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Abstract  

Originally discovered in condensed matter systems, topological insulators (TIs) have been 

ubiquitously extended to various fields of classical wave physics including photonics, phononics, 

acoustics, mechanics, and microwaves. In the bulk, like any other insulator, TIs prohibit energy 

propagation. On their surface, however, they support one-way propagative states with inherent 

protection against certain types of disorders and defects. In this work, I explore the possibility of 

performing advanced signal processing and analog computing tasks based on the boundary states of 

wave topological insulators. By providing numerical and experimental verifications, I demonstrate 

that such kind of computing scheme, referred to as topological analog signal processing, provides 

one with strong robustness against imperfection and disorder. It is in sharp contrast to conventional 

signal processors, which are often very sensitive to geometrical tolerances. Going a step further, I 

even demonstrate that, in some topological systems with specific parameter ranges, the harmful 

effects of the disorder can be turned into an asset so as trigger functionalities of interest. These 

findings open up large perspectives for a new generation of all-optical signal processors that are not 

only fast and power-efficient but also offer strong levels of reliability and robustness to disorder. 

Keywords 

Topological insulator, Metamaterials, Analog signal processing, Fano resonances, Anderson 

localization   
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Résumé 

Découvert à l'origine dans les systèmes de matière condensée, les isolants topologiques (TI) ont été 

étendus à divers domaines de la physique des ondes classiques, notamment la photonique, la 

phononique, l'acoustique, la mécanique et les micro-ondes. A l’intérieur, comme tout autre isolant, 

les TI présentent une résistance excessivement élevée à la propagation d’énergie ondulatoire, 

interdisant la transmission d’énergie. A leur périphérie externe, cependant, ils supportent des modes 

de bords topologiques dont l’existence est robuste à certains types d’imperfections, et à des niveaux 

modérés de désordre. Dans cette thèse, j'étudie la possibilité inexplorée d'effectuer des tâches 

avancées de traitement du signal et de calcul analogique en utilisant les états de bord des isolants 

topologiques. En s’appuyant sur des vérifications numériques et expérimentales, je démontre que ce 

type d’approche, appelé traitement topologique de signaux analogiques, offre une forte robustesse 

contre les imperfections géométriques et le désordre. Cela contraste fortement avec les systèmes 

analogiques et les processeurs de signaux conventionnels, qui sont souvent très sensibles aux 

tolérances géométriques. Allant plus loin, je démontre même que, dans certains systèmes 

topologiques, les effets habituellement nocifs du désordre peuvent se transformer en un atout pour 

déclencher des fonctionnalités d'intérêt. Ces découvertes ouvrent de grandes perspectives pour une 

nouvelle génération de processeurs de signaux entièrement analogiques qui non seulement 

effectuent des tâches de traitement du signal ultrarapides, à haut débit et basse puissance, mais 

offrent également de hauts niveaux de fiabilité et de robustesse au désordre. 
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cutoff frequency of 𝜋𝑐𝑠/2ℎ can happen to coexist within the radiation continuum 

of the waveguide while remaining perfectly bounded to the obstacle [196]…….76 

Figure 4.3: Independent topological subspaces in an acoustic waveguide. a, Band 

structure of an acoustic parallel plate waveguide (with a plate separation of 10 cm) 

containing obstructing cylinders (with a diameter of 5 cm) placed on its center 

line, arranged in aperiodic lattice. The red band is the dispersion of an odd-

symmetric eigenmode (originating from evanescently coupled symmetry-

protected bound states in the continuum), while the blue bands correspond to 

regular sonic crystal bands with even mode symmetry. The gray area represents 
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the empty waveguide continuum. b, Profiles of the odd and even modes at specific 

Bloch wave numbers [196]…………………………………………..…………..77 

Figure 4.4: Effect of scaling the lattice constant on the band structure of the 

system under study. a, Band structure of the system when the lattice constant is 

assumed to be 𝑎 = 16.3 𝑐𝑚. The waveguide continuum is marked with the grey 

area, b,c, Same as panel a except that the lattice constant is increased to 1.2𝑎 and 

1.4𝑎, respectively. The blue dispersion bands corresponding to the even 

eigenstates are moved to the lower frequency range, whereas the position of the 

red band associated with the BIC mode is not affected [196]……………..……..78 

Figure 4.5: a, Band structure of the crystal when considering the extended unit cell 

(which includes two periods), and reducing the distance between the two obstacles 

with respect to the folded case. b, Same as panel (a) except that the distance 

between the obstacles is increased [196]…………………………………......…..79 

Figure 4.6: Field profile of the edge states formed at the interface between the two 

insulators. a, Field profile of the even edge mode originating from the radiation 

modes, b, Field profile of the odd edge mode stemming from the BIC mode. 

Although both even and odd edge modes are bounded to the interface, only the 

even edge mode offers a finite resonance linewidth as the odd edge mode is 

completely decoupled from the radiation continuum due to its different symmetry 

[196]……………………………………………………………………………...80 

Figure 4.7: Full-wave numerical demonstration of topologically protected Fano 

resonances. a, Four unit cells from the trivial lattice are connected to four cells 

from the nontrivial system. By sending a plane wave from the left, only the even 

edge mode can be excited (the red dashed line), leading to only one resonance in 

the transmission spectrum. This is no longer the case if the obstacles are slightly 

shifted away from the centerline, allowing even and odd modes to interact, and 

inducing a topological Fano resonance (the solid blue line). b, Transmission 

spectrum of the waveguide when the obstacles are randomly moved from their 

original places. The Fano line shape is preserved due to topology [196]………..81 

Figure 4.8: Full-wave numerical demonstration of the excessive sensitivity of 

trivial Fano resonances. The figure repeats the analysis of Fig. 4.7, but for a trivial 

Fano resonance induced by defect tunneling through a Bragg band-gap, a, 

Transmission spectrum of the system when no disorder is present in the system, b, 

Transmission spectrum of the system when some disorder is introduced to the 

system [196]…….............................................................................................…..82 

Figure 4.9: Evolution of the transmission spectrum versus disorder strength for 

topological Fano resonance (a) and trivial Fano resonance (b). The results of the 

figure broadly demonstrate the great advantage of topological Fano resonances 

over trivial ones [196]……..............................................................................…..82 

Figure 4.10: Experimental validation of topological Fano resonances. a, Nylon 

black rods are embedded inside a transparent square acoustic waveguide, 

implementing a scattering experiment analogous to Fig. 4.8a. The structure 

supports a topological Fano resonance around the frequency 𝑓0 = 2.3 𝑘𝐻𝑧 as 
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observed in the bottom panel. b, The obstructing rods are randomly moved away 

from their original positions, introducing position disorder. The Fano line shape is 

maintained. c,d, Same as a,b for a trivial Fano resonance induced when coupling a 

topologically trivial Bragg defect mode and a BIC [196]……........................…..83 

Figure 4.11: Electromagnetic bound states in the continuum a, A microwave 

parallel plate waveguide containing a single silicon rod placed on the centerline is 

considered. b, Profile of the corresponding bound state forming within the 

radiation continuum of the waveguide [196]……...........................................…..85 

Figure 4.12: Inducing independent topological subspaces in a microwave 

waveguide, a, We consider aperiodic lattice of silicon rods inside the waveguide. 

The BIC (odd) mode has a low-dispersive behavior (the red band), while the 

radiation (even) modes exhibit a stronger frequency dispersion (blue bands). b, 

Profile of the even and odd eigenstates at certain Bloch wavenumbers [196]...... 86 

Figure 4.13: Electromagnetic topological Fano resonances: a, Ideal case without 

position disorder, for a system of dielectric rods in a parallel plate waveguide. A 

topological Fano resonance is observed. b, Same as panel a) but for in the 

presence of position disorder. The presence and shape of the Fano resonance is 

protected against disorder by the topology of the bulk insulators [196]……........87 

Figure 5.1: Disordered version of Su-Schrieffer–Heeger model (SSH) model, a, 

Evolution of the corresponding (averaged) transmission spectrum versus disorder 

strength. Starting from an ordinary trivial insulator in the clean limit (red region), 

the system switches into a topological insulator in the regime 𝐷1 < 𝐷𝑠 < 𝐷2 (TAI 

regime), characterized by a zero-energy edge state which manifests itself as a 

resonance peak in the spectrum. For extremely high disorder intensities (yellow 

region), the transportation is arrested by Anderson localization. b, Averaged 

transmission coefficient of the system for several representative disorder 

strengths. In the TAI regime (green area), the spectrum exhibits a Lorentzian 

profile near 𝑓0, corresponding to the transfer function of a first order differential 

equation [213]…………..………………………………………………………..92 

Figure 5.2: Demonstration of disorder-induced equation solving. We suppose that 

the system is excited with a Gaussian-modulated sinusoidal signal and calculate 

(a) the corresponding transmission coefficient (𝑇) and (b) output time signal 

(𝑓(𝑡)), when gradually increasing the disorder strength from zero to the regime of 

TAI. It is seen that disorder acts like an actuator in our system, triggering the 

proposed computing system to return the exact solution of the ODE that is aimed 

at solving (blue dashed line) [213]…………………… ……..…………………..93 

Figure 5.3: Numerical demonstration of topological random computing based on 

acoustic signals, a, Evolution of the (averaged) transmission coefficient of the 

phononic crystal as the strength of disorder is increased. The emergence of a 

disorder-induced zero-energy state is clear in the disorder-averaged transmission 

spectrum (oval region), allowing one to perform self-induced analog computing. 

b,c, Disorder-averaged transmission spectrum and the corresponding transmitted 

field, when the disordered-free system is excited with a Gaussian-type time-
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modulated signal. d,e, Same as b and c except that the system is sufficiently 

disordered, so that it finds itself in the TAI regime [213]………………....……..94 

Figure 5.4: Numerical demonstration of topological random computing for an 

arbitrarily shaped signal. a, Disorder-averaged transmission coefficient of the 

proposed acoustic random computer versus disorder, b, We suppose that the 

system is excited with an irregularly shaped signal shown in the inset, c, 

Corresponding output signal in the disorder-free limit, being far from the solution 

of the target ODE aimed at solving. d, Corresponding output in the regime of 

topological Anderson phase [213]…………….……………. …………………..95 

Figure 5.5: Experimental setup used to demonstrate topological random 

computers, a, The fabricated sample consisting of a rectangular pipe, taking the 

role of the acoustic waveguide, and a set of nylon cast plastic rods embedded 

inside the waveguide. b, In addition to the fabricated sample, the experimental 

setup consists of an acoustic Quattro Data Physics analyzer, three ICP® 

microphones, a loudspeaker and an acoustic termination, made from appropriately 

tampered foam [213]…………………………………. ………………………....96 

Figure 5.6: Experimental demonstration of topological random computers, a, 

Evolution of the (averaged) transmission coefficient of the phononic crystal as the 

strength of disorder is increased, obtained via 3D full-wave numerical 

simulations. The emergence of a disorder-induced zero-energy state is clear in the 

disorder-averaged transmission spectrum (oval region), allowing one to perform 

self-induced analog computing. b,c, Disorder-averaged transmission spectrum and 

the corresponding transmitted field (numerical simulations), when the disordered-

free system is excited with a Gaussian-type time-modulated signal. d,e, Same as b 

and c except that the system is sufficiently disordered, so that it finds itself in the 

TAI regime [213]……………………………. …………….…………………....98 

Figure 5.7: Experimental demonstration of topological random computing for an 

arbitrarily shaped signal. a, Disorder-averaged transmission coefficient of the 

proposed acoustic random computer versus disorder, b, The system is excited with 

an irregularly shaped signal shown in the inset, c, Corresponding output signal in 

the disorder-free limit, being far from the solution of the target ODE aimed at 

solving. d, The Corresponding output in the regime of topological Anderson phase 

[213]…………………………………………………………………………….. 99 

Figure 5.8: Disorder-induced topological image processing, a, (Top) Image of the 

Eifel tower, considered for processing, (Bottom) The original image is encrypted 

with the inverse of the target transfer function 𝐻(𝑓). The encrypted image is then 

fed into the input of the proposed topological random computer. b, Corresponding 

output images as the level of disorder is gradually increased. c, Corresponding 

experimental results. The results, in agreement with numerical simulations, 

demonstrate the intriguing possibility of decoding the encrypted image by 

providing our proposed computing system with more and more disorder 

[213]…………………………………………………………………………….100  
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The figure repeats the analysis of Fig. 5.8, for a different test image taken on our 

campus. The results are obtained based on the measured (experimental) 

transmission spectrum [213]…………………………………………………....101 

Figure 5.10: Demonstration of topological random computing in electromagnetics, 

I consider a photonic crystal quite similar to the phononic crystal shown in Fig. 

62, consisting of silicon rods arranged inside a conventional metallic waveguide. 

In the clean limit, the system is designed to be topologically trivial. Yet, 

introducing disorder to it enables topological phase transition, leading to 

topological Anderson insulator phase. a, Disorder-averaged transmitted signal, 

when the system is excited with a Gaussian-type time modulated signal and only 
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 Introduction Chapter 1

 

1.1 Analog signal processing  

Nowadays, digital computers are ubiquitously used for carrying out a large variety of 

computational functionalities, from relatively simple to highly complex ones. Such general-purpose 

functionality, however, comes with the restriction of high-power consumption, rendering digital 

computers expensive for performing simple operations such as differentiation or integration [ 1]. In 

addition, the approach to employ digital techniques for computation is often accompanied with a 

time delay between the input and the output that grows exponentially as the complexity of the 

computational task is increased [ 1]. For these reasons, researchers have recently tried to revisit the 

old idea of analog computing. An analog computer leverages the continuously changeable aspects 

of a physical phenomenon, such as the current of an electrical circuit or the motion of a mechanical 

aid, to solve the computational problem [ 2]. Such kinds of analog computing systems are much 

simpler than their digital versions. Yet, their slow speed and bulky structure hinder their 

applicability in modern systems, where speed and miniaturization are sought. In 2015, however, an 

idea [ 3] was proposed to perform ultra-fast analog computation at scales much smaller than the 

wavelength. The idea was to leverage the continuous aspects of waves (in particular propagating 

optical fields) interacting with artificial structures (called metamaterials [ 4]) to perform the desired 

computational operation. The ultra-fast character of optical waves enables an almost instantaneous 

response, leading to an ultra-high computational speed for these kinds of computational systems. In 

addition, thanks to their analog nature, such types of computing structures are less expensive than  
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Figure 1.1: Analog computing based on Green’s function approach. Consider a multilayer of 

dielectrics. By changing the refractive indices and thicknesses of the dielectric layers, one may 

implement the Green’s function 𝑔(𝑦), associated with a desired operator [ 3].  

 

digital signal processors. These salient features established wave-based computing systems as 

cornerstones for performing special-purpose signal processing tasks such as image processing and 

equation solving.  

Following the pioneering work of [ 3], many proposals were proposed to perform wave-

based computational operations. In a broad sense, the proposed approaches for wave-based 

computing can be classified into two types. The first approach (known as Green's function method) 

realizes the functionality of interest in real space, by engineering the parameters of the system such 

that its Green's function matches the one of the desired operator. The alternative strategy, on the 

other hand, realizes the operator of choice in the Fourier domain, by tailoring the spectral 

characteristics of the input signal using a meta-structure. In the following, I explain both of these 

approaches in detail.  

1.2 Green’s function approach  

Consider an arbitrary structure, for example, a multilayer of dielectrics with varying 

refractive indices and thicknesses (Figure. 1.1). Suppose that the structure is interacting with an 

irregularly shaped optical field 𝑓(𝑦). Our goal is to apply a specific mathematical operation, such as 

differentiation, to 𝑓(𝑦). To this end, an intuitive approach is to engineer the refractive indices and 

thicknesses of the dielectric layers such that the Green's function of the system becomes identical 
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Figure 1.2: Analog spatial differentiator based on Green’s function approach, a, A TM-polarized 

incident field impinges on the interface between a dielectric and free space at the Brewster angle. b, 

The corresponding reflected field is nothing but the spatial derivative of the input signal [ 5].    

 

 to that of the operator of choice, which is for example 𝐺(𝑘𝑦) = 𝑖𝑘𝑦 for the derivative operator 

(∂ ∂y⁄ ). Such an approach is referred to as Green’s function (GF) approach in the literature [ 3]. This 

appellation comes from the fact the GF technique realizes the intended Green’ function directly in 

real space (as opposed to the metasurface approach that realizes the desired operator in the Fourier 

domain).    

I now discuss several representative examples of wave-based computing systems based on 

GF approach. Consider the configuration shown in Fig 1.2a [ 5], consisting of an interface between 

two dielectrics with different refractive indices (𝑛1 = 1, and 𝑛2 = 3.4). Suppose that a TM-

polarized Gaussian incident field impinges on the interface between the two dielectrics. The 

incident angle is assumed to be 𝜃𝑏 = 𝑡𝑎𝑛
−1(𝑛2 𝑛1⁄ ). At this incident angle, known as Brewster 

angle, the reflection coefficient of the structure vanishes. Near 𝜃𝑏, by employing a simple Taylor 

expansion, one can approximate the reflection coefficient of the interface with a linear function of 

the form 𝑅(𝑘𝑦) = 𝐴𝑘𝑦, with 𝐴 being an arbitrary constant. Interestingly, 𝑅(𝑘𝑦) is quite similar to 

the Green's function of the ideal differentiator 𝐺(𝑘𝑦) = 𝑖𝑘𝑦. This implies that, for those signals 

impinging the structure at the Brewster angle, the corresponding reflected field is nothing but the 

derivative of the incident field. This effect is demonstrated in the inset of Fig. 1.2b, in which I have  
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Figure 1.3: Analog spatial integration based on Green’s function approach, a, An incident field 

excites the guided mode of a dielectric slab from the far field. b, The corresponding transmitted 

field is nothing but the spatial integration of the input signal [ 6].    

 

reported the reflected field corresponding to a Gaussian-type incident signal. It is observed that the 

reflected field has a Gaussian-derivative profile, constituting an evidence of the fact that the 

interface indeed acts as an optical spatial differentiator.  

Figure 1.3a represents another example [ 6] of a wave-based analog computing based on GF 

method. Consider a well-known dielectric slab waveguide, consisting of a core layer with the 

refractive index of 𝑛2 = 3.4, and cladding layers having refractive indices of 𝑛1 = 1. A prism 

coupler is used to excite the structure from the far-field. The incident angle is chosen such that the 

momentum of the incoming beam becomes equal to the one of the guided mode of the dielectric 

slab waveguide, leading to a resonance peak in the transmission spectrum. Near this resonance, 

assuming that the incoming field has no DC component, we can approximate the transmission 

coefficient of the structure using the relation 𝑇(𝑘𝑦) = 𝐴 𝑘𝑦⁄ , in which 𝐴 is an arbitrary constant. 

The fact that the transmission coefficient of the structure is identical to the Green's function of the 

ideal integrator (𝐺(𝑘𝑦) = 1/𝑖𝑘𝑦) implies that, for signals having no zero Fourier component, the 

structure under study functions as an analog integrator. This is confirmed in Figure 1.3b, in which I 

have considered a Gaussian derivative signal as the incident wave and calculated the corresponding  
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Figure 1.4: Acoustic spatial differentiator based on Green’s function approach, a, An incident field 

impinges a half-wavelength high-index acoustic metamaterial, b, Corresponding transmitted field, 

following the spatial derivative of the incident signal [ 7].    

 

 

signal. It is observed that the transmitted field has indeed a Gaussian distribution, as expected.  

The idea of wave-based computing can also be implemented in other classical platforms 

such as acoustics. In the following, I demonstrate an acoustic analog computer, based on GF 

method, calculating the spatial derivative of the incident fields. The structure, shown in Fig. 1.4a, is 

composed of a metamaterial built from cross-shaped pipes, arranged at subwavelength scale. The 

meta-structure effectively acts as a high-index medium for acoustic waves, confining sound and 

guiding it.  The length of the metamaterial (𝐿) is designed to be half of the wavelength of the 

corresponding guided mode. As a result, the crystal behaves like a half-wavelength transmission 

line, allowing perfect matching between the input and the output signals. This leads to a dip (zero) 

in the reflection spectrum of the structure. Near this zero, the reflection spectrum of the structure 

can be approximated with a linear function, following the Green’s function of a first order 

differentiator. As such, for those signals impinging the structure at this angle, the structure under 

investigation behaves like an analog spatial differentiator.  In order to demonstrate this prediction, I 

calculated the reflected signal corresponding to a Gaussian incident pressure field and compared it 

with the spatial derivative of the incident signal (Fig. 1.4b).  
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Figure 1.5: Field profiles of the incident pressure field (𝑃𝑖(𝑥)) and reflected field from the proposed 

acoustic spatial differentiator [ 7].        

 

 

It is observed that the transmitted field is in perfect agreement with the spatial differentiation of the 

incident signal. Figure 1.5 illustrates the field profiles of the incident pressure field and the 

corresponding reflected field.  

It should be noted that it is possible to perform more complex operations based on the 

acoustic spatial differentiator. Consider, for example, realization of the second order differentiation, 

an operator which is diversely found in important partial differential equations. There is a very 

simple, straightforward approach to realize a second order differentiator using the first order 

differentiator demonstrated here.  One only needs to cascade two half-wavelength acoustic slab 

waveguides, each of which differentiates the incoming pressure field one time. The cascading 

process is conceptually represented in Figure 1.6a: an incident pressure field with the spatial 

distribution 𝑃𝑖 strikes the boundary of a half-wavelength slab waveguide. Then, the resulting 

reflected field 𝑃𝑟1, which is in fact the spatial derivate of 𝑃𝑖, impinges another half-wavelength slab 

waveguide. The final pressure field 𝑃𝑟2, reflecting back from the second slab will therefore be the 

second order derivative of 𝑃𝑟1. To examine the performance of the corresponding second order 

differentiator, let us assume again that the input field has a Gaussian field distribution. The 

corresponding output field 𝑃𝑟2 together with the exact second order derivative of the input field are 

https://iopscience.iop.org/article/10.1088/1367-2630/aacba1/meta#njpaacba1f4
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Figure 1.6: Demonstration of an acoustic computing system carrying out second order 

differentiation. a, Two half-wavelength slab waveguides are cascaded so as to realize an acoustic 

second order differentiator. b, Output signal of the computing system when the incoming field has a 

Gaussian-like distribution. The output field is in perfect agreement with the second order derivative 

of the incident beam. c, Field profile of the incident and reflected fields [ 7]. 

 

reported in Figure 1.6b, confirming the proper functioning of the system. Further insight into the 

computation process can be obtained by looking at the calculated field profile illustrated in the inset 

of Figure 1.6c. It should be noted that, in principle, cascading several differentiators reduces the 

amplitude of the resulting output drastically. This is because the differentiators work near the zero 

of reflection coefficient. Yet, the proposed cascading approach provides a straightforward and fully 

passive wavy to realize higher order operators.  

The high-index acoustic metamaterials discussed previously can also be used as an analog 

integrator. Insets of Fig. 1.7 illustrate such a possibility, in which the prism coupling technique has 

been used to excite the guided mode of the high-index metamaterial. The excitation of this mode 

leads to a peak in the transmission spectrum of the configuration.  
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Figure 1.7: Acoustic spatial integrator based on Green’s function approach, a, An incident field 

impinges on a half-wave-length high-index acoustic metamaterial, b, Corresponding transmitted 

field, following the spatial integration of the incident signal [ 7].   

