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Why go probabilistic?

e Address uncertainties in data and model
e Improve deterministic results

e Explore probabilistic metrics
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Uncertainties

e Data uncertainty
o Observations given as input not accurate, contain error
o Data representativity : we don't have all the variables
e Model uncertainty
o Random weight initialization
o Stochasticity of the network (data and weights)
o Model architecture (capacity/flexibility)
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Stochastic Weight Averaging (SWA)

e Addresses weights uncertainty in a model by recording the weights
during training and then taking their average.
o Leads to better generalization

Test error (%)

- ~ >50
30 Yy 50
Yy W, N

-
X . 35.97
20 - \
/ 28.49
245

22.38

21.24

20.64

= ‘x\ '»’/’ /f
A y I
-10 N 4
N / 19.95

-10 0 10 20 30 40 50

Figure taken from Averaging Weights Leads to Wider Optima and Better Generalization,
Izmailov et al.,, 2018



Stochastic Weight Averaging (SWA)

Model Training
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Stochastic Weight Averaging (SWA)

Normal Testing
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Stochastic Weight Averaging Gaussian (SWAG)

e Similar to SWA, but aims to fit a Gaussian distribution over the weights :

o using the SWA solution as mean
o and alow rank + diagonal covariance derived from the weights

o  Sample weights from distribution to create a new model

Train loss Train loss
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Figure taken from A Simple Baseline for Bayesian Uncertainty in Deep Learning,
Maddox et al., 2019
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Stochastic Weight Averaging Gaussian (SWAG)

Model Training

Model after
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Stochastic Weight Averaging Gaussian (SWAG)

Normal Testing
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MultiSWAG

{Deep Ensemblej + [ SWAG J
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General Training Configuration

e Train years:2010-2015
e Validation year : 2016
e Testyears:201/7-2018
e Epochs:12

e Number of steps ahead: 2 (instead of 8)
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SWA/SWAG

e Training

Hyperparameter  Value

SWA/SWAG start

9
epoch
Rank K of
. . . 20
deviation matrix
Weight 40

Collections (10/epoch)

Testing

Model

SWA

SWAG

SWAG

SWAG

Scale

0.0

0.01

0.1

0.3

Number of
realizations

10

10

10
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Deep Ensemble

e Training:

Models

Deep Ensemble

Deep Ensemble with
fixed input

Random trainfval Number of
Number of models . .
split train/val years
10 Yes 6/1
10 No 6/1
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MultiSWA/SWAG
e Training:

Hyperparameter Value

Number of 0
models
SWA/SWAG start 9
epoch
Rank K of
.. ) 20
deviation matrix
Weights 40
Collection (1o/epoch)

Testing

Model

MultiSWA
MultiSWAG

MultiSWAG

Number of

Scale ..
realizations
0.0 1 per model
0. 5 per model
0.1 5 per model

Take median
of realizations/
model

No

No

Yes
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RMSE Comparisons for SWA/SWAG models
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Root Mean Squared Error

e SWAIs already better than
Classical Training for Z500

e The median of SWAG realizations
with Scale 0.1is better than
classical training and all other
experiments on SWA/SWAG

e Scale of 0.1 seems to be a sweet
spot for this model

e  Other scales converge to SWA
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Model

Classical Training

SWA
SWAG Scale 0.01 Median
SWAG Scale 0.1 Median
SWAG Scale 0.3 Median

Z500 6H

72.780

63.004
63.246
62.845
65.080

Z500120H

742.754

723.077
713.748
666.662
716.906

T850 6H

0.743

0.730
0.729
0.729
0.727

T850 120H

3.093

3.099
3.058
2.888
3.059
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Root Mean Squared Error

e SWAs already better than
Classical Training for Z500

e The median of SWAG realizations
with Scale 0.1is better than
classical training and all other
experiments on SWA/SWAG

e Scale of 0.1 seems to be a sweet
spot for this model

e  Other scales converge to SWA
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RMSE Comparisons for Deep Ensemble models
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Root Mean Squared Error

e Fixing the training set for Deep
Ensemble does not have an impact

on deterministic metrics

Z500 Zz500 T850 T850

Model 6H 120 6H  120H

Deep Ensemble

. 58.567 624798 0.682 2.634
Median

Deep Ensemble
Fixed Training
Set Median

58.613 624.734 0.684 2.642
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RMSE Comparisons for Deep Ensemble and MultiSWA/MultiSWAG models
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Root Mean Squared Error

e MultiSWAG gives a better estimate
than MultiSWA

e MultiSWAG : Taking the median of
the realizations per model has very
little impact on the deterministic
performances

e Surprisingly, Deep Ensembling
performs better than MultiSWA and
MultiSWAG
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Model

