal direction (total energy stored in the leg)

- Vertical direction (difference of branch energies)
- Illustration of the vert. balancing principle

- Control block diagram of the MMC energy balancing [4]

An important detail

$\sum \Delta v_{\mathrm{c}, i}^{*}=0$ must hold at all times!
In other words, an appropriate circulating current reference mapping must be performed, otherwise, the DC link current control becomes influenced by the branch energy balancing.

COMPARISON OF DIFFERENT ENERGY BALANCING METHODS

What are the approaches reported so far and what do they have in common?

	Method1 ${ }^{[2]}$	Method 2 ${ }^{[5]}$	Method $3^{[6]}$
Horizontal balancing	SVD-based approach	Circ. currents ctrl. in the $\alpha \beta$-domain	Circ. currents ctrl. in the $\alpha \beta$ - domain
Vertical balancing	SVD-based approach	Injection of reactive components into circ. currents	Circ. currents +/- sequence control

REFERENCE MAPPING AND THE NULL-SPACE CONCEPT (I)

Important considerations:

- Leg energy balancing is initially done in "per leg" fashion
- Energy unbalances can take any arbitrary values
\Rightarrow The expression $\sum_{i=\{A, B, C\}} i_{\mathrm{c} \Delta, i}^{*}=0$ is not necessarily true!
For the moment, observe an exemplary 1PH MMC, where

$$
i_{\mathrm{c} \Delta \mathrm{~A}}^{*}+i_{\mathrm{c} \Delta \mathrm{~B}}^{*} \neq 0
$$

(a)

(b)

- Equivalent circuit of a $1 \mathrm{PH}-\mathrm{MMC}$ seen from the DC terminals
- Vector notation

$$
I^{*}=\left[\begin{array}{l}
i_{\mathrm{c} \Delta \mathrm{~A}}^{*} \\
i_{\mathrm{c} \Delta \mathrm{~B}}^{*}
\end{array}\right]
$$

In the observed case, the mathematical formulation of the problem can be expressed as

All the vectors I_{M}, satisfying the above requirement, reside in the null-space (kernel) of matrix T_{i}.
Two core steps:

- Identify the null-space of T_{i}
- Project the vector I^{*} onto the $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ to obtain I_{M}

(a) Inappropriately generated circulating current reference vector
© Circulating current reference mapping procedure

(b) Mapping of the vector I^{*} onto the null-space of T_{i} to obtain I_{M}

REFERENCE MAPPING AND THE NULL-SPACE CONCEPT (I)

Important considerations:

- Leg energy balancing is initially done in "per leg" fashion
- Energy unbalances can take any arbitrary values
\Rightarrow The expression $\sum_{i=\{A, B, C\}} i_{\mathrm{c} \Delta, i}^{*}=0$ is not necessarily true!
For the moment, observe an exemplary 1PH MMC, where

$$
i_{\mathrm{c} \Delta \mathrm{~A}}^{*}+i_{\mathrm{c} \Delta \mathrm{~B}}^{*} \neq 0
$$

$L_{\mathrm{DC}} R_{\mathrm{DC}}$

 $\underbrace{i_{\mathrm{DC}}}_{\text {problemstatement }}$

- Equivalen \Rightarrow Through an appropriate $\underbrace{\frac{c \Delta A}{m a p p}}_{\text {(b) }}$
- Vector noturion

$$
I^{*}=\left[\begin{array}{l}
i_{\mathrm{c} \Delta \mathrm{~A}}^{*} \\
i_{\mathrm{c} \Delta \mathrm{~B}}^{*}
\end{array}\right]
$$

- Illustration of the reference maping procedure (2-D problem)
- Vector v_{N} is referred to as the null-space basis
- Scalar product \Rightarrow projection

In the observed case, it is easy to identify the basis of $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ as

$$
v_{\mathrm{N}}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Subsequently, projection of I^{*} onto $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ is obtained as

$$
\left|I_{\mathrm{M}}\right|=v_{\mathrm{N}}^{T} I^{*}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\sqrt{2}
$$

In the final step, assign the direction to the calculated projection

$$
I_{\mathrm{M}}=v_{\mathrm{N}} \underbrace{v_{\mathrm{N}}^{T} I^{*}}_{\left|I_{\mathrm{M}}\right|}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

(a) Inappropriately generated circulating current reference vector

(b) Mapping of the vector I^{*} onto the null-space of T_{i} to obtain I_{M}
© Illustration of the reference maping procedure (3-D problem)
For the 3PH-MMC, the mapping matrix is $T_{\mathrm{i}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ is a plane.

- Illustration of the reference maping procedure (2-D problem)
- Vector v_{N} is referred to as the null-space basis
- Scalar product \Rightarrow projection

In the observed case, it is easy to identify the basis of $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ as

$$
v_{\mathrm{N}}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Subsequently, projection of I^{*} onto $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ is obtained as

$$
\left|I_{\mathrm{M}}\right|=v_{\mathrm{N}}^{T} I^{*}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\sqrt{2}
$$

In the final step, assign the direction to the calculated projection

$$
I_{\mathrm{M}}=v_{\mathrm{N}} \underbrace{v_{\mathrm{N}}^{T} I^{*}}_{\left|I_{\mathrm{M}}\right|}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

(a) Inappropriately generated circulating current reference vector
© Illustration of the reference maping procedure (3-D problem)
For the 3PH-MMC, the mapping matrix is $T_{\mathrm{i}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\operatorname{ker}\left(T_{\mathrm{i}}\right)$ is a plane.

Observation

\Rightarrow If T_{i} is a $1 \times q$ matrix, where q is the number of MMC phase legs, then $\operatorname{dim}\left(\operatorname{ker}\left(T_{\mathrm{i}}\right)\right)=q-1$.

However, it is reasonably to wonder

? How to generalize the reference mapping procedure?

SINGULAR VALUE DECOMPOSITION

- Descriptions in [7], [8]
- Diagonalization of a non-square matrix as

A few important remarks:

- All the vectors from U are linearly independent (orthogonal)
- All the vectors from V are linearly independent (orthogonal)
- All the entries of Σ are real

Let one look for the product

$$
T_{\mathrm{i}} v_{\mathrm{N}, i}=U_{\mathrm{R}} \sum \underbrace{V_{\mathrm{R}}^{T} v_{\mathrm{N}, i}}_{\substack{\text { orthogonal } \\ \text { vectors }}}=0
$$

\Rightarrow Matrix V_{N} comprises a set of orthonormal bases of $\operatorname{ker}\left(T_{\mathrm{i}}\right)$
Relying on the previously presented logic, the reference mapping can be obtained as

$$
I_{\mathrm{M}}=V_{\mathrm{N}} V_{\mathrm{N}}^{T} I^{*}
$$

For the case of the 3PH MMC

$$
V_{\mathrm{N}}^{T}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2
\end{array}\right]
$$

Since $T_{\mathrm{i}}=[1 \ldots 1]_{1 \times q}$, it can be shown (detailed description in [4]) that

$$
V_{\mathrm{N}} V_{\mathrm{N}}^{T}=\underbrace{\left[\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right]}-\frac{1}{q}\left[\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right]_{q \times q},
$$

identity $q \times q$
matrix
no matter how V_{N} is chosen. Consequently:

$$
I_{\mathrm{M}}=I^{*}-\underbrace{\frac{1}{q} \sum_{i=1}^{q} I_{i, 1}^{*}}
$$

- Reference mapping in the 3PH MMC [2], [9]

SINGULAR VALUE DECOMPOSITION

- Descriptions in [7], [8]
- Diagonalization of a non-square matrix as

Since $T_{\mathrm{i}}=[1 \ldots 1]_{1 \times \text { q }}$, it can be shown (detailed description in [4]) that

$$
T_{\mathrm{i}}=\underbrace{\left[\begin{array}{ll}
U_{\mathrm{R}} & U_{\mathrm{N}}
\end{array}\right]}_{U}\left[\begin{array}{cc}
\sum_{(m \times m)} & 0 \\
(r \times r) & 0 \\
0 & 0
\end{array}\right] \underbrace{\left[\begin{array}{c}
V_{\mathrm{R}}^{T} \\
V_{\mathrm{N}}^{T}
\end{array}\right]}_{\substack{V^{T} \\
(n \times n)}}
$$

$$
V_{\mathrm{N}} V_{\mathrm{N}}^{T}=\underbrace{\left[\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right]}-\frac{1}{q}\left[\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & & \vdots \\
1 & \ldots & 1
\end{array}\right]_{q \times q},
$$

A few important remarks:

- All the vectors from U are linearly independent (orthogonal)
- All the vectors from V are linearly independent (orthogonal)
- All the entries of Σ are real

Let one look for the product

$$
\begin{aligned}
& \text { are linearly independent (orthogonal) } \\
& T_{\mathrm{i}} v_{\mathrm{N}, i}=U_{\mathrm{R}} \Sigma \underbrace{V_{\mathrm{R}}^{T} v_{\mathrm{N}, i}}_{\text {orthe }}=0 \\
& \text { irrespective of the balancing direction, identical princi }
\end{aligned}
$$

matrix
no matter how V_{N} is choser ${ }^{\text {mploy }}$ ed! ?ntly:

- Reference mapping in the 3PH MMC [2], [9]

For the case of the 3PH MMC

$$
V_{\mathrm{N}}^{T}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2
\end{array}\right]
$$

