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A B S T R A C T   

The characterisation of cement paste microstructure is an important step towards understanding durability 
mechanisms in cementitious materials. Scanning electron microscopy (SEM) coupled with energy dispersive 
spectroscopy (EDS) is a widely used technique to analyse the microstructure at the micron-scale. However, it is 
challenging, notably because the characteristic size of many phases is found on a scale smaller than the EDS 
interaction volume. This work presents a new image analysis framework to identify phases and quantify the 
microstructure of cementitious materials from SEM-EDS hypermaps. By leveraging domain knowledge, repre
sentative points are attributed to phases and mixtures of phases based on ratio plots. Then, quantitative analysis 
of the microstructure can be carried out (chemical composition, particle size distributions, volume fractions, …). 
We demonstrate the abilities of the framework, and we present possible applications and extensions of the 
method. The framework is available as both a graphical interface and a Python code.   

1. Introduction 

Scanning electron microscopy (SEM) coupled with electron disper
sive spectroscopy (EDS) has many applications in cementitious mate
rials. For example, it can be used to obtain the C-A-S-H composition [1], 
to analyse the composition of complex SCMs [2,3], to calculate the de
gree of reaction [4,5], or to interpret the results of other methods such as 
nanoindentation [6,7]. A particular use of SEM-EDS is the acquisition of 
multispectral or hyperspectral mappings. In these mappings, each pixel 
contains a complete EDS spectrum which can be quantified to obtain the 
chemical composition, and then combined with spatial information to 
provide mappings of all quantified elements. In combination with 
backscattered electron (BSE) micrographs, such mappings can be used to 
study hydration [2,3,8], and/or durability issues [2,9,10]. The amount 
of information in these hyperspectral images is large but, unfortunately, 
it is not easily accessible due to intrinsic difficulties of displaying and 
interpreting this information. The challenge is twofold: the phases must 
first be identified [2,3,8,11], and a meaningful quantification must then 
be obtained [3,11,12]. 

As an example, Fig. 1 shows an annotated version of a BSE image of a 
limestone calcined clay cement paste (LC3) sample that will be studied in 
this article. An expert can already identify phases in this image, espe
cially by using the information from EDS (either point analysis or 

qualitative mappings). However, this approach has limitations. First, the 
particles can only be identified one by one, limiting the understanding of 
the distribution of phases, as well as the estimation of their volume 
fractions. Secondly, representative quantitative information about the 
chemical composition may not be easily retrieved. Thirdly, from XRD 
analysis, we know that the ettringite content should be around 12% (in 
mass), although this phase cannot be identified on the BSE image! We 
are looking for a method which is able to solve all of these limitations. 

The identification of phases is a clustering problem [6,7,13–16], 
which can be solved with the use of automatic clustering algorithms, 
such as the decision-tree [14], the SVM [15], the k-means [16], or the 
Gaussian mixture clustering [6,7] algorithms. Although good results can 
be obtained, these techniques are not widely used in practice, even if 
some tools (e.g. [16]) are available in well-established software, such as 
ImageJ [17,18]. In the opinion of the authors, this is due to the intrinsic 
complexity of both the algorithms and the cement paste microstructure, 
compared to the usefulness of the information that can be directly ob
tained. The clustering algorithms have been developed to analyse a large 
volume of data with a lower signal to noise ratio than those available in 
practice. 

For SEM-EDS mappings, time is the main limiting factors. Studies 
based on a large number of hypermaps are rare. For example, the work 
presented here is based on just 19 hypermaps. More maps would have 
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improved the statistical significance of our results, but this is the con
dition of many studies using SEM-EDX as a tool for a mean. The main 
limitation is the time required to prepare the sample, analyse the sample 
in the microscope (a couple of hours to a day for a high-quality map) and 
quantify the maps (typically 10 h). Therefore, it is important to use a 
reproducible and reliable analysis approach (that can be checked), 
rather than a fully automated analysis that can treat a large amount of 
data. The importance of constraining the algorithms by domain- 
knowledge was previously recognized by Munch et al. [16], who fully 
integrated inputs from the expert into their algorithm. A second 
requirement for the adoption of these tools is the use of a graphical 
interface [12,16], which can provide a direct feedback to the user. Many 
of these algorithms require a large number of steps and parameters to be 
adjusted by the user. A contrast can be made with the Rietveld method 
for quantitative X-Ray analysis: it is similar in complexity, but the ease- 
of-use of common software makes it a tool available to researchers 
without a programming background [19]. In addition, the clustering 
problem and the separation of phases is just a first step. It is important to 
provide to the user analysis tools [11] that can be used to answer specific 
scientific questions. For example, below is a non-exhaustive list of 
research questions (from different fields of the cement material science) 
that could benefit from a powerful hypermap analysis tool:  

• Where are the minor elements in polyclinker phases?  
• Where is the ettringite in the microstructure?  
• Where does strätlingite precipitate when it forms?  
• Does exposure to chlorides change the morphology of AFm phases?  
• What is the composition of AFm phases after exposure to chlorides?  
• Can we directly quantify chloride binding in C-S-H?  
• What are the characteristic features of a carbonation front?  
• What is the impact of sulfates on the hydration process?  
• How is the microstructure impacted by sulfate attack? 

All these questions are currently under study in our lab using the tool 

presented here as a step in the data analysis. The importance of these 
scientific questions over the clustering problem, has led to the combined 
use of multispectral images (generally qualitative) to study the spatial 
distribution of phases and, EDS point analyses to study their composi
tion [5,7,9]. However, to obtain quantitative measures of the spatial 
distribution, a bridge between a robust phase separation and quantita
tive chemical analyses is required. 

In this article, we propose a new approach that allows phase sepa
ration, chemical analysis, and visualization on the BSE image. It ad
dresses both the physical and the practical challenges of analysing SEM- 
EDS hypermaps of complex cement paste microstructures. The proposed 
method is based on a combination of (1) a denoising of quantified maps, 
(2) a user defined phase clustering based on domain knowledge and (3) a 
visual tool to interact with the user (i.e., with the domain-knowledge 
and the research problem). First, using a segmentation of the compos
ite image [3,7,11], we extract representative points from the quantita
tive EDS hypermap. The emulation of the point analysis method using 
ratio plots [1,19] allows the composition of the phases to be studied, but 
also identifies mixtures of these phases from representative points. In 
addition, phase masks can be defined by translating the point clusters 
onto the maps. Then, particle shapes and spatial distribution can be 
analysed from these phase masks. This method was implemented into a 
new framework called edxia, and added into the Glue software [20,21] 
to make this tool accessible to all researchers. This accessibility as well 
as the flexibility of our method represent an important advantage 
compared to previous approaches. Thanks to the versatility of the 
approach, the scientific questions presented above were all studied with 
our software as part of the development process (although they could 
not be described in detail here). 

In this paper, we present the experimental protocols for sample 
preparation, SEM-EDS hypermaps acquisition and quantification. Sec
tion 3 presents in details the image analysis methods and its justifica
tions. Section 4 gives some examples of microstructural investigations 
enabled by quantitative phase maps, chemical analysis of phases, 

Fig. 1. Phase annotation from BSE and elemental maps of an LC3 sample.  
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quantification of phase volume fractions and estimation of microstruc
ture descriptors. Section 5 presents some additional applications for our 
tool: investigation of profiles, coping with lower-efficiency EDS de
tectors, filtering data at the spectrum level, and incorporating machine 
learning. Overall, this paper not only describes the method and some 
current applications, but also aims at setting the stage for further de
velopments in an open-source framework. 

