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Abstract

Position measurements of mechanical oscillators underpin experiments spanning from
applied nanoscale sensing to endeavors aiming to resolve open fundamental problems of
modern physics. Sufficiently precise position measurements are also used for engineer-
ing quantum states. Because of the coupling to the thermal environment, mechanical
oscillators undergo Brownian motion, which sets the lowest measurement error when
an oscillator is used as a probe and puts an upper bound on the decoherence time of
mechanical quantum states. The thermal noise from the environment that drives the
Brownian motion is proportional to the energy dissipation rate, and for this reason,
mechanical resonators with low dissipation are the subject of broad and long-standing
interest.

The dissipation of vibrational modes in mechanical resonators is ultimately limited
by intrinsic losses, which appear to be unavoidable as the acoustic strain creating them
is also the source of potential energy for the vibrational modes. Intrinsic dissipation is
nearly constant for different modes of bulk resonators. In striking contrast, the flexu-
ral modes of high aspect-ratio resonators subjected to static stress can experience very
small, “diluted”, intrinsic dissipation. Understanding and engineering dissipation dilu-
tion led to remarkable progress in the development of low-loss mechanical resonators,
which is in part covered in this thesis. Presently, chip-scale MHz-frequency mechanical
resonators made of stoichiometric silicon nitride films are among the highest quality
factor resonators that exist, reaching quality factors close to one billion at room tempe-
rature. The demonstration of these devices paves the way for force measurements with
unprecedented resolution and the generation of long-lived quantum states of macroscopic
objects.

This thesis explores dissipation dilution in thin-film mechanical resonators and expe-
rimental position measurements performed on such resonators integrated into optome-
chanical cavities. Using an on-chip integrated optomechanical transducer, we implement
the variational measurement strategy and demonstrate quantum correlations arising be-
tween the quadratures of meter light as a result of quantum measurement backaction.
In our experiments at cryogenic temperature, these correlations lead to ponderomotive
squeezing of light.

The potential of the recently emerged record low-loss mechanical devices is parti-
cularly enticing at room temperature, as dissipation dilution is one of the few means
to counteract the high thermal occupation of the bath modes. The large amplitudes
of Brownian motion at room temperature, however, put a stringent limitation on the
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linearity range of the detector. As shown in this thesis, the interferometric nonlinearity
inherent to optical measurements can easily become the dominant source of extrinsic
thermal noise in detection.

Keywords: dissipation dilution, high-stress resonators, quantum measurements, ca-
vity optomechanics, nonlinear transduction.
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Résumé

Les mesures de position des oscillateurs mécaniques sont a coeur d’expériences allant
d’applications usant de la détection à l’échelle nanométrique aux efforts visant à résoudre
certains problèmes fondamentaux de la physique moderne. Des mesures de position
suffisamment précises sont également utilisées pour contrôler des états quantiques. En
raison du couplage à l’environnement thermique, les oscillateurs mécaniques subissent un
mouvement brownien qui détermine l’erreur de mesure la plus faible, lorsqu’un oscillateur
est utilisé comme sonde, et fixe une limite supérieure au temps de décohérence des états
quantiques de systèmes mécaniques. Le bruit thermique de l’environnement, qui entrâıne
le mouvement brownien, est proportionnel au taux de dissipation d’énergie et, pour cette
raison, les résonateurs mécaniques à faible dissipation font l’objet d’un intérêt généralisé
et de persistant.

La dissipation des modes vibrationnels dans les résonateurs mécaniques est en défini-
tive limitée par des pertes intrinsèques qui semblent inévitables du fait que la contrainte
acoustique qui les crée est également la source d’énergie potentielle des modes vibra-
tionnels. La dissipation intrinsèque est presque constante pour les différents modes de
résonateurs volumineux. En revanche, les modes de flexion de résonateurs à fort rap-
port d’aspect et soumis à une contrainte statique peuvent présenter une dissipation
intrinsèque très faible, ”diluée”. La compréhension et l’ingénierie de la dilution de la dis-
sipation ont conduit à des progrès remarquables dans le développement de résonateurs
mécaniques à faibles pertes, qui sont en partie couverts dans cette thèse. Actuellement,
les résonateurs mécaniques de fréquence MHz à l’échelle d’une puce, constitués de films
stoechiométriques de nitrure de silicium, sont parmi les résonateurs de facteur de qualité
le plus élevé qui existent, atteignant des facteurs proches d’un milliard à température
ambiante. La démonstration de tels dispositifs ouvre la voie à des mesures de force d’une
résolution sans précédent et à la génération d’états quantiques d’objets macroscopiques
de longue durée de vie.

Cette thèse explore la dilution de la dissipation dans les résonateurs mécaniques à
couche mince et les mesures expérimentales de position effectuées sur de tels résonateurs,
intégrés dans des cavités optomécaniques. En utilisant un transducteur optomécanique
intégré sur puce, nous mettons en œuvre la stratégie de mesure variationnelle et démon-
trons les corrélations quantiques qui se produisent entre les quadratures de la lumière
de mesure des suites de la rétroaction de la mesure quantique. Dans nos expériences à
température cryogénique, ces corrélations conduisent à une compression ponderomotrice
de la lumière.
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Le potentiel des dispositifs mécaniques pertes faibles, qui ont récemment fait leur
apparition, est particulièrement intéressant à température ambiante car la dilution de la
dissipation est l’un des rares moyens de contrecarrer la forte occupation thermique des
modes du bain. Les grandes amplitudes du mouvement brownien à température ambiante
limitent cependant fortement la plage de linéarité du détecteur. Comme le montre cette
thèse, la non-linéarité interférométrique inhérente aux mesures optiques peut facilement
devenir la source dominante de bruit thermique extrinsèque lors de la détection.

Mots-clés : dilution de la dissipation, résonateurs à fortes contraintes, mesures quan-
tiques, optomécanique, transduction nonlinéaire.

viii



Contents

Acknowledgements iii

Abstract v
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Overview

Mechanical resonators, thermal noise and quantum
measurements

The way measurements act in the quantum world has been a source of uneasiness for
physicists since the inception of quantum mechanics. At the operational level, there
hardly seems to be a problem presently. Beginning with Von Neumann’s postulate that
measurement is a “collapse” of the wavefunction to one of the eigenstates, a general
and elaborated measurement theory was developed [1, 2, 3], which has been faultless
in describing the outcomes of even the most sophisticated experiments performed with
quantum objects to date. And yet, a conceptual incompleteness remains [4]—there is
no mechanism by which a wavefunction can collapse within the quantum theory itself.
According to the Copenhagen interpretation, quantum objects need to interact with clas-
sical ones in order to be measured. At the same time the location of classical-to-quantum
boundary remains unclear, and the question of whether there is any fundamental me-
chanism that can collapse the wavefunction (e.g. related to gravity) is open [5, 6, 7, 8].
Hypotheses related to these problems are difficult to test because tests would require the
observation of quantum behavior of macroscopic (in some sense) objects. Such experi-
ments are also difficult for purely technical and non-fundamental reasons, since quantum
superpositions become increasingly fragile and sensitive to perturbations as the system
size is increased [9, 3].

An act of measurement prepares the quantum object in a certain state and provides
the observer with an outcome identifying this state. Contrary to our experience with
classical unknowns described by probability distributions, measurements of two diffe-
rent quantum observables are not necessarily compatible and can not always be done
simultaneously. When incompatible measurements are performed sequentially, the state
prepared by one always leaves the outcome of the other uncertain. In this way the
second measurement senses the backaction of the first. The projective effect of measu-
rement was not of much relevance in early experiments. For example, in the famous
Stern-Gerlach experiment, particle spins were inferred from the positions at which the
particles collided with the screen after deflection by magnets. Measurement outcomes
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Overview

provided information about the spins, but it could not be verified what happened to the
particle state after the measurement, since the particles were lost on the screen. Ex-
perimental observation of state projection by measurements requires a non-destructive
method of monitoring quantum objects. It can be implemented by coupling an object
to an intermediary party as, for example, propagating optical field, and performing de-
structive measurement on this party. Experimental methods of such measurements were
developed in the second half of the 20th century. A prominent early achievement was
the observation of quantum jumps between two electronic states of a laser-cooled ion in
an electromagnetic trap [10, 11]. Even more recently, in the 2000s, jumps between Fock
states of a harmonic oscillator were observed for the first time [12, 13] for an electro-
magnetic field in microwave cavities. These experiments directly evidenced the quantum
state projection and validated the textbook picture of quantum measurements.

Interest in quantum measurements is also driven by very practical considerations—
in precision experiments, it is desirable to reduce the measurement error down to the
fundamental minimum allowed by quantum uncertainties. The mechanical oscillator is
one physical system for which the problem of quantum error arises naturally. Various
physical phenomena manifest as forces acting on mechanical oscillators, which can be
inferred with high sensitivity by measuring the oscillator displacement. At the quantum
level, displacements of an oscillator at different times, unless these times are judiciously
chosen [14], is a canonical example of observables that cannot simultaneously have zero
uncertainty. Hence, the quantum backaction of measurements enters the problem.

Historically, it was largely the analysis of fundamental limitations on the precision of
force measurements in gravitational wave detectors which motivated the early theoreti-
cal research on continuous quantum measurements [15, 16]. In 2015 gravitational waves
were detected for the first time in Laser Interferometer Gravitational-wave Observatory
(LIGO) [17] by measuring the displacements of suspended test masses. Signatures of
measurement backaction were observed in present-day LIGO using correlation techni-
ques [18], but the backaction is not yet a major sensitivity limitation. The theoretical
results obtained within the gravitational wave detection community, however, apply to
various physical settings, in the first place to smaller but conceptually very similar in-
terferometric position transducers—optomechanical cavities [19]. In such cavities the
backaction in position measurements of an oscillator was observed for the first time in
2013 [20].

In parallel to optomechanics, the interest in quantum limits of measurements was re-
newed in the end of the 1990s with the emergence of mesoscale solid-state devices [21]—
tunneling junctions and single electron transistors—which are highly sensitive transdu-
cers of charge. Despite their sensitivity, attaining the minimum backaction-to-sensing
error product in tunneling devices is not a trivial task [22, 23]. Related works clarified
the requirements that the measurement apparatus need to satisfy in order to be capable
of reaching the minimum quantum error. A rigorous definition of a quantum-limited
detector [22] was introduced, based on the fact that there should be no information
about the measured system in the measurement apparatus that is not available to the
end observer.
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Aside from their relation to quantum measurements, the exploration of the classical-
to-quantum border and precision experiments have one more aspect in common—they
are limited by the intrinsic dissipation of quantum objects and their thermal decoherence.
The phenomenon of decoherence poses a similar conceptual challenge to quantum the-
ory as measurements do. There is a fundamental duality between the two—decoherence
can be interpreted as measurements performed by the environment where the outcomes
remain unknown to the observer [9, 3, 24]. Since interactions between quantum objects
are reversible, an external entity—a thermal reservoir—is introduced as a source of the
energy gain or loss and random thermal perturbations that realistic objects experience.
Unlike measurements, to which classical and quantum objects react differently, dissipa-
tion acts on both in a similar way. Thermalized quantum states are not very different
from classical states [3] and quantum superpositions decay at the thermal decoherence
rate [9]. Quantum effects of measurements can only be observed if the measurement-
induced collapse of the wavefunction happens faster than the thermal decoherence. In
order to satisfy this condition in experiments two strategies can be pursued—reducing
the coupling of the system to the environment and increasing (highly selectively) the
coupling to the measurement apparatus.

In the second half of the 20th century research in precision measurements (again,
gravitational wave detection among them) resulted in the development of macroscopic
mechanical resonators with unprecedentedly low levels of dissipation [25], which remain
state of the art till now. By utilizing high-purity materials and elaborated ways of
resonator mounting, quality factors as high as 5 · 1010 at cryogenic temperature [25]
and 2 · 108 at room temperature [26] were demonstrated. Understanding what limited
these record numbers has always been a challenge. The main reasons for this are the
wide variety of mechanisms that can potentially contribute to dissipation, the limited
means that an experimentalist has to differentiate between them, and the general lack
of information about microscopic details of structural imperfections. There are two
phenomenological trends which help to unify the results, although seemingly without
an underlying fundamental reason. The first trend is that the intrinsic relaxation of
energy usually happens locally, e.g. due to local two-level defects in amorphous solids
[27]. The second is that the frequency dispersion of internal friction in solids is strikingly
different from that in liquids [28], where it follows the viscous law. These observations
can be summarized by a model [29, 30], in which material losses are characterized by a
single frequency-independent internal friction angle, equal to the fractional energy lost
per radian of acoustic vibration. As this model does not suggest a route to reduce the
level of intrinsic losses, it predicts that the loss should be the same for any vibrational
mode with a bulk body made of a given material.

While there has been a limited progress in reducing mechanical dissipation in large
resonators, over the last few years nanoscale devices reached and exceeded their perfor-
mance [31, 32]. These devices are still macroscopic in a sense that they contain between
1010 and 1015 atoms, and their masses are in the range from picogram to nanogram.
In many aspects the development of low-loss nanomechanical resonators is following the
route of their bigger analogues, but there are also important differences. The reduction
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of resonator size, on the one hand, increases the surface-to-volume ratio, thus increasing
the importance of the contribution from the lossy surface layer. On the other hand, mo-
dern nanofabrication techniques offer a high level of control over the resonator geometry,
which can ease the elimination of extrinsic sources of loss. Also the small size of the de-
vices and the ability to produce them in large numbers simplifies their characterization
and improves the measurement statistics. At cryogenic temperatures, the lowest level of
dissipation in nanoresonators to date [31] was achieved by relying on the low intrinsic
loss of crystalline materials. However, the resonators that have the lowest loss at room
temperature [32] are made of an amorphous material with moderate intrinsic quality
factor—stoichiometric silicon nitride. In this case the losses of vibrational modes were
reduced by the factor of up to ∼ 106 by dissipation dilution.

Dissipation dilution for solid state resonators refers to the reduction of dissipation in
presence of static stress and geometric nonlinearity of deformations [33, 34], typical for
flexural modes of high-aspect ratio structures. Same as almost anything related to low-
loss mechanical resonators, the concept comes from the community of gravitational wave
detection, where it was presented for the first time in 1994 [33]. Its path from macrosco-
pic to microscopic resonators was not entirely straight, and dilution was recognized in
microscopic devices only around 2010 [35]. Given the general lack of control over intrin-
sic mechanical losses, dissipation dilution appears as a promising material-independent
approach towards engineering mechanical modes with the lowest dissipation. The latest
developments have also showed that the high level of control over the resonator geometry
offered by microfabrication techniques is an invaluable tool for improving the dilution.
The complex interplay between the vibrational mode shapes and the distribution of sta-
tic stress in tensile structures creates a wide space for optimization. Various concepts
proved useful in this task, including the localization of vibrational modes in phononic
crystals [36], engineering stress concentration [32, 37, 38], and self-similar resonator
design [39].

From the perspective of an experimentalist who set out to observe quantum aspects of
measurements, the decoherence of states is only one way how the thermal environment
manifests. Indirect observation requires an intermediary apparatus, which is also at
finite temperature and experiences thermal fluctuations. Measurements of mechanical
oscillators are commonly done by coupling them to electromagnetic field in the opti-
cal or RF domain—such an interferometric readout is one of the most sensitive known
techniques. Optical cavities are often used to further enhance sensitivity by making the
probe field interact with the oscillator multiple times. While the optical field has high
frequency and its thermal occupation is negligible even at room temperature, funda-
mental thermodynamic fluctuations of optical cavities can parametrically modulate it in
a way similar to the oscillator position, and be essentially inseparable from the signal.
Common mechanisms by which thermodynamic fluctuations transduce into the optical
field include the Brownian motion of mirror surfaces, fluctuations of the refractive index
or thermoelastic effect [40, 41, 42]. In the present-day interferometric gravitational wave
detectors, which are among the most sensitive instruments ever built, thermal fluctua-
tions of cavity mirrors are a key challenge to further sensitivity improvements [43]. The
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absolute magnitude of thermal fluctuations increases upon the reduction of cavity size,
which makes them more pronounced in table-top Fabry-Perot resonators and even more
so in optical microresonators.

In position measurements performed on a mode of a nanomechanical resonator, a
significant fraction of error can also come from the thermally excited motion of other
resonator modes. If the measurement is linear, the observer can separate the signal of
one mode from the contributions of other modes in the spectral domain, to a degree
permitted by the mechanical quality factors and mode density. Linearity is important,
as quite typically without spectral separation multiple mechanical modes coupled to the
measurement apparatus make measurements to be dominated by classical errors. At the
same time, interferometric measurements inherently have some amount of nonlinearity,
which is not so surprising since the optical phase is a periodic variable. Interferometric
nonlinearity leads to cross-mixing of spectral components of thermal noise, which we refer
to as thermal intermodulation [44], and becomes a challenge of a new kind in experiments
with low-loss mechanical resonators at room temperature. This effect, while presently
seen as undesirable in our experiments, can potentially become useful for implementing
nonlinear measurements and creating non-Gaussian mechanical states.

This thesis

The thesis consists of three parts, which address different aspects of cavity-based mea-
surements and thermal noises, and which are united by the motivation of bringing the
error of measurements down to the quantum minimum.

The first part concerns the quality factors of stressed mechanical resonators. The
theory of dissipation dilution is presented, starting from toy models that illustrate the
concept and ending with the general case of arbitrary solid-state resonators. This part
has an extended number of details, since the impact of stress on mechanical dissipation
has only recently been recognized, and a comprehensive theoretical overview of dissi-
pation dilution has not appeared in the literature so far. In particular, this applies
to thin-film resonators, which are of great practical importance. An effort is made to
clearly separate common assumptions and approximations made when analyzing dissi-
pation in mechanical resonators, and discuss the physical roots of these assumptions. A
particular emphasis is made on quasi one-dimensional resonators (beams), for which a
number of analytic results is derived, and on fractal-like binary tree resonators. Experi-
mental results, presented in this section, corroborate theoretical predictions and feature
nanobeam mechanical resonators with quality factors up to 8 · 108 at room temperature
and 1.6 · 109 at 6 Kelvin.

In the second part, experiments are presented that demonstrate manifestations of
quantum measurement backaction in position measurements of mechanical oscillators
near-field coupled to optical microcavities. Measurement backaction manifests as corre-
lations between the quadratures of optical field, which constitute an essential ingredient
of the variational measurement strategy that can have sensitivity better than the stan-
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dard quantum limit. At cryogenic temperature, the backaction-induced correlations are
strong enough to produce the quadrature squeezing of light. The observation of these
correlations at room temperature, though in a weaker form, was one of the very first
demonstrations of measurement backaction on a room temperature mechanical oscilla-
tor. In the same section, measurements of broadband thermal noise of a silicon nitride
mechanical resonator are presented, and it is shown that the frequency dispersion of
oscillator loss angle follows the frequency independent damping model.

In the last part, measurements made using a different optomechanical platform,
membrane-in-the-middle, are presented. It is shown that the high optical finesse achie-
vable in such cavities leads to high nonlinearity of measurements. In combination with a
large number of modes that membrane resonators possess, the transduction nonlinearity
of the optical cavity results in additional thermal noise in detection, which is coined
thermal intermodulation noise.
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Dissipation dilution in mechanical
resonators

2.1 Introduction

The utility of a mechanical oscillator as a probe body is limited by its thermal fluctua-
tions. The degree of thermal agitation is quantified by the magnitude of random force
exerted on the oscillator by its environment1. The two-sided spectral density of thermal
force noise, Sth

FF , is determined by the fluctuation-dissipation theorem [45],

Sth
FF = 2kBTmΓ. (2.1)

Here kB is the Boltzmann constant, T is the temperature, m is the oscillator mass,
Γ is the dissipation rate (the inverse of the acoustic energy decay time). A reduction
of thermal noise, therefore, requires lowering the temperature, the oscillator mass, its
dissipation, or all of the above. The reduction of dissipation is usually particularly
desirable and challenging to realize [46].

Understanding experimentally observed levels of mechanical dissipation from first
principles can be difficult, and improving upon them is even more so. While frequencies
and displacement profiles of mechanical modes depend on a small number of material
parameters and are typically weakly perturbed by imperfections of the real structure
and by the ambient environment, the situation is completely different for dissipation. It
is not uncommon that a few independent loss mechanisms contribute to dissipation at
the same time, making it vary drastically with system parameters and be sensitive to the
resonator imperfections and the environment. Moreover, while some mechanisms that
can limit dissipation are theoretically well understood (for some examples see Refs [29,
25, 47] for review), or can be simulated by means of molecular dynamics [48, 49], in a

1From some perspective it might appear counterintuitive that the oscillator dissipation affects the
measurement error, as the total variances of oscillator position in thermal equilibrium is independent
of dissipation and is simply given by the equipartition, 〈x2〉 = kBT/(mΩ2). In realistic experiments,
however, interactions that one sets out to detect do not produce fixed displacements of the oscillator,
but rather exert forces on it. These forces needs to be above the thermal noise level (Eq. (2.1)) in order
to be detectable.
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wide range of practically important cases the details of physical processes responsible
for dissipation are still obscure.

Mechanical dissipation can be separated as intrinsic and extrinsic. Although such
a separation is not always unambiguous, generally dissipation originating from the in-
teraction of the resonator with its surroundings is considered extrinsic, and dissipation
that occurs due to the coupling of strain field to internal degrees of freedom inside the
resonator itself is considered intrinsic. Extrinsic mechanisms include damping due to
the interaction with surrounding gas [50, 51, 52], the radiation of acoustic energy [53,
54], and the attachment of the resonator to a support (“clamping loss”) [55, 56, 57].
Typically extrinsic loss mechanisms can be eliminated in a carefully designed experi-
ment, although this is not always straightforward. Intrinsic mechanical losses are more
fundamental, they occur due to the coupling of strain to internal degrees of freedom
in the material [29], like local temperature, the configuration of structural defects, or
other phononic modes. In the presence of such a coupling, strain responds to stress
not instantaneously but with a delay, equal to the time that it takes for the internal
degrees of freedom to relax to a new equilibrium state. In the process of this relaxation
some energy is dissipated. Intrinsic damping is also referred to as “internal friction”,
as it arises due to inherent material properties, like the nonlinearity of crystalline lat-
tice potential (thermoelastic [58] and Akhiezer [59, 60] damping), or due to structural
defects [27, 29, 49]. Note that while the structural defects in crystalline materials can
be regarded as imperfections, in amorphous materials some density of them is always
present [27].

Mechanicals dissipation due to the resonator surface deserves a separate comment.
Since the early days of macroscopic resonators, mechanical and chemical surface treat-
ments are know to affect the resonator damping [25], leading to the conclusion that the
material in the surface layer has higher mechanical loss than in the bulk. This excess
loss is commonly explained by the microscopic complexity of the surface layer [25, 31],
which can host an increased number of structural defects, absorb molecules of gas and
water, or be covered by oxide in resonators made of reactive elements. The problem of
surface loss is particularly relevant to nanomechanical resonators in which the surface-
to-volume ratio is high. A lot of data on dissipation in nano- and microscale resonators
seems to hint that mechanical losses generally increase with the reduction of resonator
size [61]. In some cases, for example in crystalline silicon resonators, the extra loss in
the surface layer predominantly comes from the naitive oxide, and can be reduced by
chemical treatment [62, 63]. Mechanical resonators employed in the experiments in this
thesis are made of stoichiometric silicon nitride Si3N4. Dissipation in Si3N4 films thin-
ner than 100 nm is limited by surface loss, which was reported to have the same order
of magnitude in numerous works from several laboratories [64]. It is still a subject of
debate what physical mechanism is responsible for the surface loss in Si3N4 films, and
no way of reducing this loss has been reported to date.

Despite surface losses mechanical dissipation in microscopic resonators can be on par
with, or even lower than, that of big macroscopic devices. This, at least in part, is a
result of the high degree of control offered by modern nanofabrication techniques, which
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makes the elimination of extrinsic losses easier than in the case of macroscopic devi-
ces. Recently, quality factors as high as 5× 1010 at GHz frequencies were demonstrated
in silicon resonators [31], enabled by the reduction of mechanical losses at millikelvin
temperatures and a carefully designed phononic crystal shield that prevented acoustic
radiation. An alternative way of achieving low loss in microscopic mechanical resona-
tors is dissipation dilution by stress, which is a subject of this thesis and is treated in
detail in the following. With the help of this technique, we were able to demonstrate
nanomechanical resonators with quality factors as high as 8× 108 at room temperature
[32], where the material loss is high.

Whereas systematic studies of mechanical dissipation in solids have a history which
is more than a hundred years long, the effect of static stress received little attention until
the 1990s. The term “dissipation dilution” appeared for the first time in 1994 in Ref. [33],
although the notion of this effect existed earlier in a narrow community [30]. In the 1990s
it was known that violin and pendulum modes of suspended masses have higher quality
factors when the mass suspensions are under high tension. Since the tension was created
by the gravitational potential, an intuitive explanation was proposed [30, 65, 66] that the
energy stored in the lossless gravitational potential “dilutes” the internal friction in the
strings. Quality factors of mechanical modes were (and still are) commonly simulated
using finite-element methods and the loss angle model to describe the material loss.
If properly applied, this approach correctly predicts the magnitude of dilution, so the
physical interpretation of this effect was of secondary interest for a while.

Later, in 2000s, anomalously high quality factors were observed in nanometric strings
and membranes made of highly-strained materials (most notably, silicon nitride [67, 68,
35]). This was as well explained by dissipation dilution [35, 69], without any lossless
potential being involved, which motivated revisiting the concept and reformulating it
in geometric terms [35, 34]. Dilution at the nanoscale was first recognized in doubly-
clamped beam resonators around 2010; Ref. [35] appears to be the first work which
applied this concept in a context different than the suspensions of macroscopic pendula.
The recognition of dilution in membranes by Yu et.al. [69] followed soon. In these
works the mechanical losses of flexural modes of uniform beams [35] and membranes
[69] was calculated from a structural mechanics perspective and shown to be much lower
than the bulk material loss—in excellent agreement with experiments [35, 64, 69, 54].
These results had partially demystified the effect, but its fully general description was
introduced only more recently in our work [34].

A key concept to explain dissipation dilution is the geometric nonlinearity of defor-
mations. When a continuous body is deformed, distances between its points (and hence
strains) in general depend nonlinearly on the displacement vectors of these points, which
is purely a property of our Euclidean space. Flexural deformations of high aspect-ratio
structures have an especially high ratio of nonlinear and linear strains [70]. In high
aspect-ratio structures, geometric nonlinearity dominates the Duffing nonlinearity of
strongly driven mechanic modes [71], it can give rise to static mechanical nonreciprocity
[72], and, in the presence of tensile stress, it creates dissipation dilution [34]. Qualita-
tively, the dilution mechanism can be explained as follows: The combination of tensile
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stress and strong geometric nonlinearity creates a situation where most of the energy is
stored by strains that are of the second order of smallness in the mechanical displace-
ments. Because of their small amplitude, such strains couple negligibly to the internal
degrees of freedom and do not give rise to intrinsic mechanical losses. Therefore, the
elastic energy stored by geometrically nonlinear deformations can be seen in a way as a
lossless potential.

By now it is firmly established that dilution by stress is a highly practical tool for
the reduction of intrinsic mechanical dissipation irrespective of the microscopic origin of
losses. Whereas suspended pendula in which dilution was originally observed are bulky
and specialized instruments for fundamental research, on-chip nanoresonators made of
suspended high-stress thin films have a much broader range of applications. Thin-film
mechanical resonators have a long history, as such geometries are natural for nanofa-
bricated devices, where materials are commonly produced layer-by-layer on a substrate.
Initially the development of thin-film resonators was spurred by the need for miniaturiza-
tion of electromechanical components, including oscillators and filters [73]. Mechanical
elements are essential in these devices, as high acoustic quality factors are not easily
matched by purely electrical circuits. Electromechanical components, although, do not
often require particularly thin films to be free-standing, which makes their acoustic mo-
des similar to those of bulk devices. Low-frequency (kHz to MHz range) free-standing
mechanical microresonators, since their early days, were recognized as sensitive probes
for small forces and employed in nanoscale sensing. A prominent example is atomic
force microscopy [74], others include the detection of magnetic field [75], added mass
[76], acceleration [77] and Casimir force [78]. Mechanical resonators employed in Mag-
netic Resonance Force Microscopy enable the detection of electronic and nuclear mag-
netic moments with nanometer spatial resolution, and in this way imaging morphologies
of complex molecules and simple biological samples [46]. In sensing applications, the
cantilever is a common resonator geometry, but membrane and double-clamped beam
resonators are also employed. While bringing additional geometrical constraints, they
have advantages such as robustness and high quality factors [79, 80], usually related to
the fact that they can be subjected to static tension.

Stress is not uncommon in films used for microresonator fabrication, it can be pro-
duced by lattice mismatch [81] between the film and substrate or by mismatch in their
thermal expansion coefficients [82]. One material which is widely available in the form of
high-stress films is silicon nitride. Produced by chemical vapor deposition on silicon sub-
strate, silicon nitride has tensile stress varying from hundreds of MPa in silicon-rich films
to ≈ 1.3 GPa in stoichiometric Si3N4 films. The combination of high stress and existing
techniques for the fabrication of cm-long free-standing structures makes silicon nitride
popular in high-Q nanomechanics. Interestingly, sub-100 nm thick free-standing silicon
nitride membranes have been commercially available for more than a decade as windows
for transmission electron and X-ray microscopy, recognized for their transparency and
the ability to sustain differential pressure of more than one atmosphere. Commercial
silicon nitride membranes were among the first resonators in which anomalously high
quality factors were reported [68, 83], later explained by dissipation dilution. Because
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of the combination of low optical absorption and high mechanical quality factors, they
were also employed in cavity optomechanics experiments [84, 85].

Practical interest in dissipation dilution has been growing since its discovery in mi-
croresonators. Very recently, dilution enabled nanomechanical resonators in the form of
patterned membranes and beams to achieve exceptionally high quality factors [36, 32].
By localizing a beam mode away from its supports with a phononic crystal (the “soft
clamping” approach introduced by Tsaturyan et al. [36]) and using geometric strain
engineering [86] to enhance strain in the beam constriction, we demonstrated quality
factors as high as 8× 108 at room temperature [32]—surpassing even the highest values
measured in macroscopic sapphire bars [25]. As time progresses, new and unexpected re-
sonator geometries with enhanced dissipation dilution are being found. We theoretically
showed recently [39] that systems of tensioned strings in the shape of self-similar binary
trees can have fundamental modes which are effectively soft clamped, and are predicted
to have unprecedented quality factors. The concept of soft clamping by string branching
proved very generic and has been applied to trampoline membrane resonators in a work
that is ongoing in our lab. During the time of writing this thesis, first devices have been
fabricated which demonstrate this concept and which levels of dissipation dilution are
in a good agreement with theoretical expectations.

2.2 Toy models

2.2.1 A mass on a lossy spring

Before embarking on the general analysis of dissipation in solid-state resonators sub-
jected to stress, it is useful to illustrate the main concepts with the help of toy models.

Every mode of a solid-state resonator behaves as a harmonic oscillator. The simplest
model of a conservative oscillator is a mass M mounted on a spring, characterized
by the rigidity k, which responds to the deformation x with the force F = −kx (see
Figure 2.1A). Intrinsic loss can be introduced in this model by adding a dashpot in
parallel to the spring, as shown in Figure 2.1B. The composite structure of a lossless
spring and a dashpot will be referred to as a “lossy spring”. If the dashpot is filled with
a viscous medium, the force-displacement relation of the lossy spring is given by

F = −kx− ηẋ, (2.2)

where η is the viscous damping coefficient and dot stands for time derivative. In the
frequency domain2, Eq. (2.2) becomes

F [ω] = −(k − ik′)x[ω], (2.3)

where k′ = ωη. Given the form of Eq. (2.3), it is customary to regard (k − ik′) as a
complex spring constant and express it in terms of magnitude and phase,

(k − ik′) = |k − ik′|e−iφ. (2.4)

2With Fourier transform given by x(t) =
∫∞
−∞ x[ω]e−iωtdω
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x 0 x 0
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Figure 2.1: (Simple spring pendula. A) A mass on a spring—model of a conservative oscillator.
The gray circle indicates the position of the mass at rest. B) Voigt damping model of intrinsic
friction in the spring. C) An oscillator with a lossy spring and an extra one, with rigidity kdil,
connected in parallel.

The phase φ is referred to as “loss angle” for the reason that it characterizes dissipation.
In what follows only the case of small dissipation, φ � 1, will be considered, in which
|k − ik′| ≈ k.

The viscous damper exerting force proportional to the velocity of the mass is a
special case that can be generalized by ascribing frequency dependence to η and k. It
can be shown that in this way an arbitrary response function can be constructed that
satisfies the requirements of a) being linear in applied force and b) bringing the system
to an equilibrium after a steady force has been acting for a sufficiently long time. The
frequency domain relation between F [ω] and x[ω] in the general case is given by

F [ω] = −k[ω]e−iφ[ω]x[ω]. (2.5)

In the time domain, Eq. (2.5) translates into a relation between the force and the displa-
cement that is more complex than Eq. (2.2) and involves time integration. The general
relation between time and frequency domain responses is not discussed in details here,
this subject is well presented the literature, for example in Ref. [29]. Note only that the
frequency dispersion of the spring and the loss angle need to satisfy

k[ω] = k[−ω], (2.6)

φ[ω] = −φ[−ω], (2.7)

in order for the Fourier transform of the force susceptibility, x[ω]/F [ω], to be real. The
constraint given by Eq. (2.7) needs to be kept in mind when considering the frequency-
independent loss angle model—frequency-independence here can only apply to positive
frequencies (ω > 0), while at ω = 0 the loss angle is always zero.

2.2.2 Quality factors and dissipation dilution

The dissipation of a mechanical oscillator can be characterized by its quality factor Q,
which is defined as the ratio of total stored energy, W , to the average energy lost per
radian of free vibration, ∆W/(2π),

Q = 2π
W

∆W
. (2.8)
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In order to calculate the Q of a low-loss oscillator, it is convenient to adopt a perturbative
approach, in which both W and the energy decrement ∆W are found assuming that the
oscillator follows an undamped (conservative) trajectory. For the spring pedula shown
in Figure 2.1, the trajectory of lossless motion is given by

x(t) = a cos(Ωt), (2.9)

where Ω =
√
k/M is the resonance frequency and a is the vibration amplitude. The

stored energy, W , is a constant of conservative motion. It is related to the kinetic energy,
W (kin), according to the virial theorem,

W = 2〈W (kin)〉, (2.10)

where 〈...〉 denotes time averaging over the lossless trajectory given by Eq. (2.9). When
dissipation is accounted, the energy ∆W lost per oscillation cycle is found by evaluating
the work done by the non-conservative part of the force, F (diss), as

∆W = −
∫ T

0
F (diss)(t)δ̇l(t)dt, (2.11)

where T is the oscillation period, and δl(t) is the elongation of the spring due to the
mechanical displacement3. In the case of our simple pendulum, δl(t) = x(t). For φ� 1
the dissipative force is found using Eq. (2.9) and Eq. (2.5) to be

F (diss)(t) = −k′ δ̇l(t)
Ω

. (2.12)

In the case if the loss angle φ is frequency dependent, it need to be evaluated at the
resonance frequency Ω. Explicitly, the energy decrement is found as

∆W = 2πk′
〈δ̇l2〉
Ω2

, (2.13)

and the quality factor as

Q =
Ω2

k′
2〈W (kin)〉
〈δ̇l2〉

. (2.14)

For the simple pendulum in Figure 2.1B, the kinetic energy is 〈W (kin)〉 = M〈ẋ2〉/2 and
the quality factor evaluates to

Q =
1

φ[Ω]
. (2.15)

The term “dissipation dilution” (aka “loss dilution” or “Q dilution”) was coined to
describe a situation in which the mechanical quality factor is increased by the addition

3If the mass could move in more than one dimension, it would be more precise to say that F is the
projection of force on the spring axis. An idealized spring, however, always exerts forces directed along
its axis, so even in this case, there would be no need for vector notations.
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of a lossless potential to the original lossy spring [65]. Indeed, suppose that a lossless
spring with the rigidity kdil is added in parallel to the lossy one with the rigidity k and
the loss angle φ, as shown in Figure 2.1C. Then the new resonance frequency Ω′ and the
new quality factor Q′ are given by

Ω′ =
√

(k + kdil)/M, (2.16)

Q′ =

(
1 +

kdil

k

)
1

φ[Ω′]
. (2.17)

The ratio DQ = Q′/Q is called dilution coefficient [34]. Examples of settings in which
dissipation dilution occurs include a mechanically compliant mirror trapped by an optical
potential [87, 88], metallic membrane pinned by the Casimir force [89], or solid-state
resonators under tension.

2.2.3 The lossless motion of a mass on lossy tensioned springs

Somewhat counterintuitively, a mechanical structure made of springs, all of which are
lossy, can still host vibrational modes free from dissipation. A minimalistic model that
demonstrates this is a stretched double-spring pendulum [90] shown in Figure 2.2A.
The pendulum consists of the mass M , which can move in the xy plane, and which is
connected to two identical springs with the rigidity k and the equilibrium length l. The
positions of the other ends of the springs are fixed, in such a way that the springs at
rest are elongated by ∆l. All springs in Figure 2.2 are lossy in the sense defined in the
previous section, but the dashpots are not explicitly shown for the sake of space saving.

To find quality factors, same as in the previous section, we first find the conserva-
tive dynamics and then perturbatively include intrinsic losses. For a system involving
multiple springs, the quality factor is given by (generalizing Eq. (2.14))

Q = Ω2 2〈W (kin)〉∑
i k
′
i〈 ˙δli

2〉
, (2.18)

where the sum is conducted over all the springs.

The conservative dynamics of the double-spring pendulum can be derived from its
classical Hamiltonian, equal to the sum of the kinetic and elastic energies. In equilibrium,
the mass is at the coordinate origin, and its displacement by (x, y) from the origin
creates the extra elongations δl1 and δl2 in the springs one and two, respectively. These
elongations are related to the mass displacement as

δl1,2 =
√

(l + ∆l ± x)2 + y2 − (l + ∆l) ≈ ±x+
y2

2l
. (2.19)

The instantaneous elastic energy is given by Hooke’s law,

W (el) = k
(∆l + δl1)2 + (∆l + δl2)2

2
= k

(
x2 +

y4

4l2
+ (εl)2 + εy2

)
, (2.20)
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Figure 2.2: Spring models with modes experiencing dissipation dilution. Springs undeformed
in equilibrium are shown as black, and springs with static elongation are shown as red. In the
panels showing deformations, undeformed geometries are drawn in pale colors. A) A double-
spring pendulum with unstretched (top) and stretched (bottom) springs. In equilibrium l1 =
l2 = l. B) T-pendulum, the y mode of which experiences finite dilution. C) The displacements
corresponding to the two normal modes of a mass on stretched springs, x mode (top) and y mode
(bottom). D) The motions of the effective spring dampers over the vibrations along x (top) and
y (bottom) directions.

where ε = ∆l/l is the static strain. Dropping the static term (εl)2 and the high-order
term ∝ y4, the Hamiltonian is found as

H =
M(ẋ2 + ẏ2)

2
+ k

(
x2 + εy2

)
. (2.21)

This Hamiltonian has two normal modes, which displacements are oriented along the x
and y directions (as shown in Figure 2.2C) and which resonance frequencies are Ωx =√

2k/M and Ωy =
√

2εk/M , respectively.

The intrinsic losses of the springs have a qualitatively different effect on the x and
y modes of the double-spring pendulum. For the x mode, 2〈W (kin)〉 = M〈ẋ2〉, and

〈 ˙δl1
2〉 = 〈 ˙δl2

2〉 = 〈ẋ2〉. After the evaluation of Eq. (2.18) we get the same quality factor
as for a simple mass on an unstrained spring,

Qx =
1

φ
. (2.22)

(We assumed that both springs have the same loss angle φ.) The kinetic energy of the y
mode is given by 2〈W (kin)〉 = M〈ẏ2〉, which looks similar to the x mode. However, the
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spring elongations in this case are quadratic in displacement,

δl1(t) = δl2(t) =
y2

0

4l
(1 + cos(2Ωyt)), (2.23)

where y0 is the motional amplitude of the mode. Since 〈δl̇1
2〉 = O(y4

0) and 〈W (kin)〉 =
O(y2

0), using Eq. (2.18) we can conclude that the quality factor of the y mode diverges,

Qy →∞, (2.24)

as the motional amplitude goes to zero, y0 → 0. This result can be explained with the
help of Figure 2.2D, in which the deformations of effective spring dampers are shown
for the x and the y mode. Infinitesimal displacements of the mass perpendicular to
the springs do not elongate them and cause no internal friction loss, in contrast to
displacements along the x axis.

The result, on the face of it, appears paradoxical—however lossy the spring material
may be, the y mode of the double pendulum never experiences dissipation. This is
made possible by the combination of two ingredients: the quadratic, “geometrically
nonlinear”, dependence of the spring elongation on the displacement of the mass, and
the static stress in the springs. The fact that the geometrically nonlinear dependence
of the elongation on the displacement is essential for the mode to be lossless is already
apparent from the derivation above. The role of the static stress is to supply a finite
trapping potential to the y mode. In the absence of stress, the y mode is “soft”, i.e. its
confining potential is higher order than two in displacement. The elastic energy created
by the tension in a way acts as a lossless potential, although it is not physically different
from the elastic energy in a linearly deformed spring.

The role of tension in dissipation dilution can be made more clear if the quality factor
is directly expressed in terms of elastic energies, as

Q =

∑
i ki
(
2∆li〈δli〉+ 〈δl2i 〉

)∑
i k
′
i〈δl2i 〉

. (2.25)

Obtaining this result from Eq. (2.18) requires the use of the virial theorem, and also the
fact that ˙δli(t) = Ω δli(t), which is valid since the anharmonic terms are higher-order in
the oscillation amplitude. If non of the springs are elongated in equilibrium (∆li = 0),
and all of them have the same loss angle φ = k′/k, then, according to Eq. (2.25), the
quality factor of any mode is equal to 1/φ. If static elongations are present in the system,
they can supply additional energy ∝ ∆l〈δl〉 and lead to an increase in the quality factor.
The extra energy is non-zero only if 〈δl〉 6= 0, which, same as the absence of friction loss,
also requires geometric nonlinearity of spring deformations.

The double pendulum in Figure 2.2C-D is an extreme example where dilution leads
to infinite Q. Mechanical modes in real resonators always store some elastic energy in
linear strain and their intrinsic-loss limited Q is finite. The effectively lossless elastic
energy, however, results in dissipation dilution for vibrational modes, which is formally
analogous to the dilution in the simple model of Sec. 2.2.2. It is not difficult to construct

16



2.2 Toy models

a spring pendulum that experiences finite dilution, an example of such is the T-shaped
pendulum shown in Figure 2.2B. By applying Eq. (2.25), the quality factor of its y mode
depicted in the figure is found as

QT,y =

(
1 +

k(nl)

k(lin)

)
1

φ
, (2.26)

where k(lin) is the rigidity of the vertical spring, and we also introduced the notation
k(nl) = 2εk, corresponding to the effective spring constant created by the nonlinearly
deformed elements in the presence of stress.

