
Final Report
Semester Project

Laboratory of Intelligent Systems

Realistic Simulation Environment for
Obstacle Avoidance of Quadcopter Swarms

Supervisor:
Prof Dario Floreano

Assistants:
Enrica Soria

Dr Fabrizio Schiano

Author:
Mahdi Nobar

29th May, 2019

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Contents

1 Abstract 2

2 Introduction 2
2.1 Motivation . 2

2.1.1 Crazyflie 2.0 . 3

3 State of the Art 4
3.1 CrazyS . 4
3.2 Olfati Saber Protocols . 4
3.3 Modification of Olfati Saber Obstacle Avoidance Algorithm 5
3.4 Vàsàrhelyi Flocking Algorithm . 5
3.5 Mixed Reality for Robotics . 6

4 Tools 6
4.1 Robot Operating System . 6

4.1.1 rosbag . 7
4.2 Gazebo . 7
4.3 Simulink . 7
4.4 RotorS . 7
4.5 PX4 . 7

5 Implementation 8
5.1 Parameter Analysis of Olfati-Saber Algorithm 8
5.2 Crazyflie Parameters . 9
5.3 PX4 off-board control with MAVROS for Iris quad-copter 12

6 Results and Discussion 13
6.1 Obstacle avoidance of Iris swarms . 13

6.1.1 Obstacle avoidance of three Iris swarms from one pillar without γ-agent 14
6.1.2 Two Iris swarms Obstacle avoidance from one pillar with γ-agent . . 17
6.1.3 Three Iris swarms obstacle avoidance from one pillar with γ-agent . 18

7 Conclusion 22

8 Appendix 23
8.1 Code of plotting rosbag contents . 23
8.2 Code of Olfati Saber Flocking with Obstacle Avoidance Algorithm 26

1

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

1 Abstract

The ultimate goal of this project is to simulate obstacle avoidance behaviour of quadcopters
swarm in a Gazebo. For this goal, initially the Crazyflie 2.0 was chosen as a quadcopter to
be simulated and CrazyS extension of RotorS autopilot was selected to execute the swarm
node. Next, it was realized that the RotorS could only send angular velocity command to
the rotors of quadcopters while our controller would provide velocity command. Then it
was decided to choose PX4 autopilot to communicate with Gazebo through ROS knowing
that PX4 supports sending velocity command to Gazebo. Thus, the reference configuration
of the parameters of the Crazyflie was provided to PX4, but it was observed that based
on reference parameters the Crazyflies even could not take off. Afterwards, required drone
parameters for PX4 were either collected or calculated based on available resources. Then,
each of the identified parameters were tested for the Crazyflie, and it was realized that the
Crazyflie could take off. However, there were a large steady state error between the com-
manded step velocity to the Crazyflie and its real velocity. Therefore, either the Crazyflie
physical parameters are required to be evaluated by conducting a thorough identification
or PX4 PID gains for all its embedded controllers should be tuned for the Crazyflie. After-
wards, it was decided to continue the project based on Iris quadcopter. Finally, obstacle
avoidance maneuver of swarms of Irises were studied by utilizing the olfati-saber protocols.

2 Introduction

The use of aerial swarms to solve real-world problems has been increasing steadily, ac-
companied by falling prices and improving performance of communication, sensing, and
processing hardware. [12] In swarm robotics, a swarm is a coordinated group of devices,
be it robots or sensors, that can perform a multitude of tasks that a single device would be
unable to accomplish alone in a timely fashion. For example, a search and rescue mission
would be greatly improved by the ability to spread out a number of drones and sweep them
over a wide area. [8]

2.1 Motivation

Various applications of quadcopters swarms have made it a possible topic for realistic simu-
lation. Simulation has been recognized as an important research tool since the beginning of
the 20th century. However, the good times for simulation started with the development of
computers and now the simulation is a powerful visualization, planning, and strategic tool
in different areas of research and development. The simulation has also a very important
role in robotics. [16] One of the main challenges of drones swarms is their capability to
avoid obstacles while flocking towards the target point. In fact, the task of obstacle avoid-
ance is to guide the drones toward the goal without collision with static obstacles. Design
of a fast and efficient method of obstacle avoidance is one of the important problems for
drones flocking. Therefore, in this project it is focused on the realistic simulation of the
quadcopters swarms in obstacle avoidance maneuver. Initially in this project, Crazyflie 2.0
shown in figure (1) was chosen for the simulation among several small sized quadrocopters
due to its features.

2

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

2.1.1 Crazyflie 2.0

The Crazyflie 2.0 is a lightweight, open source flying development platform based on a
nano quadcopter as shown on figure (1).

Figure 1: Crazyflie 2.0 nano quadcopter

Crazyflie 2.0 has several features such as:

• High Functionality: The Crazyflie 2.0 is equipped with low-latency long-range
radio as well as Bluetooth LE. This provides the option of downloading its application
and utilization of a mobile device as a controller. Crazyflie 2.0 is also charged via
USB. The board contains an EEPROM memory for storing configuration parameters
and a 10 degree of freedom IMU with accelerometer, gyroscope, magnetometer and
a high precision pressure sensor.

• Modular: It has a flexible expansion interface where a variety of expansion decks
can be attached, both on the top and the bottom of the Crazyflie 2.0. From this
expansion interface the user can access buses such as UART, I2C and SPI as well as
PWM, analog in/out and GPIO.

• Lightweight and Small in Size: The Crazyflie 2.0 density is 9 cm3, and it weighs
only 27 g. The size makes it ideal for indoor applications. Even though the propellers
spin at high RPMs, they are soft and the torque in the motors is very low when
compared to a brushless motor. It also features 4x7 mm coreless DC-motors that
provide it a maximum takeoff weight of 42g. The Crazyflie 2.0 is quite fast if you let
it be, but even if it crashes it is still only 27g which means the kinetic energy involved
in a crash is fairly low. During hard impact, the system is designed to break at the
cheapest component, the motor mounts, which are available as spare parts.

• Open source: The Crazyflie 2.0 is an open source project, with source code and
hardware design both documented and available. Since all of our development tools
are open source (except for iOS). Aside from the firmware and software projects,
there are a number of community supported APIs written in Java, Ruby, C, C++, C#
and Javascript. [2]

In order to perform described tasks, the project timeline shown of figure (2) was defined.

3

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Figure 2: Project Gantt chart

3 State of the Art

In this section a short summary of relevant works to the project are provided. The selection
rule of each article are either to relate to the simulation of drones or to their flocking in
real implementation.

3.1 CrazyS

CrazyS is the name of an extension of a ROS1 package called RotorS2. CrazyS integrates
Crazyflie nano-quadcopter in Gazebo. Simulation of the drone in Gazebo allows to analyze
the behaviour of a Crazyflie with details close to reality. This project expands the RotorS
simulator such that it includes the model of the Crazyflie physical model as well as its flight
control system. [5] In this project the final command of the controller to Gazebo is the
rotational speed of each motors of Crazyflie. However for over purposes, we would like to
provide velocity commands to the drones, and we realized that it is not possible to utilize
CrazyS expansion to send velocity command to the drones, because RotorS autopilot only
supports sending angular speed command of rotors of the drones. Therefore, as CrazyS
is based on RotorS autopilot then it only supports sending angular speed command to
the rotors of the Crazyflie. Nevertheless, our controller provides velocity command to the
Crazyflie and it is required to convert it to the equivalent rotor angular speed commands
to be able to utilize CrazyS.

3.2 Olfati Saber Protocols

The next relevant work was done by Reza Olfati-Saber on a novel flocking algorithm. He
first presents a theoretical framework for design and analysis of distributed flocking of
agents.[10] Then, it presents several testing scenarios with or without obstacles. Finally,
he demonstrates that his algorithm embodies three rules of Reynolds flocking algorithm
which are:

1. Flock Centering, which attempts to keep the agents close

2. Collision Avoidance, that aims to avoid collision with adjacent flocking agents

3. Velocity Matching, that is provided to match the velocity of flocking agents

1Robot Operating System
2https://github.com/ethz-asl/rotors_simulator

4

https://github.com/ethz-asl/rotors_simulator

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Then a systematic method for building a cost function which is called collective potential
is proposed. The aim of the optimizing the collective potential is to penalize the deviation
from a class of lattice shaped objects called α-lattice. Additionally, virtual agents related
to each α-agent within a specified distance to the obstacle are defined. Such virtual agents
are called β-agent and γ-agent. A β-agent is put at the position of an obstacle and acts as
a repelling force for the adjacent α-agents, while a γ-agent is another virtual agent which
steers the drone which has already passed the obstacle to allow the remaining drones to
pass the obstacle. The γ-agent allows the rejoin of the agents during obstacle avoidance
behaviour.[9]