 

Near the resonance peak, the transmission spectrum of the system can be approximated with 

the Green’s function of an ideal integrator, provided that the input signal has no DC component. As 

a result, the structure under analysis effectively behaves like an analog integrator. This is 

demonstrated in Figure 1.7b, in which I have reported the transmitted signal corresponding to a 

Gaussian derivative incident pressure field. It is seen that the transmitted field is indeed the 

integration of the incident signal, namely a Gaussian pulse.      

1.3 Metasurface (MS) approach  

Although GF method is a straightforward paradigm for realizing specific operators such as 

differentiation or integration, it does not provide a generic platform for carrying out arbitrary 

complex operations. The alternative strategy, the metasurface (MS) approach [ 4], on the other hand, 

enables realization of a wider range of operators. Fig. 1.8a shows the block diagram of an analog 

computing system based on MS technique. The system includes three sub-blocks: two graded index 

lenses, performing Fourier and inverse Fourier transforms, and a properly designed metasurface 

(MS) realizing the Green’s function of the desired operator in the Fourier domain. The metasurface 

is composed of three sub-layers made from two alternating materials, namely silicon (Si) and AZO 

with properly designed inhomogeneous distribution of attenuation. The metasurface provides one 

with full control over phase and amplitude of the transmitted field, allowing one to realize an 
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arbitrary operator of choice. Figure 1.8b, as an instance, demonstrates the possibility of performing 

first order differentiator by appropriately tailoring the metasurface parameters.  

 

Figure 1.8: Analog computing based on metasurface approach, a, An optical metasurface designed 

to perform spatial derivative of the incident fields, b, Demonstration of the adequate functioning of 

the differentiator by exciting the differentiator with a signal having a Gaussian derivative 

distribution. As observed, the transmitted signal is the spatial derivative of the incident wave [ 3].    

 

In this figure, a Gaussian derivative input signal is used to test the behavior of the differentiator. 

Inspecting the profile of the corresponding transmitted signal, one validates the proper functioning 

of the differentiator.    

The metasurface approach has been employed in different platforms for performing analog 

computing. In plasmonics, for instance, Pors, et. al [ 8] proposed to implement differentiation and 

integration based on a plasmonic meta-reflect array consisting of silicon nano-bricks arranged on a 

silica layer (spacer). The space layer was placed on an optically thick metallic film (silver). The 

structure, shown in the inset of Fig. 1.9a, was illuminated by a circularly polarized light. By varying 

the sizes of the nano-bricks (𝐿𝑥 and 𝐿𝑦 parameters), the amplitude and the phase of the 

corresponding reflected field could be manipulated independently, as observed in the inset of Fig. 

1.9a. This enables realization of arbitrary operators, ranging from differentiation to integration and 

convolution.  
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Figure 1.9: Analog computing based on the metasurface approach, a, A plasmonic optical 

metasurface, consisting of silver plates placed in top of a silicon dioxide substrate [ 8]. The 

metasurface provides one with a large control over both phase and amplitude of the transmitted 

field, enabling analog computation. b, An analog optical computer based on dielectric metasurface, 

offering high efficiencies [ 9], c, A reconfigurable analog optical computer based on a graphene 

meta-structure [ 11].  d,  A single pixel of an acoustic metasurface, composed of three tapered 

labyrinthine components with varying spiral radians, performing analog signal processing [ 12].  

 

 

Despite its applicability, the plasmonic computing system described above suffers from high 

absorption and low polarization conversion efficiency. In [ 9], Chizari, et. al circumvented these 

restrictions by proposing to perform computation based on a dielectric meta-reflective array, 

consisting of silicon nano-particles placed on top of a space layer (Figure 1.9b). Similar to the 

plasmonic case, by changing the width and lengths of the silicon nano-bricks, the metasurface can 

be manipulated to realize the Green’s function of an arbitrary operator. As opposed to the plasmonic 

case, however, the structure provides much higher efficiencies. It is mainly due to its silicon-based 

inclusions that are almost lossless in the optical regime.    
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Both plasmonic and dielectric computing systems discussed share a common restriction. 

They are capable of performing “only one” specific functionality, depending on the metasurface 

design. The recent advances in the field of graphene physics [ 10], however, suggest a solution to 

tackle this restriction. In [ 11], Abdollahramezani, et. al. demonstrated the possibility of achieving a 

reconfigurable analog computing system by using a metasurface of graphene nano-ribbons with 

varying chemical potentials (Fig. 1.9c). By properly engineering 𝜇𝑖𝑛 and 𝜇𝑜𝑢𝑡, a full control over 

both transmission amplitude and phase can be achieved, enabling realization of arbitrary operations 

in a fully dynamic manner.  

Finally I note that the metasurface approach has also been implemented in acoustics to 

perform analog computational tasks. In [ 12], for instance Zuo. et. al demonstrated the possibility of 

performing mathematical operations based on a layered labyrinthine metasurface composed of three 

tapered labyrinthine components with varying spiral radians, enabling a full control over the phase 

and amplitude of the transmitted field. The metasurface structure is represented in Fig. 1.9d.   

1.4 Applications  

In this section, I describe two important application areas of wave-based analog computing 

systems, namely equation solving and image processing.  

Equation solving: Most physical systems can be described by means of a system of differential or 

integral equations. Wave-based analog computers represent an ideal platform for solving such kinds 

of equations with ultra-high speeds, allowing us to unravel the behavior of the system very quickly. 

In order to indicate how waves can be leveraged for solving an equation, let us consider a simple 

resonator, shown in Fig. 1.10a. According to the coupled mode theory, the transfer function of the 

resonator can be approximated with  

𝐻(𝑓) =
𝐴

𝑗(𝑓 − 𝑓0) + 𝑓0/2𝑄
                                                                                                                         (1.1) 
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Figure 1.10: Solving mathematical operation based on wave-based analog computers, a, Equation 

solving based on a resonator possessing a Lorentzian spectral line shape. The transfer function of 

the resonator corresponds to a first order ODE in time domain. b, An instance of an analog equation 

solver based on the resonance tunneling through the Bragg band gap of a phononic crystal [ 172]. c, 

An instance of an analog equation solver based on the resonance of a micro-ring resonator, shown 

in the inset [ 13]. d, Measured output signal (yellow curve) of the mirroring resonator, corresponding 

to a Gaussian input pulse (red curve), compared with the ideal waveform (black curve). e, An 

inverse design metamaterial that solves integral equation. The metamaterial is composed of only 

two materials, air and low-loss polystyrene. f, Fabricated prototype of the metasurface of panel e 

[ 14]. 

 

where I have used the time harmonic convention exp (𝑗2𝜋𝑓𝑡), 𝐴 is an arbitrary constant, and 𝑄 is 

the quality factor of the resonance. Now, if we consider a source term 𝑔̂(𝑡) of the form 𝑔̂(𝑡) =

𝑔(𝑡) cos 2𝜋𝑓0𝑡, its relationship with the output 𝑓(𝑡) = 𝑓(𝑡) cos 2𝜋𝑓0𝑡 can be obtained via inverse 

Fourier transform of the transfer function (TF)  of Eq. 1.1, leading to a first-order differential 

equation 𝑓′(𝑡) + 𝛼𝑓(𝑡) = 𝛽𝑔(𝑡), with 𝛼 = 𝜋𝑓0/𝑄 and 𝛽 = 2𝜋𝐴. What this simple analysis reveals 

is that any resonator, like the photonic Bragg crystal represented in Fig. 1.10b, can be viewed as an 

analog equation solver, solving the differential equation given in Eq. 1.1. This example also reveals 

the main advantages of analog computation over digital one: there is no need for converting the 

input signal 𝑔(𝑡) to a digital stream (and vice versa), and the computation is being performed in real 

time. 

https://www.nature.com/articles/s41467-019-10086-3#Equ1
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In [ 13], Yang used such a strategy to design and demonstrate an all-optical equation solver, 

solving first order differential equations with constant coefficient. The equation solver was based on 

a single silicon mirroring resonator, shown in Fig. 1.10c. The spectrum of the micro resonator could 

be drifted by changing the voltage applied to it, which corresponds to solving a first-order linear 

ODE with tunable constant-coefficients. Fig. 1.10d shows the measured output signal (yellow 

curve) of the mirroring resonator associated with a Gaussian input pulse (red curve), and compares 

it with the ideal waveform (black curve).  

In terms of the classification framework described before, the equation solvers discussed in 

Figures. 1.10a-d are based on Green’s function (GF) approach. The other strategy, i.e. the 

metamaterial approach, has also been used to perform equation solving. In [ 14], Estakhri, et. al 

proposed a metamaterial platform that solves arbitrary integral equations. The metamaterial, shown 

in Fig. 1.10e, is composed of only two materials, air and low-loss polystyrene. The inhomogeneity 

existing in the metamaterial structure can be described by an inhomogeneous relative permittivity 

𝜀(𝑥, 𝑦), allowing one to realize the kernel of the operator associated with the intended integral 

equation. Figure 1.10f shows the fabricated prototype of the metamaterial structure.  

 

Image processing: Here, I describe the relevance of analog computing devices for detecting the 

edges of an image. One common and established technique for edge detection, known as zero 

crossing technique, relies on calculating the spatial derivative of the image in the direction(s) whose 

edges are intended to be detected. This can easily be carried out, for example, by exploiting the 

acoustic spatial differentiator demonstrated in Fig. 1.5. The corresponding edge-detector system, 

shown in Figure 1.11a, consists of a loudspeaker, a mask plane with locally engineered 

transparencies according to the shape of the desire image (shown in Figure 1.11b), a half-

wavelength acoustic slab waveguide, and a microphone. The underlying working principle of the 

setup is the following. The sound generated by the loudspeaker is spatially modulated by the mask 

plane, creating the appropriate spatial field distribution corresponding to the image.  

https://www.nature.com/articles/srep05581#auth-1
https://iopscience.iop.org/article/10.1088/1367-2630/aacba1/meta#njpaacba1f5
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Figure 1.11: Edge detection of an image utilizing the proposed acoustic computing system. a, 

Acoustic computing setup designed for detecting the edges of an image: the setup consists of a 

loudspeaker as the source, a mask plane with locally engineered transparencies according to the 

shape of the image whose edges are intended to be detected, a half-wavelength acoustic slab 

waveguide differentiating the image, and a microphone to resolve the edge-detected image. b, 

Photograph of the image whose edges are aimed to be detected. c, Output edge-detected image 

when the slab waveguide differentiates the image along x direction: the vertical edges of the image 

have been detected. d, Same as panel c except that the slab differentiates the image in y direction, 

detecting its vertical edges. e, Resulting image when two differentiators differentiates the image in 

both x and y directions, revealing its horizontal and vertical edges simultaneously [ 7]. 

 

The resulting pressure field then impinges on the high-index acoustic slab and is spatially 

differentiated. The reflected field is then detected by the microphone so as to create the edge-

detected image. Figure 1.11c reports the output edge-detected image. Notably, since differentiation 

is carried out along x direction, only the vertical edges have been resolved. The horizontal edges can 

also be detected by employing a similar setup, but with a slab waveguide carrying out 

https://iopscience.iop.org/article/10.1088/1367-2630/aacba1/meta#njpaacba1f5
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differentiation along y. The edge-detected image corresponding to the latter case is provided in 

Figure 1.11d. One may also consider two-dimensional edge detection by cascading two different 

differentiators and adding their resulting output fields to each other. Both vertical and horizontal 

edges of the images will then be detected in one measurement, as observed in Figure 1.11e. 

1.5 Research objectives and organization of the thesis 

While wave-based analog computers provide a well-established platform for carrying out 

ultra-fast computational tasks, they suffer from an important limitation, severely hindering their 

applicability in large scale applications. As opposed to digital signal processor for which the 

observational errors is negligible, analog computers do not provide high levels of reliability since 

they do not rely on digitalization and are very fragile to geometrical perturbations. To clarify this 

better, let us consider again the equation solver described in Fig. 1.12a, based on resonance defect 

tunneling through a Bragg band gap. Suppose that some disorder is added to the system by, for 

example, changing the position of the scatterers from their original position (Figure 1.12b).  The 

corresponding transfer function can be significantly disturbed by the creation of disorder-induced 

modes, shifting its spectrum and introducing new resonating peaks. This leads to an output signal 

that has nothing to do with the desired solution. This sensitivity broadly restricts the applicability of 

analog signal processors in large scale applications, which may be prone to error accumulation.  

Recently, it has been discovered that some specific types of structures, possessing a non-

trivial topological order (e.g. topological insulators (TIs) [ 15]), can exhibit strong immunity against 

certain types and levels of imperfection. In this thesis, I investigate the possibility of leveraging 

topological insulators for alleviating the sensitivity of analog signal processors to disorder. More 

specifically, I realize a novel class of analog signal processors and computers whose functionality is 

protected by their non-trivial topological character, offering strong immunity against imperfections 

and geometrical tolerances. This is in sharp contrast to conventional analog computers for which the 

performance severely degrades upon introducing disorder. 
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Figure 1.12: Sensitivity of analog signal processors to disorder, a, An analog equation solver based 

on resonance defect tunneling through a Bragg band gap, b, Some disorder is added to the system 

by randomly moving the positions of the scatterers. The corresponding transfer function can be 

significantly disturbed by the creation of disorder-induced modes, shifting its spectrum and 

introducing new resonating peaks. This leads to an output signal that has nothing to do with the 

desired solution [ 172]. 

  

The thesis is organized as follows: In Chapter 2, I provide a comprehensive overview of 

topological insulators in classical wave physics, surveying their realization in different platforms. I 

start with describing the simplest one-dimensional scenario, which is a model known as Su-

Schrieffer-Heeger (SSH)model. I then move to two and three dimensions, reviewing analogues of 

quantum Hall and quantum spin Hall phases in classical systems, as well as other related ideas such 

as valley-selective waveguiding, Floquet topological insulators and Weyl semimetals.  

In Chapter 3, I propose to perform analog signal processing tasks based on the edge modes 

of topological insulators. In particular, I demonstrate, both theoretically and experimentally, how 

the much-sought protection of the edge states of TIs allows one to alleviate the sensitivity of analog 

signal processors. I demonstrate this by achieving an important analog computational task, namely 

the resolution of linear differential equations, in an acoustic system that is protected by topology 

against large levels of disorder. I further discuss the possibility of generalizing the concept to 

electromagnetics and photonics. 

In Chapter 4, I discuss the possibility of performing more complex computational tasks 

based on topological Fano resonances. By providing numerical and experimental results, I 

demonstrate that it is possible to achieve a novel class of sturdy Fano resonances, whose much-

sought line shapes are topologically protected. Not only are such resonances relevant for carrying 
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out advanced signal processing operations, but also they open up exciting frontiers for a new 

generation of reliable wave-based devices such as including low-threshold lasers, perfect absorbers, 

ultrafast switches, modulators, accurate interferometers.   

Going a step further, in Chapter 5, I demonstrate new class of topological analog signal 

processing systems in which disorder not only does not hurt the system, but is highly beneficial to 

it. More specifically, inspired by the recently proposed concept of disorder-induced topological 

insulators, I demonstrate that, in some topological systems with specific parameter ranges, strong 

randomness can be leveraged as a strategic asset to trigger analog functionalities of interest.  

Finally, in Chapter 6, I summarize all of the achieved results and provide an outlook for 

future investigations. 
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 Topological wave insulators  Chapter 2

 

Phases of matter are conventionally characterized using the so-called Landau's approach 

[ 16], classifying them in terms of the symmetries that break spontaneously at phase transitions. In 

the 1980’s, however, the discovery of the quantum Hall effect, the quantum mechanical version of 

the classical Hall effect, suggested a fresh view on how to distinguish insulating phases using 

topological concepts [ 17]. This phenomenon, observed in a 2D electron gas subject to an out-of-

plane magnetic field, indicated a completely different classification paradigm based on topology 

[ 18], a branch of mathematics concerned with the study of quantities that are preserved under 

continuous transformations.   

Over the past few years, the topological classification of phases of matter has been 

extensively developed in order to understand the pivotal differences in the physical properties of 

electronic insulators, allowing for the distinction between ordinary and topological insulators (TIs) 

[ 19- 15]. In the bulk, like any other ordinary insulator, a TI exhibits an energy band gap separating 

the valance and conduction bands. However, contrary to normal insulators, TIs support conductive 

gapless states flowing along their edges. These edge states are characterized by a special non-local 

integer number, known as a topological invariant or Chern number [ 21], which guarantees their 

presence and cannot change unless the insulating phase undergoes a discontinuous transformation 

that closes the band gap. 

The edge modes of topological insulators can exhibit various interesting properties, the most 

important ones being the robustness of their existence, as well as their resilience to disorder-induced 

backscattering. Indeed, in order to destroy the presence of the edge states, topology requires that the 

bandgap is first closed, implying a stringent modification of the bulk properties, impossible with 
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localized edge imperfections or weak disorder. In addition, fermionic topological edge propagation 

is typically unidirectional or spin-locked, due to symmetry properties that are not broken by most 

impurity types. In electronics, these features have been established as a cornerstone for the 

realization of novel devices with a strong immunity against imperfections. For instance, new types 

of spin-resolved electronic devices have recently been proposed  that, by taking the advantage of the 

robustness of TIs, perfectly separate the "read" current path from the "write" one [ 22, 23]. This leads 

to not only a better output signal but also an improved reliability of spintronic systems. 

Although discovered in quantum condensed matter systems, topological insulators are not 

intrinsically based on quantum phenomena and, as such, can be also obtained in classical systems. 

Indeed, the topological properties of insulators boil down to geometrical phase effects [ 24] that are, 

in principle, not related to the spatial scale or the physical nature of the system. In a pioneering 

paper [ 25], Haldane and Raghu proposed to extend the notion of Chern topological insulators to 

electromagnetic waves propagating in periodic media comprising magnetically biased ferrites. This 

sparked a search for classical applications of topological physics, in particular in wave phenomena 

of various kinds, from electromagnetics and photonics [ 26], to acoustics and phononics [ 27], as well 

as mechanics [ 28]. Classical wave systems can therefore benefit from a new kind of topologically 

inherited robustness to defects and disorder. In comparison with their fermionic counterparts, 

classical topological systems offer a larger control over their space and time properties, representing 

a particularly relevant platform to design, fabricate and detect all kinds of topological effects that 

may not be straightforwardly observed in condensed matter systems. 

In this chapter, I provide a comprehensive overview of topological insulators in condensed 

matter systems and their classical analogues, and explain the important underlying physical 

concepts. I first explain the basics of topological insulators with the simplest one-dimensional 

scenario, namely the Su-Schrieffer-Heeger (SSH) chain. I then discuss the realization of this model 

in various physical platforms, including photonics and acoustics. I then move to two-dimensions 
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and survey wave analogues of quantum Hall insulators, quantum spin Hall insulators, valley-Hall 

insulator, and Floquet topological insulators.  

2.1 One-dimensional topological insulators   

The simplest form of topological insulating phases is a periodic one-dimensional discrete 

chain, known as the Su-Schrieffer-Heeger (SSH) chain [ 29- 35], consisting of identical evanescently 

coupled resonators with alternating coupling coefficients. The unit cell of the SSH tight-binding 

chain, shown in Fig. 2.1, includes two resonators with identical resonance frequency coupled to 

each other with an intra-cell coupling coefficient 𝐾, whereas an extra-cell coupling coefficient 𝐽 

couples adjacent unit cells. Considering the associated coupled mode equations with the Floquet 

boundary condition applied to the lateral sides of the unit cell, one can write the system’s 

Hamiltonian as  

𝐻 = (
𝜔0 𝐾 + 𝐽𝑒𝑗𝑘𝑥𝑎

𝐾 + 𝐽𝑒−𝑗𝑘𝑥𝑎 𝜔0
)                                                                                                             (2.1)                                                                                                              

in which 𝐾 is the intra-cell coupling coefficient, 𝐽 is the extra-cell coupling coefficient, 𝜔0 is the 

resonance frequency of the resonators, 𝑘𝑥 is the corresponding Bloch wave number and 𝑎 is lattice 

constant. Depending on the values of 𝐾 and 𝐽, the eigen-frequency spectrum of the Hamiltonian 

given in (2.1) is different. I first consider the case of 𝐾 = 𝐽. Figure 2.2b represents the 

corresponding dispersion bands of this two-level system for 𝐾 = 𝐽 = 0.1. It is observed that the two 

dispersion bands of the system under study touch each other at the edge of the Brillouin zone, 

creating two point-degeneracies. These degeneracies represent an ideal condition for engineering 

the topological property of the system. More specifically, by introducing symmetry-lowering 

mechanisms, one may lift the degenerate points and open band-gaps belonging to different 

topological orders. In order to demonstrate such a possibility, I now consider the cases 𝐾 ≠ 𝐽. Fig. 

2.2a and c represent the band structure of the chain for 𝐾 = 0.05 > 𝐽 = 0.1 and 𝐽 = 0.05 > 𝐾 =

0.1, respectively. It is observed that, in both cases, the band structure is gapped, indicating 

insulating phases. These insulating phases, however, can be of trivial or topological origin. 
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Figure 2.1: Su-Schrieffer-Heeger (SSH) tight binding toy model. The model consists of 

evanescently coupled resonators (with the resonance frequency of 𝜔0), coupled to each other with 

intra-cell coupling coefficients of 𝐾 and extra-cell coupling coefficients of  𝐽.   

 

In particular, while both cases (𝐾 > 𝐽 or 𝐾 < 𝐽) look similar when only considering the band  

structure, i.e. the eigenvalues of the tight-bighting Hamiltonian, the topological difference resides in 

the associated eigenmodes, which shows a band inversion as one goes from the center to the edge of 

the Brillouin zone when the two cases are considered. In this one-dimensional case, the topology is 

defined from the mapping between the Brillouin circle to the space of 2 × 2 Hermitian Hamiltonian 

with chiral symmetry (also known as the equator of the Bloch sphere), and is characterized by a 

winding number [ 29]. The winding number 𝑊 is defined as  

𝑊 = 1 2𝜋⁄ ∮ 𝐴(𝑘𝑥)𝑑𝑘𝑥
 

𝐵𝑍
                                                                                                                            (2.2)                                                                                                                            

in which 𝐵𝑍 stands for the Brillouin zone, 𝑘𝑥 is the Bloch wave number, and 𝐴(𝑘𝑥) is the so-called 

Berry connection, defined as  

𝐴(𝑘𝑥) = ⟨𝛹(𝑥)|𝑖𝜕𝑘𝑥|𝛹(𝑥)⟩                                                                                                                        (2.3) 

where 𝛹(𝑥) is the corresponding eigenstate. Note that this topological invariant is only well defined 

for chiral symmetric systems, meaning that all of the resonators should have the same resonance 

frequency. As a consequence, edge modes are robust to any disorder that preserves this symmetry 

and is not strong enough to close the band gap, which happens at the onset of Anderson 

localization. By calculating the winding number defined in Eq. 2.2, one realizes that the two cases 

of Fig. 2a and c are associated with different topological invariants. Namely, the case in which the 

values of extra-cell coupling coefficients are larger than the intra-cell ones corresponds to a non-

zero winding number (winding number of 1). In reverse, when intra-cell coupling coefficients are  
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Figure 2.2: Band structure of the SSH model for a, 𝐾 > 𝐽, b, 𝐾 = 𝐽, and c, 𝐾 < 𝐽, corresponding 

respectively to a trivial insulator, phase transition between a trivial and topological insulator, and a 

topological insulator. The topological index is defined as the winding (parameter 𝑊) of the 

Hamiltonian across the origin of the momentum space.    