Deep Ensemble Median
Deep Ensemble Fixed
Training Set Median
MultiSWA Median
MultiSWAG Scale 0.1
Median
MultiSWAG Scale 0.1
Median with aggregation

2500 6H

58.567

58.613

60.102

60.984

60.112

2500 120H

624.798

624.734

658.468

652.228

647.285

T850 6H

0.682

0.684

0.691

0.685

0.686

T850 120H

2.634

2.642

2.84

2.698
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Root Mean Squared Error

e MultiSWAG gives a better estimate
than MultiSWA

e MultiSWAG : Taking the median of
the realizations per model has very
little impact on the deterministic
performances

e Surprisingly, Deep Ensembling
performs better than MultiSWA and
MultiSWAG
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Classical
Training
SWAG Scale 0.1
Median
Deep Ensemble
Median
MultiSWAG Scale
0.1 Median
Weekly
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Persistence

2500 6H

72.780

62.845

58.567

60.984

757.200

151.205

742.754

666.662

624.798

652.228

758.276

992.632
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T850 6H

0.743

0.729

0.682

0.685

3.098

1.135

T850
120H

3.093

2.888

2.634

2.698

3.133

431
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1
Ensemble Continuous Ranked
PDF et Probability Score (CRPS)
0 A e Evaluates the integrated error
X between the forecast
1 cumulative distribution
function and the observation
CDF fost e Same as Mean Absolute Error
(MAE) for deterministic
0 7/
X forecasts
~g1 ° Best score : 0 —> lower is better
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Figures taken from Ensemble Verification Metrics, Debbie Hudson 2017 29



CRPS Comparisons for experiments on 2-step models
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Ensemble CRPS

e Evaluates the integrated error
between the forecast
cumulative distribution
function and the observation

e Same as Mean Absolute Error
(MAE) for deterministic
forecasts

° Best score : 0 —> lower is better
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CRPSS
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CRPSS (Ref. forecast : Weekly Climatology) Comparisons for experiments on 2-step models
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CRPSS wrt Weekly
Climatology

CRPSforecast
o CRPSS=1-—_-"“
CRPS,

where ref is a reference
forecast
e 2reference forecasts:
o  Weekly Climatology
o Persistence
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CRPSS
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CRPSS Comparisons (Ref. forecast: Persistence) for experiments on 2-step models
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CRPSS wrt Persistence

CRPSforecasl
o CRPSS=1-—_-"“
CRPS,

where ref is a reference
forecast
e 2reference forecasts:
o  Weekly Climatology
o Persistence
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Conclusion and future work
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Conclusion

e The methods explored during this project all improve deterministic metrics
compared to regular training.

e The same conclusion apply to probabilistic metrics.
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Conclusion

e We observe some key differences in the methods :
o SWA[SWAG:
= Little additional training time compared to classic training
=  Already better performances than classic Training
o SWAG:
] Diversity for free : create many realizations from a single model training
o Deep Ensemble :
= More models to train -> more time spent on training
=  Captures well the uncertainty and the median of the ensemble gives us the best results
o  MultiSWA[SWAG:
. Same training time as Deep Ensemble

= Offers flexibility for the different members of the ensemble
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Future Work

Deep Ensemble with less data (data sampling) and perturbed initial conditions

o  Faster computation and hopefully better spread
Look into the influence of the rank and the number of collections on the performances
of the SWAG/MuItiSWAG models
Look into the selection of the optimal scale, or scale range for SWAG and MultiSWAG
Combine the different models in an ensemble
Combine different scales in an ensemble of SWAG/MultiSWAG realizations
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Thank you for listening!