2. Materials and methods 

2.1. Materials 

To illustrate the robustness of the edxia approach, a CEM I Ordinary 
Portland Cement (OPC) and blended system were chosen as examples of 
cementitious microstructures with different levels of complexity. More 
specifically, the blended system is a limestone calcined clay (LC3) 
cement paste [22]. LC3-50 paste incorporates 53% of OPC (CEM I), 30% 
of calcined clay (fired and ground in India, with a calcined kaolinite 
content of ~45%), 15% fine commercial limestone powder and 2% 
chemical-grade gypsum. The chemical composition of the cement and 
calcined clay obtained by XRF are presented in Table 1. The LC3 cement 
paste was mixed with deionized water. 

2.2. Methods 

2.2.1. Sample preparation 
To ensure the homogeneity of the samples and the representativeness 

of the areas investigated, the cement pastes were mixed for 2 min with a 
5 cm axial flow impeller at 1600 rotations/min. This high-shear mixing 
was followed by 1 min of vacuum mixing at 450 rotations/min to 
remove entrapped air. A typical water-to-binder ratio of 0.4 was chosen 
and a polycarboxylate-based superplasticizer was employed to obtain 
sufficient workability for casting. The paste was cast in cylindrical 
polypropylene molds of 33 mm diameter, which remained sealed for the 
first 20 h before demolding. They were then water cured for 28 days in 
slightly larger containers. In addition to limiting the amount of water 
with the container size, any possible leaching was further avoided by 
adding to the container a sacrificial finely-ground specimen acting as a 
leaching buffer protecting the sample. 

At 28 days, 2 mm thick slices were cut and dried by isopropanol 
solvent exchange for 7 days (with renewal of the isopropanol after 1 h, 1 
day and 3 days) followed by isopropanol evaporation under slight vac
uum for more than 7 days (with CO2 and H20 absorbing agents). After 
drying, smaller pieces of the slices were polished with a silicon carbide 
paper #1200 (to remove any possible carbonation and provide a flat 
surface). The pieces were then impregnated under vacuum using the 
EPO-TEK 301 epoxy into 25 mm diameter molds, to support the delicate 
microstructure of the cement paste hydrates. The embedded samples 
were then polished using a Struers RotoPol-25 automatic polishing 
machine with Struers MD Largo discs and DP-Spray M diamond sus
pensions, with deodorized petroleum as lubricant. A high-quality 
mirror-like surface was obtained by successive polishing for 15 min 
with a 9 μm diamond suspension under a pressure of 15 N, followed by 1 
h with a 3 μm diamond suspension at 20 N and 2 h with a 1 μm diamond 
suspension at 20 N. Between each step (and after each hour of polish
ing), the samples were cleaned in an isopropanol ultrasonic bath for 2 
min. After 2 days under slight vacuum to evaporate the remaining iso
propanol, the samples were carbon coated with a thickness of about 15 
nm (to make the surface conductive and enable SEM analyses at high 

vacuum). 

2.2.2. SEM parameters 
The majority of SEM-EDS analyses were performed with a Zeiss 

Schottky SEM equipped with a Gemini®2 column. The accelerating 
voltage was 15 kV to enable quantification of iron (to access K lines of 
iron). Previous work showed that with such a voltage, 95% of the 
characteristic X-rays escaping cementitious materials were generated 
within a depth of ~900–1700 nm (depending on the phase, it’s density 
and on the measured element) [7]. The beam current was adjusted to 2 
nA (using a Faraday cup) to obtain the maximum signal without satu
rating the EDS detector. Although this value is higher than the recom
mendations by Rossen et al. [1], the damage to the sample was limited 
by the ultra-rapid scanning of the surface enabled by an Oxford Ultim
Max 170 EDS detector having a silicon drift detector surface of 170 mm2. 

Unless otherwise specified, the EDS hypermaps were acquired using 
the Aztec software at a resolution of 1024 × 768 pixels over regions of 
280 μm by 210 μm. To avoid image quality losses due to possible drift of 
the surface, the Autolock drift correction was employed with a mea
surement every 30 s and predictive correction every 10 s. The hypermap 
acquisition parameters were set as a compromise to obtain sufficient 
counts at each pixel, while limiting both surface damage and the 
required machine time. The combination of 256 s dwell time per pixel 
with an averaging over 12 frames was found to provide good results 
(although other satisfactory combinations could be possible). In this 
condition, the acquisition time of a map is around 1 h. 

To ensure the consistency of EDS analyses, the beam intensity was 
calibrated on a copper tape before each analysis (even if Schottky SEMs 
are extremely stable). The deadtime was kept under 30–35% for the 
different types of polished sections investigated. To achieve quantitative 
EDS analyses, certified standards were used for all elements of interest: 
CaSiO3 for O and Ca, Jadeite for Na, Al2O3 for Al, SiO2 for Si, CaSO4 for 
S, KCl for K and Cl, MgO for Mg and Fe2O3 for Fe (standards from Micro- 
Analysis Consultants Ltd). After acquisition, each hypermap was quan
tified using the Aztec built-in QuantMap function with the processing of 
all elements, no normalisation, corrections for the window artefact and 
pulse pile up. Although the oxygen may not be perfectly measured, it 
was still directly quantified from the spectrum which was deemed the 
best option for cement pastes: stoichiometric oxygen from oxides would 
lead to large errors of matrix correction, because of the important non- 
quantified hydrogen and carbon contents. Nevertheless, the content of 
water and carbonates was still estimated using the sum of oxides (SOX), 
which sums the mass of all measured elements and their stoichiometric 
oxygens (considering the oxides expected to occur in the cement paste, 
e.g., CaO, SiO2, Al2O3, Fe2O3, etc.) 

In addition to the main analyses carried out with approach, the 
choice of parameters and the possibility of using lower-efficiency de
tectors was explored with a Quanta 200 tungsten filament SEM equipped 
with a 30 mm2 EDS detector (Brucker XFlash 4030). The same standards 
were employed with a similar calibration and quantification approach. 
Different sets of parameters were used, with two types of instruments as 
described in Table 2. 

2.2.3. Additional characterisation of the cement paste 
In addition to SEM-EDS analyses, X-ray diffraction (XRD) and ther

mogravimetric analyses (TGA) were also done on the same LC3 paste to 
provide reference phase fractions. XRD analyses were performed on 
fresh discs of 33 mm diameter, using a PANalytical X’pert Pro Bragg–
Brentano diffractometer. The parameters were chosen according to the 

Table 1 
Chemical composition (mass%) of the cement and the calcined clay used in this study. LOI = loss of ignition.  