According to the algorithm, a boundary is defined around each obstacle so that, as soon as
any agent enters the boundary both a β-agent and a γ-agent are created. This imaginary
γ-agent takes position equal to the sum of the position vector of β-agent with desired
direction of α-agent towards the target point multiplied by a coefficient as written on
equation (1). In this equation, ndesired is the desired flocking unit direction. Afterwards,
the γ-agent is then perceived as another α-agent for each α-agents inside boundary around
the obstacle. Actually, this γ-agent steers the agent around the obstacle in order to not
allow the agent which encounters first with the obstacle to stay near the obstacle for a long
time because of the influence of the other agents which have not yet passed the obstacle.
So the role of γ-agent is crucial in rejoin maneuver of drones after obstacle avoidance.

rγ = rβ + λndesired (1)

3.3 Modification of Olfati Saber Obstacle Avoidance Algorithm

In 2017, Iovino et al. proposes the implementation of a distributed flocking algorithm with
obstacle avoidance capability for unmanned aerial vehicles swarms. In this implementa-
tion, the main limiting hypothesis of Olfati Saber flocking with obstacle avoidance about
the shape of obstacles is removed. According to [10], the obstacles should have convex
boundaries. Thus, the obstacles should not be like a finite wall or concave-shaped obsta-
cles. This comes from the fact that obstacle avoidance term of Olfati algorithm has a term
which provides a clue about the direction wherewith the α-agent should align its velocity
to perform obstacle avoidance manoeuvre. This direction is proportional to the projection
of the α-agent velocity vector on the local tangent plane to the obstacle surface. So there
could be practical cases where the projection term of the obstacle avoidance acceleration
is near to zero, e.g when there is a concave obstacle or the current velocity of the agent
is perpendicular to the obstacle and remains like that. In such situations, the agent gets
stuck at a certain distance from the obstacle and it will not move any longer. In Iovino’s
article the original algorithm by Olfati Saber has been extended to overcome its limitations.
The basic idea is to intervene on the original algorithm when a situation occurs in which
the projected velocity of the α-agent assumes a value very close to zero. Hence, in these
circumstance, a desired value to the projected velocity is assigned.

3.4 Vàsàrhelyi Flocking Algorithm

Vàsàrhelyi et al. proposes a flocking model for a large number of real drones. Based on real
test results, it is demonstrated that the swarm behaviour is stable for thirty drones with

5

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

high velocity. In order to have stable and scalable flocking model for real flying robots,
this research addresses some challenges and aims to solve them. The challenges include:

1. Reality Gap: This challenge means that the flocking model which is working in an
idealistic simulation environment is not necessarily stable in a realistic tests. In
fact, the issue origins from the fact that the idealistic simulation environment do not
consider all the delays, uncertainties and kinematic constraints in reality.

2. Adaptability: This comes from the fact that the swarm algorithms that have been
developed for an open space are not necessarily able to have the expected performance
in a confined environment.

3. Scalability: Also the scalability issue stems from the fact that the motion pattern of
an algorithm, that is stable for specific number of agents and/or specific velocity, is
not necessarily stable for higher velocities or larger number of agents.

4. High Dimensional Algorithm: Flocking models require tuning of substantial number
of parameters for wide range of conditions in reasonable time which is an issue with
real testing the flocking algorithm.

This paper fills the gaps for real flight of 30 autonomous quad-copters performing stable
swarm in a cluttered environment by utilizing a scalable and optimized framework based
on realistic dynamic modelling.[11]

3.5 Mixed Reality for Robotics

One of the potential applications of having a realistic simulation is to overcome some
limitations in real implementation. In 2015 Hönig et al. refine the definition of Mixed
Reality to accommodate seamless interaction between physical and virtual objects in any
number of physical or virtual environments. In fact, Mixed Reality creates a space in which
both physical and virtual elements co-exist, allowing for easy interaction between the two.
Particularly, it is shown that Mixed Reality can reduce the gap between simulation and
implementation by enabling the prototyping of algorithms on a combination of physical
and virtual objects, including robots, sensors, and humans. Robots can be enhanced
with additional virtual capabilities, or can interact with humans without sharing physical
space. Mixed Reality is demonstrated with three representative experiments, each of which
highlights the advantages of the proposed approach. Furthermore, a test bed for Mixed
Reality with three different virtual robotics environments in combination with the Crazyflie
2.0 quad-copter is presented in this article. [14]

4 Tools

4.1 Robot Operating System

The Robot Operating System (ROS) is a collection of software frameworks for robot soft-
ware development. It provides services designed for a heterogeneous computer cluster such
as hardware abstraction, low-level device control, implementation of commonly used func-
tionality, message-passing between processes, and package management. Running sets of
ROS-based processes are represented in a graph architecture where processing takes place

6

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

in nodes that may receive, post and multiplex sensor data, control, state, planning, actu-
ator, and other messages. ROS can be used to send control commands from a node which
can be written in Python or C++ to a realistic simulation engine like Gazebo. Then simu-
lation results can be retrieved through ROS and be used by the controller node. Therefore,
robot operating system provides possibility to evaluate a controller performance by a real-
istic simulator. There is a meta-package called gazebo_ros_pkgs which provides packages
for integrating ROS with Gazebo.

4.1.1 rosbag

In order to record and playback ROS message data, a command line tool called rosbag is
used. rosbag uses a file format called bags, which log ROS messages by listening to topics
and recording messages as they come in. Playing messages back from a bag is the same as
having the original nodes which produce data in the ROS computation graph, making bags
a useful tool for recording data to be used in later development. In this project, rosbag is
widely used in order to save the simulation results, later messages saved in bag file is used
to plot required results.

4.2 Gazebo

Gazebo is an open-source 3D robotics simulator. Gazebo utilizes multiple high-performance
physics engines, such as ODE, Bullet, Simbody, and DART (the default is ODE). It provides
realistic rendering of environments including high-quality lighting, shadows, and textures.
It can model sensors that "see" the simulated environment, such as laser range finders,
cameras (including wide-angle) and etc.

4.3 Simulink

Simulink is a graphical programming environment for modeling, simulating and analyzing
multidomain dynamical systems. Its primary interface is a graphical block diagramming
tool and a customizable set of block libraries.

4.4 RotorS

RotorS is a MAV gazebo simulator that supports models for aerial robots. There is an ex-
tension of RotorS which is called CrazyS that aims to modeling, developing and integrating
the Crazyflie 2.0 nano-quadcopter in the physics based simulation environment Gazebo.

4.5 PX4

PX4 is an open source flight control software for drones and other unmanned vehicles.
In this project the main capability of PX4 is that it provides off-board control which is
necessary to evaluate the obstacle avoidance behaviour of drone swarms based on provided
algorithm. In other words, PX4 flight stack can be controlled at off-board control mode
using software running outside of the autopilot. The main advantage of this capability

7

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

in this project is that the proposed swarm obstacle avoidance algorithm provides velocity
commands to each drone which then can be sent to Gazebo using off-board mode of PX4.

5 Implementation

The ultimate goal of this project is to simulate obstacle avoidance behaviour of quadcopters
swarm in a Gazebo. For this goal, initially the Crazyflie 2.0 was chosen as a quadcopter to
be simulated and CrazyS extension of RotorS autopilot was selected to execute the swarm
node. Next, it was realized that the RotorS could only send angular velocity command to
the rotors of quadcopters while our controller would provide velocity command. Then it
was decided to choose PX4 autopilot to communicate with Gazebo through ROS knowing
that PX4 supports sending velocity command to Gazebo. Thus, the reference configuration
of the parameters of the Crazyflie was provided to PX4, but it was observed that based
on reference parameters the Crazyflies even could not take off. Afterwards, required drone
parameters for PX4 were either collected or calculated based on available resources. Then,
each of the identified parameters were tested for the Crazyflie, and it was realized that
the Crazyflie could take off. However, there were a large steady state error between the
commanded step velocity to the Crazyflie and its real velocity. Therefore, the Crazyflie
parameters for PX4 autopilot were required to be evaluated by conducting a thorough
identification. Afterwards, it was decided to continue the project based on Iris quadcopter.
Then by utilizing olfati_saber protocols, obstacle avoidance maneuver of swarms of Irises
were studied.

5.1 Parameter Analysis of Olfati-Saber Algorithm

In order to implement swarms of quadcopters olfati_saber algorithm is used.[10] This
algorithm provides three terms of acceleration which are summed to provide the total
acceleration. The first acceleration term is named acc_potential and is used to keep the
drones on α-lattices. In fact, cost functions or collective potentials are defined in a way that
they penalize the deviation from a class of lattice-shape objects called α-lattice. Therefore,
acc_potential is an acceleration which attempts to keep the drones on α-lattice so to allow
agents to stay at a specified distance from neighboring agents.

The second acceleration term is for avoiding any static obstacle on agents’ path and is
named acc_obstacles in the code.

Finally the third acceleration term is meant to modify the velocity of each agents in order
to migrate towards the specified target point. This term is named acc_vel_matching at
the code.

Moreover, the meaning of each parameter of olfati_saber algorithm implementation is
provided in Table 1.

