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Abstract. Arguably one of the main applications of the LowMC family ciphers is
in the post-quantum signature scheme PICNIC. Although LowMC family ciphers
have been studied from a cryptanalytic point of view before, none of these studies
were directly concerned with the actual use case of this cipher in PICNIC signature
scheme. Due to the design paradigm of PICNIC, an adversary trying to perform a
forgery attack on the signature scheme instantiated with LowMC would have access
to only a single given plaintext/ciphertext pair, i.e. an adversary would only be able
to perform attacks with data complexity 1 in a known-plaintext attack scenario. This
restriction makes it impossible to employ classical cryptanalysis methodologies such
as differential and linear cryptanalysis. In this paper we introduce two key-recovery
attacks, both in known-plaintext model and of data complexity 1 for two variants of
LowMC, both instances of the LowMC cryptanalysis challenge.
Keywords: LowMC · PICNIC Signature Scheme · MITM · 3-xor problem

1 Introduction
In recent years, a significant amount of attention has been drawn towards designing
post-quantum cryptographic primitives, such as digital signature schemes. There have
been several design ideas for quantum-secure signature schemes, some of which are based
on lattice problems, supersingular isogenies or schemes providing information-theoretic
security.

PICNIC [CDG+17] is a highly tweakable signature scheme based on an MPC-in-head
paradigm, currently in the third round of NIST post-quantum cryptography competition
[nis]. The authors propose several different parameters for various security levels and
applications. Instantiating PICNIC requires a hard to invert function which has low
computational overhead when computed in a multi-party manner. This overhead relies
heavily on the number of non-linear operations needed to compute the function, i.e. number
of multiplications.

LowMC [ARS+15] is an efficient block-cipher tailored specifically for FHE and MPC
usage, aiming to minimize the number of multiplications. LowMC uses a quadratic S-box
operating on 3 bit inputs, and for each output bit of the S-box, a single multiplication
is needed. The S-box is then followed by an affine layer, operating on the whole block,
followed by a round-key addition.

The low multiplication count makes LowMC a fairly suitable choice for PICNIC in-
stantiation. Both the LowMC instance and the MPC steps of PICNIC have multiple
parameters to set for different use cases, but this also makes it challenging to select the
optimal parameters, one of which is the number of rounds/S-boxes. As mentioned before,
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the computational overhead of performing a LowMC encryption in a multi-party manner
is heavily dependent on the number of multiplications needed. Moreover, reducing the
number of multiplications too much will lead to security issues, which makes it challenging
to find a good parametrization to maximize efficiency without harming the security.

In ICISC 2015 Dobraunig et al. [DEM15] proposed an attack on LowMC family of
block ciphers, based on cube attack strategies. The authors proposed an algorithm which
successfully recovers the key of the round reduced version of the cipher, aiming for 80-bit
security. Later in FSE 2018, Rechberger et al. [RST18] proposed a meet-in-the-middle style
attack, based on possible output differentials, given an input differential, which affects the
security of the variants of LowMCv2 with partial S-box layers drastically. In [LIM20] some
results on LowMC were reported building on the techniques of [RST18], albeit with higher
data complexities, which naturally do not apply to the PICNIC scenario. For a survey
of key recovery attacks on LowMC, readers may check the survey done by Rechberger
et al. [DKRS]. As mentioned, one of the main use cases of LowMC, is the PICNIC post
quantum signature scheme. Due to PICNIC’s algebraic composition, the scheme would
be trivially forged by a key recovery attack on LowMC that uses only a single pair of
plaintext/ciphertext. In other words only attacks with data complexity one directly affect
the security of the signature scheme.

In May 2020, Rechberger et al. started a cryptanalysis challenge for LowMC key-
recovery, specifically for the PICNIC use case, meaning the attacks should be performed
using a single ciphertext/plaintext pair in a known-plaintext model. In this paper we
propose two attacks with data complexity one for two parameter sets of the LowMC
challenge. Our attacks successfully break the two-round version of LowMC with full S-box
layer, and the partial S-box variant with 0.8× bn/sc rounds, where n denotes the block
size, and s denotes the number of S-boxes used in each round.

We continue by giving a brief high-level description of the PICNIC signature, and
intuitively demonstrate why a data-complexity one key-recovery attack on LowMC cipher
would lead to a PICNIC signature forgery.

1.1 PICNIC Signature Scheme
PICNIC signature is built using Fiat-Shamir transformation of a sigma protocol based on
the MPC-in-head paradigm by Ishai et al. [IKOS07]. The high-level idea is as follows,
imagine we have a multi-party computation of a function f . Each player has a share of the
input x, and the output y = f(x) is publicly known. The prover simulates all players and
commits to all the states and transcripts. Later the verifier is allowed to corrupt a random
subset of players, having access to their full state. Having this information in hand, the
verifier can check whether the computation was done correctly from the corrupted players’
perspective.

In the case of PICNIC this paradigm is instantiated using LowMC block cipher. Let
E(K, pt) be the LowMC encryption of the plaintext pt using the key K. The function f
in the previous paradigm is instantiated as E(∗, pt) for a public plaintext pt. The plain-
text/ciphertext pair (pt, ct) is used as the public key of the signature scheme (verification
key) and encryption key K is used as the secret key (signing key). If an adversary can
recover the encryption key given only a single ciphertext, plaintext pair (ct, pt) i.e. the
public key of the signature scheme, then in effect he computes the secret signing key. This
allows him to forge a signature by following exactly the honest prover protocol with the
recovered signing key. This demonstrates that a data complexity one key recovery attack
on LowMC block cipher leads to a signature forgery on PICNIC.