Material Na2O MgO Al2O3 SiO2 SO3 K2O CaO TiO2 Fe2O3 LOI 

CEM I  0.4  1.1  5.4  20.7  2.9  0.7  65.0  0.2  1.9  1.8 
Calcined clay  0.1  0.0  36.7  56.1  0.1  0.2  0.2  2.4  3.4  0.5  
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equipment available and to the recommendations of [19]: a copper tube 
operated at 45 kV and 40 mA; Soller slits of 0.04 rad for incident and 
diffracted beam; incident anti-scatter and divergence slits fixed at 0.5◦; 
beam knife; X’Celerator linear position-sensitive X-ray detector with a 
length of 2.122◦ 2θ; scanning from 5 to 70◦ with a 0.017◦ 2θ step; 
spinning stage at 15 rotation per minute; 30 s per integrated step, for a 
scan duration of about 15 min. The patterns were analysed using the 
Rietveld method with an external standard [23], along with the iterative 
approach proposed by Li et al. [24]: the cement phases were first refined 
from the pattern of the anhydrous cement and then transferred to the 
refinement of the cement paste; this latter quantification was then 
normalised with the K-factor obtained using a rutile standard and the 
mass attenuation coefficient of the sample. This approach provides ab
solute mass fractions for crystalline phases and total amorphous content. 
TGA analyses were made with a Mettler Toledo TGA/SDTA851 instru
ment, considering the approach described in [19]. A sample of about 50 
mg was placed in an alumina crucible and tested with a 10 ◦C/min 
temperature ramp from 30 ◦C to 1000 ◦C, in a nitrogen flow of 30 mL/ 
min. The recorded curves were evaluated using the tangent method, 
mainly to estimate the portlandite Ca(OH)2 content from the water loss 
centered around 450 ◦C. 

2.3. Implementation of the edxia method 

The new framework developed during this work, edxia, is coded in 
python [25], using the well-established scipy [26,27], matplotlib [28] 
and scikit-image [29] libraries. The Python scientific stack was chosen 
for its flexibility and extensibility. The framework is developed as an 
Application Programming Interface (API). It means that the user can 
develop their own analysis tools, and work-flows adapted to their 
problems. The open-source framework is freely available [30]. 

To make the framework available to researchers without coding 
experience, it was included as a plugin to Glue [20,21]. This python 
software was developed to easily visualize and create links between 
datasets. For example, Glue was initially developed to identify stars in 
telescope pictures from star catalogs. We used it here to identify the 
phases on the BSE map, using the chemical information provided by the 
EDS analysis. Documentation of the interface is also available [31]. 

3. The edxia method 

To answer the challenges identified in the introduction, our method 
follows a sequential approach summarized as follows:  

1. Maps are denoised and combined  
2. Representative points are extracted from the maps  
3. Ratio plots are used to identify phases by the user  
4. Masks are created from the regions identified in the ratio plots, to 

identify phases in the microstructure. 

The novelty of the method is (1) to propose a reproducible combi
nation of methods to obtain a ratio plot than can be analysed from a 

SEM-EDX hypermaps, and (2) relate this ratio plots to the BSE image, 
including the analysis of the mixed phases. After these processing steps, 
different types of analyses can be run on these masks depending on the 
specific scientific problem. The flowchart of the complete approach is 
presented in Fig. 2, and each step is further described in a corresponding 
section of this paper. 

3.1. Denoising of chemical maps 

Unless the user has access to a high-end EDX detector for a long 
period of time, the number of counts per pixel is usually below the 
threshold required for a reliable point analysis [1], i.e., the maps are 
noisy. The noise manifests itself as brightness variations on the maps (i. 
e., a high-frequency texture on homogeneous regions). As an example, 
this texture is visible on the raw calcium map presented in Fig. 3. This 
texture significantly lowers the output quality of the image analysis al
gorithms. Therefore, it must be removed before further analysis. 
Although some pixels may not be reliable on their own, we can use the 
information distributed over the large number of pixels to refine the 
maps. 

Many denoising algorithms exist. As a guideline, a good denoising 
algorithm should remove the high frequency texture from the map while 
keeping sharp edges. The smearing of the edges leads to an apparent 
increase of the interaction volume effect. In addition to the raw map, 
Fig. 3 shows the results from three denoising algorithms on the Ca map: 
the total variation algorithm [32], a Gaussian filter, and the joint 
bilateral filter [33,34]. The joint bilateral filter is an edge-preserving 
filter using a different (but related) image for edge detection. The 
reference image for edge detection in our workflow is the BSE image. 
The maps are displayed in the left column of Fig. 3, while the histograms 
corresponding to these maps are shown in the right column. Each al
gorithm depends on parameters controlling the extent of the denoising. 
The total variation algorithm depends on a weight parameter (here 
equal to 0.1), the Gaussian filter depends on a scale parameter (here 
equal to 0.5) controlling the width of the Gaussian window. The joint 
bilateral filter depends on a space parameter (here 10.0) and an intensity 
parameter (here 2.5). For typical SEM-EDX hypermaps of cementitious 
materials, we observed that the total variation algorithm provides a 
better denoising than the standard medium filter, that is robust with 
respect to the parameters. On the other hand, the Gaussian filter is a 
difficult trade-off between the removal of the noise and the smearing of 
the information with no clear optimal points. Because the bilateral filter 
was developed to reduce the smearing across edges, it is a good choice to 
limit the impact of the denoising. Therefore, it can reduce the need for a 
compromise, but it is quite sensitive to parameters, which should be 
adapted to the resolution, the field of view, and also the contrast in the 
BSE image. 

Another method to judge the effect of denoising is to analyse the 
histogram of the intensity of the images. The denoising results in a 
refinement of the main peak, and the appearance of secondary peaks. 
The main central peak corresponds to the main hydrates phases such as 
the C-S-H and AFm phases (layer double hydroxides of the hydro
calumite family) [35]. The peak at high Ca corresponds to the clinker 
phases. The shoulder on the C-S-H/AFm peak is the portlandite. This 
shoulder is more visible for plain cement (CEM I) where the portlandite 
content is higher. The peaks at low Ca are the metakaolin and the mixes 
between metakaolin and hydration products. Even if the map is more 
refined after denoising, the peaks are still overlapping. Therefore, they 
cannot be used to quantitatively select phases on their own. It should be 
noted that the denoising cannot be optimized based on just the width of 
the peaks in the histogram. Because, it would lead to over-smoothing, 
where mixes of phases cannot be resolved anymore. 

Denoising is not an operation without compromise, as the denoising 
might introduces a bias. However, ratios of composition (Al/Ca,Si/Ca,S/ 
Al, …) were found to be quantitative on average, as mentioned by 
Harrisson et al. [36]. This point is developed further in Section 5.2. Since 

Table 2 
EDS detectors and hypermaps acquisition parameters used in this study.  

Set EDS 
detector 

Resolution Beam 
current 

Dwell time/ 
frames 

Total 
time 

A Brucker 30 1024 × 768 ~6 nA 512 μs/10 ~1 h 
B Brucker 30 1600 ×

1200 
~0.8 nA 512 μs/30 ~8 h 

Ca Oxford 170 1024 × 768 2 nA 256 μs/12 ~1 h 
D Oxford 170 2048 ×

1536 
2 nA 256 μs/12 ~4 h 

E Oxford 170 1024 × 768 4 nA 256 μs/6 ~30 min 
F Oxford 170 512 × 384 2 nA 256 μs/12 ~15 min  

a Set C is the default parameter set used unless otherwise stated. 

F. Georget et al.                                                                                                                                                                                                                                 



Cement and Concrete Research 141 (2021) 106327

5

the total-variation algorithm provides the best results in terms of 
robustness and final aspect of the maps, it was used in the remainder of 
the examples presented in this paper. It is also the default option in the 
implementation of our method. 

