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Key aspects of glasses are controlled by the presence of excitations in which a group of particles can rearrange.
Surprisingly, recent observations indicate that their density is dramatically reduced and their size decreases
as the temperature of the supercooled liquid is lowered. Some theories predict these excitations to cause a
gap in the spectrum of quasilocalized modes of the Hessian that grows upon cooling, while others predict a
pseudogap DL (ω) ∼ ωα . To unify these views and observations, we generate glassy configurations of controlled
gap magnitude ωc at temperature T = 0, using so-called breathing particles, and study how such gapped states
respond to thermal fluctuations. We find that (i) the gap always fills up at finite T with DL (ω) ≈ A4(T ) ω4

and A4 ∼ exp(−Ea/T ) at low T , (ii) Ea rapidly grows with ωc, in reasonable agreement with a simple scaling
prediction Ea ∼ ω4

c and (iii) at larger ωc excitations involve fewer particles, as we rationalize, and eventually
become stringlike. We propose an interpretation of mean-field theories of the glass transition, in which the
modes beyond the gap act as an excitation reservoir, from which a pseudogap distribution is populated with
its magnitude rapidly decreasing at lower T . We discuss how this picture unifies the rarefaction as well as
the decreasing size of excitations upon cooling, together with a stringlike relaxation occurring near the glass
transition.

DOI: 10.1103/PhysRevE.102.062110

I. INTRODUCTION

A key feature of structural glasses is that groups of particles
can rearrange locally between two metastable states. This mo-
tion can be triggered by quantum or thermal fluctuations, or
mechanically by exerting an external stress or strain. Such re-
arrangements are associated with different excitations. At low
temperature the dominant source of excitations are two-level
systems (TLS) that stem from quantum tunneling between
the metastable states [1–3]. At higher temperatures, relax-
ation in supercooled liquids near the glass transition occurs
via thermally activated events, observed to become more and
more stringlike upon cooling [4,5]. Upon mechanical load-
ing, at any temperature below the glass transition, plasticity
occurs when a group of particles becomes unstable. In the
potential energy landscape, this corresponds to a saddle-node
bifurcation [6,7] and leads to a rearrangement denoted shear
transformation [8]. Understanding how temperature or system
preparation controls the density of these excitations remains a
challenge. It is, however, a question of practical importance
since: (i) the density of shear transformations controls for
instance the glass brittleness [9–11], (ii) the rarefaction of
activated events near the glass transition controls its fragility
[12], and (iii) the density of TLS (recently observed to be
almost absent in ultrastable glasses [13,14]) effects the de-
coherence in qubits [15] important for quantum computing.
Finally, the possible unification of these excitations into a
common description is a fundamental problem for a prospec-
tive theory of glasses.

These localized excitations should affect the low-frequency
spectrum of the Hessian of the energy landscape, since groups

of particles that can easily rearrange tend to have a small
linear restoring force [6,16,17]. Indeed, in numerical glasses,
such quasilocalized modes are found at low frequencies [18].
Recently there has been a considerable effort to analyze them
[19–25]. In most glasses, it is found that in inherent structures
[26], the density of quasilocalized modes DL(ω) ≈ A4(T ) ω4,
with ω the frequency. Most remarkably, A4(T ) is reduced by
several decades as T is reduced by 30% [25,27] (a similar
finding was obtained for the density of TLS [28]). Further-
more, quasilocalized modes also display a lower participation
ratio at lower T . A unifying explanation for these facts is
currently missing [36]. On the theoretical side, two distinct
approaches have been proposed. On the one hand, the ω4

power law has been rationalized by making specific assump-
tions on the disorder and by assuming modes as noninteracting
[29,30], or by modeling a quench from T = ∞ and in-
cluding interactions [17]. On the other hand, in mean-field
calculations in infinite dimensions for temperatures below the
mode-coupling temperature Tc [31] the spectrum of the Hes-
sian becomes gapped (excluding obvious long-wave-length
Goldstone modes that are always present). Below Tc, the gap
is predicted to grow as T decreases [32–34]. A gap was
also predicted from real-space stability arguments in finite
dimensions for continuously polydisperse particles, at very
low energies and zero temperature [35]. Nevertheless, it is
currently unclear if a gap truly exists in finite dimension and
at finite temperature.

In this article we seek a unifying scenario for these facts
and different approaches, by studying the stability of gapped
spectra with respect to thermal fluctuations. Specifically, we
use breathing particles [36,37] in order to generate athermal
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FIG. 1. Schematic density of states for an equilibrated liquid at
temperature T . When a gapped glass is heated to a temperature Ta for
a duration ta, as sketched in the inset, modes beyond the gap act as a
reservoir of excitations that can be thermally activated. It fills up the
gap, leading, for small ω, to a pseudogap D(ω) ≈ DL (ω) ≈ A4 ω4.
This effect is exponentially diminished if ωc increases (correspond-
ing to a decrease of T as predicted by the infinite-dimensional
mean-field description near the glass transition).

ultrastable glasses of controlled gap magnitude ωc. Then, as
sketched in Fig. 1, we transiently reheat these glasses, with
a standard molecular dynamics simulation, at a low tem-
perature Ta for a duration ta, before quenching them back
to zero temperature. Our central results are that (a) thermal
fluctuations, even small, destroy the gap and we recover a
density DL(ω) ≈ A4 ω4; the prefactor A4(Ta, ta) depends very
mildly on ta but presents an Arrhenius dependence on tem-
perature with A4 ∼ exp(−Ea/Ta) (in our temperature units
the Boltzmann constant kB = 1). (b) The activation energy
Ea rapidly increases with the gap magnitude ωc. (c) We in-
troduce an algorithm to decompose the rearrangements into
elementary excitations, and find that they involve fewer par-
ticles for larger gap values, and eventually become stringlike
for our largest gap. We propose a scaling argument for their
decreasing size. Overall, these results suggest to describe
equilibrated liquids perturbatively as gapped states decorated
by thermally activated excitations whose characteristic en-
ergy is controlled by the gap itself, leading to a contribution
with A4 ∼ exp(−Ea(ωc(T ))/T ). We discuss the implications
of this picture, sketched in Fig. 1, for the density of these
various excitations, for their effect on plasticity and on low-
temperature properties of glasses as well as for the glass
transition.

II. GENERATING GAPPED GLASSES

To generate ultrastable glasses displaying a finite gap, we
follow a procedure similar to [35]. We consider breathing
particles whose individual size can vary according to an en-
ergetic cost of characteristic stiffness K (see Appendix B).
The particles interact with a repulsive potential, up to a finite
cutoff radius, chosen such that the potential remains contin-
uous up to its third derivative [38] and thus allowing for a
well-defined Hessian. At a given temperature, this system
is known to be thermodynamically equivalent to a system
of given (and continuous) polydispersity, and can be simu-
lated using a usual molecular dynamics (MD). Including this

FIG. 2. (a) Distribution of particle radii, normalized by the num-
ber density ρ = N/〈V 〉, for different values of stiffness K (the
particle sizes are narrowly distributed when K is large). (b) Density
of quasilocalized modes displaying a finite gap ωc, in contrast to
the usual pseudogap scaling DL (ω) ∼ ω4 indicated with a dashed
line. The gap values ωc ≈ {1.64, 1.19, 0.85, 0.65} corresponding, re-
spectively, to K = {102, 103, 3 × 103, 104} are indicated using ticks,
following the same color code. Physically, decreasing K results to a
larger gap and thus a more stable glass, and is associated to a larger
polydispersity.

breathing degrees of freedom leads to a giant shortening of
the equilibration time, comparable to that of swap algorithms
[37,39]. In practice, we perform MD with breathing particles
for a long duration tp at a temperature Tp(K ), chosen such as
to minimize the energy of the states eventually obtained (see
Appendix C), before quenching using a FIRE algorithm [40]
in which particles can still breathe.