The size of the signature and the efficiency of the PICNIC signing algorithm heavily
rely on the number of the multiplications (and gates) used in the encryption circuit. This
has driven some interest towards finding an optimal number of and gates, to keep the
desired security level and to provide the best level of efficiency, and recently Rechberger et
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Figure 1: LowMC Round Function

al. announced a cryptanalysis challenge for LowMC family of block ciphers, specifically
for the PICNIC use case, i.e. only one plaintext ciphertext provided to the attacker.

1.2 Contribution and Organization of the Paper
In this paper we introduce two cryptanalysis results for two instances of the LowMC
cryptanalysis challenge, namely the 2 round LowMC with full S-box layer and the partial
S-box layer with 0.8× bn/sc number of rounds. Both attacks are performed in a known
plaintext/ciphertext attack model (KPA/KCA), and both attacks have data complexity 1.
These restrictions make the task fairly hard, as the classical cryptanalysis methods such
as linear and differential cryptanalysis can not be employed. In this paper, we first show
how to efficiently linearize the LowMC S-box by guessing only one quadratic expression in
the S-box inputs. Leveraging this fact we describe a series of attacks on some instances of
LowMC given in the cryptanalysis challenge. Our results are summarized in Table 1.

In section 2, we describe the algebraic form of the LowMC round function and furnish
some details of the LowMC cryptanalysis challenge. Section 3 demonstrates an efficient
method to linearize the LowMC S-box which will be used later. Section 4 introduces a
key-recovery attack on 2-round full S-box layer and partial S-box with 0.8× bn/sc round
variants of LowMC. In Section 5, we introduce a meet in the middle attack on the same
variants of LowMC, and in Section 6 we demonstrate how this approach can be optimized
using the 3-xor problem by a factor of

√
n/2. We conclude the paper in Section 7.

2 The LowMC challenge
The LowMC round function is a typical SPN construction given in Figure 1. It consists
of an n-bit block undergoing a partial substitution layer consisting of s S-boxes where
3s ≤ n. It is followed by an affine layer which consists of multiplication of the block with
an invertible n× n matrix over F2 and addition with an n-bit round constant. Finally the
block is xored with the roundkey which is again the product of the n-bit master secret
key K with an n × n invertible matrix. As in most SPN constructions, a plaintext is
first xored with a whitening key which for LowMC is simply the secret key K, and the
round functions are executed r times to give the ciphertext. From the point of view of
cryptanalysis, we note that the design is completely known to the attacker, i.e. all the
matrices and constants used in the round function and key update are known.

The LowMC challenge specifies 9 challenge scenarios for key recovery given only 1
plaintext-ciphertext pair, i.e. the data complexity d = 1.
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• n = 128, s = 1

• n = 128, s = 10

• n = 129, s = 43 (full S-box layer)

• n = 192, s = 1

• n = 192, s = 10

• n = 192, s = 64 (full S-box layer)

• n = 256, s = 1

• n = 256, s = 10

• n = 255, s = 85 (full S-box layer)

The number of rounds r for instances with the full S-box layer is either 2, 3, or 4 and
for instances with a partial S-box layer can vary between 0.8× bns c, b

n
s c and 1.2× bns c.

The key length k for all instances is n bits. Note that in general instantiations of LowMC,
the key size and block size are not the same. The whitening key and all the round keys
are extracted by multiplying the master key with full rank matrices over GF (2). However
for all the instances of LowMC used in the LowMC challenge the block size and key size
are the same. This being so, the lengths of the master key, whitening key and all the
subsequent round keys are the same. Effectively, this makes all these keys related to each
other by multiplication with an invertible matrix over GF (2). Thus all round keys can be
extracted by multiplying the whitening key with an invertible matrix. So for all practical
purposes used in this paper, the whitening key can also be seen as the master secret key.
This is true since given any candidate whitening key, all round keys can be generated
from it, and thus given any known plaintext-ciphertext pair, it is possible to verify if that
particular candidate key has been used to generate the corresponding PT/CT pair. As
such we use the terms master key/whitening key interchangeably.

3 Preliminaries
The algebraic forms of the 3 output bits of the S-box S used in LowMC are given by the
following expressions:

s0 = x0 + x1 · x2,

s1 = x0 + x1 + x0 · x2,

s2 = x0 + x1 + x2 + x0 · x1

Similarly the inverse S-box S−1 is given by the following expressions

t0 = x0 + x1 + x1 · x2,

t1 = x1 + x0 · x2,

t2 = x0 + x1 + x2 + x0 · x1

Let us for example take f to be the majority function computed on the inputs of the 3
input bits, i.e. f = x0 · x1 + x1 · x2 + x0 · x2. Then the expressions of the S-box can be
rewritten as

s0 = f · (x1 + x2 + 1) + x0,

s1 = f · (x0 + x2 + 1) + x0 + x1,

s2 = f · (x0 + x1 + 1) + x0 + x1 + x2
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Table 1: Summary of results. Note for the Linearization+MITM (+3-xor) approaches
the complexity is given in “evaluations of a quadratic expression”. For the Linearization
only approach, the complexity is in “number of Gaussian eliminations.” ∗ As explained
in Section 4, these are best case complexities that occur for around 29% of the LowMC
instances.