3.2. Combination into composite maps 

A common approach to analysing chemical information, e.g. 
[3,11,37], is the creation of a composite map. The composite map is also 
used as a pre-processing step in our workflow to increase the signal to 
noise ratio. This composite map is obtained by merging scaled elemental 
EDS maps assigned to different color channels. A convention for creating 
composite maps is the use of Ca, Si and Al elemental maps, which allows 
the best separation between the main cement phases [3,38]. 

The individual colored maps, for the LC3 cement paste are shown in 
Fig. 4. By assigning these maps into the corresponding channels of a RGB 
image (red = Si, green = Al, blue = Ca), a composite map can be ob
tained. Each individual map can further be scaled to obtain an adjusted 
range of colors. The composite map can also be displayed as a trans
parent layer over the BSE map to highlight the boundaries of the par
ticles, or mixed with another gray-level map (e.g. Fe, Mg) to increase the 
visual separation of specific phases. 

The resulting composite image is shown in Fig. 5a. This image can be 
analysed to separate the phases by color. The main phases are identified 
in the legend of that figure. To better identify phases by colors, the 
background color of the legend is set to an average color of the outer C-S- 
H matrix. 

Phase masks could be obtained from this composite image, as usually 
performed by transforming the RGB channels into hue, saturation and 
brightness (HSB) channels [37]. The phases are then defined by 
thresholds on the hue. Additional thresholds might be defined on the 
saturation, brightness, and/or on the BSE value, to separate between 
anhydrous phases and hydrates. The analysis of the composite image is 
useful to quickly analyse a map. However, the main limitation is that it is 
limited to 3 components, or 4 if a gray channel is added instead of the 
BSE map. Another limitation is that the threshold is based on a non- 
physical parameter, the hue rather than the composition. Although it 
is sufficient to distinguish C-S-H from portlandite, it is not directly 
possible to separate hemicarboaluminate from the monosulfoaluminate, 
for example. An analysis using all the available elements is necessary 
[16]. 

Fig. 2. Flowchart of the edxia method. Numbers indicate the section of this paper.  
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3.3. Segmentation of regions with similar compositions 

To facilitate the identification of the phases, the composite map can 
be separated into regions using a superpixel segmentation algorithm 
[39]. This segmentation identifies adjacent pixels of similar color (i.e. 
similar composition for a composite map) and group them into contin
uous regions. 

A segmentation algorithm could be applied to the gray BSE image in 
order to separate the regions without information about the composi
tion. These regions would correspond to particles, grains, agglomerate 

of particles, or homogeneous sections of particles or gel. Standard al
gorithms can provide an adequate result for the anhydrous clinker 
grains. However, they usually fail for the hydrated phases as their 
characteristic sizes are smaller (sometimes even smaller than the reso
lution), and the gray levels are similar and dependent on the sample and 
the microscope. Therefore, it is preferable to carry out the segmentation 
on the composite map. The segmentation algorithm creates region of 
similar composition. The degree of similarity considered here is usually 
defined by the number of regions created by the algorithm. In most al
gorithms, the number of regions is a function of a user-defined 

Fig. 3. Effect of the denoising algorithm on the Ca map. The left column presents the calcium maps, the right columns are the corresponding histograms. The red line 
was positioned at the maximum value of the histogram corresponding to the Ca map denoised with the total variation algorithm. Parameters for the denoising 
algorithms are described in the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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parameter. 
In edxia, the SLIC segmentation algorithm [39] is used by default. Its 

effect is shown in Fig. 5b. As observed in this figure, the main features of 
the composite map are kept after the segmentation. The main advantage 
of this method is that we can transform a large number of pixels (e.g., 
1024 × 768 = 786, 432) into a much smaller number of regions (e.g., 
<20, 000). Although it is not mandatory, this step is important to 
simplify further analysis. It should be noted that the loss of information 
during this step is minimal, because neighboring points will have a 
similar composition (due to the overlapping interaction volumes, and 
the denoising). On the other hand, the signal-to-noise ratio is increased 
because many points at the interface between two phases, or in pores are 
not considered. 

3.4. Emulation of point analysis 

Chemical analysis with SEM-EDS is usually done with point mea
surements where the results are plotted as ratio plots [19,36]. For 
example, the composition of C-A-S-H is usually determined using an Al/ 
Ca vs. Si/Ca scatter plot [1]. Our framework emulates that approach. 
The main challenge is to select representative points in the map using a 
reliable and reproducible method. For ideal systems made of particles in 
a gel matrix, the most representative points are at the center of the 
particles, because the effect of neighboring phases in the interaction 
volume are minimized. Unfortunately, as described in the previous 
section, it is not possible to identify perfectly each particle that can be 
detected visually in the backscatter micrograph. One of the main reasons 
is that superpixel algorithms constrain the superpixel sizes to be of 

Fig. 4. Components of a composite image. These denoised maps are each assigned to the channels of an RGB image to create the composite image.  

Fig. 5. a) Composite image formed from the combination of the individual channels presented in Fig. 4, and, b) corresponding segmentation using the SLIC al
gorithm. The dots represent the geometrical center of each segmented region. 
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similar sizes, even if the particles sizes in the systems vary by a few 
orders of magnitude. However, we have identified regions of similar 
composition by segmentation. As an approximation, each of these re
gions is assimilated to a particle, a section of a particle, an agglomerate 
of particles, or a gel of relatively homogeneous composition. Therefore, 
the representative points are taken at the geometric center of these 
segmented regions. The reasoning is that for perfectly circular regions in 
a matrix of outer C-S-H, only the pure phases are sampled, and not the 
mixture of phases. Of course, real cementitious systems are not made of 
circular regions. However, this approach has been shown to provide an 
adequate filtering as long as the number of points is adjusted to the 
resolution and the field of view of the map. The filtering can be observed 
in the ratio plots presented in this article where most points are clustered 
between the pure phases (e.g. Fig. 6). An ideal situation would be to 
have one point per particle, or per agglomerate of particles. However, 
due to the large heterogeneities in cementitious materials, it is not 
possible. In practice, values between 5000 and 20,000 segmented re
gions were found to be a good compromise for standard maps. 

A dataset made from the chemical composition at all of these points 
can then be created. These points can also be filtered based on their BSE 
values, for example to remove points corresponding to pores. The 
composition of these points can then be analysed using the standard 
ratio plots. An example of the points obtained with this method is pre
sented in Fig. 6 for the OPC and the LC3 samples. The challenge is now to 
understand how these points are related to the cement phases as iden
tified by XRD or by thermodynamic modelling. 

3.5. Characterisation of mixtures 

Due to the interaction volume of the electron beam, the nano- 
crystalline phases and the many solid solutions typical of cement 
pastes [40], as well as the inherent low signal-to-noise ratio of EDS 
hypermaps, most pixels usually have to be considered as mixtures of 
phases rather than attributed to single pure phases. The main example 
corresponds to the C-S-H matrix, the glue of the cement paste which 
incorporates many small particles (unhydrated clinker grains, quartz, 
limestone, AFms, Ettringite, SCMs, etc.). Therefore, an automatic 

identification of each pixel to a particular phase is not possible without 
strong assumptions. Instead, the characterisation of these mixtures is a 
feature of this framework. 