Note, finally, that although the y mode of the double pendulum in Figure 2.2C-D is
not affected by intrinsic dissipation, it would be affected by extrinsic losses. For example,
if the mass was immersed in a viscous medium that created drag force −ηẏ, the quality
factor of the y mode would Q = MΩy/η.

2.2.4 Suspended pendula

A

x(t)

k
η

F = Mg

B

C

l
h

F = k∆l

F = Mg

Figure 2.3: Suspended pendulum. A)
The pendulum mode of a mass on a wire
in the gravitational field. B) A violin
mode of the pendulum suspension. C)
The pendulum mode of a mass for which
the restoring force is created by a tensio-
ned lossy spring.

As was mentioned earlier, dissipation dilution by
stress was first recognized in vibrational modes
of suspended test masses in 1990s. In their semi-
nal work, Gonzalez and Saulson [33] experimen-
tally characterized and theoretically calculated
the quality factors of a mass hanging on a thin
wire. According to their results, quality factors
were increased by the stress in the wire. Around
the same time, it was experimentally verified by
Huang and Saulson [91] that stress does not af-
fect the intrinsic material loss, so that the in-
creased quality factors observed previously were
indeed fully consistent with the dilution model.
To provide physical intuition on the origin of di-
lution, it was argued that the vibrational modes
of tensioned strings store the majority of their
potential energy as gravitational energy, and not
as the elastic energy of deformation. Due to the
success of Gonzalez and Saulson’s dissipation di-
lution model, this explanation is widely used to
date [65, 66, 92, 93].

In view of recent developments, however, we
propose to have a fresh look at the problem and
argue that dissipation dilution is related to the geometry of the pendulum motion (and
that of the violin modes) rather than to the lossless nature of the gravitational poten-
tial. A simple suspended pendulum is depicted in Figure 2.3A-B, it has modes which
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correspond to the pendulum motion of the mass (Figure 2.3A) and violin standing waves
in the wire (Figure 2.3B). The dissipation properties of these modes are very similar,
but the pendulum mode is easier to analyze, which we will do next. The gravitational
energy W (g) of the mass M at hight h is given by,

W (g) = Mgh, (2.27)

where g is the free fall acceleration. The gravitational potential itself is linear in the
elevation h, and hence a mechanical constraint is required to create a quadratic potential
suitable for the confinement of mechanical motion. This constraint is the fixed length
of the pendulum suspension, which relates the hight change to the horizontal mass
displacement x as

h = x2/2l. (2.28)

The Hamiltonian is given by

H =
Mẋ2

2
+
Mgx2

2l
. (2.29)

It describes a familiar textbook pendulum with resonance frequency Ω =
√
g/l.

By the construction of our problem so far, the pendulum mode experiences no dis-
sipation. Indeed, the gravitational potential is lossless, the mass suspension cannot
contribute any friction as it does not deform, and the attachments are assumed to be
free from any friction as well. One item on this list, however, is not essential to the overall
conclusion, which is the lossless nature of the gravitational potential. If we replace the
gravitational force acting on the mass by an equal force from a lossy spring-dashpot sy-
stem, the pendulum mode will remain lossless. The new setting is shown in Figure 2.3C,
where the spring is assumed to be much longer than the suspension length l. If the
spring elongated in equilibrium by ∆l such that

k∆l = Mg, (2.30)

the Hamiltonian of the mode in Figure 2.3C is the same as of the pendulum mode in
Figure 2.3A (which is given by Eq. (2.29)). Using the result of the previous section that
small displacements of a mass perpendicular to a lossy spring are not affected by the
intrinsic loss in the spring, we conclude that the pendulum in Figure 2.3C is also lossless.

The same kind of equivalence applies to the violin modes of the mass suspension.
They experience dissipation dilution similar to that of the pendulum mode, and the
nature of force producing the tension is unimportant. In the next section 2.4.4, we
will analyze flexural modes of strings, and the results will apply equally well to strings
tensioned by macroscopic suspended masses and to pre-stressed doubly-clamped nano-
mechanical resonators.

2.3 General theory of dissipation dilution

In this section the structural mechanics theory of dissipation dilution is formulated under
quite general assumptions. Despite the fact that the majority (if not all) of practical
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2.3 General theory of dissipation dilution

problems can be solved using simpler 2D and 1D approaches, the 3D formulation is useful
in case of doubts, when a careful examination of the validity of underlying simplifications
is required. The general formulation also helps developing some physical intuition, and
to find out what kind of physical dissipation mechanisms are amenable to dilution.

2.3.1 Deformations, stress and strain in elastic bodies

The mechanics of deformations of continuous solid-state media is described by the theory
of elasticity4. The position of a body point prior to deformation is parametrized by a
radius-vector r with components xi. In this section, i and other Latin indices run over
the dimensions of the problem, in 3D i = x, y, z. The mechanical deformation is defined
by mapping

r → r′, (2.31)

which assigns to every point in the undeformed body a new position r′ with components
x′i. This mapping can be interpreted as a transformation from the material (Lagrangian)
coordinates xi, which deform with the body, to the spatial (Eulerian) coordinates x′i. A
Cartesian system can always be chosen to parametrize the space and the undeformed
body, but the material coordinate system of the deformed body is generally curvilinear.
The deviation of the material system from Cartesian is negligible if the deformations
are small, and we restrict our attention to this case in the following. For a more general
consideration and a discussion of validity of this approximation see Appendix A.1.

Small deformations are convenient to characterize using a displacement field u, defi-
ned as

u = r′ − r. (2.32)

The distance between two closely spaced points in the deformed body is related to their
coordinate difference dxi in the absence of deformation as

(dx′i)
2 = dx2

i + 2εijdxidxj , (2.33)

where summation over repeated indices is assumed (Einstein convention) and the com-
ponents εij of the Green strain tensor are given by [70]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
. (2.34)

In the theory of large deformations, Eq. (2.33) defines metrics in the material coordinates.

The strain tensor consists of two types of terms, which are, respectively, linear and
quadratic in the deformation gradients. If the deformation gradients are small, the

4The theory of elasticity is the subject of many textbooks. For example, the reader can refer to the
book of Landau and Lifshitz [70] for a pedagogical introduction, and to the book of Berdichevsky [94]
for a more detailed exposition, in particular of nonlinear problems.
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quadratic part of the strain tensor may be negligible, in which case the deformations are
called geometrically linear [94], and the strain tensor is given by

ε
(lin)
ij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.35)

In this case the spatial and material coordinates coincide and the theory simplifies signi-
ficantly. In the following, however, effects quadratic in deformation gradients will be of
key interest, and the geometrically nonlinear definition of strain, given by Eq. (2.34), is
retained. For our purposes, the material frame differs from the spatial frame by a local
rotation at an angle of the order of ∂ui/∂xj .

Reversible deformations store elastic energy, which is a key quantity in the formula-
tion of physical laws of mechanical statics and dynamics. In the material coordinates
the volumetric density of elastic energy, w(r), is invariant under deformations that do
not change distances between body points, i.e. under rotations and translations of the
body as a whole. Therefore the elastic energy can depend on the deformation gradients
∂ui/∂xj only via the strain tensor εij . To the lowest order in the strain, w is given by

w = Cijklεijεkl, (2.36)

where Cijkl is a rank-4 tensor of elastic constants specific to the material. Elastic forces
inside the body are characterized by the stress tensor σij , related to the energy density
as

σij =
∂w

∂εij
. (2.37)

The stress tensor is symmetric, σij = σji. If energy density is given by Eq. (2.36) the
stress is a linear function of strain, and the material is called physically linear. The
elastic energy in this case can be expressed as

w =
1

2
σijεij . (2.38)

In isotropic materials there are only two independent elastic constants, and the stress
tensor is related to strain by the generalized Hooke’s law

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
, (2.39)

where E is the Young’s modulus and ν is the Poisson’s ratio. A less formal introduction
of the elastic energy as the work performed by elastic forces requires the use of the theory
of large deformations and is given in Appendix A.1.

2.3.2 Geometrically nonlinear strain and local rotations

The strain tensor is a sum of linear and nonlinear parts, given, respectively, by

ε
(lin)
ij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, ε

(nl)
ij =

1

2

∂uk
∂xi

∂uk
∂xj

. (2.40)
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The nonlinear part, which is quadratic in the displacement gradients ∂ui/∂xj , is a
continuous counterpart of the quadratic spring elongation that appeared in Sec. 2.2.3
and has the same geometrical origin.

In many problems, the geometrically nonlinear strain is negligible unless deformations
are large. Consider, for example, a uniform elongation in x direction, which displacement
field is given by

ux = εx, uy = uz = 0. (2.41)

In this case the only non-zero component of strain is εxx = ε+ε2/2, and the geometrically
nonlinear contribution is negligible compared to the linear one as far as ε � 1. Most
conventional solid materials experience fracture or plasticity at strains above percent
level [95, 96]. Two-dimensional materials like graphene and MoS2 can survive strains up
to about 10% [97, 98], but yet larger values are truly rare.

A situation when ε
(nl)
ij is not negligible occurs when the deformations produce zero

linear strain, namely if
∂ui
∂xj

= −∂uj
∂xi

. (2.42)

Let us examine first the local structure of a deformation that satisfies Eq. (2.42) at a
given point, which we are free to choose as the coordinate origin. Around this point
aij = ∂ui/∂xj is a constant anti-symmetric matrix, and therefore the coordinate trans-
formation that this displacement field corresponds to is an infinitesimal rotation. Such
a transformation is convenient to describe by the vector δϕ = δϕn, where the unit
vector n and magnitude δϕ (such that |δϕ| � 1) define the rotation axis and angle,
respectively. The components of δϕ are related to aij as

aij = eikj δϕk, (2.43)

where eikj is the Levi-Civita symbol. With this notation, the local displacement field is
given by a constant plus the vector product of δϕ and the radius-vector,

u(r) = u(0) + δϕ× r. (2.44)

The strain tensor produced by this deformation is given by

εij =
δϕ2

2
(δij − ninj). (2.45)

It turns out that the displacement field of the form given by Eq. (2.44), which is a linear
function of coordinates, is the only solution of Eq. (2.42) in a finite volume (see the end
of this section for a proof). Such linear deformations are of limited practical interest,
although we will return to them in the following Sec. 2.3.7.

What is important, however, is that the condition of zero linear strain given by
Eq. (2.42) can be non-trivially satisfied on a set of points of reduced dimensionality, i.e.
a surface or a line. For this reason, geometrically nonlinear strain plays a prominent
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role in the theory of shells and beams [70]. Consider, for example, a deformation in the
xz plane (i.e. uy = 0) for which the displacement in the z direction, uz, is an arbitrary
function of the x-coordinate only. With the corresponding x-displacement ux given by

ux(x, z) = −z ∂uz(x)

∂x
, (2.46)

and all other displacements being zero, it can be verified that the linear strain is zero at
z = 0 for arbitrary x. If the entire structure is “thin” in the z direction, Eq. (2.42) is
therefore approximately satisfied in all volume.

Proof that the linear strain can zero everywhere only for a displacement
field which a linear function of coordinates. Consider the second derivatives
of the displacement field. Assuming that the condition for linear strain to be zero,
∂ui/∂xj = −∂uj/∂xi, is fulfilled everywhere we find

∂

∂xk

∂ui
∂xj

= − ∂

∂xk

∂uj
∂xi

= − ∂

∂xi

∂uj
∂xk

=
∂

∂xi

∂uk
∂xj

=
∂

∂xj

∂uk
∂xi

= − ∂

∂xj

∂ui
∂xk

= − ∂

∂xk

∂ui
∂xj

.

(2.47)
The conclusion is that ∂2ui/∂xk∂xj = −∂2ui/∂xk∂xj and therefore for all indices

∂2ui
∂xj∂xk

= 0. (2.48)

The solution of Eq. (2.48) is a linear function of coordinates, ui = aijxi, where ai
is an arbitrary constant matrix. Inserting this solution into the original constraints,
∂ui/∂xj = −∂uj/∂xi, we find that they are satisfied whenever aij is antisymmetric.
This proves that the coordinate transformation is an infinitesimal rotation, for which
δϕ can be found with the help of Eq. (2.43).

2.3.3 Acoustic vibrations

We are interested in the dynamics of acoustic vibrations in the presence of static defor-
mation and static stress. From now on, we will denote by x̄′i(r) the static deformation
and ui(r, t) will refer only to the time-dependent displacement field created by acoustic
vibrations. The total deformation is thus given by

x′i(r, t) = x̄′i(r) + ui(r, t). (2.49)

The strain, stress and elastic energy density contain static terms, denoted by bars, and
time-dependent terms, produced by the acoustic field and denoted by capital deltas (∆),

εij(r, t) = ε̄ij(r) + ∆εij(r, t), (2.50)

σij(r, t) = σ̄ij(r) + ∆σij(r, t), (2.51)

w(r, t) = w̄(r) + ∆w(r, t). (2.52)
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2.3 General theory of dissipation dilution

The static and dynamic parts of the energy density are given by

w̄ =
1

2
σ̄ij ε̄ij , (2.53)

∆w(r, t) = σ̄ij∆εij +
1

2
∆σij∆εij , (2.54)

where the last expression is obtained using the identity σ̄ij∆εij = ε̄ij∆σij . The equations
describing the dynamics of acoustic vibrations can be obtained with the help of the least
action principle [94]. If a Lagrangian functional L is specified in terms of the static strain
and the spatial and temporal derivatives of the displacement field, then the action I is
given by

I =

∫ t1

t0

∫
V
L (xi, ε̄ij , ui,j , u̇i) dV dt, (2.55)

where the comma-separated subscript is a shorthand notation for partial derivative,

ui,j = ∂ui/∂xj . (2.56)

Within the required precision, the integration can be done in the Cartesian coordinates
of the undeformed material. For elastic bodies in the absence of external volumetric
forces the Lagrangian functional is given by the difference of the kinetic and elastic
energy densities,

L = ρ
u̇2
i

2
−∆w. (2.57)

We are interested in small vibrations and for the dynamic energy, we only keep terms
up to quadratic order in ui,j . Within this approximation ∆w is given by

∆w = σ̄ij∆ε
(nl)
ij +

1

2
∆σ

(lin)
ij ∆ε

(lin)
ij . (2.58)

The term σ̄ij∆ε
(lin)
ij is not present in Eq. (2.58), since this term is zero if x̄′i(r) represents

an equilibrium deformation field. For the following it is useful to express the total
energy as a sum of two contributions containing, respectively, the geometrically linear
and nonlinear strain and given by

∆w(nl) = σ̄ij∆ε
(nl)
ij , ∆w(lin) = ∆σ

(lin)
ij ∆ε

(lin)
ij /2. (2.59)

The term ∆w(lin) mirrors the generic material elastic energy (as in Eq. (2.38)), whereas
∆w(nl) is nonzero only in the presence of static stress and geometric nonlinearity of
deformations. The expression for ∆w can be evaluated explicitly with known material
stress-strain relations, but for the following it is sufficient to note that within quadratic
approximation the following identity holds

∂∆w

∂ui,j
ui,j = 2∆w. (2.60)
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The variation of action5 results in the following dynamical equations(
ρ
∂2

∂t2
+ Ô

)
ui = 0, (2.61)

where Ô is a linear positive definite self-adjoint operator, which action on ui is defined
by

Ôui = − ∂

∂xj

(
∂∆w

∂ui,j

)
. (2.62)

The solution of Eq. (2.61) for a resonator of finite size is a discrete set of acoustic modes.
The displacement field of every mode is the product of a real spatial envelope Ui and a
time-dependent amplitude q(t),

ui(r, t) = Ui(r)q(t), (2.63)

where the spatial envelope Ui is an eigenfunction of Ô, normalized as∫
U2
i dV = 1. (2.64)

After plugging ui(r, t) from Eq. (2.63) in Eq. (2.61), multiplying by Ui and integrating
over the resonator volume, it is found that q(t) obeys a harmonic oscillator equation,

ρ q̈(t) = −kq(t), (2.65)

with the effective spring constant k determined by the elastic energy stored by the spatial
envelope of the mode

k =

∫
UiÔUidV = 2

∫
∆w(Ui,j)dV. (2.66)

The transformation here is made using Eq. (2.60). Next, denoting the spatial envelope
of the linear strain produced by the acoustic mode as

Eij(r) =
1

2
(Ui,j + Uj,i) , (2.67)

and the corresponding stress as

Sij(r) = CijklEkl, (2.68)

the effective spring constant is explicitly found as

k =

∫
(σ̄ijUk,iUk,j + SijEij) dV. (2.69)

In a similar way to the elastic energy, k consists of contributions produced by the geo-
metrically linear and nonlinear strains.

5For the details of this procedure, which is quite common, see e.g. [94].
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2.3.4 Intrinsic mechanical dissipation

Mechanical dissipation is introduced by adding to the elastic stress σij an irreversible

component, σ
(diss)
ij , which is related to strain by a linear response with a finite memory

time. This approach dates back to the works of Botzmann [99] and Zener [100], but its
application in our case has one subtlety—it needs to be ensured that the geometrically
nonlinear strain is not neglected from the beginning. As a starting point, we take the
power of energy dissipation P (diss), which is related to the stress and strain as

P (diss)(t) = −
∫
σ

(diss)
ij (r, t)

∂

∂t
εij(r, t)dV. (2.70)

This expression directly follows from the definition of work done by the intrinsic body
forces in the material frame and thus so far includes the geometrically nonlinear strain
(as shown in detail in Appendix A.1). The most general linear relation between the
dissipative stress and strain is given by

σ
(diss)
ij (r, t) = −

∫
V1

∫ t

−∞
ηijkl(r, r1, t− t1)εkl(r1, t1)dt1 dV1, (2.71)

where the dissipative susceptibility ηijkl is nonlocal in both time and space. The time
dependence of η is responsible for the energy loss and the frequency dispersion of elastic
constants. Nonlocality in space also arises naturally in many problems. For example, in
thermoelastic damping the strain at r1 creates a local elevation of temperature, which
affects stresses at all neighboring points r to which the heat can diffuse within the
oscillation period.

In the absence of plastic deformation, the irreversible stress is zero when the body
is in a steady state6. This assumption is what defines an “anelastic body” [29], and
physically means that irreversibility arises due to nonequilibrium dynamical relaxation
processes, while quasi-static deformations are reversible. In this case the susceptibility
ηijkl has the property ∫ ∞

0
ηijkl(r, r1, τ)dτ = 0, (2.72)

and in Eq. (2.71) the strain tensor εij can be replaced by its time-dependent part,
∆εij . The rate of the strain change also depends on ∆εij only. Therefore, to the lowest
(quadratic) order in displacement gradients only linear stress contributes to dissipation,
and the dissipation power is given by

P (diss)(t) =

∫
V

∫
V1

∫ t

−∞
ηijkl(r, r1, t− t1)∆ε

(lin)
kl (r1, t1)

∂

∂t
∆ε

(lin)
ij (r, t)dt1 dV1dV. (2.73)

Next we suppose that the irreversible stress is much smaller than the elastic stress,

σ
(diss)
ij � σij , and perturbatively find the power dissipated by an acoustic mode. The

6Also, if it so happened that the stress given by Eq. (2.71) caused any static response, it could be
eliminated by redefining elastic constants.
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linear strain can be factorized in the spatial and temporal parts as ∆ε
(lin)
ij = Eij(r)q(t),

where the spatial envelope is evaluated for the acoustic mode in the absence of dissipation
and is therefore real. In this case the dissipated power can be expressed as

P (diss)(t) = q̇(t)

∫ t

−∞
η(t− t1)q(t1)dt1, (2.74)

where

η(τ) =

∫
V

∫
V1

ηijkl(r, r1, τ)Eij(r)Ekl(r1)dV dV1. (2.75)

The generalized dissipative force acting on q(t) can be extracted from Eq. (2.74) using
the fact that P (diss) = −q̇F . After adding this force, the equation of motion for the
vibrational mode amplitude is given by

ρ q̈(t) = −kq(t)−
∫ t

−∞
η(t− t1)q(t1)dt1, (2.76)

which describes a damped harmonic oscillator. The rate Γ at which the energy of free
oscillations decays is given by

Γ = − Im (η[Ω])

ρΩ
, (2.77)

where Ω =
√
k/ρ is the oscillator resonance frequency7 and η[ω] is the Fourier transform

of the dissipative susceptibility,

η[ω] =

∫ ∞
0

η(τ)eiωτ . (2.78)

The presented approach to mechanical dissipation is very generic, and is suitable for
the description of quantum damping mechanisms as well as classical. In the quantum
picture, the mechanical dissipation rate is the rate of phonon scattering (absorption can
be seen as inelastic scattering). Scattering can occur, for example, due to the interaction
of phonons with structural defects in amorphous materials, commonly modeled by two-
level systems [27], or due to phonon-phonon interaction mediated by the anharmonicity
of the atomic lattice potential [101, 31], which is particularly important for phonons at
GHz and higher frequencies. The lattice anharmonicity is also responsible for Akhiezer
damping [59]. Scattering matrix elements are generally proportional to the phonon
strain field Eij(r) times a spatial function Aij(r) characteristic to the system to which
the acoustic energy is lost. This can be the mean field of other phonons or a delta-
function in the case of interaction with localized defects [27]. The rate of scattering
Γscat is found using the Fermi’s golden rule as

Γscat =
2π

~
∑
s

∣∣∣∣∫ A(s)
ij (r)Eij(r)dV

∣∣∣∣2 , (2.79)

7To be more precise, one can put Ω =
√

(k + Re (η[Ω])/ρ, but with the assumption of small η such
a correction would be small and unimportant.
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where s designates different scattering channels. This expression is equivalent to Eq. (2.77)
with the dissipative susceptibility given by

ηijkl(r, r1, ω) = − iρω
2

∑
s

(
A(s)
ij (r)A(s)∗

kl (r1) +A(s)∗
ij (r)A(s)

kl (r1)
)
, (2.80)

which shows that scattering can be described within our linear response approach.

2.3.5 Loss angle in a continuous medium

The analysis of mechanical dissipation is significantly simplified if the material is ho-
mogeneous, isotropic and the energy in it is dissipated locally. Then, same as in the
case of elastic constants, there are only two parameters that can enter the dissipative
stress-strain relation [102]. Denoting these parameters by η(1) and η(2), we obtain

σ
(diss)
ij (r, t) =

∫ t

−∞

(
η(1)(t− t1)εij(r, t1) + η(2)(t− t1)εkk(r, t1)δij

)
dt1. (2.81)

A further simplification can be made on the phenomenological basis. Suppose that η(1)

and η(2) are not independent but related in a way so that Eq. (2.81) resembles Hooke’s
law. Then the dissipative stress is characterized by a single response function η(E) and
given by

σ
(diss)
ij (r, t) =

∫ t

−∞

η(E)(t− t1)

1 + ν

(
εij(r, t1) +

ν

1− 2ν
εkk(r, t1)δij

)
dt1, (2.82)

where ν is the Poisson’s ratio. It is suggestive to interpret η(E) as a dynamic contribution
to the Young’s modulus, hence the notation. This analogy is especially apparent in
the frequency domain. Omitting the tensor indices for brevity8, the total (elastic plus
irreversible) stress is related to strain as

σ[ω] + σ(diss)[ω] = Ee−iφmatε[ω], (2.83)

where φmat[ω] = −Im (η(E)[ω])/E � 1 is the loss angle ascribed to the material9, and
the Fourier transform is defined in the same way as in Eq. (2.78).

In a medium which dissipation is described by the loss angle model, and which is
not subjected to static stress, all mechanical modes dissipate the same fraction of their
energy per oscillation period [66]. In fact, the frequency-dependent loss angle of any
mechanical mode φ is equal to the material loss angle,

φ[ω] = φmat[ω]. (2.84)

This result can be seen as a mere consequence the construction of the model, by which
the dissipative stress is proportional to the elastic stress in the frequency domain. It can

8This is equivalent to assuming that all stress components except one, for example σxx, are zero.
9Again, the difference between |E + η[ω]| and E is neglected
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be rigorously obtained e.g. by evaluating Eq. (2.75) for the dissipative susceptibility of
the loss-angle medium,

ηijkl(r, r1, τ) =
η(E)(τ)

1 + ν

(
δikδjl +

ν

1− 2ν
δijδkl

)
δ(r − r1). (2.85)

The material loss angle is a less fundamental concept than the loss angle of a spring
introduced in Sec. 2.2. Every vibrational mode is dynamically equivalent to a mass on a
spring, and can be assigned a loss angle which characterizes the rate of energy dissipation
and the response to driving force. Loss angles of different modes are not necessarily
identical, as the modes can be affected by different intrinsic dissipation mechanisms.
For example, thermoelastic damping affects longitudinal but not shear bulk acoustic
waves [70] and flexural but not torsional modes of suspended pendula10. There is,
however, one ubiquitous source of mechanical dissipation which is local and isotropic.
This is damping due to structural defects [27], described as tunneling two-level systems
(TLS). It is believed to be the dominant source of intrinsic losses in many amorphous
materials, which makes the material loss angle model to be particularly suitable in this
case. Damping due to two-level systems has also been reported in crystalline materials
as silicon [103], although here the physical nature of the defects (if they are structural
or electronic [104]) remained debatable. Another use of the material loss angle model is
to provide a simplified aggregated description, which may be convenient given the large
number of processes that can contribute to dissipation. Even if the model is not exactly
applicable, an effective material loss angle can be introduced for broad families of modes.
This may be useful as in experiments one is typically restricted to produce mechanical
deformations of a certain type, which is specific to the measurement apparatus. For
example, in the seminal work in Ref. [28] in order to extract mechanical losses the
authors applied bending deformations to rotating bars. In this scheme, loss angles could
be measured as the angles of steady-state deflection of the bar ends with respect to the
vertical direction. As another example, in the following Sec. 2.4.2, effective loss angle
will be introduced for flexural modes in free-standing thin films.

Historically, since at least the 1920s, the loss angle has been a widely used figure of
merit for the characterization of dissipative processes in solids [105, 29, 66], including
such properties as energy decay rates of acoustic resonances and the attenuation of sound
waves. A part of the reason for the popularity of loss angle could be the frequency
dependence of losses. Since the work of Kimball and Lovell in 1927 [28], it is known
that the typical frequency dependence of intrinsic mechanical losses in solids is quite
different from the case of liquids. Whereas in typical liquids the acoustic attenuation
coefficient is proportional to frequency, consistent with viscous damping, in solids the
attenuation coefficient is usually weakly dependent on frequency and is better describes
by a frequency-independent loss angle φ. Despite the lack of first-principle explanation,
this trend has been ubiquitously seen in experiments with different materials, including
metals, dielectrics, and even complex composites like stone and wood [105]. In particular,

10As torsional modes create no volumetric strain
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according to Ref. [27, 106], all amorphous material known to date have almost frequency-
independent mechanical losses.

2.3.6 Dissipation dilution by static stress

In solid-state resonators, dissipation dilution emerges in the same way as in the toy mo-
dels considered in Sec. 2.2.3, where the geometrically nonlinear elongations of tensioned
springs suppled extra rigidity for some modes without contributing to their dissipation.
After the necessary preliminaries, we are now in a position to introduce this concept in
a more general way.

Using the results of the previous sections, the quality factor of an acoustic mode is
found as

Q =
Ω

Γ
= − k

Im (η[Ω])
. (2.86)

Here the effective spring constant k is given by Eq. (2.69) and η[ω] found from the
combination of Eq. (2.75) and Eq. (2.78). From Sec. 2.3.4 it follows that the damping
factor η is not expected to explicitly depend on static deformations (there are rare
exceptions from this rule, see e.g. [107]). In contrast, the spring constant k incorporates
a term directly proportional to the static stress. Thus, by applying tensile stress to the
material the quality factor of the acoustic mode can be increased. (It should be noted
that η can implicitly depend on stress as the stress affects vibrational mode shapes, but
this fact does not qualitatively change the final conclusion.)

The quality factor increase can be interpreted as being due to a diluting potential,
created by the elastic energy of geometrically nonlinear strain in the presence of static
stress. To make the analogy formal, we can decompose the effective spring constant as

k = k(lin) + k(nl), (2.87)

where k(lin) and k(nl) are the parts contributed by the geometrically linear and nonlinear
dynamic strains, respectively, which are given by

k(lin) =

∫
SijEijdV, k(nl) =

∫
σ̄ijUk,iUk,jdV. (2.88)

The quality factor can be expressed as a product of the “intrinsic” value Qint and a
dilution factor DQ,

Q = DQQint, (2.89)

where the dilution factor is given by

DQ = 1 +
k(nl)

k(lin)
, (2.90)

and the “intrinsic” value of the quality factor is

Qint = − k(lin)

Im (η[Ω])
. (2.91)
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The term “intrinsic” here should be used with caution (hence the quotes) as Qint is
not necessarily completely independent of static stress. Indeed, static stress affects the
vibrational mode shape Ui(r), and therefore the envelopes Sij(r) and Eij(r) on which
k(lin) and η are dependent. It is, however, natural to expect that the variation of Qint

with stress is much weaker than that of DQ (for the experimental validation of this
see e.g. [108], while Ref. [107] presents a rather exotic counterexample). Theoretically,
Qint is expected to be completely independent of mode shape when the intrinsic loss is
described by the material loss angle φmat. In this case [66],

Qint = 1/φmat. (2.92)

In all situations of practical interest in the following Qint can be assumed to be constant.

There are two alternative formulas for the dilution coefficient that are useful in practi-
cal calculations. The first one relates the total spring constant to the kinetic energy, so
that the dilution factor is given by

DQ =
ρΩ2

k(lin)
. (2.93)

This is obtained using the fact that (k(lin) + k(nl))〈q(t)2〉 = ρ〈q̇(t)2〉, where q(t) is the
temporal part of the vibrational mode and 〈...〉 means time averaging over one period
of harmonic oscillations. Alternatively, if one works with unnormalized mode profiles,
the dilution can be expressed as the ratio of time-averaged energies 〈W (lin)〉 and 〈W (nl)〉
stored by the mode,

DQ = 1 +
〈W (nl)〉
〈W (lin)〉

. (2.94)

The energies are only different from the corresponding spring constants by the same
constant factor.

Before concluding, we would like to make one remark. Whereas it was shown that
static tensile stress can add an effectively lossless potential to mechanical modes, com-
pressive stress has the opposite effect and can reduce quality factors [109]. Compressive
stress creates a negative k(nl), to the point that the total spring rigidity can become
zero and an instability can occur (known as “buckling instability” [70] in the theory of
elastic beams). Mechanical elements with stiffness reduced by compressive stress (so
called “spring-antispring” systems) are useful for designing vibrational isolators, as the
isolation level is inversely proportional to the resonance frequency. In this case the tra-
deoff between the reduction of the resonance frequency and the increase in thermal noise
must be considered [109].

2.3.7 A continuous toy model with infinite dilution

There is no fundamental limitation on how high dissipation dilution of a vibrational
mode can be, even when restricted to resonators of given size or frequency. In this
section we provide an example of a continuous structure which has a mechanical mode
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Figure 2.4: A setting in which a block of lossy material possesses a lossless vibrational mode.
The block is fixed between two walls by prisms, in a way that it is free to pivot on the prism
connections. The left prism is rigidly fixed, and right prism is free to slide up and down with no
orientation change. All elements that are colored black are assumed to have infinite rigidity. A)
Dimensions of the block. B) Static elongation. C) A geometrical transformation that is free of
linear strain. In the presence of static stress, it corresponds to the spatial displacement profile
of a lossless vibrational mode.

with infinite DQ, i.e. for which the dissipation is zero in the presence of material loss.
Unfortunately, implementing such a structure would require a combination of boundary
conditions that is rather uncommon in reality, and therefore the model mostly serves
the purpose of concept demonstration.

A mechanical mode is not affected by material loss if its displacement field does not
produce geometrically linear strain. In Sec. 2.3.2, it was shown that this can only happen
if the displacement field is a sum of a constant vector, which corresponds to the motion
of the body as a whole and therefore is uninteresting, and an infinitesimal rotation (see
Eq. (2.44)). The displacement field of the rotation part is given by

u(r) = (n× r)ϕ, (2.95)

where n is a constant unit-norm vector and ϕ is the rotation angle. This transformation
is an actual rotation only in the linear approximation, so in fact it stretches the material
quadratically in ϕ, hence producing geometrically nonlinear strain.

In order to visualize this deformation, consider it applied to a rectangular block of
material with dimensions lx × ly × lz shown in Figure 2.4A. The aspect ratio of the
block plays no role, so all dimensions are assumed to be of the same order of magnitude.
Figure 2.4C shows the deformation, r → r′, corresponding to Eq. (2.95) with n directed
along z axis. In coordinate notations, the deformation is given by[

x′

y′

]
=

[
1 −ϕ
ϕ 1

] [
x
y

]
. (2.96)

The setup in Figure 2.4 is a continuous analog of the lossless spring oscillator consi-
dered previously in Sec. 2.2.3. Similar to the spring oscillator, static stress is required in
order for the nonlinear strain to store elastic energy quadratic in deflection. With static
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elongation added along x axis as shown in Figure 2.4B, the deformation in Figure 2.4C
produces elastic energy density

∆w(nl) = σ̄xxϕ
2/2, ∆w(lin) = 0, (2.97)

(found using Eq. (2.45)), thus creating harmonic oscillator potential for ϕ. The resonance
frequency of motion in this potential is found as

Ω =

√
12

l2y + 4l2x

σ̄xx
ρ
. (2.98)

This mechanical mode is free of linear strain and is therefore not affected by the intrinsic
material dissipation. It has infinite Q, if the constraints that enforce the boundary
conditions are ideal. In reality, a direct attempt to implement the structure in Figure 2.4
would face the problem of extrinsic losses—rotation and sliding friction in the attachment
points could easily overwhelm the reduction of intrinsic loss.

The structure in Figure 2.4, similar to any real mechanical resonator, has an infinite
number of modes. While its fundamental mode is not affected by intrinsic losses, the
high order modes are. In general, it appears unlikely that in any structure all modes
can experience high dissipation dilution at the same time. In all practical cases known
so far, dissipation dilution is only important for a selected family of modes below a
certain frequency. At high frequencies the acoustic wavelength inevitably gets short
compared to the resonator size and the modes become reminiscent of bulk waves, for
which the geometrically nonlinear contribution to strain is small (see Ref. [54] for related
experimental results). The high-order modes of the resonator shown in Figure 2.4 include
standing waves with frequencies above Ω ∼ (

√
E/ρ)/l

Hamiltonian of the mode in Figure 2.4C. The zero linear strain field given by
Eq. (2.95), strictly speaking, is a quasi-static deformation, which means that it satisfies
Eq. (2.61) with no time dependence. Such a deformation can correspond to a vibrational
mode which frequency is far below all other acoustic resonances of the structure, which is
naturally fulfilled when the static stress is small, σ̄xx � E. With this, the Hamiltonian
for ϕ(t) is given by

H = I
ϕ̇

2
+ V σ̄xx

ϕ2

2
, (2.99)

where

I =
M

12
(l2y + 4l2x), M = V ρ, V = lxlylz, (2.100)

are the block moment of inertia, mass and volume, respectively.

2.3.8 A numerical example

To conclude the general discussion, we consider a more realistic example of mechanical
resonator, which shape is shown in Figure 2.5A. Section 2.3.6 provides a recipe for
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Figure 2.5: A) Resonator geometry. Each block has a size of 7 × 4 × 8.5 µm, the blocks are
separated by 1 µm-long 100 nm-diameter bridges and clamped to the fixed quarter-square parts
(shown in pale green). B) Torsional mode. C) Flexural mode and the spatial distribution of
lossless elastic energy ∆w(nl). D) Logitudinal mode.

the numerical calculation of dissipation dilution of arbitrary vibrational modes. We
apply this recipe to a few representative modes from different families, which resonance
frequencies and displacement profiles are found with the help of finite element simulation.

The resonator in question has micro- to nano- scale features, it consists of two blocks,
each 7 × 4 × 8.5 µm in size, separated by 1 µm-long 100 nm-diameter bridges. The
structure is suspended between two fixed pads, to which it is clamped by bridges of the
same size. The resonator is assumed to be made of silicon nitride (E = 250 GPa, ν =
0.23, ρ = 3100 kg/m3). The static tension is introduced by initially adding an isotropic
pre-stress in the material equal to 1.1 GPa, and then letting it relax to an equilibrium
configuration. This physical scenario is typical for MEMS resonators, where stresses
are produced during material synthesis. However, once the static stress distribution is
known, the way it was created does not matter, so we could equally assume that the
structure is tensioned by external forces applied to the pads as shown in Figure 2.5A.

The simulation results show that the low-frequency modes of the resonator in Fi-
gure 2.5 can generally be classified as flexural, torsional or longitudinal. The fundamen-
tal modes of each family are shown in Figure 2.5B-C, together with their frequencies
and DQ factors. Among the modes shown, only the flexural one experiences dissipa-
tion dilution, whereas the torsional and longitudinal modes do not. This observation
provides a warning: although dissipation dilution is also known as “stress dilution” in
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nanomechanics, it would not correct to assume that the mere presence of tensile stress
increases vibrational quality factors. This fact seems to be quietly known in the commu-
nity of gravitational wave detection, at least statements that the losses of torsional and
logitudinal modes of the same structure that has high-Q flexural modes are not diluted
by the gravitational potential sporadically appear in the discussions of test mass suspen-
sions ([110] mentions dilational and [93] torsional modes). Now we can give a physical
explanation to this observation—the displacement profiles of non-flexural modes create
elastic energies dominated by geometrically linear strains. For longitudinal modes, the
nonlinear contribution to energy compares to the linear11 as σ̄/E � 1. The absence of
geometrically nonlinear energy for torsional modes may not be so obvious in view of the
relation of geometric nonlinearity to rotations, but here there is no static deformation
perpendicular to the rotation axis, which is required for lossless elastic energy to emerge.

So far the total lossless elastic energy has been discussed. A visualization of its spatial
density, ∆w(nl)(r), for the flexural mode in Figure 2.5C shows that the lossless energy
is distributed highly inhomogeneously—it is entirely concentrated in the thin bridges.
This is mostly explained by the concentration of static stress in constrictions, which will
be extensively discussed further for the 1D case in Sec. 2.5.2.

It does not seem straightforward to come up with a general-purpose recipe how
to optimize dissipation dilution, in the first place because the optimum depends on
experimental constrains. As was shown in Sec. 2.3.7, there is no fundamental limit
on how high the dilution can be. The optimum under constraints specific to thin-
film nanomechanical resonators will be discussed separately in the following sections.
Nevertheless, two trends of general relevance can be clearly identified. First of all,
since the nonlinear part of strain tensor is only non-negligible when the linear part is
small, dissipation dilution favors flexural modes of high aspect ratio structures. This is
widely known since the strong dilution was first identified in pendulum suspensions [33]
and nano- beams and membranes [68, 35]. Dilution does not typically take place for
modes in which the directions of deformation and dynamic strain coincide. Secondly,
a mechanical resonator of strongly non-uniform shape has a strongly inhomogeneous
strain distribution with peak values greatly exceeding the average [34]. This limits the
acceptable average stress (and hence the average dilution) as the peak needs to stay
below the material yield value. Therefore, unless the vibrational mode is confined inside
a region of locally high stress, an overly strong inhomogeneity of the resonator shape
is likely to be disadvantageous. In the case where the resonator is patterned from a
material with fixed pre-stress, highly non-uniform shapes also reduce the average stress
that remains in the structure after the relaxation.

11Correspondingly, the frequency of the fundamental longitudinal mode is higher than that of the
fundamental flexural mode by a factor of ∼

√
E/σ̄
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2.4 Resonators with reduced dimensionality

Resonators with reduced dimensionality are natural (and so far the only practically
realized) structures in which high dissipation dilution can emerge. Chip-scale quasi two-
dimensional membrane and one-dimensional beam resonators are now routinely pro-
duced by patterning and suspending high-stress material films. Dilution factors DQ as
high as 6×105 have been experimentally realized [32], and theoretical values realistically
accessible using existing fabrication techniques seem even higher.

In this section we present the theory of dissipation dilution in resonators with reduced
dimensionality, concentrating on the case of microfabricated devices. Such devices have
a few common constraints, the main of which are the following.

1. Constant resonator thickness. The variation of thickness is usually less straightfor-
ward to implement than the variation of in-plane shape, which can be controlled
by lithographic patterning.

2. Hard-clamped boundary conditions (will be rigorously defined later).

3. Static stress patterns, consistent with the relaxation of originally homogeneous
pre-stress in a film upon its suspension. A key aspect of this process is that the
stress is reduced on average but is locally enhanced in constrictions [86, 111, 112].

These constraints will be generally respected in the following, although some results will
also be presented in more general forms, wherever it is possible to do so without adding
too much complexity.

The reduction of dimensionality will be introduced progressively. The two dimensio-
nal case is still quite complex, but the resulting equations are practically useful for FEM
simulations. In the one-dimensional case, a number of analytical results will be obtai-
ned, which also give qualitative insights in the behavior of more complex two-dimensional
structures.

Before turning to the rigorous analysis of high aspect ratio structures under stress, it is
instructive to consider the spring models of a beam shown in Figure 2.6, which illustrate
several key features of flexural deformations. Typical flexural modes of high-aspect ratio
resonators under stress are standing waves, which for a uniform doubly-clamped beam
have sinusoidal displacement profiles with zeros at the clamping points. Such standing
waves can be reproduced in a simple model shown in Figure 2.6A, which consists of a
chain of identical point masses connected by identical springs. The chain is a direct
extension of the lossless oscillator geometry presented in Sec. 2.2.3, it has finite flexural
rigidity only in the presence of tensile stress, and its flexural modes have no intrinsic
dissipation because all the strain they produce is geometrically nonlinear. The elastic
energy stored by a flexural mode is parametrically proportional to the static stress, for
which reason this energy is referred to as “tension energy”.

The strain produced by the deformation shown in Figure 2.6A is fully geometrically
nonlinear only as far as the structure is infinitely thin. A more realistic beam mo-
del is shown in Figure 2.6B. It consists of two spring chains and has finite thickness,
which means that the constituent springs experience geometrically linear deformation
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Figure 2.6: Flexural deformations, corresponding to the fundamental mode of a beam and its
spring-mass models. The structures in saturated colors are deformed according to the mode
profiles, semi-transparent undeformed geometries are also shown for comparison. (A) Single
chain of springs—no bending rigidity, model for a beam with λ = 0. (B) Double-layer spring
chain—finite bending rigidity, λ = 0.07. (C) Deformation of a continuous beam, λ = 0.07.

and their intrinsic loss contributes to the resonator dissipation. The magnitude of geo-
metrically linear strain is determined by how fast the mode gradient changes, and thus
is proportional to the bending curvature of the mode. For this reason, the linear part
of elastic energy is called “bending” energy. As illustrated in Figure 2.7, the deforma-
tion of each segment in Figure 2.6B can be decomposed into the superposition of an
infinitesimal rotation, which only produces geometrically nonlinear strain, and bending,
which only produces linear strain. The elastic energies of two deformations add up as if
they were applied independently (this fact follows from the general argument that led
to Eq. (2.58)).