APPLICATION OF SVD TO THE VERTICAL BALANCING PROBLEM - METHOD 1

^ Horizontal balancing control block diagram (SVD method)
Interestingly, V_{N}^{T} actually performs the Clarke transformation!

$$
V_{\mathrm{N}}^{T}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2
\end{array}\right]
$$

From here, it is straightforward to show that

$$
\vec{V}_{\mathrm{c} \Delta}^{*}=W_{\mathrm{circ}}^{=}(s)\left(V_{\mathrm{N}} \frac{H_{\Sigma}(s)}{V_{\mathrm{DC}}^{*}}\left(\vec{W}_{\Sigma \alpha \beta}^{*}-\vec{W}_{\Sigma \alpha \beta}\right)-\vec{I}_{\mathrm{c} \Delta}\right)
$$

Multiplying with V_{N}^{T} from the left yields

$$
\vec{V}_{\mathrm{c} \Delta \alpha \beta}^{*}=W_{\mathrm{circ}}^{=}(s)\left(\frac{H_{\Sigma}(s)}{V_{\mathrm{DC}}^{*}}\left(\vec{W}_{\Sigma \alpha \beta}^{*}-\vec{W}_{\Sigma \mathrm{m} \alpha \beta}\right)-\vec{I}_{\mathrm{c} \Delta \alpha \beta}\right)
$$

From here, is straightorward to show that

N

- Horizontal balancing control block diagram ($\alpha \beta$ transformation based) [5], [6]

APPLICATION OF SVD TO THE VERTICAL BALANCING PROBLEM - METHOD 1

Δ Horizontal balancing control blocin. the referen ${ }_{\text {ated }}$
nterestingly, V_{N}^{T} actually performs the Clarke trai.

$$
V_{\mathrm{N}}^{T}=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}1 & -1 / 2 & -1 / 2 \\ 0 & \sqrt{3} / 2 & -\sqrt{3} / 2\end{array}\right]
$$

From here, it is straightforward to show that

$$
\vec{V}_{\mathrm{c} \Delta}^{*}=W_{\mathrm{circ}}^{=}(s)\left(V_{\mathrm{N}} \frac{H_{\Sigma}(s)}{V_{\mathrm{DC}}^{*}}\left(\vec{W}_{\Sigma \alpha \beta}^{*}-\vec{W}_{\Sigma \alpha \beta}\right)-\vec{I}_{\mathrm{c} \Delta}\right)
$$

Multiplying with V_{N}^{T} from the left yields

$$
\vec{V}_{\mathrm{c} \Delta \alpha \beta}^{*}=W_{\mathrm{circ}}^{=}(s)\left(\frac{H_{\Sigma}(s)}{V_{\mathrm{DC}}^{*}}\left(\vec{W}_{\Sigma \alpha \beta}^{*}-\vec{W}_{\Sigma \mathrm{m} \alpha \beta}\right)-\vec{I}_{\mathrm{c} \Delta \alpha \beta}\right)
$$

APPLICATION OF SVD TO THE VERTICAL BALANCING PROBLEM - METHOD 1

- Control block diagram concerning energy balancing in vertical direction (ABC frame)

Method properties:

- Control conducted per every leg individually
- Mapping matrix generated through the SVD utilization
- $H_{\Delta}(s)$ can be either P - or PI- controller
- Information on voltage v_{s} is always available in the controller

Observation in the complex domain, leads to

$$
\underline{\vec{i}_{\mathrm{M}}^{\sim}}=V_{\mathrm{N}} V_{\mathrm{N}}^{T} \frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & a^{2} & 0 \\
0 & 0 & a
\end{array}\right]}_{A}\left[\begin{array}{l}
W_{\Delta \mathrm{A}} \\
W_{\Delta \mathrm{B}} \\
W_{\Delta \mathrm{C}}
\end{array}\right],
$$

where $a=e^{j \frac{2 \pi}{3}}$. Moreover,

$$
V_{\mathrm{N}} V_{\mathrm{N}}^{T}=\frac{1}{3}\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

Fortescue transformation of $\vec{i}_{\mathrm{M}}^{\sim^{*}}$ should output only positive and negative sequences.

$$
F_{\mathrm{pn} 0}=\frac{1}{3}\left[\begin{array}{ccc}
1 & a & a^{2} \\
1 & a^{2} & a \\
1 & 1 & 1
\end{array}\right]
$$

If $W_{\Delta\{A / B / C\}}^{*}=0$, whereas $\tau_{\mathrm{m}} \approx 0$, then

$$
\left[\begin{array}{l}
\underline{i}_{\mathrm{m}+}^{\sim} \\
\underline{i}_{\underline{\mathrm{m}}-}^{\sim} \\
\underline{i}_{\mathrm{m} 0}^{\sim}
\end{array}\right]=\frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \times\left[\begin{array}{c}
\frac{1}{\sqrt{3}} W_{\Delta 0} \\
\frac{1}{\sqrt{6}}\left(W_{\Delta \alpha}+j W_{\Delta \beta}\right) \\
0
\end{array}\right]
$$

while $\alpha \beta 0$ quantities were obtained by means of the matrix from below.

$$
K_{\alpha \beta 0}=\sqrt{\frac{2}{3}}\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

VERTICAL BALANCING - METHOD 2

- Vert. bal. procedure based on the injection of orthogonal components
- Injection of reactive currents
- Sum of circ. current references equal to zero
- Control structure similar to Method 1

Mapping matrix is changed with respect to Method 1 .

$$
\underline{M}_{\mathrm{m}}=\left[\begin{array}{ccc}
1 & j \frac{a}{\sqrt{3}} & -j \frac{a^{2}}{\sqrt{3}} \\
-j \frac{a^{2}}{\sqrt{3}} & 1 & j \frac{a}{\sqrt{3}} \\
j \frac{a}{\sqrt{3}} & -j \frac{a^{2}}{\sqrt{3}} & 1
\end{array}\right]
$$

VERTICAL BALANCING - METHOD 3

- Direct control of the energy unbalances in the $\alpha \beta 0$ domain $\left(V_{\mathrm{N}}^{T}=K_{\alpha \beta}\right)$
- The use of $+/-$ circ. current sequences (similar approach followed in [10], [11])

4 Positive and negative seq.
Circ. currents in the $A B C$ frame can be obtained as

$$
\left[\begin{array}{c}
i_{\mathrm{c} \Delta \mathrm{~A}} \\
i_{\mathrm{c} \Delta \mathrm{~B}} \\
i_{\mathrm{c} \Delta \mathrm{C}}
\end{array}\right]=K_{\alpha \beta}^{T} \underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\begin{array}{c}
\text { counterclockwise } \\
\text { rotation }
\end{array}}\left[\begin{array}{c}
i_{\mathrm{c} \Delta \mathrm{~d}}^{+} \\
i_{\mathrm{c} \Delta \mathrm{q}}^{+}
\end{array}\right]+K_{\alpha \beta}^{T} \underbrace{\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\begin{array}{c}
\text { clockwise } \\
\text { rotation }
\end{array}}\left[\begin{array}{c}
i_{\mathrm{c} \Delta \mathrm{~d}}^{-} \\
i_{\mathrm{c} \Delta \mathrm{q}}^{-}
\end{array}\right]
$$

According to [6], the following expressions can be established:

$$
P_{\Delta \alpha}=-\frac{2}{\sqrt{6}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{~d}}^{-} \quad P_{\Delta \beta}=+\frac{2}{\sqrt{6}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{q}}^{-} \quad P_{\Delta 0}=-\frac{2}{\sqrt{3}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{~d}}^{+}
$$Decoupled control of relevant energy components

- Block diagram derived according to the equations on the left
- Controllers $H_{\Delta\{\alpha / \beta / 0\}}(s)$ can be tuned independently!
- $i_{\mathrm{c} \Delta \mathrm{q}}^{+}$can be controlled to zero
- For simplicity reasons assume that $H_{\Delta\{\alpha / \beta / 0\}}(s)=H_{\Delta}(s)$

$$
F_{\mathrm{pn} 0}\left[\begin{array}{c}
\underline{i}_{\mathrm{c} \Delta \mathrm{~A}} \\
\underline{i}_{\mathrm{c} \Delta \mathrm{~B}} \\
\underline{i}_{\mathrm{c} \Delta \mathrm{C}}
\end{array}\right]=\left[\begin{array}{c}
\underline{\underline{i}}_{\mathrm{m}+}^{\sim} \\
\underline{i}_{\mathrm{m}-}^{\sim} \\
\underline{i}_{\mathrm{m} 0}^{\sim}
\end{array}\right]=\frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \times\left[\begin{array}{c}
\frac{1}{\sqrt{2}} W_{\Delta 0} \\
W_{\Delta \alpha}+j W_{\Delta \beta} \\
0
\end{array}\right]
$$

VERTICAL BALANCING - METHOD 3

- Direct control of the energy unbalances in the $\alpha \beta 0$ domain $\left(V_{\mathrm{N}}^{T}=K_{\alpha \beta}\right)$
- The use of $+/-$ circ. current sequences (similar approach followed in [10], [11])

- Positive and negative seq.