The polydispersity obtained for various values of stiffness
K is shown in Fig. 2(a) for N = 8000 particles, in three di-
mensions and at fixed pressure. Next, we freeze the radius of
each particle, and compute the usual Hessian of the potential
energy: its eigenvectors correspond to the vibrational modes
of the glass, and its eigenvalues are denoted ω2 since they
correspond directly to the frequencies of vibrational modes,
as we take the particle mass to be unity. Showing that these
states are gapped requires considerable statistics; in fact, we
collect the spectra of n = 4000 independent realizations (see
Appendix A for a precise statement) and average them in order
to obtain the density of vibrational modes D(ω). We empha-
size that for the considered small system size, quasilocalized
modes are already found below the first plane waves [20].

D(ω) turns out to display a gap: there are no quasilo-
calized modes below a finite frequency ωc. Since we find
ωc to be even higher than the frequencies of the first
plane waves for K = {102, 103} we manually remove them
in order to measure the density of quasilocalized modes
DL(ω), as shown in Fig. 2(b). We extract ωc by fitting a
power law DL(ω) ∼ (ω − ωc)ζ , and obtain the values ωc =
{1.64, 1.19, 0.85, 0.65}, for K = {102, 103, 3 × 103, 104}, in-
dicated with markers in Fig. 2(b). Note that if we consider
instead the minimal frequency observed as an estimate for ωc,
our conclusions below are not affected (see Appendix D).

III. FILLING UP THE GAP VIA THERMAL ACTIVATION

To test the robustness of gapped states to thermal fluctua-
tions, we reheat our samples to a temperature Ta and run MD
simulations for a duration ta, before applying an instantaneous
quench to zero temperature. This procedure is sketched in
Fig. 1 (and further detailed in Appendix B), and is entirely
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FIG. 3. (a) Density of soft modes D(ω) after reheating for a fixed
duration ta = 500 at different temperatures Ta (following the protocol
sketched in Fig. 1), at fixed gap ωc = 1.64 (the largest we generate,
cf. Fig. 2). Note that the order of the legend matches the order of
the curves. Furthermore, note that DL (ω) = D(ω) for ω < ωe, with
ωe the frequency of the first plane wave, indicated with a black
arrow. For reference, the mode-coupling temperature in this system is
Tc ≈ 0.3, and the gap, ωc = 1.64, is indicated by a black tick. We em-
phasize that, before reheating, we had DL (ω < ωc ) = 0, so that the
corresponding modes have been activated by thermal fluctuations.
(b) Prefactor A4 as a function of reheating temperature Ta for different
durations ta. (c) Collapse of the different curves A4(Ta, ta ), supporting
the functional form A4 = f (tγ

a exp(−Ea/Ta )) where the function f
is linear at small argument, indicating an Arrhenius behavior at
small Ta. (d) Typical energy scale Ea vs the initial gap ωc, together
with the associated scaling prediction Ea ∼ ω4

c (dashed line). Inset:
Dynamical exponent γ as a function of ωc.

performed at fixed particle radii. Upon reheating, local re-
arrangements [41] are thermally triggered (though less than
50% of the samples do rearrange at the lowest temperature
that we probe [42]), consequently modifying the spectrum.

In Fig. 3(a) the low-frequency tail of D(ω) is shown for our
most stable system (with ωc = 1.64) for ta = 500 and varying
Ta. Note that the acquisition of sufficient statistics required
about 105 CPU hours. We always find that the gap is replaced
by a pseudo-gap, compatible with the standard scaling:

DL(ω) ≈ A4(Ta, ta) ω4. (1)

The prefactor A4 characterises the density of quasilocalized
excitations, and is extracted by fitting eq. (1) for ω < ωe,
where ωe is the frequency of the first plane wave [see
Fig. 2(b)]. As shown in Fig. 3(b), A4 varies immensely (by
three orders of magnitude), mostly due to the variation of
the temperature Ta, with only a mild dependence on the
time ta. Moreover, we show in Fig. 3(c) that these curves
can be collapsed, in the range of parameters probed, assum-
ing the functional form A4(Ta, ta) = f (tγ

a exp(−Ea/Ta)) and
γ = 0.2. The function f is linear at small argument, sup-
porting an Arrhenius behavior at low temperature Ta (see
Appendix D). Remarkably, this collapse indicates that for a
given gap, the distribution of excitation energies is character-
ized by a single energy scale Ea (presumably a lower cutoff,
see below).

Interestingly, we find in Fig. 3(d) that Ea very strongly
increases with gap magnitude ωc (see below for a proposed
explanation). The dynamical exponent γ (ωc) is also shown in
the inset, and remains smaller than 0.2 in the entire range of
initial gaps that we probe.

IV. MODES BEYOND THE GAP ACT AS
AN EXCITATION RESERVOIR

We saw that, if we start from a glass with an initially
gapped density of states, thermal fluctuations will always
populate this gap. To rationalize these findings, we consider
the path of minimal energy connecting two states associated
to one excitation, and denote by s the curvilinear coordinate
along it. The Taylor expansion of the energy along this path
from the state 1, by definition the one of minimal energy, reads

E (s) = 1

2!
λ1s2 + 1

3!
κ1s3 + 1

4!
χ1s4 + O(s5), (2)

which is a double-well, with a curvature λ1 ≈ ω2
1 around the

minima in state 1. Physically, χ1 > 0 (otherwise the potential
has no lower energy limit).

In that formalism, starting from a gapped glass corresponds
to having a distribution P(λ1, κ1, χ1) strictly zero at λ1 < ω2

c
and smooth above ω2

c . At finite temperature the gap is pop-
ulated by thermal activation towards a state 2 with a smaller
frequency ω2 ≈ √

λ2, which corresponds to a transition in an
asymmetric double-well (as illustrated in Fig. 1). From Eq. (2)
it is straightforward to obtain the expansion from state 2, and
the transformation (λ2, κ2, χ2) = g(λ1, κ1, χ1). The joint dis-
tribution follows P(λ2, κ2, χ2) = |g′(λ2, κ2, χ2)|P(λ1, κ1, χ1)
where the absolute value of the determinant of the Jacobian
|g′(λ2, κ2, χ2)| ∼ λ2 for small λ2 (see Appendix E). Owing
to the smoothness of P(λ1, κ1, χ1) for λ1 � ω2

c , for small λ2

one has P(λ2, κ2, χ2) ∼ λ2 or equivalently P(ω2, κ2, χ2) ∼
λ2dλ2/dω ∼ ω3

2. After integrating on κ2 and χ2 one gets
DL(ω2) ∼ ω3

2. See Ref. [30] for a more general argument
along the same line. Thus one expects to observe a pseu-
dogap following thermally activated excitations. One effect
will deplete the spectrum even further: in the case of a cubic
pseudogap, the low-frequency spectrum is dominated by state
2 very close to a saddle node bifurcation (at the spinodal).
However, once interactions among excitations are taken into
account [43], configurations with such a large density of states
near a saddle node bifurcation can be shown to be unstable and
display avalanche-type events, i.e., where the relaxation of one
excitation can destabilize others in turn [17]. This effect will
increase the pseudogap exponent to values larger than three
[44].