8

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

parameter meaning
c_vm Acceleration coefficient for migration towards the target point

acc_vel_matching. It specifies the weight of migration acceler-
ation. Larger values result in more influence of migration acceler-
ation so the agents go faster towards the target.

a Parameter of potential function φ which satisfies 0 < a ≤ b

b Parameter of potential function φ which satisfies 0 < a ≤ b

d Global minimum for the attractive/repulsive potential function ψα
which attempts to keep agents inside perception_radius on alpha-
lattice. This parameter is in fact the distance between latices [i.e
the distance that adjacent drones should attempt to maintain].

delta Variable of bump function ρ [10] which specifies the start point of
decreasing smoothly from value 1 to 0 which is used to smoothly
cut-off the potential function. This variable satisfies 0 < delta < 1.
As delta changes from 1 to 0 in allows the potential acceleration to
cut-off more smoothly when drones go out of perception_radius.
If delta = 1 the bump function is a step function.

r It is the communication radius between the agents. As long as
agents have distance less than communication radius, potential ac-
celeration is applied to keep agents on α -lattices.

k A factor to manipulate the shape of bump function ρ
lambda Weight of target unit vector to specify the position of γ-agent ac-

cording to equation (1)
c_pm_obs It is the weight of repulsive acceleration from β-agent
v_migration It is migration gain which specifies how fast to migrate towards the

target
perception_radius The boundary around each α-agent in which the potential acceler-

ation is applied to keep all α-agents inside this boundary to flock
on α-lattices

max_agents maximum number of α-agents around each agent including each
agent itself which are inside perception_radius to be kept on α-
lattices

Table 1: Hyper-parameters’ description for the olfati_saber algorithm

5.2 Crazyflie Parameters

In order to simulate the flight of quadcopters it is required to provide kinematic and basic
physics description to Gazebo. This information is provided as XML Macros1 format. By
default there are some physical parameters which are necessary to be identified for each
type of robot that should be simulated. For this reason, required parameters of Crazyflie
are collected in Table 2 based on corresponding references available on Table 3. Also

1xacro: xacro is a scripting mechanism that allows more modularity and code re-use when defining
a URDF model. When using it, what is actually uploaded to the parameter servers (per default as the
"robot_description" parameter) actually is a URDF, as that is generated from the xacro file in the launch
file. In fact, xacro is another way of defining a URDF. It facilitates defining several models in the world,
for instance a "wheel" macro can be generated and instantiated multiple times with different parameters to
put several wheels on the robot, as opposed to copying and pasting the same code several times manually.

9

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

calculation for obtaining some of the parameters which are computed by combination of
information from different resources are provided.

Parameter Name Reference Number Unit Value Required Unit Required Value

mass [p.r.1]1 kg 2.70e-2 kg 2.70e-2
[p.r.2] kg 2.80e-2 kg 2.80e-2

body_width [p.r.1] m 4.50e-2 m 4.50e-2
body_height [p.r.1] m 3.00e-2 m 3.00e-2
mass_rotor [p.r.1] kg 5.00e-04 kg 5.00e-04
arm_length [p.r.1] m 4.60e-02 m 4.60E-02

rotor_offset_top [p.r.1] m 2.40e-02 m 2.40e-02
radius_rotor [p.r.1] m 2.25e-02 m 2.25e-02

motor_constant
[p.r.1] kg.m/s2 1.28e-08 kg.m/rad2

[p.r.3],[p.r.4],[p.r.5] kg.m/rad2 9.80e-08 kg.m/rad2 9.80e-08
[p.r.2],[p.r.6],[p.r.7] kg.m 9.09e-08 kg.m/rad2

moment_constant

[p.r.1] m 5.96e-03 m 5.96e-03
[p.r.4] 6.73E-03 m

[p.r.3],[p.r.4],[p.r.5] 6.82e-04 m
[p.r.2],[p.r.6],[p.r.7] 2.41e-04 m

time_constant_up [p.r.1] s 1.25e-02 s 1.25e-02
time_constant_down [p.r.1] s 2.50e-02 s 2.50e-02
max_rot_velocity [p.r.1] rad/s 2.62e+03 rad/s 2.62e+03

rotor_drag_coefficient [p.r.1] 8.06e-05 8.06e-05
rolling_moment_coefficient [p.r.1] 1.00E-06 1.00E-06

Body_inertia ixx [p.r.1] kg.m2 1.66e-05 kg.m2 1.66e-05
[p.r.2] kg.m2 1.66E-05 kg.m2 1.66E-05

Body_inertia ixy [p.r.1] kg.m2 0.0 kg.m2 0.0
[p.r.2] kg.m2 8.31e-07 kg.m2 8.31e-07

Body_inertia ixz [p.r.1] kg.m2 0.0 kg.m2 0.0
[p.r.2] kg.m2 7.18e-07 kg.m2 7.18e-07

Body_inertia iyy [p.r.1] kg.m2 1.66e-05 kg.m2 1.66E-05
[p.r.2] kg.m2 1.67e-05 kg.m2 1.67e-05

Body_inertia iyz [p.r.1] kg.m2 0.0 kg.m2 0.0
[p.r.2] kg.m2 1.80e-06 kg.m2 1.80e-06

Body_inertia izz [p.r.1] kg.m2 2.93e-05 kg.m2 2.93e-05
[p.r.2] kg.m2 2.93e-05 kg.m2 2.93e-05

Table 2: Kinematic and basic physics parameters of Crazyflie 2.0

10

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

[p.r.1] Sileno G., CrazyS, GitHub repository,
https://github.com/gsilano/CrazyS/blob/
master/rotors_description/urdf/
crazyflie2.xacro

[p.r.2] Forster, J. (2015, August). System
Identification of the Crazyflie 2.0
Nano Quadrocopter. Retrieved from
http://mikehamer.info/assets/papers/
Crazyflie%20Modelling.pdf

[p.r.3] Tobias. (2015, February). Measur-
ing propeller RPM: Part 3. Retrieved
from https://www.bitcraze.io/2015/02/
measuring-propeller-rpm-part-3/

[p.r.4] Marques, N. (2017, July).
PX4/sitl_gazebo. Retrieved from
https://github.com/PX4/sitl_gazebo/
issues/110

[p.r.5] Spare 7x16 mm coreless DC motor with
connector specification. Retrieved from
https://www.seeedstudio.com/Crazyflie-
2-0-Spare-7x16-mm-coreless-DC-motor-
with-connector-p-2115.html

[p.r.6] Vernacchia, M. (2019, January). Gazebo
Motor & Propeller Model Notes. Retrieved
from https://github.com/mvernacc/
gazebo_motor_model_docs/blob/master/
notes.pdf

[p.r.7] Bitcraze Wiki. (2015 July). Analyses of
finding a PWM to thrust transfer function.
Retrieved from https://wiki.bitcraze.io/
misc:investigations:thrust

Table 3: References corresponding to table 2

In the following, computation of parameters in highlighted cells of Table 2 which are
based on combination of different references are provided. For motor_constant based on
[p.r.3],[p.r.4],[p.r.5] of Table 3 and by assuming gravitational acceleration is g = 9.81 m/s2

it can be written:

Ωmax = 2618 rad/s = 25012 rpm (2)

motor_constant =
Thrustmax

Ω2
max

=
250122 × 1.0942e− 10

26182
× 9.81

= 9.80 × 10−8 kg.m/rad2

(3)

11

https://github.com/gsilano/CrazyS/blob/master/rotors_description/urdf/crazyflie2.xacro
https://github.com/gsilano/CrazyS/blob/master/rotors_description/urdf/crazyflie2.xacro
https://github.com/gsilano/CrazyS/blob/master/rotors_description/urdf/crazyflie2.xacro
http://mikehamer.info/assets/papers/Crazyflie%20Modelling.pdf
http://mikehamer.info/assets/papers/Crazyflie%20Modelling.pdf
https://www.bitcraze.io/2015/02/measuring-propeller-rpm-part-3/
https://www.bitcraze.io/2015/02/measuring-propeller-rpm-part-3/
https://github.com/PX4/sitl_gazebo/issues/110
https://github.com/PX4/sitl_gazebo/issues/110
https://www.seeedstudio.com/Crazyflie-2-0-Spare-7x16-mm-coreless-DC-motor-with-connector-p-2115.html
https://www.seeedstudio.com/Crazyflie-2-0-Spare-7x16-mm-coreless-DC-motor-with-connector-p-2115.html
https://www.seeedstudio.com/Crazyflie-2-0-Spare-7x16-mm-coreless-DC-motor-with-connector-p-2115.html
https://github.com/mvernacc/ gazebo_motor_model_docs/blob/master/notes.pdf
https://github.com/mvernacc/ gazebo_motor_model_docs/blob/master/notes.pdf
https://github.com/mvernacc/ gazebo_motor_model_docs/blob/master/notes.pdf
https://wiki.bitcraze.io/misc:investigations:thrust
https://wiki.bitcraze.io/misc:investigations:thrust

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Also based on references [p.r.2],[p.r.6] and [p.r.7] of Table 3 by assuming the air density
equal to ρ = 1.225 kg/m3 the motor_constant and moment_constant are calculated as
follows:

motor_constant =
57.9 × 0.001 × 9.81

1.225 × (2388260)2 × (0.0225 × 2)4
× 1.225 × (0.0225 × 2)4

(2 × π)2

= 9.09 × 10−8 kg.m

(4)

moment_constant =
57.9 × 0.001 × 9.81 × 0.005964552 + 1.563383e−5

(1.225×(23882
60

)2×(0.0225×2)5)

1.225 × (2388260)2 × (0.0225 × 2)4
×

× 0.0225 × 2 = 2.41 × 10−4

(5)

5.3 PX4 off-board control with MAVROS for Iris quad-copter

This section presents an installation guide for PX4 off-board control of an Iris quad-copter
to slowly take off to an altitude of 2 meters is explained. In order to do that a node
containing control source file is added to the available ROS package. First lets define the
concept of offboard mode at PX4 autopilot. Off-board mode is primarily used for con-
trolling vehicle movement and attitude, and supports only a very limited set of MAVLink
commands. It can be used to control vehicle position, velocity, or thrust and to control
vehicle attitude.

