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Why go probabilistic?
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Why go probabilistic?

● Address uncertainties in data and model 
● Improve deterministic results 
● Explore probabilistic metrics
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Uncertainties

● Data uncertainty 
○ Observations given as input not accurate, contain error 
○ Data representativity : we don’t have all the variables 

● Model uncertainty 
○ Random weight initialization 
○ Stochasticity of the network (data and weights) 
○ Model architecture (capacity/flexibility)
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Models
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Deep Ensemble
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Stochastic Weight Averaging (SWA)

● Addresses weights uncertainty in a model by recording the weights 
during training and then taking their average. 
○ Leads to better generalization 

8Figure taken from Averaging Weights Leads to Wider Optima and Better Generalization, 
Izmailov et al., 2018



Stochastic Weight Averaging (SWA)
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Stochastic Weight Averaging (SWA)
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Stochastic Weight Averaging Gaussian (SWAG)

● Similar to SWA, but aims to fit a Gaussian distribution over the weights : 

○ using the SWA solution as mean  

○ and a low rank + diagonal covariance derived from the weights 

○ Sample weights from distribution to create a new model

11Figure taken from A Simple Baseline for Bayesian Uncertainty in Deep Learning, 
Maddox et al., 2019



Stochastic Weight Averaging Gaussian (SWAG)
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Stochastic Weight Averaging Gaussian (SWAG)
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MultiSWAG
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MultiSWAG

15

1 SWAG 
model

1 SWAG 
model

Ensemble of 
models

Sample weights

Sample weights

Median of predictions

Ensemble of 
predictions

1 
model

Prediction

1 model
Prediction



Experiments
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General Training Configuration

● Train years : 2010-2015 
● Validation year : 2016 
● Test years : 2017-2018 
● Epochs : 12 
● Number of steps ahead : 2 (instead of 8)
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SWA/SWAG

● Training ● Testing
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Model Scale
Number of 

realizations

SWA 0.0 1

SWAG 0.01 10

SWAG 0.1 10

SWAG 0.3 10

Hyperparameter Value

SWA/SWAG start 
epoch

9

Rank K of 
deviation matrix

20

Weight 
Collections

40  
(10/epoch)



Deep Ensemble

● Training:
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Models Number of models
Random train/val 

split
Number of 

train/val years

Deep Ensemble 10 Yes 6/1

Deep Ensemble with 
fixed input

10 No 6/1



MultiSWA/SWAG

● Training: ● Testing
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Model Scale Number of 
realizations

Take median 
of realizations/

model

MultiSWA 0.0 1 per model No

MultiSWAG 0.1 5 per model No

MultiSWAG 0.1 5 per model Yes

Hyperparameter Value

Number of 
models

10

SWA/SWAG start 
epoch

9

Rank K of 
deviation matrix

20

Weights 
Collection

40  
(10/epoch)



Results
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Root Mean Squared Error 

● SWA is already better than 

Classical Training for Z500 

● The median of SWAG realizations 

with Scale 0.1 is better than 

classical training and all other 

experiments on SWA/SWAG 

● Scale of 0.1 seems to be a sweet 

spot for this model 

● Other scales converge to SWA

22
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Root Mean Squared Error 

● SWA is already better than 

Classical Training for Z500 

● The median of SWAG realizations 

with Scale 0.1 is better than 

classical training and all other 

experiments on SWA/SWAG 

● Scale of 0.1 seems to be a sweet 

spot for this model 

● Other scales converge to SWA
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Model Z500 6H Z500 120H T850 6H T850 120H

Classical Training 72.780 742.754 0.743 3.093

SWA 63.004 723.077 0.730 3.099

SWAG Scale 0.01 Median 63.246 713.748 0.729 3.058

SWAG Scale 0.1 Median 62.845 666.662 0.729 2.888

SWAG Scale 0.3 Median 65.080 716.906 0.727 3.059



Root Mean Squared Error 

● Fixing the training set for Deep 

Ensemble does not have an impact 

on deterministic metrics
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Model
Z500 