As far as the kinetics is concerned, the time scale ta on
which an excitation equilibrates depends on the energy barrier

E to go from state 1 to 2. It will occur (neglecting prefactors)
when ta 	 t∗

a ∼ exp(
E/T ), i.e., its first-passage time. For
much larger time scales, the probability of being in the excited
states follows a Boltzmann factor exp(−E12/T ) at small T ,
where E12 is the energy difference between the two states. If
all states were equilibrated, A4 would not depend on ta (i.e.,
γ = 0). By contrast, if no states were equilibrated A4 would
grow linearly in time. In that respect, our observation of the
intermediate case γ ≈ 0.2 is consistent with the notion that
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FIG. 4. (a) The ensemble averaged shear stress 〈�0〉 as a
function of strain ε for our largest gap (ωc = 1.64). (b) The
difference 〈�0 − �〉 as a function of strain ε for different temper-
ature cycles applied to the gapped glass from (a). As observed,
the stress decreases as A4 increases (from bottom to top, Ta =
{0.15, 0.15, 0.15, 0.2, 0.2, 0.2, 0.23, 0.25} corresponding to ta =
{5 × 102, 2 × 103, 104, 5 × 102, 2 × 103, 104, 5 × 102, 5 × 102}, re-
spectively). (c) The decrease in the effective shear modulus 
μ

computed at ε = 10−2 is proportional to A4: the dashed line corre-
sponds to 
μ ∼ A4.

there is a broad distribution of barriers, so that on the time
scale ta a fraction of excitations are equilibrated, yet some
barriers are still being jumped over for the first time.

For a given gap magnitude ωc, we expect to find a lower
cutoff on the distribution of barriers 
E (with the typical
energy difference E12 of the associated excitations being of the
same order of magnitude). Consider for instance a symmetric
double-well in the energy landscape and expand its energy
around the maximum: E (s) = − 1

2!λs2 + 1
4!χs4. It is straight-

forward to show that in each minimum the frequency of the
soft mode scales as

√
λ, allowing us to identify for the softest

excitations λ ∼ ω2
c . Likewise in this example the barrier for

the double-well follows 
E ∼ λ2 ∼ ω4
c . This scaling holds

for asymmetric double-wells as well (see Appendix E). Inter-
estingly, our measured activation energy Ea is compatible with
this power-law relation, except for the smallest gap (hence less
stable glass) that we study [45].

Overall, this analysis supports the scenario that modes
beyond the gap act as a reservoir of excitations, with a broad
distribution of barriers presenting a typical cutoff Ea ∼ ω4

c at
low energies.

V. EFFECTS OF A THERMALLY FILLED-UP GAP ON
PHYSICAL PROPERTIES

A. The softening of loading curves is proportional to A4

We now discuss the practical implications of the prepa-
ration dependent amplitude A4(Ta, ta) on the mechanical
properties of the ultrastable glass. The relationship between
shear transformation and quasilocalized modes was studied
in Ref. [17] for rapidly quenched glasses. More generally,
more stably prepared systems exhibit a steeper loading curve
and have a lower density of quasilocalized modes [10,17].
Here, we show a quantitative relationship between the am-
plitude of quasilocalized modes A4 and the effective shear
modulus during loading μ ≡ 〈�〉/ε, where ε is the imposed
shear strain and 〈�〉 is the ensemble average of the corre-
sponding shear stress increase [46]. More plasticity leads to a
smaller μ.

We measure the stress-strain response in ultra-stable
glasses using a quasistatic loading protocol [see Fig. 4(a)]. We

find that the gapped glasses have the highest effective shear
modulus μ0 = 〈�0〉/ε and it decreases as the gap is filled
and A4 increases [Fig. 4(b)]. The reduction of the effective
shear modulus 
μ(A4) ≡ 〈�0 − �(A4)〉/ε is proportional to
A4 [see Fig. 4(c)] in the range of strains ε < 0.01 where it is
strain independent.

B. TLS disappear for large gaps

We argue that TLS cannot be observed if a glass presents
a large gap. Indeed if the tunneling amplitude is too small,
on experimental timescales a single state is visited and TLS
properties are not apparent [16]. It is precisely what hap-
pens when the gap is large, as barriers are then both larger
and wider. To estimate this effect we follow the treatment
of soft potential models [47] that solves the Schrödinger
equation in potentials described by Eq. (2). For a symmetric
double-well, the tunneling time follows τ = h̄π/
0, where

0 is the splitting energy stemming from quantum tunneling
(and h̄ is the reduced Planck constant). 
0 is expressed as

0 = W exp(−(ω1/ω̄)3) where W = h̄(h̄χ1/(96m2))1/3 and
ω̄ = (h̄χ1/(2m2))1/3 (cf. Ref. [47]), with m the particle mass.
Thus if ω1 > ω∗

c ≡ (ln τW
h̄π

)1/3ω̄, TLS are not apparent. In our
simulations we find that the median of χ1 ≈ 4.6mω2

D/a2 (for
our largest gap) where a is the interparticle distance and ωD

is the Debye frequency (see Appendix F for details). Taking
estimates in amorphous silicon where ωD ≈ kB530K/h̄ [48],
we get W ≈ 0.03h̄ωD and ω0 ≈ 0.1ωD. Considering the ex-
perimentally accessible time scale to be of order τ ≈ 100s, at
last we estimate ω∗

c ≈ 0.3ωD. It is of the order of magnitude
of our largest gap ωc ≈ 0.1ωD.

Suppressing TLS altogether would thus be accomplished
by preparing sufficiently stable glasses so as to get ωc > ω∗

c .
These considerations stay valid even when thermal activation
populates the gap and A4 becomes finite, because quasilo-
calized modes with low-frequency correspond then to quite
asymmetric wells whose barrier height and width (and there-
fore tunneling amplitude) is still comparable to the estimate
above. The presence of a large underlying, thermally popu-
lated, gap of quasilocalized modes in ultrastable glasses thus
offers an explanation for their lack of TLS [13,14].

