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Abstract

Control of underactuated mechanical systems often leads
to unstable internal dynamics, which can be handled by resort-
ing to prediction when the system bandwidth is small. The
present paper considers systems with a high bandwidth and
proposes a two-time-scale controller for decoupling the system
while ensuring internal stability. A toy helicopter in which the
speed of the propellers is manipulated to vary the aerodynamic
force is taken up as a case study.
Keywords: Nonminimum-phase system, Underactuated sys-
tem, Two-time-scale control, Decoupling.

1. Introduction

Control of underactuated systems is quite challenging since
they are multi-input, nonlinear, nonminimum-phase systems.
Although control techniques for linear nonminimum-phase sys-
tems are readily available, the nonlinear counterparts are diffi-
cult with regard to meeting desired specifications while ensur-
ing internal stability [1]. A compromise solution is normally
resorted to. One possibility is to redefine the tracking output
so as to stabilize the internal dynamics. The original output is
then only tracked asymptotically [2].

When dealing with multi-input systems, noninteracting
(or decoupling) control is rather appealing. In [5], techniques
using dynamic state feedback with guaranteed internal stabil-
ity have been developed for linear systems. The approach has
been extended to certain classes of nonlinear systems in [4].

The problem addressed in this paper can be formulated
as follows: Given a nonlinear underactuated system, find a
feedback law such that the outputs are decoupled and internal
stability is guaranteed.

The noninteraction problem in underactuated systems has
been addressed in [3] where decoupling of the outputs at the
end of a prespecified interval is envisaged. The time lag in-
troduced allows for the stabilization of the internal dynam-
ics, thereby achieving the compromise mentioned above. This
technique has the disadvantage that the time lag can in certain
cases be quite large and, hence, is restricted to slow systems.

This paper refines the approach proposed in [3] to deal
with systems having a large bandwidth. The key idea lies in
the use of a cascaded scheme and a two-time-scale structure
consisting of an inner loop working at a sufficiently-high rate
to reduce the bandwidth of the original system and an outer
feedback achieving stable noninteraction. The scheme is illus-
trated in simulation on an underactuated toy helicopter.

2. The Toy Helicopter
The system under study (Figure 1) is a helicopter setup in
which the propeller speed is varied to manipulate the aerody-
namic force. The model of such a system is given by

Figure 1: Helicopter setup
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First, a simplified linear system that contains all the coupling
elements of the nonlinear model will be investigated in an at-
tempt to find an appropriate control law. The idea developed
will then be applied to the nonlinear plant. Note that the
simplified linear system given below is not the linearization of

(1).
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3. Predictive Decoupling and Feasibility

This section outlines the predictive control scheme de-
scribed in [3] that can be used to achieve decoupling. It also
sets the stage to indicate under which circumstances such a
scheme can work. For the ease of development, the simplified
linear model will be used with x = [¢ Wb, b, Wi, wr]T desig-
nating the state vector.

3.1. Predictive scheme

Let the system be discretized under the usual assumptions
of zero-order hold on the inputs. The decoupling scheme con-
sists in finding new discrete-time inputs vy, (k) and v,(k) and a
feedback [um (k) ur(k)]T = fom(k), ve(k), z(k), z(k+1))
such that ¢(k + 1) = v (k) and ¢(k+ 1) = v,.(k). The decou-
pling feedback is obtained as:

[um(k)] _ g {vam(k) — Crnwm (k) + Gip(k + 1)
uyr (k) Iyv. (k) — Crwr (k) ’
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where B = [ Im M} (3)

Two crucial aspects of this scheme are: (i) the feedback
depends on the future states z(k + 1) requiring prediction, and
(ii) an additional delay is introduced in order to stabilize the
internal dynamics. It is important to note that, due to the
discrete-time nature of the scheme, decoupling of the angu-
lar acceleration ¥ and qS is achieved on a grid defined by the
sampling instants and not for all times. Hence, an intersample
coupling ripple of ¥ and ¢ will remain (see Section 6). Further-
more, the choice of the sampling period is crucial in ensuring
internal stability, which will be discussed next.

3.2. Feasibility
Theorem 1 (from [3]) : System (2) can be decoupled with
internal stability using the discrete-time controller (3) if the

Iy Ir

CrCm
is the dominant unstable eigenvalue of the internal dynamics,
and Ty, = fib with fo [Hz] being the bandwidth of the system.

sampling period satisfies 217 < T < %Tb where T =

Definition 1 The decoupling bound 27 for a differentially
cross-coupled system is the lower bound on the sampling pe-
riod such that the internal dynamics are stable.

Definition 2 A differentially cross-coupled system is feasible
with respect to its decoupling bound if T}, > 47.

The last definition stems from the fact that, for a feasi-
ble system, the sampling period can be chosen such that both
Shannon’s upper bound and the decoupling lower bound are
respected and, hence, the intersample behavior does not affect
stability.

