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Abstract 
The ability to accurately predict the forces on an aerofoil in real-time when large flow variations occur is important for a wide 
range of applications such as, for example, for improving the manoeuvrability and control of small aerial and underwater 
vehicles. Closed-form analytical formulations are only available for small flow fluctuations, which limits their applicability to 
gentle manoeuvres. Here we investigate large-amplitude, asymmetric pitching motions of a NACA 0018 aerofoil at a Reynolds 
number of 3.2 × 10

4 using time-resolved force and velocity field measurements. We adapt the linear theory of Theodorsen 
and unsteady thin-aerofoil theory to accurately predict the lift on the aerofoil even when the flow is massively separated 
and the kinematics is non-sinusoidal. The accuracy of the models is remarkably good, including when large leading-edge 
vortices are present, but decreases when the leading and trailing edge vortices have a strong interaction. In such scenarios, 
however, discrepancies between the theoretically predicted and the measured lift are shown to be due to vortex lift that is 
calculated using the impulse theory. Based on these results, we propose a new limiting criterion for Theodorsen’s theory 
for a pitching aerofoil: when a coherent trailing-edge vortex is formed and it advects at a significantly slower streamwise 
velocity than the freestream velocity. This result is important because it extends significantly the conditions where the forces 
can be confidently predicted with Theodorsen’s formulation, and paves the way to the development of low-order models for 
high-amplitude manoeuvres characterised by massive separation.
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CN	� Normal force coefficient
CS	� Leading-edge suction force coefficient
F	� Force
fp	� Pitching frequency
I	� Impulse
k	� Reduced frequency
L	� Lift force
Re	� Reynolds number
S(k)	� Sears function
t	� Physical time
ta	� Acceleration time
T	� Pitching period
U

∞
	� Freestream velocity

uLEV	� Streamwise velocity of leading-edge vortex
uTEV	� Streamwise velocity of trailing-edge vortex
W	� Downwash
x	� Position vector
xLEV	� Streamwise position of leading-edge vortex
xTEV	� Streamwise position of trailing-edge vortex
xp	� Normalised pitching axis location
�	� Angle of attack
�0	� Pitching amplitude
𝛼̇	� Pitching rate
𝛼̈	� Pitching acceleration
� 	� Circulation
𝛤̇ 	� Growth rate of circulation
�LEV	� Leading-edge vortex circulation
�	� Asymmetry parameter
�	� Fluid density
�	� Vorticity
↗	� Pitch-up
↘	� Pitch-down

Abbreviations
LESP	� Leading-edge suction parameter
LEV	� Leading-edge vortex
PIV	� Particle image velocimetry
TEV	� Trailing-edge vortex
UTAT​	� Unsteady thin-aerofoil theory
UTAT-H	� Unsteady thin-aerofoil theory for harmonic 

kinematics

1  Introduction

Research on unsteady aerodynamics has significantly 
grown in recent years due to its relevance to bio-inspired 
flight (Ellington et al. 1996; Birch and Dickinson 2001; 
Wang 2005; Muijres et al. 2008; Lentink et al. 2009; Rival 
et al. 2009; Videler et al. 2004; Pitt-Ford and Babinsky 2013; 
Wu 2011; Harbig et al. 2013; Krishna et al. 2018, 2019), 
underwater vehicles (Triantafyllou et al. 2000; Taylor et al. 
2003; Beal et al. 2006; Fish and Lauder 2006; Borazjani 

and Daghooghi 2013; Mackowski and Williamson 2015, 
2017), flapping-foil energy harvesters (Dabiri 2007; Kinsey 
and Dumas 2008; Zhu 2011; Kinsey and Dumas 2012; Xiao 
et al. 2012; Liu et al. 2013; Young et al. 2014; Xiao and 
Zhu 2014; Ramesh et al. 2015; Wu et al. 2015; Kim et al. 
2017; Rostami and Armandei 2017; Su and Breuer 2019), 
and tidal turbine blades (Sequeira and Miller 2014; Tully 
and Viola 2016; Smyth and Young 2019; Dai et al. 2019; 
Scarlett et al. 2019; Scarlett and Viola 2020). The presence 
of a leading-edge vortex (LEV) in these applications gives 
rise to a strongly nonlinear relationship between forces and 
kinematics (Eldredge and Jones 2019). The LEV plays a 
crucial role in augmenting lift in both insect/bird flight and 
bio-inspired flight as well as in enhancing the efficiency of 
flapping-foil energy harvesters.

The applications listed above frequently experience 
massively separated flows due to the high angles of attack 
reached by the aerofoils and wings. When the flow separates, 
it becomes more challenging to predict the unsteady forces 
at play. The classical linear theory of Theodorsen (1935), 
based on unsteady potential flow theory is widely used to 
predict forces for sinusoidal aerofoil kinematics. For arbi-
trary kinematics, we can use the extension of Theodorsen’s 
theory by von Kármán and Sears (1938). For transient varia-
tions of the angle of attack, the indicial response function by 
Wagner (1925) provides an alternative as long as the angle 
variations are small. Unsteady thin-aerofoil theory (UTAT) 
is another potential flow model that is based on the time-
stepping approach. It assumes attached flow and is applica-
ble to arbitrary small-amplitude kinematics (Katz and Plot-
kin 2001; Ramesh et al. 2013). More recently, researchers 
proposed extensions to UTAT for solving three-dimensional 
problems (Boutet and Dimitriadis 2018; Bird et al. 2019).