To achieve this goal, we adopt a manual approach using ratio plots. 
In a ratio plot, the points from the EDS analysis are plotted on axes of 
elemental ratios. The most common is the Al/Ca vs. Si/Ca plot, which 
can be used to identify the main phases of cementitious materials. An 
idealized version of this plot is displayed in Fig. 7. The colored circles 
represent the common end points, representing “pure phases” at the 
microvolume level, and the gray points represent the main mixture lines. 
In practice, the gray points were obtained by using random samples from 
a triangular distribution centered along the pure phases in the direction 
of the binary mixtures. It should be noted that these mixture lines are 
generally not well defined and lines from different mixtures can overlap. 

Fig. 6. Representative points extracted from the EDS hypermaps and plotted in the Si/Ca-Al/Ca ratio plot for the OPC and the LC3 samples. Taylor phases correspond 
to the stoichiometries provided by Taylor [35], Table 1.3, p. 10. 

Fig. 7. Ideal phases and average anhydrous phases in the Al/Ca vs. Si/Ca. 
Examples of binary mixtures were created from triangular distributions around 
the position of the pure phases. Real mixtures points would include noise and 
ternary mixtures. 
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For example, a mixture of C3A and C3S (in a polyphase clinker grain) 
can be found at the same position in this plot as a mixture of AFm and 
outer C-S-H. Therefore, it is important to develop combinations of filters 
by using several representations. For example, these two points can be 
separated by adding an additional condition on the BSE intensity, or on 
the sum of oxides to distinguish between anhydrous and hydrous phases. 
The crude representation of Fig. 7 is sufficient to understand Fig. 6. 
However additional effects, such as random noise, background and 
ternary mixtures must be considered to obtain the clouds of points of 
Fig. 6. 

One of the main consequences of the intermixing is that pure phases 
are hard to isolate. It is especially true for the C-S-H which is finely 
intermixed with other phases such as ettringite, hydrotalcite, or even 
fine particles of metakaolin. As such, the properties of pure C-S-H are 
hard to obtain through this type of analysis [1]. To make this point 
clearer in the rest of the paper, we call this fine mix of C-S-H and other 
phases the C-S-H matrix. The properties of this matrix are an average of 
the true C-S-H gel composition as well as a proportion of the other mixed 
phases at a scale lower than the interaction volume of the electron beam. 

In Fig. 6 it can be observed that the density of points and the known 

Fig. 8. Phase separation in 28 day cured samples of an OPC and a LC3 samples. a) and b) are the Al/Ca vs. Si/Ca ratio plots for the OPC and LC3 samples. c) and d) are 
the phase masks overlay on top of their respective BSE micrograph. Taylor phases correspond to the stoichiometries provided by Taylor [35], Table 1.3, p. 10. 
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position of the main cement phases is sufficient to understand the main 
mixture lines. By defining thresholds along these lines, it is possible to 
relate each point to a particular phase. The selection of points can be 
defined by a series of inequalities (e.g. Si/Ca < 0.2 and Al/Ca < 0.2 for 
portlandite), or graphically by using the Glue interface [20,31], to draw 
a surface around the region of interest (ROI). These inequalities are then 
used to identify the corresponding regions in the maps. Specific in
equalities for OPC-based cementitious systems are described in the next 
section. 

3.6. Qualitative phase separation 

As explained in the previous section, it is possible to identify most of 
the cement paste phases visible at the BSE micrograph scale using a 
manual selection of points. This section applies this approach to the two 
cement pastes as examples. The separation of phases is presented in 
Fig. 8 for the OPC and the LC3 samples, in the Si/Ca and the Al/Ca ratio 
plot as well as overlays of the phase masks on the BSE image. 

The separation was made according the mixtures identified in Fig. 7 
and guidelines detailed in Table 3. Table 3 summarizes the main in
equalities used to separate phases based on the Si/Ca, Al/Ca, BSE, Sum 
of OXides (SOX) and others. The BSE histogram is roughly separated into 
two main peaks (clinker and hydrates). The actual values are dependent 
on the sample, the microscope and the microscope operator. This table 
does not provide strict guidelines, but it gives rules of thumb for 
thresholds to be adapted to each sample, similar to the decision tree 
presented by Bentz et al. [13]. 

The Al/Ca vs. Si/Ca plot is the most useful representation to separate 
phases, but it is not sufficient. As an example, the calcite and portlandite 
were separated using the BSE vs. SOX plot: both phases are very similar 
in backscattered contrast and chemical ratios, but they exhibit different 
absolute contents of calcium oxide (i.e., different SOX). Therefore, they 
can still be separated. This separation can be verified on the BSE image 
due to the morphology difference between calcite (rounded particles) 
and portlandite (elongated clusters). 

Fig. 8c and d demonstrates the main microstructural differences 
between the OPC paste and the LC3 paste. The inner C-S-H is a main 
hydrate phase in the OPC paste with the portlandite linked by the outer 
C-S-H matrix. The AFm grains are small and they have precipitated in 
spaces left by dissolved clinker grains. The LC3 paste is more heteroge
neous and compact at this scale. One visual difference is the dominance 
of the yellow and green hue compared to the blue and purple of the OPC 
paste. This is due to the metakaolin (Al, Si) present in large and small 

clusters as well as the AFm phase which is present in larger masses and, 
in higher amounts. These observations are consistent with our current 
understanding of the LC3 microstructure. 

Although not all the points can be attributed to the phases listed, the 
main grains and regions are identified, as observed on the BSE overlay in 
Fig. 8c and d. An advantage, but also a limitation of this approach is that 
not every pixel is identified to a phase. For example, the inner C-S-H 
close to aluminate clinker phase is not detected as inner C-S-H because 
its aluminate content is high due to the interaction volume of the elec
tron beam. Instead, it is defined as the outer C-S-H matrix, which cor
responds to a phase mixture. This effect is stronger in the LC3 sample due 
to the intermixing with fine metakaolin grains. This can be observed in 
Fig. 8, where the inner C-S-H matrix identified for the LC3 sample has 
higher Al/Ca ratio, and it is moved towards the metakaolin. The choice 
of the threshold is an advantage for chemical composition identification, 
but an inconvenience for volume fraction quantification. Thus, the user 
should choose between assigning all pixels to a phase, or separating 
phases with relatively pure compositions. Both extremes (very pure 
phases, or all pixels identified) can be appropriate according to the 
problem at hand. This choice is intrinsic to the physical limitations of the 
experiment. As such, is not unique to our method. It is present in all 
methods, even if it is not recognized. 

Only qualitative comparisons have been made so far. The next sec
tions will focus on extracting quantitative data and, on comparison with 
other measurement methods. 

4. Microstructure characterisation 

4.1. Chemistry of phases 

Once a phase has been identified, it is possible to study its compo
sition. As an example, the composition of the AFm solid solution formed 
during chloride ingress was found to be a very good case study for the 
edxia approach. The AFm phases are part of the layered double hy
droxide family. Their interlayers contain anions that can be exchanged 
with the pore solution. In particular, in contact with chloride, the sulfate 
and carbonate- AFms of the cement paste can transform to Friedel’s salt 
[41,42]. The conversion to Friedel’s salt is only partial at the commonly 
employed concentrations (e.g. 0.5 M NaCl) and it is important to mea
sure the chloride stoichiometry in the solid solution to fully characterize 
the chloride binding. 