Circ. currents in the $A B C$ frame can be obtained as

$$
\left[\begin{array}{c}
i_{\mathrm{c} \Delta \mathrm{~A}} \\
i_{\mathrm{c} \Delta \mathrm{~B}} \\
i_{\mathrm{c} \Delta \mathrm{C}}
\end{array}\right]=K_{\alpha \beta}^{T} \underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\begin{array}{c}
\text { counterclockwise } \\
\text { rotation }
\end{array}}\left[\begin{array}{c}
i_{\mathrm{c} \Delta \mathrm{~d}}^{+} \\
i_{\mathrm{c} \Delta \mathrm{q}}^{+}
\end{array}\right]+K_{\alpha \beta}^{T} \underbrace{\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\substack{\text { clockwise } \\
\text { rotation }}}\left[\begin{array}{c}
i_{\mathrm{c} \Delta \mathrm{~d}}^{-} \\
i_{\mathrm{c} \Delta \mathrm{q}}^{-}
\end{array}\right]
$$

According to [6], the following expressions can be established:

$$
P_{\Delta \alpha}=-\frac{2}{\sqrt{6}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{~d}}^{-} \quad P_{\Delta \beta}=+\frac{2}{\sqrt{6}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{q}}^{-} \quad P_{\Delta 0}=-\frac{2}{\sqrt{3}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{~d}}^{+}
$$Decoupled control of relevant energy components

© Block diagram derived according to the equations on the left

- Controllers $H_{\Delta\{\alpha / \beta / 0\}}(s)$ can be tuned independently!
- $i_{\mathrm{c} \Delta \mathrm{q}}^{+}$can be controlled to zero
- For simplicity reasons assume that $H_{\Delta\{\alpha / \beta / 0\}}(s)=H_{\Delta}(s)$

$$
F_{\mathrm{pn} 0}\left[\begin{array}{c}
\underline{i}_{\mathrm{c} \Delta \mathrm{~A}} \\
\underline{i}_{\mathrm{c} \Delta \mathrm{~B}} \\
\underline{i}_{\mathrm{c} \Delta \mathrm{C}}
\end{array}\right]=\left[\begin{array}{c}
\underline{\underline{i}}_{\mathrm{m}+}^{\sim} \\
\underline{i}_{\mathrm{m}-}^{\sim} \\
\underline{i}_{\mathrm{m} 0}^{\sim}
\end{array}\right]=\frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \times\left[\begin{array}{c}
\frac{1}{\sqrt{2}} W_{\Delta 0} \\
W_{\Delta \alpha}+j W_{\Delta \beta} \\
0
\end{array}\right]
$$

Problem statement

? How to compare the vertical balancing methods presented so far?

VERTICAL BALANCING METHODS COMPARISON (I)

Method 1

$$
\left[\begin{array}{c}
\underline{i}_{\mathrm{m}+}^{\sim} \\
\underline{i}_{\mathrm{m}-}^{\sim} \\
\underline{i}_{\mathrm{m} 0}^{\sim}
\end{array}\right]=\frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \times\left[\begin{array}{c}
\frac{1}{\sqrt{3}} W_{\Delta 0} \\
\frac{1}{\sqrt{6}}\left(W_{\Delta \alpha}+j W_{\Delta \beta}\right) \\
0
\end{array}\right]
$$

Method 2

$$
\left[\begin{array}{c}
\underline{i}_{\mathrm{m}+}^{\sim} \\
\underline{i}_{\mathrm{m}-}^{\sim} \\
\underline{i}_{\mathrm{m} 0}^{\sim}
\end{array}\right]=\frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \times\left[\begin{array}{c}
\frac{1}{\sqrt{3}} W_{\Delta 0} \\
\frac{2}{\sqrt{6}}\left(W_{\Delta \alpha}+j W_{\Delta \beta}\right) \\
0
\end{array}\right]
$$

Method 3

$$
\left[\begin{array}{c}
\frac{i_{\mathrm{m}}}{\sim} \\
-\frac{i_{\mathrm{m}}}{\sim} \\
\underline{i}-\mathrm{m} 0
\end{array}\right]=\frac{H_{\Delta}(s)}{\hat{v}_{\mathrm{s}}} e^{-j \gamma} \times\left[\begin{array}{c}
\frac{1}{\sqrt{2}} W_{\Delta 0} \\
1\left(W_{\Delta \alpha}+j W_{\Delta \beta}\right) \\
0
\end{array}\right]
$$

Circ. current $+/-$ sequences can be expressed as

$$
\begin{aligned}
& \underline{i}_{\mathrm{m}+}^{\sim}=\frac{H_{\Delta}(s)}{\hat{v}_{s}} e^{-j \gamma} \times k_{+} W_{\Delta 0} \\
& \underline{i}_{\mathrm{m}-}^{\sim}=\frac{H_{\Delta}(s)}{\hat{v}_{s}} e^{-j \gamma} \times k_{-}\left(W_{\Delta \alpha}+j W_{\Delta \beta}\right)
\end{aligned}
$$

allowing for the representation in a tabular form

	Method 1	Method 2	Method 3
k_{+}	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$
k_{-}	$\frac{1}{\sqrt{6}}$	$\frac{2}{\sqrt{6}}$	1

Δ An alternative way of generating circulating current references achieving the energy balance in vertical direction
In general, the expressions
$i_{\mathrm{c} \Delta \mathrm{d}}^{+}=\Re\left(\sqrt{\frac{3}{2}} e^{j \gamma_{{\underset{\sim}{\mathrm{m}}+}_{\sim}^{\sim}}^{\sim}}\right) \quad i_{\mathrm{c} \Delta \mathrm{q}}^{+}=\Im\left(\sqrt{\frac{3}{2}} e^{j \gamma_{\underline{i}_{\mathrm{m}+}}^{\sim}}\right) \quad i_{\mathrm{c} \Delta \mathrm{d}}^{-}=\Re\left(\sqrt{\frac{3}{2}} e^{j \gamma_{i_{\mathrm{m}-}}^{\sim}}\right) \quad i_{\mathrm{c} \Delta \mathrm{q}}^{-}=-\Im\left(\sqrt{\frac{3}{2}} e^{j \gamma_{\underline{i}_{\mathrm{m}-}}^{\sim}}\right)$ hold, while $i_{\mathrm{c} \Delta \mathrm{q}}^{+}=0$. From here, one can obtain system of equations provided below.

$$
i_{\mathrm{c} \Delta \mathrm{~d}}^{+}=\sqrt{\frac{3}{2}} k_{+} \frac{H_{\Delta}}{\hat{v}_{s}} W_{\Delta 0} \quad i_{\mathrm{c} \Delta \mathrm{~d}}^{-}=\sqrt{\frac{3}{2}} k_{-} \frac{H_{\Delta}}{\hat{v}_{s}} W_{\Delta \alpha} \quad i_{\mathrm{c} \Delta \mathrm{q}}^{-}=-\sqrt{\frac{3}{2}} k_{-} \frac{H_{\Delta}}{\hat{v}_{s}} W_{\Delta \beta}
$$

Combining the above system with

$$
P_{\Delta \alpha}=-\frac{2}{\sqrt{6}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{~d}}^{-} \quad P_{\Delta \beta}=+\frac{2}{\sqrt{6}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{q}}^{-} \quad P_{\Delta 0}=-\frac{2}{\sqrt{3}} \hat{v}_{\mathrm{s}} i_{\mathrm{c} \Delta \mathrm{~d}}^{+}
$$

yields

$$
\begin{aligned}
P_{\Delta \alpha} & =-k_{-} H_{\Delta} W_{\Delta \alpha}
\end{aligned}=-k_{1 \alpha} H_{\Delta} W_{\Delta \alpha} .
$$

VERTICAL BALANCING METHODS COMPARISON (II)

According to previous derivations, the expression

$$
P_{\Delta\{\alpha / \beta / 0\}}=-k_{1\{\alpha / \beta / 0\}} H_{\Delta} W_{\Delta\{\alpha / \beta / 0\}}
$$

can be established, whereas

Coefficient	Method 1	Method 2	Method 3
$k_{1 \alpha}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
$k_{1 \beta}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
k_{10}	$\sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1

Furthermore, the relationship from below can be obtained.

$$
P_{\Delta\{\alpha / \beta / 0\}}=k_{2\{\alpha / \beta / 0\}} \hat{v}_{s} i_{\mathrm{c} \Delta\left\{\mathrm{~d}^{-} / \mathrm{q}^{-} / \mathrm{d}^{+}\right\}}
$$

$k_{20}=-2 / \sqrt{3}$ and $k_{2\{\alpha / \beta\}}=\mp 2 / \sqrt{6}$
\Rightarrow Generalized control block diagram

- A general control block diagram concerning vertical balancing of the MMC energies.