6H
Z500 
120H

T850 
6H

T850 
120H

Deep Ensemble 
Median

58.567 624.798 0.682 2.634

Deep Ensemble 
Fixed Training 

Set Median
58.613 624.734 0.684 2.642



Root Mean Squared Error 

● MultiSWAG gives a better estimate 

than MultiSWA 

● MultiSWAG : Taking the median of 

the realizations per model has very 

little impact on the deterministic 

performances 

● Surprisingly, Deep Ensembling 

performs better than MultiSWA and 

MultiSWAG
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Root Mean Squared Error 

● MultiSWAG gives a better estimate 

than MultiSWA 

● MultiSWAG : Taking the median of 

the realizations per model has very 

little impact on the deterministic 

performances 

● Surprisingly, Deep Ensembling 

performs better than MultiSWA and 

MultiSWAG
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Model Z500 6H Z500 120H T850 6H T850 120H

Deep Ensemble Median 58.567 624.798 0.682 2.634

Deep Ensemble Fixed 
Training Set Median

58.613 624.734 0.684 2.642

MultiSWA Median 60.102 658.468 0.691 2.84

MultiSWAG Scale 0.1 
Median

60.984 652.228 0.685 2.698

MultiSWAG Scale 0.1 
Median with aggregation 

60.112 647.285 0.686 2.711
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Model Z500 6H
Z500 
120H

T850 6H
T850 
120H

Classical 
Training

72.780 742.754 0.743 3.093

SWAG Scale 0.1 
Median

62.845 666.662 0.729 2.888

Deep Ensemble 
Median

58.567 624.798 0.682 2.634

MultiSWAG Scale 
0.1 Median

60.984 652.228 0.685 2.698

Weekly 
Climatology

757.200 758.276 3.098 3.133

Persistence 151.205 992.632 1.135 4.311



Ensemble Continuous Ranked 
Probability Score (CRPS)

● Evaluates the integrated error 

between the forecast 

cumulative distribution 

function and the observation  

● Same as Mean Absolute Error 

(MAE) for deterministic 

forecasts 

● Best score : 0 —> lower is better

29Figures taken from Ensemble Verification Metrics, Debbie Hudson 2017 



Ensemble CRPS
● Evaluates the integrated error 

between the forecast 

cumulative distribution 

function and the observation  

● Same as Mean Absolute Error 

(MAE) for deterministic 

forecasts 

● Best score : 0 —> lower is better
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CRPSS wrt Weekly 
Climatology

●            

where ref is a reference 
forecast 

● 2 reference forecasts: 

○ Weekly Climatology 

○ Persistence

CRPSS = 1 −
CRPSforecast

CRPSref
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CRPSS wrt Persistence

●            

where ref is a reference 
forecast 

● 2 reference forecasts: 

○ Weekly Climatology 

○ Persistence

CRPSS = 1 −
CRPSforecast

CRPSref
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Conclusion and future work
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Conclusion

● The methods explored during this project all improve deterministic metrics 

compared to regular training. 

● The same conclusion apply to probabilistic metrics.
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Conclusion

● We observe some key differences in the methods : 
○ SWA/SWAG : 

■ Little additional training time compared to classic training 

■ Already better performances than classic Training 

○ SWAG : 

■ Diversity for free : create many realizations from a single model training 

○ Deep Ensemble :  

■ More models to train -> more time spent on training 

■ Captures well the uncertainty and the median of the ensemble gives us the best results 

○ MultiSWA/SWAG : 

■ Same training time as Deep Ensemble 

■ Offers flexibility for the different members of the ensemble
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Future Work

● Deep Ensemble with less data (data sampling) and perturbed initial conditions  
○ Faster computation and hopefully better spread 

● Look into the influence of the rank and the number of collections on the performances 
of the SWAG/MultiSWAG models 

● Look into the selection of the optimal scale, or scale range for SWAG and MultiSWAG 
● Combine the different models in an ensemble 
● Combine different scales in an ensemble of SWAG/MultiSWAG realizations
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Thank you for listening!
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