Instance n s r Type of Attack Complexity Section

Full S-box layer 129 43 2 Linearization 286 4
192 64 2128

255 85 2170

Partial Sbox layer 128 1 0.8× bns c Linearization 2102 4
192 1 2154

256 1 2205

Partial Sbox layer 128 10 0.8× bns c Linearization 2100 4
192 10 2150

256 10 2200

Full S-box layer 129 43 2 Linearization + MITM 2109 5
192 64 2161

255 85 2214

Partial Sbox layer 128 1 0.8× bns c Linearization+ MITM 2124 5∗

192 1 2186

256 1 2248

Partial Sbox layer 128 10 0.8× bns c Linearization + MITM 2124 5∗

192 10 2186

256 10 2248

Full S-box layer 129 43 2 Linearization + MITM+3-xor 2106 6
192 64 2158

255 85 2211

This means that if we guess the value of the single expression f (0 or 1), then the entire
S-box becomes an affine function in the input bits. The same holds for the inverse S-box.
In fact we can replace f with any balanced 3-variable Boolean function of degree 2, and
still get the same results as we prove in the following lemma.

Lemma 1. Consider the LowMC S-box S defined over the input bits x0, x1, x2. If we
guess the value of any 3-variable quadratic Boolean function f which is balanced over the
input bits of the S-box, then it is possible to re-write the S-box as affine function of its
input bits.

Proof. The general expression for a 3 variable quadratic Boolean function is

f = A+Bx0 + Cx1 +Dx2 + Ex0 · x1 + Fx1 · x2 +Gx0 · x2.

The only non-linear terms in the expression of the LowMC S-box are x0 · x1, x1 · x2, x0 · x2.
Thus if there exists a Boolean function of the above form, which when multiplied with
different linear functions can produce each of the terms x0 · x1, x1 · x2, x0 · x2, then we
are done. Thus the necessary and sufficient conditions required to achieve the above is to
prove the existence of 3 affine Boolean functions gi = aix0 + bix1 + cix2 + di, ∀i ∈ [0, 2],
such that

f · g0 = x0 · x1 + l0(x0, x1, x2)
f · g1 = x1 · x2 + l1(x0, x1, x2)
f · g2 = x0 · x2 + l2(x0, x1, x2)

where l0, l1, l2 are some affine functions on x0, x1, x2. If these functions gi exist, we can
write each of the three output bits of the LowMC S-box as

x0 + f · g1 + l1, x0 + x1 + f · g2 + l2, x0 + x1 + x2 + f · g0 + l0
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So in order for the first equation to be satisfied, we need that the product of f and g0
produces coefficients 0, 1, 0, 0 for the terms x0 · x1 · x2, x0 · x1, x1 · x2, x0 · x2 respectively.
In matrix form this can be written as M · [a0, b0, c0, d0]T = [0, 1, 0, 0]T , where

M =


F G E 0

C + E B + E 0 E
0 D + F C + F F

D +G 0 B +G G


Similarly the other 2 equations can be written as M · [a1, b1, c1, d1]T = [0, 0, 1, 0]T
and M · [a2, b2, c2, d2]T = [0, 0, 0, 1]T . It is therefore clear that for the equations to
have a solution we need M to be invertible. Since the number of 3-variable quadratic
Boolean functions f is just 27, we can perform the following small computer exercise: we
can construct the matrix M for each function f and test whether it is invertible or not.
We found that all functions f for which M is invertible, are exactly the functions that are
balanced.

For example, if we take f = s0 = x0 + x1 · x2, the S-box functions can be written as

s0 = f,

s1 = f · (x2 + 1) + x1,

s2 = f · (x1 + 1) + x1 + x2

4 Cryptanalysis by Linearization
The first technique to break LowMC by linearization is for instances for which the total
number of S-boxes is less than the key length. This occurs for the following cases

1. All instances of full S-box layer with number of rounds = 2.

2. All instances of partial S-box layer with number of rounds = 0.8× bns c.

The idea is as follows. We guess the value of the majority function at the input of all
the S-boxes in the encryption circuit. When we do so the expression relating the plaintext
and ciphertext becomes a linear expression in the key variables, i.e. of the form

A · [k0, k1, . . . , kn−1]T = const,

where A is an n × n matrix over GF (2). Thus the key can be found using Gaussian
elimination. After this a wrong key can be discarded by simply recalculating the encryption
function with the derived key and plaintext and checking if the result equals the given
ciphertext or not. Of course, we need not compute the full encryption: a key can be
discarded as soon as the majority function computed at the input of one of the s-boxes
differs from the value used to linearize the circuit. If the total number of s-boxes in the
circuit is t, then the worst case complexity of the process is 2t gaussian eliminations
calculations. For example this is 286 for the LowMC instance with n = 129, s = 43, r = 2.
However note that there is an added cost in this process. For any guess of the majority
values, the matrix A computed above may not necessarily be invertible. If the dimension
of the kernel of the matrix A is dA, then we can see that O(2dA) keys would satisfy any
equation of the form A ·K = const. Thus the verification would require running the
verification for 2dA candidate keys. Moreover, we did not find any easy way to find a closed
form for any bound on dA.
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Figure 2: Meet in the Middle