The relative importance of tension and bending energies in a uniform beam or a
membrane is quantified by the strain parameter λ [69, 64], defined as

λ =
h

l

√
1

12ε̄
, (2.101)

where h, l and ε̄ are the structure thickness, lateral size and static strain, respectively (see
Figure 2.6C). In resonators with λ� 1 the tension energy dominates and their flexural
modes have high dissipation dilution. The frequencies and shapes of low-frequency
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Figure 2.7: Deformation decomposition of a segment of the structure in Figure 2.6B.

modes12 in this case are well described even when the bending is completely neglected.
The structure in Figure 2.6A has λ = 0 (since its thickness is zero), in Figure 2.6B and
C the mode shapes are plotted assuming λ = 0.07.

It is noticeable in Figure 2.6B and C, which show displacement profiles of actual
vibrational modes of a beam, that the bending is the largest near the resonator clamps.
It turns out in fact, that the total geometrically linear contribution to the elastic energy is
commonly dominated by the small region around the clamps. Devising ways to avoid this
“clamp-bending” contribution is crucial to design resonators with enhanced dissipation
dilution.

2.4.1 2D—membranes

In order to describe dissipation dilution in what is called membrane resonators in na-
nomechanics, they are modeled as “plates”, according to the terminology of structural
mechanics. A plate is a flat structure where the size in one direction is much smaller
than in the other two, but the bending rigidity is not negligible. We choose to follow
experiment-oriented language and refer to membrane resonators as membranes, which
should not lead to confusion.

We consider a membrane with uniform thickness h which in equilibrium is aligned
along the xy plane so that its center is at z = 0. The instantaneous state of stress in a
thin membrane is fully characterized by four components of the stress tensor belonging
to the xy plane. The remaining stresses are zero,

σxz = σyz = σzz = 0. (2.102)

The non-zero stresses form a two-dimensional tensor σij , in which the indices run over
only two values, x and y. Accounting for the constraints given by Eq. (2.102), we can
find the in-plane stress-strain relations as

σij =
E

1 + ν

(
εij +

ν

1− ν
εkkδij

)
, (2.103)

where i, j = {x, y}. The strain components containing z among their indices are depen-

12For high frequency modes the effective λ is obtained by substituting the acoustic wavelength for the
resonator length.
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dent on the in-plane strains and are given by

εzz = − ν

1− ν
(εxx + εyy) , εxz = εyz = 0. (2.104)

While the vertical stress σzz is zero, the vertical strain εzz is not due to Poisson’s effect.

In-plane stresses can be produced by static in-plane deformations and by dynamical
deflections of membrane along z direction. The equilibrium distribution of static stress,
σ̄ij(x, y), satisfies the force balance condition,

∂σ̄ij
∂xj

= 0. (2.105)

The geometrically linear approximation is typically appropriate for the description of
static deformations, in which case σ̄ij can be found in terms of biharmonic functions
using Airy’s method [113] or complex potentials [114]. Solutions yielded by analytic
methods, however, are complicated, and their practical utility in problems involving
dissipation dilution has not been apparent so far. Finite-element numerical simulation
is usually a more practical way of solving Eq. (2.105) and obtaining the equilibrium
stress distribution.

In the following, the way the distribution of static stress is created makes no diffe-
rence, and we assume that σ̄ij is known. The specific case, however, which is relevant
to our experiments is that of nanomechanical membranes. Here the stress distribution
is a result of relaxation of homogeneous and isotropic pre-stress σfilm in the film. The
components of initial stress and strain in the film are given by

σ
(init)
ij =

[
σfilm 0

0 σfilm

]
, and ε

(init)
ij =

[
εfilm 0

0 εfilm

]
, (2.106)

where εfilm = σfilm(1 − ν)/E according to Eq. (2.103). If the membrane has holes, the
uniform stress distribution is not an equilibrium one, as the boundary condition of zero
normal force is not satisfied at the edges of holes. The stress assumes a new configuration
after the membrane is released. In our experience, finite element simulations provided
reliable information regarding the distribution of static stress, judging by the agreement
of experimental resonator quality factors with theory. Interestingly, as was demonstrated
by Capelle et al. [112], the full anisotropic pattern of relaxed stress can be experimentally
characterized by analyzing the polarization of light, transmitted through the sample.
The spatial resolution of this technique (not implemented in our lab) was on the order
of 10 µm.

We are concerned with flexural acoustic modes in a statically stressed membrane. The
three-dimensional deformation field produced by membrane flexure is fully characterized
by the displacement of the membrane center (z = 0) in the z direction. We denote the
function characterizing this displacement as u(x, y, t) without subscripts, so that by
definition

u(x, y, t) ≡ uz(x, y, 0, t). (2.107)
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The plane z = 0 is known as the neutral plane, as distances between its points do not
change upon small flexural deformations. Conditions of zero stress (Eq. (2.102)) con-
strain the three-dimensional deformation field in such a way that its x and y components
are given by [70]

ux(x, y, z, t) = −z ∂u(x, y, t)

∂x
, uy(x, y, z, t) = −z ∂u(x, y, t)

∂y
, (2.108)

and with sufficient precision uz ≈ u, which means there is no variation of uz along z. The
in-plane components of dynamic strain ∆εij are found by inserting this parametrization
of the displacement field in the general three-dimensional expression [70],

∆εij = −zu,ij +
1

2
u,iu,j . (2.109)

For the sake of brevity, we introduced a shorthand notation for spatial derivatives by
using comma-separated indices,

u,i ≡
∂u

∂xi
, u,ij ≡

∂2u

∂xi∂xj
, (2.110)

where, again, i, j = {x, y}. Strain components other than those in Eq. (2.109), although
they might be non-zero, do not contribute to the elastic energy.

With the help of Eq. (2.109), the dynamic parts of the elastic energy are found in
terms of the derivatives of u as

∆w(lin) =
E

2(1− ν2)
z2
(

(u,ii)
2 + (1− ν)(u,iju,ij − (u,ii)

2)
)
, (2.111)

∆w(nl) =
1

2
σ̄iju,iu,j . (2.112)

These are volumetric energy densities, which can be integrated over z and in this way
related to unit area. Next, by integrating over the entire membrane area, the total
elastic energy W ≡

∫
∆w dzdS is obtained,

W (lin) =
hD
2

∫ (
(u,ii)

2 + (1− ν)(u,iju,ij − (u,ii)
2)
)
dS, (2.113)

W (nl) =
h

2

∫
σ̄iju,iu,jdS. (2.114)

Here D is the bending rigidity, defined as

D =
Eh2

12(1− ν2)
. (2.115)

Note that above D ∝ h2, whereas according to a common alternative definition D ∝ h3.
The linear parts of strain (Eq. (2.109)) and energy (Eq. (2.113)) are related to the
curvature of the displaced neutral plane, while their nonlinear parts (Eq. (2.109) and
Eq. (2.114)) are related to the gradient.
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Figure 2.8: Out of plane deformation,
u(x, y), of a membrane with a hole. For
one point on the hole edge, the red arrow
shows the vector f (Eq. (2.126)), and the
black arrow shows the unit normal vector
s.

The expressions for the elastic energy allow
us to obtain the dynamical equation of motion
for u(x, y, t) using the least action principle (the
action is given by Eq. (2.55)). The variation
of simplified action is a more straightforward
route than directly simplifying the 3D dynami-
cal equations of motion. One aspect of the vari-
ational problem that is different in the case of a
membrane is that here the order of the dynami-
cal equations is higher than in 3D (four versus
two). This is not a paradox, as u(x, y, t) that
parametrizes the membrane deformation is not
the actual deformation field but rather a proxy
for its description. Consistent with the differen-
tial order, for every edge of the membrane there
are two boundary conditions to be satisfied by u.
If the membrane edge is clamped, the boundary
conditions are

u = 0, ∂u/∂n = 0, (2.116)

where n is a unit vector in the xy plane oriented normal to the edge. When a membrane
edge is free, the boundary conditions are more cumbersome (they are explicitly given,
for example, in [70]).

The dynamical equation for u(x, y, t) obtained from the least action principle is

D u,iijj − σ̄iju,ij + ρ
∂2u

∂t2
= 0. (2.117)

The case of a uniform square membrane with no holes and isotropic stress distribution
was analytically treated by Yu et al. in the SI of Ref. [69]. Generally, Eq. (2.117)
can be solved numerically in the usual way by first expressing the deflection field as a
product of a spatial envelope and a time-dependent oscillating factor, and then finding
eigenfunctions U(x, y) and eigenfrequencies Ω of the resulting problem,

DU,iijj − σ̄ijU,ij = Ω2ρU, (2.118)

using finite-element modeling. Once the vibrational modes are found, the effective linear
and non-linear spring constants can be determined from their spatial envelopes U(x, y)
(assumed to be normalized so that

∫
U2dSdz = 1, consistent with the 3D case) as

k(lin) = hD
∫ (

(1− ν)U,ijU,ij + ν(U,ii)
2
)
dS, (2.119)

k(nl) = h

∫
σ̄ijU,iU,jdS. (2.120)
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The dissipation dilution coefficient of the mode is obtained using the general recipe,
DQ = 1 + k(nl)/k(lin).

While the above information is already sufficient for numeric simulations of mode
spectra and dissipation dilution in planar structures, there is an interesting interpretation
of bending elastic energy in geometric terms. Any surface is locally determined up to a
rotation by two parameters, the mean curvature H and the Gaussian curvature K [115].
For the weakly deformed neutral plane of a membrane, these curvatures are given by

H =
1

2
u,ii =

1

2

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.121)

and

K =
1

2
((u,ii)

2 − u,iju,ij) =
∂2u

∂x2

∂2u

∂y2
−
(
∂2u

∂x∂y

)2

. (2.122)

The bending energy of an isotropic uniform surface is completely determined by these
parameters. Indeed, bending energy given by Eq. (2.113) can be expressed in terms of
the curvatures as

W (lin) = hD
∫ (

2H2 − (1− ν)K
)
dS. (2.123)

While the contribution of the mean curvature to the energy is genuinely local, the
contribution of the Gaussian term is related to the geodesic curvature kg of membrane
edges by the Gauss-Bonnet theorem, [115, 116]∫

KdS =

(
2π −

∮
∂Sout

kgdl

)
−
∑

n

(
2π −

∮
∂Shole,n

kgdl

)
. (2.124)

The boundary contributions here come from all simple loops forming the edge of the
deformed membrane. This includes the outer edge, ∂Sout, which is typically clamped,
and the free edges of holes, ∂Shole,n, indexed by n. For a weakly deformed membrane,
the Gauss-Bonnet theorem is expressed as,∫

KdS =

∫
∂S
fidsi, (2.125)

where the components of vector f are given by

fi = (u,iu,jj − u,ju,ij)/2, (2.126)

and ds is a vector which is eveywhere oriented perpendicular to the membrane edges
and which norm is equal to the length of the arc element (see Figure 2.8). Eq. (2.125)
is easy to verify, since the divergence of f is equal to the Gaussian curvature, ∂fi/∂xi =
K. There is one subtle difference between Eq. (2.124) and Eq. (2.125)—whereas the
integration dl in Eq. (2.124) is conducted over the edges of the deformed membrane, the
integration dsi is defined in the xy plane.

The boundary contribution of hard-clamped edges on the right hand side of Eq. (2.124)
is always zero, since the membrane around hard-clamped edges is locally flat and for any
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loop on a flat plane
∮
kgdl = 2π. This in particular means that Gaussian curvature does

not manifest in any way in vibrations of a simple uniform membrane hard-clamped on
all sides, as was first pointed out in [69]. For a membrane with holes, or in a hypothetical
case when the boundary conditions on the outer edge are different from hard-clamped,
the energy produced by Gaussian curvature is generally not negligible [117, 118]. It
is remarkable that this energy is not distributed over the surface, but stored as excess
geodesic curvature at the membrane edges.

2.4.2 Effective material loss angle in thin films

In thin-film resonators, a material loss angle can be introduced not as a local volumetric
property, but as a local property of the surface, averaged over the strain energy profile in
the z direction. This makes the loss angle model applicable to a wider range of practical
situations compared to the bulk case.

As was discussed previously, intrinsic mechanical dissipation occurs because of the
coupling of the dynamic strain field created by an acoustic mode to internal material
degrees of freedom. The material loss angle model can be appropriate if the acoustic
energy is dissipated locally. In thin films, the spatial relaxation of internal degrees of
freedom (e.g. the equilibration of temperature) happens much faster in the direction
perpendicular to the film than that parallel to the film, to the extent that the parallel
relaxation is often completely negligible. This makes some damping mechanisms that are
non-local in general act effectively locally in thin films. Examples of such mechanisms
are thermoelastic [58] and Akhiezer [59] dampings.

Another circumstance (likely the most important one, in fact) that favors the loss-
angle description of energy relaxation in thin films is that in sub-micron films surface
losses are significant. It is generally believed that surfaces of nanofabricated devices host
an increased number of two-level systems (TLS), which commonly dominate mechanical
damping. Experimental evidence in support of this has been reported for devices made
of both amorphous [119] and crystalline [120, 121, 31] materials. The microscopic origin
of two-level systems on the surface is not necessarily clear, and is probably different in
different cases. This is supported by the fact that estimates of the thicknesses of the
surface layer vary drastically, ranging from nanometers [31] to hundreds of microns [122].
In any case, surface losses dissipate acoustic energy locally and uniformly in space, with
respect to the dimensions parallel to the film.

In order to put the ideas above into mathematical form, we can derive the dissi-
pative response of vibrational mode in the same way it was done in three dimensions
(Eq. (2.75)). For flexural modes all the components of linear strain are proportional to
the second derivatives of the mode shape, U(r), and have the same z-dependence, given
by Eq. (2.109)-2.104. Therefore, dissipative susceptibility integral runs over the surface
rather than the volume and is given by

η(τ) = h

∫
S

∫
S1

η̃ijkl(r, r1, τ)
∂2U

∂xi∂xj
(r)

∂2U

∂xk∂xl
(r1) dSdS1, (2.127)
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Figure 2.9: Loss angle in silicon nitride films produced at the CMi. A) Loss angle as a function
of frequency for h = 80 nm. Measured for a nanobeam integrated with a microdisk optical cavity
[123]. B) Loss angle as a function of film thickness, inferred from the measurements of quality
factors of soft-clamped modes in PnC nanobeams at frequencies in the 2.2-2.6 MHz range [32].

where indices run over x and y, r = (x, y), and η̃ijkl is linearly related to its three
dimensional counterpart in Eq. (2.75) (as shown in the end of the section). The loss
angle description, same as in three dimensions, is obtained by assuming that η̃ijkl has
the form of Hooke’s law (Eq. (2.103)) with delayed response. The loss angle of a film is
equivalent to the thickness average of the material loss angle,

φfilm =
12

h3

∫ h/2

−h/2
φmat(z)z

2dz. (2.128)

A common phenomenological model of surface loss assumes that the material is cha-
racterized by the bulk loss angle φbulk, in addition to which there is an infinitely thin
layer on the surface that makes finite contribution to the dissipation. In which case
Eq. (2.128) simplifies to

φfilm = φbulk + asurf/h. (2.129)

As was mentioned already, all flexural modes have the same distribution of stress in the
z direction, so the aggregated loss angle φfilm is the same for all out-of-plane flexural
modes. However, other mode families, e.g. in-plane modes, do not have the same
z- distribution of stress. Therefore, they might have a somewhat different loss angle,
although it is not easy to imagine a situation in which this difference would be large.

Compelling experimental evidence in favor of the surface loss model given by Eq. (2.129)
exists for silicon nitride films produced by PECVD and LPCVD deposition. This trend
was first pointed out in a metastudy made by Villanueva and Schmid [64], and later the
inverse scaling of loss angle with film thickness was directly confirmed in Ref. [36] and
in our work [32]. According to the average data from [64], for silicon nitride films

φfilm = 3.6× 10−5 + 1.7× 10−4 100 [nm]

h [nm]
. (2.130)
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The corresponding bulk material quality factor is Qbulk = 2.8 × 104, and the surface
loss-limited Qsurf = 6× 103 for h = 100 nm.

Despite the overall consistency found by [64], the loss angles of films produced in
different cleanrooms can still show spread by more than a factor of two. Numbers
for films of different thicknesses deposited in the same facility are in a much better
agreement. Experimental results presented in this thesis were obtained with films from
20 nm to 100 nm thick, which were produced by LPCVD deposition at the CMi13. The
bulk contribution to the loss angle of such thin films is negligible, and the experimentally
measured resonator quality factors [32, 37] are consistent with the surface-dominated loss
angle given by

φfilm = 1.5× 10−4 100 [nm]

h [nm]
. (2.131)

This corresponds to intrinsic quality factor Q = 6900 at 100 nm. The experimental
characterization of frequency dependence and scaling with thickness of the loss angle in
our Si3N4 films is summarized in Figure 2.9.

Relation between three dimensional and film damping susceptibilities. The
damping susceptibility of the film, η̃ijkl, can be found by explicitly separating the terms
in Eq. (2.75) which contain z among their indices. Then, expressing the strains ∆εxz,
∆εyz and ∆εzz as functions of the derivatives of U(r) with the help of 2.104, one obtains

η̃ijkl(r, r1, τ) =
1

h

∫ h/2

−h/2

∫ h/2

−h/2

(
ηijkl(r, r1, z, z1, τ)− ν

1− ν
(ηzzkl(r, r1, z, z1, τ)δij+

ηijzz(r, r1, z, z1, τ)δkl) +
ν2

(1− ν)2
ηzzzz(r, r1, z, z1, τ)δijδkl

)
zz1 dzdz1. (2.132)

Here the indices i, j, k, l run over x and y only, and r = (x, y). The normalization by
1/h is a matter of convention.

2.4.3 Clamping curvature

Flexural modes in high stress and high aspect ratio structures are generally well described
even neglecting the bending term in Eq. (2.117), which makes the dynamic equation
wave-like,

− σ̄iju,ij + ρ
∂2u

∂t2
= 0. (2.133)

This approximate equation, however, has lower differential order than the original one
and its solution cannot satisfy all the original boundary conditions. In the clamped
case, only the condition u = 0 is satisfied by the solution of Eq. (2.133), while ∂u/∂n
is not. Even a coincidental satisfaction of the second constraint is not possible. For a
second order equation, the definition of a solution value and its first derivatives in one

13EPFL Center of MicroNanoTechnology
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place determines the function everywhere, and hence the only solution of Eq. (2.133)
fully compatible with hard-clamped boundary conditions (Eq. (2.116)) is zero. It is well
known since the works in Ref. [35, 69] that the boundary condition incompatibility has
profound consequences for dissipation dilution, giving rise to clamping curvature. The
satisfaction of both hard-clamped boundary conditions requires that there is a region
near the membrane edge where the bending term in Eq. (2.117) dominates, which is only
possible at the expense of large high-order derivatives and hence large mode curvature.

A naive estimation based on the expression for the spring constants in Eq. (2.119)
and Eq. (2.120) suggests that the magnitude of dissipation dilution when k(nl) � k(lin)

is given by
DQ ≈ k(nl)/k(lin) ∼ 12σl2a/(Eh

2), (2.134)

where la is acoustic wavelength, so that ∂u/∂x ∼ u/la. Clamping curvature, however,
changes this scaling. In reality the dilution is more typically estimated as the square
root of the above value,

DQ ∼
√

12σl2a/(Eh
2), (2.135)

which is much lower. In the following Sec. 2.4.6 the effect of clamping curvature will
be analyzed in great detail for quasi one-dimensional beams. The case of membranes
is more complex in general, although effects and trends that exist for beams generally
have direct analogs here.

2.4.4 1D—beams with arbitrary cross section

Beams are effectively one-dimensional structures in which both transverse dimensions,
the width and the height, are much smaller than their length. The problem of flexural
vibrations in this case is much simpler than in the case of membranes, in particular the
static stress configuration can be found in a closed form. As a consequence, a number
of analytical results can be obtained in one dimension [34].

In the following, we will first give the expression for dissipation dilution of beams
under no specific assumptions about the cross-section shape. Next we will consider in
more details the case which is particularly relevant to nanomechanical resonators—out-
of-plane vibrations of thin-film structures, characterized by rectangular cross-section of
uniform thickness. The generic treatment comes at a small cost and is useful for at
least two reasons. First, it is applicable to macroscopic strings, which typically have a
circular cross-section, often of non-uniform diameter [110, 122, 124]. Although finite-
element modeling of dissipation dilution in non-uniform macroscopic strings used as
suspensions of test masses has been reported, e.g. in Ref. [92, 92], these works do not
provide explicit expressions for DQ and use terminology specific to the situation when
tension is created by the gravitational field. Second, the general expressions we will
develop are applicable to in-plane vibrational modes of thin-film resonators. Although
in-pane modes generally have lower dilution than out-of-plane modes, they are still
useful in applications involving geometrical constraints. For example, in-plane modes of
phononic crystal nanobeam resonators have recently been employed in near-field coupled
optomechanical devices [125].
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Figure 2.10: Example beams with non-uniform cross section. A) Profile sketch of a tapered
phononic crystal beam, shown to illustrate the orientation with respect to coordinate axes. B)
Localized vibrational mode of the beam in (A). C) False-colored scanning electron microscope
image of an array of nanofabricated phononic crystal beams. Green and blue–silicon substrate,
red—silicon nitride.

The assumed orientation of the beam with respect to coordinate axes is shown in
Figure 2.10A-B, where the structure is aligned along the x axis and the vibrational
mode displacement is along z. In a beam oriented this way, stress and strain are fully
characterized by their xx components. While the remaining components of stress tensor
are zero, the same is not true for strain because of the Poisson’s effect. Instead, εyy and
εzz are proportional to εxx. It turns out that the static deformation in the transverse
direction has no effect on the vibrational modes, whereas the dynamic part ∆εyy con-
tributes to the linear (lossy) elastic energy. Zero stress in the y direction implies that
there is always transverse bending curvature u,yy for the vibrating mode, given by

u,yy = −νu,xx. (2.136)

In order to describe the static stress and strain distributions we define

σ̄ ≡ σ̄xx, ε̄ ≡ ε̄xx. (2.137)

Similar to the transition from three to two dimensions, the equation describing the
vibrations of a beam is easier to obtain from the variation of action, rather than from
simplifying Eq. (2.117) for a two dimensional plate. The composition of action requires
knowledge of elastic energies, which can be found by further reducing the two dimensional
expressions in Eq. (2.111)-2.112. The geometrically linear (bending) energy density is
given by

∆w(lin)(x, y, z) =
E

2(1− ν2)
z2
(
(1− ν)(u2

,xx + u2
,yy + 2u2

,xy) + ν(u,xx + u,yy)
2
)
, (2.138)

which has to be simplified using the quasi-one dimensionality assumptions, u,xy = 0 and
u,yy = −νu,xx (Eq. (2.136)). The simplification of the geometrically nonlinear (tension)
term for the one-dimensional case is done by setting u,y = 0. Overall, the result is

∆w(lin)(x, y, z) = E z2 (u,xx)2/2, (2.139)

∆w(nl)(x, y, z) = σ̄(u,x)2/2. (2.140)
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The integration over cross section, and then over the beam length yields total elastic
energies,

W (lin) =

∫
l

E

2
I(x)(u,xx)2dx, (2.141)

W (nl) =
T
2

∫
l
(u,x)2dx, (2.142)

where T is the tension force along the beam and I(x) is the cross section geometric
moment of inertia. Finally, the kinetic energy is given by

W (kin) =

∫
l

ρl
2

(u̇)2dx, (2.143)

where ρl is the linear mass density. I and ρl are given, respectively, by

I =

∫
z2dydz, and ρl =

∫
ρdydz, (2.144)

where the integrations are conducted over the beam cross section.

In a beam, the variation of displacement field, u(x, t), is negligible over the cross
section, so it is only a function of x and time. Correspondingly, the spatial profile U(x)
of a vibrational mode is a function of single variable, and we denote its derivative by U ′,

U ′(x) ≡ U,x(x). (2.145)

Unlike the cases of higher dimensions where the distribution of stress entered non-
trivially in the elastic energy, in one dimension it is characterized by a single value
of the tension force T = σ̄(x)A(x), where A(x) is the cross section area. The fact
that the tension is constant along the structure is required by the simple law of force
equilibrium, therefore the fact that it can be taken out of the integral in Eq. (2.142) is
quite fundamental.

The variation of action, composed of the energies from Eq. (2.141)-2.143, yields the
well-known Euler-Bernoulli equation [70]

d2

dx2

(
EI(x)

d2U(x)

dx2

)
− T d

2U(x)

dx2
− ρl(x)Ω2U(x) = 0. (2.146)

the solution of which gives eigenfrequencies Ω and vibrational mode shapes U(x). For a
doubly clamped structure, the boundary conditions are

U(0) = U(l) = 0, U ′(0) = U ′(l) = 0. (2.147)

The effective spring constants are obtained from Eq. (2.141)-2.142 by formal substi-
tution u(x, t)→ U(x) as

k(lin) =

∫
l
EI(x)(U,xx)2dx, (2.148)

k(nl) = T
∫
l
(U,x)2dx, (2.149)
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and the dissipation dilution is found using the general recipe, DQ = 1 + k(nl)/k(lin).
These expressions for spring constants are valid for beams and strings with arbitrary
cross sections, the only assumption (which has been implicit so far) is that the structure
is symmetric with respect to xz and xy planes so that it supports z-polarized flexural
modes.

2.4.5 Thin-film beams

Next we consider more closely beams patterned from thin films. Such structures have a
rectangular cross section in the yz plane with the second moment of area given by

I(x) = w(x)h3/12, (2.150)

where w is the width in y-direction and h is the thickness in the direction of deformation,
z. While the thickness is constant, the width is, generally, x-dependent. We will first find
the distribution of static stress along the beam and then will derive the dimensionless
form of Euler-Bernoulli equation, which is particularly well suited for theoretical analysis.

x

y w(x)

ux(x) ux(x+dx)

Figure 2.11: Beam profile and static deformation field

In a thin-film resonator the axial tension force, T , originates from the pre-stress,
σfilm, which exists in the film prior to suspension. In order to find how the tension force
is related to σfilm, it is convenient to introduce the displacement field of static in-plane
deformation in x direction, ūx. This field is related to strain as usual,

ε̄(x) =
d

dx
ūx(x). (2.151)

In the process of stress relaxation ūx is fixed in the beginning and in the end of the
beam, because the material is clamped to the frame there, so that

ūx(0) = 0, ūx(l) = εfilml, (2.152)

where εfilm = σfilm(1−ν)/E is the uniform pre-strain of the film and ν is Poisson’s ratio.
The balance of tensile force requires w(x)σ̄(x) = const, which is expressed in terms of
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the displacement as

Ehw(x)
d

dx
ūx(x) = T . (2.153)

The displacement field is found by integration,

ūx(x) =
T
hE

∫ x

0

dx1

w(x1)
, (2.154)

and, using the boundary conditions from Eq. (2.152), the equilibrium tension is related
to the film pre-stress as

T = σfilm(1− ν)h

(
1

l

∫ l

0

dx

w(x)

)−1

. (2.155)

The balance of tensile force allows one to express the distribution of static stress
along the beam in a suggestive form,

σ̄(x) = σavg/v(x), (2.156)

where v(x) = w(x)/w0 is the variation of beam width relative to the mean value, w0,
given by

w0 =
1

l

∫ l

0
w(x)dx, (2.157)

and σavg is the stress, averaged over the beam volume,

σavg =
1

hw0l

∫ l

0
hw(x)σ̄(x)dx =

T
w0h

. (2.158)

It will be shown in the following Sec. 2.4.7 that the average stress satisfies σavg ≤
σfilm(1− ν).

The relation in Eq. (2.156) means that there is one-to-one correspondence between
the bending moment of the beam (defined as EI, which is ∝ v(x)) and local static
stress. This can create some ambiguity of interpretation for the origin of dissipation
dilution enhancement in non-uniform beams—whether it comes from the increase in
local stress or from the reduction of bending moment. On the formal level, both views
are equivalent. One physical interpretation may be more fruitful than the other in certain
circumstances and, importantly, assuming a specific reference. When tension energy is
enhanced compared to the reference, it is useful to speak about the effect of stress, and
when the bending energy is reduced, it might be more transparently explained in terms
of the bending moment.

2.4.6 Distributed and boundary losses in thin-film beams

In this section we elaborate on the dissipation dilution in thin-film beams, describe
clamping curvature and obtain an expression for DQ in which its scaling with the strain
parameter λ is explicit.
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The theoretical analysis of Euler-Bernoulli equation is facilitated by expressing this
equation in dimensionless form. This approach also has the advantages of reducing the
number of independent parameters in the problem to a minimum. The first step here
is to introduce a normalized coordinate s = x/l, which takes values from 0 to 1. After
this the Euler-Bernoulli equation (2.146) is transformed to

λ2 d
2

ds2

(
v(s)

d2U(s)

ds2

)
− d2U(s)

ds2
− Λv(s)U(s) = 0. (2.159)

Here Λ is the normalized eigenvalue related to the resonance frequency Ω as

Λ =
ρl2Ω2

σavg
, (2.160)

and λ is defined as

λ =
h

l

√
E

12σavg
, (2.161)

generalizing Eq. (2.101) for non-uniform beams. It should be mentioned that there is
some unavoidable arbitrariness in the definition of dimensionless parameters. Above,
the mean width w0 is assumed as the reference width and σavg as the reference stress.
This is a convenient, but not the only possible choice.

The evaluation of Eq. (2.148)-2.149 results in the following expression for the dilution
of a thin-film beam mode,

DQ = 1 +
1

λ2

∫ 1
0 (U ′(s))2 ds∫ 1

0 v(s) (U ′′(s))2 ds
. (2.162)

In the high-stress limit, when λ� 1 and DQ � 1, the first term on the right hand side
can be neglected. This regime is the most practically interesting, since it is a necessary
prerequisite for attaining high DQ. For practical use, we implemented the solution of
Eq. (2.159) and the calculation of dissipation dilution according to Eq. (2.162) in a
Mathematica notebook [126].

Since the bending term in the Euler-Bernoulli equation (Eq. (2.159)) is ∝ λ2, it is
expected be negligible when λ is small. Once bending is neglected, the Euler-Bernoulli
equation becomes a wave equation,

− 1

v(s)

d2

ds2
Ud(s) = Λd Ud(s). (2.163)

For the future use mode shapes and eigenvalues that satisfy Eq. (2.163) are denoted as
Ud and Λd, respectively, with the subscript meaning “distributed”. Λd is different from
Λ by only a small amount, on the order of 1/DQ. This difference will be discussed in the
end of this section, but until then for all our practical purposes we can assume Λd ≈ Λ.

The relation between Ud(s) and the solution of the original Euler-Bernoulli equation,
U(s), is subtle. As λ goes to zero, the two solutions approach each other

lim
λ→0

U(s) = Ud(s), (2.164)
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Figure 2.12: Displacement fields U of the third order flexural modes of beams with λ =
10−1, 10−3, 10−3. A) The displacement fields in the clamping region, illustrating an increase
in mode curvature around the clamp with the reduction of λ. B) Overall shapes of the flexural
modes, which show convergence as λ is reduced.

for all s. The same is not true for their derivatives if the beam is hard-clamped at s = 0
and s = 1, in this case

lim
λ→0

U ′(0) 6= U ′d(0). (2.165)

Indeed, since Eq. (2.163) is second order in spatial derivatives, the theory of ordinary
differential equations tells us that if Ud = 0 and U ′d = 0 at one point, then Ud is zero
for all s. Therefore the solution of wave equation only satisfies the boundary conditions
U(0) = U(1) = 0 (the violation of which would incur higher energy cost), but not
U ′(0) = U ′(1) = 0.

Since U(s) does converge to Ud(s) as λ gets small, an approximate mode shape that
satisfies all boundary conditions can be obtained by locally correcting Ud(s) around the
clamps. We write such corrected function as

U(s) = Ud(s) + Ucl.l(s) + Ucl.r(s), (2.166)

where Ucl.l and Ucl.r are the corrections, respectively, around the left and right clamps.

Now one already can qualitatively predict the impact of stress or aspect ratio encoded
into the λ parameter on the mode shape U(s). The distributed part of the mode,
Ud(s), is independent of λ. The amplitudes of clamping contributions Ucl reduce to
zero as λ→ 0, in accordance with Eq. (2.164), but because the derivative change stays
finite their curvatures increase indefinitely. In order to visualize these trends, we plot
in Figure 2.12 the vibrational mode shapes obtained by solving the Euler-Bernoulli
equation for a beam with the same transverse profile at different λ. Physically, this
corresponds to the evolution of flexural mode shape as the tension force T is increased,
since λ ∝ 1/

√
T .

In the high-stress limit, the clamping contributions Ucl.l and Ucl.r can be found to
a very good approximation under quite general assumptions. We will do this for the
left clamp (s = 0), and for simplicity assume that the beam is symmetric so that the
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mode around the right clamp behaves in the same way. As was qualitatively argued
above and as will be rigorously verified in the following, the region of s over which
Ucl.l contributes substantially to the mode shape (“clamping region”) reduces to zero
as λ → 0. Therefore, we can assume that the beam width and the static stress are
approximately constant in the clamping region,

v(s) ≈ v(0), σ̄(s) ≈ σ̄(0). (2.167)

A “local” value of λ, renormalized by the clamping stress, is denoted by λcl and given
by

λcl ≡
h

l

√
E

12σ̄(0)
= λ

√
v(0). (2.168)

Around s = 0, U is close to zero, so that the inertia term in the Euler-Bernoulli equation
(ΛU term) is negligible, while the bending term is not, as the mode curvature U ′′ is
anomalously high. The Euler-Bernoulli equation in the vicinity of the clamp simplifies
to

λ2
clU
′′′′(s)− U ′′(s) = 0. (2.169)

The general solution of Eq. (2.169) is

U(s) = C1 + C2s+ C3e
−s/λcl + C4e

s/λcl , (2.170)

where the constants C1−4 are found from the boundary conditions

U(0) = 0, U ′(0) = 0, and U ′(s� λcl) = U ′d(0). (2.171)

The overall result for the solution is

U(s) = U ′d(0)
(
s+ λcl

(
e−s/λcl − 1

))
, (2.172)

By comparing it to Eq. (2.166) we identify the clamping contribution as

Ucl.l(s) = U ′d(0)λcl

(
e−s/λcl − 1

)
. (2.173)

The displacement field around the other clamp, Ucl.r, is found in an analogous way.
Note, that the length of the clamping region in physical units is given by ∆xcl = λcll,
which is much smaller than the beam length. This validates the assumption made in
the beginning that the clamping correction is localized.

It is instructive to estimate the length of the clamping region ∆xcl in real structures.
For uniform Si3N4 beams, assuming material parameters typical for LPCVD silicon
nitride at the CMi [127], we obtain

∆xcl = h
√
E/12σ̄ ≈ 5h, (2.174)

i.e. that the clamping length is about 5 times the beam thickness. Thicknesses relevant
to the devices in this thesis vary between 20 and 100 nm, which gives ∆xcl in the range
of 100− 500 nm.
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2.4 Resonators with reduced dimensionality

Next, we use the obtained insight into the mode shapes to evaluate dissipation di-
lution and transparently expose its dependence on beam dimensions, stress, and the
transverse shape. We take as a starting point DQ given by the ratio of gradient and
curvature integrals in Eq. (2.162), and evaluate it for U = Ud+Ucl, where Ucl depends on
λ and Ud does not. The contribution of Ucl to the tension energy can be neglected, while
its contribution to the bending energy is sizable or even dominant. Using the shape of
Ucl.l found previously, the bending energy stored by the clamping curvature around the
left clamp is found as ∫ ∞

0
v(s)

(
U ′′cl.l(s)

)2
ds =

1

2λ

√
v(0) [U ′d(0)]2, (2.175)

where we returned to the original stress parameter, λ = λcl/
√
v(0). The contribution of

the right clamp can be found analogously, for simplicity it is assumed to be equal to that
of the left clamp. Because of the delta-function nature of the clamping curvature, and
because U ′′d = 0 at the clamping point, the cross terms ∝ U ′′dU ′′cl.l does not contribute to
the bending energy.

The dilution factor DQ is found by combining the boundary and the distributed
contributions as

DQ =
1

αλ+ βλ2
. (2.176)

Here α and β are the boundary and distributed loss coefficients, respectively, given by

α =
√
v(0) [U ′d(0)]2

/∫ 1

0

(
U ′d(s)

)2
ds , (2.177)

β =

∫ 1

0
v(s)

(
U ′′d (s)

)2
ds

/∫ 1

0

(
U ′d(s)

)2
ds . (2.178)

Both loss coefficients are expressed as functions of the solution of wave equation, Ud,
and therefore one can be sure that they do not have any further implicit dependence
on λ. Solving the full Euler-Bernoulli equation is, strictly speaking, unnecessary for the
calculation of quality factors.

Interestingly, corrections to mode frequencies due to the bending energy, i.e. the
difference between Λ and Λd, can also be expressed using the same coefficients α and
β. It can be checked using perturbation theory that if DQ � 1 then the eigenvalue of
Euler-Bernoulli equation Λ is related to the eigenvalue of the simplified wave equation,
Λd as

Λ ≈ Λd(1 + 2αλ+ βλ2). (2.179)

Expressions in Eq. (2.176) and Eq. (2.179), when applied to a uniform beam, reproduce
the result from [33, 64]. For a uniform rectangular beam v(s) = 1, and the distributed
mode shapes are sinusoidal,

Ud(s) =
√

2 sin(πn s), (2.180)
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where n = 1, 2, ... is the mode index. The corresponding eigenvalues are Λ = (πn)2, the
loss coefficients are

α = 2, β = (πn)2. (2.181)

and overall [35, 64],

D
(u.b.)
Q =

1

2λ+ (nπ)2λ2
, (2.182)

The beam frequencies, including the bending correction, are given by

Ω(u.b.) =
πn

l

√
σ̄

ρ

(
1 + 2λ+

(πn)2

2
λ2

)
. (2.183)

Eq. (2.182) and Eq. (2.183) were first derived and experimentally verified for macroscopic
strings with circular cross-sections in the pioneering work on dissipation dilution [33].

In non-uniform beams dissipation dilution can be higher than that predicted by
Eq. (2.182). With the help of Eq. (2.176)-2.178, an optimization of DQ can be conducted
over different shapes v(s). In the high-stress limit, when λ� 1, the value ofDQ is limited
by the boundary curvature term αλ. If α is engineered to be close to zero, DQ is strongly
enhanced, techniques of achieving this are known as soft clamping. First introduced
for phononic crystal membranes by Tsaturyan et al. [36], in our works soft clamping
was applied to beams [32] and then extended to non-bandgap structures [39]. Once
the boundary contribution to the mode curvature is eliminated, dissipation dilution is
limited by the distributed contribution [32]. In this case the local enhancement of stress
can improve it further, up to the point when it is limited by the breaking stress of the
material.

2.4.7 The ultimate limit for dissipation dilution in thin films

The usual, if not the only, practical goal of control over mechanical losses is to reduce
them to the lowest possible level. Optimizing dissipation dilution within given con-
straints for the resonator configuration is one way towards this goal. In our works [32,
37, 39] we developed and explored a number of strategies for optimizing dilution, and
before considering them more closely, it is useful to present a general argument showing
the ultimate limitation of this approach.

Dissipation dilution increases with the reduction of the strain parameter λ, and the-
refore it is clear from the start that high-aspect ratio structures with high tensile stress
are favorable. The maximum stress that material can sustain is known as yield strength,
σyield. For stoichiometric silicon nitride this value is around 6.8± 0.8 GPa [128, 37], and
the corresponding strain εyield is around 3%. Exceeding the yield stress value in any
part of the mechanical resonator leads to its collapse. Therefore, dissipation dilution of
a mode in a uniform beam can never exceed the value for a structure tensioned to the
yield strain,

DQ ≤
12Eε2yield

ρh2Ω2
. (2.184)
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The expression on the right hand side is obtained from Eq. (2.182) by neglecting the
boundary loss contribution and relating the mode number to frequency. It turns out that
Eq. (2.184) is a rigorous bound that applies to any non-uniform thin-film beam, which is
proven in the end of this section. There is little doubt that the same limit qualitatively
applies to two-dimensional modes in membranes, although this is less straightforward to
rigorously prove.

For the following use, we also introduce the “soft-clamping limit”, given by substitu-
ting the yield strain in Eq. (2.184) with the film pre-strain,

D
(soft.clamp.)
Q =

12Eε2film

ρh2Ω2
. (2.185)

This is not a rigorous limit for any kind of resonators, but it is a useful benchmark value,
approaching which means that the boundary curvature contribution to intrinsic loss is
well suppressed.

Proof of the yield stress limit. We start from the simple fact that neglecting boun-
dary losses does not decrease the dilution,

DQ =
1

αλ+ βλ2
≤ 1

βλ2
, (2.186)

and find a lower bound for the distributed loss coefficient β. Noting that the normalized
beam profile v(s) is related to the axial stress,

v(s) = σavg/σ̄(s) ≥ σavg/σ̄peak ≥ σavg/σ̄yield, (2.187)

we use this fact to evaluate the curvature integral in the definition of β (Eq. (2.178))
using Eq. (2.163),∫ 1

0
v(s)

(
U ′′d (s)

)2
ds = Λd

∫ 1

0
v(s)2(−Ud(s)U ′′d (s))ds ≥

Λd

(
σavg

σyield

)2 ∫ 1

0
(−Ud(s)U ′′d (s))ds = Λd

(
σavg

σyield

)2 ∫ 1

0
(U ′d(s))2ds. (2.188)

Therefore, the distributed loss coefficient is lower-bound as β ≥ Λd (σavg/σyield)2, and
overall

DQ ≤
1

Λdλ2

(
σyield

σavg

)2

=
12Eε2yield

ρh2Ω2
, (2.189)

which proves the point. Here σyield = Eεyield.

2.4.8 Torsional lossy energy

A different kind of deformation than flexure which is supported by beams is torsion.
It corresponds to twisting the beam cross-section about the beam axis over a variable

55



Dissipation dilution in mechanical resonators

angle τ(x, t). Here we again consider a high aspect-ratio beam aligned along x axis and
evaluate the energy of its torsional deformation. For simplicity, we consider a thin-film
beam, and find the energy by regarding it as a membrane strip. Despite this fact, we
find it useful to consider torsional energy as a separate concept, as it is generalizable
to strings with non-rectangular cross section for which there is no direct relation to
membranes.

For small τ , with sufficient precision the two-dimensional deformation field produced
by beam torsion is given by

u(x, y, t) = τ(x, t)y. (2.190)

As we are interested in thin beams which extent in y direction is small, strains which
are O(y) are neglected. In this approximation, torsion produces no nonlinear strain
and therefore no tension energy. In contrast, the linear elastic energy is finite. The
two-dimensional curvature terms are found as

u,xx = 0, u,xy = τ,x, u,yy = 0. (2.191)

The lossy energy is found according to the general membrane formula,

W (lin) =
hD
2

∫
2(1− ν)u2

,xy dxdy =
Eh3

12(1 + ν)

∫
l
w(x)τ,x(x, t)2dx. (2.192)

It should be noted that the torsional deformation of a beam has different symmetry with
respect to y axis as compared to the out-of-plane bending. Therefore the two kinds of
deformations do not couple—their cross-energy term is zero, and their energies can be
computed independently.

For a uniform beam (w = const) that is uniformly twisted (τ ′ = const) between
τ = τ0 at x = 0 and τ = 0 at the end of the beam, x = l, the torsion energy is given by

W (lin,tors) =
Ewh3

12(1 + ν)

τ2
0

l
. (2.193)

This energy is of the same order as the distributed part of the bending energy of a
flexural beam mode for which du/dx(0) = τ0.