1. Create a new package in the catkin workspace, called offboard_example_package

cd ∼/catkin_ws/src

catkin_create_pkg offboard_example_package std_msgs

roscpp geometry_msgs mavros_msgs

2. Move to the source folder of the new package and create a source file

cd offboard_example_package/src

touch offboard_example_package/src/offb_node.cpp

3. Paste the source code from https://dev.px4.io/en/ros/mavros_offboard.html
in offb_node.cpp

subl offb_node.cpp

4. Uncomment line 137 and 150 to 152 of the CMakeLists.txt file to define the executable
node and required catkin libraries

cd ∼/src/offboard_example_package

subl CMakeLists.txt

5. Create launch directory for the new package

mkdir -p launch

12

https://dev.px4.io/en/ros/mavros_offboard.html

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

6. Paste the PX4.launch file from the mavros directory to the launch directory inside
the new package

roscd mavros

cp launch/px4.launch

∼/catkin_ws/src/offboard_example_package/launch

Workaround: If you get “roscd: No such package ‘mavros’ ”, but mavros is properly
installed you can navigate to it manually as:

cd ∼/catkin_ws/src/mavros/mavros/

7. Now build the catkin workspace

cd ∼/catkin_ws

catkin build

source ∼/catkin_ws/devel/setup.bash

8. Change add_executable($PROJECT_NAME_node src/offboard_example_package
_node.cpp) to add_executable($PROJECT_NAME_node src/offb_node.cpp) at
line 137

cd ∼/catkin_ws/src/offboard_example_package/launch

subl CMakeLists.txt

9. In the px4.launch file, replace "<!– <arg name="fcu_url" default="/dev/ttyACM0:57600"
/>" with "<arg name="fcu_url" default="udp://:14540@localhost:14557"/>"

subl ∼/catkin_ws/src/offboard_example_package/launch/
px4.launch

10. Now to run the simulation do the steps below:

roscore

rosrun offboard_example_package offboard_example_package_node

cd ∼/src/Firmware

make posix_sitl_default gazebo

make offboard_example_package px4.launch

6 Results and Discussion

6.1 Obstacle avoidance of Iris swarms

In this section, the parameters of the Olfati_saber swarm algorithm are tuned. Then
for different cluttered environments inter-agent distance as well as distance from obstacles
based on specific parameters are represented, and step by step the effect of parameters on
Obstacle avoidance of Iris swarms based on realistic simulation results is demonstrated.

13

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

6.1.1 Obstacle avoidance of three Iris swarms from one pillar without γ-agent

In this scenario, a single pillar is located on the flying path of three Iris drones as shown on
figure (3). Drones should be able to pass the obstacle without hitting it and without hitting
each other or diverging from each other. For this end, the mission is defined according to
Table 4.

Figure 3: One pillar is put on the way-point of drone swarms

In this mission, three iris after take off mode start off-board control based on velocity
command of the controller based on Olfati-saber algorithm without considering γ agent.
The controller navigates drones to a target point aligned with global y and z axis of the
average coordinates of drones at the end of take off mode. Besides, a pillar is placed exactly
on the same y−z coordinates of the target point. Therefore, it is expected that the drones
flock towards the target point by avoiding the pillar and keeping the the distance in between
each other. On figure the only pillar is named as obstacle 1.

Parameter Value dimension Description
self.startpoint [0., 1., 5.0] m Average Coordinates of starting point of off-board mode
self.waypoint [200. 1. 5.] m Coordinates of target

self.intruders_positions [10. 1. 5.] m Center of mass of pillar
self.intruders_velocities [0. 0. 0.] m/s Fixed obstacle

radius 0.4 m Radius of pillar
length 20.0 m Length of pillar

Table 4: Mission description for scenario one

Based on parameters on Table 5 and scenario described on Table 4 drones have collision
with pillar. This collision is shown on figure (4). In fact, because minimum distance
between the drones and the pillar is obtained 64 cm, which is less than radius of pillar plus
half of rotor to rotor and radius of rotor blade plus distance (i.e 64.2 cm < 40 + 27.5 +
6.4 = 73.9 cmm), so there is a collision between the drones and the pillar. This collision is

14

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

evident in the Gazebo graphical representation of the simulation. Also figure (4) indicates
that the drones the obstacle diverge from each other. Also there is an oscillation happening
after passing three meters from the obstacle that is because of the influence of hitting the
obstacle which applies an impact to the drones.

Parameter Value
perception_radius 10.0

max_agents 10
migration_gain 4.0

c_vm 20
a 1
b 5
d 1.0

delta 0.2
k 1
r 10
r0 5

c_pm_obs 100

Table 5: Simulation parameters - Scenario one

Figure 4: Inter-agent (top) and drone-obstacle (bottom) distance over time based on Tables
4 and 5

15

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Figure 5: Inter-agent and drone-obstacle distance over time with cpmobs = 120

In order to avoid the obstacle, the coefficient of the obstacle avoidance acceleration is in-
creased from 100 to 120 and results are plotted on figure (5). According to figure (5),
drones can successfully avoid the pillar with minimum distance 2.189 meter, but the dis-
tance between them increases to approximately 18 m at time = 30seconds. This happens
because of the fact that navigation velocity coefficient c_vm is too high and the middle
drone that requires more time to change its path to avoid the pillar falls behind other two
drones. The coefficient c_vm could not be chosen too small as according to the results
drones could not continue flocking after passing the pillar inasmuch as obstacle avoidance
term would have very large repulsion on the drones. So the drones could not maintain the
distance in between each other, and they diverge from each other after passing the obsta-
cle. Therefore, the coefficient c_vm is decreased from 20 to 18 and results for 60 seconds
shown on figure (6) are obtained which demonstrates that the drones avoid the pillar with
minimum distance of 115cm, and they keep the maximum distance of 10 meters in between
each other so the average distance between them increases up to 15 meters at simulation
time equal to 60 seconds; however, it is expected to converge to the global minimum of
the potential function which is according to Table 5 is equal to 1.0 meter. This divergence
happens because of the fact that the done which passes the obstacle first starts to migrate
towards the target point and the remaining two drones after passing the obstacle are not
able to reach the first drone. So as it is shown on figure (6) the minimum distance between
drones starts to decrease but the average distance increases inasmuch as the first drone
passes the pillar much earlier and migrates fast towards the target. In fact, this behaviour
is the result of combination of choices for the hyper-parameters of olfati_saber swarm

16

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

algorithm. Thus, the drones after successfully avoiding the obstacle cannot converge to
the specified distance because of the fact that for the obstacle avoidance strong repulsive
force is required to be applied and it influences the behaviour of flocking after passing the
obstacle in a way that drones cannot keep the position on the α-lattice which has 1.0 meter
in between grids.

Figure 6: Inter-agent and drone-obstacle distance over time with cpmobs = 120 and
c_vm = 18

6.1.2 Two Iris swarms Obstacle avoidance from one pillar with γ-agent

In subsection 6.1.1 it was shown that the divergence of drones caused by obstacle avoidance
maneuver prevents the drones to be able to converge to the specified alpha-lattice as the
drones would have far distance between each other after avoidance from the pillar. Now the
introduction of a γ-agent allows the drone which first passes the obstacle to steer around
the obstacle. Therefore, high speed gain for migration can be used without allowing the
drones to separate too much from each other after the obstacle avoidance maneuver. This
allows the agents to rejoin after having passed the obstacle. Thus, the distance between
the drones does not take large values that would not allow the convergence of the drones.