5 Meet in the Middle approach
5.1 2 round full S-box layer
The complexity of the attack in the previous section was measured in terms of number
of Gaussian eliminations. Even while bypassing the Gaussian Elimination method, the
algorithm will still require an additional computational step (evaluating all elements in the
kernel of A) and there is no easy way of finding a closed form of its value/lower bound. In
this section we present attacks whose complexity is measured in much simpler and more
tangible metric: "number of evaluations of a quadratic expression in keybits". We describe
a meet in the middle approach for the two-round variant of LowMC. The idea is to first
split the key into two parts K1 = [k0, . . . , kt−1]T and K2 = [kt, . . . , kn−1]T , each of around
t ≈ n

2 bits. By guessing the majority bits (or any other balanced quadratic function) of
the second layer S-box we can make the second round linear as described above. After
this it is possible to adopt a meet in the middle approach, by guessing first the K1 value
and making a list based on each guess. We later independently guess K2 and creating a
list based on the guessed values and search for a collision in the obtained lists.

The idea is as follows. As proven in Lemma 1, if we know the value of a balanced
quadratic boolean function in the input bits of each Sbox, i.e. the majority, we can write
the S-box as an affine function in the input bits. The same argument holds for the inverse
S-box (since the inverse S-box is also a quadratic permutation over {0, 1}3). Again let
us denote by R1, R2 the first and second round functions i.e. R1(pt + RK0, RK1) = x
and R2(x,RK2) = ct, where x denotes the n-bit input to the second round and RK1, RK2
denotes the first, second round keys, respectively, which are of course linear functions of
the original key K = RK0. As shown in Figure 2, we start with the ciphertext backwards
and try to reach the state at the input to the second round. To do this we first perform
the inverse affine function operation on the vector ct⊕RK2 (where RK2 is expressed in
terms of K1 and K2). Thereafter we guess the s majority bits η1, . . . , ηs at the input of
the second round inverse S-boxes to linearize R2. After this, each bit of x can be written
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as an affine function of the key and the ciphertext. In fact denoting each bit of x as xi, we
can further write xi = Ai(K1) +Bi(K2) + di, ∀ i ∈ [0, n− 1], where each Ai, Bi are linear
functions over K1,K2 and di is a single bit constant.

Similarly it is possible to compute x from the plaintext in the forward direction. Even
if we do not guess the majority of the first round s-boxes, K1 and K2 can be chosen such
that the bits of K1 and K2 are never multiplied in the first round function. For example
for n = 129, K1 can be taken to be the first t = 3 × bs/2c = 63 bits of the key and K2
to be the remaining 66 bits. The only source of non-linearity in the first round are the
S-boxes, and each S-box either gets the bits of K1 or K2 as inputs and so K1 and K2 are
not mixed in a multiplicative sense in this round. This being the case, after the affine layer
and addition of RK1, each bit xi can be written as fi(K1) + gi(K2) + ci where each fi, gi
are at most quadratic functions over K1,K2 and ci is a single bit constant. Given the
equality xi = fi(K1) + gi(K2) + ci = Ai(K1) +Bi(K2) + di, we can rearrange the terms
to get

fi(K1) +Ai(K1) + ci = gi(K2) +Bi(K2) + di, ∀ i ∈ [0, n− 1]

We are now ready to state the attack. Let the plaintext be pt = [pt0, pt1 . . . , ptn−1],
and ct = [c0, c1, . . . , cn−1] be the corresponding ciphertext. Take t = 3× bs/2c ≈ n

2 . We
proceed as follows:

1. Calculate the functional forms of fi, gi and ci for all i ∈ [0, n− 1].

2. Guess the values η1, . . . , ηs. This step is done 2s times in the worst case.

• Compute Ai, Bi, di for all i ∈ [0, n− 1] using the guessed values.
• For all possible values of K1, create a hash table LIST1 indexed by the n-bit

vector [fi(K1)⊕ Ai(K1)⊕ ci], ∀ i ∈ [0, n− 1]. We need 2t operations in this
step.

• For all possible values of K2, create a hash table LIST2 indexed by the n-bit
vector [gi(K2)⊕Bi(K2)⊕ di], ∀ i ∈ [0, n− 1]. We need 2n−t operations in this
step.

• Find a collision between LIST1 and LIST2.
• When a collision is found for K1 and K2 check if the majority bits are consistent

with the guess of the key. If yes, this key is in fact the encryption key. Otherwise
try another guess of η1, . . . , ηs.

In practice, 2 hash tables are not necessary. The attacker can insert each new vector of
LIST1 and LIST2 into a single hash table and wait until a collision between elements of
LIST1 and LIST2 is found. For each set of majority guesses, the complexity of the attack
is dominated by finding a collision between two lists of length 2t and 2n−t each. So for
n = 129, we can take t = 63 (key bits added before the first 21 S-boxes) and n− t = 66.
The total complexity of the attack is O (2s × (2t + 2n−t)), which for the n = 129 bit
version is around 243+66 = 2109.