2.4.9 Dissipation dilution and frequency noise

The quality factor of a mechanical resonator determines the uncertainty in frequency and
force measurements due to the resonator’s Brownian motion [30, 129, 130]. Therefore
dissipation dilution directly improves these fundamental sensitivity limits. In the case
of force measurements, a nanobeam is a particularly advantageous kind of resonator due
to its low mass. For the highest-Q nanobeams that were experimentally demonstrated
at room temperature [32], with a Q of 8 · 108 at 1.3 MHz (in agreement with the theory
presented here within 30%) and effective mass of 11 pg, the thermal noise limit is

δFth =
√

4kBTmΓn = 1.4 aN/
√

Hz (2.194)
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at T = 300 K. Here Γn = ωn/Q is the resonance linewidth.

The thermal noise limit for an oscillator frequency is more ambiguous to define in
absolute terms, since here the resolution in general depends on the amplitude of the drive
[129, 131] which is typically limited by the onset of nonlinearity. For flexural modes of
thin beams and membranes the dominant source of nonlinearity at large amplitudes is
not material but geometric nonlinearity [71], the same which creates dissipation dilution.
Therefore we can estimate the contribution of Brownian motion to oscillator frequency
noise by assuming that the amplitude of driven motion is such that the nonlinear part
of the energy is of the same order of magnitude as the linear part. This is equivalent
to the condition that the average kinetic energy approaches the static elastic energy,
〈W (kin)〉 = W (el.stat.),

meffΩ2〈X2
osc〉 ' Veffε

2
avg/E. (2.195)

Here meff and Veff = meff/ρ are the effective resonator mass and volume, respectively, X
is the oscillator position and 〈X2

osc〉 is the magnitude of driven motion. The frequency
noise spectrum due to Brownian motion is given by[131]

Sωω[ω] = 2
〈X2

th〉
〈X2

osc〉
Γ

ω2

ω2 + (Γ/2)2
, (2.196)

where 〈X2
th〉 is the magnitude of the thermal position fluctuations. Using Eq. (2.195),

we estimate the minimum frequency noise (at ω � Γ) as

Sωω '
kBT

W (el.stat.)
Γ. (2.197)

From Eq. (2.197), we see that static strain reduces Brownian frequency noise in two
ways—by reducing the resonator linewidth and by increasing the driving amplitude
threshold at which nonlinearity comes into play. Plugging in numbers from above we
find that the highest-Q soft-clamped mode has minimum frequency noise

√
Sωω/(2π) '

3 · 10−7 Hz/
√

Hz. If converted to phase noise, this is equivalent to −230 dBc/Hz at 20
kHz offset, which is an extremely low level.

Practically, other factors than Brownian motion almost always limit the frequency
stability of mechanical resonators, in particular of silicon nitride nanobeams [71]. On
the other hand, in nanobeams extraneous frequency noises of different modes are highly
correlated, which made it possible to demonstrate Brownian-noise limited frequency
measurements with moderate-Q resonators using feedback [131]. Therefore the attaina-
bility of the Brownian noise limit in frequency measurements using ultra-high Q beams
remains an open question.

2.5 High-stress phononic crystals

A periodic modulation of medium properties (e.g. as shown in Figure 2.13) gives rise
to acoustic bandgaps—spectral regions in which the propagation of elastic waves is
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Figure 2.13: One-dimensional phononic crystals. A) Model of a tensioned phononic-crystal
beam—system of masses joined by springs with alternating lengths. B) Corrugation profile a
PnC beam, that can be patterned from a thin film.

forbidden. Such media are known as phononic crystals (PnCs). Acoustic bandgaps
are easily observed in macroscopic structures [132]. At the microscale, enabled by rapid
developments in microfabrication techniques over the last two decades, phononic crystals
became an indispensable tool for the manipulation of acoustic waves [133]. One of the
key applications of phononic crystals is the isolation of mechanical modes with high
frequencies (MHz-GHz range) and low masses, which is not easy to accomplish by other
means. Modes localized in PnC’s can have long coherence time and strongly couple to
optical [134] and microwave fields [135], as well as superconducting qubits [136], which
makes them a promising building block for quantum circuits. In recent years there has
been an increasing research interest in topological aspects of phononic crystals. Although
the time-reversal symmetry commonly found in acoustic systems precludes the existence
of chiral edge states, other manifestations of topological order have been predicted and
observed (see e.g. [137] and references therein, also [138, 139]).

Phononic crystals have a lot in common with their electromagnetic counterparts,
photonic crystals, which historically appeared first and supplied many ideas for the de-
velopment of the acoustic platform. There is one important practical difference between
the two, related to the fact that electromagnetic waves can propagate in vacuum while
acoustic waves cannot. In photonic crystals the scattering of light into free space, be
it due to fabrication imperfections or due to the tight localization of mode envelope, is
a major problem [140]. In contrast, the energy of modes localized in phononic crystals
can only escape by tunneling through the crystal itself—either because of its finite size
or, if the bandgap is not complete, by coupling to a mode family that can propagate
freely [31]. The absence of radiation into the free space makes localized acoustic modes
weakly sensitive to disorder and to the details of mode shape, in contrast to the optical
case.

Phononic bandgaps in periodically patterned suspended high-stress films were demon-
strated for the first time relatively recently [36, 54]. Originally, works in this direction
aimed to reduce mechanical dissipation by preventing the coupling of acoustic modes to
the resonator frame (a silicon chip) [57, 54]. Over the course of research it was found (in
Ref. [36]) that modes localized in stressed PnCs can also have dramatically enhanced
dissipation dilution due to the suppression of boundary contribution to the linear strain.
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Figure 2.14: Acoustic dispersion of phononic crystals with h = 20 nm, lcell = 100 µm. Here
θF = klcell is the Floquet phase. A) Phononic band diagram for the pattern shown in C) and in
Figure 2.13B in the absence of stress. B) Band diagram for the same unit cell in the presence of
stress. C) The two choices of inversion-symmetric unit cell. D) Dependence of the relative size
of the first phononic bandgap (bandgap/midgap) on the material prestress σfilm.

Static stress affects phononic crystals in several ways. First of all, it controls the
dispersion of flexural modes. Low-frequency flexural modes of an unstressed beam or
membrane have the dispersion relation ω ∝ k2, where k is the wavevector and ω is the
mode frequency, while in presence of stress the dispersion changes to ω ∝ k. This is
clearly visible in Figure 2.14, which shows two dispersion relations calculated for one-
dimensional PnC with and without tensile stress. The calculation is done for a beam
patterned from Si3N4 film with h = 20 nm and unit cell length lcell = 100 µm. A not
entirely intuitive result shown in Figure 2.14 is that the periodic modulation of beam
width creates odd-order phononic bandgaps for flexural modes only in the presence of
tensile stress. In this work, we are exclusively interested in the first order bandgap.
This bandgap exists for z (out-of-plane) and y (in-plane) polarized flexural modes, the
dispersion relations of which are almost identical, while torsional and longitudinal modes
can propagate freely.

Another practical implication of stress in phononic crystals is that the freedom of
choice of the unit cell pattern is generally limited. We observed in finite element simu-
lations that many geometries can lead to a strong reduction, or even a sign reversal of
the equilibrium stress compared to the initial value σfilm, resulting in a strong reduction
of dissipation dilution for all modes. The problem is aggravated by the fact that parti-
cularly low-frequency and high-dissipation modes can emerge in the regions of near-zero
stress, like the free edges of the film, and these modes tend to strongly couple to the rest
of the spectrum due to stress inhomogeneities. When the equilibrium stress becomes
compressive upon relaxation in one of the principal directions, static buckling instabi-
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lities can occur, in which case the resonator ceases to be flat. All these effects affect
thinner films more, and thus they are particularly relevant for the design of high-aspect
ratio resonators with high dissipation dilution. In two dimensions, the most successful
phononic crystal pattern so far is the simple hexagonal arrangement of holes introduced
in Ref. [36]. In one dimension (PnC beams), avoiding static instabilities and coupling
to low-Q transverse modes requires the usage of outer corrugation and the overall width
of the structure to be sufficiently small. In our experiments we did not observe any
deviations from the idealized on-dimensional theory for mm-long PnC beams with 2 µm
maximum width while using films with thicknesses as low as 20 nm.

Static stress in phononic crystals also leads to the fact that local acoustic properties
are not uniquely determined by the local geometry of unit cell. The band diagram of a
crystal obtained by the periodic repetition of a selected unit cell depends on the distri-
bution of stress within the cell, which is globally affected by the entire PnC resonator.
In this way, for example, the bandgap of each unit cell is modified by a perturbation
introduced in the crystal in order to create a localized mode. Although in simple cases
the perturbation can be small, generally this effect complicates the introduction of in-
homogeneities, such as boundaries between different PnC patterns. In one dimensional
crystals, the total tension force uniquely characterizes the distribution of stress, while
local stresses can be adjusted by the variation of unit cell width. The invariance of the
phononic spectrum in the high-stress limit with respect to

√
σ̄/l provides an opportu-

nity to arbitrarily change the envelope of the stress profile while maintaining the same
frequency dispersion for all unit cells within the beam. As a desirable stress profile is
defined, the only requirement to match the bandgap frequencies in all unit cells is to
adjust the unit cell lengths l ∝

√
σ̄. By using this property, we can create vibratio-

nal modes co-localized with regions of enhanced stress inside one-dimensional phononic
crystals.

In the following section we present results of simulations and experimental characte-
rization of mechanical modes in phononic crystal beams and briefly mention phononic
crystal membranes. The spectra of thermal motion presented in this section are obtained
using home-built lensed fiber or free-space homodyne interferometers, and mechanical
quality factors were characterized using ringdown spectroscopy as described in Sec. 2.7.
In all measurements samples remained in high vacuum (< 10−6 mbar) sufficient to make
the gas damping of mechanical motion negligible. Because of their extreme aspect ratios,
the integration of record-Q nanobeam devices with optical cavities for near-field readout
presently remains an outstanding challenge.

2.5.1 Soft clamping in PnC nanobeams

An experiment demonstrating soft-clamped modes in 1D nanomechanical resonators is
presented in Figure 2.15. 2.6-mm-long devices with unit cells of length Lcell = 100µm
and width wmin(max) = 0.5(1)µm were studied, as shown in Figure 2.15A. Mode frequen-
cies inferred from thermal noise spectra (Figure 2.15C) were found to agree very well
with a numerical solution to the 1D Euler-Bernoulli equation. Particularly striking is
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Figure 2.15: Experimental demonstration of soft clamping in one-dimensional phononic crystals.
A) Geometry of the PnC beams and the definition of defect. B) Quality factors measured for the
modes of beams in D. C) Experimental spectrum of position fluctuations, measured at the beam
center. Inset: localized flexural mode shape u(x) (blue) and its exponential envelope (orange).
D) Frequencies of beam modes as the PnC defect length is swept. E) Displacement profiles
of localized and distributed modes for one PnC beam, each mode is approximately positioned
according to its frequency relative to the vertical axis of D.

the sparse mode spectrum inside the bandgap, visualized by compiling spectra of beams
with different defects presented in Figure 2.15D. A single defect mode appears to move
in and out of the bandgap as the defect length is varied. At every length of the defect,
there is one and only one localized mode inside the bandgap, which is a consequence of
the fact that the Bloch functions at the edges of the first and the second bands have
different symmetries with respect to inversion. Localized modes have reduced effective
masses. Comparing the area under thermal noise peaks and estimating the physical
beam mass to be m0 = 100 pg, we infer the effective mass of the localized mode to
be ≈ 5 pg � m0. This value is in good agreement with the value obtained from the
theoretical mode profile, and is roughly two orders of magnitude smaller than that of an
equivalent two-dimensional localized mode in a membrane.

We also observe a dramatic increase in the Q of localized modes. To visualize this
enhancement, we compiled measurements of Q versus mode frequency for 40 beams of
different defect length and presented them in Figure 2.15B. Outside the bandgap, we
find that Q is consistent with that of a uniform beam, asymptoting at low mode order
(n . 20) to Q ≈ 2×107. Inside the bandgap (n ≈ 26), Q approaches that of an idealized
clamp-free beam (Q ≈ Qint/(πnλ)2 ≈ 108). The highest quality factors were measured
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for second-order (asymmetric with respect to the center) localized modes, realized for
the devices with defect lengths in the range 160-280 µm in Figure 2.15D. The transition
between the localized and distributed regimes agrees well with a full model (gray dots)
based on the solution of Euler-Bernoulli equation, although the scatter is significantly
greater for the quality factors than for the mode frequencies. The origin of this scatter
has not been unambiguously identified, although potential contamination of the beams
in the process of fabrication is a natural suspect.

Devices presented in Figure 2.15 use simple step-like corrugations to create a phono-
nic bandgap, and a beam-like defect to break the periodicity and localize a mode. One
might naturally wonder if the quality factors of localized modes can be further impro-
ved if another kind of corrugation is employed, or the same corrugation with different
parameters, or if the defect is introduced differently. While according to our numerical
simulations the answer is generally yes, the attainable improvement seems to be quite
limited, not exceeding about a factor of two at a given frequency. This is not surprising
given the fact that the practically realized devices already approach the performance of
idealized clamp-free beams with their quality factors Q ≈ Qint/(πnλ)2. According to our
simulations, the clamp-free limit can be slightly surpassed with some PnC geometries,
but never by much. A way to circumvent this limit is global strain engineering as will
be discussed in the next section. Another reason for using simple structures in practice
is that the optimum geometries tend to be sensitive to the optimization metric (e.g.
quality factor or Q · f product) and the assumed constraints (e.g. fixed device length,
or fixed mode frequency).

Concerning the problem of optimizing the shape of the PnC unit cell, the two main
affected parameters here is the size of the phononic bandgap and the average stress within
the structure. Deeper corrugation creates larger bandgaps which better isolate localized
modes from the clamps. This is not necessarily advantageous for the quality factors of
the localized modes, as deeper corrugation also leads to a lower average equilibrium stress
in the structure assuming a fixed pre-stress σfilm. At the level of intuition, it was initially
expected that an excessively strong localization can negatively affect quality factors due
to an increase in the distributed curvature contributed by the steep exponential envelope
of the mode. However, in simulations we did not observe this effect to be significant.
This is not surprising taking into account that the dependence of average stress on
corrugation is much more pronounced than the dependence of mode localization length.
Also, it should be noted that extreme corrugation ratios are practically not accessible
with the thinnest (20nm) nanobeams, as such structures would likely buckle in transverse
direction upon fabrication, which destroys their quality factors entirely.

In order to illustrate the main limitations of quality factor enhancement by soft clam-
ping in PnCs, we plot in Figure 2.16 theoretical DQs and Qs of localized modes versus
frequency and beam length. We assume the same PnC pattern and the same definition
of defect as in Figure 2.15. The film thickness is 20 nm, and the material parameters
and film pre-stress are those of Si3N4. In every PnC beam the length of the center
defect is taken to be 1.2 of the unit cell length, which creates a soft clamped mode at
the frequency approximately corresponding to the middle of the phononic bandgap. As
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Figure 2.16: Theoretical variation of localized mode DQ (shades of red) with frequency and
beam length, and comparison to modes of uniform beams of the same lengths. Beam thickness
here is h = 20 nm. Localized mode frequency is changed by the variation of the number of PnC
unit cells within the beam (together with the unit cell length as the beam length is fixed) while
keeping the ratio of the central defect to the unit cell length constant.

mentioned earlier, while such a fixed choice of PnC geometry leaves room for optimi-
zation, quality factors in such structures are not dramatically lower than the optimum
and illustrate all qualitative trends.

In Figure 2.16, at every beam length (l = 50 µm, l = 700 µm and l = 10 mm)
the frequency of the localized mode is varied by changing the length of the PnC unit
cell which determines the bandgap frequency. Mode frequencies cannot be varied con-
tinuously in this way, as an integer number of unit cells must fit into the beam, which
results in discrete data points (red dots in Figure 2.16), joined by dashed lines as guides
to the eye. Each curve of localized mode Q versus frequency obtained in this way has a
peak, which can be understood as follows. When the localized mode frequency is low, its
acoustic wavelength is comparable to the beam size and the mode is not fully shielded
from the clamps. When the localized mode frequency is high, the increased ratio of
film thickness to the acoustic wavelength results in a higher amount of energy stored in
distributed bending.

A natural metric for the gain from PnC localization is how much the maximum
quality factor attainable for a localized mode is higher than that of a distributed mode
at the same frequency within a uniform beam of the same size (blue dots in Figure 2.16).
This enhancement is controlled by the λ parameter, which in Figure 2.16 is different for
different beam lengths (the stress and thickness are the same in all structures). Modes
in longer beams can benefit more from soft clamping. It can be seen from Figure 2.15
that the localized modes of a 10-mm long devices can have quality factors more than an
order of magnitude larger than the modes of a uniform beam, while the modes of a 50
µm long device can hardly experience an improvement beyond a factor of two.

Suspending structures with extreme aspect ratios is a major practical challenge in the
implementation of devices with soft-clamped modes. The maximum length of beams in
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our experiments was 7 mm (thickness h = 20 nm), while reliably high fabrication yield
could only be obtained for devices not more than 4 mm-long. The primary limitation
appeared to be the structure collapse due to perturbations in liquids at various stages of
processing, in particular during the final stage of critical point drying. It was empirically
found that the gap between the device and the chip has to be larger than 5 µm in order
to suspend 3-mm long beams, which motivated the development of a two-stage etching
process reported in [32, 37, 141].

Two other limitations of soft-clamping in PnCs can be inferred from Figure 2.16. The
first one is that the acoustic wavelength of the localized mode must be much smaller
than the size of the PnC in order to obtain a Q enhancement. This fact implies that
the overall phonic crystal structure, which is hard-clamped and can be regarded as the
total resonator, has a multitude of modes with frequencies lower than the frequency
of the defect mode. Low-frequency modes are clearly visible in Figure 2.15C. Here,
in fact, the overall magnitude of thermal fluctuations of the resonator central point is
dominated by the low-frequency modes, and not by the localized soft-clamped mode.
The second limitation is that the quality factors of the localized modes do not exceed
those of a clamp-free uniform beam and never reach the ultimate limit set by the breaking
stress. In Figure 2.16 this manifests in the fact that the red dots, representing the DQs
of localized modes, never enter the shaded red area between the soft clamping limit
(Eq. (2.185)) and the ultimate limit, defined by the inequalities

12Eε2film

ρh2Ω2
< DQ <

12Eε2yield

ρh2Ω2
. (2.198)

The area forbidden by the breaking strain is hatched gray in Figure 2.16.

2.5.2 Elastic strain engineering

Elastic strain engineering (ESE) utilizes stress to realize unusual material properties
[142]. For instance, stress can be used to enhance the electron mobility of a semi-
conductor, enabling more efficient solar cells [143] and smaller, faster transistors [144].
Dissipation dilution can be seen as a complementary strain engineering technique, where
the affected material property is dissipation. Whereas ESE commonly relies on extreme
inhomogeneous stresses produced by nanoscale deformation [145] (e.g. by lithographic
patterning [86] or nano-indentation [146]), early studies of dissipation dilution have fo-
cused on materials under weak, uniform stress produced during material synthesis. The
main challenge in bridging dissipation dilution and conventional ESE techniques is to
identify strategies to colocalize stress and mechanical motion at the nanoscale. We pro-
posed a strategy based on phononic crystal patterning, which is conceptually simple and
entirely material independent. By weakly corrugating a prestressed nanobeam, we cre-
ate a bandgap for localizing its flexural modes around a central defect. By tapering the
beam, we colocalize these modes with a region of enhanced stress. Reduced motion near
the supports results in higher dissipation dilution, while enhanced stress increases both
dilution and mode frequency. Leveraging a multi-step release process, we implement our
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Figure 2.17: Stress concentration example. A) Geometry of a one-dimensional structure con-
sisting of a narrow waist and two stressor pads (hatched regions). B) A few realizations of the
geometry shown in (A). C) The distribution of axial stress along the structures in (B).

approach on extremely high aspect ratio tapered beams (as long as 7 mm and as thin as
20 nm) made of prestressed (σfilm = 1.1 GPa) Si3N4, and achieve local stresses as high
as 3.8 GPa.

ESE utilizes stress concentration in inhomogeneous films, which is a situation when
stress distribution develops strong local maxima upon the film release. Stresses close to
the yield value, beyond which the material breaks, can be realized in this way from a
moderate homogeneous initial pre-stress. A strong enhancement of local stress, however,
can only be attained over a small region—the smaller the region is compared to the total
size of the suspended structure, the higher the enhancement can be. Qualitatively, this
rule applies to both one-dimensional beams and two-dimensional membranes. A local
enhancement of stress also necessarily requires that the stress elsewhere in the structure
is reduced, which is why the phenomenon is referred to as “concentration”.

In Figure 2.17 we show an example of stress concentration in one-dimensional beams
with narrow constrictions in the center. Each beam is a flat structure with constant
thickness, rectangular cross section, and width profile shown in Figure 2.17A. It consists
of a thin central part (“waist”), with length l2 and width w2, and two wider pads on
the sides, playing the role of stressors (cross-hatched regions in Figure 2.17A). Each of
the two stressor pads have length l1/2 and width w1. It is understood that the overall
aspect ratio l/w is high enough so that the structures are effectively one-dimensional,
which means that their aspect ratios are not shown to scale in the figure. Distributions
of static axial stress for three different beams are plotted in Figure 2.17C, while the
structures themselves are shown in Figure 2.17B. In agreement to what was mentioned
above, larger pads result in larger peak stress, but smaller spatial extent of the high-
stress region. A more quantitative and general conclusion can be made based on the
analytic expression for the waist stress, σ̄2. The waist stress is found using the results
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of Sec. 2.4.5,

σ̄2 = σfilm(1− ν)

(
l2
l

+
l1
l

w2

w1

)−1

, (2.199)

where l = l1+l2 is the total beam length. The value of σ̄2 in Eq. (2.199) is upper-bounded
as

σ̄2

σfilm
≤ min

(
l

l2
,
w1

w2

)
, (2.200)

which means that in order to enhance the stress in the waist by a factor of X with
respect to the deposition value, the stressors need to be at least X times wider and X
times longer than the waist.

Harnessing stress concentration to the enhancement of dissipation dilution is not a
trivial task. While stress can be increased only locally, vibrational modes naturally
tend to be distributed over the entire structure and be limited only by its hard-clamped
boundaries. Only modes that stay entirely within the high-stress region can benefit from
stress concentration, and even a small acoustic leakage into the stressor pads (which are
low-stress per se) can drastically reduce dissipation dilution. While the simple structures
considered in Figure 2.17 were sufficient to illustrate the idea of stress concentration,
their modes would in fact have lower dilution than the modes of a regular uniform beam.
This is true even despite the fact that a slight increase in stress can take place over a
large part of the beam, as for the middle structure in Figure 2.17B. At the same time
the opposite strategy—making the clamps narrow—would improve quality factors while
slightly reducing the stress in the beam bulk[37].

Vibrational modes can be confined in high-stress regions with the help of phononic
bandgaps. In this case, stress concentration can improve quality factors beyond the soft-
clamping limit (Eq. (2.185)). Having established in Sec. 2.5.1 near-ideal soft-clamping
for uniform PnC nanobeams, we next study the performance of strain-engineered (tape-
red) PnC nanobeams. These devices, which shapes are shown in Figure 2.18B, exploit
adiabatic width tapering to locally enhance stress in the center. The tapering is imple-
mented as follows. The width of the PnC is changed cell-wise according to

wcell,i ∝ 1− (1− a) exp(−i2/i20), (2.201)

where i = 0, 1 ... is the cell index starting from the beam center, a and i0 respectively
define the transverse and longitudinal sizes of the waist region, which are chosen to
optimize the Q at certain frequency. For each taper length the soft-clamped mode is
engineered to be well localized inside the thin taper region by tuning the pitch of unit
cells. Importantly, the PnC cell lengths must also be scaled proportional to 1/

√
wcell

in order to compensate for the bandgap frequency shift due to the non-uniform strain
distribution.

A set of 4 and 7-mm-long tapered PnC nanobeams was fabricated with the length of
the taper varied in order to tune the stress at the center of the beam σ̄(xc) from 2 to 4
GPa. The measurements of spectra of thermal motion, presented in Figure 2.18A, allow
us to extract bandgap frequencies, Ωbg/(2π), and corroborate enhanced stress. This is
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Figure 2.18: One-dimensional PnC beams utilizing strain engineering technique for Q enhan-
cement. A) Thermal displacement spectrum of 4-mm-long devices with profiles shown in B).
Bandgaps are highlighted in orange. (C) Simulation of peak stress versus bandgap frequency
Ωbg/(2π) for devices shown in (B). (D) Measurements of Ωbg/(2π) versus length of the central
unit cell. Red and blue lines are models with and without accounting for stress concentration,
respectively.

done through analyzing the dependence of Ωbg on the length of the central unit cell
lcell,0. The theoretical trend is Ωbg ∝

√
σ̄(xc)/lcell,0, and therefore an enhancement of

stress is expected to manifest as increased bandgap frequency for a fixed size of the unit
cell. This expectation is in good agreement with the data presented in Figure 2.18C-D.

Measured quality factors of uniform and tapered PnC nanobeams are compared in
Figure 2.19. Blue circles correspond to the measurements as shown in Figure 2.15B.
Red circles are compiled for localized modes of 4-mm-long tapered beams with various
peak stresses, corresponding to a bandgap frequency varied from Ωbg/(2π) = 1 − 6
MHz. Theoretically, Q(Ωbg) is predicted to trace out a line of constant Q × f ≈ 1015

Hz, exceeding the soft-clamping limit (Eq. (2.185)) for sufficiently high frequency. We
observe this behavior with an unexplained ∼ 30% reduction, with Q factors exceeding
the clamp-free model by a factor of up to three and reaching absolute values high as
3×108. Though theoretically this Q should be accessible by soft-clamping alone at lower
frequency, our strain-engineering strategy gives access to higher Q-frequency products
(Q× f), reaching a value as high as 8.1× 1014 Hz for the 3.2 MHz mode of a 4-mm-long
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Figure 2.19: Quality factor versus mode frequency of PnC nanobeams with different geometries.
Blue points correspond to modes of the uniform PnC nanobeam reproduced from Sec. 2.5.1 (large
points are measurements and dots are numerical calculations). Red points correspond to defect
modes of tapered beams, which Qs are enhanced by strain engineering techniques. Red color
groups include the highest five Q factors recorded for each beam design. Qs in region shaded
light red are above the soft-clamping limit, which is indicated by the blue line. The samples are
fabricated by Amir Ghadimi and Mohammad Bereyhi.

device. Higher Q and Q×f factors were achieved using longer beams (red squares). For
a 7-mm-long device we observed a 1.33 MHz defect mode, corresponding to Q = 8.0×108

and Q× f = 1.1× 1015 Hz. We note that at this low damping rate (Γ/(2π) ∼ 1 mHz),
photothermal effects become important. Gated ringdowns confirm that photothermal
damping is negligible (see Sec. 2.7 for experimental details).

The realization of Q × f ∼ 1015 in a m ∼ pg mechanical oscillator has numerous
intriguing implications. First, such an oscillator is an exquisite force sensor. The highest-
Q mode among those characterized in Figure 2.19 is limited by thermal noise to a
sensitivity of

√
4kBTmΓ ≈ 1.4 aN/

√
Hz at T = 300 K. This value is on par with a

typical AFM cantilever operating at 100 times lower frequency and temperature [147],
creating new opportunities for applications such as force microscopy with high spatial
resolution [46, 80]. Of practical importance is that the reported devices also exhibit an
exceptionally strong thermal displacement of

√
2kBTΓ/(mΩ2) ∼ nm/

√
Hz, accessible

by rudimentary detection techniques such as deflectometry. Indeed, their zero-point
motion

√
2~Q/(mΩ2) ∼ pm/

√
Hz is orders of magnitude larger than the sensitivity of

modern microcavity-based optical interferometers, offering possibilities in the field of
quantum measurement and control [148]. A fascinating prospect is to use measurement-
based feedback to cool such an oscillator to its ground state from room temperature.
A basic requirement is that the oscillator undergo a single oscillation in the thermal
decoherence time ~Q/kBT . The devices reported are exceptional in this respect, capable
of performing 2πQ× f/(kBT/~) > 100 coherent oscillations at room temperature.

Finally, in order to clearly illustrate the advantages and limitations of ESE techniques,
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we compare in Figure 2.20 quality factors theoretically calculated for 3-mm-long and 20-
nm-thick tapered and uniform Si3N4 PnC beams. The taper waist has been adjusted
to match the wavelength of the localized mode. It can be seen that as the frequency
increases, the dilution of modes in tapered PnC devices (red points) is progressively
enhanced relative to conventional soft-clamped modes (dark red points). There are
two other messages to take away. Firstly, the ultimate limit of dissipation dilution
(Eq. (2.184)) is attainable with tapered PnC beam designs. Secondly, this limit can be
only attained for high-order modes, which wavelength is short enough to significantly
benefit from global stress concentration. This makes the practical implementation of
devices particularly challenging, as even more extreme aspect ratios than those required
for soft-clamping need to be realized.

Aside from the challenges related to fabrication yield, for the quality factors of the
highest aspect ratio devices fabricated in this work we did not observe as good an
agreement with theory as for the shorter ones. While the correspondence with theory
was exceptionally good for the Qs of 2.6 mm-long beams presented in Sec. 2.5.1, for 4
mm beams the highest observed Qs were 30 % below the theoretical prediction. The
measured quality factors of 7-mm beams were only marginally better than those of 4
mm ones, while theoretically an improvement by more than a factor of two was expected
for longer devices. Thus what limited the highest quality factors observed in our work
was not fully understood.
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profile. B) Distribution of axial stress calculated with the 1D model (blue line) and simulated
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2.5.3 Comparison between one- and three-dimensional simulations

The numerical solution of one-dimensional Euler-Bernoulli equation proved to be an effi-
cient theory tool capable of rapidly providing insights into various aspects of nanobeam
spectra and quality factors. We implemented a simple one-dimensional finite-element
solver for the Euler-Bernoulli equation as a Mathematica notebook, which is openly avai-
lable [126]. The solver can handle in-and out-of-plane flexural modes of doubly clamped
beams as well as PnC unit cells under Floquet-periodic boundary conditions. The same
notebook contains the beam geometries used in our works.

The results obtained using the one-dimensional model were extensively benchmarked
against two- and three- dimensional finite-element simulations performed using COM-
SOL, which rely on fewer a priori assumptions, but which are also much more time-
consuming. The agreement was found to be excellent within the validity range of the
one-dimensional model, i.e. for structures with high-aspect ratios and purely flexural
deformations. In Figure 2.21 and Figure 2.22 we present one example comparison bet-
ween one- and three-dimensional simulations. The structure is a tapered PnC nanobeam
with the overall length l = 500 µm, thickness h = 100 nm, center width w = 400 nm
and the widest part having w = 5 µm. The aspect ratio l/h is relatively moderate in
this example, as we practically found that the results of three-dimensional simulation of
mode shapes may not be reliable for higher aspect ratios (two-dimensional simulations
using the COMSOL shell interface are free from this limitation).

Figure 2.21 shows the simulated distribution of axial stress along the beam. Stress
engineering implemented by tapering results in the peak stress exceeding the initial value
of the film deposition stress by a factor of two. According to the one-dimensional model
(see Eq. (2.156) in Sec. 2.4.5), the equilibrium static stress is simply given by the inverse
of the beam width times the average stress, ¯σ(x) = σavg/v(x). This is confirmed by
the 3D FEM results, which somewhat deviate from the analytic formula only in the
vicinity of the beam clamping points, where the width-to-length ratio for the unit cells
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Figure 2.22: The full spectrum a doubly-clamped tapered PnC beam with length l = 500 µm,
thickness h = 100 nm, center width w = 400 nm and transverse profile shown in Figure 2.21. A)
Example modes of different families. B) Dissipation dilution versus mode frequency calculated
using 3D and 1D vibrational mode shapes. Orange, green, red and blue dots correspond to
different mode families as explained in the caption. Calculations using the 1D model [126] are
only presented for out-of-plane flexural modes (dark blue dots). The localized soft-clamped mode
is denoted by the arrow.

is not very high (lcell/wmax = 20µm/5µm), and the one-dimensional approximation is
not expected to work particularly well.

We next simulate the full vibrational sppectrum of the example tapered PnC nano-
beam using COMSOL, which for frequencies up to 20 MHz consists of approximately
one hundred modes. The results are presented in Figure 2.22. The low-frequency modes
of the structure can be classified into four mode families: in- and out-of-plane flexural,
torsional and longitudinal modes. The classification is not absolute, if two modes from
different families happen to be around the same frequency, they form hybrid modes that
do not belong to any of the classes. Also, modes at higher frequencies can have more
complex displacement profiles.

Dilution factors found using the 3D FEM solutions for the mode shapes are presented
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in Figure 2.22B. These factors are calculated using the generic expressions given by
Eq. (2.87)—Eq. (2.90) from Sec. 2.3, which do not differentiate between mode families
and take the full 3D deformation profile as an input. The calculations based on these
formulas were implemented in MATLAB using its interface with COMSOL (the code
is not yet published, it is available from the author upon request). Out-of-plane (z-
polarized) flexural modes have been of our primary interest so far, as they exhibit the
highest dissipation dilution and, correspondingly, the highest quality factors. In-plane
flexural modes experience about an order of magnitude lower dilution than out-of-plane
ones, consistent with the ratio of the beam width and thickness, w/h. Torsional modes
experience marginal dissipation dilution because they are not perfectly well distinguished
from flexural, and longitudinal modes experience no dilution.

While the 3D FEM simulation provides DQs of all modes, the one-dimensional ap-
proximation that was used so far is only applicable to flexural modes (while other one-
dimensional approximations can be derived for different mode families). For out-of-plane
flexural modes, the predictions of our 1D model (also shown in Figure 2.22B) are in an
excellent agreement with the orders-of-magnitude more time consuming full 3D simula-
tions. The most prominent deviation between the 1D and 3D calculations takes place for
the out-of-plane flexural mode with frequency around 6.2 MHz (the orange dot outlier
in Figure 2.22B) that happened to hybridize with a low-dilution torsional mode and
correspondingly has a reduced quality factor.

2.5.4 PnC membranes with low effective mass localized modes

The best experimentally demonstrated quality factors of nanobeam resonators, Q =
1.6 × 109 at 6K and Q = 8 × 108 at room temperature, are the highest among high-
stress devices. Nanobeams also have very low masses, which together with their low
dissipation translates into outstandingly low thermal force noise levels [32]. In order
to take the full advantage of these properties, however, a high-sensitivity readout of
resonator motion has to be implemented. While moderate-sized nanobeams have been
successfully coupled to whispering gallery optical modes by means of near-field coupling
[149], an analogous integration of mm-long beams hosting ultrahigh-Q mechanical modes
remains an outstanding challenge.

In contrast to beams, membrane resonators can be relatively straightforwardly inte-
grated with high-finesse optical cavities using the membrane-in-the-middle scheme. Not
long after the soft clamping technique was pioneered by Tsaturyan et. al. [36], the first
cavity optomechanics experiments with soft-clamped membrane modes followed [150,
151]. In this section, we discuss the designs of membranes with soft-clamped modes for
our room temperature cavity optomechanics experiment, which will be presented in the
following (see Chapter 4). The simulations of spectra and dissipation dilution in PnC
membranes were performed using COMSOL as described in Appendix A.2.

The 2D phononic crystals in our work are formed by the hexagonal pattern of circu-
lar holes introduced in Ref. [36], which creates an almost isotropic bandgap for flexural
modes. The hexagon pattern appears to be the simplest arrangement that has this
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Figure 2.23: Simulations of a PnC membrane with a single low-mass soft-clamped mode. A)
The definition of PnC defect. B) Displacement profile of the soft-clamped mode. C) Frequencies
and quality factors of the localized mode and several other modes which are the closest to
the phononic bandgap. D) Displacement profile of an edge mode localized around the bottom
termination of the membrane. Terminating the membrane as shown on the top does not create
edge modes.

property. In our trials, neither triangular nor rectangular arrays of circular holes pro-
duced acceptable bandgaps. Moreover, unlike unstressed phononic crystals, which can
have unit cells of almost arbitrary shapes, introducing non-circular holes in thin stressed
membranes is potentially problematic, and can easily result in locally compressive stress.

In perfectly periodic structures, no vibrational states exist within the phononic band-
gap. If a defect is introduced, it can localize one or more modes, which do not reach
the membrane edges if the overall PnC size is large enough. The sizes of defects used
in [36, 150] are relatively large compared to the unit cell, and they localize more than
one mode. At the same time, it is often desirable to selectively perform measurements
on one mechanical mode, in which case the spectral overlap of this mode with all other
modes needs to be minimized. This can be accomplished by engineering a membrane
defect such that it localizes a single soft-clamped mode with frequency at the bandgap
center. Single-mode defects also generally have a smaller size than multi-mode ones,
which results in better mode confinement and, correspondingly, smaller effective masses.

Our approach to the formation of PnC defect is shown in Figure 2.23A. It consists
of a) removing one hole (gray) from the membrane pattern, b) adding three holes in the
centers of the adjacent cells (red), which have smaller radii, r1, and are displaced by ∆r1
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2 mm×2 mm×20 nm membrane with a localized mode at 1.46 MHz. C) Camera photo of a chip
with PnC membrane. The devices are fabricated by Alberto Beccari.

towards the center, c) rescaling the three nearest existing holes (green) and displacing
them towards the center by ∆r2. The precise parameter values (see their definition in
Figure 2.23A) are the following: r1 = 0.7×r, r2 = 0.95×r, ∆r1 = 0.15×a, ∆r2 = 0.07×a,
where a is the lattice constant. The displacement profile of the resulting soft-clamped
mode is shown in Figure 2.23B, and the simulated frequencies and quality factors of
this mode and a few other mechanical modes around the acoustic bandgap are shown in
Figure 2.23C. Here the membrane thickness is 20 nm, the lattice constant a = 160 µm
and the hole radius r = 0.26× a [36]. The phononic bandgap spans the frequency range
of 1.3 − 1.6 MHz. The effective mass of the localized mode in Figure 2.23B is 1.1 ng.
This, according to our simulations, is approximately four times lower than the effective
mass of the localized mode used in Ref. [150], if the PnC design is scaled to the same
mode frequency. The quality factors of these modes are the same within a few percent
according to our simulations.

Clamped membrane edges also break the periodicity of phononic crystal, and also can
be a source of localized modes with frequencies within the phononic bandgap. Unlike
soft-clamped modes, modes localized around the edges have low quality factors and their
presence is undesirable. The presence or absence of these modes depends on the way
the phononic crystal is terminated, as illustrated in Figure 2.23D. Termination on the
bottom side, in which the edge crosses no holes, creates edge modes and therefore should
be avoided. In contrast, the terminations on the top and on the lateral sides are free
from edge modes, and we use them in practical membrane designs.

In Figure 2.24 we present realizations of Si3N4 PnC membranes with soft-clamped
modes optimized for low effective mass and high Q. Figure 2.24B shows a 2mm×2mm
phononic crystal membrane implementing the design from Figure 2.23, which creates a
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Figure 2.25: Simulation of stress concentration in patterned membranes. Hatching designates
clamped boundaries. A) Stress enhancement in the center of a uniform membrane with radial
cuts. B) Stress enhancement produced by a pattern of radially oriented elliptic holes.

single mode localized in the middle of the phononic bandgap. The displayed sample has
Q = 7.4 × 107 at 1.46 MHz and meff = 1.1 ng, corresponding to Sth

FF = 34 aN/
√

Hz.
Another approach towards clearing a low effective mass localized mode is introducing a
trampoline defect, as shown Figure 2.24A. The device in the figure features meff = 3.8
ng and Q = 1.65× 108 at 0.853 MHz, corresponding to a thermal force noise Sth

FF = 13
aN/
√

Hz. The main disadvantage of the design in Figure 2.24A, which is similar to the
one reported in Ref. [152], is that its localized mode has frequency very close to the
bandgap edge.

2.5.5 Global stress concentration in 2D

Techniques of local stress enhancement utilized for elastic stress engineering are not
only applicable to beams but also to two-dimensional membranes. In Figure 2.25 we
present two example membrane patternings that create localized areas of high stress.
The plotted distributions of stress are obtained, as usual, by simulating the relaxation
of originally uniform and isotropic film pre-stress (σfilm = 1.14 GPa) in membranes with
fixed outer edges. There are no scale bars in the plots, as the stress profiles do not
change under isotropic scaling of the geometries.

The membrane in Figure 2.25A presents an example in which the stress is enhanced
close to the yield value. This geometry is based on the one utilized in Ref. [153]. It has
a few radial cuts which split the membrane into several almost completely independent
strips. Each strip is wider on the outer side and narrower in the center. In a qualitative
agreement with the behavior of one-dimensional geometries, discussed in Sec. 2.5.2), the
strips concentrate stress in their centers where they overlap with each other. A similar
effect is produced by an array of elliptic holes oriented towards the membrane center,
shown in Figure 2.25B.

Utilizing stress concentration to enhance dissipation dilution is even less trivial in

75



Dissipation dilution in mechanical resonators

two dimensions than in one. Although the challenges in these cases are similar, to
date no membrane geometry has been identified in which the concentration of stress
would enhance quality factors. In particular, because of the inhomogeneous stress in the
structure shown in Figure 2.25B, it does not have a phononic bandgap, and therefore
cannot localize modes in the central region where the stress is enhanced. While in one
dimension the variation of stress across the phononic crystal can be compensated by an
appropriate variation of the unit cell length, this method is not directly transferable to
two dimensions. The main challenge is that unlike one dimension, where the lengths and
widths of PnC unit cells are independently adjustable, in two dimensions the unit cells
need to fully cover the plane, and hence do not have similar transformation freedom.

Another key challenge for the application of stress concentration techniques in two di-
mensions is that the anisotropic stress distributions, commonly arising in stress-enhancing
geometries, are prone to having locally compressive stress in one of the principal directi-
ons. Such a configuration leads to dissipation concentration rather than dilution for
vibrational modes.

2.6 Fractal-like resonators

Self-similar structures can have surprising physical properties. Coast lines are a famous
example—their length is loosely defined at geographic scale [154]. In the domain of op-
tics, it was found that self-similar cavities can support modes with arbitrarily small mode
volume [155] at a given wavelength. Meanwhile, hierarchical metamaterials can have im-
proved stiffness per unit mass [156, 157] compared to natural materials. The acoustic
vibrations of resonators are also known to be affected by structural self-similarity in a
nontrivial way, both in terms of the vibrational mode density [158, 159] and damping
[160]. The latter can aid the design of mechanical resonators with low dissipation.