17

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Parameter Value
perception_radius 10.0

max_agents 10
migration_gain 2.0

c_vm 15
a 1
b 5
d 2.0

delta 0.2
k 1
r 10
r0 4

c_pm_obs 5

Table 6: Simulation parameters for two Iris one pillar - Scenario based on Table 4

According to figure (7), two Iris drones can avoid the pillar with minimum distance between
the tip of Iris propeller and the pillar wall equal to 97.86 − 73.9 = 23.96cm. Furthermore,
the drones converge to the specified α-lattice distance for two agents equal to 2 meter at
simulation time 75 seconds after approximately 45 seconds spent in the obstacle avoidance
maneuver.

Figure 7: Inter-agent and drone-obstacle distance over time for scenario and parameters
based on Tables (4) and (6)

6.1.3 Three Iris swarms obstacle avoidance from one pillar with γ-agent

The result of the obstacle avoidance behaviour of three Iris drones from one pillar based
on tuned parameters for two Iris on Table 6 and scenario described on Table 4 is shown on

18

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

figure (8). According to figure (8), drones cannot avoid the obstacle (minimum distance
= 60.02cm < 73.9cm) with the tuned parameters for two Irises. This happens because
there is an interconnection between acceleration for keeping the flocking, obstacle avoidance
and migration towards the target, and also because of the fact that the general scenario has
been changed, it is required to modify the hyper-parameters to have the overall desirable
behaviour. Furthermore, PX4 autopilot requires time to be able to apply the velocity
command as according to the step velocity command experiment according to figure (9)
the setting time for the velocity is 20 seconds.

Figure 8: Inter-agent and drone-obstacle distance over time for scenario and parameters
based on Tables 4 and 6

19

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Figure 9: Commanded step velocity on (x,y,z) direction to one Iris at PX4 off-board mode
with PID Reference [1] vs Iris real velocity simulated on Gazebo

Thereafter, the obstacle avoidance acceleration coefficient is increased from 5 to 10, and
the results shown in figure (10) are obtained. Figure (10) demonstrates that Iris avoids the
pillar with distance 79.08 − 73.9 = 5.18cm, but in spite of that drones cannot converge to
the specified α-lattice distance on Table 6 which is d = 2.0 meters.

20

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

Figure 10: Inter-agent and drone-obstacle distance over time for scenario and parameters
based on Tables 4 and 6 but with c_pm_obs = 10

In order to solve the convergence problem of the drones to the specified flocking inter-
agent distance, the migration acceleration coefficient c_vm is decreased from 15 to 5 to let
the drones join each other after obstacle avoidance. However, the decrease in c_vm would
cause the height of drones to decrease after switching from take-off to off-board mode which
was still unknown and undesirable behaviour. This behaviour might happen because of
the influence of PX4 PID controller which causes slightly steady state error that influences
the performance of the swarm algorithm. So in order to not have this misbehaviour on z
axis, the velocity command on z channel is set to zero and the results on figure (11) based
on parameters on Table 7 is obtained.

Parameter Value
perception_radius 10.0

max_agents 10
migration_gain 2.0

c_vm 5
a 1
b 5
d 2.0

delta 0.2
k 1
r 10
r0 4

c_pm_obs 10

Table 7: Simulation parameters for two iris one pillar - Scenario based on Table 4

21

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

According to figure (11), three Iris drones successfully avoid the obstacle with minimum
distance 82.94 − 73.9 = 9.04 cm. Also, this figure shows that the quadcopters converge to
the specified inter-agent distance on Table 7 which is d = 2.0 m at simulation time 90 sec
after approximately 50 seconds that the drones hove avoided the pillar.

Figure 11: Inter-agent and drone-obstacle distance over time for scenario and parameters
based on Tables 4 and 7

7 Conclusion

According to the obstacle avoidance maneuver results of the Iris quadcopters, it is concluded
that for each scenario the hyper parameters of olfati_saber algorithm require tuning. Fur-
thermore, the Iris drones behave as are expected by changing any of hyper parameters of
the algorithm. Consequently, it was demonstrated that by tuning the olfati_saber hyper
parameters, three and two Iris quadcopters can successfully avoid a single pillar on their
way point, and they maintain their specified distance from the flocking center after the
obstacle avoidance. However, there are noise at all Gazebo sensors including IMU and
GPS that prevents to have repeatable results at each simulation despite the fact that all
simulation parameters are kept the same.

22

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

8 Appendix

8.1 Code of plotting rosbag contents

1 %load bag f i l e and read i t s messages
2 c l e a r a l l
3 c l o s e a l l
4 c l c
5 sample=100;%the step s i z e to i gno re messages r e c e i v ed in between
6 %[e . g . sample=1 means a l l messages are read]
7 % load the bag f i l e
8 bag = rosbag (’ 3_iris_1_pillar_1_2 . bag ’)
9 bag . Ava i lab l eTop ic s

10 %bag . MessageList
11 bag s e l e c t = s e l e c t (bag , ’ Topic ’ , ’ / gazebo/model_states ’) ;
12 %s t a r t = bag . StartTime
13 %bags e l e c t 3 = s e l e c t (bag , ’Time ’ , [s t a r t+1 s t a r t + 3] , ’ Topic ’ , ’/ gazebo/

model_states ’)
14 msgs = readMessages (bagse l e c t , 1 : sample : b ag s e l e c t . NumMessages) ;
15 %msgs2=msgs{2}
16 %%
17 %drones and ob s t a c l e s p o s i t i o n vec to r ex t r a c t i on
18 num_drones=3;%number o f drones
19 num_obs=1; %number o f ob s t a c l e s
20 r_d=ze ro s (l ength (msgs) ,3 , num_drones) ;
21 f o r d=(1+num_obs+1) :(1+num_obs+num_drones)
22 r_d (: , 1 , d−1−num_obs)=c e l l f u n (@(m) double (m. Pose (d , 1) . Po s i t i on .X) ,msgs) ;
23 r_d (: , 2 , d−1−num_obs)=c e l l f u n (@(m) double (m. Pose (d , 1) . Po s i t i on .Y) ,msgs) ;
24 r_d (: , 3 , d−1−num_obs)=c e l l f u n (@(m) double (m. Pose (d , 1) . Po s i t i on . Z) ,msgs) ;
25 end
26 r_ob=ze ro s (l ength (msgs) ,3 ,num_obs) ;
27 f o r ob=(1+1) :(1+num_obs)
28 % TO DO: r e c e i v e ob s t a c l e p o s i t i o n s from Gazebo
29 % r_ob (: , 1 , ob−1)=c e l l f u n (@(m) double (m. Pose (ob , 1) . Po s i t i on .X) ,msgs) ;
30 % r_ob (: , 2 , ob−1)=c e l l f u n (@(m) double (m. Pose (ob , 1) . Po s i t i on .Y) ,msgs) ;
31 % r_ob (: , 3 , ob−1)=c e l l f u n (@(m) double (m. Pose (ob , 1) . Po s i t i on . Z) ,msgs) ;
32 r_ob (: , 1 , ob−1)=10. ;
33 r_ob (: , 2 , ob−1)=1. ;
34 r_ob (: , 3 , ob−1)=5. ;
35 end
36 %%
37 %di s t ance c a l c u l a t i o n and p lo t over time
38 i f num_drones==1 %we exc lude when we have only one drone f o r f i nd i n g nchoosek

[combination]
39 drone_combinations=[1 1] ;
40 e l s e
41 drone_combinations=nchoosek (1 : num_drones , 2) ;
42 end
43 dot_drones_obstacles=ze ro s (l ength (msgs) ,3 , num_drones , num_obs) ;
44 dot_drones = ze ro s (l ength (msgs) ,3 , s i z e (drone_combinations , 1)) ;
45 dis tance_drones_obstac le s=ze ro s (l ength (msgs) , num_drones , num_obs) ;
46 distance_drones=ze ro s (l ength (msgs) , s i z e (drone_combinations , 1)) ;
47 min_distance=ze ro s (l ength (msgs) , num_drones , num_obs) ;
48 max_distance=ze ro s (l ength (msgs) , num_drones , num_obs) ;
49 mean_distance=ze ro s (l ength (msgs) , num_drones , num_obs) ;
50 min_distance_AllDrones_EachObstacle=ze ro s (l ength (msgs) ,num_obs) ;
51 l e g33 = [] ;%used f o r p l o t l egends
52 l e g22 = [] ;
53 l e g44 = [] ;
54 f o r k=1: s i z e (drone_combinations , 1)

23

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

55 dot_drones (: , : , k)=[r_d (: , : , drone_combinations (k , 1))−r_d (: , : ,
drone_combinations (k , 2))] ;

56 f o r i =1: l ength (msgs)
57 distance_drones (i , k)=norm(dot_drones (i , : , k)) ;
58 end
59

60 end
61 f i g u r e (1)
62 subplot (2 , 1 , 1)
63 p lo t (bag . MessageList . Time (1 : 1 0 0 : bag s e l e c t . NumMessages) ,mean(distance_drones

(: , :) , 2))
64 hold on
65 p lo t (bag . MessageList . Time (1 : 1 0 0 : bag s e l e c t . NumMessages) ,min (distance_drones