A method based on SEM-EDS point analysis was recently developed 
in Sui et al. [43]. It is based on extrapolating the AFm/C-S-H mixture 
line to Al/Ca = 0.5 in the Cl/Ca vs. Al/Ca ratio plot, enabling the esti
mation of the Cl/Ca ratio of the solid solution between Friedel’s salt and 
another AFm (Cl/Ca = 0, but Al/Ca = 0.5). Using the edxia approach 
instead of EDS point analysis for this task has two main advantages. 
First, it is useful to check that the selected points are indeed AFm based 
on morphology. Secondly, the mixture line is fully captured, and a 
higher precision can be obtained. Finally, the map further contains 
additional information, such as the chloride sorption on C-S-H. As an 
illustration, Fig. 9 shows the Cl/Ca vs. Al/Ca ratio plot for an LC3 sample 
cured 28 days before and after being exposed to a 0.5 M NaCl solution. In 
this case, the Cl/Ca ratio is around 0.24 ± 0.01 in the AFm phases after 
exposure, which is a little less than half the maximum binding capacity 
compared to formation of pure Friedel’s salt. Additional details on this 
study is available in [44,45], such as the estimation of the solid solution 
by XRD which compare very well to our method. 

4.2. Sub-resolution phases 

Another added value of the full chemical analysis is the possibility to 
detect sub-resolution phases. Ettringite is one of the main phases in 
cement paste. However, it is not identified in Fig. 8. The reason for this is 
that ettringite crystals are below the resolution of a typical hypermap, as 
ettringite commonly precipitates in needles of less than a hundred 

Table 3 
Example of boundary definition for common phases in cement pastes. ε repre
sents a tolerance dependent on the noise in the map, phases in the sample, and 
the interaction volume of the electron beam.  

Phase Si/Ca Al/Ca BSE 
peak 

SOX Others 

C3S 0.33 ± ε <0.1 Clinker 1 ± ε  
C2S 0.5 ± ε <0.1 Clinker 1 ± ε  
C3A/C4AF <0.2 >0.5 Clinker 1 ± ε  
AFm <0.2 0.5 ± ε Hydrate <0.8 S/Ca,Cl/Ca, … 
Portlandite <0.2 <0.2 Hydrate 0.76 

± ε  
Calcite <0.2 <0.2 Hydrate 0.48 

± ε  
Strätlingite 0.5 ± ε 0.5 < x <

1 
Hydrate <0.8  

Metakaolin >1.0 ± ε ∝ Si/Ca Hydrate 1 ± ε  
Slags Variable Variable Hydrate 1 ± ε Mg can help [5] 
Slags 

hydrates 
Variable Variable Hydrate <0.8 Mg can help [5] 

Quartz >1.0 <0.2 Hydrate 1 ± ε Can filter on Si 
Fly ash Variable Variable Hydrate 1 ± ε  
C-S-H matrix Variable Variable Hydrate <0.7 Depends on 

cement blend  
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nanometers compared to the micrometer-scale interaction volume, and 
about half a micrometer BSE resolution. Some clusters of ettringite could 
be identified on the BSE image by a trained expert, especially in the case 
of OPC. However, this does not tell us about the real distribution of 
ettringite. Sub-resolution refers here to the fact that no pure ettringite 

points are detected in the Al/Ca vs. Si/Ca ratio plot, as shown in Fig. 8. 
However, the presence of ettringite can still be detected through the 

EDS chemical composition. The process is presented in Fig. 10. First, the 
outer C-S-H gel is selected as a reference in the Si/Ca vs. Al/Ca ratio plot. 
Then, in the S/Ca vs. Al/Ca, the Ettringite/C-S-H mixture line is 

Fig. 9. Composition of the Friedel’s salt-hemicarbonate solid solution as measured by SEM Image analysis. Example of a LC3 sample before and after exposure to a 
0.5 M NaCl solution. 

Fig. 10. Subresolution detection of ettringite in the OPC sample at 28 days.  
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identified. Points along that line, but outside the main C-S-H matrix 
cluster of points are selected. The selected pixels do not correspond to 
pure ettringite pixels, but to mixtures of C-S-H and ettringite. This 
process is of course highly dependent on the threshold chosen. However, 
it helps to detect the presence of sub-resolution phases. In the case of 
ettringite, this method can be used to study delayed ettringite formation 
or sulfate attack to detect the precipitation patterns. Although fractions 
cannot be computed accurately for these phases intimately intermixed, 
point densities can be used to compare samples qualitatively. This 
detection is of course dependent on the level of the intermixing. For 
example, in the OPC sample, small ettringite grains can be observed as 
depicted in Fig. 10. However, in the LC3 samples, the regions detected by 
this method are not easily identified using only the BSE, as seen in 
Fig. 11. Detection of mixed phases is a common use of ratio plots. The 
added value of our framework is that their spatial distribution can also 
be studied. 

4.3. Quantitative phase fractions 

One of the simple microstructure descriptors that can be obtained 
from a phase mask is the volume fraction. The use of image analysis to 
quantify the volume fraction of anhydrous phases (and the reaction 
degree) is well documented in the literature as early as 1986 [3,5,46]. 
The volume fraction of hydrates is less studied. The main reason is the 
difficulty to separate the hydrates phases easily. 

As an illustration of the potential of our framework, we propose a 
way to quantify the volume and mass fraction of AFm phases in a LC3 

cement paste, which are generally considered difficult to quantify. These 
phases are important as they fill the pore space in the microstructure, 
and thus contributes to the compressive strength. They are also impor
tant for durability-related issues as they are the main phases able to bind 
chlorides [41]. 

A main challenge is to obtain a representative scale to analyse. The 

measured area should be big enough to obtain a big enough average over 
the heterogeneous material. However the magnification should be big 
enough to be able to separate the hydrate phases of interest. The largest 
source of heterogeneities in the cement paste is the large anhydrous 
grains. As seen in Fig. 8, the presence or the absence of a clinker grains 
would make a large difference on the volume fractions. One very time- 
consuming way to solve this problem would be to acquire many maps at 
high magnification. A simple method is to choose a phase to normalise 
the results to a known quantity, and thus to remove the influence of the 
larger grains. Thus, our approach is the following: (1) first, we separate 
the big grains, and we compute the surface fractions in the remaining 
area; (2) and then, a phase present in that volume is used to renormalise 
the data to include the big grains. This approach requires another 
experiment to carry out the normalisation but it avoids having to take 
too many high resolution maps with a very high field-of-view. 

The total volume fraction of small particles in the LC3 system is 
defined as: 

ϕsmall ≡ 1 − ϕclinker − ϕmetakaolin − ϕquartz − ϕpores 

The partial volume fraction of phase X, with small characteristic size, 
can then be computed by: 

ϕsmall
X =

ϕX

ϕsmall 

The normalisation factor can be computed for an easily quantifiable 
mineral Y by XRD or by TGA: 

αY =
ρY ϕsmall

Y

wY  

where ρY is the density of solid phase Y, and wY the mass fraction of this 
phase as measured by another method. 