In this section we theoretically study mechanical vibrations of systems of tensioned
strings in the shape of self-similar binary trees, which are clamped at the tips in order
to sustain tension (see Figure 2.26A). Dissipation dilution in such structures is found in
a manner analogous to simple strings and membranes to be

DQ =
〈W (ln)〉
〈W (lin)〉

=
1

αλ+ βλ2
, (2.202)

where λ is the stress parameter, and α and β are the boundary and distributed loss coef-
ficients, respectively, which will be elaborated in the following. Low-frequency flexural
modes in binary tree resonators have an unusual feature—their amplitude is reduced as
they propagate from the trunk to the clamped tips of the branches. This can suppress
the boundary loss coefficient, α, in a way analogous to mode localization in phononic
crystals and thus implement soft clamping. A disadvantage of soft clamping by PnC
localization is that it can only be applied to high order vibrational modes in the range
from tens to hundreds. In contrast, suppression by propagation over string branchings
does not require the structure to extend beyond one acoustic wavelength and therefore
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Figure 2.26: Binary tree resonator geometry. A) Binary tree with six branching levels, local
x-coordinates are shown for the first three levels. One tree defines half a resonator, the complete
structure is formed by adding its mirror reflection in the yz plane. B) Two branching points of
a binary tree resonator with the definitions of the segment widths, w, and lengths, l. The blue
contour is used to derive the transformation of the mode derivative.

can enhance the quality factor of the fundamental resonator mode, as well as of a multi-
tude of other low-order modes at the same time. In particular, this method is applicable
to the design of high-Q beam [67, 68] and tethered-membrane [161, 79] nanomechanical
resonators.

The results, presented in this section, are relevant to areas ranging from sensing [78,
79] to cavity quantum optomechanics [19], which employ stressed, high-Q nanomechani-
cal resonators [67, 68]. Moreover, because of the close relationship between the Q of the
fundamental mode of a clamped tensioned structure and the Q of a pendulum [33], our
results can be used for designing high-Q suspensions of test masses, akin to those em-
ployed in gravitational wave detectors and experiments on macroscopic optomechanics
[162, 87, 163].

2.6.1 Soft clamping of a fundamental mode

The present section is based on the publication “Fractal-like mechanical resonators with
soft-clamped fundamental modes” (Ref. [39]).

When a flexural mode propagates over a junction of three beams, its gradient is
reduced, which can ultimately lead to the suppression of boundary loss according to
the results of Sec. 2.4.6. In order how this reduction occurs, we consider a junction of
beams with rectangular cross section, highlighted by the blue contour in Figure 2.26B.
The dynamic equation for the two-dimensional profile of out-of-plane vibrations u(x, y)
is given by [70]

− ∂

∂xi

(
σij

∂u

∂xj

)
= ω2ρu, (2.203)
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where as usual we assume summation over the repeating indices i and j, each of which
runs over the two spatial coordinates, x and y. The components of the stress tensor σij
are functions of x and y. By integrating both sides of Eq. (2.203) over the infinitesimally
small area of the blue contour in Figure 2.26B and transforming the divergence into a
boundary integral we find∮

dsi

(
σij

∂u

∂xj

)
= 2w2σ2u

′
2 − w1σ1u

′
1 = 0, (2.204)

where u′1 and u′2 are the amplitude gradients in the directions of axes x1 and x2, re-
spectively. By doubling the contribution of beam two we account for the assumption
that the mode branches symmetrically. Next, the balance of static tensile forces requires

w1σ1 = 2w2σ2 cos(θ). (2.205)

Combining Eq. (2.204) and Eq. (2.205) we find

u′2 = u′1 cos(θ). (2.206)

This shows that the mode gradient is reduced by a factor of cos(θ) after propagating
over a branch point. Although the reduction in principle can be arbitrarily large if θ is
close to π/2, the improvement in dissipation dilution provided by a single branch point
is fairly limited. The reason is an associated increase in the distributed part of the lossy
energy caused by the torsional deformation of the beams.

Cascaded string branchings can be much more efficient in suppressing the boundary
loss than a single one. When multiple branchings are combined, the totality of string
segments forms a binary tree, as shown in Figure 2.26. After each branching the lengths
of the string segments are reduced by the same ratio in order to prevent self-overlap.
As realistic resonators have to be hard-clamped on all sides, we consider structures
composed of two symmetric binary trees joined at the roots and clamped at the tips.
We treat the case when all the strings are beams with rectangular cross section and
the same thickness, a geometry that is amenable to nanofabrication. However, the
main quantitative results are not contingent on this assumption. Since we are primarily
interested in the properties of the fundamental resonator mode, in the following we
consider the modes that split symmetrically at each branch point.

Binary tree resonators are convenient to analyze using a set of local axes, xn, each
directed along one segment, beginning at one branch point and ending at the next one
as shown in Figure 2.26A. Considering one path from the resonator center to one of the
clamps is sufficient for describing symmetrically splitting modes. We index the branching
level by n, and the total number of branchings is denoted by N . The deformation of
each segment as a function of the local coordinate is denoted by un(xn, t), and its spatial
envelopes by Un(xn). The segment lengths, ln, and widths, wn (shown in Figure 2.26B),
are found using the ratios rl and rw as ln = l0(rl)

n and wn = w0(rw)n, respectively.
Note that according to this definition the total length of the central resonator segment
is 2l0, as it consists of two symmetric tree trunks.
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Figure 2.27: A) FEM simulation of the fundamental mode of a stress-preserving binary tree
resonator with rl = 0.67, l0 = 1 mm (ltot = 3.7 mm), w0 = 100 nm, h = 20 nm, θ = 80 deg,
N = 5. The inset schematically shows a cut view of one segment (marked with orange) and
illustrates the torsion created by the previous segment (marked with green). B) The displacement
of the mode shown in A plotted over the local x coordinates following a path from one tip of the
tree to another. C) Torsional deformation of a constituent beam segment.

Flexural modes and vibrational frequencies of tree resonators can be found by mat-
ching the mode envelopes Un(xn) over different segments so that Eq. (2.206) is fulfilled,
as well as the continuity condition Un(ln) = Un+1(0), and the boundary conditions
UN(lN ) = 0 and U ′0(0) = 0 (or U0(0) = 0 for modes in which the two trees are deformed
anti-symmetrically). With Un(xn) in hand, one can compute the dissipation dilution
factors, the Qs and the loss coefficients α and β of the modes.

Flexural deformations of a two-dimensional system of strings induce torsion of the
segments. If the segments have high aspect ratios, the elastic energy stored in torsion
has a negligible effect on the mode frequencies, but it profoundly impacts dissipation.
Since torsion does not produce geometrically nonlinear strain in the direction of the
string axis [34], it only contributes to the lossy elastic energy. Below it will be shown
that the torsional contribution dominates the distributed loss coefficient of binary-tree
resonators in the regime of strong boundary loss suppression.

The emergence of torsion in a tree segment is illustrated in Figure 2.27C. The equi-
libria of force moments at the junctions define the boundary conditions for the torsion
angles. At the beginning of the segment, the angle is set by the previous segment as
τn = u′n−1(ln−1) sin(θ). At the end of the segment the angle is zero. The torsional energy
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Figure 2.28: Quality factors and frequencies of out-of-plane modes of the resonator shown in
Figure 2.27 with ltot = 3.7 mm. Blue dots correspond to the theory presented in this work, red
dots to the result of FEM simulation. Filled red dots denote symmetrically branched modes,
empty dots: other modes. Green dots show out-of-plane modes of a doubly-clamped beam
resonator with the same total length (ltot).

stored by one segment is given by

〈W (tors)〉n =
Ewnh

3

6(1 + ν)

∫ ln

0
dxn (τ ′(xn))2, (2.207)

where ν is Poisson’s ratio. If the aspect ratio of the segment is high (which we assume
in the following), the transition from τn to zero happens linearly and τ ′ = τn/ln.

The quality factors of intrinsic loss-limited resonator modes are found by using 2.202.
The energies involved are calculated by summing up the contributions from all the tree
segments. The lossless “tension” energy is given by

〈W (nl)〉 = 2
N∑
n=0

2nσnwnh

∫ ln

0
dxn(u′n(xn))2. (2.208)

The lossy energy consists of three contributions

〈W (lin)〉 = 〈W (bend,b)〉+ 〈W (bend)〉+ 〈W (tors)〉. (2.209)

The distributed bending energy is

〈W (bend)〉 = 2

N∑
n=0

2n
Ewnh

3

12

∫ ln

0
dxn(u′′n(xn))2, (2.210)

while the boundary bending is

〈W (bend,b)〉 = 2NwNh
2

√
E

12

√
σN (u′N (lN − 0))2, (2.211)
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Figure 2.29: Loss coefficients for stress-preserving binary tree resonators with rl = rl.crit(θ)
and different numbers of branchings N . A) boundary loss coefficient, B) distributed bending
loss coefficient, C) distributed torsional loss coefficient, the region where βtors converges with
increasing N is shaded gray.

and the torsional contribution is

〈W (tors)〉 = 2
N∑
n=1

2n
Ewnh

3

6(1 + ν)ln
(u′n−1(ln−1) sin(θ))2. (2.212)

The loss coefficients in Eq. (2.202) are identified as

α =
〈W (bend,b)〉
λ〈W (nl)〉

, (2.213)

β =
〈W (bend)〉+ 〈W (tors)〉

λ2〈W (nl)〉
= βbend + βtors, (2.214)

Note that α and β are independent of λ, which in our case is defined as

λ =
h

ltot

√
E

12σ0
, (2.215)

with ltot being the total resonator size in the direction along the central segment. Given
l0, rl and θ one can find ltot analytically, but the resulting expression is cumbersome.

Note that unlike the case of traditional membranes and beams, the definition of
λ in our problem is a subtle question as fractal-like resonators do not have a single
characteristic length scale and stress. Depending on our choice of l and σ, the boundary
and distributed loss coefficients α and β would change, of course keeping the overall DQ

constant. Our definition of λ has the advantage that it ensures intuitive correspondence
when the binary tree converges to a straight beam: if θ → 0 and rw → 1/2 then α→ 2
and β → (mπ)2, where m is the mode order.

The distribution of static stress in a binary tree resonator in general can be such
that the stress is peaked either in the branch tips or in the trunk. For simplicity, we
restrict our numeric analysis to the trees in which the static stress along the segments
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is uniform. As follows from the balance of static forces (Eq. (2.205)), the condition
σn+1 = σn is fulfilled (and the resonator is “stress-preserving”) if the width scaling ratio
is set to rw = 1/(2 cos(θ)). If a stress-preserving resonator is patterned from a film with
isotropic initial pre-stress σfilm, the static stress in all segments is given by

σn = σfilm(1− ν). (2.216)

The basic acoustic properties of binary tree resonators can be understood from an
example. In Figure 2.27 and Figure 2.28 we present a simulation of the modes of a
resonator made of high-stress stoichiometric silicon nitride film at room temperature
(for parameters see [127]).

The fundamental resonator mode is shown in Figure 2.27A and Figure 2.27B. The
reduction of mode amplitude gradient at each branch point can be observed from these
figures, together with the fact that the gradient near the clamping points approaches
zero. Note, that the apparent discontinuity of mode derivative in Figure 2.27B is due
to the turns of the path following local x-axes, the real two-dimensional mode has no
sharp bends at the branch points.

The calculated quality factors are presented in Figure 2.28, which shows that the
Q of the fundamental mode is enhanced by about two orders in magnitude compared
to a simple doubly-clamped beam of the same size. All low-frequency flexural modes
experience similar Q enhancement, which gradually decreases as the acoustic wavelength
becomes comparable to the length of the smallest segments.

Two methods were used to obtain the data in Figure 2.28, the theory presented in
this work, which relies on the one-dimensional approximation of segment modes, and
2D finite-element method (FEM) simulation of a non-uniform plate under tension. The
mode frequencies were found to agree better than within 1.5% between the two methods
in the frequency range displayed in the figure. The agreement between the quality factors
is at the same level for a few lower order modes, whereas higher order modes show higher
discrepancy due to the onset of hybridization between bending and torsional modes,
neglected in our theoretical analysis. The FEM simulation also provides information
about all the acoustic modes supported by the structure, including non-symmetrically
branched and in-plane modes. For clarity we do not show in-plane modes in Figure 2.28,
as their quality factors are significantly lower compared to the out-of-plane modes, their
density is about the same and the fundamental resonator mode never belongs to this
family.

In order to obtain a more general insight into the properties of binary tree resonators,
we systematically study the variation of boundary and distributed loss coefficients of the
fundamental resonator mode. These loss coefficients are material- and scale-independent
and are determined by the geometric parameters rl, rw, θ and N . One of the parameters,
rw, is fixed to satisfy the stress-preservation condition at given θ. Furthermore, we put
rl = rl,crit(θ), where rl,crit is the value at which tip-to-tip self contact occurs in a fractal
tree with infinite N , and there is no self-contact for finite N (see [164]). We sweep the
remaining free parameters, θ and N , and present the results in Figure 2.29. It can be
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seen that α is suppressed as θ increases, while βtors, on the contrary, goes up. Therefore,
the torsional lossy energy eventually becomes the main limitation for dissipation dilution
as the boundary loss is suppressed. The exact parameters at which the distributed loss
matches the boundary loss, and therefore the quality factor is maximized, depend on λ.
When λ gets smaller, the optimum shifts towards larger θ or N as it takes a stronger
boundary energy suppression to match the distributed contribution.

The data in Figure 2.29 helps us understand some properties of binary tree resonators
in the fractal limit, when N goes to infinity. As N increases, the boundary loss coefficient
α reduces to zero and the distributed bending loss coefficient βbend converges to a finite
value. The distributed torsion loss coefficient βtors has more complex behavior with
increasing N , it can either converge to a finite value or increase indefinitely. Which of
the two scenarios is realized depends on the behavior of geometric series in Eq. (2.212),
which can be shown to converge if cos(θ) <

√
rl/(2rw). Correspondingly, depending on

the behavior of βtors, the Q of the fundamental mode of a fractal structure can either be
finite and limited by the distributed energy loss or it can be zero (i.e. the Q would be low
and determined by factors beyond the approximations of our theory). It is interesting to
compare this conclusion to the case of membranes with self-similar boundaries, in which
Q→ 0 was found to be the only possible scenario in the fractal limit [160].

2.6.2 Fractional spectral dimensionality

Self-similar structures do not have translational symmetry, but instead exhibit scale
invariance. For this reason their densities of states can show signatures of non-integer
dimensionality [165, 166], which were observed in proteins [167], silica aerogels and
glasses [166]. Here we present a numeric evidence for fractional dimensionality in the
vibrational mode densities of tensioned binary tree resonators.

Vibrational mode densities are convenient to characterize using the cumulative dis-
tribution function,

CD(ω) =
∑

n:Ωn≤ω
1, (2.217)

which gives the total number of modes below a given frequency, ω. It is easy to see
that for a resonator cut out of a homogeneous medium in which sound waves have a
dispersion relation k ∝ ω the cumulative distribution of mode density is proportional
to ωd, where d is the dimension of the space. Hierarchical structures can also have a
power law behavior of the low-frequency mode density, but for them the power is not
necessarily integer. In this case,

CD(ω) ∝ ωd̃, (2.218)

where d̃ is by definition the spectral dimension of the structure [165, 166]. We find that
the low-frequency spectra of binary tree resonators are consistent with Eq. (2.218) and
non-integer d̃s.

We present in Figure 2.30 the cumulative distributions of out-of-plane modes of
binary-tree resonators with N = 5 levels of hierarchy, the branching angle θ = π/2,
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Figure 2.30: Spectral dimensions and geometries of binary tree resonators with θ = π/3,
N = 5 and different rl. A) Cumulative distributions of out-of-plane modes found from 2D FEM
simulation. The spectral dimensionalities d̃ obtained from fits are indicated in the inset. B)
Geometries of the resonators which spectra are presented in A.

and different length contraction ratios rl. To obtain these distributions, we numerically
calculate ≈ 230 lowest-frequency out-of-plane modes for each structure using COMSOL.
The trees in the simulations are made of Si3N4 [127] and have the following spatial di-
mensions: l0 = 100 µm, w0 = 100 nm, h = 20 nm (so that their fundamental mode
frequencies are around 1 MHz). The branching angles are set to θ = π/2 to make the
resonators stress-preserving while maintaining the same widths for all segments. This
allows us to keep torsional modes at high frequency and thus to distill the effect of self-
similar geometry on the density of out-of-plane modes. In order to extract the spectral
dimensions presented in Figure 2.30, we fit a power law to the low-frequency parts of
the spectra (first 50 modes). All resulting dimensions are in the range of 1 < d̃ < 2,
i.e. the range between the dimensions of a tensioned beam and a membrane. The nu-
merical data also shows that the spectral dimension increases as rl is increased, which
is intuitively expected as a tree resonator with a larger rl covers a larger portion of the
plane.

2.6.3 Trampolines with branching tethers

Binary tree systems of branching strings (which are not necessarily self-similar) can
be incorporated as building blocks in resonators geometries different from the fractal-
like ones presented in Sec. 2.6.1. The underlying principle of flexural mode amplitude
suppression by string branchings is even more general and can be also applied on its own.
In Figure 2.31 we present finite element simulations of trampoline membrane resonators
that make use of these ideas to enhance the quality factors of their fundamental modes
beyond what has been reported in the literature so far.

Trampolines stand out among other high-stress thin-film resonators as they combine
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Figure 2.31: FEM simulations of fundamental modes of 20 nm-thick Si3N4 trampoline resona-
tors. The dimensions are adjusted such that the fundamental mode frequency is equal to 100
kHz. The central pad size is 60 × 60 µm. Orange lines mark hard-clamped boundaries, all re-
maining boundaries are free. A) A simple trampoline. B) A trampoline with binary-tree tethers.
C) A “steering wheel” trampoline.

low thermal noise, enabled primarily by their low fundamental mode frequency and
low effective mass compared to unpatterned membranes, with compatibility with high-
finesse Fabry-Perot cavities for optical readout [161]. State of the art silicon nitride
trampoline resonators have mm-scale transverse size, quality factors up to 5 × 107 and
typically operate at frequencies in the range of 50-150 kHz [161, 168]. The simulated
fundamental mode of a simple trampoline resonator is shown in Figure 2.31A.

To show the enhancement of quality factors that can be gained by applying tether
branching to trampoline devices, we present in Figure 2.31B and Figure 2.31C two
trampoline designs with partially soft-clamped fundamental modes. In the simulations,
we set the size of the central resonator pad to be 60 × 60 µm, the film thickness to
be 20 nm, and the material parameters to be consistent with those of our standard
silicon nitride [127]. To meaningfully compare between different designs, we adjust
the transverse resonator size so that the fundamental mode frequencies are equal to
100 kHz. The quality factors of modes are simulated using COMSOL as described in
Appendix A.2.

The design in Figure 2.31B is a straightforward application of the cascaded string
branching to each of the trampoline tethers. The simulated quality factor of the funda-
mental resonator mode is similar to the quality factor of a self-similar binary tree string
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resonator from Sec. 2.6.1 with the same size and number of branchings. The Q of the
fundamental mode is predicted to be equal to 109, about a factor of 30 beyond the Q
of the simple structure shown in Figure 2.31A, and, in fact, higher than the Q of any
mechanical nanoresonator demonstrated to date at room temperature.

The fabrication of structures similar to the one in Figure 2.31B, which is a work in
progress in our lab, has multiple challenges. One of the challenges is that the clamped
boundary of the trampoline in Figure 2.31B is rather complex. To be compatible with
the fabrication process that uses a KOH undercut [169] the boundary is made in a way
so that all clamped edges are oriented at a 90-degree angle with respect to one another.
This allows one to orient all edges along the slow etching planes of silicon [141] and reduce
the overhang of silicon nitride. The complexity of the boundary is one of the primary
constraints on the number of branchings that seem realistic to implement practically.

In Figure 2.31C we present another resonator type, a “steering wheel”, which offers
a less dramatic quality factor enhancement compared to the one shown in Figure 2.31B,
but has a simpler rectangular clamped boundary. At the moment of writing, steering
wheel trampoline membranes with quality factors in excess of 108 at 100 kHz were
demonstrated in our laboratory, in excellent agreement with simulations.

The trampoline resonators in Figure 2.31B and C are composed of ribbon segments,
most of which cannot be regarded as strings with negligible transverse size. This com-
plicates the resonator design as wide ribbons with free side edges are prone to static
buckling. Buckling makes fabricated devices non-planar and in this way can reduce their
dissipation dilution by orders of magnitude. Typically, buckling effects can be avoided
by making the structure stress-preserving (so that the centers of segment junctions do
not displace upon film release) and by tapering the ribbon segments. The film buckling
is discussed in more detail in Appendix A.3.

2.6.4 A pendulum with a self-similar suspension

Another type of resonator the quality factors of which could be improved by using
binary tree systems of strings is the pendulum, which we discuss here as a hypothetical
possibility. Dissipation dilution in pendula suspensions is similar to the dilution in
planar structures clamped on all sides. As shown by González and Saulson [33], when
a heavy point mass is suspended on a uniform wire, the Q of the pendulum mode
is about twice as high as the Q of the fundamental violin mode. In this section, we
show how the analysis of the previous section can apply to the pendulum mode of
a mass hanging on a binary-tree suspension. Such a structure, shown in Figure 2.32,
implements a soft-clamped pendulum mode, which has never been demonstrated to date.
The soft-clamped pendulum experiences similar dissipation dilution to double-binary
tree resonators presented previously if the branching configuration and the tension in
the segments are the same.

The calculation of eigenmodes of a pendulum repeats the previously outlined proce-
dure for multi-segment planar devices clamped on all sides, except that the boundary
condition for the first string segment at x0 = 0 is different. To formulate the new
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Figure 2.32: A binary tree used as suspension of mass M , the tree is supposed to be clamped at
every tip of its branches. The mass motion described by the displacement xM (t) is perpendicular
to the figure plane.

boundary conditions, we adopt the following simplifying assumptions:

1. The mass is a point mass. This means neglecting its angular dynamics and assu-
ming that the mass rotation adiabatically follows the gradient of the string mode
at the suspension point without applying any force moment.

2. The weight of the suspension strings can be neglected compared to the weight of
the mass.

First notice that the complex amplitude of pendulum motion, x̃M , must follow the
trajectory of the suspension tip,

U0(0) = x̃M . (2.219)

Additionally, the Newton’s second law requires the acceleration of the mass to match
the tension force exerted by the suspension, which can be expressed as

MΩ2x̃M = −U ′0(0)T0, (2.220)

where Ω is the resonance frequency and T0 is the tension of the first suspension segment.
Combining Eq. (2.219) with Eq. (2.220) and using the fact that T0 = Mg, where g is the
free fall acceleration, we find the boundary condition for the first suspension segment,

U ′0(0) = −Ω2

g
U0(0). (2.221)

Recall that if the first string segment was hard clamped, it would obey U0(0) = 0. The
boundary condition allows one to find the eigenfrequencies and the deformation modes
of the suspension, after which the diluted quality factors can be computed following the
route outlined previously for resonators clamped on all sides.
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2.7 Experimental characterization of high-Q mechanical
resonators

The quality factors of mechanical resonators in our work are characterized using the
ringdown technique, which is immune to mechanical frequency drifts. Such drifts happen
at a slow time scale but lead to frequency changes much larger than the resonance
linewidth, therefore making the resonance spectra appear inhomogeneously broadened.
The setup is tailored to the characterization of slow decay times (some ringdowns taken
are 10s of minutes long), although it is also capable of recording decays as short as 1
ms.

In our setup, shown in Figure 2.33, mechanical resonators are illuminated with a laser
beam and the phase shift of the reflected light, proportional to the displacement of the
resonator surface, is detected using homodyne interferometry. The homodyne output is
supplied to a spectrum analyzer (Tektronix RSA 5103) for obtaining information about
the mode frequencies from the spectrum of Brownian motion, and to an FPGA-based
lock-in amplifier (Zurich Instruments UHFLI or MFLI) for selectively detecting the
motion of one mode. After a mechanical mode of interest is identified, it is excited by
finely sweeping the piezo drive frequency across the resonance, and its amplitude decay
is monitored using the lock-in detector. The mechanical mode amplitude r is computed
as

r =
√
X2 + Y 2, (2.222)

where X and Y are the quadratures demodulated by the lock-in. Sub-mm thick high-
frequency piezos (from STEMiNC) were typically used for the excitation of vibrational
modes. We found this method to be more efficient than the optical drive, implemented
by amplitude-modulation of the probe laser light, especially for the thinnest (20 nm)
samples.

In most of our experiments, samples were characterized in a high-vacuum chamber
(pressure 10−8−10−6 mBar) at room temperature, using the light from a diode or Ti:Sa
laser with a wavelength around 780 nm as a probe. An SEM-style vacuum loadlock and
a translatable arm conveniently allowed chips to be swapped without exposing the main
chamber to atmospheric pressure. In different experiments, we used lensed fiber-based or
free-space schemes to illuminate samples and collect the reflected signals. These schemes
are shown in Figure 2.33B and C.

In the first case, a lensed fiber (OZ Optics) with a working distance of around 12
µm and a spot diameter of 2.5 µm was guided inside the vacuum chamber via vacuum
feedthrough. Both compression and connector-based feedthroughts were employed in
several trials, and all performed satisfactorily. The lensed fiber was rigidly mounted
inside the chamber by being pushed against a vertical v-groove and fixed in place with
the help of UV-cured glue. Chips with beam samples were mounted on a three-axis
stack of slip-stick piezo positioners (Attocube). The coupling area was imaged from
the outside of the chamber using a tilted microscope with a working distance of a few
centimeters. We found it to be more convenient to position the chip rather than the
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Figure 2.33: Schematic of a setup for mechanical quality factor characterization. A) Layout
of the homodyne interferometer. B) Coupling to the sample from free space. The sample chip
can stay fixed in this case. C) Coupling to the sample using a lensed fiber. In this case the chip
is positioned using a three-stage nanopositioning system. D) Photograph of a sample chamber
of a room-temperature ringdown setup, which has both lensed-fiber and free space coupling
capabilities. Laser in/out 1 is for free space coupling, in/out 2 is for the lensed fiber.

lensed fiber, as during the positioning a visual reference has to be maintained in focus,
and it was more difficult to locate the fiber tip on the microscope image rather than the
resonator. The resolution of our imaging was not good enough to reliably position the
laser spot on a sub-micron thick nanobeam, so the last stage of coupling had to rely on
the optimization of the thermomechanical signal displayed by the spectrum analyzer.
For efficient coupling, it was essential to obtain quick feedback in the signal display,
and the real-time spectral analyzer (RSA) used in our work proved helpful. The typical
reflection ratio that was achieved with the lensed fiber setup was about 0.5 % for 20nm-
thick beams.

The lensed-fiber technique provided better signal-to-noise ratio for nanobeams than
free space coupling. Using lensed fibers, we could observe the Brownian motion of
nanobeam modes up to around 7 MHz frequency, spectra in Figure 2.18 show data close
to the resolution limit of our setup. A major trade-off of this method is a time-consuming
alignment. Moreover, in our setup during alignment samples were occasionally put in
contact with the lensed fiber. While for beam samples this caused few problems—
after detaching devices usually survived and showed no signs of degradation, touching
a membrane with a lensed fiber would always lead to it breaking. Therefore, we found
only the free-space technique to be suitable for the characterization of membranes.

In the free space setup, shown in Figure 2.33C, we used a Navitar microscope tube
and an x10 objective to simultaneously image and illuminate the sample. A laser beam
was added along the optical axis of the microscope using a fiber coupler and a dichroic
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Figure 2.34: Gated ringdown measurement of a soft-clamped mode in a tapered PnC beam
(geometry is presented in Sec. 2.5.2) made at 6 Kelvin temperature in a closed-cycle cryostat.
The blue line shows experimental signal proportional to mechanical amplitude, red—exponential
fit. The mode frequency and the quality factor are indicated in the inset. The sample was
fabricated by Mohammad Bereyhi.

beamsplitter, reflecting above about 750 nm. The beam was aligned so that the reflection
was coupled back into the fiber when the image was in focus. We typically obtained about
3% reflection efficiency from a 20nm-thick Si3N4 membrane. In the free-space coupling
configuration no positioners for the sample chip are required, as the microscope already
has all the necessary degrees of freedom. In our setup which has a loadlock, however, we
still use Attocube positioners to move the chip between the loading and the measurement
positions.

The modulation of the optical phase created by mechanical motion was read out using
homodyne interferometry with shot-noise limited sensitivity. The path lengths of the
signal and the local oscillator arms were balanced in length to mm precision to cancel
the laser phase noise. Balancing was done by iteratively shortening the fiber in the local
oscillator path using as an error signal the period of interference fringes obtained from
scanning the laser frequency. The interferometer length was actively stabilized using a
piezo-mounted mirror. The typical optical probe power in our setup was on the order
of 1 mW, out of which only a few µW were collected back from the sample. The power
in the local oscillator arm was also around 1 mW.

When characterizing mHz-scale mechanical damping rates in nanobeam resonators,
we found that the bolometric dynamical backaction of probe light potentially can be an
issue. The exact physical details of this backaction mechanism are somewhat obscure,
but its overall effect is a renormalization of the mechanical damping rate when the reso-
nator is continuously probed. It can make the mechanical damping rate to appear higher
or lower than it actually is. For some modes with especially low damping rates (e.g. for
MHz-frequency modes with Q > 108 or for low-frequency modes) we even observed self-
excitation—the magnitude of motion slowly grew under steady laser illumination with
no external piezo drive.

To measure the intrinsic energy relaxation rate of mechanical modes avoiding the
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effect of bolometric backaction, we perform measurements in a gated way. The probe
laser is switched on only for short periodically spaced intervals of time during the acqui-
sition of ringdowns, and the rest of the time the oscillator evolves freely. Gating is
implemented using an optical shutter, controlled by an auxiliary output of the lock-in,
and synchronized with the ringdown acquisition trigger. An example gated ringdown is
shown in Figure 2.34.

Aside from the room temperature experiments, we also implemented a cryogenic
ringdown characterization setup. It has the same basic layout (shown in Figure 2.33A-
B) as the room temperature setup, the two main differences are that the wavelength of
the probe light is 1550 nm, and the sample plate inside the vacuum chamber is cooled
to 5K. The cryostat is a closed-cycle system in which the cooling power is provided by
a GM cryocooler. The cryocooler is vibrationally isolated from the sample chamber to
enable interferometric measurements. For more details about the cryogenic system, see
Appendix A.4.
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Quantum correlations in position
measurements

3.1 Introduction

Impressive advances have been made in recent experiments exploring the quantum pro-
perties of mechanical oscillators. In agreement with the rule of thumb that the smaller
the object is, the less classical it is, the highest level of control over the quantum states
is presently achieved for the vibrations of atomic ions confined in electromagnetic traps.
For such vibrations, the preparation of phononic Fock states up to n = 100 and their
superpositions was recently demonstrated [170]. Speaking about more macroscopic sys-
tems, significant progress has been made in controlling GHz-frequency acoustic modes in
solid state resonators at millikelvin temperatures, performed by optical means or by pie-
zoelectrically couping mechanical modes to superconducting qubits. The latest results
here include the preparation of single-phonon states [171], higher-order Fock states up
to n = 7 [172], Fock state superpositions for small n [172, 173], entanglement between
two remote oscillators [174], and the resolution of mechanical energy levels with a qubit
[136]. In all these examples, the initialization of mechanical oscillator in the ground
state has been essential. While for GHz frequencies such initialization requires dilution
refrigeration, THz-frequency modes are in the ground state already at room tempera-
ture, which allowed the preparation of single-phonon states at ambient conditions [175,
176]. Pure, non-Gaussian quantum states of macroscopic mechanical resonators with
sub-GHz frequencies have not been demonstrated so far, although there are continuing
efforts ongoing in this challenging direction [177, 178].

Mechanical resonators with GHz frequencies are interesting from the perspective
of quantum technologies—quantum computing, secure communication, and the trans-
duction of quantum signals between microwave and optical frequencies. At the same
time, resonators with much lower frequency and higher mass may be desirable for other
purposes. This includes sensing applications, as well as experiments aiming to resolve
some of the open questions in fundamental physics, including the detection of dark mat-
ter [179, 180], searching for fundamental sources of wavefunction collapse [181, 7, 182], or
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corrections to canonical commutation relations in quantum mechanics [183, 184]. Most
of the aforementioned problems have one aspect in common—they can be reduced in one
or another way to the task of detecting a weak external force acting on the oscillator.

Mechanical oscillators used for force sensing (in the broad sense mentioned above)
are typically too low-frequency to be cryogenically cooled to the ground state. Their
laser- or measurement-based feedback cooling does not yield an improvement in force
sensitivity, so they remain in a state with high thermal occupancy. This, however, does
not mean that quantum mechanics is irrelevant to their description. Quantum effects
manifest here as an unavoidable perturbation of the oscillator by measurements, which
are performed in order to extract the force.

The theoretical understanding of force detection from the perspective of quantum
measurement has shaped up in the second half of the 20th century with the works of
Braginsky, Caves and others [1, 185, 16]. The early works were mostly motivated by
a specific problem—the understanding of fundamental limitations on the sensitivity of
gravitational wave detectors, which principle is to measure perturbations of space-time
metric manifesting as tidal forces acting on test masses [186]. The results that were
obtained, however, have broad generality and apply to a wide range of present-day
experiments involving mechanical oscillators.

A force acting on the oscillator needs to be inferred in some way from the results of
measurements performed on oscillator observables. Position is a canonical choice of such
an observable, as it is by far the easiest to access in experiments. Quantum mechanics
imposes limitations on the precision of continuous position monitoring. According to the
uncertainty principle, if the position of an oscillator is observed, the uncertainty of its
momentum increases, which means the oscillator evolution is affected by measurements
made at prior times. This is a manifestation of the quantum backaction of measurements,
which leads to the famous bound on position measurement error known as the standard
quantum limit (SQL), first derived by Braginsky [1]. Although later proven to not be
a fundamental limit, the SQL is still an important benchmark to assess the level of
quantum error. In what follows, position and force measurements will sometimes be
referred to interchangeably (where it does not cause confusion), on the basis that in the
Fourier domain these quantities are simply proportional to one another. It is important,
however, that position is the quantity that is observed directly.

Conceptually, there are very interesting alternative ways to detect forces with oscil-
lators that do not rely on position measurements. Of particular interest are quantum
non-demolition (QND) strategies, in which measurement backaction only affect the va-
riable conjugated to the one measured, and thus never appears in the measurement
record. In such a case, quantum mechanics imposes no restriction on the minimum error
even when the measurement is continuous. QND strategies of force detection can be
implemented by performing measurements of the oscillator speed [187], the quadratu-
res of mechanical motion [16] (“backaction-evading” measurements), or the mechanical
energy [1]. Experiments exploring these alternatives so far remain less advanced than
those involving regular position coupling. The original concept of a speed meter has not
been experimentally implemented to the best of our knowledge. Experiments probing
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the oscillator energy, which is one of the oldest known methods of overcoming the SQL
in force detection [1, 16], as well as other types of nonlinear measurements, remain at
an early development stage. Backaction-evading measurements of oscillator quadratures
were demonstrated [188, 189, 190], but not yet in the regime where they would actu-
ally yield sensitivity below the SQL1. At the same time, it is presently known that the
quantum error due to the measurement backaction in regular position measurements
can in principle be largely eliminated with the help of variational readout strategy [191,
192, 193]. Similar to conventional QND measurements, it allows the erasure of quan-
tum backaction from the measurement record, while the oscillator is still subjected to
backaction. To date, variational measurement of oscillator position remains the only
strategy that practically allowed to demonstrate force detection with sensitivity below
the standard quantum limit [151]. Earlier works in which variational measurement were
performed are [194, 195, 196].

After decades of theoretical discussions, preparations and preliminary experiments,
gravitational waves were detected for the first time in 2015 [17]. During the observation
run, quantum backaction of measurements was, although not directly evident, expected
to contribute at the level of 10% into the total measurement noise [18]. Test masses
in modern gravitational wave detectors are tens of centimeter in size and weight tens
of kilogram [43]. Quantum backaction in position measurements of smaller, nano- and
micrometer scale, mechanical oscillators have been observed by now in a variety of ex-
periments, beginning with Ref. [20, 197, 189, 148, 198]. These experiments and their
successors make use of conceptually the same interferometric position readout technique
as gravitational wave interferometers. Here the oscillator modulates the frequency of
an optical (or microwave) cavity, which is driven externally, and mechanical motion is
read out as the modulation of light leaking out of the cavity. Classical and quantum
aspects of interaction between the light and mechanical motion in this generic confi-
guration have been extensively studied in the context of cavity optomechanics [19]. In
an optomechanical interferometric position detector the imprecision is set in the by the
vacuum fluctuations of optical field, in other words, by shot noise. The physical origin
of measurement backaction here is the radiation pressure from the vacuum fluctuati-
ons of intracavity optical field, which drives the oscillator motion in a way similar to
stochastic force. Quantum effects in position measurements are revealed when the mag-
nitudes of forces from the thermal environment and from the measurement backaction
are comparable, which corresponds to the onset of backaction-dominated regime [20].

While the existence of measurement backaction and a minimum bound on the system
disturbance for a given imprecision has roots in quantum mechanics, their experimental
manifestations might appear similar to an extra heating of the oscillator beyond equili-
brium temperature. Indeed, an increase of phonon occupancy due to the measurement
backaction was directly observed [20, 198, 199], although in practice it might be diffi-
cult to differentiate from photoheating by the absorption of optical photons. Quantum
effects in position measurements can manifest more vividly in presence of correlations
between sensing noise and measurement backaction. Such correlations exist under an

1Without a correction for finite detection efficiency
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appropriate choice of setup and are essential for implementing variational readout. Wit-
hout correlations between imprecision and backaction, sensitivity in continuous position
measurements cannot be better than the SQL. If the correlations are strong enough,
they can directly prepare the measurement apparatus in a non-classical squeezed state
[200, 201, 202, 203, 204].

In the following sections we present the demonstration of ponderomotive squeezing
in a cryogenic environment and the observation of quantum correlations due to the
measurement backaction at room temperature. The results are published in Ref. [202,
194, 123].

3.2 Linear continuous measurements

We begin by reviewing the theoretical foundations of continuous measurements, which
help understanding how the information about quantum states reaches the classical
eye of the observer. The concept of projective measurement appeared as early as the
quantum theory itself. Their effect is collapsing the object wavefunction into one of the
eigenstates of the measurement operator and at the same time providing the observer
with information about which state it is. Weak measurements, which do not cause a
complete collapse of the wavefunction, can be understood as a two-stage process [1, 3,
2]. The system first for a finite duration of time interacts with an ancillary quantum
system, after which a projective measurement is performed on the ancilla. A repetition
of this process approximates continuous measurement, where the system is free to evolve
between the measurement operations. During such a process, a system which begins in
a pure state always remains in a pure state, unless some information obtained from the
measurements is lost. In the continuous limit, the object wavefunction evolves over the
course of an ideal measurement process according to the stochastic Schroedinger equation
[205]. If information obtained as a result of measurement is unavailable to the observer,
measurements lead to decoherence. In such a case their effect is not very far from that of
coupling the object to a thermal reservoir, although the fluctuation-dissipation theorem
in general is not fulfilled for decoherence from measurements.

Practically, continuous measurements can be performed on a microscopic quantum
system by weakly coupling it to a measurement apparatus (or “meter” [1]), which is a
large reservoir-like but still completely quantum object. Information about the microsco-
pic system is extracted by making projective (and usually destructive) measurements on
the variables of meter, which can be done without directly disturbing the system of inte-
rest. In the experiments presented in this chapter the quantum system is a mechanical
oscillator and the meter is propagating electromagnetic field at optical frequencies.

The intensity of the optical field is measured by photodetection, which converts pro-
pagating photons to bursts of photoelectrons. This process is close to an ideal projective
measurement, setting aside photodetection inefficiency and classical electronic noises.
An important aspect is that the intensity of propagating field commutes with itself at
different times, which makes it a QND-type variable. Because of the absence of ob-
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servable measurement backaction, such a variable behaves essentially classically under
the photodetection process, which is an essential property that allows it to connect the
classical and quantum worlds [15].

Although destructive for photons, photodetection does not directly affect the reduced
state of mechanical oscillator2, as after the optical field has interacted with the oscillator
it propagates away from it and never meets it again.

3.2.1 Spectral densities of quantum operators and measurement re-
cords

The stochastic wavefunction (or density matrix) evolution approach provides an intuitive
interpretation of continuous measurements, but it is not always easy to handle analyti-
cally. Alternatively and for us more conveniently, the interaction between the quantum
system and the meter in the process of continuous measurement can be described within
the framework of perturbation theory [1, 206]. Here the total Hamiltonian of the meter,
system and their interaction is expressed as

Ĥ = Ĥsys + Ĥmeter + Ĥint, (3.1)

and the interaction term Ĥint is adiabatically switched on in the remote past, so that
in all present moments of time the interaction is stationary. At time t0 before the
interaction is switched on, the meter and the system are in a product state described by
the density matrix ρ̂0, which is given by

ρ̂0 = ρ̂sys(t0)⊗ ρ̂meter(t0), (3.2)

where ρ̂sys(t0) and ρ̂meter(t0) are known. Every operator x̂(t) on the joint Hilbert space
of the system and the meter evolves under the full Hamiltonian Ĥ according to the
Heisenberg equations of motion as

x̂(t) = eiĤ(t−t0)/~x̂(t0)e−iĤ(t−t0)/~ (3.3)

The expectation value of the operator is found as its trace over the total Hilbert space

〈x̂(t)〉 ≡ Tr[x̂(t)ρ̂0]. (3.4)

Stationary linear continuous measurements (which are the only ones relevant to our
experiments) are convenient to analyze in spectral domain. For every operator x̂(t) its
Fourier transform x̂[ω] is defined as

x̂[ω] =
1√
T

∫ T/2

−T/2
x̂(t)eiωtdt, (3.5)

2in a sense that the density matrix traced over all degrees of freedom other than the oscillator’s does
not change
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where T must be regarded as a long time. For two operators, x̂ and ŷ, their cross-spectral
density Sxy is defined as

Sxy[ω] = lim
T→∞

〈x̂[ω]ŷ[−ω]〉. (3.6)

In the following, the limit T → ∞ will not be written explicitly but always implied. It
can be checked that 〈x̂[ω]ŷ[ω′]〉 = 0 if ω′ 6= −ω. Equivalently, Sxy can be obtained by
Fourier-transforming the time domain correlation function

Sxy[ω] =

∫ ∞
−∞
〈x̂(t)ŷ(0)〉eiωtdt. (3.7)

Single-variable spectral density Sxx is obtained by putting ŷ = x̂

Sxx[ω] = 〈x̂[ω]x̂[−ω]〉. (3.8)

Spectral densities introduced in this way characterize quantum operators, but do not
necessarily directly correspond to the spectral content of measurement records. This
can be seen already from the fact that for a Hermitian operator x̂(t) its Fourier trans-
form x̂[ω] is generally not Hermitian and hence does not correspond to an observable.
As a consequence, the quantum spectral density, Sxx[ω], is not necessarily symmetric
in frequency, unlike its classical counterpart. The relation between quantum spectral
densities and the spectra of classical signals recorded in experiments depends on the
measurement scheme. One could in principle conceive an experiment where asymmetric
parts of quantum spectral densities would manifest3. At the same time, the fluctuations
of classical signals and first order correlations between measurement records, obtained
as a result of weak linear measurements, are related to the symmetrized spectra S̄xy
defined by [23]

S̄xy[ω] =
1

2
(Sxy[ω] + Sxy[−ω]∗). (3.9)

This conclusion can be reached in a few, which include considering sequences of idealized
discrete-time measurements [1], and Keldysh ordering in linear response theory [208].
Note that generally speaking symmetrized spectra only describe first-order correlati-
ons, while higher-order cumulants of measured signals may be related to more complex
operator averages with highly non-classical features [209, 208].