To commence the comparison, once can assume that

$$
H_{\mathrm{circ}}^{\sim}(s)=\frac{1}{1+s \tau_{\mathrm{c}}} \quad H_{\mathrm{mf}}(s)=e^{-s \tau_{\mathrm{m}}} \approx \frac{1-s \frac{\tau_{\mathrm{m}}}{2}}{1+s \frac{\tau_{\mathrm{m}}}{2}} \quad H_{\Delta}(s)=k_{\mathrm{p} \Delta}
$$

Establishing the function $G(s)$ allows for a straightforward analysis throught the root-locus method.

$$
G(s)=\frac{H_{\mathrm{circ}}^{\sim}(s) H_{\mathrm{mf}}(s)}{s}=\frac{N(s)}{D(s)} \xlongequal{\text { All the poles can be identifed by solving }} D(s)+k_{\mathrm{p} \Delta} k_{1\{\alpha / \beta / 0\}} N(s)=0
$$

For the moment, assume the $W_{\Delta 0}$ component is analyzed. Hence, $k_{10}=1$.

$$
\text { If } k_{\mathrm{p} \Delta} \rightarrow 0, \operatorname{zeros}[D(s)] \Rightarrow \operatorname{poles}\left[W_{\Delta 0} / W_{\Delta 0}^{*}\right] \quad \text { If } k_{\mathrm{p} \Delta} \rightarrow \infty, \operatorname{zeros}[N(s)] \Rightarrow \operatorname{poles}\left[W_{\Delta 0} / W_{\Delta 0}^{*}\right]
$$

$$
\begin{aligned}
\sigma_{1} & =0 \\
\sigma_{2} & =-\frac{2}{\tau_{\mathrm{m}}} \\
\sigma_{3} & =-\frac{1}{\tau_{\mathrm{c}}}
\end{aligned}
$$

$$
n_{1}=\frac{2}{\tau_{\mathrm{m}}}
$$

VERTICAL BALANCING METHODS COMPARISON (II)

According to previous derivations, the expression

$$
P_{\Delta\{\alpha / \beta / 0\}}=-k_{1\{\alpha / \beta / 0\}} H_{\Delta} W_{\Delta\{\alpha / \beta / 0\}}
$$

can be established, whereas

Coefficient	Method1	Method 2	Method 3
$k_{1 \alpha}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{n}}$	1
$k_{1 \beta}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	रim	1
k_{10}	$\sqrt{\frac{2}{3}}$	$\sqrt{3}$	Constants $_{3}$

Furthermore, the relationship from below can be obtai. $\tau_{c} a_{n} d_{\tau}$

Δ A general control block diagram concerning vertical balancing of the MMC energies.
To commence the comparison, once can assume that

$$
P_{\Delta\{\alpha / \beta / 0\}}=k_{2\{\alpha / \beta / 0\}} \hat{v}_{s} i_{\mathrm{c} \Delta\left\{\mathrm{~d}^{-} / \mathrm{q}^{-} / \mathrm{d}^{+}\right\}}
$$

$$
k_{20}=-2 / \sqrt{3} \text { and } k_{2\{\alpha / \beta\}}=\mp 2 / \sqrt{6}
$$

\Rightarrow
Generalized control block diagram

$$
H_{\text {circ }}^{\sim}(s)=\frac{1}{1+s \tau_{\mathrm{c}}} \quad H_{\mathrm{mf}}(s)=e^{-s \tau_{\mathrm{m}}} \approx \frac{1-s \frac{\tau_{\mathrm{m}}}{2}}{1+s \frac{\tau_{\mathrm{m}}}{2}} \quad H_{\Delta}(s)=k_{\mathrm{p} \Delta}
$$

to. Can stand inction $G(s)$ allows for a straightforward analysis throught the root-locus method.

If $k_{\mathrm{p} \Delta} \rightarrow 0, \operatorname{zeros}[D(s)] \Rightarrow \operatorname{poles}\left[W_{\Delta 0} / W_{\Delta 0}^{*}\right] \quad$ If $\left.k_{\mathrm{p} \Delta} \rightarrow \infty, z \mathrm{z} . \quad \mathrm{V}(s)\right] \Rightarrow \operatorname{poles}\left[W_{\Delta 0} / W_{\Delta 0}^{*}\right]$

$$
\begin{aligned}
\sigma_{1} & =0 \\
\sigma_{2} & =-\frac{2}{\tau_{\mathrm{m}}} \\
\sigma_{3} & =-\frac{1}{\tau_{\mathrm{c}}}
\end{aligned}
$$

$$
n_{1}=\frac{2}{\tau_{\mathrm{m}}}
$$

VERTICAL BALANCING METHODS COMPARISON (III)

- Parameters of the converter used for further analyses

Rated power $\left(S^{*}\right)$	Output voltage $\left(V_{\mathrm{DC}}\right)$	Grid voltage $\left(v_{g}\right)$	Number of SMs per branch (N)	Nominal SM voltage ($V_{S M}$)	SM capacitance $\left(C_{\mathrm{SM}}\right)$	Branch inductance $\left(L_{\mathrm{br}}\right)$	Branch resistance $\left(R_{\mathrm{br}}\right)$	PWM carrier frequency (f_{c})	Fundamental frequency $\left(f_{0}\right)$
1.25MVA	5 kV	3.3 kV	6	1kV	3.36 mF	2.5 mH	$60 \mathrm{~m} \Omega$	1 kHz	60 Hz

In the setup used to verify the results presented henceforward

$$
\tau_{\mathrm{m}} \approx 375 \mu \mathrm{~s} \quad \text { and } \quad \tau_{\mathrm{c}} \approx \frac{1}{f_{\mathrm{bw}}^{\mathrm{circ}}}=1 \mathrm{~ms}
$$

resulting in the diagram presented bellow.
$\operatorname{Im}(s)$

$\cdot 10^{3}$

Apparently, there exists an optimal gain $k_{\mathrm{p} \Delta}^{*}$ guaranteeing the fastest and strictly aperiodic response! To calculate $k_{\mathrm{p} \Delta}^{*}$, one should substitute the solution of

$$
\text { which is actually } s=\sigma_{\mathrm{c}} \text {, into } \begin{array}{r}
\frac{\mathrm{d} D(s)}{\mathrm{d} s} N(s)-\frac{\mathrm{d} N(s)}{\mathrm{d} s} D(s)=0, \\
k_{\mathrm{p} \Delta}^{*}=-\frac{D\left(\sigma_{\mathrm{c}}\right)}{N\left(\sigma_{\mathrm{c}}\right)}
\end{array}
$$

In the analyzed example, $k_{\mathrm{p} \Delta}^{*} \approx 642$!

$$
\mathrm{n} \text { the analyzed example, } k_{\mathrm{p} \Delta}^{*} \approx 642!
$$

- Root locus constructed based on the function $G(s)$

VERTICAL BALANCING METHODS COMPARISON (III)

- Parameters of the converter used for further analyses

Rated power $\left(S^{*}\right)$	Output voltage ($V_{D C}$)	Grid voltage $\left(v_{g}\right)$	Number of SMs per branch (N)	Nominal SM voltage ($V_{S M}$)	SM capacitance (C_{SM})	Branch inductance $\left(L_{\mathrm{br}}\right)$	Branch resistance $\left(R_{\mathrm{br}}\right)$	PWM carrier frequency $\left(f_{\mathrm{c}}\right)$	Fundamental frequency $\left(f_{\mathrm{o}}\right)$
1.25MVA	5 kV	3.3 kV	6	1kV	3.36 mF	2.5 mH	$60 \mathrm{~m} \Omega$	1 kHz	60 Hz

In the setup used to verify the results presented henceforward

$$
\tau_{\mathrm{m}} \approx 375 \mu \mathrm{~s} \quad \text { and } \quad \tau_{\mathrm{c}} \approx \frac{1}{f_{\mathrm{bw}}^{\mathrm{circ}}}=1 \mathrm{~ms}
$$

resulting in the diagram presented bellow.
$\operatorname{Im}(s)$

Apparently, there exists an optimal gain $k_{\mathrm{p} \Delta}^{*}$ guaranteeing the fastest and strictly aperiodic response! To calculate $k_{\mathrm{p} \Delta}^{*}$, one should substitute the solution of

$$
\begin{gathered}
\frac{\mathrm{d} D(s)}{\mathrm{d} s} N(s)-\frac{\mathrm{d} N(s)}{\mathrm{d} s} D(s)=0, \\
k_{\mathrm{p} \Delta}^{*}=-\frac{D\left(\sigma_{\mathrm{c}}\right)}{N\left(\sigma_{\mathrm{c}}\right)}
\end{gathered}
$$

In the analyzed example, $k_{\mathrm{p} \Delta}^{*} \approx 642$!
? Is this gain realistic?

Assuming that $\Delta W_{0}=0.1 W_{\mathrm{br}}^{*}$, where $W_{\mathrm{br}}^{*} \approx C_{\mathrm{SM}} V_{\mathrm{br} \mathrm{\Sigma}}^{* 2} /(2 N)$, one can realize that

$$
\hat{i}_{\mathrm{c} \Delta 0}=k_{\mathrm{p} \Delta} \frac{0.1 \sqrt{3} W_{\mathrm{br}}^{*}}{2 \hat{v}_{\mathrm{s}}} \approx 210 \mathrm{~A}
$$

which is approximately 70% of the converter nominal AC current amplitude!