5.2 MITM on partial S-box layers
In order to perform a MITM on the partial S-box layer instances of LowMC, we rearrange
the first r1 and final r3 rounds so that the total number of different key bits involved
in these rounds is 3s per round. The transformations are shown in Figures 3, 4 and
are similar to the ones used in [RST18]. In fact the transform used in the backward
direction (see Fig 4) is exactly same as the one used in [RST18, Fig.1]. The idea is that
the affine layer and key addition are interchangeable. Since if L is a linear function, we
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material not added to bits input to the S-box in round 1 (shown in orange background)
are carried to the next round, through the affine layer and merged with the round key in
round 2. B → C → D do the same from the second round onwards.

have L(x) +K = L(x+ L−1(K)) and similarly L(x+K) = L(x) + L(K). Hence the key
addition can be moved before or after the affine layer as required, by multiplying the round
key by the appropriate matrix. Fig 3 further shows how to transform the first r1 rounds.
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Figure 4: Transforming the round function in the final r3 rounds. A → B flips the order
of the last round Affine layer and round key xor. B → C takes the bits of the last round
key that are not added to S-box outputs (shown in orange background), and brings them
back by 1 round and merges it with the penultimate round key. C → D flips the order
of the Affine layer and round key of the penultimate round, and D → E generalizes the
process from this point onwards.

We partition the r = r1 + r2 + r3 rounds of LowMC into the first r1, middle r2 and
final r3 rounds, and further transform the first r1 and the final r3 rounds so that each
round has only 3s keybits. If r1 = r3 = b n6sc, then there are a total of n keybits in
these rounds. Naming these keybits as κ0, κ1, . . . , κn−1. Let us assume that these n
keybits result from linearly independent expressions on the master key bits (in the next
subsection we will see what happens when this is not the case). Then it is not difficult to
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Figure 5: MITM on r1 + r2 + r3 rounds with partial S-box layers. Note that the first r1
and last r3 rounds have been transformed as per the procedures explained in Figures 3, 4.
We guess the majority bits at the S-box inputs in the middle r2 rounds (shown against
yellow background) so that they become affine.

see that all the keybits in the middle r2 = 0.8bns c − b
n
3sc rounds can be written as linear

functions of κ0, κ1, . . . , κn−1. Now let us divide the keybits into K1 = [κ0, κ1, . . . , κn/2−1]
and K2 = [κn/2, κn/2+1, . . . , κn−1] where K1 and K2 are the keybits used in the first r1
and the final r3 rounds respectively.

Now if all the s · r2 majority bits of the middle r2 rounds are guessed, then the
transformation in the middle r2 rounds becomes completely affine. If G is the vector of
these s · r2 majority bits, let us denote this affine transformation in the middle rounds as
LG(x) +QG(K1) +WG(K2) + CG, where LG is a linear function from {0, 1}n → {0, 1}n
and QG,WG are linear functions over {0, 1}n/2 → {0, 1}n and CG is an n-bit constant.
Let v be the n-bit vector obtained by executing the r1 forward rounds by guessing some
value of K1, and let w be the vector obtained after r1 + r2 rounds. Then after guessing
G we have w = LG(v) + QG(K1) + WG(K2) + CG. Now w can also be obtained by
guessing K2 and executing the inverse of the final r3 rounds on the ciphertext. If R3
denotes the transformation in the last r3 rounds, we have w = R−1

3 (ct,K2) So we have
R−1

3 (ct,K2) = LG(v) +QG(K1) +WG(K2) + CG. Rearranging terms we have

R−1
3 (ct,K2) +WG(K2) = LG(v) +QG(K1) + CG

Then our meet in the middle algorithm will proceed as follows.

1. Guess the vector G of the s · r2 majority values in the middle rounds. Find the
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functions LG,WG,KG and CG. This step is done 2s·r2 times in the worst case.

• For all possible values of K2, create a hash table LIST2 indexed by the n-bit
vector R−1

3 (ct,K2) +WG(K2). We need 2n/2 operations in this step.
• For all possible values of K1, create a hash table LIST1 indexed by the n-bit

vector LG(v) +QG(K1) + CG. We need 2n/2 operations in this step.
• Find a collision between LIST1 and LIST2.
• When a collision is found for K1 and K2 check if the majority bits are consistent

with the guess of the key. If yes, this key is in fact the encryption key. Otherwise
try another guess of G.

The procedure has been explained diagrammatically in Figure 5. Again as explained before,
2 hash tables are not necessary in practice. The attacker can insert each new vector of
LIST1 and LIST2 in a single hash table and wait till a collision between elements of LIST1
and LIST2. The majority of the computational complexity is taken by the guessing of G
and computing R−1

3 (ct,K2) +WG(K2) for each guess of K2 and LG(v) +QG(K1) +CG for
each guess of K1. This part takes 2s·r2 · 21+n/2 ≈ 2s·r−n/3+n/2 = 2rs+n/6. For r = 0.8bns c,
this complexity is around 229n/30.

5.3 When all the key expressions κi, i ∈ [0, n− 1] are not linearly
independent

Note that each κi is a linear expression in the n master key bits, and so it may turn out
that the n linear expressions for κi, i ∈ [0, n− 1] are not linearly independent. Assuming
each κi is a random linear expression, the probability that they are linearly independent is
the same as the probability that a random n× n matrix over GF (2) is invertible. In fact
it is a well known result in discrete mathematics, that this probability is around 0.29 as n
becomes large.

When all the κi’s are not linearly independent, then we can not write the round keys in
the middle r2 rounds as linear expressions of the κi’s. And if this happens, then naturally
the attack as outlined in the previous subsection can not be applied. In that case how do
you proceed with the attack?