 

larger than the extra-cell ones, the system possesses a zero winding number, corresponding to a 

trivial topological index. 

 The most striking property of topological insulators is that they support gap-closing 

boundary states on their edges, when they form a boundary with another crystal having a different 

topological index. In order to probe these states, I have made an interface (see Fig. 2.3a) between 

two crystals, one with a zero topological order (i.e. 𝐽 < 𝐾) and the other with a non-zero one (𝐽 >

𝐾). Fig. 2.3b represents the mode profile of the corresponding topological edge state. It is observed 

that the mode is confined to the interface between the two crystals. What is special about this edge 

mode is that its existence is only due to the difference between the topological indices of the two 

crystals on the left and right sides of the interface. Since the topological indices of the insulating 

phases are protected by chiral symmetry, the edge mode remains intact as long as this symmetry is 

preserved, even if one introduces some (symmetry preserving) disorder to the system. In order to 

demonstrate this, I calculated the corresponding transmission spectrum of the chain (see Fig. 2.3c). 

It is seen that the spectrum exhibits a mid-gap resonance corresponding to the zero-energy edge 

mode. Next, in Fig. 2.3d, I report the evolution of the line shape of this resonance as a function of 

disorder, applied to the coupling coefficients of the chain. It is observed that the zero-energy edge 

mode of the system is not significantly affected by the disorder. 
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Figure 2.3: Topological edge modes of the SSH chain, a, An interface between a topological chain 

and a trivial one is made, b, Profile of the corresponding edge mode, confined to the phase 

transition interface between the two crystals, c, Transmission spectrum of the chain, showing a mid-

gap resonance (at 𝑓0) d, Evolution of the resonance line-shape of the topological zero energy mode 

as a function of disorder [ 172].   

 

Considering the simplicity of the SSH model, this topological system has been implemented 

in a large variety of classical platforms. For instance, in [ 36] Parto, et. al, realized the optical 

version of the SSH structure making use of 16 identical coupled micro ring resonators fabricated on 

InGaAsP quantum wells (Fig. 2.4a). By changing the successive distances between the adjacent 

rings, the strengths of intra-cell and extra-cell coupling coefficients were engineered such that they 

give rise to a non-trivial topological phase. The inset of Fig. 2.4b illustrates the profile of the 

corresponding topological mid-gap state, which is pinned to the edge of the array, and exploited for 

robust lasing.  

The SSH model has also been implemented in acoustics. In [ 37], Xiao, et. al. demonstrated 

the model in a one-dimensional sonic crystal consisting of cylindrical pipes with alternating cross-

sectional areas, thereby mimicking the SSH scheme. Fig. 2.4c shows a photograph of the fabricated 

SSH structure, which consists of two one-dimensional arrays with different topological properties 

(different winding numbers), connected to each other to form a mid-gap edge state at the phase 

transition interface. The inset of Fig. 1d shows the profile of the edge mode.  

The strong localization of the edge mode of the SSH array has been of particular interest for 

applications such as lasing [ 36, 38], and sensing [ 39]. Yet, these kinds of edge modes cannot be used  
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Figure 2.4: a,b, Realization of a one-dimensional electromagnetic topological insulator (based on 

the SSH scheme) in an array of coupled micro ring resonators fabricated on InGaAsP quantum 

wells [ 36], c,d, Realization of the SSH model in acoustics based on cylindrical waveguides with 

alternating cross-sectional areas, tuning the strengths of the coupling coefficients [ 37]. 

 

for waveguiding, as they are confined in zero dimensions. In the next part of this section, I move to 

two dimensions, describing 2D topological insulators whose edge modes are confined in one 

dimension and can therefore be leveraged for waveguiding and energy transport.  

2.2 Chern Wave insulators  

The integer quantum Hall effect (IQHE) provides the first example of a two-dimensional 

(2D) electronic topological insulator, in which the electrons flow unidirectionally along the edge of 

a 2D system subject to an out-of-plane external magnetic field [ 40]. Under these conditions, the 

Hall conductance takes the quantized values 𝜎𝐻 = 𝐶𝑒
2 ℎ⁄ , in which ℎ is the Plank constant, 𝑒 is the 

electron charge, and 𝐶 is an integer, corresponding to the topological invariant of the system. This 

quantity, also known as Chern number, is defined as a surface integral over the entire Brillouin zone 

(BZ), which is a torus in the three-dimensional momentum space. The integral is expressed as  

𝐶 =
1

2𝜋
∮ 𝐴(𝑘)𝑑𝑘 .                                                                                                                                      (2.4)
 

𝐵𝑍

 

The parameter 𝐴(𝑘) in Eq. 2.4 is the so-called Berry curvature defined as 𝐴(𝑘) = ∇𝑘 ×

[⟨𝜓𝑛(𝑘)|𝑖𝜕𝑘|𝜓𝑛(𝑘⟩], in which 𝜓𝑛(𝑘) represents the corresponding Bloch state on the 𝑛𝑡ℎ band, 𝑘 is 

the Bloch wave number, and 𝜕𝑘 and ∇𝑘 × are the derivative and curl operators with respect to 𝑘, 

respectively. Since 𝐴(𝑘) is an odd function for time-reversal symmetric systems, the Chern number 

𝐶 is zero in the absence of an external magnetic field. Applying a bias odd under time reversal is 
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therefore essential to achieve a non-zero Chern number. Insulating phases with non-trivial 

topological order exhibit intriguing unidirectional charge transport along their edges. Note that in 

two dimensions the topology is defined by mapping the Brillouin torus to the entire Bloch sphere. 

In this picture, a twisted topology corresponds to an obstruction to define the Bloch wave functions 

over the entire Brillouin zone using a single phase convention [ 29]. 

Motivated by the developments of quantum Hall phases in electronic and quantum systems, 

the classical analogues of such phases were realized shortly thereafter. As mentioned earlier, Chern 

insulating phases are associated with a broken time reversal symmetry, which can be achieved in 

the context of microwave engineering using ferromagnetic materials. In [ 41], Wang et al. realized 

the electromagnetic version of quantum Hall phases based on gyromagnetic microwave materials. 

This achievement was obtained using a two-dimensional square lattice of ferrite rods, implemented  

 

Figure 2.5: a,b, Two-dimensional Chern wave insulators were firstly realized in electromagnetics 

based on a square lattice of magnetically-biased gyromagnetic ferrite rods, implemented inside a 

microwave waveguide [ 41]. c,d, Realization of a Chern insulator in acoustics by constructing a 

hexagonal lattice of sonic ring cavities filled with rotationally biased moving fluids [ 42]. 
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inside a microwave waveguide and biased with an external uniform magnetic field (see Fig. 2.5a). 

The one-way character of the topological edge mode was studied and demonstrated both in 

numerical simulations and experiments, as illustrated in Fig. 2.5b. Just a few years after this work, 

researchers extended such extraordinary phases to another field of classical wave physics, namely 

acoustics. This extension, however, required a different trick. In particular, since sound waves do 

not interact efficiently with magnetic fields, a different strategy was employed to break time-

reversal symmetry, namely the use of fluid motion [ 42]. In 2015, two independent works proposed 

the use of rotating fluids to realize acoustic analogues of quantum Hall phases [ 43, 44]. Khanikaev, 

et. al proposed an acoustic analogue of magnetically-biased graphene (Fig. 2.5c), based on a 

honeycomb network of ring cavities filled with rotationally moving fluids [ 43]. Yang, et. al [ 44] 

suggested a different approach employing a triangular array of rotating cylinders in a viscous fluid. 

The corresponding edge modes of such topological phases provide the unique opportunity of 

reflection-less routing of sound along irregularly shaped pathways, as seen in Fig. 2.5d. Such 

backscattering-immune classical wave transport has been confirmed in a series of related proposals, 

as well as experimental investigations. 

2.3 ℤ2 topological insulators  

While Chern insulators require breaking of time-reversal symmetry, there exists another 

type of topological insulators in two-dimensions that, on the contrary, preserve time-reversal 

symmetry. In electronic condensed matter systems, these insulators are referred to as ℤ2 topological 

insulators, and typically emerge in the presence of spin-orbit coupling, as in the quantum spin-Hall 

effect [ 45, 46]. Such phases can be pictured as systems in which two time-reversed copies of a 

quantum Hall phase with opposite spin-sector restricted Chern numbers coexist without coupling. 

One of the copies corresponds to electrons with positive spins, and its time-reversed version to 

electrons with negative spins. As a consequence, two topological edge modes exist that propagate in 

opposite directions, carrying electrons with different spins. In presence of time-reversal symmetry, 

Kramers theorem prevents any interaction between the two spin species, which cannot backscatter 



27 
 

at non-magnetic defects. Since they do not require time-reversal symmetry breaking, ℤ2 topological 

insulators may appear easier to realize than the Chern class in electronic systems. Yet, realization of 

these phases in classical systems is not quite straightforward for two principal reasons. First, 

photons (and also phonons), associated with electromagnetic (or sound) waves, are spin-less 

particles. Second, they are bosons, for which the time-reversal operator 𝒯𝑏 squares to +1, and not to 

−1, as for electrons, which are fermions ( 𝒯𝑓
2 = −1). Interestingly, the relation 𝒯𝑓

2 = −1 is 

essential for Kramers theorem to hold, guaranteeing truly independent spin subspaces. In order to 

solve these issues, one must construct a pseudo-spin degree of freedom and “augment” bosonic 

time-reversal with another symmetry operation 𝒞 such that (𝒞𝒯𝑏)
2 = −1, enforcing Kramers 

degeneracy when both 𝒞 and 𝒯𝑏 are preserved [ 47- 61]. Note that this procedure potentially makes 

the classical version of a ℤ2 topological phase less robust than its electronic counterpart, since not 

only 𝒯𝑏 breaking defects induces backscattering for the topological edge modes, but also defects 

that break 𝒞.  

For electromagnetic waves, described by Maxwell equations, spin can be emulated by 

leveraging electromagnetic duality as an additional symmetry 𝒞, by enforcing 𝜀 = 𝜇. This 

assumption indeed restores the duality of Maxwell’s equations, creating two degenerate, time-

reversed (pseudo)spins. By properly introducing some bi-anisotropy (coupling the TE and TM 

components of the field), the two spins of such a system can undergo opposite interaction terms 

emulating spin-orbit coupling. This leads to the realization of an electromagnetic analogue of the 

quantum spin Hall effect, based on the combination of duality and time-reversal symmetry. 

Employing this scheme, in [ 62] Khanikaev et.al. proposed the photonic analogue of the quantum 

spin Hall effect in a hexagonal lattice of a spin-degenerate dual metamaterial, composed of split 

ring resonators with strong bianisotropic behavior (Fig. 2.6a). The inset of Fig. 2.6b represents the 

profile of one (spin up) of the corresponding edge modes. Defects in the form of sharp turns that do 

not couple the two polarizations do not break duality nor time-reversal symmetry, hence they do not 

reflect the spin-locked topological edge modes that can seamlessly be routed along an irregularly 
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shaped topological interface. Note that the duality condition 𝜀 = 𝜇 is hard to achieve as dispersive 

effects might make it difficult to guarantee this condition over a broad frequency range. 

Nevertheless, it can be enforced with very good approximation over a couple of crystal bands, 

which is more than sufficient for observing exceptionally robust edge wave transport along bent 

paths. A similar idea has been implemented for Lamb waves over a structured plate based on 

accidental degeneracy between two Lamb modes with distinct polarizations [ 63].  

In fluid acoustics, the explained strategy to achieve quantum spin Hall phases is not readily 

functional due to the absence of a polarization degree of freedom. An alternative strategy to emulate 

acoustic pseudospin is to exploit the symmetry of a crystal lattice, in which case 𝒞 is some sort of 

crystalline symmetry operation. Such a scheme, based on six-fold rotational symmetry, was initially 

proposed by Wu and Hu in 2015 in a triangular lattice of hexagonal resonators [ 64], and 

implemented in a variety of platforms including microwaves [ 65], photonics [ 66- 70], elastic [ 71- 74] 

and acoustics [ 75- 78]. Figures 2.6c and 2.6d indicate an example [ 78] that employed this strategy to  

 

Figure 2.6: a,b, Photonic realization of ℤ2 wave insulating phases based on a metamaterial with 

strong bi-anisotropic behavior, providing TE and TM polarized modes with opposite spin-orbit 

forces [ 62]. c,d, A strategy to achieve acoustic versions of ℤ2 insulators is to expand the primitive 

unit-cell of a hexagonal lattice to a larger one, and use the corresponding folded degenerate Bloch 

states as pseudo-spins [ 78]. 
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induce a deeply subwavelength acoustic topological edge mode in a subwavelength sonic crystal 

made of Helmholtz resonators (simple soda cans) arranged in a modified hexagonal-like lattice. The 

unit cell of the crystal is shown in the inset of Fig. 2.6c. Fig. 2.6d illustrates how the edge mode of 

such a crystal propagates with good transmission along a path involving sharp turns. Note that all 

symmetry-based strategies for emulating pseudo-spins only allow for an approximate realization of 

Kramers degeneracy, which only holds at the high-symmetry points of the Brillouin zone (Γ point in 

the case of six-fold rotational symmetry). Thus, the quantum spin-Hall Hamiltonian can only be 

emulated “locally” around this degenerate point, as may be proven by performing a first order 𝑘. 𝑝 

approximation of the Hamiltonian around the point [ 64]. However, pushing the 𝑘. 𝑝 analysis beyond 

first order reveals that Kramers degeneracy is quickly broken away from the high symmetry point, 

on the same band. Direct use of topological quantum chemistry concept [ 79] has also confirmed the  

 

Figure 2.7: a,b, Photonic realization of Valley Hall insulators based on a zigzag edge domain wall 

of two crystals with opposite on-site potential organizations [ 91], c,d, Realization of Valley Hall 

insulators in a sonic crystal consisting of triangular polymethyl methacrylate rods positioned in a 

triangular-lattice with opposite rotation angles [ 92]. 
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impossibility of rigorously defining a global ℤ2 topological invariant on the entire band structure of 

these systems. Rigorous quantitative statistical analysis of the edge mode robustness against 

different kinds of defects [ 80] is also consistent with an incomplete, or approximate, level of 

topological protection. Nevertheless, designs based on exploiting crystalline symmetries work very 

well in practice, and they allow easy and direct exploitation of topological ideas based on lattice 

symmetries regardless of the physical platform, still leading to relatively large robustness to 

backscattering. 

2.4 Valley Hall wave insulators  

In a hexagonal lattice in which the Dirac degeneracy has been lifted by breaking inversion 

symmetry, modes belonging to the 𝐾 and 𝐾ˊ valleys, which are obviously time-reversed images of 

each other, also carry some form of chirality or pseudospin [ 81- 90]. Locally, these time reversed 

pairs, which correspond to valleys created by opening time-reversed Dirac cones, carry an opposite 

Berry flux. Since inversion also changes the 𝐾 valley into the 𝐾ˊ one, one can construct two 

crystals, inversion images of each other, with valleys having opposite Berry fluxes oriented along a 

given direction. Then, interfacing these two crystals along this direction amounts to requiring an 

abrupt sign change of the Berry flux, which requires the band gap to close at the interface, 

supporting the necessary presence of an edge mode.  

Similar to the schemes based on six-fold rotational symmetries, it is not possible to define a 

global topological invariant over the full Brillouin zone, and this type of edge modes is not globally 

topological. However, it remains exceptionally robust to Valley-preserving defects, like Z shaped 

turns. In [ 91], Noh, et. al. leveraged the valley degree of freedom to realize photonic analogues of 

the Valley Hall effect in a two-dimensional honeycomb lattice of optical waveguides, shown in Fig. 

2.7a. The red and green waveguides in the figure possess different refractive indices, corresponding 

to two different on-site potentials that allow inversion symmetry breaking. The valley edge modes 

were obtained along a zigzag edge domain between two crystals with opposite on-site potential 

configurations (referred to as AB and BA). Under this condition, the edge modes cross the band 
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gaps formed at the proximity of high-symmetric corners of the Brillouin zone. The inset of Fig. 2.7b 

illustrates the profile of one of the corresponding edge modes. Interestingly, the valley Hall 

waveguiding scheme also works in other types of lattices, when some form of operation that flips 

the sign of the Berry curvature is used. For instance, topological valley Hall phases were realized in 

acoustic systems based on symmetry-breaking rotations of the crystal constituents. In [ 92], Lu et. al 

built a sonic valley Hall waveguide with a sonic crystal consisting of triangular polymethyl 

methacrylate rods (Fig. 2.7c) positioned in a triangular lattice with a rotation angle 𝛼 with respect to 

the vector 𝑎1. When 𝛼 = 𝑛𝜋/3, the crystal supports two-folded Dirac cones at the edge of the 

Brillouin zone. These degeneracies are lifted for other rotation angles, opening a frequency band 

gap. By connecting two different domain walls with opposite rotation angles of 𝛼 = 10°and 

𝛼 = −10° corresponding to opposite Berry fluxes, a pair of valley chiral edge states, 

counterpropagating at the interface, can be realized. Such edge modes can be utilized for guiding of 

sound along an irregularly shaped zigzag path (Fig. 2.7d). This method is transposable to other 

wave platforms, including highly dispersive ones, such as gravity-capillary waves at the surface of 

liquids [ 93]. 

 

2.5 Floquet topological insulators  

Another conceptually distinct route to achieve electronic topological phases without the 

need for an external magnetic field is to apply a time-periodic modulation in the electron potential 

energy or hopping rate [ 94- 96]. For the first time, in the field of semiconductor physics, it was 

shown [ 97] that, by irradiating a trivial semiconductor quantum Well with a time periodic 

microwave wave, a new of topological phase transition can be achieved. Such kinds of topological 

phases, dubbed as Floquet topological insulators, support helical edge modes in their quasi-energy 

spectral gaps. 
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Figure 2.8: Floquet topological insulators, a,b, Photonic analogue of Floquet topological insulator, 

based on a graphene-like lattice of helical waveguides evanescently coupled to each other. The 

helicity of the waveguides breaks z-reversal symmetry [ 97], c,d, Realization of Floquet topological 

insulator based on a hexagonal lattice of acoustic trimers, with capacitances modulated in time in a 

rotating fashion [ 105].  

 

Parallel to the developments of Floquet topological insulators in condensed matter systems, 

these concepts were extended to classical systems [ 97- 103]. In [ 104], Rechtsman, et. al., 

demonstrated the photonic analogue of a Floquet topological insulator, based on a graphene-like 

lattice of helical waveguides evanescently coupled to each other, as seen in Fig. 2.8a. The dynamics 

of beam diffraction through such a lattice is described by the Schrödinger equation, where the 

distance of propagation takes the role of time. The helicity of the waveguides breaks z-reversal 

symmetry, effectively emulating time-Floquet modulation. Within the framework of this mapping, 

the quasi-band structure of the crystal becomes identical to the one of a Floquet topological 

insulator, supporting one-way edge states that are protected from scattering at the lattice corners. 

Shown in Fig. 2.8b is the profile of such edge modes when a beam excites the array from its top 

edge. 



33 
 

 

Fig. 2.9: Classical wave Weyl semimetals, a, Realization of electromagnetic analogues of 

topological semimetals based on a crystal with the real-space unit cell shown in the panel [ 131]. b, 

Band structure of the corresponding nodal semi metallic phase. c, By breaking the spatial inversion 

symmetry of the unit cell, the line node degeneracy splits into four distinct Weyl points. d, 

Realization of acoustic topological semimetals in a chiral phononic crystal fabricated using a layer-

stacking strategy [ 132]. e, Band structure of the crystal shown in panel f, exhibiting Weyl 

degeneracy at K point. f, Fermi arc surface of the corresponding topological states. g, Exploring 

Weyl physics in a planar 2D geometry. h, The discrete resonance modes can be pictured as a 

periodic lattice in the synthetic frequency dimension. i, Band structure of the crystal in the 3D 

synthetic dimension, exhibiting four Weyl points [ 134].  

 

Time-Floquet topological insulators have also been proposed in acoustics. In [ 105], Fleury 

et. al. demonstrated a time-Floquet topological insulator based on a hexagonal lattice of acoustic 

trimers, whose acoustic properties were periodically modulated in time in a rotating fashion, with 

uniform handedness throughout the lattice (Fig. 2.8c). Fig. 2.8d shows the profile of one of the 

corresponding edge states, flowing across the boundary of a finite piece of such a crystal. Compared 

to acoustic quantum Hall phases discussed before, such kinds of topological states are potentially 
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more practical as they do not rely on moving background fluids. It is also worth mentioning at this 

point that a one-to-one correspondence between time-Floquet systems and unitary scattering 

networks can be made, where the unitary network scattering matrix takes the role of the Floquet 

time-evolution operator over a period [ 106, 107]. This has allowed an easier experimental 

exploration of different Floquet topological phases (Chern or anomalous [ 108]), in both photonics 

and acoustics [ 109- 111]. 

2.6 Topological insulators in three dimensions  

In 2D periodic systems, the topological phases usually stem from point degeneracies in the 

band structure, which are known as Dirac cones. By properly tuning the system parameters, the 

degenerate points can be lifted, and bandgaps can be opened, leading to different topologies. In 

three dimensions, possible band degeneracies are line nodes [ 112- 116], Weyl points [ 117- 125], or 

3D Dirac points [ 126- 130]. Weyl points are particularly interesting as they behave as sources of 

Berry flux, carrying a Chern number of ±1, which manifests itself as topological surface states 

along any surface interface enclosing a non-vanishing number of Weyl charges. 

Following the discovery of Weyl and nodal semimetals in the field of semiconductor 

physics [ 118], Lu et. al. theoretically realized both line nodes and Weyl points in a gyroid photonic 

crystal made from germanium high-index glasses [ 131]. Shown in Fig. 2.9a is the real space unit 

cell of the 3D periodic structure. By applying proper symmetry-breaking perturbations to the unit-

cell of such structure, a nodal line degeneracy was realized. This is accomplished by replacing part 

of the gyroids with air spheres, as seen in the inset of Fig. 2.9a. Fig. 2.9b represents the 3D band 

structure of the crystal cut at (101) plane. A closed line degeneracy around the Γ point is observed 

in the band structure of the crystal. Note that the area enclosed by this line degeneracy can be 

controlled by the strength of the applied perturbation, that is, the radius of the air-sphere. The unit 

cell of the crystal in Fig. 2.9a respects parity-time (𝑃𝑇) symmetry. A possible approach to achieve 

Weyl point degeneracies is to break the 𝑃𝑇 symmetry of the unit cell. In fact, it is known that a line 

node degeneracy creates either a frequency band gap or a set of paired Weyl points upon breaking 
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PT symmetry. The 𝑃𝑇 symmetry of the double gyroid crystal can be broken by, for example, 

removing one of the air spheres of the two gyroids. By doing so, the line node degeneracy splits into 

four Weyl degenerate points along 𝛤𝑁 and 𝛤𝐻 directions, as observed in the band structure of Fig. 