(: , :) , [] , 2))
66 p lo t (bag . MessageList . Time (1 : 1 0 0 : bag s e l e c t . NumMessages) ,max(distance_drones

(: , :) , [] , 2))
67 l egend (’ Average ’ , ’Minimum ’ , ’Maximum ’)
68 t i t l e (’Ave . /Min . /Max. in t e r−agent d i s t anc e over time ’)
69 x l ab e l (’ time (s) ’)
70 y l ab e l (’ d i s t ance (m) ’)
71 g r id on
72 f o r ob=1:num_obs
73 f o r d=1:num_drones
74 dot_drones_obstacles (: , : , d , ob)=[r_d (: , : , d)−r_ob (: , : , ob)] ;
75 dot_drones_obstacles (: , 3 , d , ob)=0;%here i t i s assumed o b s t i c a l e s are
76 % p i l l a r so z coord ina te o f drones are always equal to the ob s t a c l e
77 f o r i =1: l ength (msgs)
78 dis tance_drones_obstac le s (i , d , ob)=norm(dot_drones_obstacles (i , : , d

, ob)) ;
79 min_distance (i , d , ob)=min (d i s tance_drones_obstac le s (1 : i , d , ob)) ;
80 max_distance (i , d , ob)=max(d i s tance_drones_obstac le s (1 : i , d , ob)) ;
81 mean_distance (i , d , ob)=mean(d i s tance_drones_obstac le s (1 : i , d , ob)) ;
82 end
83 end
84 min_distance_AllDrones_EachObstacle (: , ob)=min (d i s tance_drones_obstac le s

(: , : , ob) , [] , 2) ;
85 f i g u r e (1)
86 subplot (2 , 1 , 2)
87 p lo t (bag . MessageList . Time (1 : 1 0 0 : bag s e l e c t . NumMessages) ,

min_distance_AllDrones_EachObstacle (: , ob))
88 l e g3=[’ ob s t a c l e = ’ ’ ’ num2str (ob) ’ ’] ;
89 l e g33=s t r v c a t (leg33 , l e g3) ;
90 hold on
91 t i t l e (’Minimum d i s t ance between a l l drones with each ob s t a c l e over time ’)
92 x l ab e l (’ time (s) ’)
93 y l ab e l (’minimum d i s t ance (m) ’)
94 g r id on
95 end
96 f i g u r e (1)
97 subplot (2 , 1 , 2)
98 l egend (l eg33)
99

100 %%
101 %read commanded v e l o c i t y message messages
102 bagselect_velocity_command = s e l e c t (bag , ’ Topic ’ , ’ / i r i s_1 /geometry/ v e l o c i t y ’

) ;
103 msgs_velocity_command = readMessages (bagselect_velocity_command , 1 : 1 :

bagselect_velocity_command . NumMessages) ;
104

105 bags e l e c t_ve l o c i t y_obs tac l e = s e l e c t (bag , ’ Topic ’ , ’ / i r i s_1 /geometry/
ve l o c i t y_obs t a c l e ’) ;

24

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

106 msgs_veloc i ty_obstac le = readMessages (bagse l e c t_ve loc i ty_obs tac l e , 1 : 1 :
bag s e l e c t_ve l o c i t y_obs tac l e . NumMessages) ;

107 bags e l e c t_ve l o c i t y_obs tac l e = s e l e c t (bag , ’ Topic ’ , ’ / i r i s_1 /geometry/
ve l o c i t y_obs t a c l e ’) ;

108 msgs_veloc i ty_obstac le = readMessages (bagse l e c t_ve loc i ty_obs tac l e , 1 : 1 :
bag s e l e c t_ve l o c i t y_obs tac l e . NumMessages) ;

109 bag s e l e c t_ve l o c i t y_pot en t i a l = s e l e c t (bag , ’ Topic ’ , ’ / i r i s_1 /geometry/
v e l o c i t y_po t en t i a l ’) ;

110 msgs_ve loc i ty_potent ia l = readMessages (bag se l e c t_ve l o c i ty_poten t i a l , 1 : 1 :
bag s e l e c t_ve l o c i t y_pot en t i a l . NumMessages) ;

111 bagse lect_veloc i ty_matching = s e l e c t (bag , ’ Topic ’ , ’ / i r i s_1 /geometry/
veloc ity_matching ’) ;

112 msgs_velocity_matching = readMessages (bagse lect_veloc ity_matching , 1 : 1 :
bagse lect_veloc i ty_matching . NumMessages) ;

113

114 %
115 %drones v e l o c i t y vec to r ex t r a c t i on
116 v_d=ze ro s (l ength (msgs) ,3 , num_drones) ;
117 v_d_command=ze ro s (l ength (msgs_velocity_command) ,3 , num_drones) ;
118 v_d_obstacle=ze ro s (l ength (msgs_velocity_command) ,3 , num_drones) ;
119 v_d_potential=ze ro s (l ength (msgs_velocity_command) ,3 , num_drones) ;
120 v_d_matching=ze ro s (l ength (msgs_velocity_command) ,3 , num_drones) ;
121 f o r d=(1+num_obs+1) :(1+num_obs+num_drones)
122 d_h=d−num_obs−1;
123 v_d(: , 1 , d−1−num_obs)=c e l l f u n (@(m) double (m. Twist (d , 1) . L inear .X) ,msgs) ;
124 v_d(: , 2 , d−1−num_obs)=c e l l f u n (@(m) double (m. Twist (d , 1) . L inear .Y) ,msgs) ;
125 v_d(: , 3 , d−1−num_obs)=c e l l f u n (@(m) double (m. Twist (d , 1) . L inear . Z) ,msgs) ;
126 v_d_command(: , 1 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .X) ,

msgs_velocity_command) ;
127 v_d_command(: , 2 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .Y) ,

msgs_velocity_command) ;
128 v_d_command(: , 3 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) . Z) ,

msgs_velocity_command) ;
129 v_d_obstacle (: , 1 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .X) ,

msgs_veloc i ty_obstac le) ;
130 v_d_obstacle (: , 2 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .Y) ,

msgs_veloc i ty_obstac le) ;
131 v_d_obstacle (: , 3 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) . Z) ,

msgs_veloc i ty_obstac le) ;
132 v_d_potential (: , 1 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .X) ,

msgs_ve loc i ty_potent ia l) ;
133 v_d_potential (: , 2 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .Y) ,

msgs_ve loc i ty_potent ia l) ;
134 v_d_potential (: , 3 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) . Z) ,

msgs_ve loc i ty_potent ia l) ;
135 v_d_matching (: , 1 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .X) ,

msgs_velocity_matching) ;
136 v_d_matching (: , 2 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) .Y) ,

msgs_velocity_matching) ;
137 v_d_matching (: , 3 , d_h)=c e l l f u n (@(m) double (m(d_h, 1) . Z) ,

msgs_velocity_matching) ;
138 end
139

140 %%
141 %plo t command and r e a l v e l o c i t y o f one drone
142 f i g u r e (5)
143 subplot (3 , 1 , 1)
144 p lo t (bagselect_velocity_command . MessageList . Time ,v_d_command(: , 1 , 1))
145 hold on
146 p lo t (bag s e l e c t_ve l o c i ty_obs tac l e . MessageList . Time , v_d_obstacle (: , 1 , 1))
147 hold on

25

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

148 p lo t (bag s e l e c t_ve l o c i t y_pot en t i a l . MessageList . Time , v_d_potential (: , 1 , 1))
149 hold on
150 p lo t (bagse lect_veloc i ty_matching . MessageList . Time , v_d_matching (: , 1 , 1))
151 hold on
152 p lo t (bag s e l e c t . MessageList . Time (1 : sample : b ag s e l e c t . NumMessages) ,v_d(: , 1 , 1))
153 l egend (’command ’ , ’ ob s t a c l e ’ , ’ p o t e n t i a l ’ , ’ matching ’ , ’ r e a l ’)
154 t i t l e (’ Drone v e l o c i t y along x ax i s over time ’)
155 x l ab e l (’ time (s) ’)
156 y l ab e l (’V_x (m/ s) ’)
157 g r id on
158 subplot (3 , 1 , 2)
159 p lo t (bagselect_velocity_command . MessageList . Time ,v_d_command(: , 2 , 1))
160 hold on
161 p lo t (bag s e l e c t_ve l o c i ty_obs tac l e . MessageList . Time , v_d_obstacle (: , 2 , 1))
162 hold on
163 p lo t (bag s e l e c t_ve l o c i t y_pot en t i a l . MessageList . Time , v_d_potential (: , 2 , 1))
164 hold on
165 p lo t (bagse lect_veloc i ty_matching . MessageList . Time , v_d_matching (: , 2 , 1))
166 hold on
167 p lo t (bag s e l e c t . MessageList . Time (1 : sample : b ag s e l e c t . NumMessages) ,v_d(: , 2 , 1))
168 l egend (’command ’ , ’ ob s t a c l e ’ , ’ p o t e n t i a l ’ , ’ matching ’ , ’ r e a l ’)
169 t i t l e (’ Drone r e a l v e l o c i t y along y ax i s over time ’)
170 x l ab e l (’ time (s) ’)
171 y l ab e l (’V_y (m/ s) ’)
172 g r id on
173 subplot (3 , 1 , 3)
174 p lo t (bagselect_velocity_command . MessageList . Time ,v_d_command(: , 3 , 1))
175 hold on
176 p lo t (bag s e l e c t_ve l o c i ty_obs tac l e . MessageList . Time , v_d_obstacle (: , 3 , 1))
177 hold on
178 p lo t (bag s e l e c t_ve l o c i t y_pot en t i a l . MessageList . Time , v_d_potential (: , 3 , 1))
179 hold on
180 p lo t (bagse lect_veloc i ty_matching . MessageList . Time , v_d_matching (: , 3 , 1))
181 hold on
182 p lo t (bag s e l e c t . MessageList . Time (1 : sample : b ag s e l e c t . NumMessages) ,v_d(: , 3 , 1))
183 l egend (’command ’ , ’ ob s t a c l e ’ , ’ p o t e n t i a l ’ , ’ matching ’ , ’ r e a l ’)
184 t i t l e (’ Drone r e a l v e l o c i t y along z ax i s over time ’)
185 x l ab e l (’ time (s) ’)
186 y l ab e l (’V_z (m/ s) ’)
187 g r id on