VI. REARRANGEMENTS INVOLVE FEWER PARTICLES
AND BECOME STRINGLIKE AT LARGE GAPS

We introduce an algorithm to decompose the displacement
field of a rearrangement into several elementary excitations,
which is needed to study how their geometry depends on the
gap magnitude. Given a displacement field (induced, in our
case, by the thermal cycle), we first consider the particle with
maximal displacement, and draw a sphere of radius R̃ around
it. Beyond this sphere, all the particle displacements are set to
zero (i.e., these particles are set back to their initial position in
the gapped state), whereas within the sphere the displacements
are preserved. Next, we perform with that initial condition a
steepest descent of the interaction energy. We find that if R̃ is
small, all displacements go back to zero, whereas if R̃ is large,
they do not. We consider the smallest R̃ of the latter case, and
the displacement field obtained at the end of the corresponding
gradient descent defines our first elementary excitation. Next,
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FIG. 5. (a) Mean (dashed black) and median (green) of the num-
ber of particles NPr involved in an individual excitation vs ωc at
ta = 500 (at the lowest temperature we probe for each gap). The error
bars stand for the standard deviation of NPr which indicates that the
distribution of NPr is broader for smaller ωc. (b) Mean (dashed black)
and median (green) of the displacement norm of the most mobile
particle in an excitation, as a function of ωc. d∗

0 is the most frequent
diameter of the smaller particles (d∗

0 = {0.738, 0.918, 0.963, 0.988}
for the different ωc). (c),(d) Thermally induced rearrangement, re-
spectively for our largest (ωc = 1.64) and smallest (ωc = 0.65) gaps,
projected on the xy plane. (e) Ensemble and radially averaged (on
all observed excitations) Van Hove correlation function Gd (r, ta)
computed for all (in black and having largest Gd at large r), only
small (red dotted) or only large (blue) particles for ωc = 1.64. The
peak around r = 0 corresponds to permutations of particles. The
black and red curves overlap, indicating that permutations only occur
on small particles. (f) Average number of permutations 〈np〉vs ωc,
for two different cutoff distances rc/d∗

0 = {0.025, 0.05} (dashed and
solid, respectively).

we subtract this obtained displacement field from the full
one, and repeat the entire procedure recursively until no more
excitations are found (see Appendix G for details and visual
examples).

Given an individual excitation of displacement field {δ�ri},
we compute, from its associated participation ratio, an esti-
mate of the number of particles involved in this excitation
NPr ≡ [

∑
i ||δ�ri||2]2/

∑
i ||δ�ri||4. For each gap magnitude ωc,

we find about 5000 such excitations and report the mean and
the median of this observable in Fig. 5(a). We find that the typ-
ical number of particles involved in one excitation decreases

as ωc increases. We propose the following rationalisation. The
length scale of quasilocalized modes was found to be propor-
tional to the characteristic length scale entering the response
to a local dipole [23], as proposed based on a variational
argument in Ref. [49]. The length scale �c entering the dipolar
response was observed to decrease as the system moves away
from a marginally stable phase and enters a gapped solid phase
as �c ∼ 1/

√
ωc [50]. The volume of the corresponding mode

was shown to go as �2
c (independent of the number of dimen-

sions) for elastic networks of springs at rest [49,50]. Taken
together, these results correspond to a number of particles
involved in an excitation that decreases with increasing gap
as NPr ∼ 1/ωc. As shown in the inset of Fig. 5(a), this is in
reasonable agreement with our observations.

A complementary observable for the geometry is the maxi-
mum displacement maxi{||δ�ri||} for a given excitation, whose
mean and median values for all excitations at a given ωc are
shown in Fig. 5(b). Interestingly, this maximum displacement
increases with the gap, and becomes close to the small particle
diameter equal to d∗

0 .
A direct visualization of the excitation fields reveals a

(presumably related) interesting phenomenon: for our largest
gap, the displacements are stringlike with several particles ex-
changing positions, as shown in Fig. 5(c), whereas for smaller
gaps they are much more compact and no permutations occur.
To quantify this effect, we follow the glass transition literature
[4] and measure the distinct part of the Van Hove correlation:

Gd (�r, t ) ≡ 1

N

〈
N∑

i=1

N∑
j( =i)

δ(�r − �r j (t ) + �ri(0))

〉
, (3)

where the average is made on all the observed elementary
excitations at some given ωc. It is plotted for our most stable
system in Fig. 5(e) after radially averaging. The key obser-
vation is the presence of a very sharp peak around r = 0,
which can only arise from particles replacing each other.
Interestingly, if we condition our definition of the Van Hove
correlation to large or small particles only, we find that the
peak only persists for small particles [in red in Fig. 5(e)].
Strings thus correspond to smaller particles navigating in an
environment of larger ones.

Next we integrate the peak around r = 0 to quantify the
number of permuting particles averaged on all elementary
excitations:

〈np〉 =
〈
N
∫ rc

0
Gd (r, ta) 4πr2dr

〉
, (4)

where rc is a cutoff that is tuned. We observe that permutations
are essentially absent except for the largest considered gap,
see Fig. 5(f).

VII. DISCUSSION

In summary, we have argued that in gapped glasses, modes
beyond the gap act as an excitation reservoir for thermal
activation. This effect always destroys the gap and leads to
a density of quasilocalized modes DL(ω) ≈ A4(T ) ω4. At low
temperatures, we found that A4 ∼ exp(−Ea(ωc)/T ) where the
typical energy scale Ea(ωc) is a rapidly increasing function
of ωc. A simple scaling prediction gives Ea ∼ ω4

c , in good
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agreement with our observations, except for the smallest gap
value that we explore. Finally, we observed that as the gap
increases, excitations involve fewer and fewer particles and
become more and more stringlike. The growing length scale
of the excitations as ωc → 0 is consistent with the previously
identified growing length characterising the elastic response
of an amorphous solid near a macroscopic elastic instability
[50].

Although our observations were made in ultrastable states
obtained by a specific protocol [51], our arguments on this
reservoir effect are much more general. Assuming that this
effect is at play in supercooled liquids ties together several
unexplained observations, as we now discuss.

Reinterpreting mean-field descriptions of glasses. Gold-
stein [52] proposed early on that the glass transition takes
place near some temperature Tc below which most normal
modes become stable. Such an enhanced stability is consistent
with the overall elastic stiffening upon cooling apparent in the
bulk [53] or local [22] elastic moduli in fragile supercooled
liquids. Theoretically, this view is consistent with mean-field
models of the glass transition in infinite dimensions – that are
closely related to mode-coupling theory – [32,33], in which
the spectrum of the Hessian becomes stable and opens a
gap with ω2

c ∼ (Tc − T ) [34]. Our work suggests a natural
way to extend this picture to finite dimensions as sketched
in Fig. 1: the gap is decorated by excitations stemming from
the reservoir of modes with ω � ωc. In this approach (i) the
excitation density strongly decreases with temperature: away
from Tc in the deeply supercooled regime, it should be pro-
portional to exp(−Ea(ωc(T ))/T ) and (ii) as T decreases, ωc

increases and excitations are less and less extended. Point (i)
offers an explanation for the very rapid decay upon cooling
of A4(T ) [25,27], TLS density [28] and shear transformations
[10,54] observed in ultrastable supercooled liquids. Point (ii)
is consistent with the result that TLS [28] and quasilocalized
modes [25,27] present a lower participation ratio upon cooling
(such changes of geometry may lead to additional effects on
their density [55] ).