2.9c.   

Weyl and nodal semimetals have also been realized in acoustic systems.  In [ 132], Xiao, et. 

al. theoretically discussed the possibility to achieve Weyl and nodal semimetals in a lattice made of 

coupled sonic resonators and waveguides, described by a tight-binding model involving chiral 

interlayer couplings. A few years later, phononic Weyl phases were experimentally demonstrated 

[ 133] in a chiral phononic crystal, fabricated using layer-stacking technique. The insets of Fig. 2.9d 

represent the corresponding 3D structure, consisting of stacked layers of air-filled hollow 

waveguides, connected to each other via spiral hollow channels. Such a structure supports two pairs 

of Weyl points at 𝑘𝑧 = 0 and 𝑘𝑧 = 𝜋/𝑎. Shown in Fig. 2.9d is the measured band structure of the 

crystal for 𝑘𝑧 = 0, from which the existence of Weyl points at the high-symmetry point 𝐾 is 

apparent. The inset of Fig. 2.9e shows the Fermi arcs of the corresponding surface states.   

Despite the fact that topological semi-metallic phases have successfully been demonstrated 

in photonic and phononic systems, the realization of such phases is often challenging due to their 

3D structure. Based on the notion of synthetic dimension, in [ 134] Lin, et. al. explored Weyl 

physics in a planar 2D geometry, consisting of on-chip ring resonators with dynamic modulation of 

the refractive index, as sketched in Fig. 2.9g. Each resonator supports a set of discrete modes, 

whose resonance frequencies are equally spaced. These discrete resonance modes can therefore be 

pictured as a periodic lattice in the synthetic frequency dimension. Together with the real 

dimensionality of the crystal, this third, synthetic frequency dimension forms a three-dimensional 

space (Fig. 2.9h). By modulating the refractive indices of the ring resonators properly, one can then 

appropriately couple these modes to each other so as to achieve Weyl point degeneracies in the 3D 

synthetic space formed by the two spatial dimensions and the frequency axis. The inset of Fig. 2.9i 

shows the corresponding Weyl points and their charges. 
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Fig. 2.10: Applications of classical wave topological insulators, a, In contrast to any ordinary type 

of waveguide, the edge mode of the topological insulator discussed in Fig. 2.5a smoothly flows 

around a PEC obstacle without backscattering, enabling robust guiding of electromagnetic energy 

[ 41, 43]. b, Reflection-less guiding of sound waves using the topological insulator discussed in Fig. 

2.5c. Despite the presence of several types of defects on the way of the edge mode, it flows along 

the perimeter of the crystal with almost perfect transmission. c,  Theoretical realization of the lasing 

action from the edge mode of a topological insulator, based on an aperiodic topological array of 

micro ring resonators. d, Experimental demonstration of the lasing action. The lasing mode shows 

strong robustness to disorder [ 151]. 

 

2.7 Applications of topological wave insulators  

In the previous sections, I discussed various implementation topological phases of matter in 

classical wave physics. However, the impact of this area of research has been rapidly expanding in 

the realm of practical applications of these concepts, as I detail in this section. In particular, I 

discuss the two important technology-oriented applications areas of topological wave insulators.  

Robust waveguiding: One important application of classical topological insulators is robust 

guiding of energy over arbitrary paths [ 135- 143]. An ordinary waveguide exhibits a bi-directional 

type of dispersion. On the contrary, the gapless edge states of Chern wave insulators possess a 

frequency dispersion with only positive (or negative) slope (or group velocity). Consequently, 

waves (light or sound) cannot couple to any backward state when it reaches an imperfection, and 
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does not backscatter. Suppose that a perfectly conducting obstacle is placed on the way of the 

electromagnetic wave propagating along the edge of the topological system discussed in Fig. 2.5a. 

While this normally induces strong reflection in any ordinary waveguide, the topological insulator 

lets the electromagnetic energy flow around the PEC with almost perfect transmission (Fig. 2.10a).  

Such fascinating property has also been proposed in acoustics for reflection-less guiding of sound 

waves. Fig. 2.10b shows how the edge mode of the acoustic topological insulator discussed before 

ideally travels along an interface involving various types of defects and detours. This is in stark 

contrast to ordinary acoustic waveguides in which two subsequent defects always create Fabry-

Pérot interferences and, more generally, impedance matching issues.  

Lasing: Another promising application of topological insulators is single-mode robust lasing [ 144-

 151]. In [ 151], Harari, et.al, theoretically proposed to achieve the lasing action from the edge modes 

of a topological insulator. The realization was based on an aperiodic topological array of micro-ring 

resonators, which was one of the basic platforms explored for achieving photonic topological 

insulators [ 152, 153]. The aperiodic nature of such structure creates an artificial gauge field, 

allowing one to have edge states analogues to quantum Hall phases without the presence of any 

external magnetic field. By providing gain to the resonator cavities located on the perimeter of the 

crystal, the lasing action from such a configuration was demonstrated, as seen in Fig. 2.10c, and 

demonstrated to be robust to spin-preserving defects.  

Based on these theoretical findings, in [ 154], Bandres et. al. experimentally verified the 

lasing action from such kind of a system. Fig. 2.10d represents the lasing from such a topological 

system. Remarkably and consistent with the topological nature of the structure, the lasing mode and 

its slope efficiency shows a strong immunity against disorder. It should be noted that the edge 

modes of this topological lasing systems are time-reversal symmetry preserved and, as such, are not 

truly unidirectional. Yet, there are reports [ 145] on the realization of topological lasers with a 

broken time-reversal symmetry, enabling truly unidirectional and non-reciprocal lasing action at 

telecommunication wavelength.  
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Finally, I note that, while I discussed a few important technology-oriented applications of 

topological wave insulators in this section, there exists a large variety of reports on other relevant 

applications, including switching [ 155], lensing [ 156], negative refraction [ 157], sensing [ 158], 

beam splitting [ 159], mode locked fiber lasers [ 160], delay lines [ 161], frequency converters [ 162], 

and interferometers [ 163]. 

2.8 Conclusions  

In this Chapter, I reviewed recent advances in the field of classical-wave-based topological 

insulators. I discussed different kinds of topological insulators in one, two, and three dimensions, 

from the simplest SSH toy model to complex Weyl semimetals. I provided several representative 

examples of their realizations in various physical platforms, from photonics to phononics.  I also 

reviewed some of the most interesting application areas of topological insulators in modern 

engineering.  

As I explained in this chapter, the most important advantage of topological systems 

compared to ordinary ones is their strong robustness to geometrical tolerances and imperfections. 

This much-sought feature represents a perfect platform for enhancing the reliability of analog signal 

processors. In the next Chapter, I will demonstrate the relevance of topological insulators for 

achieving this.    
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 Topological analog signal Chapter 3

processing  

This chapter is a modified version of the materials reported in [ 172]. 

3.1 Introduction  

Considering the limitations of digital signal processors, it is neither reasonable nor 

affordable to use DSPs for performing specific, simple computational tasks such as differentiation 

or integration, equation solving, matrix inversion, edge detection and image processing. Therefore, 

the old idea of all-analog computing and signal processing has been recently revived, driven by the 

development of cost-efficient nanofabrication techniques and promising related advances in 

ultrafast optics. By going beyond the aforementioned restrictions of DSPs, wave-based 

computational systems have inspired numerous exciting applications including analog computing 

[ 164- 171], equation solving [ 172], optical image processing [ 172- 176], optical memories [ 177], and 

photonic neural networks [ 178].  

As I explained in Chapter 1, ASPs still suffer from one important limitation compared to 

DSPs. While repeating the same operation always gives rise to the same result when using DSPs 

(which is enabled by available error-finding algorithms and protocols in digital systems), analog 

signal processing is often accompanied with considerable observational error caused by the extreme 

sensitivity of ASPs to changes in environmental and structural parameters [ 179]. 

In this chapter, I demonstrate the possibility of enhancing the reliability of ASPs by 

leveraging the unique immunity of topological insulators against imperfection. More specifically, I 

demonstrate a topologically robust wave-based analog system that can solve linear differential 

equations in time-domain. 
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Figure 3.1: Robust topological analog signal processing. a, A first-order differential equation solver 

is constructed from resonant tunneling through a crystal defect. The output signal is the solution of 

the differential equation associated with the transfer function of the system. b, In the presence of 

geometrical defects, like slight position shifts, the signal processing functionality achieved with the 

trivial equation solver of panel (a) is completely destroyed. c, To make the signal processing robust, 

I propose instead to build the target transfer function of the system from resonant tunneling through 

a topological edge mode. d, Markedly different from the trivial equation solver of panels (a) and 

(b), the output of the topological solver is left totally unaffected by the disorder [ 172]. 

 

3.2 Topological analog equation solver  

Let us consider again the analog equation solver, shown in Fig. 1a, based on the resonance 

defect tunneling through a Bragg band gap. Near the resonance frequency of the resonance mode, 

the spectral line shape of the system can be approximated with   

𝐻(𝑓) =
𝐴

𝑗(𝑓 − 𝑓0) + 𝑓0/2𝑄
                                                                                                                         (3.1) 

in which  𝐴 is an arbitrary constant, and 𝑄 is the quality factor of the resonance. As I explained in 

Chapter 1, in time domain 𝐻(𝑓) corresponds to a first order differential equation of the form  

𝑓′(𝑡) + 𝛼𝑓(𝑡) = 𝛽𝑔(𝑡), with 𝛼 = 𝜋𝑓0/𝑄 and 𝛽 = 2𝜋𝐴. This analysis illustrates the possibility to 

realize an analog equation solver by engineering the spectral characteristics of a resonator.   
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Figure 3.2: Numerical demonstration of the topological differential equation. An arbitrarily chosen 

signal envelope 𝑔̂ (𝑡) is applied to the input of the topological equation solver. The transfer function 

of the system 𝐻(𝑓) (green line), which reproduces exactly the mathematical target defined by the 

equation (dashed line), is not affected by the presence of disorder (bottom path). Thus, the envelope 

of the output signal 𝑓(𝑡) matches exactly the solution even in the presence of disorder [ 172].  

 

When adding geometrical imperfections to the system (Fig. 3.1b), however, the transfer function of 

the system is significantly disturbed by the creation of disorder-induced modes, shifting its 

spectrum and introducing new resonating peaks. This leads to an output signal that has nothing to 

do with the correct solution. 

What I propose is instead to form the same transfer function, but out of resonant 

transmission through a topological edge mode, whose existence is guaranteed by the nontrivial 

topologies of the surrounding bulk insulators. Figure 3.1c depicts such a solution based on two 

insulating lattices with supposedly different topologies, inspired by the Su−Schrieffer−Heeger 

(SSH) scheme, described in the previous Chapter. Like the previous case, when the input signal   

𝑔(𝑡) (modulated at 𝑓0) is applied to such system, the output signal envelope 𝑓(𝑡) is equal to the 

solution of the desired differential equation. However, the topological equation solver can be 

immune to disorder, since the presence of a single mid-gap interface mode can be guaranteed by 

bulk-edge correspondence (Fig. 3.1d). 

To test this idea on a realistic system, I designed a topological first-order linear differential 

equation solver for airborne audible acoustic signals. The topological ASP system is based on sonic 

topological insulators inspired by the SSH scheme, obtained from solid cylinders placed in a pipe of 

https://www.nature.com/articles/s41467-019-10086-3#Fig1
https://www.nature.com/articles/s41467-019-10086-3#Fig1


42 
 

square cross-section, as in Fig. 3.1c,d. The topological interface is designed to provide a resonant 

mode at 𝑓0 = 2254 𝐻𝑧, with 𝐴 = 1 and 𝑄 = 0.5 𝑓0, aiming at solving the differential equation 

𝑓′(𝑡) + 2𝜋𝑓(𝑡) = 2𝜋𝑔(𝑡). The transfer function of the system, calculated by three-dimensional 

full-wave finite-element calculations in the frequency domain, is compared to the target transfer 

function in Fig. 3.2 (green and dashed curves in the middle inset), revealing their perfect agreement. 

Now, consider an input signal 𝑔̂ (𝑡) with an arbitrarily chosen time envelope 𝑔(𝑡) to be injected 

into the waveguide (Fig. 3.2a, left). The corresponding output signal 𝑓 (𝑡) is then calculated by 

convoluting 𝑔̂ (𝑡) with the impulse response of the system, obtained from 𝐻(𝑓) (I also verified the 

results by direct simulations in the time domain). Comparing the envelope of the resulting output 

signal 𝑓(𝑡) (blue line) to the exact solution of the intended differential equation (dashed line) 

reveals that the topological ASP system is indeed solving the equation as sound propagates through 

the system. Now, I add some disorder to our equation solver by randomly shifting the position of 

the cylinders (average position shift is 18% of lattice period in any direction) and repeat the same 

procedure in the bottom panel of Fig. 3.2.  

 

 

Figure 3.3: Numerical demonstration of a trivial equation solver, based on resonance defect 

tunneling through a Bragg band gap. (Top) When no disorder is introduced to the system, it returns 

the solution of the ODE equation aimed at solving. However, as opposed to the topological case, 

when the system is disordered, the presence of disorder-induced localized states creates spurious 

peaks and shifts the transfer function of the system, which makes it deviate from the targeted 

transfer function (dashed line) [ 172].      

 

https://www.nature.com/articles/s41467-019-10086-3#Fig1
https://www.nature.com/articles/s41467-019-10086-3#Fig2
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It is observed that, despite the relatively large level of disorder, the transfer function 𝐻(𝑓) has been 

left almost unaffected. Hence, the corresponding output signal 𝑓(𝑡) still corresponds to the solution 

of the desired differential equation, confirming the high robustness of the proposed equation solver. 

To demonstrate that the much-sought robustness of the proposed topological equation solver is 

indeed linked to its topological nature, I repeat the analysis for a topologically trivial equation 

solver, which is based on a resonance induced by defect-tunneling through a Bragg band gap. As 

confirmed in Fig. 3.3, such resonating system is also capable of solving the first-order differential 

equation. The transfer function 𝐻(𝑓), and the output signal 𝑔̂(𝑡) is however severely affected when 

imparting imperfections of similar strength to the sample (position shifts have the same magnitude 

as that of topological case). This clearly affirms the superiority of topological ASPs over trivial 

ones. Notice that these observations remain true, regardless of the temporal shape of the input signal 

𝑔(𝑡). This is verified in the results of Figure. 3.4, in which I have considered a Gaussian-type time  

Figure 3.4: Demonstration of the proposed topological equation for a Gaussian type input signal, a, 

The topological equation solver works properly with or without position shift disorder. b, In 

contrast, the trivial equation solver only works properly in the absence of disorder [ 172]. 

 



44 
 

modulated signal as the excitation, and investigated the behavior of the topological (panel a) and 

trivial equation (panel b) solvers in the absence and presence of disorder.  

3.3 Symmetry protection of the proposed topological equation solver  

Since 1D topological phases are symmetry protected, these numerical results raise an 

important question: what is the underlying symmetry of the proposed system that protects its edge 

modes? In regular tight-binding SSH chains, made of evanescently coupled identical resonators 

with detuned hoppings 𝐾 and 𝐽 (Fig. 3.5a, top panel), the mid-gap edge mode occurring at a 

topological boundary is protected by chiral symmetry [ 30], and a transfer function based on 

tunneling through this edge mode is robust to disorder in the hoppings, as long as they are weak 

enough not to close the band gap. However, transmission is not robust to even small levels of on-

site disorder, which breaks chiral symmetry. This is exemplified in Figure 3.5a-c. Fig. 3.5a shows 

the mid-gap spectral transmission resonance associated with a perfectly ordered sample. Figure 3.5b 

shows the transfer function immunity to disorder in the couplings. Finally, Fig. 3.5c shows the large 

sensitivity of the transmission peak to arbitrarily small disorder in the resonance frequencies, which 

breaks the chiral symmetry. 

 The proposed multiple scattering system, albeit not based on evanescent coupling, behaves 

similarly. The transmission peak of the ordered sample (Fig. 3.5d) survives disorder shifts that do 

not close the band gap (Fig. 3.5e), but not disorder in the obstacle radii (Fig 3.5f). In order to 

explain these numerical observations, I investigate the topological properties and symmetry 

protection of the system under study in the following.  

The bulk crystal is one-dimensional with lattice constant 𝑎 and two obstacles per unit cell. I 

model it and define its topology using the transfer matrix  𝑀𝑐𝑒𝑙𝑙 of a unit cell. I start by defining the 

two scattering matrices 𝑆1 and 𝑆2, as the far-field scattering matrices of each obstacle when being 

alone in the monomode waveguide. These matrices relate the outgoing complex signals on the left 

(𝐿) and right (𝑅) sides of the scatterers 𝑏𝐿 and 𝑏𝑅 to the incident ones, 𝑎𝐿 and 𝑎𝑅 
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(
𝑏𝐿,𝑖
𝑏𝑅,𝑖
) = 𝑆𝑖 (

𝑎𝐿,𝑖
𝑎𝑅,𝑖
)                                                                                                                                           (3.2) 

For now, I do not make the assumption that the two matrices are equal: for instance, the cylinders 

could have different cross-sections, or be shifted with respect to each other, etc. These matrices also 

usually depend on the angular frequency 𝜔. Assuming conservation of energy during the scattering 

process, they must be unitary. We can therefore parametrize them very generally as 

 

Fig. 3.5: Effect of various defect types on the topological equation solver, a, A topological interface 

made from tight binding SSH chains (top). The transmission spectrum of the chain (bottom) shows 

a mid-gap resonance, which corresponds to the topological edge mode. b, Some disorder is added to 

the hopping amplitudes of the system (top), which preserve chiral symmetry. The bottom panel 

demonstrates the robustness of the transmission peak as the disorder strength (DS) is increased. c, 

Same as panel c except that the disorder is applied to the on-site potentials of the chain, hereby 

breaking chiral symmetry. The transmission peak is sensitive to arbitrarily weak disorder.  d,e,f, 

Same as a-c but for the proposed acoustic equation solver. The resonance line-shape of the edge 

mode is robust to the position movement of the rods inside the waveguide (panel e), which does not 

break the symmetry 𝑀𝑐𝑒𝑙𝑙
2 = 1. In contrast, detuning the radii of the obstacles breaks this property, 

and causes degradation in the performance of the equation solver (panel f) [ 172].  
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𝑆1 = (
𝑒𝑖𝜑1 cos 𝜃1 𝑒𝑖𝛼1 sin 𝜃1

−𝑒−𝑖𝛼1 sin 𝜃1 𝑒
𝑖Φ1 𝑒−𝑖𝜑1 cos 𝜃1 𝑒

𝑖Φ1
)                                                                                      (3.3) 

𝑆2 = (
𝑒𝑖𝜑2 cos 𝜃2 𝑒𝑖𝛼2 sin 𝜃2

−𝑒−𝑖𝛼2 sin 𝜃2 𝑒
𝑖Φ2 𝑒−𝑖𝜑2 cos 𝜃2 𝑒

𝑖Φ2
)                                                                                     (3.4) 

where the frequency dependent angles 𝜃1,2, 𝛼1,2, 𝜑1,2, and Φ1,2 are unique once we fix the reference 

plane, here at the central position of the scatterer. Assuming reciprocity (𝑆21 = 𝑆12), we must have 

2𝛼1,2 −Φ1,2 = 𝜋, which restricts us to three parameters per scattering matrix, allowing to write: 

𝑆1 = (
𝑒𝑖𝜑1 cos 𝜃1 𝑒𝑖𝛼1 sin 𝜃1
𝑒𝑖𝛼1 sin 𝜃1 −𝑒−𝑖𝜑1 cos 𝜃1 𝑒

2𝑖𝛼1
)                                                                                               (3.5) 

𝑆2 = (
𝑒𝑖𝜑2 cos 𝜃2 𝑒𝑖𝛼2 sin 𝜃2
𝑒𝑖𝛼2 sin 𝜃2 −𝑒−𝑖𝜑2 cos 𝜃2 𝑒

2𝑖𝛼2
)                                                                                               (3.6) 

One can then derive the associated transfer matrices 𝑀1 and 𝑀2, defined as 

(
𝑏𝑅,𝑖
𝑎𝑅,𝑖
) = 𝑀𝑖 (

𝑎𝐿,𝑖
𝑏𝐿,𝑖
)                                                                                                                                         (3.7) 

and obtains 

𝑀1 =

(

 
 

𝑒𝑖𝛼1

sin 𝜃1
−
𝑒−𝑖𝜑1𝑒𝑖𝛼1 cos 𝜃1

sin 𝜃1

−
𝑒𝑖𝜑1𝑒−𝑖𝛼1 cos 𝜃1

sin 𝜃1

𝑒−𝑖𝛼1

sin 𝜃1 )

 
 
                                                                               (3.8) 

𝑀2 =

(

 
 

𝑒𝑖𝛼2

sin 𝜃2
−
𝑒−𝑖𝜑2𝑒𝑖𝛼2 cos 𝜃2

sin 𝜃2

−
𝑒𝑖𝜑1𝑒−𝑖𝛼2 cos 𝜃2

sin 𝜃2

𝑒−𝑖𝛼2

sin 𝜃2 )

 
 
                                                                               (3.9) 

If the two scatterers are separated by a distance 𝑑 in a unit cell of lattice constant 𝑎, the total 

transfer matrix of the unit cell 𝑀𝑐𝑒𝑙𝑙 is the product: 

𝑀𝑐𝑒𝑙𝑙 = 𝑀𝑎−𝑑
2
𝑀2𝑀𝑑𝑀1𝑀𝑎−𝑑

2
                                                                                                                    (3.10) 
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with 

𝑀𝐿 = (
𝑒
𝑖𝜔𝐿
𝑐 0

0 𝑒−
𝑖𝜔𝐿
𝑐

)                                                                                                                                (3.11) 

where 𝐿 = 𝑑,
𝑎−𝑑

2
,   and 𝑐 is the phase velocity. One obtains, after taking the matrix product, 

𝑀𝑐𝑒𝑙𝑙(𝜔) = (
𝑀11(𝜔) 𝑀21

∗ (𝜔)

𝑀21(𝜔) 𝑀11
∗ (𝜔)

)                                                                                                            (3.12) 

with 

𝑀11(𝜔) = 𝑒
𝑖𝜔𝑎
𝑐 𝑒𝑖(𝑎1+𝑎2) csc 𝜃1 csc 𝜃2 + 𝑒

𝑖𝜔(𝑎−2𝑑)
𝑐 𝑒𝑖(𝜑1−𝜑2)𝑒−𝑖(𝑎1−𝑎2) cot 𝜃1 cot 𝜃2                  (3.13) 

𝑀21(𝜔) = −𝑒
𝑖𝜔𝑑
𝑐 𝑒𝑖𝜑2 𝑒𝑖(𝑎1−𝑎2)csc 𝜃1 cot 𝜃2−𝑒

−
𝑖𝜔𝑑
𝑐 𝑒𝑖𝜑1𝑒−𝑖(𝑎1+𝑎2) cot 𝜃1 csc 𝜃2                        (3.14) 

We will use the notation 𝑧∗ to denote the complex conjugate of 𝑧. Noting |𝜓⟩ = [𝑎, 𝑏]𝑇, with 𝑎 and 

𝑏 being the forward and backward complex field amplitudes at the entrance of the unit cell, the 

application of Bloch theorem yields the following eigenvalue problem, 

𝑀𝑐𝑒𝑙𝑙(𝜔)|𝜓⟩ = 𝑒
𝑖 𝑘𝐵𝑎|𝜓⟩                                                                                                                            (3.15) 

which we call the Bloch eigenproblem of the crystal. Note the nontrivial dependence of 𝑀𝑐𝑒𝑙𝑙(𝜔) 

on 𝜔. The most straightforward use of the above equation is the following way: for all values of 𝜔, 

one can diagonalize 𝑀𝑐𝑒𝑙𝑙(𝜔), and get two opposite values ±𝑘𝐵(𝜔) of the Bloch wavenumber in 

the first Brillouin zone, and resolve the band structure. Note that 𝑀𝑐𝑒𝑙𝑙 is not unitary and is non-

Hermitian, meaning that in general, the values ±𝑘𝐵(𝜔) are complex, allowing in principle for an 

infinite number of bands and bandgaps. Note further the difference with the standard tight-binding 

SSH model, which leads to a Hermitian eigenvalue problem that maps the Brillouin circle into the  
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Fig. 3.6: Comparison between the crystal band structures obtained from the semi-analytical model 

based on the transfer-matrix approach and from full-wave finite-element simulations [ 172]. 