The mass fraction of phase X is then given by: 

Fig. 11. Subresolution detection of ettringite in the LC3 sample at 28 days.  
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wX =
ρXϕsmall

x

αY 

In addition to the error of the estimation of the phase fractions from 
the hypermaps, this method is also sensitive to the error made during the 
XRD analysis and the estimation of the density. In this example, we 
choose calcite as the normalisation phase, as it is present in large 
quantity and it can be measured by XRD or by TGA. Its density is also 
well known. In order to obtain representative estimates of the volume 
fractions, the analysis was done over fields of view larger than the 
feature of interest (here ~300 μm by 200 μm) and with a sufficient 
number of replicates to cover the local heterogeneity of the material 
(here 13 hypermaps, set of parameters F in Table 2). Mass densities were 
obtained from Balonis and Glasser [47]. 

The mass fractions estimated by this method are presented in 
Table 4. The mass fractions obtained for calcite and portlandite by XRD 
and TGA agree very well. The mass fraction of portlandite found by 
image analysis after normalisation is also very close. Although por
tlandite and calcite precipitate very close to each other, and their 
boundaries are not well defined (see Fig. 8), it indicates that our phase 
separation using the sum of oxide works well. 

Due to overlapping peaks, the AFm content cannot be measured 
accurately from TGA, and only the XRD values can be used as compar
ison. The mass fractions obtained by image analysis are higher than the 
XRD values. There are two possible explanations for this. Either the XRD 
underestimate the amount of AFm phases. The AFm peaks are difficult to 
fit accurately, and the choices for the Rietveld analysis are not obvious. 
In addition, some of the AFms might be poorly crystalline. On the other 
hand, the image analysis can also overestimate the AFm content. First, 
the AFm precipitates in large pores in what used to be clinker grains. 
Therefore, they are surrounded by porosity which can be included in 
part in our analysis. Another source of error is the internal porosity of 
these grains. Although these grains are smooth in the OPC case, they 
have a texture in the LC3 case. The densities used are the solid densities 
from the crystal structure. The density that should be used is the 
apparent density, taking into account the internal porosity (due to 
cracked or non compact grains) and the mixed phases. However, this 
value is not available. The impact of this density is important as high
lighted by the difference between assuming hemicarbonate or mono
carbonate as the AFm phase. 

As such, this quantification by image analysis is interesting for 
several reasons: (1) it provides the apparent volume fraction directly, 
and not a mass fraction to be transformed into volume fraction (the 
volume fraction is of interest for validating homogenization models to 
predict the compressive strength); (2) it provides an additional mea
surement to verify/confirm other methods; and (3) it enables estimation 
of volume fraction for amorphous phases that cannot be directly 
measured by XRD-Rietveld, or by TGA due to peak overlapping. If the 
approach is exemplified here for AFm phases, a similar protocol 
considering the scale of particles could be adapted for other hydrates 
and anhydrous phases. 

4.4. Microstructure descriptors 

Describing the microstructure of random heterogeneous porous 
materials is a challenging problem as only a statistical approach can be 
representative [48]. Our phase separation analysis provides binary 
masks representing each phase. From these masks, it is possible to 
compute statistical representations of the microstructure. For example, 
the point-point correlation function, S2, [11,48], or the chord-length 
distribution function [48] can be easily computed in our framework. 
These functions provide information about the volume fraction, the 
particle size distribution, the particle shapes and their distribution in the 
material. This feature is directly available in the graphical interface. 

As an example, Fig. 12 presents a comparison of the S2 correlation 
functions for the portlandite and the AFm phases in the OPC and the LC3 
samples. S2(r) is the probability of finding a phase i at a distance r from a 
random location in the sample. From binary phase masks, it is 
straightforward to compute as described in [48]. By construction, S2(0) 
corresponds to the volume fraction (ϕ), and S2(∞) = S2(0)2 = ϕ2. 
Therefore, to better identify the length scales, Fig. 12 shows S2(r) − S2(0) 
as a function of r. In this view, S2(r) − S2(0) = 0 corresponds to an 
absence of spatial correlation, where the probability of finding the phase 
is only determined by the volume fractions. From these plots, we can see 
that portlandite have similar characteristic lengths in both systems. 
However, it’s volume fraction is lower in the LC3 sample due to the 
pozzolanic reaction. On the other hand, the volume fraction of AFm in 
the LC3 system is higher due to the synergetic reaction with limestone 
[22]. The grains of AFm are also significantly larger in the LC3 system. 

These microstructure descriptors (volume fraction, correlation 
functions, …) can be used to study the effect of the raw materials pro
cessing or curing conditions of the assemblage of phases at different ages 
to optimize the mix design for compressive strength and/or durability 
[49]. 

5. Going further 

5.1. Profiles 

The field of view of a typical map is usually less than a couple of 
hundred micrometers. The typical scale of penetration profiles, relevant 
for are a few centimeters. Therefore, maps taken along the profile of a 
sample can be considered homogeneous (with respect to the durability 
issues). As a consequence, all the different analysis shown in the pre
vious section can be done at different depths in a sample. It can be used 
to study the changes occurring during exposure to environment. For 
examples, we can obtain the chemical composition of the AFm for a 
cement paste sample subjected to an electro-migration test [50]. Specific 
details of the test run are available in [45]. The result of the analysis for 
an OPC sample of 1 cm is presented in Fig. 13. Additional methods (e.g., 
microXRF) can be used to obtain the total chloride concentration. 
Therefore, both the total amount, and the composition of the phases can 
be obtained as a function of specimen depth. In addition, the method 
used to obtain the quantitative volume fractions could be used in such a 
profile to get both the composition and the amount of a specific phase. 
This combination of information is necessary to correctly validate 
reactive transport models without overfitting parameters. 

5.2. Using lower-efficiency EDS detectors 

The maps presented so far were obtained with a high-end EDS de
tector. In practice, detectors with a lower efficiency might be the only 
hardware available. By lower efficiency, we mean a detector with lower 
detection surface, lower sensitivity, higher dead time or any other factor 
that requires a higher exposition time to obtain the same number of 
counts. In this section, we discuss the influence of the detector to un
derstand to what extent information can be obtained from lower quality 
maps. Fig. 15 compares different signals obtained on the same region of 

Table 4 
Mass and volume fraction obtained from 13 small hypermaps and a normal
isation factor computed by XRD or by TGA. Uncertainties for the XRD corre
spond to the standard deviation on 5 scans using the same Rietveld fitting 
process.  

Solid phase (mass%) wXRD 

(mass%) 
wTGA 

(mass%) 
wIA

XRD 
(mass%)  

wIA
TGA 

(vol%)  
ϕX

small 

Calcite 9.7 ± 0.2  9.9  9.7  9.9  10.9 
Portlandite 3.2 ± 0.3  3.3  3.1  3.2  4.2 
AFm (as hemicarbo) 9.8 ± 0.5   12.4  12.7  19.1 
AFm (as 

monocarbonate) 
9.8 ± 0.5   13.6  13.9  19.1  
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interest using two detectors and different instrument parameters as 
described in Table 2 and Section 2.2.2. The set of maps studied until now 
is the set C. Sets C, D and E have been obtained with the same high-end 
EDS detector, while sets A and B have been obtained with a detector 
with a lower surface of detection. Table 5 shows the peak signal-to-noise 
(PSNR) for these maps. The PSNR of a M × N EDS map is estimated from 
the map I, and the denoised map D. The PSNR is defined as: 

PSNR = 10⋅log10

(
1

MSE

)

And the mean squared error (MSE) is defined as 

MSE =
1

MN
∑M

i=1

∑N

j=1
{I(i, j) − D(i , j)}2 

The effect of the parameters is shown in Figs. 14 and 15. A main 
feature is that the absolute values (%Ca, SOX) are a lot more sensitive 
than the ratios (Ca/Si) to detector quality. While the absolute values 
present a clear bias after filtering, the Ca/Si ratio is similar between map 
A and map C. However, the ratio presents a slight bias for the noisiest set 
of hypermaps, set B. This is the main a posteriori justification for the 
selection of phases based on ratios in our general approach: even if the 
maps are quite noisy, the ratios remain a reliable measure [36]. 
Nevertheless, the absolute values provide valuable information for 
microstructure characterisation. For example, the sum of oxide is the 
most reliable method to separate portlandite from limestone. Selecting 
low calcium phases (e.g., quartz) on absolute chemical values is also 
more reliable than selecting it on chemical ratios (e.g., Si/Ca) due to the 
division by small values. 