Glass transition. The mean-field proposal that supercooled
liquids present an effective gap growing upon cooling, lead-
ing to a rarefaction of thermally accessible excitations, is
consistent with the observation that rearrangements become
stringlike with more and more particles exchanging positions
upon cooling [4,5], since we find that excitations at the large
gap are precisely like that. In our view, why elementary ex-
citations display such a geometry at large gap is yet to be
explained [56].

At our lowest temperatures, only one or a few strings
get activated, which can only lead to a very partial re-
laxation of the system. Isolated strings thus belong to the
class of β relaxation in supercooled liquids, as shown in
Ref. [5], using normal dynamics, for model metallic glasses
(molecular and covalent liquids may certainly present other
β-relaxation mechanisms governed by the local chemistry,
such as dangling bonds). Yet strings may also contribute to the
α relaxation of liquids if they are present in sufficient density,
at least for the continuously polydisperse ones receiving much
attention currently. Indeed they allow for the exchange of
particles with distinct radii. Such swap moves are now known

to relax the system with great efficiency, so the dynamics
should not be slower than the time scale to naturally operate
these swaps [57,58]. The rapid increase of their characteristic
low-energy cutoff Ea with growing gap would then contribute
to the fragility of liquids.

Note that such views in which activation deep in the su-
percooled liquid phase is controlled by Tc, contrasts with the
usual interpretation of mean-field results in which activation
is controlled by an entropy crisis occurring at a lower tem-
perature TK (the Kauzmann temperature) [32,33]. The latter
is in our opinion ruled out in poly-disperse systems by the
recent observation that changes of kinetic rules (such as al-
lowing for swap moves [59]) immensely affect the location
of the glass transition, while leaving intact thermodynamic
properties [57]. Changes of kinetic rules, however, affect the
location of the mode coupling temperature Tc [37,58], thus
pictures of activation based on that temperature are consistent
with the observations of swap algorithms.

Effects of rare fluctuations. We have shown that a gap in the
density of quasilocalized modes cannot exist in finite dimen-
sion at finite temperature, due to the thermal activation of their
associated excitations. We expect that at least another effect
will enter in finite dimensions to fill up the gap. In electronic
systems that present impurities, the density of states does not
vanish in the range of energies where the pure system would,
due to rare regions where many impurities are present. This
effect leads to the so-called “Lifshitz tail” in the electronic
density [60]. In glasses, we expect that aspects of the struc-
ture controlling stability, such as coordination and pressure
[61,62], will also fluctuate and lead to rare weaker regions
in the materials (we do not see this effect in our breathing
particles, whose preparation may lead to an unusually homo-
geneous material). Such fluctuations will need to be larger
and larger as the gap grows to contribute to low-frequency
quasilocalized modes, and therefore less likely, leading to a
rapidly decaying density of quasilocalized modes with grow-
ing gap. These atypical rare regions may have little effect for
plasticity or structural relaxation near the glass transition, but
may be important in affecting the density of TLS. It would
thus be interesting in the future to study glasses of controlled
inhomogeneity to separate rare fluctuations in the structural
disorder from the excitations reservoir effect introduced here.
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TABLE I. Parameters and key quantities in the simulation.

K 102 103 3 × 103 104

ωc 1.65 1.19 0.85 0.65
n 4000 4000 2000 3000
N 8000 8000 8000 8000
φ 0.62 0.74 0.77 0.79
〈V 〉 3722.0 ± 0.3 7303.9 ± 0.7 8607.2 ± 0.9 9356 ± 1
ρ 2.15 1.10 0.93 0.86
Tp 0.2 0.39 0.44 0.49
tp 1e4 1e4 1e4 1e4
Tc 0.304 0.484 0.525 0.572
Ta {0.15, 0.20, 0.23, {0.07, 0.10, 0.20, 0.30, {0.03, 0.05, 0.1} {0.03, 0.05, 0.10, 0.20,

0.25, 0.27, 0.30, 0.40} 0.39, 0.50, 0.60, 0.80} 0.30, 0.49, 0.60, 0.80}
ta {500, 2000, 10000} {100, 500, 2000} {500} {100, 500, 2000}
Ea 0.66 ± 0.08 0.15 ± 0.03 0.042 ± 0.016 0.03 ± 0.007
γ 0.2 0.05 - 0.003
〈ne〉 0.65 0.89 1.2 3.2

APPENDIX A: PARAMETERS AND KEY QUANTITIES

Table I shows the parameters and key quantities in our
simulation. Notice that φ ≡ ∑N

i=1
4
3πR3

i /V is the packing
fraction; and that 〈V 〉 is the ensemble average volume (and
the uncertainty its standard deviation). The average number
of excitations per realization 〈ne〉 has been obtained with
ta = 500 at the lowest Ta we probed for each K . Tc is obtained
from the relation: relaxation time ∼(T − Tc)−ν [31], where ν

is also a fit parameter. Lengths (�r, Ri and L) are shown in the
unit of d0 (or the most frequent diameter of small particles
d∗

0 , if so indicated): the diameter of an initially small particle.
Energies (Ea) are expressed in the unit of ε that is the prefactor
of the pair interaction potential (see below). Temperature (Tp,
Ta, and Tc) is in the unit of ε/kB. Time (tp, ta, and ω−1) is

shown in the unit of t0 where t0 ≡
√

md2
0 /ε.

Detecting a rearrangement

To detect if reheating with a temperature Ta for a duration
of ta has led to a rearrangement we consider the ratio of the
norm and the participation ratio of the displacement field:

I ≡ ||δ�ri||
Pr (δ�ri )

, (A1)

where ||δ�ri|| is the Euclidean norm of the particle displace-
ment field, δ�ri, between the quenched states before and after
reheating, and its participation ratio

Pr (δ�ri ) ≡ (
∑

i ||δ�ri||2)2

N
∑

i ||δ�ri||4 . (A2)

If a rearrangement results from reheating, the norm of the
displacement field is finite (typically 10−3–10−2) and partici-
pation ratio is on the order of 10−3–10−2. In contrast, if there
was no rearrangement, the norm of the displacement field is of
the order of the numerical precision (10−6) and the participa-
tion ratio is of order one. We distinguish the two cases using
a threshold. We define that a rearrangement has taken place
if I > 10−3. Note that the distributions of I corresponding to
the two cases are clearly separated.