Despite apparent violations of the theoretical assump-
tions, researchers have applied Theodorsen’s theory to 
oscillating aerofoils with flow separation. According to 
Brunton and Rowley (2009), Theodorsen’s theory does 
not agree with the results of direct numerical simulation 
when the geometric angle of attack of a pitching flat-plate 
is large ( 𝛼 > 40◦ ) due to the flow separation and the non-
planar wake. A similar observation was reported by Baik 
et al. (2012) for a heaving and pitching aerofoil with high 
pitching amplitude ( 𝛼0 > 40◦ ). Liu et al. (2015) reported that 
the agreement with Theodorsen’s theory was only good with 
low oscillation amplitude and low reduced frequency for 
a heaving and pitching plate. For a purely plunging aero-
foil, Ol et al. (2009), Kang et al. (2009) and Ramesh et al. 
(2014) found that Theodorsen’s theory agrees well with 
measured lift force despite the presence of a significant LEV 
and McGowan et al. (2011) explains that the trailing-edge 
Kutta condition and the assumption that surface vorticity 
is bound to the aerofoil are satisfied as long as the LEV is 
attached. The above review of the literature shows that there 
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is no clear agreement on why Theodorsen’s theory provides 
an accurate prediction when the original assumptions are 
not met and on the flow condition that causes Theodorsen’s 
theory to fail.

To investigate which significant force generation mech-
anisms Theodorsen’s theory can and cannot model, we 
attempt to calculate the force generation mechanisms from 
the fluid impulse. The concept of the fluid impulse dated 
back from the 19th century and was first suggested by Thom-
son (1868) and Thomson (1883). From Newton’s second 
law, we find that the force F on a body equals the time deriv-
ative of the impulse. For a fluid with constant density � and a 
volume of fluid Vf , whose external boundaries are at infinity,

where

is the impulse. Burgers (1920), Lighthill (1986), and Wu 
(1981) independently showed that the impulse is given by 
the sum of the integral over the fluid volume Vf of the first 
moment of the vorticity � , and the integral over the solid 
surface Sb with outward unit normal n of the moment of 
tangential velocity:

where nd = 2 and 3 in two and three dimensions, respec-
tively, with x = (x, y) or x = (x, y, z) being the position vec-
tors. A complete derivation and discussion is also available 
in Eldredge (2019, Sect. 6.2). The second term in Eq. 3 van-
ishes in a reference system fixed with the body. This term 
represents an unsteady body force equal to the difference 
between the forces observed in the present reference system 
O(x, y, z) and those observed in a reference system fixed with 
the body. It is proportional to the mass of the body (Kou-
moutsakos and Leonard 1995; Leonard and Roshko 2001) 
and its effect is negligible for slender bodies with small vol-
ume to surface ratio (Rival and Van Oudheusden 2017) and 
for a small body to fluid density ratio (Lentink 2018).

The impulse theory is based on Newton’s second law 
(Eq. 1) and is universally applicable to three-dimensional 
flow around arbitrary bluff bodies at any Reynolds number. 
Another advantage of the impulse theory is that it does not 
require pressure computations. The impulse theory is linear 
in vorticity such that the effect of individual vortices can be 
superimposed.

The impulse theory enables intuitive insights into the flow 
physics, which makes it an attractive basis for low-order 

(1)F = −∫Vf

�
du

dt
dV = −�

d

dt ∫Vf

udV = −�
dI

dt
,

(2)I = ∫Vf

u dV

(3)I =
1

nd − 1

(
∫Vf

x × �dV + ∫Sb

x × (n × u) dS

)
,

force estimation models. Babinsky et al. (2016) developed a 
low-order model considering the leading-edge vortex (LEV) 
and the trailing-edge vortex (TEV) as a vortex pair, which 
was successfully applied to various unsteady aerodynamic 
problems (Stevens and Babinsky 2017; Stevens et al. 2017; 
Mancini et al. 2019). This low-order model only requires the 
LEV and TEV circulations, positions, and advective veloci-
ties as input. It does not require data of the vorticity in the 
boundary layer, which is difficult to resolve with particle 
image velocimetry (PIV) (Graham et al. 2017). Other prom-
ising models based on the impulse include the models by 
Polet et al. (2015) and Li and Wu (2015). Polet et al. (2015) 
estimated the circulatory force of an aerofoil undergoing a 
perching manoeuvre. Li and Wu (2015) developed a vortex 
force map method in which the impulse yields forces due to 
bound vorticity, free vortices, and residual vortex sheets. The 
latter method was extended to a high angle of attack problem 
(Li and Wu 2016), arbitrary aerofoils (Li and Wu 2018), and 
the prediction of the pitching moment (Li et al. 2020).

The aim of this study is twofold. The first aim is to verify 
to what extent the linear theory of Theodorsen (1935) can 
be adapted to accurately predict forces of large-amplitude, 
non-sinusoidal kinematics. To aid the interpretation of the 
results, we will compare the proposed adapted version of 
Theodorsen’s theory with unsteady thin-aerofoil theory. 
The second aim is to identify the force generation mecha-
nisms that cause Theodorsen’s theory to inaccurately predict 
forces. This will be done by estimating the lift contribution 
of the LEV and TEV through a data-driven method based 
on the impulse theory. With this data-driven method, we 
will clarify the apparently conflicting conclusions of previ-
ous studies on why Theodorsen’s theory provides an accu-
rate prediction in some separated flow conditions and not 
in others.

We organise the paper as follows. In Sect. 2 we describe 
the experimental details, the aerofoil kinematics, the lift-
predictive models, and the data-driven method based on the 
impulse theory. In Sect. 3 we discuss the limit of applicabil-
ity of the lift-predictive models and the estimation of the 
vortex lift by the data-driven method based on the impulse 
theory.

2 � Methodology

2.1 � Experimental setup

A schematic of the experimental rig is illustrated in 
Fig. 1. Experiments are performed at the SHARX water 
channel facility of the UNFoLD laboratory at EPFL. 
The channel has a test section of 0.6 m × 0.6 m × 3 m in 
width, height, and length. The freestream velocity is fixed 
at U

∞
= 0.215 m s−1 . A two-dimensional NACA  0018 
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aerofoil is used, with the chord length c = 150 mm, and 
the span b = 580 mm, resulting in the chord-based Reyn-
olds number Re = 32, 000 . A NACA  0018 aerofoil is 
chosen since it is structurally strong due to its thickness. 
Thick aerofoils are frequently used for small-scale verti-
cal axis wind turbines (VAWTs) and tidal turbines (Payne 
et al. 2017; Scarlett et al. 2019). Amongst thick aerofoils, 
NACA 0018 is frequently used for VAWTs (Müller-Vahl 
et al. 2015, 2016).