- Root locus constructed based on the function $G(s)$

VERTICAL BALANCING METHODS COMPARISON (III)

- Parameters of the converter used for further analyses

Rated power $\left(S^{*}\right)$	Output voltage $\left(V_{\mathrm{DC}}\right)$	Grid voltage $\left(v_{\mathrm{g}}\right)$	Number of SMs per branch (N)	Nominal SM voltage $\left(V_{\mathrm{SM}}\right)$	SM capacitance $\left(C_{\mathrm{SM}}\right)$	Branch inductance $\left(L_{\mathrm{br}}\right)$	Branch resistance $\left(R_{\mathrm{br}}\right)$	PWM carrier frequency	Fundamental frequency
1.25 MVA	5 kV	3.3 kV	6	1 kV	3.36 mF	2.5 mH	$60 \mathrm{~m} \Omega$	1 kHz	$\left(f_{\mathrm{o}}\right)$

In the setup used to verify the results presented henceforward

$$
\begin{aligned}
& \qquad \tau_{\mathrm{m}} \approx 375 \mu \mathrm{~s} \quad \text { and } \quad \tau_{\mathrm{c}} \approx \frac{1}{f_{\mathrm{bw}}^{\mathrm{circ}}}=1 \mathrm{~ms} \\
& \text { resulting in the diagram presented bellow. }
\end{aligned}
$$

$\operatorname{Im}(s)$

Assuming that $\Delta W_{0}=0.1 W_{\mathrm{br}}^{*}$, where $W_{\mathrm{br}}^{*} \approx C_{\mathrm{SM}} V_{\mathrm{br} \mathrm{\Sigma}}^{* 2} /(2 N)$, one can realize that

$$
\hat{i}_{\mathrm{c} \Delta 0}=k_{\mathrm{p} \Delta} \frac{0.1 \sqrt{3} W_{\mathrm{br}}^{*}}{2 \hat{v}_{\mathrm{s}}} \approx 210 \mathrm{~A}
$$

which is approximately 70% of the converter nominal AC current amplitude!

- Root locus constructed based on the function $G(s)$

VERTICAL BALANCING METHODS COMPARISON (IV)

- Root locus constructed based on the function $G(s)$

Since $k_{\mathrm{p} \Delta} \ll k_{\mathrm{p} \Delta}^{*}$ one can conclude that $\sigma_{1} \gg \sigma_{\mathrm{c}}$. From the equation

$$
D(s)+\underbrace{k_{\mathrm{p} \Delta} k_{1\{\alpha / \beta / 0\}}}_{k_{\mathrm{p}}^{\prime}} N(s)=0,
$$

the following observations can be made

- The higher k_{p}^{\prime} the further the pole σ_{1} from the imaginary axis
- For fixed $k_{\mathrm{p} \Delta}$, the system dynamics depends on $k_{1\{\alpha / \beta / 0\}}$
\wedge
Reminder - values of coefficients determining the balancing dynamics of energy components $W_{\Delta \alpha}, W_{\Delta \beta}$ and $W_{\Delta 0}$, respectively.

Coefficient	Method 1	Method 2	Method 3
$k_{1 \alpha}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
$k_{1 \beta}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
k_{10}	$\sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1

$\operatorname{Re}(s)$

Δ Position of poles in the closed loop function $W_{\Delta\{\alpha / \beta / 0\}} / W_{\Delta\{\alpha / \beta / 0\}}^{*}$ for two different gains $k_{\mathrm{p} \Delta}$

VERTICAL BALANCING METHODS COMPARISON (IV)

$\operatorname{Im}(s)$

$\cdot 10^{3}$

$\operatorname{Re}(s)$

- Position of poles in the closed loop function $W_{\Delta\{\alpha / \beta / 0\}} / W_{\Delta\{\alpha / \beta / 0\}}^{*}$ for two different gains $k_{\mathrm{p} \Delta}$

Re values of coefficients determining the balan
energy components $W_{\Delta \alpha}, W_{\Delta \beta}$ and $W_{\Delta 0}$, respectively.

Coefficient	Method 1	Method 2	Method 3
$k_{1 \alpha}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
$k_{1 \beta}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
k_{10}	$\sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1

VERTICAL BALANCING METHODS COMPARISON - IMPORTANT REMARKS

- Controllers in the $\alpha \beta 0$ domain (Method 3) do not have to be identically tuned
- For Methods 1 and 2, every leg has its own controller, however, controllers are tuned identically
- The gain $k_{\mathrm{p} \Delta}$ does not have to be fixed
- Methods 1 and 2 can be derived from Method 3 if

$$
\begin{aligned}
& H_{\mathrm{c} \Delta 0}^{(\operatorname{method} 3)}=H_{\Delta}^{(\operatorname{method} 1 / 2)} \times \frac{k_{10}^{(\text {method } 1 / 2)}}{k_{10}^{(\text {method } 3)}} \\
& H_{\mathrm{c} \Delta\{\alpha / \beta\}}^{(\operatorname{method} 3)}=H_{\Delta}^{(\operatorname{method} 1 / 2)} \times \frac{k_{1\{\alpha / \beta\}}^{(\text {method } 1 / 2)}}{k_{1\{\alpha / \beta\}}^{(\text {method } 3)}}
\end{aligned}
$$

- Method 3 can be derived from Method 2 if the gains are increased by the factor $\sqrt{\frac{3}{2}}$ (if $H_{\Delta\{\alpha / \beta / 0\}}(s)=H_{\Delta}(s)$).
- Method 3 cannot be derived from Method 1
- Average energies response was considered (for branch voltage ripple optimization, please refer to [12], [10], [1], [13])

Reminder - values of coefficients determining the balancing dynamics
of energy components $W_{\Delta \alpha}, W_{\Delta \beta}$

and $W_{\Delta 0}$, respectively.			
Coefficient	Method 1	Method 2	Method 3
$k_{1 \alpha}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
$k_{1 \beta}$	$\frac{1}{2} \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1
k_{10}	$\sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}$	1

HIL VERIFICATION

- Parameters of the converter used for further analyses

Rated power $\left(S^{*}\right)$	Output voltage (V_{DC})	Grid voltage $\left(v_{g}\right)$	Number of SMs per branch (N)	Nominal SM voltage ($V_{S M}$)	SM capacitance (C_{SM})	Branch inductance $\left(L_{\mathrm{br}}\right)$	Branch resistance $\left(R_{\mathrm{br}}\right)$	PWM carrier frequency $\left(f_{\mathrm{c}}\right)$	Fundamental frequency $\left(f_{\mathrm{o}}\right)$
1.25MVA	5 kV	3.3 kV	6	1kV	3.36 mF	2.5 mH	$60 \mathrm{~m} \Omega$	1 kHz	60 Hz

- Converter with parameters provided above (identical to [14])
- Real industrial ABB PEC800 controller
- Master \& Slave PECs (flexibility in reconfiguration)
- PECMI (v / i measurements)
- Control HUB (SM signals aggregation and reference processing)
- COMBIO (Realays/Switches/Monitoring)
- More details in Part 4.
- Identical gains $k_{\mathrm{p} \Sigma}=k_{\mathrm{p} \Delta}=50$
\Rightarrow Control structure identical to the real prototype

(a) Front view
- HIL system used for result verification purposes

November, 16-18, 2020

(b) Rear view

HIL VERIFICATION - HORIZONTAL BALANCING

- Response under the unbalance scenario 2

HIL VERIFICATION - VERTICAL BALANCING

-200
-400

-50

A Response under the unbalance scenario 1
November, 16-18, 2020

- Response under the unbalance scenario 2

Power Electronics Laboratory (PEL) | 22 of 24

- Control of average energies
- Three decoupled layers of balancing
- Total energy control
- Horizontal balancing
- Vertical balancing
- Different options with regards to the choice of bal. methods
- Chosen approach affects the energy balancing dynamics

BIBLIOGRAPHY

[1] A. J. Korn, M. Winkelnkemper, and P. Steimer. "Low output frequency operation of the Modular Multi-Level Converter." 2010 IEEE Energy Conversion Congress and Exposition. 2010, pp. 3993-3997.
[2] A. J. Korn et al. "Capacitor voltage balancing in modular multilevel converters." 6th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2012). Mar. 2012, pp. 1-5.
[3] Kamran Sharifabadi et al. Design, control, and application of modular multilevel converters for HVDC transmission systems. John Wiley \& Sons, 2016.
[4] Stefan Milovanovic. "MMC-based conversion for MVDC applications." (2020), p. 268. URL: http://infoscience .epf1 . ch/record/277121.
[5] P. Münch et al. "Integrated current control, energy control and energy balancing of Modular Multilevel Converters." IECON 2010-36th Annual Conf. on IEEE Industrial Electronics Society. Nov. 2010, pp. 150-155.
[6] J. Kolb et al. "Cascaded Control System of the Modular Multilevel Converter for Feeding Variable-Speed Drives." 30.1 (2015), pp. 349-357.
[7] Gilbert Strang. "Linear algebra and its applications, Thomson Learning." Inc., London (1988).
[8] M. Basić, S. Milovanović, and D. Dujić. "Comparison of two Modular Multilevel Converter Internal Energy Balancing Methods." 2019 20th International Symposium on Power Electronics (Ee). 2019 , pp. 1-8.
[9] Kosei Shinoda et al. "Energy difference controllers for MMC without DC current perturbations." The 2nd International Conference on HVDC (HVDC2016). 2016.
[10] G. Bergna et al. "An Energy-Based Controller for HVDC Modular Multilevel Converter in Decoupled Double Synchronous Reference Frame for Voltage Oscillation Reduction." 60.6 (2013), pp. 2360-2371.

[12] A. Rasic et al. "Optimization of the modular multilevel converters performance using the second harmonic of the module current." 2009 13th European Conf. on Power Electronics and Appl. Sept. 2009 , pp. 1-10.
[13] J. Pou et al. "Circulating Current Injection Methods Based on Instantaneous Information for the Modular Multilevel Converter." 62.2 (2015), pp. 777-788.
[14] M. M. Steurer et al. "Multifunctional Megawatt-Scale Medium Voltage DC Test Bed Based on Modular Multilevel Converter Technology." 2.4 (Dec. 2016), pp. 597-606.