1. Let us assume that for some r1, r3, the total rank of the 3 · s · (r1 + r3) × n
matrix containing the linear expressions (in terms of the master key) for all the
keybits κi used in these rounds be equal to λ. We have already seen that that
when 3 · s · (r1 + r3) = n, the probability that λ = n is 0.29. The probability that
λ = t is given by the expression 2−n·t∏t−1

i=0

(
1− 2i

2n

)
. Therefore the probability that

t ≥ n− 1, n− 2, n− 3 is around 0.58, 0.77, 0.88 respectively (for large enough n).

2. In such an event the attacker should choose suitable values of r1, r3 such that the
value of λ = 3 · s · (r1 + r3).

3. Let K = [κ0, κ1, . . . , κλ−1] be the corresponding keybits whose linear expressions
are linearly independent. Let K1 be the subset of these keybits used in the first
r1 rounds, K2 be the subset of these keybits used in the last r3 rounds. Choose
K3 = [κλ, κλ+1, . . . , κn−1] as random linear expressions of the master key such that
the expressions for K1, K2, K3 are linearly independent. After this step all round
keybits can be written as linear expressions in K1, K2, K3.

4. After guessing G, the vector of the middle s · r2 majority bits, the middle r2
rounds become completely affine. Again if v is the vector that is the output of
the first r1 rounds, the output vector w of the first r1 + r2 rounds can be written
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as w = LG(v) +QG(K1) +WG(K2) + EG(K3) + CG, where LG, QG, EG are linear
functions and CG is an n-bit constant.

5. Since w can be computed from the ciphertext backwards as w = R−1
3 (ct,K2) So we

have R−1
3 (ct,K2) = LG(v) +QG(K1) +WG(K2) +EG(K3) +CG. Rearranging terms

we have R−1
3 (ct,K2) +WG(K2) = LG(v) +QG(K1) +EG(K3) +CG. Let us partition

K3 into two disjoint sets K31 and K32 so that the number of bits in K1 ∪K31 and
K2 ∪K32 are almost same. We write EG(K3) = E1

G(K31) + E2
G(K32). Rearranging

terms further we have

R−1
3 (ct,K2) +WG(K2) + E2

G(K32) = LG(v) +QG(K1) + E1
G(K31) + CG

After this our meet in the middle algorithm will proceed as follows.

1. Choose suitable values of r1, r3 such that the value of 3 · s · (r1 + r3) = λ.

2. Choose K3 = [κλ, κλ+1, . . . , κn−1] as random linear expressions of the master key
such that the expressions for K1, K2, K3 are linearly independent.

3. Partition K3 into two disjoint sets K31 and K32 so that the number of bits in K1∪K31
and K2 ∪K32 are almost same.

4. Guess the vector G of the s · r2 majority values in the middle rounds. Find the
functions LG,WG,KG, E

1
G, E

2
G and CG. This step is done 2s·r2 times in the worst

case.

• For all possible values of K2∪K32, create a hash table LIST2 indexed by the n-bit
vector R−1

3 (ct,K2) +WG(K2) + E2
G(K32). We need around 2n/2 operations in

this step.
• For all possible values of K1∪K31, create a hash table LIST1 indexed by the n-bit

vector LG(v) +QG(K1) +E1
G(K31) + CG. We need around 2n/2 operations in

this step.
• Find a collision between LIST1 and LIST2.
• When a collision is found check if the majority bits are consistent with the guess

of the key. If yes, this key is in fact the encryption key. Otherwise try another
guess of G.

Again the majority of the computational complexity is taken by the guessing of G and
computing R−1

3 (ct,K2) + WG(K2) + E2
G(K32) for each guess of K2 ∪ K32 and LG(v) +

QG(K1 + E1
G(K31)) + CG for each guess of K1 ∪K31. This part takes 2s·r2 · 21+n/2. If

r1 +r3 = b n3sc−∆ then the complexity can be rewritten as 2s·r+s·∆−n/3+n/2 = 2sr+s∆+n/6.
For r = 0.8bns c, this complexity is around 229n/30+s∆. Thus the procedure becomes a valid
attack if and only if s∆ < n/30. Thus since ∆ is at least 1 when the first and last keybits
are not all linearly independent, the procedure does not work for all challenge instances
when s = 10.

6 Improving Complexities using the 3-xor problem
The 3-xor problem in a nutshell is as follows: given 3 lists L1, L2, L3 of binary strings over
{0, 1}n, the task is to find 3 elements x1 ∈ L1, x2 ∈ L2, x3 ∈ L3 such that x1⊕x2⊕x3 = 0.
This problem has been extensively studied in the literature. Wagner studied in [Wag02],
the generalized k-xor problem and showed that for the 4-xor problem if we have lists
of size 2n/3 then a solution can be found in time O(2n/3). However the 3-xor problem
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still required O(2n/2) time using his approach. In [Nan15] a forgery attack was mounted
against the COPA mode of operation requiring only 2n/3 encryption queries and about
22n/3 time. This attack was later refined in [NS15], using an improved 3-xor algorithm,
to 2n/2−ε queries and 2n/2−ε)operations, for small ε. In [LS19], the authors attacked the
2-round Even Mansour algorithm using this problem with data and time both lower than
2n. However, the algorithm we use was proposed by Joux [Jou09, Section 8.3.3.1], which
is the best algorithm for the 3-xor problem to this day. A generalization for the above
algorithm for variable sized lists was proposed in [BDF18], however since we will use lists
of fixed size in this section, Joux’s algorithm is more relevant here.