8.2 Code of Olfati Saber Flocking with Obstacle Avoidance Algorithm

1 import numpy as np
2

3 gain = {
4 # Coef f f o r v e l o c i t y matching
5 ’c_vm ’ : 5 ,
6

7 ’ a ’ : 1 ,
8 ’ b ’ : 5 ,
9 ’ d ’ : 2 . 0 ,

10 ’ d e l t a ’ : 0 . 2 ,
11 ’ k ’ : 1 ,
12 ’ r ’ : 100 ,
13

14 # Veloc i ty o f migrat ion − r ep l a c e the v e l o c i t y matching and i t uses the
15 # same gain P. c_cm
16 ’ v_migration ’ : 2 . 0 ,
17

26

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

18 # Obstac l e s parameters
19 ’ r0 ’ : 4 ,
20 ’ lambda ’ : 1 ,
21 ’c_pm_obs ’ : 10 ,
22 }
23 (p o s i t i o n s=rel_pos ,
24 my_velocity=my_vel ,
25 v e l o c i t i e s=re l_ve l ,
26 migrat ion=migrat ion ,
27 obs_pos i t ions=rel_obs_pos

,
28 ob s_ve l o c i t i e s=

rel_obs_vel ,
29 model_params=s e l f .

params_olfati_saber ,
30 sim_params=s e l f .

params_simulation , intru_pos=intru_pos ,my_pos=my_pos)
31

32 gain [’ c ’] = (gain [’b ’]−gain [’ a ’]) /(2∗np . sq r t (ga in [’ a ’]∗ gain [’b ’]))
33 gain [’c_vm_obs ’] = gain [’c_vm ’]
34

35

36 de f o l f a t i_ sabe r (po s i t i on s , my_velocity , v e l o c i t i e s=None , migrat ion = None ,
obs_pos i t ions=None , ob s_ve l o c i t i e s=None , model_params=None , sim_params=
None , intru_pos=None , my_pos=None) :

37 """ O l f a t i Saber f l o c k i n g with ob s t a c l e avoidance a lgor i thm f o r mu l t ip l e
agents

38

39 Args :
40 po s i t i o n s : Re l a t i v e p o s i t i o n s o f each alpha agent to other alpha agents .
41 my_velocity : v e l o c i t y o f alpha agent
42 v e l o c i t i e s : Re l a t i v e v e l o c i t i e s o f each alpha agent to other alpha agents

.
43 migrat ion : un i t vec to r towards d i r e c t i o n from f l o c k i n g cente r to the

t a r g e t po int
44 obs_pos i t ions : Re l a t i v e p o s i t i o n o f each alpha−agent from each ob s t a c l e s
45 ob s_ve l o c i t i e s : Re l a t i v e v e l o c i t y o f each alpha−agent from each ob s t a c l e s
46 model_params : L i s t o f O l f a t i Saber parameters
47 − c_vm
48 − a
49 − b
50 − c
51 − de l t a
52 − k
53 − d
54 − r0
55 − lambda
56 − c_pm_obs
57 sim_params : L i s t o f s imu la t i on parameters
58 − percept ion_rad ius : Sca l a r metr ic d i s t ance
59 − max_agents : Maximum number o f ne ighbors to in c lude
60 my_pos : Pos i t i on o f alpha agent
61 intru_pos : Po s i t i on o f ob s t a c l e
62

63 Returns :
64 command : Acce l e r a t i on command .
65

66 """
67 # In i t v a r i a b l e s
68 acc_potent ia l = np . array ([0 , 0 , 0])
69 acc_vel_matching = np . array ([0 , 0 , 0])

27

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

70 acc_obstac l e s =np . array ([[0 . , 0 . , 0 .]])
71

72 po s i t i o n s = np . array (p o s i t i o n s)
73 i f v e l o c i t i e s i s None :
74 v e l o c i t i e s = np . z e r o s_ l i k e (p o s i t i o n s)
75 e l s e :
76 v e l o c i t i e s = np . array (v e l o c i t i e s)
77 num_agents , dims = po s i t i o n s . shape
78

79 i n d i c e s = np . arange (num_agents)
80 # F i l t e r agents by metr ic d i s t anc e
81 d i s t an c e s = np . l i n a l g . norm(po s i t i on s , ax i s=1)
82

83 i f sim_params [’ percept ion_rad ius ’] i s not None :
84 i n d i c e s = d i s t an c e s < sim_params [’ percept ion_rad ius ’]
85 d i s t an c e s = d i s t an c e s [i n d i c e s]
86 po s i t i o n s = po s i t i o n s [i n d i c e s]
87 v e l o c i t i e s = v e l o c i t i e s [i n d i c e s]
88

89 # F i l t e r agents by t o p o l o g i c a l d i s t ance
90 i f sim_params [’max_agents ’] i s not None :
91 i n d i c e s = d i s t an c e s . a r g s o r t () [: sim_params [’max_agents ’]]
92 d i s t an c e s = d i s t an c e s [i n d i c e s]
93 po s i t i o n s = po s i t i o n s [i n d i c e s]
94 v e l o c i t i e s = v e l o c i t i e s [i n d i c e s]
95

96 # Compute O l f a t i Saber f l o c k i n g only i f the re i s an agent in range
97 i f l en (d i s t an c e s) != 0 :
98 unit_vect = (p o s i t i o n s .T / d i s t an c e s) .T
99 acc_potent ia l = (unit_vect .T ∗ phi (d i s tance s , model_params)) .T

100

101 # Compute the a c c e l e r a t i o n f o r Migrat ion
102 i f migrat ion i s not None :
103 acc_vel_matching = model_params [’c_vm ’] ∗ (migrat ion ∗ model_params [’

v_migration ’] − my_velocity)
104

105 # Compute a c c e l e r a t i o n f o r ob s t a c l e avoidance
106 i f obs_pos i t ions i s not None and ob s_ve l o c i t i e s i s not None :
107 obs_pos i t ions = np . array (obs_pos i t ions)
108 ob s_ve l o c i t i e s = np . array (ob s_ve l o c i t i e s)
109 intru_pos=np . array (intru_pos)
110 my_pos=np . array (my_pos)
111 obs_distances = np . l i n a l g . norm(obs_pos i t ions , ax i s=1)
112

113 obs_indices = obs_distances < model_params [’ r0 ’]
114 obs_distances = obs_distances [obs_indices]
115 ob s_ve l o c i t i e s = ob s_ve l o c i t i e s [obs_indices]
116

117 # I f at l e a s t one ob s t a c l e i s in range
118 i f l en (obs_distances) != 0 :
119 #pr in t (obs_distances) #1
120 #pr in t (ob s_ve l o c i t i e s) #3
121

122 res_rho = rho (obs_distances / model_params [’ r0 ’] , model_params)
123 res_phi = phi (obs_distances−model_params [’d ’] , model_params)
124 uni t = (obs_pos i t ions .T/ obs_distances) .T
125

126 gamma_x=intru_pos+model_params [’ lambda ’]∗ migrat ion ∗ model_params [’
v_migration ’] / np . l i n a l g . norm(migrat ion ∗ model_params [’ v_migration ’])

127 gamma_x=[np . append (gamma_x [: , : 2] , 0 .)]
128 d_ag=np . l i n a l g . norm(gamma_x−my_pos)

28

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

129 acc_obstac l e s += +model_params [’c_pm_obs ’] ∗ res_rho ∗ res_phi ∗ uni t +
phi (d_ag−model_params [’d ’] , model_params) ∗(np . append ((gamma_x−my_pos)
[: , : 2] , 0 .)) /d_ag