The pitching axis is located at quarter-chord from the 
leading edge. The wing is placed vertically at the centre of 
the test section. The gap between the wingtip and the chan-
nel wall is made as small as possible (approximately 3 mm) 
to minimise three-dimensional effects. The pitching motions 
are driven by a stepper motor, monitored via an encoder.

An ATI NANO-25 IP68 6-axis force/torque sensor is used 
for the direct force measurement. The load cell is capable of 
measuring forces in the streamwise and lateral direction up 
to ±125 N with a resolution of 1/48 N. Signals are recorded 
at 1 kHz. The forces measured in quiescent air are subtracted 
from those obtained in the water flow to isolate the hydrody-
namic forces from the inertial forces.

The force data are filtered in three steps. The first step 
is a fourth-order Butterworth low-pass filter with a cutting 
frequency of 35 Hz. The second is a moving average of 
30 points for smoothing the data. The final step is a sixth-
order Chebyshev II low-pass filter with − 20 dB attenua-
tion in the stopband. The cutoff frequency is 36 times the 
pitching frequency fp . This three-step filtering method is 
capable of preserving load spikes and it is adopted by, for 
instance, Granlund et al. (2011), Baik et al. (2012), Gran-
lund et al. (2013), Ramesh et al. (2013) and Jantzen et al. 
(2014). A phase-average is applied over six periods. Using 
different numbers of periods for the phase-averaging, we 

find that with three or more periods the convergence error 
in the phase-averaged lift is smaller than 3%.

Time-resolved particle image velocimetry (TR-PIV) is 
conducted to measure the velocity field around the aero-
foil in a horizontal cross-sectional plane 0.2 m from the 
water channel bottom. The measurement plane is placed 
at this location to reduce the influence of the free sur-
face and the wingtip. Polyamide seeding particles (VES-
TOSINT 2155, Evonik Industries) are illuminated by a 
double-pulsed ND:YLF laser ( � = 527 nm) (Terra PIV, 
Continuum). A beam splitter divides the laser beam and 
allows us to simultaneously illuminate both the suction 
and the pressure side of the aerofoil. A high-speed camera 
(FASTCAM SA X-2, Photron) with 1024 × 1024 px reso-
lution captures images at 1000 Hz. Adaptive multi-pass 
cross-correlation is employed to compute velocity vectors, 
with a final interrogation window of 48 px × 48 px, and 
an overlap of 82 % (DaVis 8.4, LaVision Inc.), yielding 
a physical resolution of 2.4 mm or 0.016c. Outliers are 
detected by universal outlier detection (Westerweel and 
Scarano 2005) and interpolated by cubic splines.

2.2 � Pitching kinematics

Smoothed asymmetric triangular pitching kinematics shown 
in Fig. 2 are used to verify to what extent a modified version 
of Theodorsen’s theory (Sect. 2.3), whose original version 
assumes small and sinusoidal oscillations, can provide an 
accurate prediction of the forces. The acceleration/decelera-
tion time is ta = 0.15T  , where T = f −1

p
 is the pitching period. 

The kinematics consist of piecewise functions in which the 
acceleration/deceleration parts are 4th-order polynomials:

Motor+encoder

Force/torque sensor
NACA 0018 wing

Laser

Beam splitter
High-speed camera

Mirror

U∞

Fig. 1   Schematic of the experimental pitching aerofoil test rig

ta tata ta

0 t∗1 t∗2 t∗3 0.5 t∗4 t∗5 t∗6 1
t/T

−α0

0

α0

α
[d
eg
]

Fig. 2   Smoothed asymmetric triangular pitching kinematics. Shaded 
regions represent acceleration/deceleration parts. Refer to Eq.  4 for 
the detailed definition of the kinematics
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where 𝛼̇1 and 𝛼̇2 are pitch rates in regions 0 ≤ t ≤ t1 and 
t3 ≤ t ≤ t4 , respectively, expressed as:

The amount of asymmetry is controlled by the asymmetry 
parameter � such that the maximum angle of attack �0 is 
at t∗

2
= 0.5� . For symmetric triangular pitching, � = 0.5 . 

The reduced frequency k = �fpc∕U∞
 , pitching ampli-

tude �0 , and asymmetry parameter � are varied such that 
k ∈ {0.22, 0.44, 0.66, 0.88} , �0 ∈ {4◦, 8◦, 16◦, 32◦, 64◦} , and 
� ∈ {0.5, 0.4, 0.3} . The relative error between the input and 
the angular position of the aerofoil measured by an encoder 
is less than 2%.

2.3 � Theodorsen’s theory for high angles of attack

The classical theories of Theodorsen (1935) and von Kármán 
and Sears (1938) use linear potential flow theory and are devel-
oped for a flat-plate undergoing small sinusoidal oscillations 
in attached flow conditions. Under these conditions, the theory 
shows a good agreement with experimental results (Kang et al. 
2009; McGowan et al. 2011; Baik et al. 2012; Liu et al. 2015; 
Mackowski and Williamson 2015; Cordes et al. 2017). In our 
experiment, the angle of attack reaches up to 64◦ and the flow 
becomes massively separated, which violates the expected 
limit of applicability. We assume that the linear theory of 
Theodorsen gives the normal force due to the pressure differ-
ence between the upper and lower surfaces of the aerofoil. In 
Theodorsen’s theory, the plate-normal unsteady force consists 
of the non-circulatory (also called added-mass, apparent-mass, 
or virtual-mass in literature) and the circulatory terms:

(4)𝛼 =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼̇1t, (0 ≤ t < t1),
𝛼̇1

2t3
a

(t − t2)
4
+

𝛼̇1

t2
a

(t − t2)
3
+ 𝛼0, (t1 ≤ t < t2),

−
𝛼̇2

2t3
a

(t − t2)
4
+

𝛼̇2

t2
a

(t − t2)
3
+ 𝛼0, (t2 ≤ t < t3),

𝛼̇2(t − t4) −
𝛼̇2ta

2
− 𝛼0, (t3 ≤ t < t4),

𝛼̇2

2t3
a

(t − t5)
4
+

𝛼̇2

t2
a

(t − t5)
3
− 𝛼0, (t4 ≤ t < t5),

−
𝛼̇1

2t3
a

(t − t5)
4
+

𝛼̇1

t2
a

(t − t5)
3
− 𝛼0, (t5 ≤ t < t6),

𝛼̇1(t − T), (t6 ≤ t < T),

(5)
𝛼̇1 =

2𝛼0

𝜉T − ta
,

𝛼̇2 = −

2𝛼0

(1 − 𝜉)T − ta
.