5.3. Filtering at the spectrum level 

In this section, we present a method to improve the signal-to-noise 
ratio. The main source of noise is the low electron counts during the 
map quantification. The filtering process reduces the error, but it does 

Fig. 12. S2 correlation function for (a) the portlandite and (b) the AFm phase in a OPC and a LC3 samples.  

Fig. 13. Chemical composition of the AFm in a OPC sample subjected to an 
electromigration test. 

Table 5 
Peak signal-to-noise ratio (dB) for various maps of the LC3 sample according the 
parameters.  

Map Ca Al S 

A  22.9  33.0  40.2 
B  19.5  28.8  36.2 
C  29.6  35.1  41.4 
D  26.4  32.8  39.1 
E  28.8  34.9  42.6  
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not address the root cause of the problem. A better method would be to 
filter the hyperspectral image directly. This is unfortunately often 
restricted by the proprietary format used by the microscope manufac
turer, and the difficulty of implementing the quantification algorithm 
[51]. However, to demonstrate the potential of this method, we used a 
simpler yet effective approach. For the set A of hypermaps, the co
ordinates of representative points were first obtained. The spectrum of 

the pixels of a 5 × 5 square centered at the representative points was 
then summed. Then, the reconstructed spectrums were quantified using 
the same quantification algorithm as used for the hypermaps. The results 
are shown as the red dashed curve in Fig. 15. It can be observed that the 
Ca/Si ratio is similar, but the bias on the Ca amount has been greatly 
corrected. The main limitation of such an approach here was the time 
needed to quantify the spectrums as the analysis could not be fully 

Fig. 14. Comparisons of the Ca, and the Ca/Si maps (after denoising) for the set B (high noise) and the set C (low noise) of hypermaps.  

Fig. 15. Comparison of EDS hypermaps of the same region in the same sample with various signal-to-noise ratio. All curves were obtained from the filtered maps. 
The red dashed curve is obtained from filtered spectrums (see Section 5.3). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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automated. Therefore, only one example is presented. The reconstructed 
spectrums where created with our framework and hyperspy [52] to 
extract the data from the raw hypermap. With an automated analysis, it 
would be possible to only average spectrums in the regions found by the 
segmentation of the composite image, providing a means to obtain high- 
quality quantitative data from lower-end detectors. 

5.4. Possible extension to machine learning 

To simplify the analysis, it is natural to think about using one of the 
many machine learning algorithms developed to solve the classification 
problem. Our method to extract the representative points can be used as 
a pre-processing step for these algorithms. A manual classification 
approach was preferred for the reasons highlighted in the introduction. 

As outlined in the article, the challenge is even greater if we realize 
that mixtures with three or more phases can exist, and especially, mix
tures with phases that cannot be observed directly at the scale of the 
SEM interaction volume (e.g. ettringite). In addition, the main phase of 
cement paste, C-(A-)S-H, is very sensitive to the formulation. It is not 
possible to define a boundary that will work for every formulation of 
cement paste. As a consequence, it means that a black-box classification 
model would have to be re-calibrated for every formulation, curing 
conditions, and even, age of the sample. However, even if the chemistry 
of cement paste is intrinsically complicated, it is now possible to get 
reasonable predictions. Therefore, by leveraging domain knowledge, it 
is possible to obtain an a-priori distribution of phases. As emphasized by 
Munch et al. [16], this domain knowledge is important to obtain good 
results with machine learning approaches. Rather than adapting 
machine-learning to include domain knowledge, we chose to by-pass it 
to only use domain knowledge. The results presented in this paper 
should highlight the practicality of our choice. 

In the opinion of the authors, the next step to improve machine 
learning methods would be to explicitly handle mixtures and to use the 
morphology information of the BSE image. For example, particle 
detection might help define clearer phase boundaries. It is relatively 
easy for large and clear particles such as the clinker grains, but it is a 
much more complex challenge for the small hydrate particles. 
Improving the phase separation is a worthy research topic. As an open- 
source Python framework, our tool is a good start as it can be easily 
extended with well-established machine learning framework such as 
scikit-learn [53]. 

6. Concluding remarks 

A new framework to analyse quantified SEM-EDS hypermaps of 
cementitious materials is presented in this paper. Using superpixel 
subsampling of a composite map, representative points are extracted 
from quantified chemical maps. Ratio plots representations are then 
used to manually classify the points and create phase masks. The manual 
approach can be used to adapt the classification to the scientific problem 
at hand. Pure chemical composition, mixture identification or quanti
tative volume fractions can all be obtained. The framework is flexible 
and user-friendly, as it is implemented as a plugin to Glue, a multi- 
dimensional, linked data exploration graphical interface [20,21]. This 
interface can be used by the user to select phases in the ratio plots and to 
observe directly the corresponding phase masks on the BSE image. 
Quantitative analysis tools are also implemented in the interface. 
Furthermore, additional analysis can be easily added to our open source 
Python framework. In particular, other approaches could be added to 
refine the phase separation. 

Several demonstrations of the abilities of our framework are pre
sented. In particular, we analysed the AFm phases. We obtain their 
composition before and after exposure to chloride. We also measured 
their volume, and mass fractions, as well as their point to point corre
lation functions. This analysis can also be done along the depth of a 
sample to obtain profiles of phase content and/or phase chemical 

composition. This information is necessary to correctly validate reactive 
transport models of chloride ingress, as it allows fixing the chemistry 
model. We also presented how to obtain information of the phases below 
the resolution of the EDS analysis. Finally, the effect of noisy maps was 
discussed. Due to our ratio plots approach, good phase separation can 
still be obtained even if absolute values are not reliable. An additional 
method to refine the signal-to-noise ratio is proposed. 

Future work will focus on using the morphological information to 
improve further the signal-to-noise ratio as well as extending the 
quantitative analyses of the phase maps with additional application- 
specific analysis tools. 
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Appendix A 

A.1. Code download and installation 

The code is available in the python package index (https://pypi. 
org/project/edxia/), the Anaconda distribution (https://anaconda. 
org/specmicp/edxia), zenodo [30], or openly available git repository 
(https://bitbucket.org/specmicp/edxia/src/master/). Installation in
structions and documentations is available with the code, online 
(https://edxia.readthedocs.io/en/latest/) or in [31] for the user friendly 
interface. The main datasets (set C in Table 2) analysed in this study are 
available [54] to test the interface. 
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