Before we discuss the details of the attack it is best to summarize the algorithm in a
few words. We begin with the following lemma.

Lemma 2. Given n/2 randomly generated vectors over {0, 1}n, then with high probability
they are linearly independent.

Proof. The above probability is given by p = 2−n2/2 ·
∏n/2−1
i=0 (2n − 2i). For large n, this

equals

p =
n/2−1∏
i=0

(
1− 2i

2n

)
≈ 1−

∑n/2−1
i=0 2i

2n = 1− 2n/2 − 1
2n ≈ 1− 2−n/2

The algorithm proceeds with 3 lists L1, L2, L3 of size 2n/2/`, 2n/2/`, `2 respectively
where ` =

√
n/2. The list L3 has n/2 random vectors which span at most a subspace

of rank n/2. It is possible to choose vectors B = {b1, b2, . . . , bn/2, bn/2+1, bn/2+2, . . . , bn}
such that all vectors in L3 belong to the subspace generated by bn/2+1, bn/2+2, . . . , bn.
Now designate M to be the n× n binary matrix that changes the basis of all vectors in
L1, L2, L3 to B. Note that in the modified basis all elements in L3 will begin with n/2
zeros. From the previous lemma, we know that the elements in L3 are linearly independent
with very high probability. In that case bn/2+1, bn/2+2, . . . , bn can be simply taken as the
elements of L3 which ensures that in the modified basis the elements of L3 have hamming
weight exactly equal to 1, i.e. it has 1 in one of the positions from n/2 + 1 to n. Note
that if there exists 3 vectors x1 ∈ L1, x2 ∈ L2, x3 ∈ L3 such that x1 ⊕ x2 ⊕ x3 = 0,
then Mx1 ⊕ Mx2 ⊕ Mx3 = 0 for any n× n binary matrix M . Once M is fixed, it can
be used to transform L1 and L2. After this, all we need to do is to search for pairs of
elements (x1, x2) ∈ L1 × L2 such that M · x1 ⊕M · x2 equals 0 on the first n/2 bits, (and
when all the vectors in L3 are linearly independent we simply have to check if the sum has
hamming weight 1) and this of course can be done efficiently in the following way.

1. After transforming all elements of L3 in the new basis B, insert the elements in hash
table J .

2. After transforming all elements of L1 in the new basis B, insert the elements in
hash table H indexed by first n/2 bits. All cells of the table should be able to hold
multiple elements.

3. After transforming all elements of L2 in the new basis B, insert the elements in
the same hash table H indexed by first n/2 bits. Note that if any cell of H has
more than one elements then their sum in the first n/2 bits must be 0. By standard
randomness assumptions there will be 2n+1·2−n/2

n = 2n/2+1

n such pairs left whose sum
needs to be tested for membership in L3.

4. Assuming that testing for membership in J can be done in constant time, we need
2n/2+1

n tests. Note that most of the time L3 is linearly independent and so testing for
membership in L3 can be done by simply checking whether the hamming weight of
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the full vector is 1, and whether it begins with n/2 zeros. In this case, it is neither
necessary to change the basis of vectors in L3 nor store them anywhere.

Since the complexity of preparing each list is O(2n/2/
√
n/2) and around O(2n/2+1/n)

membership tests are required the complexity of the algorithm is O(2n/2+1/
√
n/2 +

2n/2+1/n) ≈ O(2n/2+1/
√
n/2). This gives a speedup of around

√
n/2 compared to the

basic birthday algorithm of Wagner.

6.1 MITM on 2-round full S-box layer
The improved algorithm closely follows the one presented in Sec 5.1 earlier. The basic idea is
still the same: this time we partition the keyK into 3 setsK1 = {k0, k1, k2, . . . , km−1}, K2 =
{km, km+1, km+2, . . . , k2m−1} and K3 = {k2m, k2m+1, . . . , kn−1}, where the value of m is
given by blog2(2n/2/

√
n/2)c, and so the size of K3 is considerably smaller and only around

blog2(n/2)c.
Our strategy will be, as before, to guess the s majority bits η1, . . . , ηs at the input of

the second round inverse S-boxes to linearize R2 (and of course its inverse). Borrowing
the terminology from Sec 5.1, where x denotes the n-bit input to the second round and
RK1, RK2 denote the first, second round keys which are linear functions of the original key
K = RK0, we have R1(pt + RK0, RK1) = x and R2(x,RK2) = ct. Since after guessing
the majority bits ηI the inverse of R2 becomes linear, we can write each bit xi of x as
xi = Ai(K1) + Bi(K2) + Ci(K3) + di, ∀ i ∈ [0, n − 1], where all Ai, Bi, Ci are linear
functions and di is a constant.