The lift coefficient is given by:

Here 𝛼̇ and 𝛼̈ are the pitching rate and acceleration, xp is the 
location of the pitching axis from the leading-edge normal-
ised by c, and C(k) is the Theodorsen function

where H(2)
n

 is the Hankel function of the second kind of the 
order n. The Theodorsen function C(k) is responsible for 
the effect of the wake on the vortex-sheet strength along 
the aerofoil. Theodorsen’s model is technically applicable 
for sinusoidal oscillations only. Therefore, we expanded the 
smoothed triangular kinematics into the first 20 Fourier har-
monics. The resulting curves have less than 1 % difference 
from the original kinematics. Lift coefficients computed for 
all 20 Fourier harmonics are summed to obtain the total lift 
coefficient.

2.4 � Unsteady thin‑aerofoil theory

From the unsteady thin-aerofoil theory (UTAT), we find the 
normal force for a flat-plate undergoing arbitrary kinematics 
up to high angles of attack

where A0 , A1 , and A2 are the first three time-dependent 
Fourier coefficients of the vortex sheet strength distribution 
along the camber line. The only difference from the UTAT 
of Katz and Plotkin (2001) is cos � , which arises from the 
chord-tangential velocity U

∞
cos � as the high angle of attack 

consideration (Ramesh et al. 2013). Ramesh (2020) derived 
the Fourier coefficients for Theodorsen’s theory as

(6)

CTH
N

=
𝜋c

2U2
∞

[
𝛼̇U

∞
−

c

2
𝛼̈(2xp − 1)

]

���������������������������������������
non-circulatory

+
2𝜋C(k)

U
∞

[
𝛼U

∞
+

c

2
𝛼̇
(
3

2
− 2xp

)]

�����������������������������������������������
circulatory

.

(7)CTH
L

= CTH
N

cos �.

(8)C(k) =
H

(2)

1
(k)

H
(2)

1
(k) + iH

(2)

0
(k)

,

(9)
CTA
N

= 2𝜋

[
cos 𝛼

(
A0 +

A1

2

)

+
c

U
∞

(
3

4
Ȧ0 +

1

4
Ȧ1 +

1

8
Ȧ2

)]
,
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where the normal downwash is

To account for the large angle of attack, in the first term 
of Eq. 11 we use sin � , whilst Ramesh (2020) used � . In 
Eqs. 10, C(k) is the Theodorsen function (see Eq. 8),

is the Sears function, and Q2 is a wake coefficient. The latter 
is defined as

We follow the suggestions from Epps and Roesler (2018) to 
compute Qn . This includes using the trapezoidal numerical 
integration for n > 1 (for n = 0 and 1, analytical solutions 
are given), and the approximation Qn ≈ e−ik∕n for very small 
k/n.

We compute the circulatory lift as a component of the 
normal force and need to account for the leading-edge suc-
tion force separately. In a steady potential flow, this leading-
edge suction force acts to cancel the streamwise component 
of the chord-normal force giving zero drag, which is known 
as D’Alembert’s paradox. The leading-edge suction force, 
which acts at the leading-edge in the chord-tangential direc-
tion, is expressed as (Ramesh et al. 2013)

The first Fourier coefficient A0 is called the leading-edge 
suction parameter (LESP) (Ramesh et al. 2014). Finally, we 
compute the lift based on the unsteady thin-aerofoil theory 
for harmonic kinematics (UTAT-H) as

Here, the lift is again computed for the first 20 Fourier har-
monics of the kinematics.

2.5 � Vortex lift

To calculate the vortex lift we consider only a concentrated 
pair of counter-rotating vortices with circulation −�  and �  
in two-dimensional flow. Eq. 3 reduces to

(10)

A0 = C(k)
W

U
∞

−
𝛼̇c

4U
∞

,

A1 =
𝛼̇c

2U
∞

− 2
W

U
∞

(C(k) − e−ikS(k)),

A2 = 2ikS(k)
W

U
∞

Q2,

(11)W = U
∞
sin 𝛼 − 𝛼̇c

(
xp −

3

4

)
.

(12)S(k) =
2i∕�k

H
(2)

1
(k) + iH

(2)

0
(k)

,

(13)Qn = ∫
∞

0

exp(−ik cosh � − n� )d� .

(14)CS = 2�A2
0
.

(15)CTA
L

= CTA
N

cos � + CS sin �.

where �  is the (absolute) circulation of a vortex, ẑ is the unit 
vector pointing normal to the plane towards the observer, 
and d is the displacement vector from the positive to the 
negative vortex core. Lamb (1932) originally derived this 
impulse for a vortex pair. From Eq. 1, we find that the force 
F in the direction orthogonal to the vector d is (Kim and 
Gharib 2011; Babinsky et al. 2016)

The lift due to the LEV-TEV pair is expressed in coefficient 
form as

where uLEV and uTEV are the streamwise velocity compo-
nents of the LEV and the TEV, which are at the streamwise 
locations xLEV and xTEV . Their (absolute) circulation is �  
and their (absolute) growth rate is 𝛤̇  . This method does not 
require absolute positions and velocities but merely the rela-
tive positions and velocities of the vortices to each other 
and is independent of the location of the origin (Noca et al. 
1999; DeVoria et al. 2014; Rival and Van Oudheusden 2017; 
Limacher et al. 2018; Siala and Liburdy 2019). The relative 
positions are more straightforward to determine than abso-
lute positions, limiting the error. In the steady case ( 𝛤̇ = 0 , 
uLEV = 0 , and uTEV = U

