A framework to automate the design of digitally-fabricated timber plate structures
The current study uses knowledge from digital architecture, computer science, engineering informatics, and structural engineering to formulate an algorithmic framework for integrated Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) of Integrally-Attached Timber Plate (IATP) structures. The algorithm is designed to take the CAD 3D geometry of an IATP structure as input and automates the construction and analysis of the corresponding CAE model using a macroscopic element, which is an alternative to continuum Finite Element (FE) models. Each component of the macro model is assigned a unique tag that is linked to the relevant geometric and structural parameters. The CAE model integrity is maintained through the use of the common data model (CDM) concept and object-oriented programming. The relevant algorithms are implemented in Rhinoceros 3D using RhinoCommon, a .NET software development kit. Once the CAE macro model is generated, it is introduced to the OpenSees computational platform for structural analysis. The algorithmic framework is demonstrated using two case structures: a prefabricated timber beam with standard geometry and a free-form timber plate arch. The results are verified with measurements from physical experiments and FE models, where the time needed to convert thousands of CAD assemblies to the corresponding CAE models for response simulation is considerably reduced.
1-s2.0-S0045794920302595-main-1.pdf
Publisher's version
openaccess
CC BY
9.52 MB
Adobe PDF
4527337176852bfd958596bda0d31244