 

space of 𝑆𝑈(2) matrices, and a clear topological classification of chiral symmetric systems via the 

winding number. Here, consistent with time-reversal symmetry [ 180] 𝑀𝑐𝑒𝑙𝑙(𝜔) ∈ 𝑆𝑈(1,1), a group 

of non-Hermitian matrices [ 180]. 𝑆𝑈(1,1) Hamiltonians are found, for instance, in PT-symmetric 

extensions of the SSH tight-binding model [ 182] where non-Hermiticity of the Hamiltonian 

originates from the absence of energy conservation. Here, 𝑀𝑐𝑒𝑙𝑙 is not a Hamiltonian, in the sense 

that its eigenvalues are not related to 𝜔, but to 𝑘𝐵, and the pseudo anti-Hermiticity of 𝑀𝑐𝑒𝑙𝑙 

(𝜎𝑧𝑀𝑐𝑒𝑙𝑙
† 𝜎𝑧 = −𝑀𝑐𝑒𝑙𝑙) is related to time-reversal symmetry. In Figure 3.6, I represent the band 

structure obtained from the transfer matrix approach, and compare it with the one obtained directly 

from full-wave simulations of the unit cell subjected to periodic boundary conditions (FEM 

method). To solve the transfer matrix eigenvalue problem, the dispersive parameters 𝜃1,2, 𝛼1,2 and 

Φ1,2, which depend on frequency, were extracted from FEM scattering simulations of a single 

obstacle in a waveguide. The distance between the two scatterers is taken to be 𝑑 =
𝑎

2
− 𝑒𝑝, with 

𝑒𝑝 = 2.8 𝑐𝑚 (“trivial” case) and 𝑎 = 23 𝑐𝑚. The rod diameter is 3.5 𝑐𝑚 and the width of the 

waveguide is 7 𝑐𝑚. The agreement between the two approaches validates the accuracy of the 
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multiple scattering model, in particular the underlying assumption of no near-field interactions 

between the obstacles in the crystal. To define the topology of the system in the next section, we 

first need to establish a few key properties of the unit cell transfer matrix. We start with general 

properties, before moving to more specific properties on a band or at degenerate points of the band 

structure. As a direct consequence of time-reversal symmetry [ 180], the transfer matrix of the 

system 𝑀𝑐𝑒𝑙𝑙 belongs to the group 𝑆𝑈(1,1) of matrices of the form 

𝑀𝑐𝑒𝑙𝑙 = (
𝛼 𝛽∗

𝛽 𝛼∗
)                                                                                                                                         (3.16) 

which is parametrized using the Pauli matrices as 

𝑀𝑐𝑒𝑙𝑙 = 𝛼𝑅𝜎0 + 𝛽𝑅𝜎𝑥 + 𝛽𝐼𝜎𝑦 + 𝑖𝛼𝐼𝜎𝑧                                                                                                    (3.17) 

Its eigenvalues, given by 𝜆± = 𝛼𝑅 ± 𝑖√𝛼𝐼
2 − 𝛽𝑅

2 − 𝛽𝐼
2 are real when 𝛼𝐼

2 < |𝛽|2, and complex 

otherwise. These eigenvalues are degenerate under the condition 𝛼𝐼
2 − 𝛽𝑅

2 − 𝛽𝐼
2 = 0, i.e. when the 

parameters 𝛽𝑅, 𝛽𝐼 and 𝛼𝐼 belong to a double cone in the (𝛽𝑅 , 𝛽𝐼, 𝛼𝐼) space. This cone is represented 

in the bottom panels of Figure 3.7. At the tip of the cone, one has 𝛽𝑅 = 𝛽𝐼 = 𝛼𝐼 = 0, meaning that 

𝑀𝑐𝑒𝑙𝑙 reduces to 𝑀𝑐𝑒𝑙𝑙 = 𝛼𝑅𝜎0. 

On a band, the matrix 𝑀𝑐𝑒𝑙𝑙 has a special form. Indeed, the Bloch eigenproblem implies that 

𝛼𝑅 ± 𝑖√𝛼𝐼
2 − |𝛽|2 = 𝑒𝑖 𝑘𝐵𝑎, from which follows that 

𝛼𝑅 = cos( 𝑘𝐵𝑎)                                                                                                                                            (3.18) 

and 

|𝛼|2 = 1 + |𝛽|2                                                                                                                                            (3.19) 

implying 𝛼𝐼
2 + 𝛼𝑅

2 = 1 + |𝛽|2, which is equivalent to 𝛼𝐼
2 = sin2( 𝑘𝐵𝑎) + |𝛽|

2, or 

𝛼𝐼 = ±√sin2( 𝑘𝐵𝑎) + |𝛽|2                                                                                                                        (3.20) 

On a band, we therefore have  
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𝑀𝑐𝑒𝑙𝑙 = (
cos( 𝑘𝐵𝑎) ± 𝑖√sin2( 𝑘𝐵𝑎) + |𝛽|2 𝛽∗

𝛽 cos( 𝑘𝐵𝑎) ∓ 𝑖√sin2( 𝑘𝐵𝑎) + |𝛽|2
)                    (3.21) 

As a result, a band describes a one-to-one mapping from the Brillouin circle onto a closed path 𝒞 in 

the subspace of 𝑆𝑈(1,1) matrices 𝑀𝑐𝑒𝑙𝑙(𝑘𝐵) with the above form. From the Bloch eigenvalue 

problem 𝑀𝑐𝑒𝑙𝑙(𝜔)|𝜓⟩ = 𝑒
𝑖 𝑘𝐵𝑎|𝜓⟩, one deduces that on a band, 𝑀𝑐𝑒𝑙𝑙(𝜔) has complex eigenvalues, 

meaning that 𝛼𝐼
2 > |𝛽|2, i.e. the path 𝒞 must be inside the cone, either in the upper region 𝛼𝐼 > |𝛽|, 

or the lower one 𝛼𝐼 < −|𝛽|. In addition, the path 𝒞 can only touch the cone whenever the 

eigenvalues of 𝑀𝑐𝑒𝑙𝑙, namely 𝑒𝑖 𝑘𝐵𝑎, are degenerate. This is necessarily the case at the edges of the 

Brillouin zone (𝑘𝐵 = ±
𝜋

𝑎
), and at its center  𝑘𝐵 = 0. In between, 𝒞 cannot touch the cone, since two 

distinct eigenvalues 𝑒±𝑖 𝑘𝐵𝑎 must be found, by virtue of time-reversal symmetry. Finally, the path 𝒞 

is not a loop, but a simple line, since 𝑀𝑐𝑒𝑙𝑙 is a simple function of 𝜔, and therefore is the same for 

two opposite values of  𝑘𝐵 on a band: it starts on the cone at 𝑘𝐵 = −
𝜋

𝑎
 and lands on it again 𝑘𝐵 = 0, 

before following the reverse path between 𝑘𝐵 = 0 and 𝑘𝐵 =
𝜋

𝑎
. Figure 3.7a represents an example of 

𝒞 contour for the third band of Figure 3.6 (supposedly topologically “trivial” case, with 𝑒𝑝 =

2.8cm), and Figure 3.7c represents the same contour for 𝑒𝑝 = −2.8cm, corresponding to the dual 

system, which is supposedly topological (the topological properties will be proven in the next 

section). Figure 3.7b represents the case 𝑒𝑝 = 0 that closes the band gaps. As expected, in all cases 

the contour starts and ends on the cone. 

To study the conditions under which two consecutive frequency bands can touch, it is 

convenient to recast the Bloch eigenproblem into the equivalent form: 

𝑒−𝑖 𝑘𝐵𝑎𝑀𝑐𝑒𝑙𝑙(𝜔)|𝜓⟩ = |𝜓⟩                                                                                                                         (3.22) 

and think of it as follows: for each 𝑘𝐵 in the first Brillouin zone, finding the bands means finding 

the values of 𝜔 for which the matrix 𝑒−𝑖 𝑘𝐵𝑎𝑀𝑐𝑒𝑙𝑙 has at least one eigenvalue equal to one, with the 

corresponding eigenvector being the Bloch eigenvector on that particular band. This can happen for 

infinitely many values of 𝜔. If both eigenvalues of 𝑒−𝑖 𝑘𝐵𝑎𝑀𝑐𝑒𝑙𝑙 at a given frequency are equal to 
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one, the band structure is doubly degenerate, which is therefore the maximum frequency 

degeneracy allowed by the system. Since the general form of the eigenvalues of  𝑒−𝑖 𝑘𝐵𝑎𝑀𝑐𝑒𝑙𝑙 on a 

band are 𝜐± = 𝑒
−𝑖 𝑘𝐵𝑎 (𝛼𝑅 ± 𝑖√𝛼𝐼

2 − |𝛽|2) = 𝑒−𝑖 𝑘𝐵𝑎𝑒±𝑖 𝑘𝐵𝑎, the second eigenvalue 𝑒−2𝑖 𝑘𝐵𝑎 can 

only become equal to unity at the Brillouin zone edges (𝑘𝐵 = ±
𝜋

𝑎
), or at 𝑘𝐵 = 0. As a consequence, 

band gaps can only close at the center or edge of the Brillouin zone, i.e.  when the contour 𝒞 

touches the cone. 

Assuming the first case, i.e. a degeneracy at  𝑘𝐵 = ±
𝜋

𝑎
, one has 𝑒−𝑖 𝑘𝐵𝑎 = −1. We obtain, at 

the particular frequency of the degeneracy, 

𝑒−𝑖 𝑘𝐵𝑎𝑀𝑐𝑒𝑙𝑙 = (
1 ∓ 𝑖|𝛽| −𝛽∗

−𝛽 1 ± 𝑖|𝛽|
)                                                                                                     (3.23) 

and this matrix can only be equal to identity if |𝛽| = 0. The second case of degeneracy at 𝑘𝐵 = 0 

leads to the same conclusion (|𝛽| = 0). This means that when two bands touch, the contour 𝒞 is 

reaching the tip of the cone, as confirmed by Figure 3.7b. 

 

Figure 3.7: Band structure and associated contours 𝒞 for the third band as the system goes through a 

topological phase transition [ 172]. 
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As discussed previously, each band defines a mapping between the Brillouin circle and a 

subspace of 𝑆𝑈(1,1) matrices. We now define a topological invariant for each band, i.e. an integer 

quantity that is invariant upon continuous transformations of the band structure. This means that 

this number can only change when the band undergoes a discontinuous transformation, i.e. touches 

another one, or equivalently when the contour 𝒞 touches the tip of the cone. 

Like in the standard tight-binding SSH model, we need an extra symmetry, akin to chiral 

symmetry, to be able to define topological invariants on each band. Here we need to require that the 

scattering matrices  𝑆1 and 𝑆2 are equal, taking 𝜃1 = 𝜃2 = 𝜃, 𝛼1,2 = 𝛼1,2 = 𝛼 and 𝜑1 = 𝜑2 = 𝜑. 

With this extra condition, the quantity 𝛽 = 𝑀21(𝜔(𝑘𝐵)) in (3.14), that parametrizes the matrix 

𝑀𝑐𝑒𝑙𝑙 on a band, becomes 

 

Figure 3.8: Vertical shifts negligibly affect the scattering parameters of the obstacle in the 

frequency range of interest, effectively preserving the symmetry 𝑀𝑐𝑒𝑙𝑙
2 = 1 [ 172]. 

 

𝛽(𝑘𝐵) = −2𝑒
𝑖(𝜑−𝛼) cos (𝛼 +

𝜔(𝑘𝐵)𝑑

𝑐
) cot 𝜃 csc 𝜃                                                                            (3.24) 
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where the quantities 𝛼, 𝜃 and 𝜑 that parametrize the 𝑆 matrix of a single obstacle generally depend 

on 𝜔(𝑘𝐵). We then assume the case of non-resonant scatterers, meaning that cos 𝜃 does not vanish 

on the band, and the variation of 𝛼 and 𝜃 on the band are weak. Then, 𝜔(𝑘𝐵) is necessarily 

monotonous between −𝜋/𝑎 and 0. Let us focus our attention to the quantity cos (𝛼 +
𝜔(𝑘𝐵)𝑑

𝑐
), 

which can potentially make the complex number 𝛽(𝑘𝐵) vanish at some particular point of the 

Brillouin zone. When 𝑘𝐵 goes from  −𝜋/𝑎 to 0, the angle 𝛾 = 𝛼 +
𝜔(𝑘𝐵)𝑑

𝑐
 moves monotonically 

between two real values, say 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥, defining a continuous monotonous mapping between 

[−
𝜋

𝑎
, 0] to [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥]. Now, two situations can arise:  

1) The segment [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥] does not contain 𝜋/2 (modulo 𝜋), in which case cos (𝛼 +
𝜔(𝑘𝐵)𝑑

𝑐
) 

never vanishes as 𝑘𝐵 go from −𝜋/𝑎 to 0. This means that 𝛽 never vanishes on the band. 

2) The segment [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥] contains 𝜋/2 (modulo 𝜋), in which case 𝛽 vanishes at least once on 

the band.  

Since 𝛽 = 0 means that the contour 𝒞 crosses the cone axis, we can therefore define a topological 

invariant 𝜂 in the following way: We can count the number of times 𝜂 that 𝒞 crosses the cone axis 

as 𝑘𝐵  go from −𝜋/𝑎 to 0. This integer number changes each time 𝛾𝑚𝑎𝑥 or 𝛾𝑚𝑖𝑛 equals 𝜋/

2 (modulo 𝜋), i.e. when 𝛽 is zero either at the edge or center of the Brillouin zone, i.e. when a band 

gap closes. Figure 3.7 shows how the contour 𝒞 evolves for the third band of our system, when one 

goes from the trivial regime (panel a, 𝒞 does not cross the cone axis, 𝜂 = 0) to the topological one 

(panel c, 𝒞 crosses the cone axis, 𝜂 = 1). At the topological phase transition, the contour 𝒞 touches 

the tip of the cone, which closes the band gap, and the number 𝜂 is not defined. 

The definition of the topological invariant  𝜂 as the number of times the contour 𝒞 crosses the cone 

axis between −𝜋/𝑎 to 0 is based on two underlying symmetries, and both must be fulfilled: 

1) Time-reversal symmetry, which guarantees that 𝑀𝑐𝑒𝑙𝑙 belongs to 𝑆𝑈(1,1) [ 180]. 
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2) Equality of 𝑆1 and 𝑆2 (the far-field individual scattering matrices of both obstacles must be 

identical), or equivalently: 

𝑀𝑐𝑒𝑙𝑙
2 = 1                                                                                                                                                        (3.25) 

Obviously, horizontal position disorder does not change the individual scattering parameters of the 

object. In addition, vertical position disorder does not change it either, at least in this frequency 

range, as demonstrated in Figure 3.8 (the only difference in the scattering spectrum are very sharp 

Fano interferences occurring from coupling to an acoustic bound state in the continuum, but they 

are far from the frequency range of interest). As a consequence, position disorder does not break 

𝑀𝑐𝑒𝑙𝑙
2 = 1. However, changing the diameter of one rod definitely changes its scattering matrix. 

What happens in the case of rods with different radii is that the real and imaginary part of the 

quantity 

𝛽(𝑘𝐵) = −𝑒
𝑖𝜔(𝑘𝐵)𝑑

𝑐 𝑒𝑖𝜑2 𝑒𝑖(𝑎1−𝑎2)csc 𝜃1 cot 𝜃2−𝑒
−
𝑖𝜔(𝑘𝐵)𝑑

𝑐 𝑒𝑖𝜑1𝑒−𝑖(𝑎1+𝑎2) cot 𝜃1 csc 𝜃2             (3.26) 

are never simultaneously zero, which implies that the contour 𝒞 can avoid crossing the cone axis by 

simply going around it. This is analogous to an SSH chain without chiral symmetry, where some 

properly-chosen chirality-breaking defects at an interface can change the winding number without 

closing the band gap. These results explain the outcome of the full-wave simulations presented in 

the previous section. 

3.4 Experimental demonstration of topological equation solver  

Based on the theoretical findings discussed in section 3.2, I built a prototype of the 

topological equation solver (Fig. 3.9a, top signal path). The prototype consists of an acrylic square 

tube taking the role of the acoustic waveguide. Nylon 6 continuous cast cylinders were then 

manually inserted into the waveguide to form the SSH-type array. I first performed a frequency-

domain measurement to obtain the transfer function of the system, 𝐻(𝑓), by exciting the waveguide 

with pseudo-random noise and recording the transmitted pressure with a microphone. The graph in 

the middle inset represents the magnitude of the measured transfer function (green curve) compared  
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Figure 3.9: Experimental demonstration of a robust topological differential equation solver. a, The 

topological equation solver is indeed found to be immune to the shits in rods position. b, Very 

differently, the trivial equation solver is severely affected by disorder. The parameters of the linear 

differential equation are chosen to be 𝛼 = 2.7𝜋, 𝛽 = 10𝜋/3, and the position disorder has the same 

strength in both cases [ 172]. 

 

to what I got from the numerical simulations (gray curve). As it is seen, the transfer function has a 

peak near the resonance frequency of the topological edge mode, which corresponds to the 

resonance parameters 𝐴 = 0.87 and 𝑄 = 0.03𝑓0, or differential equation parameters 𝛼 = 2.7𝜋, 

𝛽 = 10𝜋/3. I next switch to a direct time-domain experiment and inject the same arbitrary input 

signal 𝑔̂(𝑡) as in simulation into the waveguide. Comparing the measured transmitted pressure 

𝑓(𝑡).(blue line) with the exact solution of the corresponding differential equation (dashed line) 

confirms the proper functioning of the equation solver. To probe its stability, I then randomly move 

the cylindrical scatterers and repeat the same procedure (Fig. 3.9a, bottom signal path). It is noticed 

that, the topological ASP is still perfectly functional despite these large shifts.  

https://www.nature.com/articles/s41467-019-10086-3#Fig4
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Figure 3.10: Experimental demonstration of the fabricated topological equation solver for a 

Gaussian type input signal. The figure repeats the results of Fig. 3.9 in the case of a Gaussian input 

signal. a, The topological equation solver works properly with or without position shift disorder, 

offering a strong stability. b, In contrast, the trivial equation solver only works properly in the 

absence of disorder [ 172]. 

 

This exceptional property is strikingly highlighted when we compare the measured output 

signal from the topological equation solver with that measured at the output of its trivial counterpart 

in the presence of disorder of similar strength (Fig. 3.9b). Very different from the topological 

processor, the signal coming out of the trivial processor is completely distorted, which clearly 

validates the superior robustness of topological ASP systems. In Fig. 3.10, I have repeated the 

measurement for another type of excitation signal, namely a Gaussian-type sinusoidal pulse 

modulated at 𝑓0. 

 

 

https://www.nature.com/articles/s41467-019-10086-3#Fig4
https://www.nature.com/articles/s41467-019-10086-3#Fig4
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Figure 3.11: Photonic topological computer, a, A SSH array of silicon rods is implemented inside a 

metallic microwave waveguide. b, Band structure of the trivial (left) and non-trivial (right) semi-

infinite crystals. c, Profile of the edge mode appearing at the interface between the trivial and non-

trivial crystals. d, Upon exciting the edge mode, a topological resonance appears in the transmission 

spectrum of the waveguide [ 172].  

 

3.5 Photonic topological equation solver  

The idea of topological analog signal processing discussed in the previous sections can be 

readily transferred to other areas of classical physics. Here, as an instance, I describe the extension 

of the proposed acoustic equation solver to photonics and electromagnetics. Consider a SSH array 

of silicon rods placed inside a metallic rectangular waveguide whose width and height are 20 cm 

(Fig. 3.11a). Fig. 3.11b plots the band structure of the trivial (left) and topological (right) semi-

infinite crystals. Through a topological phase transition, a topological edge mode appears at the 

interface between the two crystals whose profile is depicted in Fig. 311c.  
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Figure 3.12: Demonstration of a topological microwave equation solver, a, A Gaussian (𝜎 =

1 𝑀𝐻𝑧) input signal (left panel) modulated at 𝑓0 is applied to the proposed topological resonator 

with the transfer function 𝐻(𝑓) (middle panel). The envelope of the output signal 𝑓(𝑡) (right panel) 

is the solution of a first order ODE. b, Same as panel a except that some disorder is added to the 

system. The proposed equation solver provides a strong stability against position disorder [ 172].  

 

Upon its excitation, this topological edge mode creates a resonance in the transmission of 

the waveguide (Figs. 311d) at the frequency of 𝑓0 = 1.279 𝐺𝐻𝑧. The resonance lineshape can be 

well estimated with the following transfer function of Eq. 3.1 for 𝐴 = 2.8 × 105 and 𝑄 = 1.78 ×

10−6𝑓0, which corresponds to a first order ODE in time domain, as it was explained.  

Now consider a Gaussian type (𝜎 = 1 𝑀𝐻𝑧) input signal 𝑔(𝑡) modulated at the carrier 

frequency 𝑓0 (Fig. 3.12a, left panel). Applying the transfer function 𝐻(𝑓) (middle panel) to the 

input signal, one obtains the corresponding output signal 𝑓(𝑡) (right panel), whose envelope is 

indeed the solution of the differential equation intended to be solved (dashed black line).  Fig. 3.12b 

repeats the same analysis when some disorder is added to the sample by randomly moving the 

silicon rods. It is observed that, despite the large level of the disorder, neither 𝐻(𝑓) nor 𝑓(𝑡) has 

significantly changed, confirming the high stability of the proposed equation solver.   