APPENDIX B: MOLECULAR DYNAMICS

1. Sample preparation: ‘breathing’ dynamics

We study a three-dimensional periodic particle system of
N = 8000 particles, that is characterized by the grand poten-
tial

U =
∑
i< j

ϕ(ri j, Ri, Rj ) +
∑

i

μ
(
Ri, R(0)

i

)
, (B1)

where ϕ is a purely repulsive inverse power-law potential,
defined

ϕ(ri j, Ri, Rj )

=
{

ε
[(Ri j

ri j

)10 +∑3
p=0 c2p

( ri j

Ri j

)2p]
,

ri j

Ri j
� rc

0,
ri j

Ri j
> rc

(B2)

with rc is the cutoff distance, Ri j ≡ Ri + Rj (two times the
average particle radius), and ri j ≡ ||�ri j || ≡ ||�ri − �r j || (the Eu-
clidean norm of the distance vector separating particles i and
j). c2p is a constant that makes ϕ continuous up to the third
derivative at rc. Furthermore,

μ
(
Ri, R(0)

i

) = K

2

(
1 − R(0)

i

Ri

)2(
R(0)

i

)2
(B3)

is a chemical potential that allows a particle to change its size
from its initial value R(0)

i at an energetic cost that scales with
a modulus K . For K = ∞ it is impossible for a particle to
change its radius, while it becomes easier as K → 0. The
initial particle radii are bidisperse, in a 50:50 mixture. In
particular, in one randomly selected, half of the particles has
R(0)

i = 0.5d0 and the other half has R(0)
i = 0.7d0 (where d0

sets the unit of length of our system).
Sample preparation proceeds by instantaneously heating

the initial random configuration to a temperature Tp and keep-
ing it at this temperature for a certain time tp under the
constraint of a fixed pressure p = 20.0 (in units of ε/d3

0 ). We
then instantaneously quench the system to zero temperature
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FIG. 6. Mean interaction potential energy 〈u〉 after sample preparation with breathing dynamics for varying parent temperature Tp and two
different waiting times tp. The different panels correspond to different K as indicated. The selected temperature Tp for which the potential
energy is lowest for the largest practically reachable tp = 104 is indicated using vertical lines (see Appendix A for numeric values).

by minimising the grand potential. See algorithmic details
below.

2. Activation by temperature: normal dynamics

We proceed by fixing the particle size, which corresponds
to a potential energy

U =
∑
i< j

ϕ(ri j, Ri, Rj ) (B4)

(see Eq. (B2) for the definition of ϕ). We then gently heat
the system configuration to a certain “activation temperature”
Ta [at a heating rate Ta/(10 t0)], and keep the sample at Ta

for a total duration ta. Thereafter, we instantaneously quench
the sample to zero temperature. Algorithmic details are listed
below.

3. Molecular dynamics algorithm

We run molecular dynamics, whereby the particle dy-
namics are given by Newton’s equation of motion with the
gradient of the potential energy on a particle as driving force.
Time is discretized in steps of 
t using the standard velocity
Verlet algorithm. The temperature and pressure are controlled
using a Berendsen thermostat [68], where the temperature
is defined as the total kinetic energy

∑
i m||�̇ri||2/2 (where •̇

refers to the time derivative). Note that during preparation
the kinetic energy is

∑
i(m||�̇ri||2 + Ṙ2

i )/2. We use the FIRE
algorithm [40] to quench the systems.

For completeness we report that rc = 1.48 d0, ε = 1,
m = 1, d0 = 1, and 
t = 0.005. Furthermore c0 =

−1.1106337662511798, c2 = 1.2676152372297065, c4 =
−0.4960406072849212, c6 = 0.0660511826415732; see the
Supplemental Material of Ref. [38].

APPENDIX C: SAMPLE PREPARATION

We choose Tp and tp to empirically generate a configuration
in the lowest possible energetic state in terms of the mean
interaction energy 〈u〉 = 〈U 〉/N (averaged on an ensemble of
n = 10 samples). In particular, we set tp = 104 (the highest
value we can practically reach, with each sample taking eight
CPU hours to prepare). We manually optimize Tp as reported
in Fig. 6. Note that we verify that the Tp at which we find
the optimum, is robust in terms of preparation duration tp, by
comparing our results to those for tp = 500 (dashed line in
Fig. 6). Furthermore, the reader is reminded that although the
particle size distribution depends on temperature while still at
Tp, the final particle size distribution at zero temperature is
independent of Tp. Note that our breathing dynamics (at small
K) are quite efficient to prepare samples in a low potential
energy state. We verify this by preparing an ensemble (again
n = 10, but with N = 2000 particles) with normal dynamics
and a slow quench rate. We plot the potential energy 〈u〉 at dif-
ferent temperatures in Fig. 7. In all cases 〈u〉 at T = 0 is higher
than that for the sample prepared using breathing dynamics,
which was prepared at a fraction of the computational costs
(sample preparation is a factor of 2000 faster using breathing
dynamics).
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FIG. 7. Mean interaction potential energy as obtained by sample
preparation using breathing dynamics (at T = 0 for K = 102, tp =
104, and Tp = 0.2, in black) and using normal dynamics at different
cooling rates (cooling from T = 0.4) as indicated in the legend. Note
that in both cases the ensemble comprises n = 10 samples, but that
normal dynamics are run using smaller than usual samples compris-
ing N = 2000 particles (N = 8000 is used throughout). We verify
the representativeness of these smaller samples using N = 8000 for
Ṫ = 10−3, shown using a dashed red line (that indeed coincides with
the solid red line for N = 2000). The required CPU time to run the
entire simulation with N = 2000 particles is indicated. From bottom
to top, Ṫ increases. Note that for our breathing dynamics the time
has been divided by four to correct for the difference in system size.

APPENDIX D: MEASUREMENT OF QUASILOCALIZED
MODES

1. Spectrum of the Hessian

We extract the Hessian (or stiffness matrix) – the second
derivative of interaction energy – as follows:

Hi j ≡ ∂2U

∂�ri ∂�r j
= − d2ϕ(ri j )

dr2
i j

�ri j �ri j

r2
i j

−dϕ(ri j )

dri j

1

ri j

(
I − �ri j �ri j

r2
i j

)
(D1)

for i = j. The diagonal

Hii = −
∑
i = j

Hi j (D2)

due to translation symmetry. Note that Hi j is a second-order
tensor, and that I = δαβ �eα�eβ is a second-order unit tensor. We
then diagonalize the Hessian, leading to N eigenvalues λ and
corresponding eigenmodes ��i. Because all particles have a
mass m = 1 the corresponding N eigenfrequencies are

ω ≡
√

λ. (D3)

We finally represent the spectrum of the Hessian as

D(ω) = 1

3N − 3

3N−3∑
k=1

δ(ω − ωk ). (D4)

2. Density of quasilocalized modes

The density of quasilocalized modes, DL(ω), follows from
the spectrum of the Hessian in Eq. (D4) by filtering plane
waves that have a frequency ωe < ωc (where ωc is defined
below). We identify these plane waves by their signature in
participation ratio

Pr ( ��i ) ≡ (
∑

i || ��i||2)2

N
∑

i || ��i||4
. (D5)

Plane waves thereby have Pr ≈ 2/3, while quasilocalized
modes have Pr � 1.

In practice, most of our samples have no plane waves below
ωc, rendering filtering obsolete. In fact, we only apply filtering
after sample preparation for K = {102, 103}. Since we empir-
ically observe the plane waves to be well separated from the
quasilocalized modes in terms of frequency, we remove them
by removing the first 3 + 12 eigenmodes of each realization
for K = 103 and 3 + 12 + 24 eigenmodes of each realization
for K = 102, corresponding to the three translational modes
and the first (two) bands of plane waves [69]. Note that DL(ω)
is not renormalized after filtering of plane waves.

We emphasize that in all other measurements DL(ω) =
D(ω) at low frequency.