∞
 as a starting vortex), Eq. 18 yields 

the Kutta-Joukowski sectional lift �U
∞
�  . Eq. 18 shows that 

unsteady vortex lift has two contributions. The first is due 
to the circulation of the vortex pair and their streamwise 
velocities. The second is due to the rate of change of cir-
culation and the distance between the vortices and their 
orientation. Babinsky et al. (2016) suggests approximating 
−(uLEV − uTEV) ≈ 0.5U

∞
 , −(xLEV − xTEV) ≈ c cos � , and �  

from the modified Wagner’s circulation model to make a 
reasonable prediction (Stevens and Babinsky 2017; Stevens 
et al. 2017). However, these approximations are limited to 
attached or moderately separated flows because the rela-
tive velocity between the LEV and TEV becomes nonlinear 
when there is a strong LEV-TEV interaction. Babinsky et al. 
(2016), Stevens and Babinsky (2017), Stevens et al. (2017) 
and Mancini et al. (2019) have successfully applied their 
low-order model to various unsteady aerodynamics prob-
lems in attached or moderately separated flows. The total lift 
is the superposition of the lift for the attached flow condition 
and the lift due to the vortex pair:

This correction becomes significant when substantial trail-
ing edge vorticity is slowed down instead of being advected 

(16)I = 𝛤 ẑ × d,

(17)F = −𝜌(𝛤̇ ẑ × d + 𝛤 ẑ × ḋ).

(18)
CV
L
= −

1
1

2
U2

∞
c
[𝛤̇ (xLEV − xTEV)
�����������������

vortex growth

+𝛤 (uLEV − uTEV)
�����������������

vortex advection

],

(19)CL = CTH
L

+ CV
L
.
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downstream at approximately the freestream velocity as 
assumed by Theodorsen’s theory. We choose the lift of 
Theodorsen’s theory (Eq. 7) rather than UTAT-H (Eq. 15) 
to give the lift for the attached flow since it is experimentally 
observed by Deparday and Mulleners (2018, 2019) that the 
leading-edge suction force significantly drops to nearly zero 
after the aerofoil experiences leading-edge separation.

2.6 � Vortex identification

The boundaries of LEVs and TEVs are identified by swirl-
ing strength �ci (Zhou et al. 1999), with a threshold value of 

10% of the maximum �ci to identify vortices. This threshold 
aids separation of the vortex from the feeding shear layer, 
which is essential for the computation of the circulation. 
Figure 3 shows an example of the identified LEV and the 
black line, which indicates the vortex boundary. Onoue and 
Breuer (2016, 2017) and Wilroy et al. (2018) successfully 
applied this method to PIV velocity data to identify coherent 
vortices. The LEV and TEV cores are the centroids of their 
circulation distributions. The circulation of each identified 
vortex is computed by integration of the vorticity � over 
the area of the vortex A as � = ∬ �dA . Time derivatives 
( uLEV, uTEV, 𝛤̇  ) are computed from the best fit curves of 
xLEV , xTEV , and � .

Figures  4 and 5 depict the contours of identi-
fied LEV and TEVs of symmetrically pitching 
( �0 = 64◦, k = 0.22, � = 0.5 ) and asymmetrically pitching 
cases ( �0 = 64◦, k = 0.22, � = 0.3 ), respectively.

3 � Results

3.1 � Measured lift

The phase averaged lift coefficients are presented in Fig. 6 
for all tested conditions. The three columns show the three 
degrees of symmetry of the kinematics, and the five rows 
show increasing angle of attack amplitudes from 4◦ on the Fig. 3   Example of vortex identification from the PIV data

Fig. 4   Identified vortices in symmetric pitching case ( �
0
= 64

◦
, k = 0.22, � = 0.5 ) at a � = 36

◦ ↗ , b � = 62
◦ ↗ , c � = 64

◦ ↗ , d � = 44
◦ ↘ , 

e � = 31
◦ ↘ , f � = 23

◦ ↘
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top to 64◦ on the bottom. The shaded regions show the 95% 
confidence interval for the mean of six realisations. This 
interval decreases with pitching amplitude as the signal to 
noise ratio increases.

The force peaks (indicated with a solid marker) tend 
to align for increasing pitching amplitudes, due to the 
increased effect of the non-circulatory forces. At �0 = 64◦ , 
the force peaks all occur at the beginning of the accel-
eration phase. A plateau region occurs while the angle 
of attack decreases until it reaches 45◦ . To explain this 
temporal lift evolution, we will compare the experimental 
results with the lift prediction from Theodorsen’s theory 
and UTAT-H.

To investigate the effect of the asymmetry of the motion 
on the force response, we analyse the time delay �ts for the 
occurrence of the normal force peaks with respect to when 
the static stall angle �ss = ±16◦ is exceeded and the mag-
nitude of normal force peaks. The analysis for �0 = 64◦ , 
k = {0.22, 0.44} , and � = {0.3, 0.4, 0.5} is presented in 
Fig. 7. The asymmetry in the motion results in a different 
pitch rate for the pitch up and pitch down motion. The abso-
lute dimensionless pitch rate |𝛼̇|c∕(2U

∞
) is used as the gov-

erning scaling factor. Here the pitch-rate 𝛼̇ is either 𝛼̇1 or 𝛼̇2 
in Eq. 5. As shown in Fig. 7a, the time delay �ts decreases 
with increasing nondimensional pitch rate. The variations 
in the results taken from the two reduced frequencies are 
marginal. The time it takes to reach the lift peaks is therefore 

mainly dependent on the pitch rate and, to a lesser degree, 
on the reduced frequency.

As shown in Fig. 7b, the magnitude of the normal force 
coefficient increases linearly with the increasing pitch rate. 
This is due to the non-circulatory effect on the forces. In 
fact, if we regard the non-circulatory part of Theodorsen’s 
model (Eq. 6) for zero acceleration as a case for the con-
stant pitch rate part of the motion, the non-circulatory part 
increases linearly with the pitch rate, where the slope is 
(dCN∕d𝛼̇)(2U∞

∕c) = 𝜋 . This approximation shows a good 
first agreement for the investigated pitch rates. The slope 
is steeper for the lower pitch rate. This could be due to the 
influence of changes in the circulatory part of the forces.