130 #acc_obstac l e s += model_params [’ c_vm_obs ’] ∗ ob s_ve l o c i t i e s
131

132 #pr in t (acc_potent ia l . sum(ax i s=0) , acc_obstac l e s . sum(ax i s=0) ,
acc_vel_matching)

133 #Return the a c c e l e r a t i o n command
134 re turn acc_potent ia l . sum(ax i s=0) , acc_obstac l e s . sum(ax i s=0) ,

acc_vel_matching
135

136 de f p s i (z , P) :
137 """ Psi funct ion , p o t e n t i a l
138

139 Args :
140 z : Point to eva luate the po t e n t i a l f unc t i on
141 model_params : L i s t o f O l f a t i Saber parameters
142

143 Returns :
144 s c a l a r : p o t e n t i a l at g iven z po int
145

146 """
147 re turn ((P[’ a ’] + P[’b ’]) ∗ (np . s q r t (1 + (z − P[’d ’] + P[’ c ’]) ∗∗2) − np .

sq r t (1 + P[’ c ’] ∗∗ 2)) + (P[’ a ’] − P[’b ’]) ∗ (z − P[’d ’])) / 2
148

149 de f psi_der (z , P) :
150 """ Psi d e r i v a t i v e funct ion , d e r i v a t i v e p o t e n t i a l
151

152 Args :
153 z : Point to eva luate the po t e n t i a l f unc t i on
154 model_params : L i s t o f O l f a t i Saber parameters
155

156 Returns :
157 s c a l a r : Der iva t i ve o f the po t e n t i a l at g iven z po int
158

159 """
160 re turn (P[’ a ’] + P[’b ’]) / 2 ∗ (z − P[’d ’] + P[’ c ’]) / np . s q r t (1 + (z − P[’

d ’] + P[’ c ’]) ∗∗2) + (P[’ a ’] − P[’b ’]) / 2 ;
161

162 de f rho (z , P) :
163 """Rho − Function d e f i n i n g the adjacency c o e f f i c i e n t s
164

165 Args :
166 z : Point to eva luate the func t i on
167 model_params : L i s t o f O l f a t i Saber parameters
168

169 Returns :
170 s c a l a r : Function at g iven z po int
171

172 """
173 #In i t re turn value with z e ro s
174 adj_coef = np . z e r o s_ l i k e (z)
175 #Apply only on indexes where the cond i t i on i s match
176 i nd i c e_ in f = z < P[’ d e l t a ’] ∗ P[’ r ’]
177 indice_sup = z < P[’ r ’]
178 indice_sup = indice_sup & ~ind i c e_ in f
179

180 adj_coef [i nd i c e_ in f] = 1
181 adj_coef [indice_sup] = (1 ./2∗∗P[’ k ’]) ∗ (1+np . cos (np . p i ∗(z [indice_sup] /P[

’ r ’] − P[’ d e l t a ’]) /(1 − P[’ d e l t a ’]))) ∗∗ P[’ k ’]
182 re turn adj_coef

29

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

183

184 de f rho_der (z , P) :
185 """ Der iva t ive o f Rho
186

187 Args :
188 z : Point to eva luate the func t i on
189 model_params : L i s t o f O l f a t i Saber parameters
190

191 Returns :
192 s c a l a r : Der iva t i ve o f the func t i on at g iven z po int
193

194 """
195 #In i t re turn value with z e ro s
196 adj_coef = np . z e r o s_ l i k e (z)
197 #Apply only on indexes where the cond i t i on i s match
198 i nd i c e_ in f = z < P[’ d e l t a ’] ∗ P[’ r ’]
199 i n d i c e s = z < P[’ r ’]
200 i n d i c e s = i nd i c e s & ~ ind i c e_ in f
201

202 arg = np . p i ∗(z [i n d i c e s] /P[’ r ’] − P[’ d e l t a ’]) /(1 − P[’ d e l t a ’])
203 adj_coef [i n d i c e s] = −np . p i /(1 − P[’ d e l t a ’]) ∗P[’ k ’] / (2∗∗P[’ k ’]) ∗(1+np . cos (

arg)) ∗∗(P[’ k ’]−1) ∗(np . s i n (arg))
204

205 re turn adj_coef
206

207 de f phi (z , P) :
208 """ Psi funct ion , f o r c e d e f i n i n g the a t t r a c t i o n / r epu l s i on as func t i on o f the

d i s t anc e
209

210 Args :
211 z : Point to eva luate the f o r c e
212 model_params : L i s t o f O l f a t i Saber parameters
213

214 Returns :
215 s c a l a r : Force at g iven z po int
216

217 """
218 re turn 1 / P[’ r ’] ∗ rho_der (z , P) ∗ p s i (z , P) + rho (z , P) ∗ psi_der (z , P)

References

[1] Airframes reference. [Online]. Available: https://docs.px4.io/v1.9.0/en/airframes/
airframe_reference.html

[2] Crazyflie 2.0. [Online]. Available: https://www.bitcraze.io/crazyflie-2/

[3] S.-J. C. Daniel Morgan, Giri P Subramanian and F. Y. Hadaegh, “Swarm assign-
ment and trajectory optimization using variable-swarm, distributed auction assign-
ment and sequential convex programming,” The International Journal of Robotics
Research, vol. 35, 2016.

[4] F. S. Enrica Soria and D. Floreano, “The influence of limited visual sensing on the
reynolds flocking algorithm,” 2018.

[5] E. A. Giuseppe Silano and L. Iannelli, “Crazys: a software-in-the-loop platform for the
crazyflie 2.0 nano-quadcopter,” Mediterranean Conference on Control and Automation,
2019.

30

https://docs.px4.io/v1.9.0/en/airframes/airframe_reference.html
https://docs.px4.io/v1.9.0/en/airframes/airframe_reference.html
https://www.bitcraze.io/crazyflie-2/

Realistic Simulation Environment for Obstacle Avoidance of Quadcopter Swarms

[6] G. S. S. James A. Preiss, Wolfgang Honig and N. Ayanian, “Crazyswarm: A large nano-
quadcopter swarm,” International Conference on Robotics and Automation (ICRA),
2017.

[7] J. Ma and E. M.-K. Lai, “Flock diameter control in a collision-avoiding cucker-smale
flocking model,” 2017.

[8] J. Noronha, “Development of a swarm control platform foreducational and research
applications,” TRANSACTIONS ON ROBOTICS, 2016.

[9] R. Olfati-Saber, “Flocking with obstacle avoidance: Cooperation with limited infor-
mation in mobile networks,” Conference on Decision and Control, 2003.

[10] ——, “Flocking for multi-agent dynamic systems: Algorithms and theory,” TRANS-
ACTIONS ON AUTOMATIC CONTROL, vol. 51, 2006.

[11] A. S. S.Iovino, “Implementation of a distributed flocking algorithm with obstacle avoid-
ance capability for uav swarming,” AIAA Information Systems, 2017.

[12] P. D. S. S. Soon-Jo Chung, Aditya Avinash Paranjape and V. Kumar, “A survey on
aerial swarm robotics,” TRANSACTIONS ON ROBOTICS, vol. 34, 2018.

[13] W. W. P. W. P. K. Wojciech Giernacki, Mateusz Skwierczyński, “Crazyflie 2.0 quadro-
tor as a platform for research and education in robotics and control engineering,” 2017.

[14] L. S. T. P. M. B. N. A. Wolfgang Honig, Christina Milanes, “Mixed reality for robotics,”
International Conference on Intelligent Robots and Systems (IROS), 2015.

[15] Y. W. X. W. Yinbo Xu, Yongwei Zhang, “Physical experimental realization of modified
artificial physics method based on uavs formation control,” International Conference
on Intelligent Human-Machine Systems and Cybernetics, 2017.

[16] L. Zlajpa, “Simulation in robotics,” Mathematics and Computers in Simulation, vol. 79,
2008.

31

	Abstract
	Introduction
	Motivation
	Crazyflie 2.0

	State of the Art
	CrazyS
	Olfati Saber Protocols
	Modification of Olfati Saber Obstacle Avoidance Algorithm
	Vàsàrhelyi Flocking Algorithm
	Mixed Reality for Robotics

	Tools
	Robot Operating System
	rosbag

	Gazebo
	Simulink
	RotorS
	PX4

	Implementation
	Parameter Analysis of Olfati-Saber Algorithm
	Crazyflie Parameters
	PX4 off-board control with MAVROS for Iris quad-copter

	Results and Discussion
	Obstacle avoidance of Iris swarms
	Obstacle avoidance of three Iris swarms from one pillar without -agent
	Two Iris swarms Obstacle avoidance from one pillar with -agent
	Three Iris swarms obstacle avoidance from one pillar with -agent

	Conclusion
	Appendix
	Code of plotting rosbag contents
	Code of Olfati Saber Flocking with Obstacle Avoidance Algorithm