Modular Multilevel Converters
 Operating Principles and Applications

Prof. Drazen Dujic, Dr. Stefan Milovanóvic
Power Electronics Laboratory
Ecole Polytechnique Fédérale de Lausanne ASIA

MODULAR MULTILEVEL CONVERTERS
 - OPERATING PRINCIPLES AND APPLICATIONS
 - PART 3

Prof. Dražen Dujić, Dr. Stefan Milovanović
École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory (PEL)

Before the virtual coffee break

After the virtual coffee break

Part 1) Introduction and motivation

- MMC Applications
- MMC operating principles
- Modeling and control

Part 2) MMC energy control

- Role of circulating currents
- Branch energy control methods
- Performance benchmark

Part 3) MMC power extension

- MMC scalability
- Branch paralleling
- Energy control

Part 4) MMC research platform

- MMC system level design
- MMC Sub-module development
- MMC RT-HIL development

MMC POWER CAPACITY EXTENSION

Boosting the power through branch paralleling...

MODULAR MULTILEVEL CONVERTER POWER SCALING

^ Conventional 3PH MMC

- Series connection of SMs
- Extremely flexible in terms of voltage scaling
- Convenient if application voltage is freely selected

- MMC power scaling [1], [2], [3]
- Existing SM design is assumed
- Linear $S=f(V)$ change for a given current rating
- Current capacity $\uparrow \Rightarrow$ new characteristics

MODULAR MULTILEVEL CONVERTER POWER SCALING

- Paralleling semiconductor modules [4], [5]

- Paralleling SMs [6], [7]

- Paralleling converters [8], [9], [10]

© Paralleling semiconductor modules [4], [5]

- Paralleling SMs [6], [7]

- Paralleling converters [8], [9], [10]

- Exemplary cell design; Current capacity $-3 I_{\text {rated }}$

A Paralleling semiconductor modules [4], [5]

- Exemplary cell design; Current capacity $-2 I_{\text {rated }}$

- Paralleling SMs [6], [7]

A Paralleling converters [8], [9], [10]

A Paralleling semiconductor modules [4], [5]

© Exemplary cell design; Current capacity - $I_{\text {rated }}$

- Special design considerations
- Cell frame size does not change
- Possible heat sink oversizing?

- Paralleling semiconductor modules [4], [5]

A Exemplary cell design; Current capacity $-I_{\text {rated }}$

- Special design considerations
- Cell frame size does not change
- Possible heat sink oversizing?

- Paralleling SMs [6], [7]

Δ Cell designed for paralleling
- Additional inductor is needed
- Additional terminal for the capacitors
- Special gate driver structure

- Paralleling converters [8], [9], [10]

- Paralleling semiconductor modules [4], [5]

A Exemplary cell design; Current capacity $-I_{\text {rated }}$

- Special design considerations
- Cell frame size does not change
- Possible heat sink oversizing?

- Paralleling SMs [6], [7]

- Additional inductor is needed
- Additional terminal for the capacitors
- Special gate driver structure

- Paralleling converters [8], [9], [10]
- Well known principle
- Problem is shifted to the control domain

Paralleled MMC branches \Rightarrow System simplification

- Paralleling branches [2], [3], [11]

- Paralleling semiconductor modules [4], [5]

- Exemplary cell design; Current capacity $-I_{\text {rated }}$
- Special design considerations
- Cell frame size does not change
- Possible heat sink oversizing?

- Paralleling SMs [6], [7]

- Additional inductor is needed
- Additional terminal for the capacitors
- Special gate driver structure

A Paralleling converters [8], [9], [10]

- Well known principle
- Problem is shifted to the control domain

Paralleled MMC branches \Rightarrow System simplification

- Paralleling branches [2], [3], [11]
\Rightarrow If the branches are paralleled, there is no need to go through a new design process to accomplish the MMC power extension

MODELING

- Branch equivalent circuit
$\overline{v_{\mathrm{br} \Sigma}}=\frac{1}{M} \sum_{i=1}^{M} v_{\mathrm{br}, i}$ and $\frac{1}{\overline{Z_{\mathrm{br}}}}=\frac{1}{Z_{\mathrm{br}, 1}}+\frac{1}{Z_{\mathrm{br}, 2}}+\cdots+\frac{1}{Z_{\mathrm{br}, \mathrm{M}}}$

© Equivalent circuit of the converter operating with parallel (sub)branches
- Equivalent circuit \equiv Conventional MMC
- All state of the art control considerations still hold
- New layers of control to be added?
- Unequal SBR parameters
- SBR energy balance
- SBR current balance
- Voltage quality improvement due to paralleling

MODELING

CONTROL - SBR BALANCING

- Equivalent circuit of the branch
$L_{\mathrm{br}} \frac{\mathrm{d}}{\mathrm{d} t}(\underbrace{i_{\mathrm{br}, i}-\frac{i_{\mathrm{br}}}{M}}_{\Delta i_{\mathrm{br}, i}})+R_{\mathrm{br}}\left(i_{\mathrm{br}, i}-\frac{i_{\mathrm{br}}}{M}\right)=\overline{v_{\mathrm{br} \Sigma}}-v_{\mathrm{br}, i}$
Should $v_{\mathrm{brr,i}}$ be chosen like: $v_{\mathrm{br}, \mathrm{i}}=\overline{v_{\mathrm{br} \Sigma}^{*}}+\Delta v_{\mathrm{br}, \mathrm{i}}$

$$
L_{\mathrm{br}} \frac{\mathrm{~d}}{\mathrm{~d} t} \Delta i_{\mathrm{br}, i}+R_{\mathrm{br}} \Delta i_{\mathrm{br}, i}=-\Delta v_{\mathrm{br}, i}
$$

- Equal current sharing obtained by means of $\Delta v_{\text {br,i }}$
- Total branch voltage must not be corrupted!

$$
\sum_{i=1}^{M} \Delta v_{\mathrm{br}, i}=0
$$

- SBR current balancing controller

Power extension triangle

Current sharing	YES	NO	NO
Voltage sharing	NO	YES	NO
Power sharing	NO	NO	YES

CONTROL - SBR BALANCING

- Equivalent circuit of the branch

$$
L_{\mathrm{br}} \frac{\mathrm{~d}}{\mathrm{~d} t}(\underbrace{i_{\mathrm{br}, i}-\frac{i_{\mathrm{br}}}{M}}_{\Delta \mathrm{i}_{\mathrm{br}, i}})+R_{\mathrm{br}}\left(i_{\mathrm{br}, i}-\frac{i_{\mathrm{br}}}{M}\right)=\overline{v_{\mathrm{br} \Sigma}}-v_{\mathrm{br}, i}
$$

Should $v_{\mathrm{br}, \mathrm{i}}$ be chosen like: $v_{\mathrm{br}, \mathrm{i}}=\overline{v_{\mathrm{br} \Sigma}^{*}}+\Delta v_{\mathrm{br}, \mathrm{i}}$

$$
L_{\mathrm{br}} \frac{\mathrm{~d}}{\mathrm{~d} t} \Delta i_{\mathrm{br}, i}+R_{\mathrm{br}} \Delta i_{\mathrm{br}, i}=-\Delta v_{\mathrm{br}, i}
$$

- Equal current sharing obtained by means of $\Delta v_{\text {br,i }}$
- Total branch voltage must not be corrupted!

$$
\sum_{i=1}^{M} \Delta v_{\mathrm{br}, i}=0
$$

- SBR current balancing controller

- Power extension triangle

Current sharing	YES	NO	NO
Voltage sharing	NO	YES	NO
Power sharing	NO	NO	YES

Current balancing is not enough!

SBR powers are different \Rightarrow capacitor energy (voltage) divergence

- Typical voltage/current waveforms of an SBR
(Sub)branch power equation

$$
\begin{aligned}
P_{\mathrm{sbr}} & =\overline{v_{\mathrm{sbr}} i_{\mathrm{sbr}}} \\
& =V_{\mathrm{sbr}}^{\mathrm{DC}} I_{\mathrm{sbr}}^{\mathrm{DC}}+\overline{v_{\mathrm{sbr}}^{\sim} i_{\mathrm{sbr}}^{\sim}}
\end{aligned}
$$

Taylor series expansion

$$
P_{\mathrm{sbr}}=P_{\mathrm{sbr}}^{\mathrm{nom}}+\underbrace{\Delta P_{\mathrm{sbr}}^{\mathrm{DC}}}_{\approx \frac{1}{2} V_{\mathrm{DC}}^{*} \Delta I_{\mathrm{sbr}}^{\mathrm{DC}}}+\underbrace{\Delta P_{\mathrm{sbr}}^{\mathrm{AC}}}_{\text {depends on } \Delta L_{\mathrm{br}}}
$$

SBR energy
balancing

- SBR energy controller

A The branch voltage components represented through the superposition principle

- Typical voltage/current waveforms of an SBR
(Sub)branch power equation

[^1]

- Converter control layers
- Additional control layer (conventional MMC control is retained as can be seen on the left-hand side)
- Decoupling from the higher control levels ensured by means of $\sum_{i=1}^{M} \Delta v_{\mathrm{br}, \mathrm{i}}=0$
- Independent on the number of paralleled SBRs (the same approach for both odd and even M)
- Power scalability depending solely upon the control system limitations