3.6 Towards second-order differential equation solving  

The topological equation solver demonstrated in the previous section is capable of solving 

only one specific equation, depending on the quality factor of the resonating edge mode. More 

specifically, the quality factor of the resonance mode of the SSH array determines the constant 

coefficients of the ODE solved by the proposed topological differential equation solver. In this 
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section, I first discuss how the proposed topological equation solver can be tailored to solve first 

order ODEs with different constant coefficients. Then, I discuss the possibility of solving 

differential equations of second orders by constructing a network of first order ODE solvers of 

different kinds. 

I propose three different approaches for controlling the coefficients of the ODE solved by 

the equation solver.  The first and easiest way to do so is to increase the dissipation losses of the 

system, so as to change the quality factor of the topological resonating state. Consider again the 

SSH array of cylindrical obstacles (Fig. 3.13a) used to solve the desired equation. Previously, I had 

neglected the dissipation losses. Now I increase the dissipation losses a little bit and plot the 

resulting transfer function in Fig. 3.13b. It is observed that, as expected, the total quality factor of 

the resonance has been decreased with respect to the lossless case. The new transfer function of the 

system can be well estimated with (𝑓) = 1 (𝑗(𝑓 − 𝑓0) + 2)⁄  , which corresponds to an ODE of the 

form 𝑓′(𝑡) + 4𝜋𝑓(𝑡) = 2𝜋𝐴𝑔(𝑡).    

Figure 3.13: An approach to control the coefficient of the first order ODE solver by the proposed 

topological equation solver: The transfer function of the equation solver is changed by increasing 

the dissipation losses of the system [ 172]. 

 

 

Figure 3.14: Another approach to control the coefficient of the first order ODE solver, based on 

detuning the hopping distances of the SSH array [ 172].  
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Figure 3.15: Another approach to control the coefficient of the first order ODE solved. The transfer 

function of the equation solver is changed by removing some of the scatterers of the array [ 172]. 

 

 

The second approach to control the quality factor of the topological resonance is to change 

the distances between the cylinders. Fig. 3.14a and b represent how the transfer function of the 

system changes from  𝐻(𝑓) = 1 (𝑗(𝑓 − 𝑓0) + 1)⁄  to 𝐻(𝑓) = 1 (0.5𝑗(𝑓 − 𝑓0) + 1)⁄  when moving 

from a SSH array with largely detuned array to a less deformed one. The ODE corresponding to this 

case has the form of 𝑓′(𝑡) + 4𝜋𝑓(𝑡) = 4𝜋𝐴𝑔(𝑡). 

The third approach is to increase or decrease the number of unit cells of the SSH array. 

Obviously, a smaller number of unit cells gives rise to a topological resonance with a broader line-

width (or smaller quality factor). This is evident from the results of Fig. 3.15a and b, where the 

transfer function of the system is changed from 𝐻(𝑓) = 1 (𝑗(𝑓 − 𝑓0) + 1)⁄   to  𝐻(𝑓) =

1 (0.125𝑗(𝑓 − 𝑓0) + 1)⁄   as a result of decreasing the number of unit cells from 3 to 2. The ODE 

corresponding to the latter case will be of the form 𝑓′(𝑡) + 16𝜋𝑓(𝑡) = 16𝜋𝐴𝑔(𝑡). Notice that, 

employing a combination of these three approaches, allows one to have a wide control over the 

constant coefficient of the ODE solved by the equation solver. 

A straightforward strategy to implement a higher order topological equation solver would be 

constructing a network of first order ODE solvers corresponding to different transfer functions. 

Suppose, for instance, that we want to solve the second order differential equation 𝑓′′(𝑡) +

6𝜋𝑓′(𝑡) + 8𝜋2𝑓(𝑡) = 4𝜋2𝑔(𝑡), which corresponds to the transfer function 𝐻(𝑓) = 1/(2 +

3𝑗(𝑓 − 𝑓0) − (𝑓 − 𝑓0)
2). Using partial fraction decomposition, one can then write 𝐻(𝑓) = 𝐻1(𝑓) −

𝐻2(𝑓), with 𝐻1(𝑓) = 1/(1 + 𝑗(𝑓 − 𝑓0)) and 𝐻2(𝑓) = 1/(2 + 𝑗(𝑓 − 𝑓0)). It follows that in order to 
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solve the desired second order differential equation, we can realize two (first order) equation solver 

with the transfer functions 𝐻1(𝑓) and 𝐻2(𝑓) and subtract their output signals, as conceptually 

sketched in Fig. 3.16. In order to implement the configuration shown in this figure, I first need to 

realize an acoustic rat-race coupler, being capable of adding or subtracting two acoustic signals to 

or from each other.  

 

Figure 3.16: Implementation of a second order ODE solver by adding/ subtracting the output signals 

of two first order ODE solvers [ 172].  

 

3.7 Acoustic rat-race coupler 

In this section, I demonstrate, both theoretically and experimentally, the acoustic rat race 

coupler mentioned in the previous section, capable of adding or subtracting or two signals to or 

from each other in a fully analog fashion. The coupler works on the basis of constructive and 

destructive interferences between clockwise and counterclockwise acoustic modes of a ring 

resonator.  The geometry of the proposed rat-race coupler is represented in Fig. 3.17. It consists of 

four ports placed around one half of a ring resonator at 0, 60, 120 and 180 degrees. The distance 

between the ports at the frequency of optimal operation is 𝜆0/4, while the total ring circumference 

is 3𝜆0/2. To gain some intuitive insight into the working principle of the structure, let us assume 

that an incident sound wave (with amplitude of 𝑎0) is fed into port 1. The injected wave can couple, 

with a coupling coefficient of 𝜅 for instance, to the clockwise and counterclockwise modes of the 

ring. These clockwise and counterclockwise waves excite outgoing signals at ports 2 and 3 with the 

same phase, while their interference is destructive at port 4. Therefore, their superposition gives rise 

to a zero pressure field at port 4, and a pressure phasor of −2𝑗𝜅𝑎0 at ports 2 and 3.  
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Figure 3.17: Acoustic rat-race coupler, consisting of four ports placed around one half of a ring 

resonator at 0, 60, 120 and 180 degrees [ 174]. 

 

Similarly, when the rat-race is excited from port 2, the clockwise and counter-clockwise modes 

interfere with each other destructively at port 3 while their constructive interferences leads to the 

pressure phasors of −2𝑗𝜅𝑎0 and 2𝑗𝜅𝑎0 at ports 1 and 4, respectively. Following the same line of 

thoughts for the other two ports, one can obtain the scattering matrix of the four-port device as 

𝑆 = −2𝑗𝜅 [

0 1
1 0

1 0
0 −1

1 0
0 −1

0 1
1 0

]                                                                                                                   (3.27) 

Notice that, in our analysis, we have assumed that the sound injected into the ports does not reflect 

back when reaching the junction. This assumption holds true whenever the characteristic impedance 

of the ring is √2 times that of the arms. It should be further underlined that the unitary condition for 

the scattering matrix  𝑆 implies 𝜅 = 1 2√2⁄ . Hence, the scattering matrix 𝑆 becomes 

𝑆 = −𝑗/√2 [

0 1
1 0

1 0
0 −1

1 0
0 −1

0 1
1 0

]                                                                                                                 (3.28) 
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Fig. 3.18: Demonstration of the acoustic rat-race coupler. a, An input sound wave is injected into 

port 1 and the corresponding pressure profile is calculated using full-wave numerical simulations. 

The wave is transmitted, with same phase and amplitude, to ports 2 and 3 while port 4 is isolated. b, 

Variation of the scattering parameters versus frequency. The scattering parameters 𝑆21 and 𝑆31 

become exactly equal at the frequency of desire 𝑓0, whereas 𝑆41 drops to zero at this frequency. 

c,d,e, Same as panel a except that the structure is excited from ports 2, 3, 4, respectively [ 174].  

 

From the obtained scattering matrix, it is can be inferred that, while all ports are connected to each 

other through the ring, one of them is always isolated from the others. It is also instructive to 

underline that, according the obtained scattering matrix, when ports 2 and 3 are simultaneously 

excited, the sum of these two input fields appears at port 1, while the received signal at port 4 is 

their difference. In this regard, ports 1 and 4 are sometimes known as sum and difference ports, 

respectively, while the two other ports are referred to as collinear arms in the literature. In order to 

examine the proper performance of the proposed device, I performed full-wave finite-element 

numerical simulations of a realistic junction, assuming that it is excited from port 1 with a time-

harmonic plane wave of unit amplitude at the wavelength 𝜆0=15.3 cm, which corresponds to the 

resonance frequency of the system. The acoustic pressure distribution (snapshot in time) is shown in 

Fig. 3.18a. As expected, the input power couples out to ports 2 and 3, whereas the outgoing signal 

at port 4 is zero. Notably, the transmitted fields to waveguides 2 and 3 are out of phase with respect  
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Fig. 3.19: Experimental demonstration of the acoustic rat-race coupler a, Experimental setup used to 

evaluate the functionality of the fabricated rat-race coupler. b, Magnitude (left) and phase (right) of 

the corresponding transfer functions when the rat race is excited from port 2. c, Same as panel b 

except that the excitation is placed at port 1. The experimental results are consistent with our 

numerical findings [ 174].   

 

to the input signal, consistent with the scattering matrix of Eq. 3.28. The incident power is divided 

equally between ports 2 and 3. For further assertion, I calculated the frequency spectrum of the 

magnitude of the scattering parameters and plot them in Fig. 3.18b. As seen in the figure, 𝑆21 and 

𝑆31  become exactly equal at 𝑓0 =
𝑐
𝜆0⁄

, whereas 𝑆41 goes to zero at this frequency. In order to fully 

prove the proper functioning of the device, I also investigate the cases of excitation at other ports. 

Figs. 3.18c, d and e report the corresponding pressure field distributions when ports 2, 3, and 4 are 

excited, respectively. The obtained field patterns are in perfect agreement with the scattering matrix 

derived for the system.   

I built a prototype of such a coupler and evaluated its functionality using the experimental 

setup shown in Fig. 3.19a. To probe the scattering behavior of the fabricated structure, I first excite 

the rat-race from port 2 with a loudspeaker driven by a burst noise voltage, and measure the amount 

of pressure at ports 1, 3 and 4. Insets of Fig. 3.19b depict the magnitude (left) and phase (right) of 
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the resulting transfer functions versus frequency. It is clear that, near the resonance frequency of the 

rat-race coupler 𝑓0 the parameters 𝐻42 and 𝐻12 become identical in magnitude but are opposite in 

phase. One further notices that, as expected, 𝐻32 approaches zero at this frequency. I next put the 

loudspeaker at port 1 and measure the magnitude (Fig. 3.19c, left) and phase (Fig. 3.19c, right) of 

the corresponding transfer functions 𝐻𝑖1 (𝑖 = 2,3,4). It is obvious that 𝐻21 and 𝐻31 have the same 

magnitude and phase over a relatively large frequency range around 𝑓0 (grey area), whereas 𝐻41 is 

close to zero within this frequency range. These experimental results are consistent with our prior 

numerical findings.   

3.8 Realization of a second-order differential equation solver 

As I already explained, one way to realize a second order differential equation solver is to 

subtract the output signals from two independent first order ODE solvers. This is accomplished in 

an analog way in Fig. 3.20, where 𝐻1(𝑓) and 𝐻2(𝑓) are realized using two different topological 

first order systems with tailored dissipation losses. The analog subtraction operation is realized with 

the acoustic rat-race coupler demonstrated in the previous section. Full-wave simulations involving 

the full geometry with the two-pipes and the rat-race coupler demonstrate that 𝐻(𝑓) is properly 

implemented. Hence, when an input signal, 𝑔̃(𝑡), say for example with a Gaussian envelope, is 

applied to the system, the envelope 𝑓(𝑡) of the output signal follows the exact solution of the target 

differential equation. This is confirmed by direct FDTD simulations.  

The experimental demonstration of topological second-order differential equation solving is 

provided in Fig. 3.21. I designed two first-order differential equation solvers connected to each 

other via our 3D-printed acoustic rat-race coupler. The two first-order ODE solvers are tuned to 

solve the second order ODE by adjusting the level of transmission losses using sound absorbing 

melamine foam. I then simultaneously excited both waveguides with the input signal 𝑔̃(𝑡), and 

measured the output 𝑓(𝑡). As seen in the figure, excellent agreement exists between the measured 

output signal envelope 𝑓(𝑡) (solid blue line) and the expected exact solution of the corresponding 

second order differential equation (dashed line).  
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Figure 3.20: Robust resolution of a second-order differential equation by subtracting the output 

signals of two first order ODE solvers. The signal subtraction is realized with a rat-race. The bottom 

panels represent full-wave numerical simulations of the complete 3D structure in the case of a 

Gaussian pulse input, demonstrating that the targeted signal processing task is indeed performed by 

the system [ 172].    

 

 

Figure 3.21: Experimental demonstration of second order topological ODE solving. The measured 

output signal envelope (f(t), purple lines) is found to be in perfect agreement with both the 

numerical simulation (gray) and with the exact solution of the corresponding second-order 

differential equation (dashed line) [ 172].  

  

3.9 Higher-order topological differential equation solvers 

The technique described in section 3.8 can easily be extended to the resolution of 

differential equations of arbitrary order. To clarify this, consider a differential equation of order nth 

of the form 
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𝑓𝑛(𝑡) + 𝐵𝑛−1𝑓
𝑛−1(𝑡) + ⋯+ 𝐵1𝑓

′(𝑡) + 𝐵0𝑓(𝑡) = 𝐴𝑔(𝑡)                                                                                (3.29) 

By taking Fourier transform of both sides of equation, one obtains the following expression 

for the transfer function 

𝐻(𝑓) =
𝐴 (2𝜋)𝑛⁄

(𝑗(𝑓 − 𝑓0)
𝑛) + 1 2𝜋⁄ 𝐵𝑛−1(𝑗(𝑓 − 𝑓0))

𝑛−1
+. . + 1 (2𝜋)𝑛−1⁄ 𝐵1(𝑗(𝑓 − 𝑓0)) + 1 (2𝜋)

𝑛𝐵0⁄
       (3.30) 

which can again be decomposed into partial fractions as 

𝐻(𝑓) =∑𝐻𝑖(𝑓)

𝑛

𝑖=1

                                                                                                                                                        (3.31) 

where  

𝐻𝑖(𝑓) =
𝐴𝑖

𝑗(𝑓 − 𝑓0) + 𝑓0/2𝑄
; 𝑖 = 1,2, … , 𝑛                                                                                                            (3.32) 

where 𝑄𝑖 = −𝑓0/2𝑃𝑖, in which 𝑃𝑖 are the complex poles of the following nth order polynomial  

𝑥𝑛 + (
1

2𝜋
)𝐵𝑛−1𝑥

𝑛−1 +⋯(
1

2𝜋
)
𝑛−1

𝐵1𝑥
 + (

1

2𝜋
)
𝑛

𝐵0                                                                                       (3.33) 

and 𝐴𝑖 is of the form 

𝐴𝑖 =

𝐴
(2𝜋)𝑛

(𝑥 − 𝑃𝑖)

𝑥𝑛 + (
1
2𝜋)𝐵𝑛−1𝑥

𝑛−1 +⋯(
1
2𝜋)

𝑛−1

𝐵1𝑥
 + (

1
2𝜋)

𝑛

𝐵0

|𝑥 = 𝑃𝑖                                                               (3.34) 

Eqs. 3. 31 and 3.32 suggest a straightforward approach to solve a differential equation of nth order: 

one has to first realize (first order) differential equation solvers corresponding to the transfer 

functions, and then add (or subtract) their output signals using rat race couplers. This is 

accomplished in the configuration shown in Fig. 3.22. 
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Figure 3.22: Realizing higher order topological ODE solvers: The output signals of n different first order 

ODE solvers are subtracted using rat race couplers. The overall transfer function of the system 𝐻(𝑓) 

corresponds to the transfer function of the nth order ODE [ 172].  

 

3.10 Alternative strategies for realizing higher order ODE solvers  

There exists alternative strategies for realizing topological equation solvers solving more 

complex, higher order ODEs. For example, one may consider cascading two or more SSH chains, 

allowing their topological edge modes to couple to each other, as I demonstrate below.  

Shown in Fig. 3.23a (top) is two cascaded SSH arrays, each of which supports a topological 

edge mode (resonating at 𝜔0with some decay rate of γ for example) at its phase transition boundary. 

Assuming the coupling coefficient between the two topological edge modes to be 𝜗, for example, 

the transfer function of the overall chain then reads  

𝐻(𝜔) =
1

−(𝜔 − 𝜔0)2 + 2𝑗𝛾(𝜔 − 𝜔0) + 𝜗2 − 𝛾2
                                                                               (3.35) 

which is nothing but the transfer function associated with a second order ODE. Fig. 3.23a (bottom) 

represents the transfer function of the coupled SSH chain under investigation, calculated by means 

of standard tight binding formalism. The obtained transmission coefficient can be fitted by the 

theoretical relation given in Eq. 3.35. To assess the robustness of such a topological filter, I add 

some disorder to the coupling coefficients between the resonators, and plot in Fig. 3.23b the 

evolution of the (averaged) transfer function versus disorder strength. It is apparent that the filter 

response is affected very minorly by the disorder. To make a comparative case, I couple two trivial 

resonating defect modes, forming at the boundaries between crystals with opposite on-site potential  
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Figure 3.23: Demonstration of a second-order topological pass-band filter, a, Two SSH chain are 

coupled to each other. The transfer function of the whole chain can be approximated by the 

theoretical relation given in Eq. 3.35, corresponding to a second-order pass band filter. b, Evolution 

of the transfer function of the chain, averaged over 20 different realizations of disorder (applied to 

the hopping amplitudes), versus disorder strength. c,d, Same as a,b but for a trivial filter [ 172].   

 

organizations, as shown in Fig. 3.23c. This also gives rise to the transfer function of a second order 

band-pass filter, which is trivial. Inset of Fig. 3.23d manifests the extreme sensitivity of such a 

topologically trivial filter to the applied disorder (note that we have used same type and amount of 

disorder in both trivial and topological cases).  

Note that the system under investigation can be treated as a second order equation solver as well. 

More specifically, the transfer function given in Eq. 3.35 corresponds to the following second-order 

ODE in time domain 

𝑑2𝑓(𝑡) 𝑑𝑡2⁄ + 2𝛾 𝑑𝑓 𝑑𝑡⁄ + (𝜗2 − 𝛾2)𝑓(𝑡) = 𝑔(𝑡)                                                                             (3.36)  
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Figure 3.24: Realization of a second order ODE solver by coupling two SSH arrays to each other. a, 

Two distinct SSH arrays are coupled to each other. b, An input signal with a Gaussian distribution 

is applied to the array. c, Transfer function of the whole array. d, Output signal of the array, 

approximating well the solution of the ODE given in Eq. 3.36 [ 172]. 

  

To demonstrate such functioning, I consider in Fig. 3.24 an input signal with a Gaussian temporal 

evolution to be applied to the array, and calculate the corresponding output (Fig. 3.24d) by applying 

the transfer function of the array (Fig. 3.24c) to the input signal (Fig. 3.24b). Comparing the 

obtained output signal with the solution of Eq. 3.36 (its envelope) proves the expected functioning 

of the system. Notice that such an equation solver is protected against perturbations in the hopping 

amplitudes, as already demonstrated in Fig. 3.23.     

3.11 Conclusions  

In this Chapter, I showed how the seemingly unrelated concept of topological order in 

condensed matter systems can enable a novel generation of analog signal processors, whose 

functionalities are protected against large levels of imperfections and perturbations. This was 

achieved by realizing an acoustic analog computer based on the edge mode of a one-dimensional 

topological insulator. By providing numerical simulations and experimental measurements, I proved 

that, compared to ordinary trivial analog signal processors, the proposed topological computer 

provides one with strong immunity against geometrical disorder.  I further demonstrated that, by 
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constructing a network or array of such kinds of computing systems, it is possible to realize more 

complex signal processing tasks.  

The proposed topological equation solver was based on the “Lorentzian” line shape of the 

resonance associated with the edge mode of a one-dimensional topological insulator (SSH array). In 

the next chapter, I demonstrate a new (one-dimensional) topological structure, whose edge mode 

creates not a Lorentzian but a Fano-like spectral line shape upon excitation. This enables realizing 

more advanced computational operations, as I will discuss.  
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 Topological Fano resonances   Chapter 4

This chapter is a modified version of the materials reported in [ 196]. 

 

In the previous Chapter, I showed how the Lorentzian line shape of the edge mode of a one 

dimensional topological insulator can be employed for solving a first order differential equation. I 

further showed that, by changing the quality factor of this resonance, one can achieve a large 

control over the constant coefficients of the corresponding equation. Yet, the fact that the spectral 

line-shape of the edge mode is always Lorentzian restricts the range of functionalities that can be 

achieved. In this chapter, I show that the proposed acoustic equation solver can support another type 

of topologically protected resonances, namely topological Fano resonances, produced as a result of 

constructive and destructive interference between two different topological edge modes coexisting 

within almost the same spectral range. I then discuss the possibility of performing novel signal 

processing tasks based on the peculiar line shape of such kinds of resonances. I start this chapter by 

a brief discussion about Fano resonances and their applications in modern engineering.   

4.1 Introduction  

The Fano resonance [ 182] is a ubiquitous scattering wave phenomenon, commonly found in 

various branches of science and engineering like atomic and solid states physics [ 183, 184], 

electromagnetism [ 185- 187], electronic circuits [ 188, 189], photonics [ 191- 193], nonlinear optics 

[ 194, 195], and  acoustics [ 196, 197].  Such intriguing type of resonance occurs as a result of 

constructive and destructive interferences between two overlapping resonant scattering states with 

different lifetimes: a wide-band “bright” resonance, and a narrower “dark” resonance. The dark 

resonance serves as a quasi-isolated (localized) state whose coexistence in the continuum of the 
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bright resonance gives rise to the asymmetric and ultra-sharp line shape profile of the Fano 

resonance [ 198].  

While originally developed to explain the inelastic scattering of electrons in Helium [ 199], 

the ultra-sharp spectrum of Fano resonances has established itself as a centerpiece in the realization 

of many modern optical devices, including low threshold lasers [ 200], low energy switches [ 201], 

ultrafast modulators [ 202], high quality factor filters [ 203], compact electromagnetically induced 

transparency (EIT) devices [ 204], ultrathin perfect absorbers [ 205], and highly accurate 

interferometers [ 206]. Moreover, apart from its steepness, the peculiar asymmetric line shape of 

Fano resonances is found to be excessively sensitive to environmental changes, a characteristic 

which has enabled the realization of highly sensitive and accurate sensors [ 207, 208].  

Unfortunately, this extreme sensitivity also comes with a price: guaranteeing a Fano 

resonance near the frequency of interest requires extreme control over the system’s geometry as 

fabrication imperfections can shift the bright and dark modes away from each other. Even worse, 

disorder may introduce extra parasitic resonances, completely destroying the much-sought Fano line 

shape. Therefore, the performance advantages obtained from Fano interferences are often mitigated 

by the costs associated with the required fabrication technology. Although they work quite well in 

theory, the performance of Fano-based devices degrades significantly upon fabrication due to 

inevitable flaws [ 209].  

