Fichiers

Résumé

Biological functionality of isomeric carbohydrates may differ drastically, making their identifications indispensable in many applications of life science. Because of the large number of isoforms, structural assignment of saccharides is challenging and often requires a use of different orthogonal analytical techniques. We demonstrate that isomeric carbohydrates of any isoforms can be distinguished and quantified using solely the library-based method of 2D ultraviolet fragmentation spectroscopy-mass spectrometry (2D UV-MS) of cold ions. The two-dimensional "fingerprint" identities of UV transparent saccharides were revealed by photofragmentation of their noncovalent complexes with aromatic molecules. We assess the accuracy of the method by comparing the known relative concentrations of isomeric carbohydrates mixed in solution with the concentrations that were mathematically determined from the measured in the gas-phase fingerprints of the complexes. For the tested sets with up to five isomers of di- to heptasaccharides, the root-mean-square deviation of 3-5% was typically achieved. This indicates the expected level of accuracy in analysis of unknown mixtures for isomeric carbohydrates of similar complexity.

Détails

Actions

Aperçu