SIMULATION RESULTS

	Rated power (P)	Input voltage $\left(V_{\text {in }}\right)$	No. of cells/SBR (N)	Cell rated voltage ($V_{\text {cell }}$)	Cell capacitance ($C_{\text {cell }}$)	No. of paralleled SBRs (M)	SBR inductance $\left(L_{\mathrm{br}}\right)$	SBR resistance $\left(R_{\mathrm{br}}\right)$	Sw. frequency $\left(f_{\text {sw }}\right)$
Left	1MW	5 kV	5	1 kV	0.83 mF	2	5 mH	$60 \mathrm{~m} \Omega$	999 Hz
Right	1.5MW	5 kV	5	1 kV	0.83 mF	3	7.5 mH	$60 \mathrm{~m} \Omega$	999 Hz

SIMULATION RESULTS

Leg A Upper SBR currents [A]

Leg A Upper SBR voltages [kV]

- Leg A upper and lower SBR currents (top) along with SBR voltages (bottom) in case $M=2$

Leg A Upper SBR currents [A]

- Leg A upper and lower SBR currents (top) along with SBR voltages (bottom) in case $M=3$

SIMULATION RESULTS

Δ Leg A lower (left) and upper (right) SBR currents and energies in case $M=2$

Δ Leg A lower (left) and upper (right) SBR currents and energies in case $M=3$

SIMULATION RESULTS

There are two relevant questions one might ask:

- How aggressive is the SBR energy balancing controller?
- Should current rating of the SMs be increased owing to the presence of SBR energy balancing?

$$
\Delta I_{\mathrm{br}, \mathrm{i}}^{*}=\underbrace{\Delta W_{\mathrm{br}, \mathrm{i} \Sigma}}_{\begin{array}{c}
\text { Energy } \\
\text { error }
\end{array}} \cdot H_{\Delta \mathrm{W}} \cdot \frac{2}{\boldsymbol{C}_{\begin{array}{c}
\mathrm{TF}
\end{array}}^{V_{\mathrm{DC}}^{*}}}
$$

- References provided by the SBR energy balancing controller $(M=2)$

- References provided by the SBR energy balancing controller $(M=3)$

SIMULATION RESULTS

There are two relevant questions one might ask:

- How aggressive is the SBR energy balancing controller?
- Should current rating of the SMs be increased owing to the presence of SBR energy balancing?

$$
\Delta I_{\mathrm{br}, \mathrm{i}}^{*}=\underbrace{\Delta W_{\mathrm{br}, \mathrm{i} \Sigma}}_{\begin{array}{c}
\text { Energy } \\
\text { error }
\end{array}} \cdot \underbrace{H_{\Delta \mathrm{W}}}_{\substack{\text { Controller } \\
\mathrm{TF}}} \cdot \underbrace{V_{\mathrm{DC}}^{*}}_{\begin{array}{c}
\text { several } \\
\mathrm{kV}
\end{array}}
$$

- References provided by the SBR energy balancing controller $(M=2)$

- References provided by the SBR energy balancing controller $(M=3)$
- MMC power extension as a main motivation
- Simple and cheap (no need for major redesign of the converter parts)
- The challenge is shifted to the control domain
- State of the art control methods + Additional loops
- Possible AC voltage quality improvement

BIBLIOGRAPHY

[1] Miodrag Basic, Pedro CO Silva, and Drazen Duic. "High Power Electronics Innovation Perspectives for Pumped Storage Power Plants." (2018).
[2] S. Milovanović and D. Duicí. "On Facilitating the Modular Multilevel Converter Power Scalability Through Branch Paralleling." 2019 IEEE Energy Conversion Congress and Exposition (ECCE). Sept. 2019.
[3] Stefan Milovanovic. "MMC-based conversion for MVDC applications." (2020), p. 268. URL: http://infoscience . epf1.ch/record/277121.
[4] Andreas Volke, Jost Wendt, and Michael Hornkamp. IGBT modules: technologies, driver and application. Infineon, 2012.
[5] R. Hermann et al. "Parallel Connection of Integrated Gate Commutated Thyristors (IGCTs) and Diodes." 24.9 (Sept. 2009), pp. 2159-2170.
[6] R. Grinberg et al. "Study of overcurrent protection for modular multilevel converter": 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Sept. 2014, pp. 3401-3407.
[7] M.M. Steurer et al. "Multifunctional Megawatt-Scale Medium Voltage DC Test Bed Based on Modular Multievel Converter Technology." 2.4 (Dec. 2016), pp. 597-606.
[8] Josep Pou et al. "Current balancing strategy for interleaved voltage source inverters." EPE Journal 21.1. (2011), pp. 29-34.
[9] J.Pou et al. "Control strategy to balance operation of parallel connected legs of modular multilevel converters." 2013 IEEE I Iternational Symposium on Industrial Electronics. 2013, pp. 1-7.
[10] F. Gao et al. "Control of Parallel-Connected Modular Multilevel Converters." IEEE Transactions on Power Electronics 30.1 (2015), pp. 372-386.
[11] S. Milovanovic and D. Dujic. "On Power Scalability of Modular Multilevel Converters: Increasing Current Ratings Through Branch Paralleling." IEEE Power Electronics Magazine 7.2 (2020), pp. 53-63.

Modular Multilevel Converters
 Operating Principles and Applications

Prof. Drazen Dujic, Dr. Stefan Milovanóvic
Power Electronics Laboratory
Ecole Polytechnique Fédérale de Lausanne

MODULAR MULTILEVEL CONVERTERS
 - OPERATING PRINCIPLES AND APPLICATIONS
 - PART 4

Prof. Dražen Dujić, Dr. Stefan Milovanović
École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory (PEL)

Before the virtual coffee break

After the virtual coffee break

Part 1) Introduction and motivation

- MMC Applications
- MMC operating principles
- Modeling and control

Part 2) MMC energy control

- Role of circulating currents
- Branch energy control methods
- Performance benchmark

Part 3) MMC power extension

- MMC scalability
- Branch paralleling
- Energy control

Part 4) MMC research platform

- MMC system level design
- MMC Sub-module development
- MMC RT-HIL development

MMC RESEARCH PLATFORM

High power university lab prototype and versatile HIL system

ONGOING MMC RELATED ACTIVITIES

Pump Hydro Storage Research Platform

- MMC based AC/AC converter
- Interface between SG and local AC grid

Flexible DC Source (FlexDCS)

- MMC Based DC Source rated at 0.5 MVA
- Reconfiguration unit allows series/parallel operation
- Four quadrant operation

- Flexible DC Source Topology [1]

- MMC-Based AC/AC Converter for Pump Hydro Applications
- Flexible voltage source in a range $\pm 10 \mathrm{kV}$ DC
- Flexible current source in a range ± 100 A DC

- Pumped Hydro Storage Plants - Research Platform

MMC - CONVERTER LAYOUT

MMC demonstrator ratings are:

- 500 kVA
- $10 \mathrm{kV}_{\mathrm{dc}} \longleftrightarrow 400 \mathrm{~V}_{\mathrm{ac}}$ or $6.6 \mathrm{kV}_{\mathrm{ac}}$
- 16 low voltage cells per branch $\Rightarrow 32$ cells per phase (cabinet) $\Rightarrow 96$ cells in total
- Industrial central controller and communication (ABB AC PEC 800)

- DC/3-AC MMC Converter Layout [2]

MMC - SUBMODULE OPTIMIZATION

Submodule

- $1.2 \mathrm{kV} / 50 \mathrm{~A}$ full-bridge IGBT module
- $C_{\text {cell }}=2.25 \mathrm{mF}$

Thermal design

- Cell level: detailed FEM
- Cabinet level: simplified FEM

\triangle CFD simulations

Semiconductor losses

- Virtual Submodule concept has been utilized [3]
- Closed-loop waveforms are approached by analytical waveforms

INSULATION COORDINATION (I)

System partitioning

Zones definition [4]

Zone 1 (ins. coord. inside a SM's enclosure) system voltage: $1 \mathrm{kV}_{\mathrm{ac}}$ Zone 2 (ins. coord. branch)

- Horizontal system voltage: 1 kV ac
- Vertical system voltage: $3.6 \mathrm{kV}_{\mathrm{ac}}$

Zone 3 (ins. coord. branch - cabinet (at GND)) system voltage: 6.6 kV ac Zone 4 (ins. coord. for LV circuits) system voltage: 0.4 kV ac

Standards

- UL840 for cell PCB (<1kV)
- IEC61800-5-1 (AC motor drives)
- Pollution degree 2: "Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation is to be expected, when the PDS is out of operation."
- Overvoltage category II: "Equipment not permanently connected to the fixed installation. Examples are appliances, portable tools and other plug-connected equipment."