Similarly in R1, the set of keybits in K1,K2,K3 can be partitioned in a manner
so that they are not combined multiplicatively in the first round. Hence computing
R1 in the forward direction from the plaintext input it is possible to write each xi as
fi(K1) + gi(K2) + hi(K3) + ei, ∀ i ∈ [0, n− 1] , where all fi, gi, hi are quadratic functions
and ei is a constant. Equating these expressions we have Ai(K1) +Bi(K2) +Ci(K3) +di =
fi(K1) + gi(K2) + hi(K3) + ei. Rearranging terms we have:

[Ai(K1) + fi(K1) + di]︸ ︷︷ ︸
L1

+ [Bi(K1) + gi(K1) + ei]︸ ︷︷ ︸
L2

+ [Ci(K3) + hi(K3)]︸ ︷︷ ︸
L3

= 0

Note that if 3 lists are enumerated for the terms in the square braces, then we arrive
exactly at the scenario of the 3-xor problem. We need to find 3 elements form these lists
that sum to 0. So our modified algorithm will be as follows:

1. Calculate the functional forms of fi, gi, hi and ei for all i ∈ [0, n− 1].

2. Guess the values η1, . . . , ηs. This step is done 2s times in the worst case.

• Compute Ai, Bi, Ci, di for all i ∈ [0, n− 1] using the guessed values.
• For all possible values of K3, create a hash table L3 indexed by the n-bit vector

[Ci(K3) + hi(K3)], ∀ i ∈ [0, n− 1]. From here find the matrix M that would
transform basis the basis B = {b1, b2, . . . , bn/2, bn/2+1, bn/2+2, . . . , bn} such that
L3 is spanned by bn/2+1, bn/2+2, . . . , bn. With high probability the list L3 is
linearly independent so that bn/2+1, bn/2+2, . . . , bn can be taken to be the vectors
in L3. Multiply all vectors in L3 by M and store in a hash table J . Note there
are around n/2 steps here.

• For all possible values of K1, create a hash table L1 indexed by the n-bit vector
M · [Ai(K1) + fi(K1) + di], ∀ i ∈ [0, n− 1]. We need 2n/2/

√
n/2 operations in

this step.
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• For all possible values of K2, create a hash table L2 indexed by the n-bit vector
M · [Bi(K1) + gi(K1) + ei], ∀ i ∈ [0, n− 1]. We need 2n/2/

√
n/2 operations in

this step.
• Note that in practice, 2 different hash tables are not necessary. We can instead

use one single hash table H in which all elements of L1, L2 are inserted indexed
by the first n/2 bits as explained in the previous subsection.

• For all pairs in x1, x2 ∈ H which are in the same cell
A: Discard if the sum is not in L3. For most cases this can easily be verified

by checking if the hamming weight of the sum is 1, i.e. if L3 is linearly
independent.

• Once a solution for K1, K2 and K3 is found, check if the majority bits are
consistent with the guess of the key. If yes, this key is in fact the encryption
key. Otherwise try another guess of η1, . . . , ηs.

For each majority guess, the complexity of the attack is dominated by finding a collision
between two lists of length O(2n/2/

√
n/2). So the total complexity of the attack is

O(2s × 2 · 2n/2/
√
n/2) = O(n−1/2 · 2s+n/2+1). This gives a speed up of around

√
n/2 over

the attack in Section 5.1.
There are some further issues to be discussed. We ideally want the lists L1 and L2

of the same size, but it is often not possible due to the algebraic structure of LowMC.
Since we have to partition the keybits such that the cardinality of each set should be a
multiple of 3, it is not always possible to get lists of size 2n/2/

√
n/2, 2n/2/

√
n/2 and n/2.

For n = 129 we have n/2 = 64.5 ≈ 26, and so we can take K3 to be the last 6 bits of the
key, and K1 and K2 may contain the first 60 and the next 63 bits of the key respectively.
In that case, the cost of preparing the lists is around 260 + 263 ≈ 263. The sum of the
transformed vectors in L1 and L2 would need to be zero in the first 129− 64 = 65 bits and
so after filtering 260+63−65 ≈ 258 vector sums need to be tested for membership in L3. So
the total cost is around 263 + 260 + 258 ≈ 263. Multiplying this by the 243 times we need
to guess majority bits, this comes to 263+43 = 2106, which results in a speed up of factor
8 compared to the basic MITM in Section 5.1. For n = 192, we have n/2 = 96 ≈ 26.58.
The only feasible choice of the size of K3 is again 6, which forces K1 and K2 to be of
size 93 each. The cost of preparing lists is around 293 + 293 = 294. However the number
of pairs needed to be tested for membership in L3 is 293+93−(192−64) = 258. So the total
complexity for list matching is around 294 + 258 ≈ 294. Multiplying by the number of
majority guesses, we get the total complexity as 264+94 = 2158 which also results in a speed
up of 8 compared to Section 5.1. Similarly for n = 255, we have to take K1,K2,K3 of sizes
123, 126, 6 respectively. A similar calculation yields the total complexity as 285+126 = 2211

which results again in a speedup of 8 compared to the basic MITM.

7 Conclusion
In this paper we describe attacks on instances of LowMC where the number of S-boxes is
less than the security level, when we use only one plaintext/ciphertext pair. A cryptanalysis
of this kind is important as it results in a forgery on the post-quantum signature scheme
PICNIC. Since our attacks are in the KPA/KCA scenario and since we use only one
plaintext/ciphertext pair, it is not possible to apply traditional symmetric cryptanalytic
techniques like differential, linear or any other higher order differential attacks. We begin
by showing how to efficiently linearize the LowMC S-box by guessing only one single
balanced quadratic expression in its input bits. We leverage this fact to present two types
of attacks. First is a simple linearization attack where the attacker obtains a set of linear
equations on the key bits relating the plaintext and ciphertext. The second is a meet in
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the middle attack, which takes advantage of the fact that in a single LowMC round, all
key bits are not combined multiplicatively. We then show how to improve the attack on
the 2-round full S-box layer variant of LowMC with the help of Joux’s algorithm to solve
the 3-xor problem.
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