The bandwidth of system (2) is obtained by comput-
ing the eigenvalues of the system matrix. The correspond-
ing eigenvalues are A(A) = {\/G/Iy, —/G/Iy, 0, 0, 0, 0}.
Then, T, = 27/1,/G and, hence, (2) is feasible only when

2
G < %% Clearly, for large values of G, which corre-
sponds to the gravitational torque in this setup, the system
becomes infeasible.

4. Two-time-scale Control of the
Simplified Linear Model

If the system is infeasible with respect to its decoupling
bound, then the discrete decoupling scheme described in the
previous section cannot be used. To get around this difficulty, a
two-time-scale controller as illustrated in Figure 2 is proposed.
The inner feedback operates in continuous time to render the
system feasible. The decoupling feedback operates in discrete
time with the sampling period T > 27 to achieve decoupling.
Finally, two outer controllers gy and g¢ control the resulting
chain of integrators with delay.

The present scheme can be viewed from a different per-
spective. Due to infeasibility with T° > 27, the intersample
behavior does not necessarily have a loop gain less than unity.
The role of the inner feedback is to decrease the loop gain of
intersample ripple so that stability can be achieved.

Transformed System
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Figure 2: Two-time-scale controller
4.1. Continuous Inner Feedback

For the inner feedback, since the large bandwidth is due
to the term Gt that creates a torque along the v axis, it is
natural to compensate it using the main aerodynamic force.

Proposition 1 Under the feedback uym = Um + Géﬁﬂ;d}, Upr =

U, and the state transformation Wm = wpy, — C?n P, O = Wr,

the initial system (2) reads
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Im(j}m = Um
L&, = (4)

which is feasible with respect to its decoupling bound.

The proof of the proposition is straightforward and not
provided here for the sake of brevity. The eigenvalues of the
transformed system matrix are A\(A4) = {0,0,0,0,0,0}. Hence,
Ty, = oo making the transformed system (4) feasible.

4.2. Discrete Decoupling Feedback
The decoupling controller with sampling period T" > 27 is
obtained following the lines of Section 3.1. This results in :

Um(k) | _ -1 Lyvm (k) = Cr@m (k)
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From this expression, it is seen that the value of 1) at
time k£ + 1 must be known at time k. This prediction can be
accomplished in two different ways:

(i) Use an analytical prediction for ¢(k + 1).

(ii) Use another feedback to eliminate the term ¢ (k + 1).
The 1 term in (4) can be compensated by the rear propeller.

The state transformation is w, = w, — G C,I, om ) and the feed-
back reads:
1 G I I,
Up U (Crnwm — G) (6)
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5. Two-time-scale Control of the
Nonlinear Model

The control of the nonlinear model will be an extension
of the idea used for the simplified linear model. The following
feedback law is proposed for the continous inner feedback:
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The feedback (7) along with the state transformation
Om = Wm + C%ﬂ (Iméwm cos(¢) — Gssin(y) — Ge cos(zp)) and
@wy; = wy renders the system feasible. The terms depending on
the centrifugal and coriolis forces are assumed not to contribute
to the infeasibility of the system.

Since the gravity and coriolis terms compensated by (7),
the scheme of Section 3.1 can be applied giving the following
discrete-time decoupling feedback:
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where B= [

with Cpn, Ch, A¢, fl¢ and f,, being appropriate nonlinear func-
tions of the states at time (k+1). Because of the nonlinearities,
it is not possible to use an analytical prediction for the states at
time (k+1). On the other hand, using another feedback for the
rear propeller does not help in removing terms at time (k+1).
Nevertheless, a nonlinear programming algorithm can be used
to compute the inputs @m (k) and @ (k) so that the coordinate
accelerations ¢(k + 1) = v (k) and (k4 1) = v,(k).

6. Simulation Study

Simulation of the nonlinear system with the proposed two-
time-scale controller is performed.The system is infeasible with
respect to its decoupling bound. Had the decoupling scheme
been directly applied to the nonlinear system without the con-
tinuous controller, the internal stability would be lost as de-
picted in Figure 3. In contrast, the simulation with the two-
time-scale controller shows excellent decoupling of the two axes
v and ¢ (Figure 4). Furthermore, the fast input wu,, differs
greatly from the slow one @, (which is nearly zero). This is
due to the large effort of the fast controller to compensate for
the gravity terms G, sin(¢) and G. cos(v)).
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Figure 3: Simulation with no inner feedback
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Figure 4: Simulation with two-time-scale controller

7. Conclusion

A two-time-scale controller was proposed for decoupling
systems for which Shannon’s upper limit and the lower bound
for decoupling led to an infeasible region of the sampling pe-
riod. The proposed scheme was applied in simulation to an
underactuated mechanical system. It showed excellent decou-
pling properties as illustrated in the simulation section.

This paper has nevertheless left the following problems
open: (i) How can the properties of the transformed nonlin-
ear system upon application of the fast stabilizing feedback be
proven analytically ? (ii) Can this scheme be generalized to
other nonminimum-phase systems ? (iii) How robust is the
proposed control scheme 7
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