3.2 � Comparison with theory

Figure 8 summarises the lift maxima from the experimental 
data and the prediction by Theodorsen’s theory and UTAT-
H. Both theories tend to slightly overpredict the lift for low 
amplitude and low reduced frequency. We observe the same 
tendency for the asymmetrically pitching aerofoil. Similar 
results have been reported by Mackowski and Williamson 
(2015) who investigated a pitching NACA 0012 aerofoil at 
Re = 17, 000 . Overall, UTAT-H shows a better agreement 
with the experiments at low pitching amplitudes, whereas 
Theodorsen’s theory shows a better agreement at high pitch-
ing amplitudes.

Fig. 5   Identified vortices in asymmetric pitching case ( �
0
= 64

◦
, k = 0.22, � = 0.3 ) at a � = 36

◦ ↗ , b � = 62
◦ ↗ , c � = 64

◦ ↗ , d � = 44
◦ ↘ , 

e � = 31
◦ ↘ , f � = 23

◦ ↘
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At first glance, the linear theories are capable of accu-
rately predicting the maximum lift at pitching amplitudes 
as high as 64◦ for low reduced frequencies. Under these 

conditions, the lift peak is governed by the non-circulatory 
forces. In Fig. 9, the temporal evolution of the theoretical lift 
predictions are compared with the phase averaged lift over 

Fig. 6   Measured lift coefficients C
L
 of all kinematics tested: a �

0
= 4

◦

, � = 0.5 , b �
0
= 4

◦, � = 0.4 , c �
0
= 4

◦, � = 0.3 , d �
0
= 8

◦, � = 0.5 , 
e �

0
= 8

◦, � = 0.4 , f �
0
= 8

◦, � = 0.3 , g �
0
= 16

◦, � = 0.5 , h �
0
= 16

◦

, � = 0.4 , i �
0
= 16

◦, � = 0.3 , j �
0
= 32

◦, � = 0.5 , k �
0
= 32

◦, � = 0.4 , 
l  �

0
= 32

◦,  � = 0.3 , m  �
0
= 64

◦,  � = 0.5 , n  �
0
= 64

◦,  � = 0.4 , 

o  �
0
= 64

◦,  � = 0.3 . Shaded regions represent the 95% confidence 
interval for the mean of six realisations. Pitching motion is depicted 
in grey. Markers show maximum and minimum lift coefficients. Ver-
tical dashed lines indicate the beginning/end of deceleration/accelera-
tion and maximum/minimum angles of attack
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a pitching period. Both Theodorsen’s theory and UTAT-H 
predict the lift well and the two theories show nearly the 
same results except for a region around the maximum angle 
of attack. This is due to the overpredicted leading-edge 
suction force by UTAT-H. Deparday and Mulleners (2018, 
2019) experimentally showed that the leading-edge suction 
force significantly drops to nearly zero once the aerofoil 
experiences leading-edge separation. As shown in the next 
section (Sect. 3.3), the flow is massively separated in this 
region. For this reason, the agreement with UTAT-H is poor. 

Fig. 7   The effect of pitch rate on the force response: a time differ-
ence between the static stall angle and the magnitude of maximum/
minimum normal force coefficients, and b magnitude of maximum/
minimum normal force coefficient over the dimensionless pitch rate

Fig. 8   Amplitude of the lift coefficient of symmetric pitching aero-
foils for different pitching amplitude. Markers show the measured 
values, solid lines represent Theodorsen’s theory (Eq. 7), and dashed 
lines represent UTAT-H (Eq.  15). Error bars show the 95% confi-
dence interval for the mean of six realisations

Fig. 9   Temporal evolution of the lift coefficient of Theodorsen’s 
theory (Eq. 7), UTAT-H (Eq. 15), and the measured lift coefficients 
for �

0
= 64

◦ , k = 0.22 for different degrees of asymmetry a � = 0.5 , 
b � = 0.4 , and c � = 0.3 . Markers show maximum and minimum lift 
coefficients. Shaded regions represent the 95% confidence interval for 
the mean of six realisations. The pitching motion is in grey
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The agreement is robust around the positive peak values 
and both the magnitude and timing of the peaks are accu-
rately predicted. After reaching the positive peak values, 
both theories start to overpredict the lift. This is due to the 
vortex force, which will be investigated in Sect. 3.4. Kang 
et al. (2009), Ol et al. (2009) and Ramesh et al. (2014) also 
observed the overprediction by Theodorsen’s theory in the 
region where there is a LEV-TEV interaction, while reason-
able predictions occur elsewhere even when a coherent LEV 
is present. Baik et al. (2012) confirmed a better prediction 
by setting C(k) = 1 (ignoring the effect of the wake on the 
lift) in Theodorsen’s theory based on their observation from 
PIV that there is no vortex shedding into the wake during 
downstroke of the heaving and pitching motion. The agree-
ment is weaker around the negative peaks for the strongly 
asymmetric kinematics (Fig. 9c) when the non-circulatory 
force is not as strong as the circulatory force.

3.3 � Flow topology

In this section, we focus on two cases: the symmetric pitch 
at �0 = 64◦, k = 0.22, � = 0.5 , and the asymmetric pitch at 
�0 = 64◦, k = 0.22, � = 0.3 . In these cases, we observe a 
nonlinear effect on the forces due to the presence of shed 
vortices.