3. Protocol to measure ωc

We measure the gap frequency ωc – the frequency of the
first quasilocalized mode. To measure ωc, we assert that the
density of soft quasilocalized modes follows

DL(ω) ∼ (ω − ωc)ζ (D6)

at low frequency ω. We then move ωc until the power law is
most obvious at low ω, as shown in Fig. 8. We then visually
extract the power ζ and check that it and the extracted ωc

are consistent with extreme-value statistics. In particular, we
expect

ω′
min − ωc ∼ (n′)−1/(1+ζ ), (D7)

where ω′
min is the frequency of the softest quasilocalized mode

in an ensemble of n′ realisations chosen as a random subset of
our ensemble of n realisations. We consider ω̄′

min the average
of lowest three realisations (out of n′ realisations). Indeed, our
extracted ωc is consistent with this scaling, as shown in the
insets of Fig. 8. In addition, we check that ωc is robust to a
change of system size (shown in Fig. 6).

4. Protocol to fit A4

A4 is extracted from DL(ω) by fitting

DL(ω) = A4 ω4 (D8)

(i.e., Eq. (1)) for frequencies below the first plane wave
(for K = 102) and for frequencies below ωc (for K = 103,
3 × 103, and 104). Note that consequently DL(ω) = D(ω) in
the relevant frequency range for all these measurements. The
mean and the error of A4 follow as the mean and standard
deviation of {ln D(ωi ) − 4 ln ωi} where ωi corresponds to the
position of the bins of D(ω).

We verify that the value of A4 that we fit is robust to a
mild decrease of system size (using n = 2000 realizations of
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FIG. 8. Fit of ωc by asserting the power law scaling in Eq. (D6) and check by extreme value statistics as in Eq. (D7) (insets), for all
considered K .

N = 4000 particles, compared to an ensemble of n = 4000
realizations of N = 8000 particles). We find that both the
density of soft quasilocalized modes and the extracted A4 are
robust to the change of system size, as reported in Fig. 9.

5. Protocol to fit Ea and γ

Our protocol to fit Ea and extract γ consists of two steps. 1)
We first collapse the curves of A4(Ta) for different ta. Thereto
we shift the horizontal axis of, e.g., Fig. 3(b) in accordance
with assuming a functional dependence

A4 = A4
(
tγ
a e−Ea/Ta

)
, (D9)

until the curves for different ta collapse to a single curve [e.g.,
Fig. 3(c)], by optimising the ratio γ /Ea. 2) On the master
curve we next fit Ea of low Ta. Since we know the ratio γ /Ea,
the fitted value of Ea gives us direct access to Ea. Specifically,

we fit ln(A4) vs 1/Ta − γ /Ea ln ta using linear regression to
get Ea and its error at low Ta [the lowest 5 data points in
Fig. 3(c)].

6. Results for different K

In Fig. 10 we show the collapse of different waiting times ta
and the fit of Ea at low Ta for all ensembles that are not shown
in the main text (notably Fig. 3). Note that for K = 3 × 103

we extract Ea by directly fitting for low Ta for a single ta.

7. Robustness of Ea

In Fig. 11 we verify that the consistency with Ea ∼ ω4
c

is robust to a different measure of the softest quasilocalized
mode after sample preparation. In particular, we compare with
ωmin.

FIG. 9. (a) D(ω) for different system sizes N and different activation temperatures Ta (as indicated in the legend Ta increases from bottom
to top). (b) A4 fitted on (a) as a function of 1/Ta. Both plots are for K = 102 and ta = 500.
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FIG. 10. Fitting of Ea and γ for all K not shown in the main text. The fitted values are reported in Appendix A.

APPENDIX E: THE JACOBIAN OF THE
TRANSFORMATION FROM (λ1, κ1, χ1) to (λ2, κ2, χ2 )

The potential around the state 1 is given by

E (s) = 1

2!
λ1s2 + 1

3!
κ1s3 + 1

4!
χ1s4 + constant (E1)

with the joint distribution P(λ1, κ1, χ1) that is strictly zero
at λ1 < ω2

c and smooth above ω2
c . χ1 > 0. Without loss of

generality, we let κ1 > 0. For the new minimum, state 2, the
potential reads:

E (s) = 1

2!
λ2(s + s0)2 + 1

3!
κ2(s + s0)3

+ 1

4!
χ2(s + s0)4 + constant, (E2)

where s0 is the shift along s, see Fig. 12; and the correspond-
ing joint distribution is P(λ2, κ2, χ2). The convention κ1 > 0
leads to the position s2 = −s0 of state 2 smaller than 0.

The relation between two sets of coefficients λ1, κ1, χ1 and
λ2, κ2, χ2 is

χ1 = χ2

κ1 = κ2 + χ2s0 (E3)

λ1 = λ2 + κ2s0 + 1
2χ2s2

0,

where s0 as a function of (λ2, κ2, χ2) follows from the fact that
the linear term vanishes in Eqs. (E1) and (E2). In particular,

6λ2 + 3κ2s0 + χ2s2
0 = 0. (E4)

FIG. 11. Ea as a function of ωc (open markers) or as a function
of ωmin (solid markers).

The joint distribution P(λ2, κ2, χ2) is given by

P(λ2, κ2, χ2) =
∣∣∣∣det

(
dλ1dκ1dχ1

dλ2dκ2dχ2

)∣∣∣∣P(λ1, κ1, χ1), (E5)

where

∣∣∣∣det

(
dλ1dκ1dχ1

dλ2dκ2dχ2

)∣∣∣∣ ≡

∣∣∣∣∣∣∣det

⎛
⎜⎝
⎡
⎢⎣

∂λ1
∂λ2

∂λ1
∂κ2

∂λ1
∂χ2

∂κ1
∂λ2

∂κ1
∂κ2

∂κ1
∂χ2

∂χ1

∂λ2

∂χ1

∂κ2

∂χ1

∂χ2

⎤
⎥⎦
⎞
⎟⎠
∣∣∣∣∣∣∣

=
∣∣∣∣1 + κ2

∂s0

∂λ2
+ χ2

∂s0

∂κ2

∣∣∣∣. (E6)

From Eq. (E4) we find that

∂s0

∂λ2
= − 6

3κ2 + 2χ2s0
, (E7)

∂s0

∂κ2
= − 3s0

3κ2 + 2χ2s0
. (E8)

Thus∣∣∣∣det

(
dλ1dκ1dχ1

dλ2dκ2dχ2

)∣∣∣∣ =
∣∣∣∣−3κ2 − χ2s0

3κ2 + 2χ2s0

∣∣∣∣ =
∣∣∣∣ 6λ2

3κ2s0 + 2χ2s2
0

∣∣∣∣.
(E9)

If the excited state of the double-well potential is close to
the spinodal case, λ2 is small (as it is in Fig. 12). In particular,
when λ2 ≈ 0, it follows that s0 ≈ −3κ2/χ2. Inserting this in
Eq. (E9) gives∣∣∣∣det

(
dλ1dκ1dχ1

dλ2dκ2dχ2

)∣∣∣∣ � 2λ2χ2

3κ2
2

� λ2

λ1
∼ λ2, (E10)

where λ1 is a large value with the lower bound ω2
c . We have

thus found that the joint distribution

P(λ2, κ2, χ2) ∼ λ2 P(λ1, κ1, χ1). (E11)

state 1state 2

FIG. 12. Double-well potential.
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Hence, the marginal distribution P(λ2) ∼ λ2 (after inte-
grating out κ2 and χ2) and therefore

D(ω2) = P(λ2)
dλ2

dω2
∼ ω3

2. (E12)

Gap in energy barrier distribution

For a given λ1 we define c(κ1, χ1) = λ1χ1/κ
2
1 , which

smoothly varies in a narrow range from 1/3 (for a symmetric
double well) to 3/8 (for a spinodal). Then we can express the
energy barrier as


E = λ2
1

(
3 − √

9 − 24c
)2(−3 + 12c + √

9 − 24c
)
.