To give one example how symmetrized spectra can emerge, suppose that we would
like to estimate the spectral density of fluctuations of a Hermitian operator ŷ(t) by
measuring its cosine transform, defined as [23]

ŷcos, ω =

√
2

T

∫ T/2

−T/2
ŷ(t) cos(ωt)dt. (3.10)

The cosine transform is a valid observable. Its fluctuations can (in principle) be measu-
red, and the result will give the symmetrized spectrum,

〈(ŷcos, ω)2〉 =
1

2
(Syy[ω] + Syy[−ω]) = S̄yy[ω], (3.11)

3see section ”Quantum spectrum analyzers” in [23]
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assuming that ŷ(t) corresponds to a stationary process with zero mean.

It should be stresses that measuring the quantum cosine transform as defined by
Eq. (3.10) is generally not equivalent to sampling the values of y and performing co-
sine transform on the record—continuous sampling is accompanied by measurement
backaction if ŷ(t) does not commute with itself at different times. Only in the case when
the measured variable is QND-type [14], and does commute with itself at different times,

[ŷ(t), ŷ(t′)] = 0, (3.12)

the quantum spectrum of its fluctuations is already symmetric and can be directly
obtained from the Fourier transform of the measurement record. Naturally, the use of
either complex or cosine Fourier transform on the classical measurement record yields
the same result.

3.2.2 Photodetection

The quadratures of the propagating optical field at a particular point in space are QND
variables relevant to our work. The quadrature operators at different times correspond
to different degrees of freedom and therefore naturally commute [182]. These operators
are defined as follows: Suppose we have chosen a spatial mode of interest, which can be
e.g. a guided mode of an optical fiber or a Gaussian beam mode in free space. Electric
field Ê at one point along the propagation direction of the mode is then given by

Ê(t) = ŝ(t)e−iωLt + ŝ†(t)eiωLt, (3.13)

where ωL is the optical carrier frequency (the subscript derives from “laser”) and ŝ(t) is
an operator, describing the complex amplitude of the field. The normalization here, as
conventional, is made such that 〈ŝ†ŝ〉 gives the average number of photons propagating
over the mode cross section per unit time. The complex amplitude can be decomposed
into the average and fluctuating parts as

ŝ(t) = s̄+ δŝ(t), (3.14)

where s̄ = 〈ŝ(t)〉 = const is real. The optical quadrature operator δq̂θ is defined as

δq̂θ(t) = e−iθδŝ(t) + eiθδŝ†(t), (3.15)

where θ is the quadrature angle. The self-commutation property of δq̂θ at different
times can be verified explicitly. As a direct consequence of the definition of creation and
annihilation operators in the spectral domain [207, 182], commutation relations for the
complex amplitudes are given by

[ŝ(t), ŝ†(t′)] = δ(t− t′), [ŝ(t), ŝ(t′)] = [ŝ†(t), ŝ†(t′)] = 0, (3.16)

from which it follows that
[δq̂θ(t), δq̂θ(t′)] = 0. (3.17)
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In our work, optical quadratures are the meter variables that carry information about
the position of mechanical oscillator. Optical quadratures are projectively measured with
the help of homodyne interferometry. In this measurement technique, the signal field is
combined on a beam splitter with a local oscillator, which is in a strong coherent state
of the same frequency as the signal carrier, and then converted to classical photocurrent
on a photodetector. The phase of the local oscillator selects the detected quadrature
angle. There are two configurations in which idealized homodyne detection does not add
noise on top of the noise prescribed by the fluctuations (quantum or classical) of the
signal field. The first configuration (single-port homodyning) uses a highly transmissive
beam splitter, so that almost no signal is lost in reflection. In the second configuration
(balanced homodyning) a symmetric beam splitter is used, both output channels are
detected, and the final signal is obtained by subtracting the photocurrents. Balanced
homodyne detection offers some practical advantages and hence is actually employed in
our experiments (see Sec. 2.7 for details). At the same time, the theoretical analysis
of balanced homodyning is technically more complex compared to the single-port case,
while not conceptually different. For this reason we assume that single-port homodyning
is used in order to illustrate how fluctuations of field quadratures are converted into the
measured signal. In the single-port scheme the effect of local oscillator is simply to
replace the mean field s̄ of the signal in Eq. (3.14) with a new value, s̄h = |s̄h|eiθ, so
that the θ- quadrature of the signal is rotated to be the amplitude qudarature of the
combined field. The photocurrent signal I(t), produced by the combined field, can be
found using the quantum theory of photodetection [207, 210, 211]. Up to the leading
order in field fluctuations the correlation function of the photocurrent produced by an
ideal detector with infinite bandwidth is given by [211]

I(t′)I(t)−
(
I(t)

)2
=

〈ŝ†(t′)ŝ†(t)ŝ(t)ŝ(t′)〉+ 〈ŝ†(t)ŝ(t)〉δ(t− t′)− 〈ŝ†(t)ŝ(t)〉2 ≈ |s̄h|2〈δq̂θ(t′)δq̂θ(t)〉. (3.18)

The wide overline denotes averaging performed on the classical photocurrent record I(t).

3.2.3 The mechanical oscillator

Our microscopic system of interest is a harmonic oscillator. We consider the measure-
ment of its position, possibly with the goal of detecting some external force that may
act on it. The system Hamiltonian in Eq. (3.1) is given by

Ĥsys = ~Ωmb̂
†b̂− x̂F̂th + ĤB, (3.19)

where Ωm is the oscillator frequency and b̂ is the annihilation operator of the mechanical
mode. Intrinsic dissipation of the oscillator is described by weak coupling to a thermal
bath with Hamiltonian ĤB by means of the interaction term−x̂F̂th. The bath is regarded
as a part of the measured system, although it could have been separated. The amount
of mechanical damping and fluctuations resulting from the bath can be obtained using
usual methods, e.g. linear response theory [45] or the input-output framework [212].
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It is convenient from the outset to normalize the oscillator coordinate x by the mag-
nitude of zero point fluctuations,

xzpf =
~

2mΩm
. (3.20)

This is the same as defining x̂ = b̂+ b̂†, so that the mean squared position fluctuations
in the ground state |0〉 are equal to one,

〈0|x̂2|0〉 = 1. (3.21)

The linear response of the oscillator position to external forces is described using
susceptibility χm, which in the frequency domain is given by

χm[ω] =
1

~
2Ωm

(Ω2
m − ω2)− iΩ2

mφ[ω]
, (3.22)

where φ is the loss angle. The asymmetric spectrum of position fluctuations in thermal
equilibrium Sth

xx (Brownian motion) is given by the product of mechanical susceptibility
and thermal force noise,

Sth
xx[ω] = |χm[ω]|2Sth

FF [ω]. (3.23)

The spectrum of thermal force Sth
FF is proportional to the loss angle,

Sth
FF [ω] = ~2Ωmφ[ω] (Θ(−ω)nT (−ω) + Θ(ω)(nT (ω) + 1)) , (3.24)

where Θ(ω) is the Heaviside step function and nT is the Bose distribution

nT (ω) =
1

e~ω/kBT − 1
. (3.25)

The asymmetric part of the spectrum in Eq. (3.24) is responsible for zero-point fluctua-
tions of mechanical position. The phonon occupancy in thermal equilibrium, including
the zero-point contribution, is given by n̄th = nT (Ωm) + 1/2. In our experiments, the
equilibrium oscillator occupancy is always high, so that n̄th ≈ kBT/(~Ωm).

So far the general case of arbitrary frequency range was discussed. When only a
narrow band around the mechanical resonance is of interest, some simplifications can be
made in the mechanical response and noises. For frequencies ω ≈ +Ωm the mechanical
susceptibility can be approximated as

χm[ω] ≈ 1

~
1

(Ωm − ω)− iΓm/2
, (3.26)

and the thermal force can be regarded as white noise with symmetrized spectral density
given by

S̄th
FF [ω] ≈ ~2Γth. (3.27)

Here Γth is the thermal decoherence rate,

Γth = Γmn̄th, (3.28)
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Figure 3.1: Broadband displacement spectrum of the fundamental mode of a Si3N4 nanobeam
resonator. Red—experimental data with shot noise and microdisk thermal noise subtracted,
blue—fit assuming frequency-independent damping, gray—thermal noise of a standalone micro-
disk optical cavity, which was the dominant extraneous noise in the measurement. The peak at
4 MHz corresponds to the phase modulation tone used to calibrate the measurement.

which is a characteristic rate at which quantum states of the oscillator decay due to
the interaction with the environment [9]. As an example, at n̄th � 1, an oscillator
initially prepared in the ground state heats up by one phonon over the time given by
1/Γth. Whenever a transition from the narrowband spectra back to the full broadband
form is desired, Γth can be formally replaced by the frequency-dependent expression
Γth(ω) = Ωmφ[ω](nT (ω) + 1/2).

An experimental spectrum of Brownian motion for one of the oscillators used in our
work is presented in Figure 3.1 where we plot it as one-sided spectral density Sx = 2S̄xx.
The oscillator is the fundamental mode of a nanobeam mechanical resonator dispersively
coupled to a microdisk optical cavity (see Sec. 3.4) and probed at room temperature
[123]. At frequencies outside the immediate vicinity of the resonance, thermal force
noise cannot be regarded as white, but instead has the scaling S̄th

FF [ω] ∝ 1/ω.

3.2.4 General aspects of linear position measurements

Following the introduction of the microscopic system, we can now discuss the measure-
ment process and quantum sensitivity limits that arise in it. Among these limits, the
standard quantum limit was discovered first by Braginsky[213, 1] in the late 1960s, and
later derived for interferometric measurements by Caves [185].

The position of a mechanical oscillator can be measured by coupling it to a meter by
means of an interaction Hamiltonian of the type [1, 23]

Ĥint = −x̂F̂ , (3.29)
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where F̂ is a meter operator, which is yet to be specified. We are interested here in
“linear” measurements, where the meter output is proportional to x (which is not gua-
ranteed by only Eq. (3.29)). For a more precise definition of this type of measurements
one may refer to [15] and [1].

Similarly to coupling to a thermal bath, coupling the oscillator to a position detector
generally entails two effects—the modification of the force susceptibility χm and extra
motion driven by the detector fluctuations. The modification of the susceptibility can
be regarded as a consequence of coherent feedback imposed by the meter, where a part
of the read out signal is excluded from the output and applied to drive the oscillator.
Commonly, in such a situation the efficiency of position readout by an external observer
is sub-optimal4, as a part of the signal is not available at the output, while the stochastic
backaction force from the meter is not affected by feedback. In the following, we will
concentrate on the case where the modification of oscillator susceptibility does not play
a major role, and all (or almost all) the signal read out by the meter is available to the
observer.

While one variable of the meter, F , is coupled to the oscillator, another variable, y,
is monitored by the classical observer5. In order to obtain any linear response in the
output channel, it is required that ŷ and F̂ do not commute [1, 182, 23]. The average
output signal of a generic stationary linear detector is given by [1, 23]

〈ŷ(t)〉 = 〈ŷ(t0)〉+

∫ t

t0

χyF (t− t′)〈x̂(t′)〉dt′, (3.30)

where

χyF (τ) =
i

~
Θ(τ)

〈
[ŷ(τ), F̂ (0)]

〉
0
, (3.31)

and 〈...〉0 means the expectation for the uncoupled meter. For χyF to be non-zero, it is
thus required that

[ŷ(t), F̂ (t′)] 6= 0, (3.32)

for at least some t and t′. The same linear response argument leads to the conclusion
that if F̂ commutes with itself at different times, there is no coherent feedback from the
meter.

In our experiments, the meter responds instantaneously to the oscillator motion,
which implies6 χyF (τ) = δ+(τ). The scaling of ŷ here is chosen so that the measurement
outcome directly gives unbiased estimation of instantaneous oscillator position,

〈ŷ(t)〉 = 〈x̂(t)〉. (3.33)

We are free to call the discrepancy between the actual position and the detected output
“imprecision”,

ẑ(t) ≡ ŷ(t)− x̂(t). (3.34)

4see Ref. [206, 23] for a discussion of the case of cold damping
5Notations in this section widely follow the notations of Khalili et al. [214].
6δ+(τ) is defined so that

∫ t

0
δ+(τ)f(τ)dτ = f(0) for t > 0.
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In the absence of coupling to the oscillator ẑ = ŷ, which means that the imprecision
operator ẑ represents intrinsic fluctuations of the meter.

Imprecision is not the only contribution to the total measurement error. The usual
aim of position measurements is to detect the “true” motion of the oscillator, as it would
be in the absence of coupling to the detector. This motion includes response to any
external force, if the oscillator is used as a test body, quantum zero-point fluctuations,
and thermal Brownian motion. At the same time, coupling to the detector inevitably
introduces oscillator fluctuations driven by the quantum backaction. Due to the linearity
of the problem, the total motion x̂(t) is simply the sum of two contributions,

x̂(t) = x̂0(t) + x̂BA(t), (3.35)

where x̂0 is the evolution in the absence of detector and x̂BA is the motion, driven by
quantum backaction,

x̂BA(t) =

∫ t

t0

dt′χm(t− t′)F̂ (t′)dt′. (3.36)

Overall, the meter output is given by

ŷ(t) = x̂0(t) + x̂BA(t) + ẑ(t), (3.37)

we will regard ε̂ = ẑ + x̂BA as the total position measurement error and be concerned
with minimizing it.

Because of the non-trivial frequency dependence of the oscillator response, it is con-
venient to work in the frequency domain. When y is a QND observable, which is our case
of practical interest, the quantum spectrum Syy is symmetric in frequency and directly
gives the spectrum of measurement outcomes. At the same time, the spectrum of oscil-
lator motion, x̂0, is asymmetric by the amount of zero-point fluctuations. In order to not
appear in the total result, this asymmetry has to be precisely canceled by the spectrum
of measurement error. This means that nontrivial quantum correlations exist between
the measurement backaction and imprecision of the meter, which magnitude is equal to
the oscillator zero-point motion. This fact has profound consequences—it explains why
the standard quantum limit can be derived either by considering commutation relations
for the mechanical oscillator or variables of the meter, and can lead to the conclusion
that quantumness of the oscillator can be disregarded completely in the problem of force
measurements [15]. It can also lead to an ambiguity of interpretation, as in the case of
the asymmetry of power in the blue and red Raman scattering sidebands [215, 202].
After a debate, this asymmetry is regarded as either a consequence of the quantumness
of mechanical oscillator, or backaction-imprecision correlations, depending on whether
it is observed in photon counting or in heterodyne detection [214, 216].

The spectrum of the meter output is given by [214]

S̄yy[ω] = S̄0
xx[ω] + S̄zz[ω] + 2Re (χ∗m[ω]S̄zF [ω]) + |χm[ω]|2S̄BA

FF [ω]︸ ︷︷ ︸
=S̄εε[ω]

, (3.38)
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where the terms have natural correspondence to those in Eq. (3.37). We have symmetri-
zed Syy explicitly, such that we do not have to keep track of the asymmetric parts which
do not contribute to the final answer. In the spectral domain, the optimum detection
problem is solved by minimizing S̄εε at a given frequency, while S̄zz, S̄

BA
FF and S̄zF , are

constrained by the laws of quantum mechanics.

Since ẑ and F̂ do not commute, their fluctuations cannot be arbitrarily small at the
same time, similar to the position and momentum of a particle. The uncertainty relation
that ẑ and F̂ satisfy in the general case is somewhat cumbersome and not reproduced
here (for the full form see [1, 23]). The uncertainty relation, however, has a simple form
under two assumptions: 1) there is no correlation between the quantum backaction and
imprecision, 2) F̂ commutes with itself at different times. Then

S̄zzS̄
BA
FF ≥

~2

4
. (3.39)

Measurement apparata that per given imprecision add only the minimum amount of
quantum backaction, turning Eq. (3.39) into an equality, are called quantum-limited.
An example of position detector that can be close to quantum-limited in practice is an
optomechanical cavity, where the parametric modulation of cavity frequency by mecha-
nical motion is read out from the output field.

Having a quantum-limited measurement apparatus is a prerequisite for performing
optimal position measurements. The remaining step is to optimize the coupling strength
between the meter and the oscillator, which simultaneously changes the amount of impre-
cision and backaction noises, so that the total error of position estimation is minimized.
For uncorrelated z and F , the total spectral density of error obeys

S̄εε[ω] ≥ ~|χm[ω]|, (3.40)

and the minimum allowed by Eq. (3.40) is known as the standard quantum limit (SQL)
[1]. While the SQL is certainly a quantum bound on the error of continuous position
measurements, it is not the ultimate bound. Without some of the assumptions made
above about the measurement apparatus, errors below the SQL are possible.

One way to improve upon the SQL is to allow correlations between the variables
z and F of the meter, which is the idea behind “variational measurements” proposed
by Vyatchanin and Matsko [191, 192]. In the presence of correlations, the uncertainty
relation for z and F is given by [1, 182]

S̄zz[ω]S̄BA
FF [ω]− |S̄zF [ω]|2 ≥ ~2

4
+ ~|Im (S̄zF [ω])|, (3.41)

and a quantum limit better than the SQL is obtained for the position measurement
error,

S̄εε[ω] ≥ ~|Im (χm[ω]) |. (3.42)

We refer to the limit given by Eq. (3.42) as variational measurement limit, another
name proposed recently is Dissipative Quantum Limit [217]. It coincides with the SQL
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on mechanical resonance, where the susceptibility is purely imaginary and given by
χm[Ωm] = 2i/(~Γm), and progressively gets lower compared to the SQL as measurements
become off-resonant or broadband. For a free mass probe (ω � Ωm), the variational
measurement strategy in principle allows to completely erase all signatures of quantum
backaction from the measurement record.

In both the SQL and the variational quantum limit, the minimum residual error is
not lower than ~ times the imaginary part of mechanical susceptibility. For a stationary
measurement that obtains information on both quadratures of the force, this seems
to be the fundamental limit (Ref. [217] gives a general argument). By allowing the
measurement to be non-stationary, one can engineer a situation when the variational
limit is surpassed, but only at the expense of obtaining information about a single
quadrature of the force. An example of such a scheme is the synodyne measurement,
which was recently theoretically proposed in Ref. [218] and experimentally implemented
in Ref. [219].

Although the standard quantum limit is not the ultimate limit, it is an important
benchmark for the discussion of quantum limits on position measurements. One reason
is that the SQL sensitivity can be approached with a moderately imperfect measure-
ment apparatus, i.e. which is close to but not exactly quantum-limited, while sub-SQL
strategies exploiting backaction-imprecision correlations are less robust. As an example,
suppose that a part of the measured signal is discarded from the output of the meter.
In optical measurements this can happen because of propagation losses of light and im-
perfect photodetection. The total losses are then quantified by the detection efficiency,
η. For an imperfect meter in the absence of backaction-imprecision correlations we have
S̄zzS̄

BA
FF = ~2/(4η), where η < 1, and the minimum position estimation noise is given by

S̄εε[ω] = ~
|χm[ω]|
√
η

. (3.43)

Such “finite detection efficiency SQL” is not very far from the actual SQL if the detection
efficiency is reasonably high, η . 1. Under the same assumptions, the minimum noise
obtained in the variational measurement scheme is given by

S̄εε[ω] = ~

√
(1− η)

η
|χm[ω]|2 + |Im (χm[ω]) |2. (3.44)

We see that even moderate detection losses bring the variational limit very close to the
SQL. In order to improve upon the SQL by any amount using the variational strategy,
one needs more than 50 % detection efficiency (η > 1/2), and in order to achieve an
improvement by an order of magnitude, detection efficiency better than 99% is required.
Achieving this is practically challenging, and position measurements of macroscopic os-
cillators with actual sub-SQL sensitivity (without detection efficiency correction) were
demonstrated only very recently in Ref. [151]. As a side remark, physically the re-
quirement for detector to be quantum-limited is the same as demanding that all the
information read out about the oscillator by the meter is available to the observer [22,
23].
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3.2.5 On the physical significance of SQL

Position sensitivity close to the standard quantum limit by now has been reached in
numerous experiments (see references in [23] for some early examples). Achieving a low
enough imprecision noise [220, 221] here is only half of the problem; the other half is
keeping the product of imprecision and backaction of the overall measurement scheme
close to the quantum limit (given by Eq. (3.39) and its generalizations). At the same
time, reaching the SQL sensitivity does not guarantee that the quantum phenomena
giving rise to this limit are readily apparent. The main reason is that the mechanical
motion that one detects in the end includes the Brownian motion of the oscillator in
thermal equilibrium. Although not as fundamentally random as vacuum fluctuations,
Brownian motion is usually random for all practical purposes, and can be naturally
regarded as another sensing error. The effect of quantum backaction in this case is a
small additional heating of the oscillator, which is usually hard to discern unless the
oscillator is in the ground state from the beginning, i.e. without any probe coupled
to it. This conclusion especially concerns position measurements at frequencies near
the mechanical resonance, where the Brownian noise is concentrated. For low-frequency
mechanical oscillators their cryogenic cooling to the ground state would require very low
temperatures (e.g. about 50 µK for a 1 MHz oscillator), and is typically impractical or
even infeasible.

The importance of quantum limits at finite temperatures is higher in the broadband
case, when the frequencies of interest are far from the mechanical resonance. Here
the magnitude of Brownian motion can be, at least in principle, much lower than the
minimum error set by the SQL, and the measurement backaction can play a bigger role.
Historically, the standard quantum limit was first derived for the measurements on a free
mass, which behaves similar to an oscillator at frequencies far higher than the resonance,
ω � Ωm.

Some aspects of the interplay between thermal and quantum noises in position de-
tection are more transparent if the oscillator is regarded as a probe for the detection
of external force. Many physical problems involving mechanical oscillators are either
directly of this kind, or can be reduced to such. The spectrum of force S̄est

FF , estimated
from the meter output, is simply proportional to the spectrum of estimated position,

S̄est
FF [ω] = |χm[ω]|−2S̄yy[ω]. (3.45)

The quantum limits for position detection directly translate into quantum limits for
narrowband force estimation.

Thermal and zero-point fluctuations of the oscillator can be regarded as motion dri-
ven by the environmental force with spectral density S̄th

FF (see Eq. (3.24)). Any external
force competes with the environmental contribution, so that S̄th

FF is the ultimate mini-
mum measurement error, and there is no known way to overcome it. The imprecision
and measurement backaction from the meter can add extra error on top of the thermal
contribution. Quantum backaction is a broadband (usually white) force noise, while the
imprecision equivalent force noise has frequency dispersion following the inverse oscilla-
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tor response. The imprecision is minimum on mechanical resonance and increases with
increasing the detuning |ω−Ωm|. Correspondingly, the SQL for force estimation also in-
creases with increasing the detuning, and eventually becomes higher than S̄th

FF . Still, the
overall result is that the minimum error of force estimation always occurs on resonance,
and is limited by thermal contribution, unless the oscillator is in the ground state. The
conclusion about practical relevance of the SQL, however, depends on the problem. If
the frequency band of interest is fixed, but there is freedom to chose the oscillator, one
can benefit from making the resonance frequency low and reducing the thermal noise
S̄th
FF in this way, until the SQL becomes a limitation. Hence, quantum limits can in

principle be important for arbitrarily hot oscillators, as was originally envisioned when
considering the problem of gravitational wave detection. Unlike modern gravitational
wave detectors, which operate precisely in this broadband regime, smaller-scale optome-
chanical experiments more commonly can only access resonance phenomena. A notable
exception from this rule is a series of recent optomechanical experiments with micro-
mirrors [199, 204, 196], in which strong effects of quantum backaction were observed at
room temperature.

3.2.6 An optomechanical cavity as a parametric position detector

The physical system that practically implements the position measurement apparatus in
our work is an optomechanical cavity. The goal of this section is to establish connections
between some of the abstract concepts introduced previously and their optomechanical
implementation, and also to introduce remaining notations necessary to present the
experimental data.

In our experiments presented further in this chapter, optical losses are chief among the
imperfections preventing exactly quantum-limited operation (in terms of the backaction-
imprecision product prescribed by Eq. (3.39)). For this reason, and also since they can
qualitatively change predictions for the sensitivity of sub-SQL measurement schemes
(Sec. 3.2.4), optical losses will be accounted for from the beginning. At the same time,
extraneous classical noises of the optical field in our experiments were negligible, unless
stated otherwise, and they will not be considered here.

An optomechanical cavity is convenient to analyze using input-output formalism and
quantum Langevin equations, the foundations of which can be found elsewhere [212,
19] (also see Ref. [182] for some uncommon insights). Quantum Langevin equations are
particularly useful for the description of radiation-pressure induced dynamical backaction
of light on the mechanical oscillator. For our purposes, however, dynamical effects are
not of primary importance, in particular since damping due to the meter must be small
in order for it to perform quantum-limited position measurements [206, 24].

A key result of input-output theory is that the amplitude of the optical field just
before the cavity, ŝin, is related to the amplitude after the cavity, ŝout, as

ŝout(t) = ŝin(t)−
√
κ â(t). (3.46)

Here â is the annihilation operator of intracavity photons, and κ is the optical linewidth,
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also equal to the photon energy decay rate. Both ŝin and ŝout are operators describing
propagating fields, obeying the commutations relations given by Eq. (3.16). The dyna-
mics of the intracavity field in the frame rotating with the drive laser frequency ωL are
given by

d

dt
â = i(∆ + g0x̂)â− κ/2â+

√
κŝin, (3.47)

where ∆ = ωL − ωc,0 is the mean laser-cavity detuning, and g0 is the single-photon
optomechanical coupling rate. The oscillator position x is normalized to zero point
fluctuations and given by x̂ = b̂+ b̂†. The optomechanical coupling rate originates from
the dependence of the cavity frequency on the position of the oscillator,

g0 = −∂ωc/∂x. (3.48)

In realistic optomechanical systems, the position that parametrizes the displacement field
of mechanical mode is not unambiguously defined in general, unless it is if normalized to
zero-point fluctuations. Whereas in some cases there is a natural choice of what to call
the absolute mechanical coordinate, e.g. in Fabry-Perot resonators with movable mirrors
it is the displacement of the mirror, in nanoresonators with complex shapes, like phoxonic
crystals [134] or micro- disks and toroids [222, 223], the choice is less clear. Hence g0,
a coupling constant which is unambiguously defined, is commonly used to characterize
optomechanical systems even in the classical regime. This quantity is also convenient
to experimentally calibrate—by comparing phase modulation due to Brownian motion
(which in displacement units is xzpf

√
n̄th) to a known phase-modulation reference tone

[224].

An optomechanical cavity acts as a detector of the oscillator position that can appro-
ach quantum-limited performance in some parameter range. The conditions relevant to
our experiments are the fast-cavity regime (κ� Ωm), laser locked on resonance (∆ = 0),
and RMS frequency fluctuations much smaller than the cavity linewidth (g0

√
〈x2〉 � κ).

Under these conditions the interaction between the cavity mode and the mechanical os-
cillator can be linearized by setting

ŝ = s̄+ δŝ, â = ā+ δâ, (3.49)

and keeping only lowest-order fluctuation terms. We assume that the expectations of
the propagating and intracavity fields, s̄ and ā, are made real by a proper choice of the
reference phase. The linearized interaction Hamiltonian is given by

Ĥint = −~ g(δâ+ δâ†)x̂, (3.50)

where g = g0ā is the loaded optomechanical coupling. While the static component of the
radiation pressure shifts the equilibrium mechanical coordinate, this shift does not affect
the spectrum of x at finite frequencies, and is not explicitly distinguished to simplify the
notations. Same applies to the static shift in the cavity frequency, which is assumed to
be incorporated in the effective detuning ∆.
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From the interaction Hamiltonian given by Eq. (3.50) one can identify the F̂ operator
of the meter. The fast-cavity limit allows us to adiabatically eliminate the cavity mode,
after which we find

F̂ (t) = ~
√

ΓBA δq̂in(t), (3.51)

where ΓBA is the added oscillator decoherence rate due to the measurement backaction,

ΓBA = 4g2/κ. (3.52)

The readout variable ŷ in our case is an appropriately normalized quadrature of the
output field. After the elimination of cavity mode, the output field is given by

δŝout(t) = −δŝ′in(t)− i
√

Γmeas x̂(t), (3.53)

where Γmeas is the measurement rate, and the modified input operator δŝ′in accounts for
optical losses (it will be explicitly given later). The measurement rate is defined as

Γmeas = η · 4g2/κ, (3.54)

where η is the overall detection efficiency, including intracavity and propagation optical
losses, together with photodetection imperfection. While Γmeas is indeed related to
the rate at which information is obtained by the observer [23], for our purposes it
can be regarded simply as a constant characterizing the coupling strength between the
measurement apparatus and the oscillator. Importantly, in the case of perfect detection,
corresponding to η = 1, the measurement rate equals the decoherence rate due to the
measurement backaction, which is a generic signature of quantum-limited measurements
[23].

Optical losses in the quantum case not only reduce the signal, but also introduce
additional fluctuations, the magnitude of which can be found using the beamsplitter
model of absorption. The modified input field δŝ′in is given by

ŝ′in =
√
η ŝin +

√
1− η ŝvac, (3.55)

where ŝvac is the operator of an effective loss port, which field is in the vacuum state.
While it is understandable that the cumulative effect of propagation losses in the output
channel and the photodetection inefficiency can be described by a single beamsplitter,
it is less straightforward to see that optical losses inside the cavity can be included in
the same way. Although it does take a few steps to prove, it is indeed the case7.

Overall, the meter output ŷ is given by

ŷ(t) = −q̂θ(t)/(2
√

Γmeas sin(θ)), (3.56)

where the choice of homodyne quadrature θ controls the level of backaction-imprecision
correlations. The detection imprecision ẑ is found as

ẑ =
δq̂′in cot(θ) + δp̂′in

2
√

Γmeas
. (3.57)

7At least for an optomechanical system with dispersive coupling.
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It can be checked now that the basic assumptions made in Sec. 3.2.4 about the meter
are satisfied. Namely, both ŷ and F̂ commute with themselves at different times

[ŷ(t), ŷ(t′)] = 0, [F̂ (t), F̂ (t′)] = 0, (3.58)

which ensures, respectively, the classicality of the output and the absence of modification
of the oscillator response. The mutual commutator is

[ẑ(t), F̂ (t′)] = −i~ δ+(t− t′), (3.59)

consistent with the instantaneous linear response χyF of the meter. The appearance of
single-sided delta-function here is somewhat subtle, it can be traced to the requirement
of causality [214], i.e. the fact that the cavity input is not affected by any operations
performed on the output.

The calculation of output spectra requires the knowledge of meter state, which in the
case of an optical cavity is fully characterized by the input field. In our case the input
is a coherent state with no classical noises on top of the vacuum fluctuations,

〈δŝ†in[ω]δŝin[−ω]〉 = 0, 〈δŝin[ω]δŝ†in[−ω]〉 = 1, (3.60)

from which it follows that

〈δq̂in[ω]δq̂in[−ω]〉 = 1, 〈δq̂in[ω]δp̂in[−ω]〉 = i. (3.61)

Note that the correlations between the amplitude and phase quadrature of the vacuum
field are not zero but purely imaginary, similar to the position and momentum of a
harmonic oscillator. The spectra of imprecision and measurement backaction are given
by

S̄zz[ω] =
cot(θ)2 + 1

4Γmeas
, (3.62)

S̄BA
FF [ω] = ~2ΓBA. (3.63)

The backaction-imprecision correlations are easier to find in unsymmetrized form first,

SzF [ω] = 〈ẑ[ω]F̂ [−ω]〉 =
~
2

(cot(θ)− i). (3.64)

The imaginary part of SzF is canceled upon symmetrization. Finally, the spectrum of
oscillator position fluctuations is given by

S̄xx[ω] = ~2|χm[ω]|2Γdec, (3.65)

where Γdec is the total decoherence rate, defined as a sum of the thermal contribution
and the contribution from the measurement backaction,

Γdec = ΓBA + Γth. (3.66)
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While for most our purposes Γth can be regarded as a constant, corresponding to narro-
wband approximation, the full frequency dispersion can be restored by replacing it with
a frequency-dependent expression as explained in Sec. 3.2.3.

From the perspective of an external observer, who does not have access to the mea-
surement record, Γdec plays the same role as thermal decoherence rate for an oscillator
without meter. As will become evident in the following, the ratio of measurement and
total decoherence rates,

Γmeas

Γdec
= η

4g2

κΓmn̄tot
, (3.67)

ubiquitously appears as a measure of observability of quantum effects. Here n̄tot is the
total oscillator phononic occupancy. The ratio of measurement and decoherence rates is
closely related to quantum optomechanical cooperativity, the main difference being the
presence of detection efficiency in Eq. (3.67), which is a signature of measurement-related
problems.

3.3 Quantum correlations in variational homodyne measu-
rements

The achievement of sub-SQL sensitivity in position measurements crucially requires
non-zero correlations between the measurement backaction and imprecision, which in
our case are represented by the variables F and z of the meter. Correlations between
F and z do not require the meter to be prepared in a non-classical state, but rather
reflect the choice of these variables such that they are not linearly independent (alt-
hough the preparation of non-classical state would indeed work as an alternative way
of obtaining correlations, as in the case of squeezed vacuum injection [225]). The core
idea of the variational readout strategy is that a pre-existing admixture of F in the
output channel, when properly selected, can cancel the backaction-driven motion xBA

from the measurement record, thus removing one source of error from the estimate of
true position. Such a formulation makes it intuitive that imperfect detection efficiency
strongly impacts the protocol—whenever F in the measurement record is contaminated
by extra vacuum fluctuations introduced by the loss port, it is not perfectly correlated
with the measurement backaction force that excited xBA and thus cannot cancel it per-
fectly. Aside from the mere cancellation between the pre-existing admixture of F and
xBA, their “interference” in the output channel can reduce the total level of fluctuations
below the vacuum level, which is a signature of squeezed state. Note that the generation
of squeezing would require a different adjustment of z and F from that which minimizes
the error in position detection.

Correlations induced between the oscillator motion and the imprecision noise of the
meter can carry an amplified evidence of measurement backaction. In principle, there
are schemes to measure these correlations with zero thermal noise background [226,
20, 227], which were originally proposed to unveil the measurement backaction in the
presence of large Brownian motion, i.e. at Γmeas/Γdec � 1. In practice, however, such
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10 μm

Figure 3.2: False-colored scanning electron microscope image of a monolithically integrated
near-field optomechanical device. Red—silicon oxide, red—high-stress silicon nitride, gray—
silicon (substrate). Image courtesy of Ryan Schilling.

schemes involve significant tradeoffs—high sensitivity to technical imperfections and
long averaging times. Backaction-induced correlations in homodyne measurements have
a magnitude that is on the order of

√
Γmeas/Γdec. In the presence of high thermal noise,

this value is much greater than the more typical Γmeas/Γdec, which gives the amount of
ponderomotive squeezing (see below) or the increase in phononic occupancy.

In this section we present various evidence for quantum correlations induced by the
measurement backaction. Our experiments are performed with MHz-frequency mecha-
nical oscillators at cryogenic (5 Kelvin) and room temperature (295 Kelvin), at which
the thermal phononic occupancies are n̄th ≈ 3× 104 and n̄th ≈ 2× 106, respectively. At
cryogenic temperature we can observe correlations strong enough to produce pondero-
motive squeezing, whereas at room temperature, where thermal noise is two orders of
magnitude higher, we can detect their presence and show their effect on the noise floor
in force measurements.

The mechanical oscillators used in our experiments are fundamental modes of doubly-
clamped high-stress nanobeam resonators, which are near-field coupled to microdisk
optical cavities. One of our optomechanical devices is shown in Figure 3.2, for the des-
cription of fabrication process and for characterization data see [149], also more extended
details are given the following Sec. 3.4. The typical parameters of these optomechanical
devices are the following: optical linewidth κ/(2π) = 0.8−3 GHz, mechanical frequency
Ωm/(2π) = 3.4−4.4 MHz, optomechanical vacuum coupling rate g0/(2π) = 20−60 kHz,
mechanical linewidth Γm/(2π) ≈ 15 Hz at room temperature and Γm/(2π) ≈ 5 Hz at
5K.

In all experiments we directly record photocurrent spectra obtained using the ba-
lanced homodyne detection of light exiting the optomechanical cavity. Photocurrent
spectra are converted into spectra of optical quadrature fluctuations, Sθqq, by normali-
zing them to the shot noise, i.e. to the level of imprecision (vacuum) fluctuations of the
meter beam. The shot noise level is a well established reference for optical signals in our
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Figure 3.3: Spectra of position records obtained at different homodyne quadratures θ. Differen-
ces between spectra recorded at equal positive and negative detunings of θ from the amplitude
quadrature originate from the measurement backaction.

experiments. In the balanced homodyne detection that we employ, it can be determined
at sub-% level by blocking the signal beam. At the same time the determination of
the measurement rate, which is needed to convert Sθqq to Syy (see Sec. 3.2.6) requires
an additional calibration, separate for each experimental run. For simplicity, we do not
convert Sθqq to position units and give it directly when presenting experimental data.

3.3.1 Variational measurements

The concept of variational measurements was originally introduced by Vyatchanin and
Matsko [191] and developed by Vyatchanin and Zubova [192, 193]. In early proposals
it involved homodyne detection with time-dependent quadrature angle, or passing light
through filter cavities [225]. Such complexity was mainly necessary in order to cancel
quantum backaction in a wide frequency band, because of the frequency dependence of
oscillator response. If only a narrow frequency band is of concern, a much more simple
setting is sufficient, in which homodyne detection is performed at a fixed quadrature
angle θ intermediate between amplitude and phase. In homodyne detection with fixed θ
(such that 0 < |θ| < π/2), backaction and imprecision contributions to the measurement
record interfere destructively or constructively, depending on the frequency. At every
frequency the quadrature can be selected to optimally cancel backaction and impreci-
sion contributions by their interference, which implements the variational measurement
strategy. This narrowband variational homodyne detection was implemented in a few
recent experiments [194, 195, 196, 151], and our work presented here was among the
first.

Measurement backaction-induced quantum correlations in homodyne detection have
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3.3 Quantum correlations in variational homodyne measurements

an imprint of mechanical susceptibility, and manifest as a Fano-looking asymmetry of
otherwise Lorentzian shape of mechanical spectrum. Under the rotating wave approx-
imation the spectrum of total (thermal noise and measurement backaction-driven) me-
chanical motion is given by

S̄xx[ω] = S̄BA
xx [ω] + S̄0

xx[ω] =
Γdec

∆ω2
m + (Γm/2)2

, (3.68)

where ∆ωm = ω − Ωm is the frequency detuning from the mechanical resonance, and
Γdec = Γth + ΓBA is the total decoherence time. It follows that S̄xx[Ωm − ∆ωm] =
S̄xx[Ωm + ∆ωm]. In contrast, the correlation contribution to the meter output (see
Eq. (3.38)) is given by

2Re (χ∗m[ω]S̄zF [ω]) = − ∆ωm
∆ω2

m + (Γm/2)2
cot(θ), (3.69)

and is anti-symmetric in ∆ωm. The sign and the magnitude of the correlation term
depend on the quadrature angle; for homodyne quadratures of the same magnitude but
opposite sign correlation contributions are opposite. We use this property in order to
visualize the presence of measurement backacation-induced correlations in experimental
homodyne spectra shown Figure 3.3. The data in this figure was obtained at cryogenic
temperature (5K) under the condition Γmeas/Γdec ≈ 0.02 (8), where Γdec is dominated
by thermal decoherence due to photoheating. The difference between spectra taken at
opposite quadratures is indicative of the magnitude of backaction-imprecision correlati-
ons.

The symmetry properties of mechanical susceptibility help to extract backaction-
imprecision correlations from experimental spectra even in the presence of large Brow-
nian motion. We introduce a quantitative measure of correlations A as follows

A(ω, θ) ≡ S̄yy[Ωm + ∆ωm]− S̄yy[Ωm −∆ωm]

S̄yy[Ωm + ∆ωm] + S̄yy[Ωm −∆ωm]
≈

RWA

2ΓmeasRe (~χm[ω]) sin(2θ)

1 + 4ΓmeasΓdec|~χm[ω]|2 sin(θ)2
. (3.70)

Although it might appear to be defined ad-hoc, this quantity has a simple scaling pro-
perty which makes it practically very convenient. Namely, in a wide frequency range,
the peak-to-peak variation of A over a full scan of θ directly gives the measurement-to-
decoherence rate ratio. It can be shown that the variation of A, denoted as ∆A(ω), is
given by

∆A(ω) = max
θ

(A)−min
θ

(A) =
4Γmeas|Re (~χm[ω])|√
1 + 4ΓmeasΓdec|~χm[ω]|

, (3.71)

where the optimization is conducted over θ ∈ [−π/2, π/2] at a fixed frequency ω. This
result further simplifies to

∆A = 2

√
Γmeas

Γdec
, (3.72)

8Calibrated from the magnitude of ponderomotive squeezing, see further.
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Figure 3.4: Asymmetry ratio as a function of homodyne quadrature.

for any frequency satisfying

Γm/2� |∆ωm| � 2
√

ΓmeasΓdec. (3.73)

Because of the frequency- and quadrature- independence of the extremum value ∆A, it
can be alternatively obtained from the variation of A over ω at a fixed quadrature θ.
The measurement to decoherence rate ratio can be inferred in this way from a single
spectrum.

Our experiments operate in the regime Γmeas/Γdec � 1, where we approximate A
using the asymmetry ratio R, defined as

R(ω, θ) ≡
S̄θqq[Ωm + ∆ωm]

S̄θqq[Ωm −∆ωm]
≈ 1 + 2A(ω, θ). (3.74)

The variation of R over the quadrature scan, ∆R ≈ 2∆A, is also universal as long as
the measurement rate is not too large.

An example experimental variation of asymmetry ratio R over the scan of quadrature
angle is shown in Figure 3.4, where the measurement is performed on a room-temperature
mechanical oscillator at Γmeas/Γdec ≈ 5× 10−4. The scaling of peak-to-peak magnitude
of ∆R with measurement rate is shown in Figure 3.5. Different data points at the same
measurement rates in Figure 3.5 correspond to different choices of ω within the range
defined by Eq. (3.73), which are ideally expected to produce identical ∆R. Overall the
experimental data is in a very good agreement with the theoretical prediction, which
does not involve fitting parameters.

The absolute magnitudes of correlations observed in our experiments, as well as
their scaling with oscillator-detector coupling controlling the measurement rate, matches
the expectation for the quantum backaction of the meter. Hypothetically, coupling an
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Figure 3.5: The scaling of the visibility of quantum measurement-induced correlations with
measurement rate, controlled by the input laser power. The absolute laser powers used in these
experiments are in the range of 3− 300 µW.

oscillator to a classically noisy meter, in which the fluctuations of F are above the
quantum minimum, could also produce correlations between the mechanical motion and
the imprecision noise. Classical correlations in the meter output would look qualitatively
similar to quantum, but their magnitude would be arbitrary, and their scaling with
oscillator-detector coupling would be markedly different. We show this discrepancy by
fitting the experimental data with a model where the detected correlations are produced
by classical fluctuations in the meter variables. This fit is shown by the dashed line in
Figure 3.5 and is clearly at odds with experimental data. In our case, where the meter
is an optical field, the difference between classical and quantum scaling can be explained
by the fact that the vacuum fluctuations of coherent light are independent of the optical
power, while classical fluctuations are proportional to the power.