As I discussed in the previous chapter, the recent development of topological wave physics 

offer an unprecedented solution to this vexing problem. Following these advances, one may wonder 

whether topology maybe leveraged to build a novel form of sturdy topologically protected Fano 

resonance, which may be largely appealing for a wide range of applications in different areas of 

physics, from photonics to mechanics and acoustics. In the following, I first extend the reach of 

topological wave physics by introducing the general concept of topological Fano resonances. More 

specifically, I demonstrate that the ultra-sharp spectrum of Fano resonances can be guaranteed by 

design without stringent geometrical requirements, and with a complete immunity to structural 
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disorder, while retaining its ability to shift under environmental changes. I further explain the 

relevance of such resonances performing analog computational tasks.  

4.2 Acoustic topological Fano resonances  

The underlying idea of my proposal is conceptually sketched in Fig. 4.1. Let us first 

consider the conventional Fano resonance (Fig. 4.1a). It is typically achieved by overlapping two 

resonant states with different lifetimes: one needs a bright and a dark mode that coexist in a certain 

spectral range. Upon coupling, the resonant interaction of these two states leads to constructive and 

destructive interferences, which creates the archetypal asymmetric peak-and-dip Fano line shape. 

Since the Fano resonance is a resonant scattering state obtained from an interference phenomenon 

between only two modes, it is intrinsically sensitive to perturbations in the geometry and 

environment. More specifically, even a small amount of disorder can shift the resonance 

frequencies and coupling phase of the two resonating modes, and introduce new resonant states that 

uncontrollably deform the peculiar Fano spectral signature. This is schematically represented in the 

right panel of Fig. 4.1a, where disorder has created new dips and peaks in the spectrum. My 

proposal is, instead, to start from bright and dark modes whose existence is topologically 

guaranteed (Fig. 4.1b, left). Upon coupling, a topological Fano resonance may be created, whose 

line shape can be preserved even in the presence of geometrical disorder. Environmental changes 

may shift the bright and dark modes, but not suppress them nor introduce new modes. As a result, 

the Fano shape inherits some form of topological immunity against disorder, as I demonstrate in the 

following.  

Let us start with considering the two-dimensional acoustic parallel-plate waveguide 

represented in Fig. 4.2a. Assume first that the waveguide does not contain any obstructing object. 

The corresponding eigen-modes are either even or odd with respect to the dashed green line due to 

vertical inversion symmetry. By solving the scalar Helmholtz equation with the Neumann boundary 
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Figure 4.1: Topological Fano resonance. a, Interaction between a bright resonance and a dark 

narrower resonance can lead to an ultra-sharp and asymmetric line shape, characteristic of a Fano 

resonance. Even small levels of disorder, however, can severely destroy the line shape of the 

resonance, by introducing new dips and peaks. b, To make Fano resonances immune to disorder, 

one can instead start from bright and dark modes whose existence is topologically guaranteed. The 

resulting topological Fano line shape is robust against a large class of geometrical imperfections: 

the occurrence of new disorder-induced dips and peaks is prevented by topology [ 196]. 

 

condition being applied to the walls of the waveguide, one can easily find that the even modes do 

not have a cutoff frequency, whereas the odd modes possess a cut of frequency of 𝑓𝑐 = 𝜋𝑐𝑠/2ℎ (𝑐𝑠 

is the speed of sound).  

Now, suppose a single cylindrical obstacle is embedded inside the waveguide, whose center 

is placed right at the centerline. Since the obstacle preserves the vertical mirror symmetry, the entire 

structure remains mirror-symmetric and the resulting eigenstates will still be either even or odd. An 

odd mode localized to the obstructing cylinder, and below the cutoff frequency of the radiation odd 

waves, i.e. 𝑓𝑐, can then coexist within the continuum of the even modes, while it remains 

completely decoupled from them because of its different symmetry. Shown in Fig. 4.2b is the field 

profile of this mode.  
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Figure 4.2: Symmetry-protected bound states in the continuum in an acoustic waveguide. a, An 

acoustic waveguide containing an obstructing cylinders is considered. b, An odd mode localized to 

the obstructing cylinder, and below the cutoff frequency of 𝜋𝑐𝑠/2ℎ can happen to coexist within the 

radiation continuum of the waveguide while remaining perfectly bounded to the obstacle [ 196].  

 

Based on its profile distribution, one can deduce that it is not possible for the even (radiation) 

modes traveling from one side to the other side of the waveguide to excite this odd-symmetric state, 

because of the different symmetry. Consequently, this mode is a symmetry-protected bound-state in 

the continuum (BIC): it is completely hidden in the transmission or absorption spectra when 

carrying out a scattering experiment [ 210]. 

Next, I consider a periodic array of acoustic bound states in the continuum described before 

(Fig. 4.3a). The corresponding band structure of the crystal is shown in the bottom panel. It is 

instructive to divide the dispersion bands into two categories according to the symmetry of their 

corresponding mode profiles, which are represented in Fig. 4.3b for 𝑘𝑥 = 0 and 𝑘𝑥 = ±𝜋/𝑎. The 

first category is associated with eigenmodes having even symmetry with respect to the centerline of 

the waveguide. These bands, marked in blue in Fig. 4.3a, possess the typical frequency dispersion 

of a one-dimensional sonic crystal made of far-field coupled scatterers, with waves propagating 

down to the quasi-static limit. The second category (the red band), corresponding to odd-symmetric 

eigenstates, exhibits the typical cosine band characteristic of evanescently coupled resonators. Such 
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Figure 4.3: Independent topological subspaces in an acoustic waveguide. a, Band structure of an 

acoustic parallel plate waveguide (with a plate separation of 10 cm) containing obstructing 

cylinders (with a diameter of 5 cm) placed on its center line, arranged in aperiodic lattice. The red 

band is the dispersion of an odd-symmetric eigenmode (originating from evanescently coupled 

symmetry-protected bound states in the continuum), while the blue bands correspond to regular 

sonic crystal bands with even mode symmetry. The gray area represents the empty waveguide 

continuum. b, Profiles of the odd and even modes at specific Bloch wave numbers [ 196]. 

 

odd-symmetric modes originate from symmetry-protected bound states in the continuum (BICs), 

explained before.  

Interestingly, the odd band behaves differently than the even bands upon scaling: while 

shrinking the lattice constant shifts all the even bands up in frequency, the position of the BIC band 

stays constant (it only gains some dispersion as the BICs couple more efficiently). This effect is 

demonstrated in Fig. 4.4a-c, indicating the calculated band structure of the crystals for different 

lattice constants, namely 𝑎, 1.25𝑎, and 1.4𝑎. The fact the odd and even modes behave differently 

when the crystal is scaled allows us to overlap the second blue band and the first red band in Fig. 

4.3a, creating two uncoupled physical subspaces whose topological properties can be further 

simultaneously engineered, as I now demonstrate. 
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Figure 4.4: Effect of scaling the lattice constant on the band structure of the system under study. a, 

Band structure of the system when the lattice constant is assumed to be 𝑎 = 16.3 𝑐𝑚. The 

waveguide continuum is marked with the grey area, b,c, Same as panel a except that the lattice 

constant is increased to 1.2𝑎 and 1.4𝑎, respectively. The blue dispersion bands corresponding to the 

even eigenstates are moved to the lower frequency range, whereas the position of the red band 

associated with the BIC mode is not affected [ 196]. 

 

To induce a nontrivial topology in such one-dimensional periodic structure, I first double the 

size of the unit cell, now considering the lattice as a repetition of cylinders pairs, which effectively 

folds the band structure. Next, I lift the degeneracies of the new band structure at the folding 

pointsby reducing or increasing the distance between the two cylinders within the new extended 

unit cell. The top insets of Figures 4.5a and b illustrate the geometries of the associated shrunk and 

expanded lattices, respectively. The bottom insets report the corresponding band structures, where 

the bands are colored according to the previously explained symmetry classification. Although both 

configurations exhibit exactly the same band structure, they are topologically distinct, as it was 

discussed in the previous chapter. In particular, the expanded crystals correspond to a non-trivial 

topological origin, whereas the shrunk lattice is trivial from the topological point of view. I further 

emphasize, that in contrast to prior arts about1D topological insulators, the proposed configuration 

supports two distinct topological subspaces characterized by their different symmetries. This allows 

two edge modes with distinct lifetimes to coexist at a phase transition interface and induce the Fano 
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Figure 4.5: a, Band structure of the crystal when considering the extended unit cell (which includes 

two periods), and reducing the distance between the two obstacles with respect to the folded case. b, 

Same as panel (a) except that the distance between the obstacles is increased [ 196].  

 

 

spectral line shape (instead of a Lorentzian one demonstrated before), as I will show below. 

To form the topological Fano resonance, I now consider the topological edge states that 

form at an interface between these two crystals around 1.5 kHz. Note that the system is properly 

scaled such that the topological band gaps of both the even and odd subspaces overlap around this 

frequency. I form a finite-size system made of four crystal cells on each side of the interface. 

Similar to our previous classification, the corresponding edge states can be categorized into two 

classes: the dark edge state stemming from the BIC mode, distinguished by its odd profile, and the 

bright one originating from the even modes. The mode profile of these two different types of edge 

modes are shown in Figure 4.6a and b, respectively. The two-port system is then excited by a plane 

wave incident from the left (Fig. 4.7a, top) and the transmission coefficient is extracted (bottom plot 

in Fig. 4.7a). As observed, the spectrum shows a single peak right at the resonance frequency of the 

bright edge mode (the red dashed line), because the incident plane wave cannot excite the odd-

symmetric (dark) edge mode. To let, instead, the bright and dark modes interact and create a 

topological Fano resonance, we must break the vertical inversion symmetry and slightly move all  
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Figure 4.6: Field profile of the edge states formed at the interface between the two insulators. a, 

Field profile of the even edge mode originating from the radiation modes, b, Field profile of the odd 

edge mode stemming from the BIC mode. Although both even and odd edge modes are bounded to 

the interface, only the even edge mode offers a finite resonance linewidth as the odd edge mode is 

completely decoupled from the radiation continuum due to its different symmetry [ 196]. 

 

cylinders up (or down) from the centerline. Doing so indeed yields the expected Fano line shape 

(the solid blue line). Note that, both of the obtained bright and dark resonances are of topological 

nature, and the origin of the Fano resonance is indeed rooted to the topological properties of the 

surrounding bulk insulators. Therefore, we expect the presence of the Fano resonance to be 

guaranteed even in the presence of disorder, as long as it is not strong enough to close the band 

gaps. To test this hypothesis, I randomly changed the positions of the obstructing circles in Fig. 

4.7b (1.5 cm average shift with no preferred direction) and repeat the scattering experiment. The 

transmission spectrum of the waveguide, represented in Fig. 4.7b (bottom panel), reveals three 

important properties. Despite the large degree of disorder, (i) the Fano resonance is still present, (ii) 

the Fano shape is not disturbed by any new localized mode (which would add new peaks or dips), 

(iii) the Fano resonance can shift and is still sensitive to environmental changes. These features 

remain true for any realization of disorder. 
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Figure 4.7: Full-wave numerical demonstration of topologically protected Fano resonances. a, Four 

unit cells from the trivial lattice are connected to four cells from the nontrivial system. By sending a 

plane wave from the left, only the even edge mode can be excited (the red dashed line), leading to 

only one resonance in the transmission spectrum. This is no longer the case if the obstacles are 

slightly shifted away from the centerline, allowing even and odd modes to interact, and inducing a 

topological Fano resonance (the solid blue line). b, Transmission spectrum of the waveguide when 

the obstacles are randomly moved from their original places. The Fano line shape is preserved due 

to topology [ 196]. 

 

Next, I compare the robustness of the topological Fano to the one of a topologically trivial 

Fano resonance, such as the one considered in Fig. 4.8, which is based on bright and dark resonant 

defect tunneling through a Bragg band gap. As it is observed, the trivial Fano spectrum is deeply the 

presence of disorder, which induces new localized states that destroy its characteristic shape (Fig. 

4.8b). In order to unambiguously demonstrate the superiority of topological Fano resonances to 

trivial ones, we report in Fig. 4.9a and b the evolution of the Fano line shape versus disorder 

strength for the topological and trivial cases, respectively. Comparing these two parametric plots, 

we see that the topological Fano resonance survives disorder levels that are 10 times stronger than 

the ones required for breaking the trivial Fano, which is quickly destroyed by a disorder-induced 

localized mode. These findings broadly demonstrate the great advantage of topological Fano 

resonances over trivial ones. 
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I next constructed a prototype to experimentally demonstrate the topological Fano resonance 

and examine its much-sought robustness. I used an acrylic extruded clear square tube as the acoustic 

waveguide. Nylon 6 continuous cast black rods were manually embedded inside the waveguide to 

implement the topological chain under study.  

 

Figure 4.8: Full-wave numerical demonstration of the excessive sensitivity of trivial Fano 

resonances. The figure repeats the analysis of Fig. 4.7, but for a trivial Fano resonance induced by 

defect tunneling through a Bragg band-gap, a, Transmission spectrum of the system when no 

disorder is present in the system, b, Transmission spectrum of the system when some disorder is 

introduced to the system [ 196].  

 

Figure 4.9: Evolution of the transmission spectrum versus disorder strength for topological Fano 

resonance (a) and trivial Fano resonance (b). The results of the figure broadly demonstrate the great 

advantage of topological Fano resonances over trivial ones [ 196].  
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Simulations predict a topological Fano resonance around the frequency 𝑓0 = 2.3 𝑘𝐻𝑧. To confirm 

this prediction, I sent burst noise from the left of the system, whereas the right-hand side port was 

connected to a broadband anechoic termination. I then measured the corresponding transmission 

coefficient, which is represented in the bottom panel of Figure 4.10a (blue line) and compared it to 

the simulation results (dashed red line). As expected, we observe the topological Fano transmission 

 

 

Figure 4.10: Experimental validation of topological Fano resonances. a, Nylon black rods are 

embedded inside a transparent square acoustic waveguide, implementing a scattering experiment 

analogous to Fig. 4.8a. The structure supports a topological Fano resonance around the frequency 

𝑓0 = 2.3 𝑘𝐻𝑧 as observed in the bottom panel. b, The obstructing rods are randomly moved away 

from their original positions, introducing position disorder. The Fano line shape is maintained. c,d, 

Same as a,b for a trivial Fano resonance induced when coupling a topologically trivial Bragg defect 

mode and a BIC [ 196]. 
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spectrum (circled in green), with very good agreement with simulations. Next, I randomly moved 

the obstacles from their real positions to get the disordered configuration shown in the top panel of 

Fig. 4.10b. The measured transmission coefficient, represented in the bottom panel, demonstrates 

that the Fano lineshape is indeed perfectly preserved, despite the large level of disorder (1 cm 

average shift, i.e., 14% of the waveguide width, with no preferred direction). 

To confirm the topological origin of this property, I repeated the scattering experiment for a 

(trivial) Bragg-induced Fano resonance obtained from a periodic lattice with a missing center rod at 

the center (total of six rods, slightly up-shifted with respect to the centerline, see Fig. 4.10c). 

Numerical simulations show that the missing rod creates an even defect mode overlapping with an 

odd dark state carried by the Bragg structure, i.e., a trivial Fano resonance. The measured spectrum 

exactly confirms these predictions. By adding, in Fig. 4.10d, the same level of disorder as in Fig. 

4.10b, it is clear that the initial Fano shape of the resonance is extremely affected: the characteristic 

peak-and-dip shape of the Fano is completely destroyed, and a new dip is added to the spectrum. 

Such drastic deformations would be highly detrimental in any sensing application, which are 

usually based on tracking the shift of a single Fano dip.  

4.3 Electromagnetic topological Fano resonances  

While in the previous section, I demonstrated topological Fano resonances in the context of 

acoustics, they can be easily transferred to other areas of classical physics such as electromagnetics. 

Here, I demonstrate how topological Fano resonances can be obtained for electromagnetic waves. 

Consider a microwave parallel plate waveguide with the palate separation of 2ℎ (Fig. 4.11a). Since 

the waveguide is infinite in the out-of-plane direction, the solution to Maxwell equations can be 

decomposed into transverse electric (TE) and transverse magnetic (TM) parts. Here, without loss of 

generality, I investigate the TE part and assume that the electric field is polarized along out of plane 

direction. By solving the corresponding equations for the 𝐸𝑧 component of the field, one can easily 
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find that the resulting eigen-modes (𝐸𝑧) are required to be even with respect to the centerline, and 

have a cutoff frequency of 𝑓𝑐 = 𝜋𝑐/2ℎ (𝑐 = 3 × 108 𝑚/𝑠 is the speed of light).  

 

Figure 4.11: Electromagnetic bound states in the continuum a, A microwave parallel plate 

waveguide containing a single silicon rod placed on the centerline is considered. b, Profile of the 

corresponding bound state forming within the radiation continuum of the waveguide [ 196]. 

 

Suppose now a circular dielectric obstacle (a silicon rod) is placed right at the centerline. 

The dielectric rod supports a set of resonances whose 𝐸𝑧 components can be even or odd with 

respect to the centerline. If the resonance frequency of one of the odd dielectric modes falls above 

the waveguide cutoff (𝑓𝑐), it can coexist in the radiation continuum of the even waveguide modes, 

while, simultaneously, remaining perfectly bounded to the rod due to its different symmetry. Fig. 

4.11b (second panel) depicts the profile (𝐸𝑧 component) of the corresponding BIC mode obtained 

via FEM simulations. 

Now that I successfully realized a bound state in the radiation continuum of the waveguide, I 

pursue the same procedure as the acoustic case to achieve a topological Fano resonance. I first form 

a periodic lattice of the dielectric obstacles and calculate its dispersion (Fig. 4.12a). The dispersion 

bands are colored according to the symmetry of their eigenmodes represented in Fig. 4.12b. I 

further note that, similar to the acoustic case, one can adjust the frequency of the radiation (even) 

modes by scaling the lattice constant, whereas the position of the dispersion band of the BIC (odd) 

mode is not affected by scaling. This allows one to induce independent topological subspaces in the 

mono-mode microwave waveguide under investigation, as explained before.  

Consider now the configuration of Fig. 4.13a, where different topological phases are 

induced by detuning the extra-cell and intra-cell couplings between the dielectric resonators. The 

profiles of the corresponding even and odd edge modes are shown in the second and third panel,  
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Figure 4.12: Independent topological subspaces in a microwave waveguide, a, We consider 

aperiodic lattice of silicon rods inside the waveguide. The BIC (odd) mode has a low-dispersive 

behavior (the red band), while the radiation (even) modes exhibit a stronger frequency dispersion 

(blue bands). b, Profile of the even and odd eigenstates at certain Bloch wavenumbers [ 196]. 

 

respectively. By subtly choosing the lattice constant, I have made the odd edge mode coexist within 

the spectral range of the even mode. The scattering experiment (Figure. 4.13a, bottom panel, dashed 

red spectrum), however, reveals only the presence of the even edge mode since the odd edge mode 

is decoupled from even-symmetric waves. By slightly moving the dielectric resonators from the 

centerline, however, a topological Fano resonance emerges as a result of the small leakage of the 

odd edge mode to the radiation waves (the solid blue line). Just like in acoustics, the obtained Fano 

resonance is expected to be robust against disorder. To assess this robustness, I randomly change 

the position of the resonators to achieve the largely disordered configuration of Fig. 4.13b (first 

panel, average shift is 4.6% of ℎ, with no preferred direction). Shown in the second and third panels 

are the profiles of the corresponding even and odd edge modes, respectively. Notably, the resonance 

frequencies of both bright and dark resonances can shift but no Anderson localization occurs. The 

resulting Fano line shape is therefore expected to be preserved. This is indeed evident from the 
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transmission spectrum of the waveguide in the fourth panel, confirming the high robustness of the 

achieved topological Fano resonance (obtained based on electromagnetic waves). 

 

 

Figure 4.13: Electromagnetic topological Fano resonances: a, Ideal case without position disorder, 

for a system of dielectric rods in a parallel plate waveguide. A topological Fano resonance is 

observed. b, Same as panel a) but for in the presence of position disorder. The presence and shape 

of the Fano resonance is protected against disorder by the topology of the bulk insulators [ 196].
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4.4 Analog signal processing based on topological Fano resonances  

The spectral characteristics of Fano resonances are different from ordinary Lorentzian 

resonances, which are created by the excitation of a single resonance state. Because of this 

reason, in temporal domain, they correspond to a relation which is different from the first order 

ODE proposed in Eq. 3.1. Suppose that the resonance frequencies of the bright and dark 

resonances are 𝜔1 and 𝜔2, respectively. The transfer function associated with  the Fano 

resonance caused by the interference between these two resonances can be approximated by  

𝐻(𝜔1, 𝜔2) =
1

−(𝜔 − 𝜔1 )(𝜔 − 𝜔2) + 𝑗(𝛾1(𝜔 − 𝜔1) + 𝛾2(𝜔 − 𝜔2)) + 𝛾1𝛾2 − 𝜅2
                (4.1) 

in which 𝛾1 and 𝛾2 are decay rates corresponding to the bright and dark states respectively, and 𝜅 

is the coupling coefficient between bright and dark states. Let us suppose first that the input 

signal is modulated at the frequency of the bright state, i.e. 𝜔1. By taking an inverse Fourier 

transform from Eq. 4.1, one can derive the corresponding temporal relation of 𝐻 as  

𝑑2𝑓(𝑡) 𝑑𝑡2⁄ + (𝛾2 + 𝑗∆𝜔)𝑑𝑓 𝑑𝑡 +⁄ (𝛾1𝛾2 − 𝜅
2 + 𝛾1𝑗∆𝜔)𝑓(𝑡) = 𝑔(𝑡)                                     (4.2) 

in which ∆𝜔 = 𝜔1 − 𝜔0. This implies that any system supporting Fano resonance can be 

pictured as an equation solver solving the equation given in Eq. 4.2. As evident from the relation 

given in Eq. 4.2, the corresponding constant coefficients can be tuned by changing the quality 

factors of the dark and bright states, as well as the coupling coefficient 𝜅.  

4.5 Conclusions 

To conclude, in this chapter, I demonstrated the concept of topological Fano resonance. 

The theoretical and experimental findings provided in this chapter demonstrated the superior 
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robustness of topological Fano resonances over trivial Fano resonances. In particular, topology 

forced the archetypal Fano line shape to occur in the desired frequency range, as long as the level 

of disorder is not strong enough to close the surrounding topological band gaps. The obtained 

experimental results shows that obtaining a topological Fano resonance does not require tight 

geometrical tolerances, very different from trivial Fano resonances. In addition, topological Fano 

resonances are still sensitive to environmental changes, and tracking the shift of the Fano dip 

may allow for a new generation of sturdy sensors.  

Apart from its relevance for signal processing tasks, the concept of topological Fano 

resonance proposed in this chapter holds promise in many applicative fields, including phononic, 

photonic, and plasmonic sensing technologies and or biomolecular detection. 
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 Topological random analog signal Chapter 5

processing  

This chapter is a modified version of the materials reported in [ 213]. 