Figure 10 shows streamlines and the normalised vor-
ticity field around the symmetrically pitching aerofoil at 
�0 = 64◦, k = 0.22, � = 0.5 . At an early stage of the LEV 
formation, several clockwise-rotating vortices (negative 
vorticity) emerge on the suction side of the aerofoil due 
to Kelvin–Helmholtz instability (Fig. 10a). At high angles 

of attack, we identify a bluff body-like vortex pattern 
(Fig. 10b). At this point, the LEV starts to detach. Wid-
mann and Tropea (2017) reported two mechanisms for the 
onset of LEV detachment. The first mechanism is related to 
the secondary vortex near the leading edge. This secondary 
vortex is called the eruption vortex (Doligalski et al. 1994). 
The second mechanism is related to the flow reversal at the 
trailing edge. According to Widmann and Tropea (2017), the 
former LEV detachment mechanism occurs at high Reyn-
olds numbers and the latter at low Reynolds numbers. The 
simultaneous occurrence of both the boundary layer eruption 
and the flow reversal at the trailing-edge can happen at the 
moderate Reynolds numbers 10, 000 < Re < 35, 000 (Wid-
mann and Tropea 2017). In our case, at Re = 32, 000 , we 
observe a combination of both mechanisms (Fig. 10b, c). 
The advection of the primary LEV [around (b) and (c) in 
Fig. 10] decreases lift. This decrease will be discussed in 
Sect. 3.4. This decrease in the lift is more gentle in the 
potential flow than in the experiments. In the potential flow, 
we do not consider the formation and shedding of the LEV. 
In the lift predicted by Theodorsen’s theory, the steady con-
tribution increases until � = 45◦ (as CL = 2� sin � cos � has 
its maximum at � = 45◦).

Figure 11 shows streamlines and the normalised vor-
ticity field around the asymmetrically pitching aerofoil 
at �0 = 64◦, k = 0.22, � = 0.3 . The evolution of the flow 
topology is similar to the symmetrically pitching case 
until the primary LEV detaches (Figs. 10a–c vs 11a–c). In 
Fig. 11c, the eruption vortex near the leading-edge and the 
flow reversal at the trailing-edge lead to LEV detachment. 
Subsequently, the predicted lift deviates from the measured 

Fig. 10   Instantaneous dimensionless vorticity and streamlines around a symmetrically pitching aerofoil ( �
0
= 64

◦
, k = 0.22, � = 0.5 ) at 

a � = 36
◦ ↗ , b � = 62

◦ ↗ , c � = 64
◦ ↗ , d � = 44

◦ ↘ , e � = 31
◦ ↘ , f � = 23

◦ ↘ . Corresponding lift coefficients C
L
 are plotted against �
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lift. The flow reversal at the trailing-edge induces a bluff 
body type vortex shedding (Fig. 11d, e). The TEV grows as 
large as the primary LEV. Consequently, a coherent LE-TE 
vortex pair is formed.

3.4 � Vortex dynamics

Both Theodorsen’s theory and UTAT-H show reasonable 
agreement with the measured lift force even when an LEV 
is present at a large pitching amplitude. The unsteady lift 
prediction declines once the flow becomes vortex domi-
nated (Fig. 9). To improve the predictions of the nonlinear 
unsteady load, we need to take into account the contribu-
tion of the coherent LE and TE vortices. In this section, 
we compare the same two cases as in the above section, 
the symmetric pitch at �0 = 64◦, k = 0.22, � = 0.5 , and the 
asymmetric pitch at �0 = 64◦, k = 0.22, � = 0.3 . We extract 
the trajectories and circulations of the identified LEVs and 
TEVs whose contours are presented in Figs. 4 and 5 for sym-
metric and asymmetric pitching cases.

In the symmetric pitching case, multiple TEVs are 
identified (Fig. 4). Figure 12 shows the streamwise pro-
jections of the trajectories of these vortices. Solid lines 
represent best fit curves. The trajectories of the LEV and 
a sequence of small TEVs (TEV 1 to TEV 3) are fitted 
to linear curves, while TEV 4 and 5 are fitted to third 
order polynomials. The initial small TEVs (TEV 1 to 
TEV 3) are advected downstream with the freestream 
velocity U

∞
 . This behaviour is consistent with Theodor-

sen’s theory, which assumes that the wake advects at the 
freestream velocity. The later coherent TEVs (TEV 4 and 

TEV 5), grow much larger in size and strength (Fig. 13), 
and advected downstream slower than U

∞
 . Their combined 

circulation balances the circulation of the primary LEV 
(Fig. 13). Following Eq. 18, TEV 4 and TEV 5 contribute 
negatively to the lift because their advection velocity is 
lower than that of the LEV. Ol et al. (2009) and Ramesh 
et al. (2014) also observed that the measured lift was lower 
than the lift predicted by Theodorsen’s theory. Based on 
the present study, the discrepancies observed by these 
authors are likely to be due to the TEV being advected 
slower than the LEV.

We consider TEV 4 and TEV 5 and the primary LEV 
as a single vortex pair. The vortex lift is computed from 
Eq. 18. We found that the vortex growth term is small and 
it is neglected in the present work. The LEV and the TEV 
velocities ( uLEV and uTEV ) are computed from the slope of 
the best fit of xLEV(t) and xTEV(t) , respectively. During the 
symmetric pitching motion, multiple TEVs form and the 
ensemble-averaged velocity of TEV 4 and TEV 5 is used 
as uTEV.

Figure 14a compares the measured lift, Theodorsen’s 
prediction (Eq. 7), and the improved prediction of Theodor-
sen’s theory coupled with the vortex lift (Eq. 19). Fig. 14b 
shows the vortex force CV

L
 and the contribution from the 

LEV circulation �LEV and the LEV-TEV relative velocity 
uLEV − uTEV . The lines are solid where based on measured 
data and dashed when extrapolated. We do not have infor-
mation for uTEV after tU

∞
∕c ≈ 6.5 , when the TEV 5 leaves 

the PIV domain. Both uLEV and uTEV needs to reach the 
freestream velocity in the far field and thus the vortex force 
has to vanish, but we do not know how fast this asymptotic 

Fig. 11   Instantaneous dimensionless vorticity and streamlines around an asymmetrically pitching aerofoil ( �
0
= 64

◦
, k = 0.22, � = 0.3 ) at 

a � = 36
◦ ↗ , b � = 62

◦ ↗ , c � = 64
◦ ↗ , d � = 44

◦ ↘ , e � = 31
◦ ↘ , f � = 23

◦ ↘ . Corresponding lift coefficients C
L
 are plotted against �
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trend occurs. Hence, in Fig. 14a we do not extrapolate the 
trends of the vortex force for tU

∞
∕c > 6.5.