192 χ1 c2
(E13)

The function c is slowly varying and not singular so that


E ∼ λ2
1 ∼ ω4

c . (E14)

Similarly, the energy difference

E12 = λ2
1

(3 + √
9 − 24c)2(−3 + 12c − √

9 − 24c)

192 χ1 c2

∼ λ2
1 ∼ ω4

c (E15)

(except in the case of a symmetric double well).

APPENDIX F: ESTIMATION OF χ1

Numerically, the coefficient χ1 [from Eq. (2)] along the
direction of the displacement field �s from the initial minimum
to the new minimum whose frequency is smaller than ωe (the
frequency of first tranverse plane waves), can be expressed
by the pair interaction ϕ(�r) at mechanical equilibrium, as
follows:

χ1 =
3∑

α,β,η,ν=1

N∑
n,m,k,l=1

∂4U

∂rν
n∂rη

m∂rβ

k ∂rα
l

sα
l sβ

k sη
msν

n (F1)

=
∑
i< j

{(
1

r4
i j

d4ϕ

dr4
− 6

r5
i j

d3ϕ

dr3
+ 15

r6
i j

d2ϕ

dr2
− 15

r7
i j

ϕ′
)(

�ri j · �si j
)4

(F2)

+
(

1

r3
i j

d3ϕ

dr3
− 3

r4
i j

d2ϕ

dr2
+ 3

r5
i j

ϕ′
)

6
(
�ri j · �si j

)2(�si j · �si j
)

+
(

1

r2
i j

d2ϕ

dr2
− 1

r3
i j

ϕ′
)

3
(
�si j · �si j

)2

}
, (F3)

where �ri are the particles’ equilibrium positions, �s is the di-
rection (the normalized displacement field from the quenched
states before and after reheating), and �si j = �si − �s j .

From the results in Fig. 13 we observe that at small λ1, χ1 is
independent of λ1. Hence, we regard it as a constant. Here we
estimate χ1 ≈ 1500 by its median value. Note that χ1 has unit
mω2

0/d2
0 , where m is the particle mass, d0 is approximately

equal to the interparticle distance a (hence we take a = d0),
and ω0 ≡ 1/t0 is the unit frequency in our simulation which is
about ωD/18. Here ωD is the Debye frequency. Hence we get
χ1 ≈ 1500mω2

0/a2 ≈ 4.6mω2
D/a2.

0 50 100 150 200
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FIG. 13. Scatter plot χ1 as function of λ1 for our largest gap
(ωc = 1.64). λ1 follows as λ1 = ∑3

α,β=1

∑N
k,l=1 sα

l Hαβ

lk sβ

k .

The relation between ωD and ω0 is calculated by ωD =
(9N/(4π (2ω−3

e + ω−3
l )))

1/3 ≈ 18ω0, where ωe = 1.26ω0 and
ωl ≈ 2.5ωe (ωl is the frequency of first longitudinal modes).
Note that both are plane waves. In particular, the first trans-
verse modes consist of 12 modes and the first longitudinal
modes consists of six modes. Their identification is straight-
forward through the number of modes and their participation
ratios, which are around 0.6. Note that ω0 = 1 in our simula-
tion, so ωD ≈ 18 and ωc/ωD ≈ 0.1.

APPENDIX G: GEOMETRY OF REARRANGEMENTS

1. Protocol to separate rearrangements

The displacement field between the states before and after
reheating may contain more than one elementary excitation.
We extract them one-by-one from this displacement field, by
assuming them linearly independent. This corresponds to the
following algorithm:

(1) Find the particle with the largest displacement.
(2) Place a small sphere centered at this particle with a

radius R̃(i) = (V/N )1/3 (with i the increment number, starting
at i = 0).

(3) Set all displacements outside the sphere equal to zero.
The particle displacements inside the sphere are not changed.

(4) Minimize the energy U (every particle is free to move).
(5) Increase the radius of sphere: R̃(i+1) = R̃(i) + 
R̃, and

reset the displacements as in step 3 (the particle displacements
outside the sphere are set to zero and those inside the sphere
equal to the original particle displacements).

(6) Repeat steps 4 and 5, until the localized mode is iden-
tified. In particular, stop when |U (i+1) − U (i)| < 10−6 and, to
avoid stopping too early, the norm of the displacement field is
larger than 10−2. Note that U (i) refers to the potential energy
after energy minimization, in step 4, for increment i.

The local rearrangement is then the displacement field after
the last energy minimization. We then subtract it from the
original displacement and continue to extract the next elemen-
tary excitation, by repeating this algorithm. We continue to
do so until we have extracted all elementary excitations. In
particular, we stop R̃(i)/L >

√
3/2 (with L the linear size of

the simulation box).
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FIG. 14. Individual local rearrangements projected on the xy plane, shown using different colors, in five randomly chosen examples (from
those samples that show more than one local rearrangement) for: (top) K = 102, Ta = 0.15, and ta = 500, (bottom) K = 104, Ta = 0.03, and
ta = 500.

2. Results

Five representative samples (for two different K) showing
our separation protocol are shown in Fig. 14, whereby the dis-
placement field of each elementary excitation is plotted using
a different color. On average, we measure {1.4, 1.6, 1.9, 3.5}
elementary excitations for K = {102, 103, 3 × 103, 104} at the
lowest thermal activation Ta = {0.15, 0.07, 0.03, 0.03} with
ta = 500.

We, furthermore, include the distribution of the participa-
tion ratio of the elementary excitations in Fig. 15(a), whereby
the different colors correspond to the different data points in
Fig. 5(a). We observe that the elementary excitations become

more localized for larger gaps. Likewise, we include the dis-
tribution of the maximum displacement of each elementary
excitation in Fig. 15(b) [the different colors correspond to the
different data points in Fig. 5(b)]. In this case we observe that
the maximum displacement increases for our largest ωc (in
black) as the result of stringlike motion. This is supported by
the distinct part of the Van Hove correlation in Fig. 15(c) that
displays a sharp peak around r = 0 only for our largest ωc

(in black). For this configuration, we plot the distribution of
the number of permuting particles, #np, inside the string in
Fig. 15(d).

FIG. 15. Probability distribution of (a) the participation ratio NPr and (b) the maximal particle displacement maxi{||δ�ri||} at different ωc.
(c) The distinct part of the Van Hove correlation normalised by the number density 〈Gd 〉/ρ at different ωc. (d) Histogram of the number of
particles that permute per realisation, #np (for largest ωc) at two different cutoff distances rc/d∗

0 = {0.025, 0.05}.
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