Zone 2

- Box at dc- cell's potential (floating)
- Box corner radius: 3 mm
- MKHP (high CTI material) drawer holding 4 cells

- E-field FEM simulations for drawer design

INSULATION COORDINATION (II)

\checkmark MV MMC converter laboratory prototype layout compliant with:

- UL840 (for cell)
- IEC 61800-5-1
\checkmark Complete AC dielectric withstand tests on real prototype [4]

Δ Cabinet of one phase-leg (32 cells) in Faraday cage during insulation coordination testing

- AC dielectric withstand test result

- Drawer holding 4 cell (MKHP material)

MMC - CONVERTER LAYOUT

MMC demonstrator ratings are:

- $500 \mathrm{kVA}(2 \times 250 \mathrm{kVA})$
- $\pm 10 \mathrm{kV}_{\mathrm{dc}} \longleftrightarrow 2 \times 3.3 \mathrm{kV}$ ac
- 8 low voltage cells per branch $\Rightarrow 16$ cells per MMC phase $\Rightarrow 58$ cells in total - per MMC
- Industrial central controller and communication (ABB AC PEC 800)

- Flexible DC Source Converter Layout

MMC MECHANICS

^ MMC CAD development

- MMC - Actual mechanical assembly

^ MMC coupled air-core branch inductors

- MMC Submodule thermal heat-run test setup [5]

MMC SUB-MODULE

Low voltage based sub-module including cell controller

MMC SUB-MODULE - STRUCTURE

Key Features

- Low voltage power components
- Full-bridge sub-module structure
- Sub-module rated voltage-625V
- Sub-module insulation coordination-900 V
- Two interconnected PCBs: Power PCB and Control PCB

- MMC Sub-module Structure: Yellow parts - Control PCB

- Developed MMC FB sub-module based on the 1.2kV IGBTs

MMC SUB-MODULE - POWER PCB

- Power processing part
- Semikron full-bridge IGBT module $1.2 \mathrm{kV} / 50 \mathrm{~A}$
- Bank of electrolytic capacitors $\mathrm{C}_{\mathrm{sm}}=2.25 \mathrm{mF}$
- Protection devices: Bypass thyristor, relay and OVD
- Current and voltage measurements
- Hybrid balancing circuitry
- Hardware reconfiguration (HR)

^ MMC Sub-module Structure: Yellow parts - Control PCB

- Overview of the Power PCB

MMC SUB-MODULE - CONTROL PCB

- Flyback based auxiliary power supply
- +5V Output, used as a control feedback
- +80V Protection supply
- +15V Gate drivers supplies
- +15V Self-supply output
- DSP based main SM Controller
- Communication with upper level control
- Voltage and current measurements
- Monitoring the SM condition
- Decentralized modulation
- Gate drivers
- Protection logic
- Protection activation from upper level control
- Protection activation from DSP
- Protection activation by overvoltage detection
- Fiber-optical communication link

- Overview of the Control PCB

AUXILIARY SUB-MODULE POWER SUPPLY (I)

Possible concepts

- Externally supplied
- Single wire loop
- Siebel
- Inductive power transfer
- Internally supplied
- Tapped inductor Buck
- Flyback

Choice [6]

- Flyback with 6 isolated secondaries
- $1 \times 5 \mathrm{~V}, 4 \mathrm{~W}$ for the controller supply $\left(V_{+5 \mathrm{~V}}\right)$. This output is tightly regulated in closed-loop.
- $4 \times 15 \mathrm{~V}, 1.5 \mathrm{~W}$ for the IGBT gate drivers ($V_{\text {GD1.4 }}$)
- $1 \times 80 \mathrm{~V}, 15 \mathrm{~W}$ for 15 s operation when activated for the protection circuit ($V_{\text {prot }}$)

Planar trafo design

- PCB windings (isolation requirements!)
- Planar ferrite cores with custom gapping (COSMO ferrites)

Matlab design tool

- Account for flux fringing [7]
- BH curve for CF297
- Jiles-Atherton parametrization

FEM

- Validate Matlab design
- 3D model for accurate leakage flux

AUXILIARY SUB-MODULE POWER SUPPLY (II)

Transformer assembly

- 14 copper layers PCB
- Custom gapped ferrite E+I core

Tests

AC dielectric withstand test

- Way below threshold level of 10 pC

- Steady-state operation

Shut-down (slow $\mathrm{d} v / \mathrm{d} t$ from Delta power-supply used to emulate the cell)

MMC SUB-MODULE POWER TESTS

Extensive testing has been done:

- Power tests
- Thermal heat-runs
- Over current tests
- Loss of power supply
- DC link over voltage
- Terminal over voltage
- Short-circuit tests
- ...

- Developed MMC FB sub-module

- MMC SM over current test

- MMC SM over voltage test

- Power supply under voltage detection

© Short circuit test (Desat detection)

- Gate Driver failure

$\Delta A C$ terminals over voltage detection

MMC DIGITAL TWIN

RT-Box based distributed HIL system

MMC - RT-HIL SYSTEM (I)

- Submodule layout

Submodule

- Full-Bridge IGBT module
- Capacitor bank
- Protection circuitry
- Balancing circuit
- Auxiliary power supply

ABB controller

- $2 \times$ PEC 800 (Master/Slave config.)
- PECMI (measurements)
- COMBIO (relays, switches, etc.)
- HUB (data gateway)

- SM control board adapted for HIL testing

- RT Boxes used to host up to eight MMC control cards

- Application (Grid) RT Box

MMC - RT-HIL SYSTEM (I)

MMC - RT-HIL SYSTEM (II)

- Modular Multilevel Converter
Δ Channels available on the RT Box

Description	No. of channels/ connectors	Voltage range
Analog Inputs	16	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$
Analog Output	16	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$
Digital Inputs	32	3.3 V or 5 V
Digital Outputs	32	3.3 V or 5 V
SFP Connectors	4	N.A.

Limitation in the number of DIs
One RT Box hosts up to 8 SMs!

- Wiring communication scheme of a system comprising one MMC serving an arbitrary application

MMC - RT-HIL SYSTEM (III)

System summary

- 6 RT-Boxes - one per Branch of the MMC
- 1RT-Box - Application (AC and DC side)
- ACS 800 PEC - ABB Industrial controller
- ABB other peripheral control boards
- Integrated into IT cabinet

- Application (Grid) RT Box

MMC - RT-HIL SYSTEM (IV)

- Digital Twin-Realized RT-HIL system for control verification purpose: (left) front view; (middle) wiring scheme; (right) back view.

MMC - RT-HIL SYSTEM (V)

MMC RT-HIL extended version

-4 RT-HIL cabinets - one per MMC

- 48 cells per one RT-HIL cabinet
- Various reconfigurations are possible

- RT Box hosting application

- RT Box hosting eight MMC sub-modules
Δ Digital Twins - Four RT-HIL systems allowing for various topological reconfigurations

CONTROL SW TESTING

Results recorded from the HIL platform

RECORDED WAVEFORMS (I)

Simulated converter param.

Rated power (S^{*})	1MVar
Output voltage (V_{DC})	5kV
Grid voltage $\left(v_{g}\right)$	3.3 kV
No. of SMs per branch (N)	6
SM capacitance ($C_{\text {sm }}$)	3.36 mF
Branch inductance (L_{br})	2.5 mH
Brach resistance (R_{br})	$60 \mathrm{~m} \Omega$
PWM carrier frequency $\left(f_{\text {pwm }}\right)$	1 kHz
Fudamental frequency $\left(f_{0}\right)$	60 Hz
Charging resistors ($R_{\text {ch }}$)	210Ω

4 Converter charging process presented through several stages November 16-18, 2020

4 A fraction of the interval referred to as the passive charging

RECORDED WAVEFORMS (II)

Simulated converter param.

Rated power (S^{*})	1MVar
Output voltage (V_{DC})	5kV
Grid voltage (v_{g})	3.3 kV
No. of SMs per branch (N)	6
SM capacitance ($C_{\text {sm }}$)	3.36 mF
Branch inductance (L_{br})	2.5 mH
Brach resistance (R_{br})	$60 \mathrm{~m} \Omega$
PWM carrier frequency $\left(f_{\text {pwm }}\right)$	1 kHz
Fudamental frequency $\left(f_{\mathrm{o}}\right)$	60 Hz
Charging resistors (R_{ch})	210Ω

- Converter operation at no load ($P_{\mathrm{DC}}=0$)

RECORDED WAVEFORMS (III)

- Passive charging of a branch

- Branch operation at full load

RECORDED WAVEFORMS (III)

SUMMARY

MMC research platform

- Electrical and mechanical design
- Insulation coordination
- Control development
- Testing independently HW and SW
- RT-HIL modeling and development
- Achieving flexibility for various applications
- Supporting future research activities

- MMC - Actual mechanical assembly

[^2]\qquad

BIBLIOGRAPHY

[1] M. Utvić, S. Milovanović, and D. Dujíc. "Flexible Medium Voltage DC Source Utilizing Series Connected Modular Multievel Converters." 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe). 2019, pp. 1-9.
[2] A. Christe and D. Dujic. "Galvanically isolated modular converter." IET Power Electronics 9.12 (2016), pp. 2318-2328.
[3] A. Christe and D. Duic. "Virtual Submodule Concept for Fast Semi-Numerical Modular Multievel Converter Loss Estimation." IEEE Transactions on Industrial Electronics 64.7 (July 2017), pp. $5286-5294$.
[4] A. Christe, E. Coulinge, and D. Duic. "Insulation coordination for a modular multievel converter prototype." 2016 18th European Conference on Power Electronics and Applications (EPE16 ECCE Europe). Sept. 2016, pp. 1-9.
[5] I.Polanco and D. Dujic. "Thermal Study of a Modular Multilevel Converter Submodule." PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 2020, pp. 1-8.
[6] A. Christe et al. "Auxiliary submodule power supply for a medium voltage modular multilevel converter:" CPSS Transactions on Power Electronics and Applications 4.3 (2019), pp. 204-218.
[7] J. Muhlethaler, J. W. Kolar, and A. Ecklebe. "A novel approach for 3d air gap reluctance calculations." 8th International Conference on Power Electronics - ECCE Asia. May 2011, pp. 446-452.

[^0]: - Open-loop control

[^1]: - The branch voltage components represented through the superposition principle

[^2]: © Digital Twins - Four RT-HIL systems allowing for various topological reconfigurations