We finally comment on the metrological gain due to backaction-imprecision correlati-
ons. The variational strategy reaching the minimum position measurement error allowed
by Eq. (3.44) can be implemented as follows. At a given frequency, the overall error S̄εε
is minimized by choosing the optimum detection quadrature,

cot(θopt) = −2ΓmeasRe (~χm[ω]), (3.75)

and setting the measurement rate to the optimum value,

Γopt
meas = 1/2 · (|~χm[ω]|(1− η)/η + Im (~χm[ω])2)−1/2. (3.76)

Different choices of frequency require different θ and Γmeas. At detunings much greater
than the mechanical linewidth, the minimum error is essentially limited by the detection
efficiency, and not by the imaginary part of χm

S̄εε[ω] ≈
√

1− η
η
|~χm[ω]|. (3.77)
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Figure 3.6: Signal-to-noise ratio in force measurements in the presence of quantum backaction.
(A) Position spectrum of mechanical motion, showing the Brownian peak in the center and two
peaks corresponding to driven motion. The integration bands shown in gray and orange were
used for in signal to noise estimation in B and C. (B) The variation of the signal to noise ratio,
normalized to that at the phase quadrature, over quadrature scan. (C) Dots show ratios of
experimentally measured SN+ and SN−. Red solid line—theory, black dashed line—a model
with no imprecision-backaction correlations.

In our experimental setup, the optimum measurement rate Γopt
meas can be reached in a

wide frequency band around the mechanical resonance, so that one could expect some
metrological advantage for position estimation in this range. The value of detection
efficiency typical in our experiments is 25 % (including the cavity factor), which means
that the variational strategy can in principle improve upon the finite detection efficiency
SQL by 15 %. However, this metrological advantage could not be independently ve-
rified, as the absolute position estimation error was much smaller than the magnitude
of Brownian motion in the frequency band accessible in our experiment. A sensitivity
improvement offered by variational measurements can be sizable compared to Brownian
motion only in backaction-dominated regime, which our experiments did not access.

3.3.2 Narrowband external force detection

The cancellation of quantum noises due to backaction-imprecision correlations can im-
prove sensitivity in the detection of external forces, applied to the oscillator. Such an im-
provement was demonstrated in our experiments, although not at a level sufficiently high
to outperform the classically optimum measurement strategy. For proof-of-the-principle
demonstration of the effect of quantum correlations on signal-to-noise ratio (SN), we
apply an external force to our oscillator using the radiation pressure of an auxiliary la-
ser. The auxiliary laser is coupled the optomechanical cavity and amplitude-modulated
using a bichromatic RF signal, the two frequencies of which are equally far detuned from
the mechanical resonance to the low and high-frequency sides. A spectrum of mecha-
nical motion in the presence of external drive is shown in Figure 3.6A, it contains the
usual Lorentzian peak corresponding to Brownian motion and two resolution-bandwidth
limited driven peaks marked as “+” and “−”.
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For a classical signal with force spectral density Ssig
FF , the signal-to-noise ratio of its

estimation from the position measurement record is given by

SN[ω] =
Ssig
FF [ω]

|χm[ω]|−2S̄εε[ω] + S̄th
FF [ω]

. (3.78)

Here S̄εε is the quantum contribution to the measurement error and S̄th
FF is the thermal

contribution including the oscillator zero-point motion. In our experiment, the noise can
be estimated at a small offset from the force frequency, as shown in Figure 3.6A.

Signal-to-noise ratios for the positively and negatively detuned drives are denoted
by as SN+ and SN−, respectively, and their variation with quadrature angle is shown
in Figure 3.6B. SN values here are normalized to the ones obtained at phase quadra-
ture, which is the optimum quadrature choice in the classical case with no measurement
backaction. In this measurement, Γmeas/Γdec ≈ 5 × 10−4. Although SN+ and SN− in
Figure 3.6B are very close, it is clear their difference changes sign when passing over
the amplitude quadrature, θ = 0, which is a signature that the noise level is affected
by correlations between the measurement backaction and imprecision. In Figure 3.6C
we visualize this difference by plotting the ratio of SN+ and SN−. For a comparison
to the classical case, in the same figure as a dashed black line we plot a model which
does account for imprecision-backaction correlations. As the quantum error in our ex-
periments is much smaller than the thermal force, S̄th

FF , quantum correlations do not
bring an observable improvement in force sensitivity, which would manifest as SN ratios
in Figure 3.6B going above unity.

3.3.3 Ponderomotive squeezing

Aside from providing an advantage in position estimation, correlations between the
measurement backaction and imprecision can directly create non-classical states in the
meter output. In experiments at cryogenic temperatures we observe that the fluctuations
of meter optical field are reduced below the vacuum level, meaning that the field is in
a squeezed state. Experimental data demonstrating this is shown in Figure 3.7 for
Γmeas/Γdec ≈ 2 × 10−2. As it is physically a consequence of nonlinearity induced by
radiation pressure, squeezing generated in optomechanical cavities like ours is referred
to as ponderomotive squeezing.

In order to show how measurement backaction can lead to squeezed states, we consider
the spectrum of the output optical field quadrature, given by

S̄θqq[ω] = 1 + 2ΓmeasRe (~χm[ω]) sin(2θ) + 4ΓmeasΓdec|~χm[ω]|2 sin(θ)2. (3.79)

Here the noise level set by vacuum fluctuations is 1, and the backaction-imprecision
correlation term can be negative and can reduce the overall S̄θqq below this level. At

each frequency, the detection quadrature θ can be chosen to minimize S̄θqq. At the
optimum angle θopt, such that

tg(2θopt) = − Re (~χm[ω])

Γdec|~χm[ω]|2
, (3.80)
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Figure 3.7: Spectrum of homodyne signal showing ponderomotive squeezing at frequencies
. 3.8 MHz, where the signal fluctuations are below the vacuum level.

the minimum level of fluctuations is attained, given by

S̄θqq = 1− Γmeas

Γdec

∣∣∣∣Re (χm[ω])

χm[ω]

∣∣∣∣2 . (3.81)

Here it was assumed for simplicity that θopt � 1, which turns out to be the optimum
regime giving the lowest S̄θqq. At frequencies away from the mechanical resonance, |ω −
Ωm| � Γm/2, the mechanical susceptibility χm is purely real. In this case how far S̄θqq is
reduced below the vacuum level is simply determined by the ratio of measurement and
total decoherence rates,

S̄θqq = 1− Γmeas

Γdec
. (3.82)

Arbitrarily high degree of ponderomotive squeezing is theoretically possible accor-
ding to Eq. (3.82) in the limit Γmeas → Γdec, in other words when Γmeas � Γth and
η → 1. Practically, however, ponderomotive squeezing demonstrated to date remains
modest compared to the squeezing generated with nonlinear crystals. It is limited by
thermal noises in optomechanical cavities, the difficulty of optimizing their intracavity
optical losses, and in many cases by photoheating. The best ponderomotively squeezed
light reported to date had fluctuations -2.4 dB below the vacuum level [203], which is
considerably higher than in the best squeezed light generated with optical parametric
amplifiers, where the residual fluctuations can be as low as -15 dB with respect to the
vacuum level [228].

Because of the frequency dispersion of the oscillator response, ponderomotive squee-
zing has strong frequency dependence. An alternative way to describe this effect is by
saying that narrowband photons exiting the cavity at frequencies ωL+ω and ωL−ω are
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in two-mode squeezed states [182]. In order to verify the two-mode squeezing in expe-
riment, one would need to implement a very narrowband optical filter, which is usually
impractical, so the frequency-dependent squeezing language is commonly adopted in
optomechanics.

3.3.4 Main experimental limitations

Effects related to the measurement backaction in position measurements can be reliably
observed only when the experimental apparatus sufficiently closely approximates the
idealized meter considered in the theory in Sec. 3.2. Here we mention some main practical
nonidealities in our experiments, which are overall quite typical for optomechanics and
interferometric position measurements in general.

One challenge, which has been mentioned already, is reaching high detection efficiency
η. Optical losses from absorption inside the cavity or in the propagating output field
result in the deviation of measurement apparatus from quantum-limited [23] by raising
the measurement-to-backaction rate ratio above unity,

Γmeas/ΓBA = η. (3.83)

Whereas in ideal variational measurements the optimum choice of detection quadrature
is a genuinely quantum problem, whenever the detection efficiency is small, the optimum
choice converges to that of the classical case—detection at the phase quadrature—which
minimizes the imprecision noise only. In our experiments the typical detection efficiency
is η ≈ 0.25 where half of the loss is contributed by optical absorption and scattering inside
the microdisk cavity, and half by the combined propagation losses and photodetection
efficiency.

Classical noises in the optical field is another key challenge. Similar to detection
losses, they make the backaction-imprecision product of the measurement apparatus
higher than the quantum limit, however their exact effect is more complex to predict
and depends in their physical origin. Phase noise of the optical field in excess of va-
cuum fluctuations simply increases the measurement imprecision. Classical amplitude
noise can have more severe consequences—it can potentially lead to correlations simi-
lar to imprecision-backaction correlations, thus creating a loophole for misinterpretation
of experimental results. Indeed, the origin of backaction-imprecision correlations can
be traced to the interference of amplitude and phase fluctuations of light. While in
the quantum case the optical phase has an imprint of mechanical motion driven by
the amplitude vacuum fluctuations of the optical field, classical amplitude fluctuations
would have a similar signature. One difference, however, is that in the quantum case
the magnitude of backaction-imprecision correlations is always the same as zero-point
motion, while classical noises can produce correlation of arbitrary scale, which moreover
are dependent on the optical power. Practically, it is important to make sure in the
experiment that any classical amplitude fluctuations are sufficiently below the vacuum
level.
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Classical optical noises can be of two origins—from the inside and from the outside
of the optomechanical cavity. Noises before the cavity in our case predominantly come
from the laser source. In principle, they can be suppressed by the use of filtering cavities
and/or wideband locking to a stable frequency reference, although it might be technically
challenging. In the majority of experiments presented in this section, we used a titanium-
sapphire laser in which classical noises were sufficiently low with no extra filtering, simply
because the resonance frequencies of our mechanical resonators (3.4 − 4.4 MHz) were
much higher than the frequency of relaxation oscillations of the laser (≈ 350 kHz).

Optical noises of intracavity origin constitute a more difficult challenge, as there is
usually no way of separating them from the light modulation created by the oscillator
motion. A fundamental and practically most important class of intracavity noises has its
origin in the thermodynamic fluctuations of cavity parameters in thermal equilibrium. It
includes thermorefractive noise [40, 229], frequency noise due to the Brownian motion of
highly damped microdisk modes, and possibly other contributions. At some point in our
experiments, we also observed that the tapered fiber used for the input coupling of light
could add extra noise, apparently, due to the modulation of coupling rate by thermal
vibrations (see SI of [194] for more details). In this case because of the dissipative type
of the coupling, an optical quadrature between phase and amplitude was modulated
by thermal noise, which was especially detrimental in the quadrature scan experiment,
where signals from quadratures close to the amplitude were of primary interest. Overall,
the requirement to operate in the regime of low enough input optical power, where the
thermal cavity noises are negligible compared to the optical vacuum fluctuations, was
one of the key aspects limiting the achievable measurement-to-decoherence rate ratio in
our experiments at room temperature.

At cryogenic temperatures, another key limitation in our experiments was photohe-
ating. The absorption of optical power increases the temperature of mechanical bath,
which in steady state manifests as a maximum achievable measurement-to-decoherence
rate ratio below one (typically not exceeding 0.2 in our case). Although the consequence
of photoheating might appear similar to the limitation in Eq. (3.83), the analogy would
not be very far reaching. While the effect of imperfect measurement-to-decoherence rate
ratio is instantaneous, photoheating can be circumvented by making fast pulsed measu-
rements, which was demonstrated in Ref. [171, 174], where the measurements are made
faster than the absorbed optical power redistributes between the resonator degrees of
freedom.

3.4 Experiments with near-field optomechanical cavities

Experimental data presented in Sec. 3.3 was obtained using on-chip optomechanical ca-
vities, each of which consisted of a silicon oxide microdisk and a silicon nitride nanobeam
placed in the near field of the microdisk whispering gallery modes (WGM). The geo-
metry of a typical device is shown in Figure 3.8. In this section, we present details of
experiments with such devices, with the aim of illustrating the way in which the data
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Figure 3.8: (A) Microscope image of a near-field coupled optomechanical device (not from the
vacuum experimental setup), with a sketch added on top showing the position of the tapered
optical fiber during experiments. (B-C) Red—electrical field distribution in a whispering gallery
mode of the disk, obtained from finite element simulation. Dashed contour—the boundaries of
the microdisk. Blue—nanobeam.

in Sec. 3.3 was obtained rather than exhaustively covering the subject. We focus on
the operation at room temperature. For the operation of the He3 cryogenic setup, see
the theses of former students, Stefan Weis [230] and Vivishek Sudhir [231] in particular.
For additional information about the room temperature setup, see the thesis of Hendrik
Schütz [232]. All integrated optomechanical devices were fabricated by Ryan Schilling,
whose thesis covers them thoroughly [233].

Integrated near-field optomechanical transducers are probed by coupling light into a
whispering gallery mode of the microdisk using a tapered fiber with a sub-micron waist
size. Tapers are made by locally melting cuts of 780 HP single-mode optical fiber in
hydrogen flame and elongating them at a constant speed using two linear translation
stages (Newport MFA-CC). While taper pulling is not a very well reproducible process,
for our experiments we selected tapers with transmission efficiency better than 95 %.
After a taper is pulled, it is tensioned close to the breaking limit and attached to a holder
using small amounts of UV-curable glue (Norland Optical Adhesive 81). Tensioning is
necessary to efficiently couple to WGMs in vacuum using slip-stick positioners, which
create a substantial amount of vibration on each step. Tension is checked on a separate
setup by bringing the taper in contact with a microtoroid on a dummy chip and pulling
it away until it is unstuck. The distance at which the unsticking happens serves as an
indicator of tension.

For performing optomechanics experiments, a chip with near-field samples is mounted
inside a vacuum chamber on top of a stack of Attocube positioners providing three
translational degrees of freedom. A holder with a tapered fiber is mounted in a stationary
position inside the chamber and the taper waist is imaged using an outside microscope.
In this configuration, a selected sample can be positioned to touch the taper at the edge
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of the microdisk. The sample during an experiment looks similar to what is shown in
Figure 3.8A, the main difference being that the imaging resolution in the actual setup
is not as good as in the picture, for which a high-resolution microscope image was taken
separately. Optical coupling rate is inferred from the transmission drop when the laser
is swept across one of the optical resonances. A high coupling selectivity can be achieved
for one family of WGM resonances, so that the transmission level away from the coupled
resonances is unaffected by the fiber touching the disk.

Standalone silicon oxide microdisks defined using ebeam lithography can host WGM
modes with intrinsic optical linewidths down to 10 MHz [149], but the linewidths of the
same disks integrated with nanobeams are more commonly in the GHz range. Over-
whelming this level of optical loss with extrinsic taper coupling is challenging. Our
experiments typically operate under “critical coupling” condition [234], i.e. when the
extrinsic optical damping due to the light escape to the tapered fiber, κext, matches the
intrinsic optical loss rate, κ0,

κext = κ0. (3.84)

This corresponds to the light escape ratio ηc = 1/2 and makes the primary contribution
to the overall detection inefficiency in our experiments. Operation at critical coupling,
however, has one advantage. The output signal from the cavity has zero carrier, which
facilitates quantum-limited balanced homodyne detection as the amplitude of the local
oscillator can be easily made much larger than the amplitude of the signal. Operating
deeply in the regime of strong local oscillator is also required to reliably calibrate the
shot noise level with a sub-percent error.

3.4.1 Setup for the detection of measurement backaction-imprecision
correlations at room temperature

The layout of the experimental setup used for the detection of backaction-imprecision
correlations are room temperature [194] is shown in Figure 3.9. In this work, the sample
was placed in a high vacuum chamber, at a pressure below ∼ 10−6 mbar. Light is
coupled in and out of the microdisk cavity using a tapered optical fiber, the position of
the sample is adjusted using piezo actuators to achieve critical coupling.

The cavity is probed on resonance using a meter laser beam, which is subsequently
detected in a balanced homodyne scheme. Additionally, the oscillator is feedback cooled
using an auxiliary feedback beam for the purpose of reducing thermal intermodulation
noise around the mechanical resonance frequency. Two lasers were employed in the ex-
periment – a TiSa laser (MSquared Solstis) with wavelength centered around 780 nm as
the meter beam, and an auxiliary 850 nm external cavity diode laser (NewFocus Velo-
city) as the feedback beam. Both beams are combined before the cavity and separated
after it using dichroic beamsplitters. The feedback beam is detected on an avalanche
photodetector (APD), while the meter beam is fed into a length- and power-balanced ho-
modyne detector. A small portion of the meter beam—stray reflection from the dichroic
beam-splitter—is directed onto an APD.
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Figure 3.9: Schematic of the room temperature experimental setup. Abbreviations: AM –
amplitude modulator, FM – frequency modulator, BS – beam splitter, IS – intensity stabilizer.

Both lasers are actively locked to their independent cavity resonances using the APD
signal. For the meter beam, a lock on cavity resonance (|∆| . 0.1 · κ) is implemented
using the Pound-Drever-Hall technique. For the feedback beam, a part of the APD signal
is used directly to implement a side-of-the-line lock red-detuned from cavity resonance.

The other part of the feedback beam APD signal is used to perform moderate feedback
cooling of the mechanical oscillator from the equilibrium phononic occupancy n̄ = 1.8·106

to n̄ ≈ 104. For this purpose, the photosignal is amplified, low-pass filtered and phase-
shifted, before using it to amplitude modulate the same laser. As in conventional cold
damping [235], the phase-shift in the feedback loop is adjusted to synthesise an out-
of-phase radiation pressure force that damps the mechanical oscillator. At a nominal
feedback laser power of 5µW, a damping rate of about 1 kHz is realized. The associ-
ated increase in the mechanical decoherence rate due to injected imprecision noise was
estimated to be below 5%.

The path length difference of the homodyne interferometer is actively stabilized using
a two-branch piezo translation system. Demodulation of the homodyne signal at the
PDH modulation frequency also produced interference fringes suitable for locking the
homodyne angle near the amplitude quadrature (i.e. θ = 0). The residual homodyne an-
gle fluctuations could be estimated θRMS . 1o ≈ 0.017 rad, inferred from the suppression
of thermomechanical signal-to-noise ratio on amplitude quadrature of ≈ 10−4 compa-
red to the phase quadrature. An offset DC voltage is applied to the homodyne error
signal to deterministically choose the detection quadrature. Since the feedback cooling
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Figure 3.10: Broadband noise as read out by the homodyne interferometer. A few lowest-
order flexural modes of the nanobeam are identified in the spectrum. The measurement setup is
sketched in the inset.

exclusively relies on the auxiliary diode laser, the homodyne measurements on the 780
nm meter beam are completely out-of-loop and does not contain electronically-induced
correlations.

The near-field optomechanical sample used in our room-temperature experiment [194]
consisted of a 80 nm thick Si3N4 nanomechanical resonator placed in the near field of a
microdisk. The diameter of the microdisk is equal to 40µm, thickness ∼ 350 nm, and
it has a gently sloping sidewall of ∼ 10o. The mechanical resonator is 70 µm long and
consists of a narrow (200 nm) beam with a wider (400 nm) rectangular defect at the
center which tapers linearly into the thin beam, as shown in Figure 3.8B and C. The
purpose of the defect is to increase the vacuum optomechanical coupling rate, g0. The
defect length is 5 µm, which exhibits an effective mass only 11% larger than that of a
standard 200 nm wide beam. According to the finite element simulation, meff = 1.94 pg.
The device was fabricated by a monolithic wafer-scale process that utilizes a sacrificial
layer to define a ∼ 50 nm gap between the microdisk and nanobeam, as detailed in [149].
Similar devices also were used for the cryogenic experiments [148, 202].

The vacuum optomechanical coupling rate of the described sample is g0 ≈ 2π ·60 kHz
for the fundamental, Ωm = 2π · 3.4 MHz flexural beam mode. In conjunction with the
high room temperature mechanical quality factor, Qm ≈ 3 · 105 (giving a damping rate
of Γm = Ωm/Qm ≈ 2π · 12 Hz), and a critically coupled cavity decay rate of κ ≈ 2π · 4.5
GHz, a near-unity single photon cooperativity of C0 = 4g2

0/κΓm ≈ 0.27 is attained.
Importantly, the near-field optomechanical cavity operates in the fast cavity regime, i.e.
κ� Ωm.
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3.4.2 Broadband correlations

Integrated near-field optomechanical transducers provide access to broadband pheno-
mena which are not limited to the spectral vicinity of the mechanical resonance. A
broadband spectrum of displacement fluctuation read out from the near-field sample
described in the previous section 3.4.1 is shown in Figure 3.10. At frequencies below
approximately 6 MHz, the displacement signal is dominated by the Brownian motion of
the fundamental out-of-plane nanobeam mode, aside from a small spectral region around
the fundamental in-plane mode. Above 6 MHz the spectrum is more crowded, although
higher-order out-of-plane nanobeam modes still provide the largest contribution to the
signal and are clearly identifiable. The remaining noise peaks belong to other mechanical
resonances of the integrated transducer and have low quality factors.

The clear spectrum at low frequencies enabled the measurement of wideband fre-
quency dispersion of the thermal force noise acting on the fundamental mechanical mode
reported in [123]. We observed that the spectral density of thermal force noise at low
frequencies increases ∝ 1/ω, which is consistent with a frequency-independent loss angle
and is common for structurally damped solid-state resonators (i.e. losses in which are
limited by internal friction). This behavior of loss angle, in particular, means that the
thermal noise acting on the oscillator is manifestly non-Markovian, in contrast to the
case of viscous damping with friction force proportional to velocity. Broadband fre-
quency dispersion of Brownian motion was measured for the first time in experiments
with macroscopic masses suspended on silica wires [236, 237] at the end of the 1990s.
For nanomechanical resonators, similar results came only more recently. Aside from
our work, broadband thermal noise measurements were reported for silicon phononic
crystals [200] and GaAs cantilevers [199].

In variational measurements performed with integrated near-field devices signatures
of correlations between the radiation pressure shot noise and the measurement impre-
cision can be observed in a frequency band on the order of the mechanical resonance
frequency. Recall that in our implementation of variational measurements, we simply
sweep the homodyne quadrature angle θ so that at every angle in the vicinity of am-
plitude quadrature, θ = 0, the measurement backaction is optimally canceled at one
frequency. Reversing the sign of the homodyne angle reverses the sign of quantum cor-
relations. The contrast between reduced/enhanced noise levels for signals taken at two
opposite quadratures can be observed in the data presented in Figure 3.11A. Quantum
correlations induced by the measurement backaction are clearly visible in the band be-
tween one and six MHz, below which the amplitude noise of the Ti:Sa laser becomes
non-negligible, and above which the mechanical spectrum is not single-mode any more.
The visibility of measurement backaction-induced correlations at low frequencies is lo-
wer because of the 1/ω behavior of the thermal noise, specific to mechanical oscillators
with frequency-independent damping. Figure 3.11B shows the application of the asym-
metry ratio measure introduced in Sec. 3.3.1 to extract the magnitude of correlations.
As the offset from the mechanical resonance increases, the deviation of thermal noise
from white and the mechanical susceptibility from that prescribed by the rotating wave
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approximation become more apparent, which manifests in R(θ) acquiring a component
symmetric in θ. Despite the asymmetry ratio analysis not being as transparent as in the
near-resonant case, its result is still well described by the full theoretical model taking
into account the broadband behavior of thermal noise and oscillator dispersion.
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Nonlinear measurements and thermal
intermodulation noise

4.1 Introduction

Interferometric position detectors achieve unprecedented sensitivity by using the optical
wavelength as a reference for mechanical displacements. A simple model of an interfero-
metric detector is shown in Figure 4.1. Here, the phase shift of the probe light, reflected
from the test mass M , is proportional to the displacement x of the mass. The phase
shift is linear in x; however, it is not measured directly but needs to be inferred from
an interference pattern. This is commonly accomplished with the help of homodyne
detection (as shown in Figure 4.1B), where the signal field with the complex amplitude
sout is combined with a local oscillator sLO on a beamsplitter and then photodetected.
The differential photocurrent is given by

I ∝ |soutsLO| cos(φ− φ0), (4.1)

where φ0 is the local oscillator phase, φ = −4πx/λ is the probe phase and λ is the
wavelength of the optical field. The photocurrent given by Eq. (4.1) is periodic in x, and
hence the position measurement is inherently nonlinear. Only when the displacement of
the mass is small compared to the optical wavelength can the homodyne photocurrent
be linearized. In this case, the linear measurement sensitivity is maximized at φ0 = π/2.
Even for small displacements, however, the local oscillator phase can be chosen such
that the leading contribution to the photocurrent is due to the mechanical displacement
squared, x2, and hence the measurement is nonlinear. In our phase convention this is
accomplished by setting φ0 = 0, so that I ∝ (1− 8π2(x/λ)2).

Optical cavities are commonly employed to improve the sensitivity of interferome-
tric measurements. Cavities make the probe field interact with the test object multiple
times, the number of which is given by the cavity finesse F . The spatial scale of inter-
ference pattern for light reflected from a cavity on resonance is reduced from λ to λ/F .
Correspondingly, the linear transduction of displacements is enhanced by the factor F ,
and quadratic by the factor F2. This makes the nonlinearity of interferometric measu-
rements more pronounced when high-finesse cavities are employed. The nonlinearity of
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Figure 4.1: Interferometric position measurements are nonlinear for large displacements, or if
the reference phase is specifically chosen. A) Phase shift of probe light, reflected from a test
body. The two insets show the complex amplitude of light before and after the interaction in
terms of phase (p) and amplitude (q) quadratures. B) Homodyne detection of phase shift with
local oscillator phase set so that dφ/dx = 0 produces photocurrent which leading contribution is
quadratic in x.

oscillator position transduction by a cavity is illustrated in Figure 4.2A for the case of
resonant laser drive.

Nonlinear measurements of oscillator position have been a long-standing subject of
theoretical research as they potentially allow the creation of complex quantum states and
measurements at sub-SQL sensitivity. In quantum systems consisting of bosonic modes
with linear couplings, which are subject to linear measurements and feedback, and which
are all initially prepared in Gaussian states, the states always remain Gaussian over their
evolution. Experiments presented in Chapter 3 fall into this category. In this case while
states can become squeezed and non-classical, their Wigner function is always positive,
and thus their dynamics still bears some resemblance to a classical stochastic process
(see [206, 182] for discussion). Quantum mechanics here mainly supplies power spectral
densities to the noises. Nonlinear measurements or non-Gaussian initial states can be
used to circumvent this limitation.

Interferometric nonlinearity was recognized as a resource for quantum measurements
in Ref. [238] as early as in 1995, but after that received almost no further attention
for more than a decade. In this historic example, it was proposed that quantum non-
demolition measurements of oscillator phase can be realized using a high-finesse Fabry-
Perot cavity parametrically coupled to an oscillator in a typical optomechanical setting.
It is instructive to review this simple scheme. The cavity was assumed to be resonant
with a laser probe when the oscillator is at rest (at x = 0). When the oscillator is highly
excited, so that it shifts the cavity frequency by much more than one optical linewidth at
its deflection maximum, every time the oscillator passes through x = 0 it creates a short
spike in cavity transmission. At all other times the cavity transmission is zero. While
the information about mechanical position is extracted at every half a period, providing
a measurement of the oscillation phase, the quantum backaction that acts during the
time when the light is resonant only affects the oscillation amplitude. This scheme has
some common aspects with stroboscopic measurements [14], but here the timing of the
effective “measurement pulses” is entirely set by the oscillator.
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Figure 4.2: Nonlinear frequency transduction by a cavity. A) Transduction of the oscillator’s
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vity light. B) Spectra of linear (upper panel) and quadratic (lower panel) position fluctuations
of a multimode resonator, showing the emergence of wideband noise.

A wider interest in nonlinear measurements has been fueled by the prospects of
performing quantum non-demolition detection of oscillator energy [1]. One possible way
of accomplishing this task is directly coupling a meter to the mechanical displacement
squared [239, 240]. When the meter is an optical cavity driven by a propagating field
[23], the interaction Hamiltonian for quadratic readout is given by

Ĥint = −~G2x̂
2 n̂c/2, (4.2)

where G2 = −∂2ωc/∂x
2 is the coupling constant, ωc is the cavity frequency, and n̂c is the

intracavity photon number. The QND criterion (see Sec. 4.4 of [1]) is readily satisfied
in this case, as the measured quantity, x2, is an integral of free oscillator motion and
it commutes with the interaction Hamiltonian in Eq. (4.2). Quadratic measurements of
this kind can be used for the observation of phononic jumps [239, 240], phononic shot
noise [209], and the creation of mechanical squeezed states [241]. While considerable
efforts have been dedicated to realizing nonlinear optomechanical coupling described by
Eq. (4.2), achievable coupling rates remain modest [242, 243], and the corresponding
experiments have so far been deeply in the classical regime. Some of the challenges here
will become clear from the rest of the discussion.

Quadratic position measurements with parametric cavity detectors need to be ana-
lyzed taking into account the output leakage of intracavity field. Coupling the cavity
mode to a propagating field is fundamentally required in order to provide detectable
signal to the observer and for the cavity to be externally driven. Results of the Hamilto-
nian analysis of a closed cavity-oscillator system can be highly misleading, as illustrated
by the example of a membrane-in-the-middle (MIM) system, schematically shown in
Figure 4.3. It was noted by Thompson et al. [84] that the quadratic Hamiltonian given
by Eq. (4.2) can be realized in a membrane-in-the middle system if the membrane is
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positioned symmetrically between the cavity mirrors so that its motion does not shift
the optical mode frequencies to the first order in x. However, it was later found out by
Miao et al. [244] that the leakage of light through the cavity mirrors leads to a linear
modulation of the output field via the mechanism know as dissipative coupling. The
linear signal proportional to the mechanical position is accompanied by quantum back-
action, and hence this scheme does not realize a QND measurement. Although it was
clarified later in Ref. [245] that a perfectly one-sided membrane-in-the-middle cavity is
free from dissipative coupling, even a small mirror loss would still make the realization
of this scheme extremely challenging.

Accounting for propagating optical modes naturally brings the question of interfero-
metric nonlinearity, which is another effect not fully revealed when the optical cavity
is treated as a closed system (although the position-squared coupling in a MIM system
has the same interferometric origin). As will be shown in Sec. 4.2.3, the overall mag-
nitude of the interferometric nonlinearity in a MIM cavity can be F times larger than
the maximum magnitude of quadratic coupling. This fact was first pointed out by Van-
ner [246] in the work which revived the interest in nonlinear measurements with linear
coupling. Considering the open cavity as a meter, nonlinear signals produced by linear
coupling can be understood as an effect beyond the linear response regime. As the meter
sensitivity is increased, which in the case of an optical cavity can be accomplished by
increasing its finesse, eventually measurements enter the regime where information is
still obtained gradually, but the first order perturbation theory [206] is not sufficient to
describe the measurement process [247]. Such measurements were experimentally de-
monstrated in [248, 249], yet in the classical domain. It was experimentally confirmed
in [248], that under quite typical conditions the nonlinearity of the cavity as a meter is
orders of magnitude stronger than the nonlinearity due to quadratic coupling. It was
also recognized that interferometric nonlinearity crucially requires the cavity to be cou-
pled to the propagating field, and does not have an equivalent in a closed system of a
mechanical oscillator coupled to an isolated optical mode [250].

The relatively strong transduction nonlinearity of interferometric measurements does
not necessarily make them QND, as such measurements are typically accompanied by
linear quantum backaction. This can be qualitatively understood by considering for
example the scheme presented in Ref. [246]. Here the amplitude quadrature of light
reflected from an optomechanical cavity and quadratically modulated by mechanical
motion is detected, as a result of which the mechanical oscillator is conditionally prepa-
red in a non-Gaussian state. This scheme also measures the amplitude quadrature of the
input optical field, on top of which mechanical modulation is added, because of which af-
ter each measurement the resonator receives a random “kick” from the backaction of the
meter. In order to use such nonlinear measurements for verifiable non-classical state pre-
paration, it was proposed to perform the measurement and verification stroboscopically
[246], or to implement measurement-based feedback [248].

As was mentioned earlier, experimental progress towards performing nonlinear quan-
tum measurements of the oscillator position remains modest to date. The practical
difficulty of engineering a strong nonlinearity of measurements and the presence of li-
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near quantum backaction in some settings are two parts of the problem. Another part
is that performing nonlinear measurements on a single oscillator mode requires a highly
selective coupling to this mode. Most of the present-day micromechanical resonators
used in quantum optomechanics experiments are multimode systems. The effective dis-
placement x measured in this case is a sum of many normal mode contributions xn,

x(t) =
∑
n

xn(t). (4.3)

In the linear measurement case they can be separated in the spectral domain if xn
correspond to high-Q modes at different frequencies. The separation is never perfect,
however, as the spectrum of motion of each mode spans the entire frequency axis. In
the non-linear case, the separation of modes quickly becomes a formidable task as the
number of modes is increased. E.g., if a quadratic measurement is performed on a
multimode system, the measurement signal is contributed by all the mixing products of
different modes,

x(t)2 =
∑
n,m

xn(t)xm(t), (4.4)

all of which, although peaked, have non-zero spectral density at all frequencies. Example
spectra of x(t) and x(t)2 for a measurement setup where three modes contribute to x
are illustrated in Figure 4.2B. It is particularly important for the following that the
spectral density of quadratic signal is not limited to the peaks at the sum and the
difference frequencies of the modes. For the reason above, in a multimode system at
high temperature at which all the modes are far from their ground states, measurement
nonlinearity creates a large amount of broadband thermal noise.

In this chapter, which is largely based our work reported in Ref. [44], we describe
the operation of a membrane in the middle optomechanical setup and experimentally
show that the nonlinear modulation of the optical field by thermal frequency fluctuations
can manifest as a broadband added noise in detection. We refer to this noise as ther-
mal intermodulation noise (TIN), since it mixes different Fourier components of cavity
frequency fluctuations. This noise dominates when the linearly transduced thermal fluc-
tuations are small, such as when detecting the intensity of near-resonant optical probe.
As it is the leading-order contribution, TIN is not necessarily negligible even when the
nonlinearity of cavity transduction is small.

We experimentally observe and study TIN in a membrane-in-the-middle (MIM) op-
tomechanical system [84, 85]—a promising platform for room temperature quantum
optomechanical experiments [199, 251]—and find excellent agreement with our develo-
ped theoretical model. Using a Si3N4 membrane resonator hosting a high-Q and low
mass soft-clamped mode [36, 152], we operate at a nominal quantum cooperativity of
unity, i.e. in the regime where the linear measurement quantum backaction (arising from
radiation pressure quantum fluctuations) is expected to overwhelm the thermal motion.
This regime is required for a range of quantum enhanced measurement protocols [192,
194, 195], or generation of optical squeezed states [200, 201]. Yet, the nonlinearity of our
cavity prevents the observation of quantum correlations between the field quadratures,
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Figure 4.3: Schematic of a membrane-in-the-middle optomechanical system with optical input
and output fields marked by violet arrows.

and manifests itself in TIN significantly above the shot noise (i.e. quantum noise) le-
vel. Since TIN is a coherent effect, it only requires the knowledge of spectrum of cavity
frequency fluctuations to be modeled, and our experimental data is well matched by a
model with no free parameters.

We show that for a particular “magic” detuning from the cavity TIN is fully canceled
in direct detection, and propose a more general cancellation scheme suitable for arbitrary
detuning. Our observations, while made for an optomechanical system, are broadly
applicable, irrespective of the underlying thermal noise source. Thermal intermodulation
noise can be of relevance to any cavity based measurement schemes at finite temperature.

4.2 Thermal intermodulation noise in a membrane in the
middle cavity

4.2.1 Membrane in the middle cavity

Membrane-in-the-middle is a highly successful optomechanical scheme which enabled
the first observation of quantum backaction in oscillator position measurements [20] and
a number of other quantum experiments since then [201, 252, 195, 253, 203, 150, 151,
178]. A key advantage of the MIM scheme is that it can combine one of the highest-Q
mechanical resonators developed to date with high-finesse optical cavities. Additionally,
the spatial separation of optically reflective surfaces from the mechanical mode make
photoheating in MIM much less problematic than in other optomechanical systems.
MIM cavities can show no signs of photoheating even when operated at millikelvin
temperatures inside a dilution refrigerator [195].

While all quantum experiments performed to date with MIM cavities operated at
cryogenic temperatures, it is also a promising setting for room-temperature quantum
optomechanics [194, 227, 199] because of the high achievable cooperativity and a low
level of extrinsic thermal frequency noises in Fabry-Perot cavities. High cooperativity,
however, achieved with the help of high cavity finesse is also accompanied by high
transduction nonlinearity of the cavity, which leads to strong thermal intermodulation
noise.

In this section we introduce a few facts about membrane in the middle cavities which
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Figure 4.4: Theoretical optomechanical frequency pull factors and linewidths for the resonances
of a MIM cavity with lc = 350 µm, ∆l = 25 µm, F = 3 × 104, membrane thickness h = 20
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eye. A) Wavelength dependence of optomechanical frequency pull factor G. B) Blue and orange
dots and lines show the wavelength dependence of external output coupling rates through the
first and the second cavity mirrors, κ1 and κ2, respectively. Green is the total cavity linewidth,
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are necessary for the following discussion and the presentation of the experimental re-
sults. A comprehensive overview of MIM theory can be found elsewhere (e.g. see [254]).
A MIM cavity, shown in Figure 4.3, consists of a thin silicon nitride membrane placed
between two high-reflectivity mirrors so that the membrane motion along the cavity axis
can modulate the optical resonance frequency. When referring to membrane displace-
ment x we will mean the longitudinal displacement of the membrane center, if necessary
averaged over transverse profile of the cavity waist [255, 254]. Membrane motion along
the cavity axis modulates the frequencies of optical cavity modes, ωc, in quasi-periodic
fashion [84]; for small displacement the modulation is linear. The magnitude and the
sign of the optomechanical frequency pull factor,

G = −∂ωc/∂x, (4.5)

is sensitive to membrane displacements at the scale of optical wavelength. Even without
precisely knowing the membrane position, however, it is possible to give a typical highest
number for the expected optomechanical coupling rate,

|G| = 2r
ωc
lc
, (4.6)

where lc is the total cavity length and r is the membrane reflectivity in terms of the field
amplitude (r = 0.2 − 0.5 in our experiments). Deviations from the estimate given by
Eq. (4.6) are only possible if the membrane reflectivity is close to one and the membrane
is positioned close to one of the cavity ends [254, 256], which is not a regime relevant to
the experiments in this thesis.

In Figure 4.4 we present the results of numerical calculations of resonance positions,
optomechanical couplings and optical linewidths of a MIM cavity with parameters typical
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for our experiments: cavity length lc = 350 µm, membrane displacement from the cavity
center ∆l = 25 µm, empty cavity finesse F = 3 × 104 with both mirrors being equal,
membrane thickness h = 20 nm. This cavity geometry also corresponds to the one shown
in Figure 4.5 of the experimental section. The theoretical mean free spectral range of
such cavity is 1.08 nm. It can be seen from the figures that the optomechanical coupling
rates and the optical linewidths follow a pattern which is periodic with wavelength.
The discreteness of resonances, however, can make experimentally obtained coupling
rates appear to vary irregularly with wavelength. In any case, for a cavity with fixed
membrane position one can practically always identify a resonance with coupling rate
close to the maximum value given by Eq. (4.6). The variation of optical linewidth with
wavelength, shown in Figure 4.4B, is not particularly pronounced in this example where
the membrane is close to the cavity center. Shifting the membrane close to one of the
cavity sides would increase the magnitude of oscillatory patterns in Figure 4.4B, and can
even make a cavity with identical mirrors substantially asymmetric in terms of decay
rates through the two mirrors. The predicted variation of extrinsic coupling rates shown
Figure 4.4B was not directly observed in our experiments, as small tilt misalignments of
membrane usually added extra optical losses, and only selected optical resonances had
linewidths close to those of an empty Fabry-Perot cavity (see further for the data).

In order to evaluate the performance of the membrane-in-the-middle scheme from
the perspective of linear quantum optomechanics, we calculate the “critical” input po-
wer required to reach quantum cooperativity, Cq [19], equal to one and thus the ra-
diation pressure shot noise dominated regime. This metric is directly relevant when
measurements are limited by extrinsic classical noises. While optomechanical coupling
is parametrically enhanced by the laser drive and can be made very large in state-of-
the-art optomechanical systems, classical laser noises and extraneous thermal noises in
the cavity are a common practical limitation. The attainability of the quantum regime
of the linear optomechanical interaction requires the classical laser and cavity noises to
be lower than shot noise at the critical power. Low critical power means lower level
of classical noises relative to shot nose. For a resonance of a membrane-in-the-middle
cavity which maximizes optomechanical coupling to the value prescribed by Eq. (4.6),
the critical input power Pcrit to reach Cq = 1 is found as

Pcrit =
πc

32~
λc
F2

Sth
FF

4r2
. (4.7)

Here c is the speed of light, λc is the optical resonance wavelength, and Sth
FF is the

spectral density of thermal force noise acting on the selected mode of the membrane and
evaluated on mechanical resonance.

Another convenient aspect of the critical power given by Eq. (4.7) is the fact that it
does not directly depend on the cavity length, lc. Given a choice of cavity mirrors, the
separation at which they are installed does not affect Pcrit. This is in contrast to many
other common figures of merit, such as vacuum optomechanical coupling g0 and single-
photon cooperativity C0 [19], both of which scale ∝ 1/lc, and are higher for shorter
cavities. In a MIM system, this enhancement does not necessarily directly provide an

138



4.2 Thermal intermodulation noise in a membrane in the middle cavity

l h Ωm/(2π) Q meff

√
Seff
FF at 295 K

Design (mm) (nm) (Hz) (ng)
(

aN/
√

Hz
)

Soft-clamped 2.3 20 1.4× 106 5.8× 107 4.5 180
(design from [150])

Soft-clamped 2.3 20 1.5× 106 5.8× 107 1.1 90
(low meff)

Trampoline [161] 3 80 41× 103 4.5 · 107 1 6

Table 4.1: Thermal force noises scaled by the membrane reflectivity for a few representative
silicon nitride membrane designs at room temperature. The parameters of soft-clamped membra-
nes are taken from our simulations, parameters for the trampoline membrane are experimental
values from the cited reference. l is the membrane length, h is the thickness. The membrane
reflectivity is assume to be r = 0.21 at 20 nm and r = 0.57 at 80 nm ([254]).

practical advantage, as for shorter cavities the transduction of thermal frequency fluc-
tuations is also higher, and maintaining a given number of intracavity photons requires
a higher input photon flux. The cavity length, although, does control the sideband re-
solution factor Ωm/κ, and hence the efficiency of sideband amplification and cooling.
All experiments in this chapter operate in the fast-cavity regime Ωm/κ � 1. Finally,
we note for reference that to date the most successful experiments operated with MIM
cavities with mm-scale lengths [20, 150].