5.1 Introduction  

As discussed in the previous chapters, the performance of most wave systems, in 

particular, analog signal processors is largely impeded by disorder. Even at very low 

concentration, impurities or geometrical imperfections can cause severe self-interference effects, 

largely hindering wave propagation and device performance. I demonstrated in the previous 

chapters that the much-sought topological protection of topological insulators can significantly 

alleviate the detrimental effects of disorder on wave propagation, enabling the realization of 

robust analog signal processors that maintain their original functionality in the presence of 

impurities. 

Although topological insulators have somewhat enhanced the robustness of analog wave 

systems to disorder, their topological protection is still limited by a phenomenon, known as 

Anderson localization (AL) [ 211]. This process, occurring in the regime with dominating 

randomness, progressively fills the band gap of the TI with disorder-induced localized bulk 

states, destroying the insulating topological phase and impeding the transportation of the 

corresponding boundary state. Such a behavior seems to be disappointing at first glance, because 

it implies that even topological wave systems become fragile when the disorder level is high 

enough to turn the TI into an ordinary insulator. Yet, the mere fact that introducing disorder to a 
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system can induce a topological phase transition is encouraging, because it suggests that the 

opposite transition might, in principle, be possible. Recently, in a remarkable development [ 212], 

it was theoretically demonstrated that some trivial insulators with specific parameters can indeed 

go through a topological phase transition upon introducing disorder, converting them to TIs with 

robust conductive states flowing on their boundaries. Soon after, these exotic topological phases, 

referred to as disorder-induced topological insulators or topological Anderson insulators (TAIs), 

were experimentally observed in different physical platforms [ 213- 215]. 

In this chapter, I demonstrate, both theoretically and experimentally, that the much-

sought disorder-induced character of TAIs is relevant for realizing an unconventional generation 

of analog signal processors that not only are not restricted by disorder but also owe their proper 

functionality to disorder. I demonstrate this by proposing a novel class of wave-based computing 

systems that, in a regime of strong randomness, perform advanced, non-random computational 

tasks such as image processing and equation solving. These findings, defying the conventional 

view that disorder is detrimental for realizing well-defined analog functionalities, provide a 

roadmap for the realization of a large variety of disorder-induced wave systems in which 

disorder acts as a powerful engine, forcing the system to perform the functionality of interest. 

5.2 Acoustic topological signal processors  

I start again with considering the tight-binding toy Hamiltonian of the Su-Schrieffer–

Heeger (SSH) chain expressed as 

𝐻 =∑𝜔0𝑎𝑛
†𝑎𝑛

𝑛

+∑𝐾𝑎2𝑛−1
†

𝑛

𝑎2𝑛 +∑𝐽𝑎2𝑛
†

𝑛

𝑎2𝑛+1 +  𝐻. 𝐶.                                                      (5.1) 

in which 𝑎𝑛
†
, 𝑎𝑛

  are creation and annihilation operators for the site 𝑛,  𝐾, and 𝐽 stand, 

respectively, for the intra-cell and extra-cell coupling coefficients, and 𝜔0 = 1 is the on-site 
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energy of the atoms. Let us suppose that the parameters 𝐾 and 𝐽 are defined as 𝐾 = 𝐾0(1 +

0.5𝐷𝑠𝑊) and 𝐽 = 𝐽0(1 + 𝐷𝑠𝑊), in which 𝐾0 = 0.1, 𝐽0 = 0.09, 𝐷𝑠 is a parameter quantifying the 

strength of disorder, and 𝑊 is a site-dependent random number. Since 𝐾 > 𝐽 in the clean limit 

(𝐷𝑠 → 0), the disorder-free system corresponds to a trivial topological phase, characterized by a 

zero winding number. To induce a topological phase transition, I start to increase the intrinsic 

disorder of the system, now considering the case in which 𝐷𝑠 > 0. Notice that, on average, 

regardless of 𝐷𝑠, the parameter 𝐾 is always smaller than 𝐽.  However, quite surprisingly, the 

difference in their standard deviations can create a topological phase transition in a certain range 

of values for 𝐷𝑠, leading to an insulator with non-trivial topological index (non-zero winding 

number) [ 214].  

 

 

Fig. 5.1: Disordered version of Su-Schrieffer–Heeger model (SSH) model, a, Evolution of the 

corresponding (averaged) transmission spectrum versus disorder strength. Starting from an 

ordinary trivial insulator in the clean limit (red region), the system switches into a topological 

insulator in the regime 𝐷1 < 𝐷𝑠 < 𝐷2 (TAI regime), characterized by a zero-energy edge state 

which manifests itself as a resonance peak in the spectrum. For extremely high disorder 

intensities (yellow region), the transportation is arrested by Anderson localization. b, Averaged 

transmission coefficient of the system for several representative disorder strengths. In the TAI 

regime (green area), the spectrum exhibits a Lorentzian profile near 𝑓0, corresponding to the 

transfer function of a first order differential equation [ 213].   
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Fig. 5.2: Demonstration of disorder-induced equation solving. We suppose that the system is 

excited with a Gaussian-modulated sinusoidal signal and calculate (a) the corresponding 

transmission coefficient (𝑇) and (b) output time signal (𝑓(𝑡)), when gradually increasing the 

disorder strength from zero to the regime of TAI. It is seen that disorder acts like an actuator in 

our system, triggering the proposed computing system to return the exact solution of the ODE 

that is aimed at solving (blue dashed line) [ 213].  

 

In order to examine such a possibility, I consider a finite two-port scattering system made 

of 100 unit cells coupled to external waveguides and plot in Figure. 5.1a the disorder-averaged 

transmission spectrum versus the parameter 𝐷𝑠. As it is observed, in the disorder-free case, the  
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Figure 5.3: Numerical demonstration of topological random computing based on acoustic 

signals, a, Evolution of the (averaged) transmission coefficient of the phononic crystal as the 

strength of disorder is increased. The emergence of a disorder-induced zero-energy state is clear 

in the disorder-averaged transmission spectrum (oval region), allowing one to perform self-

induced analog computing. b,c, Disorder-averaged transmission spectrum and the corresponding 

transmitted field, when the disordered-free system is excited with a Gaussian-type time-

modulated signal. d,e, Same as b and c except that the system is sufficiently disordered, so that it 

finds itself in the TAI regime [ 213]. 

 

spectrum is gapped around 𝑓0. This insulating band gap becomes narrower with increasing 

disorder strength, and is eventually closed at 𝐷1. After 𝐷1 (and before 𝐷2), the band-gap re-opens 

but, this time, it includes a resonance peak emerging at the center of the gap. This in-gap 

resonance, corresponding to resonant tunneling through a topological edge state, indicates the 

non-trivial character of the system under investigation for 𝐷1 < 𝐷𝑠 < 𝐷2 (TAI regime).  If one 

increases the disorder level further (𝐷𝑠 > 𝐷2), the onset of Anderson localization is reached, 

where all states start to localize in the bulk with decreasing transmission coefficient.  

In Fig. 5.1b, I have plotted the disorder-averaged transmission coefficient for several 

representative disorder strengths. Notice that, in the TAI regime, the topological mid-gap 

resonance has a Lorentzian profile, following the general form of 

𝐻(𝜔) = 𝐴 (𝐵𝑗(𝜔 − 𝜔0) + 𝐶)⁄   in the vicinity of 𝜔0.  
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Figure 5.4: Numerical demonstration of topological random computing for an arbitrarily shaped 

signal. a, Disorder-averaged transmission coefficient of the proposed acoustic random computer 

versus disorder, b, We suppose that the system is excited with an irregularly shaped signal shown 

in the inset, c, Corresponding output signal in the disorder-free limit, being far from the solution 

of the target ODE aimed at solving. d, Corresponding output in the regime of topological 

Anderson phase [ 213]. 

 

As explained in Chapter 3, in temporal domain, 𝐻(𝜔) corresponds to the transfer 

function of a first order differential equation (ODE) of the form: 𝐵𝑓´(𝑡) + 𝐶𝑓(𝑡) = 𝐴𝑔(𝑡). It 

then follows that, for 𝐷1 < 𝐷𝑠 < 𝐷2 , the proposed disordered one-dimensional toy model can be 

pictured as a time-domain analog computing machine, that returns the solution of a definite first  
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Figure 5.5: Experimental setup used to demonstrate topological random computers, a, The 

fabricated sample consisting of a rectangular pipe, taking the role of the acoustic waveguide, and 

a set of nylon cast plastic rods embedded inside the waveguide. b, In addition to the fabricated 

sample, the experimental setup consists of an acoustic Quattro Data Physics analyzer, three 

ICP® microphones, a loudspeaker and an acoustic termination, made from appropriately 

tampered foam [ 213].  

 

order ODE at its output. Remarkably, such analog computer, while performing a definite task, 

has a disorder-induced character and an indefinite geometry, a property that directly stems from 

the underlying topological Anderson insulator phase. 

In order to examine the functionality of the proposed analog computer, I assume that the 

system is excited with a Gaussian-modulated sinusoidal pulse, and calculate the corresponding 

disorder-averaged transmitted signal (𝑓(𝑡)) and transmission spectrum (𝑇), when gradually 

increasing the disorder level from zero to the regime of TAI. The corresponding results are 

respectively depicted in Fig. 5.2a and b, illustrating how disorder forces the proposed disordered  

system to return the solution of the particular ODE that we wish to solve (the target analytical 

solution is marked with blue color).  
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To validate these findings in a full-wave 3D geometry, I mapped the model into a one-

dimensional phononic crystal, built from a chain of acoustic quasi-bound states in the continuum 

(BICs) embedded in a monomode acoustic waveguide. Such coupled bound states, resonating at 

the frequency of 𝑓0 = 2310 𝐻𝑧, mimic the evanescently-coupled tight-binding chain described 

by the Hamiltonian of Eq. 5.1. In order to probe the system with far-field scattering tests based 

on the waveguide mode, I make the radiative quality factor of the bound states finite by slightly 

breaking the inversion symmetry of the structure with respect to its longitudinal axis. Fig. 5.3a 

represents the transmission coefficient (averaged over disorder realizations) as a function of both 

frequency and disorder strength, obtained via 3D full-wave numerical simulations based on the 

finite element method. The result of this figure confirms the emergence of a disorder-induced 

resonance peak, corresponding to the zero-energy states of the TAI phase (the oval region). The 

possibility to leverage the Lorentzian line shape of this resonance for carrying out disorder-

induced filtering or equation solving is demonstrated in Fig. 5.3b-e, where I have reported the 

averaged transmittance of the system both in the clean limit and in the topological Anderson 

phase. When no disorder is imparted to the system, the transmission spectrum (Fig. 5.3b) 

exhibits a minimum due to a band gap around 𝑓0, leading to an output signal (Fig. 5.3c) that is 

very different from the solution of the targeted differential equation (the blue curve, which is 

analytically predicted). In the regime of TAI phase, on the contrary, the transmission spectrum 

matches the desired transfer function 𝐻(𝑓) (Fig. 5.3d). As such, the corresponding transmitted 

signal, shown Fig. 5.3e, is nothing but the solution of the targeted ODE (blue curve). In Fig. 5.4, 

I have repeated the analysis for another type of excitation signal, having an arbitrary peculiar 

shape.    
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Figure 5.6: Experimental demonstration of topological random computers, a, Evolution of the 

(averaged) transmission coefficient of the phononic crystal as the strength of disorder is 

increased, obtained via 3D full-wave numerical simulations. The emergence of a disorder-

induced zero-energy state is clear in the disorder-averaged transmission spectrum (oval region), 

allowing one to perform self-induced analog computing. b,c, Disorder-averaged transmission 

spectrum and the corresponding transmitted field (numerical simulations), when the disordered-

free system is excited with a Gaussian-type time-modulated signal. d,e, Same as b and c except 

that the system is sufficiently disordered, so that it finds itself in the TAI regime [ 213]. 

 

I now experimentally verify these findings, based on a fabricated prototype of the system 

under study. The sample, shown in Fig. 5.5a includes a transparent pipe with square transverse 

cross-section, serving as a waveguide, and a chain of nylon cast scatterers, that are embedded 

inside the waveguide. The width, height, and length of the waveguide are  𝑊 = 7 𝑐𝑚, 𝐻 =

7 𝑐𝑚, 𝐿 = 2 𝑚, respectively, the radii of the cylinders are 𝑅 = 1.75 𝑐𝑚, the lattice constant is 

𝑎 = 16.6 𝑐𝑚 and the detuning parameter 𝑑 is 𝑑 = 7.8 𝑐𝑚. The structure is tested in the 

experimental setup shown in Fig. 5.5b. Apart from the fabricated prototype, the setup includes 

three PCB 130F20 ICP® microphones, measuring the associated pressure field, a loudspeaker, 

generating sound and exciting the system, an acoustic Quattro Data physic analyzer, analyzing 

the associated measured data, and a computer, controlling the setup. Note also that, in order to  



99 
 

 

Figure 5.7: Experimental demonstration of topological random computing for an arbitrarily 

shaped signal. a, Disorder-averaged transmission coefficient of the proposed acoustic random 

computer versus disorder, b, The system is excited with an irregularly shaped signal shown in the 

inset, c, Corresponding output signal in the disorder-free limit, being far from the solution of the 

target ODE aimed at solving. d, Corresponding output in the regime of topological Anderson 

phase [ 213]. 

 

avoid unwanted reflection and refraction, the end of the system is terminated with an anechoic 

termination, made of an adiabatically tapered foam, shown in the bottom panel of the figure.  

In order to extract the disorder-averaged transmission spectrum, I excited the system with 

the loudspeaker, and extracted the corresponding transmission spectrum for each realization of  
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Fig. 5.8: Disorder-induced topological image processing, a, (Top) Image of the Eifel tower, 

considered for processing, (Bottom) The original image is encrypted with the inverse of the 

target transfer function 𝐻(𝑓). The encrypted image is then fed into the input of the proposed 

topological random computer. b, Corresponding output images as the level of disorder is 

gradually increased. c, Corresponding experimental results. The results, in agreement with 

numerical simulations, demonstrate the intriguing possibility of decoding the encrypted image by 

providing our proposed computing system with more and more disorder [ 213]. 

 

disorder by standard standing wave pattern analysis. Then, I took the average of 10 different 

independent measurements, each of which corresponds to a distinct disorder configuration. The 

corresponding disorder-averaged transmission spectrum, as a function of disorder, is shown in 

Fig. 5.6a, being in perfect agreement with our prior numerical findings.  
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Fig. 5.9. Performing image processing with our proposed computing machine, The figure repeats 

the analysis of Fig. 5.8, for a different test image taken on our campus. The results are obtained 

based on the measured (experimental) transmission spectrum [ 213].  

 

The possibility to leverage the Lorentzian line shape of the edge mode of the TAI phase 

for carrying out disorder-induced filtering or equation solving is demonstrated in Fig. 5.6b-e. For 

the disorder-free sample, the transmission spectrum (Fig. 5.6b) has very low level around 𝑓0, 

leading to an output signal (Fig. 5.6c) that is drastically different from the solution of the desired 

differential equation (the blue curve). However, in the regime of TAI phase, the transmission 
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spectrum follows the desired transfer function 𝐻(𝑓) (Fig. 5.6d) and, consequently, the 

corresponding transmitted signal, shown Fig. 5.3e, is nothing but the solution of the targeted 

ODE (blue curve). In Fig. 5.7, I have repeated the analysis for another type of excitation signal, 

having an arbitrary peculiar shape.    

5.3 Topological random image processing  

The proposed computing scheme promises to enable more-complex functionalities. In 

Fig. 5.8, I demonstrate its relevance for image processing. Consider the image of the Eiffel 

tower, shown in Fig. 5.8a (top). Suppose that the pixels of this image are processed by the 

inverse of the target transfer function 𝐻(𝑓), therefore encrypting the image. I excite the proposed 

acoustic computing system with a signal corresponding to the encrypted image. Since, in the 

regime of TAI, the transfer function of the computing system is approximately equal to 𝐻(𝑓), 

the system is expected to decrypt the encoded image. This is demonstrated in the insets of Fig. 

5.8b, illustrating how the encrypted image is gradually decoded by the proposed computing 

system, when more and more disorder is introduced. The associated experimental results, shown 

in Fig. 5.8c, are in full agreement with the simulations. Note that decoding the image is not a 

trivial task as one needs not only to tune the disorder strength to the right level, but also to have 

some information about the required disorder statistics, in particular the difference in the 

standard deviations of the couplings. In Fig. 5.9, I have tested the functionality of the proposed 

system for another image taken in our campus.  

5.4 Photonic topological random signal processors  

Although demonstrated here in the context of acoustics, we can expect the emergence of 

such topological random computers to be generic. Here, I propose the photonic version of such 

kind of computers. Consider a regular photonic crystal consisting of a conventional metallic 
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waveguide, inside which a one dimensional array of silicon rods is implemented. Similar to the 

acoustic case, I introduce some disorder into the successive distance between the inclusions of 

the photonic crystal. In the regime where the strength of disorder is weak, the transmission 

spectrum is gapped around the resonance frequency of the resonators, due to the topologically 

trivial nature of the system in the clean limit. Adding disorder to the system, however, closes the 

trivial gap and re-opens it as topological, as broadly discussed previously. This gives rise to a 

zero-energy edge state, manifesting itself as a Lorentzian resonance peak in the averaged 

transmission spectrum, which is employed to solve a first-order differential equation in time 

domain (or perform first-order band-pass filtering in frequency domain). As opposed to 

conventional EM-based signal processors for which the presence of disorder is drastically 

detrimental, the proposed computing system owes its proper performance to the existence of 

disorder. To demonstrate these predictions, I consider a Gaussian-modulated sinusoidal signal 

(with frequency of 𝑓0 and the variance of 𝜎 = 0.1𝑓0) as the input signal. I then study what the 

system returns both in the clean and TAI regimes. Figs. 5.10a and b show the output signals 

corresponding to the clean and disordered systems, respectively.  When the system is free of 

disorder (panels a), the output signal has a very low level, being far from the solution of the 

targeted ODE (blue dashed line). On the other hand, the disordered system (panel b) has 

perfectly resolved the solution of the ODE. These observations demonstrate the much-sought 

disorder-induced character of the proposed photonic equation solver.  
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Fig. 5.10. Demonstration of topological random computing in electromagnetics, I consider a 

photonic crystal quite similar to the phononic crystal shown in Fig. 62, consisting of silicon rods 

arranged inside a conventional metallic waveguide. In the clean limit, the system is designed to 

be topologically trivial. Yet, introducing disorder to it enables topological phase transition, 

leading to topological Anderson insulator phase. a, Disorder-averaged transmitted signal, when 

the system is excited with a Gaussian-type time modulated signal and only weak amount of 

disorder is present. b, Same as a except that the system is strongly disordered so that it enters 

TAI regime [ 213]. 

 

5.5 Conclusions  

In this chapter, I demonstrate the unique possibility of turning the harmful effects of 

disorder into an advantage, based on the disorder-induced character of the so-called topological 

Anderson insulators. I constructed an explicit example of a novel class of analog computers in 

which disorder acts as a pseudo-engine, driving the system to carry out a desired, well-defined, 

computational task. I demonstrated that it is possible to achieve advanced signal processing 

tasks, such as equation solving and image processing, by adding disorder to pure systems. The 

disorder triggered the system to go to a topological phase transition, turning a topologically 

trivial system into a non-trivial one supporting gap-closing boundary states on its edges. Upon 

excitation, these self-induced topological boundary states yielded a mid-gap resonance in the 
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(averaged transmission spectrum of the chain), which was leveraged for analog computing 

purposes.  These findings open a new horizon for leveraging disorder as an intrinsic degree of 

freedom to achieve desired analog functionalities. 



106 
 

 Conclusions and future directions  Chapter 6

6.1 Achieved results 

In this project, I have investigated the intriguing possibility of robust signal manipulation 

and analog signal processing based on topological insulators. The computing systems and signal 

processors proposed in this thesis are very fast due to their wave nature. In particular, they 

process signals as fast as the speed of wave. This feature is highly appealing in modern 

engineering, where speed is one of the most important factors which should be taken into 

account. More importantly, I demonstrated that the much-sought topological protection of 

topological insulators can be leveraged to ensure a strong robustness and stability.   

I have identified three different types of computing systems. The first type, demonstrated 

in Chapter 3 was based on the Lorentzian resonance associated with the edge mode of a one-

dimensional topological insulator. I demonstrated the relevance of such kind of a resonance for 

solving a first order differential equation. By providing numerical simulations and experimental 

measurements, I demonstrated that, in stark contrast to conventional analog signal processors 

proposed thus far, the functionality of a topological analog computing system is not significantly 

affected by the presence of disorder. 

In chapter 4, I discussed the possibility of performing more complex signal processing 

tasks based on a novel class of topological resonances possessing a Fano line shape. I achieved 

this based on the coupling between two distinct Lorentzian resonances, each of which was 

topological in nature. I demonstrated, both in simulation and experiment, how topology can 
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protect the much-sought line-shape of Fano resonances. This is in stark contrast to trivial Fano 

resonances, which are very sensitive to structural and geometrical disorder.   

Finally, in chapter 5, I demonstrated a novel class of topological computing systems that 

not only do not suffer from disorder, but, surprisingly, take advantage of it to perform a desired 

functionality.  In particular, inspired by the recently proposed concept of topological Anderson 

insulators, I showed that it is possible to achieve topological phase transition solely by adding 

disorder to pure systems, turning them from a trivial insulator into a topological one with gap-

closing resonance modes on their boundaries. I then demonstrated, both in theory and 

experiment, how such resonances can be used for performing disorder-induced signal processing.   

6.2 Future directions  

On basis of this work, several future directions can be pursued. All of the computing 

systems demonstrated in this work were based on one-dimensional topological insulators. 

Generalizing the concept of topological analog signal processing to two, three and even higher 

dimensions is therefore a straightforward, but very important, issue which has to be addressed in 

future studies. One may for instance think of implementing a topological computing system by 

means of a quantum Hall insulator, owing its topological properties to a broken time reversal 

symmetry. Such systems provide immunity against a wider range of imperfections and defect 

types, since their topological orders are protected by time reversal symmetry, which cannot be 

broken unless by introducing magnetization or spin-orbit coupling mechanisms.   

Another important thing to investigate is studying topological analog computers in 

photonics. Such kinds of computers have two important advantageous features, compared to the 

computing systems demonstrated in this thesis, which were mainly based on acoustic signals. 

The first advantage is that their speeds are much higher, since light waves travel much faster than 
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sound. The second advantage is that they are much more compact than the configurations 

proposed in this thesis. This is because the wavelength of operation is very smaller in optics.  

Another interesting route to follow is to combine wave-based computing techniques with the 

ones of artificial intelligence and machine learning, enabling realization of a novel generation of 

"auto-computer”, which automatically perform desired functionalities. All of the computing 

systems demonstrated in this are required to be properly designed for a specific functionality. 

However, combing the emerging concept of machine learning with analog signal processing 

could potentially lead to intelligent analog computers, which perform a desired functionality 

without any supervision. Altogether, a very bright future for wave-based analog signal 

processing can be envisioned. 
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