Figure 15 depicts streamwise projections of the trajec-
tories of detected LEV and TEV cores for the asymmetric 
case. Solid lines represent best fit curves. The trajectories 
of the LEV and TEV 1 are fitted to linear curves, while the 
TEV 2 is fitted to third order polynomials for tU

∞
∕c < 5.2 

and to a linear curve for tU
∞
∕c > 5.2 . In order to overcome 

the non differentiability at tU
∞
∕c = 5.2 arising from the dif-

ferent fitting polynomials, the computed lift is smoothed by a 
moving average using a window size of 31 points. The LEV 
moves downstream with constant speed, whereas the large 
TEV stagnates and moves upstream for 3 < tU

∞
∕c < 4 . For 

tU
∞
∕c > 5.2 , the TEV 2 advects downstream with a constant 

velocity similar to the LEV advection velocity ( uTEV ≈ uLEV)

.
Figure 16 shows the circulation time history of (a) the 

LEV and (b) the TEVs. Both the LEV and the TEV 2 asymp-
totically reach their maximum circulation, but the asymp-
totic value of the TEV 2 is larger than that of the primary 
LEV ( �TEV∕(U∞

c) ≈ 2.8 vs �LEV∕(U∞
c) ≈ 2.3 ). To balance 

the difference, the secondary LEV emerges (Fig. 11e, f). 
This measured information is directly substituted into Eq. 18 
to compute the vortex lift by the data-driven method.

Figure 17a compares the measured lift, Theodorsen’s pre-
diction (Eq. 7), and the prediction of Theodorsen’s theory 
coupled with the vortex lift (Eq. 19). The contribution from 
the LEV circulation �LEV and the LEV-TEV relative velocity 
uLEV − uTEV are also shown in Fig. 17b. The dashed part of 
the line show where the data is extrapolated. In the region 

where Theodorsen’s theory overpredicts the lift force due to 
the vortex interaction, tU

∞
∕c > 2 , the lift computed by the 

impulse theory corrects that of Theodorsen’s theory, result-
ing in an improved agreement with the measured lift.

4 � Concluding remarks

This study reports the unsteady lift force generation and flow 
development on a pitching aerofoil at Re = 32, 000 through 
time-resolved force and velocity field measurements. We 
use two predictive lift models. The first model is the linear 
theory of Theodorsen, which we modified for large-ampli-
tude, asymmetric kinematics. Lift is computed for 20 Fourier 
harmonics of symmetric and asymmetric smoothed triangu-
lar pitching kinematics to satisfy the sinusoidal oscillation 
assumption in Theodorsen’s theory. The second model is 
the unsteady thin-aerofoil theory modified for high angles 
of attack variations. Both models show a remarkable agree-
ment even when there is a large LEV present at the largest 
pitching amplitude studied ( �0 = 64 ◦ ), but the agreement 
diminishes in some conditions when a coherent LEV-TEV 
vortex pair is formed.

We develop a data-driven method based on the impulse 
theory to estimate the vortex force associated with the 
LEV-TEV vortex pair. This lift force, which is the rate 
of change of the vortex pair’s impulse, increases linearly 
with the strength of vortex pair and the relative stream-
wise velocity of the TEV with respect to the LEV. This 
lifting mechanism is not accounted for in Theodorsen’s 

Fig. 12   Trajectories of a LEV and b TEV cores in streamwise direction of symmetric pitch at �
0
= 64

◦
, k = 0.22, � = 0.5 . Solid lines represent 

best fit curves
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theory, where the bound circulation is fixed to the solid 
body and the shed circulation advects at the freestream 
velocity. When this force component is added to the 
force predicted by Theodorsen’s theory, the numerical-
experimental agreement improves. We therefore conclude 

that the limiting criterion for Theodorsen’s theory valid-
ity is neither whether the boundary layer is attached or 
separated, nor the formation and separation of the LEV. 
Instead, for a pitching aerofoil, we find that the limiting 
criterion is whether the magnitude of the vortex force 
is significant compared to the force predicted by Theo-
dorsen’s theory. In practice, we observe that the vortex 
force is significant when a coherent TEV is formed and it 
advects at a significantly slower streamwise velocity than 
the freestream velocity.

While these conclusions are based only on the condi-
tions tested in this study, the underling theoretical foun-
dation suggests that they should be applicable to any 
kinematics. Yet, future work should verify whether these 
conclusions hold also for plunging and a combination of 
pitching and plunging kinematics.

Overall, these results pave the way to the develop-
ment of predictive low-order models for high-amplitude 
manoeuvres characterised by massive flow separation.

Fig. 13   Circulation of a a LEV, b TEVs, and c accumula-
tive circulation of TEV  4 and TEV  5 of symmetric pitch at 
�
0
= 64

◦
, k = 0.22, � = 0.5 . Solid lines represent best fit curves. 

Dashed lines are extrapolated assuming circulation remains the same 
after leaving the PIV domain

Fig. 14   a Comparison of lift coefficients between measured, Theo-
dorsen’s theory, and data-driven method of symmetric pitch at 
�
0
= 64

◦
, k = 0.22, � = 0.5 and b vortex lift and contributions from 

circulation and relative velocity. Dashed part of the lines show extrap-
olated trends
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Fig. 15   Trajectories of a LEV and b TEV cores in streamwise direction at �
0
= 64

◦
, k = 0.22, � = 0.3 . Solid lines represent best fit curves

Fig. 16   Circulation of a LEV and b TEVs at 
�
0
= 64

◦
, k = 0.22, � = 0.3 . Solid lines represent best fit curves. 

Dashed line are extrapolated assuming circulation remains the same 
after leaving the PIV domain

Fig. 17   a Comparison of lift coefficients between meas-
ured, Theodorsen’s theory, and data-driven method at 
�
0
= 64

◦
, k = 0.22, � = 0.3 and b vortex lift and contributions from 

circulation and relative velocity. Dashed lines are extrapolated
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