A reduction of critical input power in MIM system can be accomplished by improving
on its optical and mechanical components. On the optics side, changing the operational
wavelength from near infrared (which is presently standard) to the blue part of the
visible spectrum would improve Pcrit only by little, and likely would be accompanied by
tradeoffs like an increase in optical losses and absorption. The best optical finesse of
Bragg mirrors, F . 106 [257], seems to change little over the past two decades. Also,
same as reducing the cavity length, improving the cavity finesse does not improve the
ratio of mechanical signal to mirror noise, which is a major practical limitation. Towards
the goal of reducing the mirror noise, crystalline coatings with low material dissipation
are being developed [258].

A way to improve the parameters of MIM system which has not been exhausted so far
is engineering a better membrane resonator, with modes that have higher Q and lower
effective mass for a given reflectivity. The properties of membrane resonator in Eq. (4.7)
are represented by the thermal noise spectral density and the membrane reflectivity. It
is convenient to aggregate them into an “effective” force noise Seff

FF , given by

Seff
FF =

Sth
FF

4r2
=

2kBTmeffΓm
4r2

. (4.8)

This can be seen as a result of re-defining the effective mass of mechanical mode to be
consistent with a new coordinate, y = 2rx, which represents not the physical displace-
ment but rather the change in the roundtrip optical path produced by it. For relatively
thick membranes with thicknesses in the range of 50-100 nm Seff

FF ≈ Sth
FF , while for thin-
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ner membranes Seff
FF can be significantly larger than Sth

FF . In Table. 4.2.1, we present the
calculations of effective thermal force noises for a few membrane geometries with parame-
ters taken from the literature and from our work. Note that for the fundamental mode of
trampoline membrane [161] the thermal noise level is particularly low because of its low
frequency. The downside here, however, is that classical laser noises of solid-state lasers
(like Ti:Sa) are also high at these frequencies. In contrast, laser noises can be practically
negligible with no filtering at frequencies above 1 MHz, at which soft-clamped localized
modes can be created in phononic crystal membranes. In Table. 4.2.1, we list the results
of simulations for two phononic crystal membrane designs, the one reported by Rossi
et. al. [150] and the one that was described in Sec. 2.5.4. These designs have localized
modes with essentially identical frequencies and quality factors, but the effective mass
of our design is four times lower. Note that in Ref. [150] Q = 109, was experimentally
obtained, which is more than an order of magnitude higher than the value indicated in
Table. 4.2.1. This discrepancy is due to the combination of temperature difference (in-
trinsic losses are lower at cryogenic temperature than at the room temperature that we
assume), frequency difference (the Q of a soft-clamped mode is ∝ 1/Ω2

m), and, possibly,
difference in the material parameters compared to what we assumed in simulations.

The thermal noises presented in Table. 4.2.1 can be converted to the critical power
needed to reach Cq = 1 with the help of the following formula,

Pcrit = 0.24 (µW)× λc
850 (nm)

×

104

F
×

√
Seff
FF

(
aN/
√

Hz
)

10
(

aN/
√

Hz
)


2

. (4.9)

Using the state-of-the-art soft-clamped membranes listed in Table. 4.2.1 in combination
with moderately high-finesse optical cavities (F = 3 · 104), Cq = 1 is predicted to be
reachable with input powers below 10 µW. Both classical phase and amplitude noises
of our Ti:Sa laser (Sirah Matisse) are below the shot noise for this power. The extrinsic
thermal noise due to the cavity mirrors is more problematic, but it does not manifest
if one detects the amplitude quadrature of the outcoupled light, which is, for example,
required for the observation of ponderomotive squeezing. It can be concluded therefore
that membrane-in-the middle scheme is promising for quantum optomechanics even at
room temperature. While pursuing this goal, we observed that the nonlinear trans-
duction of thermal fluctuations of the membrane becomes a key practical limitation,
this phenomenon will be explored in details in the remainder of this section.

4.2.2 Theory of thermal intermodulation noise

In this section we present the theory of thermal intermodulation noise with the assump-
tion that the cavity frequency fluctuations are slow compared to the optical decay rate.
We assume the classical regime and concentrate on the lowest-order, i.e. quadratic,
nonlinearity of the cavity detuning transduction. We consider (as in our experimental
setup, also as shown in Figure 4.3) an optical cavity with two ports, which is driven
by a laser coupled to port one. The output from port two is directly detected on a
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4.2 Thermal intermodulation noise in a membrane in the middle cavity

photodiode. In the classical regime, i.e. neglecting vacuum fluctuations, the complex
amplitude of the intracavity optical field, a, and the output field sout,2 can be found
from the input-output relations

da(t)

dt
=
(
i∆(t)− κ

2

)
a(t) +

√
κ1 sin,1, (4.10)

sout,2(t) = −
√
κ2a(t), (4.11)

where sin,1 is the constant coherent drive amplitude, ∆(t) = ωL − ωc(t) is the laser
detuning from the cavity resonance, modulated by the cavity frequency noise, and κ1,2

are the external coupling rates of ports one and two (κ1 = κ2 in our case) and κ = κ1+κ2.
In the fast cavity limit, when the optical field adiabatically follows ∆(t), the intracavity
field is found as

a(t) = 2

√
η1

κ
L(ν(t)) sin,1, (4.12)

where we introduced for brevity the normalized detuning ν = 2∆/κ, the cavity decay
ratios η1,2 = κ1,2/κ and Lorentzian susceptibility

L(ν) =
1

1− iν
. (4.13)

Expanding L in Eq. (4.12) over small detuning fluctuations δν around the mean value
ν0 up to second order we find the intracavity field as

a = 2

√
η1

κ
L(ν0)(1 + iL(ν0)δν − L(ν0)2δν2)sin,1. (4.14)

According to Eq. (4.14), the intracavity field is modulated by the cavity frequency ex-
cursion, δν, and the frequency excursions squared, δν2. If δν(t) is a stationary Gaussian
noise process, like typical thermal noises, the linear and quadratic contributions are un-
correlated (despite clearly not being independent). This is due to the fact that odd-order
correlations vanish for Gaussian noise,

〈δν(t)2δν(t+ τ)〉 = 0, (4.15)

where 〈...〉 is the time average, for an arbitrary time delay τ . Next, we consider the
photodetected signal, which, up to a conversion factor, equals the intensity of the output
light and is found to be

I(t) = |sout,2(t)|2 ∝ |L(ν0)|2
(

1− 2ν0

1 + ν2
0

δν(t) +
3ν2

0 − 1

(1 + ν2
0)2

δν(t)2

)
. (4.16)

Notice that δν(t) and δν(t)2 can be distinguished by their detuning dependence. The
linearly transduced fluctuations vanish on resonance (ν0 = 0), where ∂L/∂ν = 0. Simi-
larly, when ∂2L/∂ν2 = 0, the quadratic frequency fluctuations vanish, and thus also the
thermal intermodulation noise. We refer to the corresponding detuning values,

ν0 = ±1/
√

3, (4.17)
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as “magic”. In the following experiments, we will make measurements at ν0 = −1/
√

3
and ν0 = 0 to independently characterize the spectra of δν(t) and δν(t)2, respectively.

The total spectrum1 of the detected signal, I(t), is an incoherent sum of the linear
term given by,

Sνν [ω] =

∫ ∞
−∞
〈δν(t)δν(t+ τ)〉eiωτdτ, (4.18)

and the quadratic term, which for Gaussian noise can be found using Wick’s theorem
[259]

〈δν(t)2δν(t+ τ)2〉 = 〈δν(t)2〉2 + 2〈δν(t)δν(t+ τ)〉2, (4.19)

as

S(2)
νν [ω] =

∫ ∞
−∞
〈δν(t)2δν(t+ τ)2〉eiωτdτ =

2π〈δν2〉2δ[ω] + 2× 1

2π

∫ ∞
−∞

Sνν [ω′]Sνν [ω − ω′]dω′, (4.20)

where δ[ω] is the Dirac delta function.

In an optomechanical cavity, the dominant source of cavity frequency fluctuations is
the Brownian motion of mechanical modes coupled to the cavity,

δν(t) = 2
G

κ
x(t), (4.21)

where G = −∂ωc/∂x is the linear optomechanical coupling constant, and x is the to-
tal resonator displacement, i.e. the sum of independent contributions xn of different
mechanical modes, averaged over the cavity mode waist (see more details in [44]). It
is the finite cavity waist width that is the dominant factor preventing the coupling of
high-frequency membrane modes to the cavity and thus proving a high-frequency cutoff
for δν(t). The spectrum of the Brownian frequency noise is then found to be

Sνν [ω] =

(
2G

κ

)2∑
n

Sxx,n[ω], (4.22)

where Sxx,n[ω] are the displacement spectra of individual mechanical modes (see [44]
for explicit expressions). The thermomechanical frequency noise given by Eq. (4.22)
produces TIN which contains peaks at sums and differences of mechanical resonance
frequencies and a broadband background due to the off-resonant components of thermal
noise, as illustrated in Figure 4.2B. The magnitude of the intermodulation noise is related

to the quadratic spectrum of the total mechanical displacement, S
(2)
xx , as

S(2)
νν = (2G/κ)4S(2)

xx . (4.23)

1In this chapter, we use two-sided spectral densities, denoted as Sxx[ω], in theoretical derivations and
one-sided spectral densities, denoted as Sx[ω] = 2Sxx[ω] for ω > 0, for the presentation of experimental
data.
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4.2 Thermal intermodulation noise in a membrane in the middle cavity

A reservation needs to be made: the theory presented above is only strictly applica-
ble to an optomechanical cavity when the input power is sufficiently low, such that the
driving of mechanical motion by radiation pressure fluctuations created by the intermo-
dulation noise is negligible; otherwise the fluctuations of x(t) and δν(t) may deviate from
purely Gaussian and correlations exist between δν(t) and δν(t)2. On a practical level,
this reservation has minor significance for our experiment. Also, the presence of linear
dynamical backaction of radiation pressure does not change the results of this section
but does modify Sxx.

4.2.3 Quadratic transduction and quadratic coupling in MIM system

In this section we compare the magnitudes of nonlinear coupling and nonlinear trans-
duction in membrane-in-the-middle cavity. It is helpful to clarify terminology first. One
way to understand the operation of cavity-assisted measurements of oscillator position
is the following. For an isolated cavity, an oscillator displacement x produces a shift of
the resonance frequency ∆ωc, which is linear or quadratic in x depending on the kind
of function ωc(x). When ∆ωc(x) is not linear in x, we speak about nonlinear coupling.
In order for the cavity frequency shift ∆ωc to be measurable, the cavity needs to be
coupled to a propagating field. When the cavity frequency excursion ∆ωc is small com-
pared to the optical linewidth, it is typically transduced linearly to the modulation of
propagating field (e.g., for the phase of light reflected off the cavity on resonance one
has ∆φ ∼ ∆ωc/κ � 1). Whenever it happens that the linear transduction is zero, as
when detecting the amplitude quadrature of light reflected on cavity resonance, or when
the cavity frequency excursions are large compared to the linewidth, the propagating
field is modulated non-linearly by the excursions of cavity frequency. In this case we
speak about nonlinear transduction of cavity frequency fluctuations, or, more precisely,
nonlinear transduction of laser-cavity detuning.

Nonlinear cavity transduction can produce signals quadratic in mechanic displace-
ment which are orders of magnitude stronger than previously experimentally demonstra-
ted quadratic coupling arising from ∂2ωc/∂x

2 terms [248]. Below we derive the classical
dynamics of the optical field in an optomechanical cavity taking into account terms that
are quadratic in displacement. We show that in a membrane-in-the-middle cavity, the
quadratic signals originating from nonlinear transduction are rF larger than the signals
due to the nonlinear optomechanical coupling, ∂2ωc/∂x

2.

The fluctuations of ν due to the mechanical displacement are given by

δν(t) ≈ 2
G

κ
x(t) +

G2

κ
x(t)2, (4.24)

where G = −∂ωc/∂x and G2 = −∂2ωc/∂
2x are the linear and quadratic optomechanical

coupling, respectively, and the total displacement x consists of partial contributions of
different modes xn

x(t) =
∑
n

xn(t). (4.25)

143



Nonlinear measurements and thermal intermodulation noise

For a resonant laser probe we can find the intracavity field as

a(t) ≈ 2

√
η1

κ
(1− iν(t)− ν(t)2)sin,1 =

2

√
η1

κ

(
1− 2i

G

κ
x(t)−

((
2
G

κ

)2

+ i
G2

κ

)
x(t)2

)
sin,1. (4.26)

It is instructive to compare the magnitudes of the two contributions to the prefactor of
x(t)2. The typical value for G (assuming the membrane is not very close to one of the
mirrors) is

G ∼ 2r
ωc
lc
, (4.27)

while the typical value for G2 is [84]

G2 ∼ 4
rω2

c

c lc
, (4.28)

where c is the speed of light, r is the membrane reflectivity and lc is the cavity length.
The ratio of the two contributions is evaluated as(

2
G

κ

)2
/(

G2

κ

)
∼ Fr. (4.29)

As the cavity finesse F is typically large, on on the order of 103 to 105, and the membrane
reflectivity r is between 0.1 and 0.5, we conclude that linear optomechanical coupling
needs to extremely well suppressed in order for the quadratic coupling G2 to be obser-
vable.

4.3 Experimental observation and characterization of TIN

4.3.1 Setup, cavity assembly and alignment

Experiments a with membrane in the middle systems begin with cavity assembly. In our
case, the cavity is made by directly clamping a membrane chip between two supermirrors.
All supermirrors used in our work have identical coatings: 29 Ta2O5/SiO2 bilayers, with
nominal transmission equal to 100 ppm at the reflectivity band center, 850 nm. The
high-reflectivity mirror coatings were deposited by the company FiveNine Optics on
superpolished quartz substrates. Each mirror also has an anti-reflection coating on the
opposite side. We experimentally characterized finesse as high as 3.6× 104 in a Fabry-
Perot cavity made of two such mirrors without a membrane. The assembled cavity
(shown in Figure 4.5A) is mounted vertically, mostly to facilitate membrane handling
and its transverse alignment with respect to the cavity mode. We use a concave mirror
with the radius of curvature equal 5 cm at the top and a flat mirror at the bottom of
the cavity. The assembly is fixed by one top clamp (as shown in Figure 4.5B) and does
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Figure 4.5: A) To-scale rendering of a membrane-in-the-middle cavity with a flat mirror chip
as bottom mirror (M2). B) Photo of a clamped MIM assembly with a circular bottom mirror.
In the photo two out of four clamping screws are not present, while normally all four are used.
C) Experimental setup in which TIN is studied consisting of a membrane-in-the-middle opto-
mechanical system. PD: photo diode. PM/AM: Phase/amplitude modulator. ESA: Electronic
spectrum analyzer.

not use any glue. To verify mirror finesse or to measure the cavity frequency noise due
to the thermal fluctuation in the mirrors (dominated by their Brownian motion), the
cavity can be assembled with a spacer chip or by directly placing one mirror on top of
another.

Even a small membrane tilt with respect to the cavity axis can lead to excess optical
losses. The direction of optical axis in our cavities is defined by the flat bottom mirror
(perpendicular to its surface), so it is important that the membrane is parallel to the
mirror surface. In our assembly scheme, there is no deterministic control over tilt once
the components are put together, and it relies on the surfaces of the mirror and the
membrane chip to be clean. If necessary (which is usually the case), these surfaces are
cleaned prior to the assembly using lint-free cleanroom q-tips and acetone or methanol
as solvent. For cleaning the supermirrors, FirstContact polymer is another option. Cle-
aning the bottom part of the membrane chip is a tricky part and requires some manual
dexterity, as the membrane can be easily broken at this stage. In our experience, over
numerous cavity assemblies there were accidents that led to membrane breaking. After
some of the accidents the residues of membranes could not be entirely removed from
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Figure 4.6: MIM transverse alignment setup. A) Optical layout. B) Photo of the actual setup.
C-E show the microscope camera images when the cavity is illuminated from the bottom using a
780 nm tunable diode laser. C) A High-order optical mode which center is off the PnC membrane
defect—this is a typical picture in the beginning of the alignment. D-E) TEM00 mode centered
with the defects of PnC membranes.

the mirror surfaces. We did not observe, however, this leading to a degradation of the
cavity finesse. Most likely this is because of the small size of the cavity mode waist,
which means that even a small area of clean mirror surface is enough to maintain high
finesse.

The total length of our cavity is around 350 µm, and cavity beam waist for the TEM00

mode is about 35 µm. While the nominal cavity length is well defined by the thickness of
the chip and the radius of curvature of the top mirror, the lengths of practical assemblies
showed some variation, which manifested as a variation of the mean free spectral range2.
This could be due to imperfect chip flatness and cleanliness of the surfaces.

The Rayleigh length of the cavity mode in our case is much longer than the ca-
vity length. We did not observe excess optical losses due to the membrane not being
positioned perfectly at the cavity waist (which coincides with the flat bottom mirror).

Despite all our precautions, the insertion of a membrane into the cavity resulted in
excess loss for most of the optical resonances. Nevertheless, for some resonances, the
optical quality factors were reduced by only 10%. A typical variation of optical loss with
wavelength for a cavity with unpatterned membrane is shown in Figure 4.7.

Experiments with patterned membranes (trampolines and PnCs hosting soft-clamped

2The optical resonances in a MIM cavity are not equidistant, but their average separation is still well
defined.

146



4.3 Experimental observation and characterization of TIN

835 840 845
0

20

40

60

Wavelength (nm)

κ/
2�

 (M
H

z)

830

Figure 4.7: Optical linewidths of MIM cavity. Green points—measured linewidths of different
optical resonances of MIM cavity with a 2mm×2mm×20nm unpatterned membrane, the dashed
line is a guide to eye. Orange line—linewidth of an empty cavity with the same length.

modes) require precise transverse alignment of the cavity. The membrane center, which
can be as small as 100 µm needs to coincide with the cavity waist. A difficulty in
such alignment is that the position of the cavity mode is a priori unknown, as it is
not marked by any visual references and depends on the mirror tilt (a small tilt of the
top mirror shifts the cavity axis but does not lead to any optical losses). At the same
time, inserting a patterned membrane in a Fabry-Perot cavity with F ∼ 3 × 104 at a
position not centered with the cavity axis easily introduces enough optical loss to prevent
the observation of any optical resonances. Without observing resonances, there is no
feedback for further adjustment of the membrane position. To circumvent this issue, we
perform the transverse cavity alignment in a separate setup, shown in Figure 4.6. In this
setup, the light of a 780 nm diode laser is coupled to the cavity and the membrane is
imaged through the top mirror using a microscope. At 780 nm, the finesse of our cavity
is below 100, so that even a severe misalignment of the membrane does not preclude the
observation of optical modes. To make the membrane center and cavity axis coincide,
the top mirror is moved by hand or using tweezers, while the assembly is gently clamped.
The chip remains fixed in its place if the contact with the bottom mirror is good. Once
the cavity mode is positioned, the top clamp is tightened stronger by iteratively and
uniformly adjusting all four clamping screws. Here a balance should be maintained—
too strong tightening can break the membrane chip, while a loose cavity is susceptible to
acoustic vibrations and may preclude laser locking. After the cavity is aligned, high-Q
optical resonances with low transverse order can be observed with 840 nm light coupled
to the cavity. It was experimentally verified that the spatial location of the TEM00

cavity mode is the same at 780 nm and 840 nm, which is an expected outcome.

After the cavity is assembled and aligned, it is manually transferred with the holder
(shown inFigure 4.5B) to the vacuum chamber of the main setup (shown in Figure 4.5C).
While the main setup also has a camera for imaging the membrane and the optical mode,
the resolution here is not sufficient for membrane alignment. The camera is mainly used
to verify that a TEM00 mode is excited, and it can also facilitate the cavity coupling.
Without using the camera and a flashlight to see the position of the excitation beam,
coupling to a MIM cavity with a patterned membrane might be challenging, since high
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Figure 4.8: Spectrum of thermal detuning fluctuations due to the substrate noise, measured for
a Fabry-Perot cavity without membrane.

order optical modes are too strongly damped to show up in transmission, and a low
transverse order (∼ 0− 3) mode needs to be found from the beginning.

The main experimental setup, as shown in Figure 4.5C, comprises a membrane-in-
the-middle cavity, situated in a vacuum chamber at room temperature and probed using
a Ti:Sa or a tunable external cavity diode laser. The laser wavelength is around 840 nm,
close to the maximum reflectivity wavelength of the mirrors. A Ti:Sa laser was used in
all the thermal noise measurements, whereas a diode laser was used for characterization
of optical linewidths. The measurement signal was generated by direct detection of the
light transmitted through the cavity on an avalanche photodiode. The reflected light,
separated using a circulator, was used for Pound-Drever-Hall (PDH) locking of the Ti:Sa
frequency. The one-sided spectra of signals were detected in transmission and calibrated
either as relative intensity noise (RIN) or as effective cavity detuning fluctuations, S∆,
with the help of calibration tones applied to the amplitude or phase quadratures of
the laser, respectively. Optomechanical vacuum coupling rates, g0, were measured using
frequency noise calibration as described in Ref. [224]. In order to calibrate the shot noise
level in this scheme, we measure the power of signal beam first, and then direct a reference
beam with the same power on the detection. Note that the mode imaging and shot noise
calibration do not operate at the same time as measurements, the corresponding paths
are engaged/disengaged with the help of flip mirrors.

In all noise measurements presented in the following, the classical intensity noise of
the Ti:Sa laser was more than an order of magnitude below the resonant RIN of MIM
cavities for frequencies above 100 kHz. The classical frequency noise of the laser is
below 1 Hz2/Hz for frequencies above 100 kHz (see the supplementary information of
[194] and [44]), which is at least an order of magnitude below the thermal detuning noise
of an empty Fabry-Perot cavity (assembled using a silicon chip without a membrane as a
spacer) as shown in Figure 4.8. Additionally, we did not observe any significant effect of
the laser lock performance on the magnitude of TIN, which indicates that the nonlinear
up-conversion of detuning noise from low frequencies (below 100 kHz), where the laser
noise is largest, contributes negligibly to the TIN in our cavities.
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Figure 4.9: Spectra of resonant and off-resonant thermal noise in the transmitted signal. Solid
lines represent experimental data, dashed lines—the estimated levels of shot noise. A) Detuning
noise of a MIM cavity with a 1 mm square membrane, κ/2π = 26.6 MHz and g0/2π = 330 Hz
for the fundamental mode, measured at the laser detuning 2∆/κ ≈ −1/

√
3. B) Resonant RIN

measured under the same conditions as in (A) but at ∆ = 0.

4.3.2 Square membranes

In this section, we characterize the TIN in cavities with 20 nm-thick uniform square
membranes of different sizes. The optomechanical cooperativity was kept low in order
to eliminate dynamical backaction of the light. For this purpose the residual pressure
in the vacuum chamber was kept high, 0.22 ± 0.03 mBar, such that the quality factors
of the fundamental modes of the membranes were limited by gas damping to Q ∼ 103.
The reflection signals of two resonances of a MIM cavity with a 2mm×2mm membrane
are presented in Figure 4.11B. The resonances have similar optical linewidths (about 15
MHz) but their optomechanical coupling is different by a factor of ten. The resonance
with high coupling (g0/2π = 150 Hz) shows clear signatures of thermal noise. For this
resonance the total r.m.s. thermal frequency fluctuations are expected to be around 2
MHz, which is still well below the cavity linewidth, κ/2π = 16 MHz.

Thermal fluctuations of the reflection signal are clearly observed in the right panel
of Figure 4.11B even when the laser is resonant with the cavity. This is not expected
in linear optomechanics, where the mechanical motion only modulates the phase of a
resonant laser probe. Typical spectra of the detected noise are shown in Figure 4.9 for a
cavity with a different, 1mm×1mm, square membrane. With the laser detuned from the
cavity resonance close to the “magic” detuning, ν0 ≈ −1/

√
3, the transmission signal

is dominated by the Brownian motion of membrane modes transduced by the cavity
(shown in Figure 4.9A), in agreement with the prediction of linear optomechanics. The
magnitude of thermomechanical noise is gradually reduced at high frequencies due to
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Figure 4.10: Spectra of resonant relative intensity noise for a 2 mm square unpatterned mem-
brane (resonance wavelength 837.7 nm, g0/2π = 84 Hz, κ/2π = 9.9 MHz) at different input
powers. The inset shows the same plot zoomed in at low frequencies. The RIN levels plotted in
Figure 4.11 are averaged over the frequency range shaded gray.

the averaging of membrane mode profiles [255, 254] over the cavity waist, until it meets
shot noise at around 15 MHz. With the laser on resonance (Figure 4.9B), from linear
optomechanics it is expected that the output signal is shot noise limited. However, the
experimental signal contains a large amount of thermal noise—at an input power of 5 µW
the classical RIN exceeds the shot noise level by about 25 dB at MHz frequencies. The
spectrum of the resonant RIN is different from the spectrum of detuning fluctuations,
owing to the nonlinear origin of the noise. At high frequency, the RIN level approaches
shot noise, as verified by the optical power dependence presented in Figure 4.10.

An unambiguous proof of the intermodulation origin of the resonant intensity noise is
obtained by examining the scaling of the noise level with G/κ. In thermal equilibrium,
the spectral density of frequency fluctuations, δν(t), created by a particular membrane
is proportional to (G/κ)2, and therefore the spectral density of intermodulation noise
is expected to be proportional to (G/κ)4. We confirm this scaling by measuring the
resonant intensity noise for different optical resonances of a cavity with a 2mm×2mm
membrane and present in Figure 4.11A the average noise magnitude as a function of
g0/κ, where g0 is the optomechanical coupling of the fundamental mechanical mode. By
performing a sweep of the input laser power on one of the resonances of the same cavity
we show (see Figure 4.10) that the resonant intensity noise level is power-independent
and therefore the noise is not related to radiation pressure effects.

The TIN observed in our experiments agrees well with our theoretical model. By
calculating the spectrum of total membrane fluctuations according to Eq. (4.22) and
applying the convolution formula from Eq. (4.20), we can accurately reproduce the
observed noise. In Figure 4.12, we compare the measured detuning and intensity noise
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optomechanical coupling.

spectra with the theoretical model. Here, we assume that the damping rates of all
the membrane modes are identical, as the experiment is operated in the gas-damping-
dominated regime. While this model is not detailed enough to reproduce all the noise
features, it accurately reproduces the overall magnitude and the broadband envelope of
the intermodulation noise observed in the experiment.

We would like to mention two potential confounding effects: laser frequency noise and
dissipative coupling. The intensity noise of the laser was below 10−12 Hz−1 for frequencies
above 100 kHz and therefore negligible in all resonant RIN measurements. In the same
frequency range, the frequency noise of the laser is below 1 Hz2/Hz, which is, again, much
lower than the thermomechanical noise. As dissipative coupling leads to the modulation
of optical linewidth by mechanical position, it could also potentially explain intensity
noise in a resonant optical field. Although dissipative coupling is generally present in
MIM cavities (see e.g. [254]), the magnitude of this noise is expected to be orders of
magnitude below that measured in our experiments. Moreover, dissipative coupling
cannot explain the observed scaling of resonant RIN (∝ (G/κ)4) and the absence of
correlation between the RIN level and the excess optical loss added by the membrane.

4.3.3 PnC membranes with soft-clamped modes

Localized soft-clamped defect modes in stressed phononic crystal (PnC) resonators can
have quality factors in excess of 108 at room temperature due to enhanced dissipation
dilution [36, 32]. Owing to their high Q and low effective mass, which result in low
thermal force noise, Sth

FF = 2kBTmeffΓm, these modes are promising for quantum op-
tomechanics experiments [150]. The phononic bandgap spectrally isolates soft-clamped
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of a 20-nm thick, 0.3mm×0.3mm, rectangular, Si3N4 membrane. Red shows experimental data
and blue is the theoretical prediction.

modes from the thermomechanical noise created by the rest of the membrane spectrum.
Nevertheless, when a PnC membrane is incorporated in a MIM cavity the entire mul-
titude of membrane modes contributes to the TIN even within bandgap frequencies, as
TIN is produced by a nonlinear process.

The measurements with PnC membrane presented in this section were made using the
setup shown in Figure 4.5C, the vacuum pressure was kept below 5×10−7 mBar in order
to eliminate gas damping. The insertion of a PnC membrane in a MIM cavity typically
resulted in a somewhat larger excess optical loss than the insertion of a rectangular
membrane. The excess optical loss was estimated to be 300 ppm per roundtrip for the
cavity resonance in Figure 4.13, and 150 ppm for the resonance in Figure 4.14.

Figure 4.13 shows the spectrum of light transmitted through a resonance of membrane-
in-the-middle cavity with g0/2π = 0.9 kHz for the soft-clamped mode, κ/2π = 34 MHz
and C0 = 2.5. The noise at bandgap frequencies is dominated by TIN, which exceeds the
shot noise by four orders of magnitude. The spectrum also shows a dispersive feature in
the middle of the bandgap, which is a signature of classical correlations due to the in-
tracavity TIN exciting the localized mechanical mode. The mechanical resonator in this
case is a 2 mm square PnC membrane with the patterning described in Sec. 2.5.4, made
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Figure 4.13: Measurement of the frequency spectrum of thermal optomechanical intermodula-
tion noise with a phononic crystal membrane. Blue—photocurrent noise spectrum detected with
the cavity-laser detuning set to 2∆/κ ≈ −0.3, red—shot noise level. The shaded region shows
the noise averaging band for the plot in b. The inset shows an optical cavity mode (imaged at
λ ≈ 780 nm) overlapping with the PnC membrane defect.

of 40 nm-thick Si3N4. The membrane has a single soft-clamped mode with Q = 4.1×107

at 1.55 MHz, as characterized immediately before inserting the membrane in the cavity
assembly. The input power in the measurement was 100 µW after correcting for spa-
tial mode matching, which corresponds to a nominal Cq ≈ 1. The shot noise level was
calibrated in a separate measurement by directing an independent laser beam on the
detector.

We next present in Figure 4.14 the dependence of the bandgap noise level on the
laser detuning, measured on a different optical resonance of the same MIM cavity and
at lower input power. In this measurement g0/2π = 360 Hz for the localized mode,
κ/2π = 24.8 MHz and the input power was 30 µW. For performing the detuning sweep,
of the offset of the laser frequency from the cavity resonance was controlled by and
inferred from the locking set point. For detunings greater than 2∆/κ ≈ 0.5, where the
PDH error flips sign, side of the line locking was used instead of PDH. The bandgap
noise was averaged over a 35 kHz band indicated in Figure 4.13. The measurement
shows that the in-bandgap excess noise is dominated by TIN at all detunings except for
the immediate vicinity of the “magic” detuning ν0 = −1/

√
3. Around ν0 = −1/

√
3 the

excess noise is consistent with the substrate noise of an empty cavity. Figure 4.15 shows
an overlap of the detuning fluctuations spectra taken for an empty cavity and a cavity
with PnC membrane at magic detuning, which shows an almost perfect coincidence
of the extraneous noise levels. The uncertainty of the empty cavity noise indicated in
Figure 4.14 by a band comes from the fine structure of the noise peaks, which makes
the exact level dependent on the selection of integration band.
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The total noise level in Figure 4.14 is well fitted by our model that includes both

Sνν and S
(2)
νν contributions to the detected signal and accounts for the radiation pressure

cooling (full details of the model are given in Ref. [44]).

Finally, we notice that the intensity of the detected light in our measurement is pro-
portional to the intensity of the intracavity field. Therefore, the suppresion of TIN at
magic detuning necessarily implies the suppression of the corresponding radiation pres-
sure noise, which can lead to classical heating of the mechanical oscillator and thereby
limit the true quantum cooperativity.
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Summary and outlook

To conclude, we covered several efforts, experimental and theoretical, united by the com-
mon goal of observing the quantum behavior of low-frequency macroscopic mechanical
oscillators at high temperatures (kT/(~Ωm) � 1). Such oscillators are naturally very
classical objects, in part because their thermal environments usually set a high minimum
rate of decoherence for quantum states, and in part because the oscillator dynamics in
the quantum and classical cases can be very similar. Unlike electromagnetically trapped
ions or optically levitated nanoparticles, modes of solid-state mechanical resonators can-
not be completely decoupled from their thermal bath because a part of the bath is made
by other internal degrees of freedom within the resonator itself. The strain-mediated
coupling of acoustic modes to internal degrees of freedom leads to intrinsic mechanical
losses, minimizing which is a key step towards controlling these modes in the quantum
regime.

Leveraging the reduction of intrinsic dissipation in the presence of static stress, known
as dissipation dilution, was instrumental to the advancements recently made in quan-
tum experiments with mechanical microresonators. While the basic limitations of this
technique were understood early on (a decade ago, since the idea is relatively young),
only withing the last couple of years new insights allowed to access its full potential.
Engineering dissipation dilution in resonators under given constraints seems far from
being exhausted and may lead to new breakthroughs. It is surprising to an extent, that
while the structural mechanics of thin films has been studied for more than a hundred
years, acoustic vibrations of stressed patterned plates, and, in particular, their dissi-
pation properties attracted little attention till now. It is well possible that ideas from
new fields like topology, metamaterials, and kirigami can enable low-loss mechanical
resonators with unprecedented properties.

Measurements operate in the quantum regime only when all non-fundamental sources
of error are carefully eliminated. In principle, mechanical decoherence even at a high
temperature can be counteracted by performing measurements faster than the decohe-
rence rate. In practice, however, the absolute resolution required to reach this regime
can be so high that even a small experimental imperfection will readily lead to a pro-
hibitively large classical error. In our experiments with integrated near-field coupled
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optomechanical cavities, the measurement rate remained significantly below the mecha-
nical decoherence rate limited by the onset of thermal intracavity noises and the low
finesse of the optical cavity. Incorporating record-high Q nanobeam resonators in the
near-field scheme would bridge the gap, but the fabrication challenges on this route have
still not been overcome.

In our membrane-in-the-middle experiment, the parameter range is more promising
for reaching the quantum regime of oscillator measurements even at room temperature.
However, we found that the deviation of the interferometric measurement scheme from
purely linear is a significant source of classical error, in addition to the thermal noise
of the cavity mirrors. The ability to perform nonlinear measurements can be highly
desirable, as in principle can be used to create non-Gaussian states, which preparation
for sub-GHz frequency mechanical oscillators remains an enticing but elusive goal. In
our experiments, however, the transduction nonlinearity of interferometric measurements
was a key challenge. Avoiding thermal intermodulation, either by selectively coupling
to only one mechanical oscillator or by devising measurement schemes which would
be free of second-order nonlinearity, will be important for future quantum measurement
experiments. Our results showed that thermal intermodulation noise, although complex,
is predictable and can be reliably modeled.
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A.1 Elastic energy and dissipation in a geometrically non-
linear body

In this appendix, we present some details that were skipped in the main text and in-
troduce the elastic energy and the intrinsic dissipation in the presence of geometrically
nonlinear strain. Geometrically nonlinear deformations are treated in the framework of
the theory of large deformation. Although the usage of this theory might appear to be
at odds with the end goal, which is to understand the properties of acoustic modes with
infinitesimally small amplitudes, it is justified by the fact that the total deformations
(static plus dynamic) in our problem are finite.

We follow the notation of Ref. [94] and describe the deformation as a time-dependent
mapping between the material coordinates Xa and the spatial coordinates xi(Xa, t). We
always choose the spatial frame to be Cartesian, while the material coordinate system
can be curvilinear as a consequence of the deformations, which explains the need to
differentiate between lower and upper indices of tensors. We denote indices in different
frames by letters from different parts of the Latin alphabet—a, b, c... correspond to
indices in the material frame and i, j, k... correspond to indices in the spatial frame.
Transformations of the components of tensors between the frames is done using the
distortion tensor,

xia ≡
∂xi

∂Xa
, (A.1)

and its inverse,

Xa
i ≡

∂Xa

∂xi
. (A.2)

The metric tensor in the material frame is denoted as gab. By definition, the strain εab
is the deviation of the metric in the material frame from the Kronecker tensor,

εab ≡
1

2
(gab − δab). (A.3)

Given our choice of the spatial frame, the metric tensor here is constant and equal to
the Kronecker tensor, gij = δij .

Forces acting inside a continuous body (which is not assumed to be elastic at this
stage) are described by a symmetric stress tensor σij . The force df i acting on a small
surface element is given by

df i = σijdsj . (A.4)

The surface element here is characterized by the vector dsj , which length is equal to the
area and direction is perpendicular to the surface, and summation over repeated indices
is assumed. The force acting on a unit element of volume is found using the divergence
theorem as

f i =
∂σij

∂xj
. (A.5)

This expression for the divergence uses the fact that the spatial frame is Cartesian.
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The work δW performed by intrinsic forces on the entire body per an interval of time
dt is found as

δW
dt

= −
∫
f ividV, (A.6)

where vi = ∂xi/∂t is the speed of motion of the material elements and
∫
...dV denotes

the integration over the body volume in the spatial frame. Integrating by parts and
using the symmetry of the stress tensor, we find

δW
dt

=

∫
σij

∂vi
∂xj

dV =

∫
σijVij dV, (A.7)

where Vij is the rate of strain change tensor,

Vij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (A.8)

In the material frame, the rate of strain change is simply given by

Vab =
∂

∂t
εab, (A.9)

whereas in the spatial frame Vij 6= ∂
∂tεij and Eq. (A.8) should be used directly instead.

In the process of deformation, intrinsic body forces perform work. This work either
dissipates externally supplied1 energy or stores it as elastic energy of deformations inside
the material. Since the work is related to the rate of strain change, which has a simple
expression in the material frame, it is convenient to use this frame to derive expressions
for the stored and dissipated energies. When energy is dissipated by body forces, their
work is always negative, and the dissipation power is given by

P (diss) = −δW
dt

= −
∫
σab

∂

∂t
εab dV. (A.10)

This justifies the way intrinsic dissipation was introduced in Sec. 2.3.4. When the body
forces are conservative, one can introduce elastic energy, W (el). It is convenient to do so
by considering deformation in the quasi-static limit, when the kinetic energy is negligible,
so that all the work is done at the expense of elastic energy change,

dW (el)

dt
=

∫
σab

∂

∂t
εab dV. (A.11)

In order to advance further, we need to make an assumption regarding the dependence
of internal stresses on strains (i.e. to introduce constitutive relations). If the material is
physically linear [94], the stress is related to the strain as

σab =
ρ0

ρ
Cabcdεcd, (A.12)

1Or converted from another form of energy.
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where Cabcd are material constants, which may experience spatial variation inside the
body but do not depend on strain, and ρ0/ρ is the ratio of densities of the undeformed
and deformed bodies. The elastic energy of a physically linear elastic material is given
by

W (el) =
1

2

∫
Cabcdεabεcd dV̊ =

1

2

∫
σabεab dV̊ , (A.13)

where we introduced the element of undeformed body volume, dV̊ = ρ0dV/ρ. In
Eq. (A.13) the juggling of indices is done using the metric in the undeformed state,
g̊ab.

In the main text, we do not distinguish between the deformed and the undeformed
body volumes and put dV̊ ≈ dV , which is justified as long as the total deformations
are small (εab � 1). The same applies to the volume integral in the expression for the
dissipated power in Eq. (A.10).

The equations governing the dynamics of acoustic vibrations can be found from the
variation of action [94]. The first step in this procedure is expressing the Lagrangian
function

L = W (kin) −W (el), (A.14)

in terms of acoustic deformations and their spatial and temporal derivatives. Here the
kinetic energy W (kin) is given by

W (kin) =

∫
ρ vivi

2
dV. (A.15)

We are interested in infinitesimal dynamical deformations on top of finite static defor-
mations, so that the overall deformation field is given by

xi(Xa, t) = x̄i(Xa) + ui(Xa, t). (A.16)

The time-dependent field ui(Xa, t) describes acoustic vibrations,

ui(Xa, t) = U i(Xa)e−Ωt + c.c. (A.17)

A similar decomposition into the static and dynamic parts applies to the stress and
strain,

εab(X
a, t) = ε̄ab(X

a) + ∆εab(X
a, t), (A.18)

σab(X
a, t) = σ̄ab(X

a) + ∆σab(X
a, t). (A.19)

The elastic energy, referred to a unit volume of the undeformed body, is given by

w =
1

2
σ̄abε̄ab + σ̄ab∆εab +

1

2
∆σab∆εab, (A.20)

which was obtained using the identity ε̄ab∆σab = σ̄ab∆εab. Both parts of the dynamic
energy, the one proportional to σ̄ab∆εab and the one proportional to ∆σab∆εab, contri-
bute to the quadratic potential for vibrational modes. Overall, the Lagrangian function
is given by

L =

∫ (
1

2
ρ0 v

ava − σ̄ab∆εab −
1

2
∆σab∆εab

)
dV̊ , (A.21)
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where dV̊ is the integration in the undeformed material frame and ρ0 is the local density
in the absence of deformations.

To derive the elastodynamics equations in the main text we used the Lagrangian
given by Eq. (A.21) and assumed that the metric tensor is unity, gab = δab, which
ultimately made it unnecessary to distinguish between the upper and lower indices. For
the elastic energy terms, this does not correspond to any approximation as their indices
are moved by the metric of the undeformed state we are free to set g̊ab = δab by choosing
the undeformed material frame to coincide with the spatial Cartesian frame. For the
kinetic energy term, setting gab ≈ δab can introduce a relative error of the order of ε̄ab,
which is negligible for small static strains (ε̄ab � 1).

The transformation of the rate of strain change from the material to the
spatial frame. From the definition of the strain and the strain change rate tensors it
follows that,

Vab =
∂

∂t
εab =

1

2
gij

(
xia
∂xjb
∂t

+ xjb
∂xia
∂t

)
. (A.22)

Using the fact that in the Cartesian spatial frame gij = δij and also that,

∂

∂t
xia =

∂vi

∂Xa
= xka

∂vi

∂xk
, (A.23)

we find

Vab =
1

2
xiax

k
b

(
∂vi
∂xk

+
∂vk
∂xi

)
, (A.24)

and finally,

Vij = Xa
i X

b
jVab =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (A.25)
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A.2 FEM simulation of dissipation dilution in patterned
membranes

For practical simulations of dissipation dilution of flexural modes in patterned membra-
nes we use pre-stressed frequency domain analysis in COMSOL shell interface. Shell
simulations are substantially more time-efficient than simulations in full three dimen-
sions. Moreover, we observed that the results of three dimensional analysis were not
always reliable for structures with extreme aspect ratios. Dilution factors obtained from
numeric simulations of uniform beams with rectangular cross-section with l/h & 5× 103

deviated from analytical values by up to 20%. Shell simulations did not show such dis-
crepancy for all aspect ratios considered in our work. The simulation procedure outlined
below was developed and benchmarked in collaboration with Alberto Beccari.

The pre-stressed analysis consists of two simulation stages. During the first stage, the
original homogeneous distribution of static stress (or strain) in the material is “relaxed”
to a new equilibrium configuration that satisfies the boundary conditions on the free
edges. This may be physically interpreted as simulating the suspension of a pre-stressed
film. During the second stage, the eigenfrequencies and mode shapes are computed. The
option “include geometric nonlinearity” must be on during this step to include tension
energy. In order to obtain reliable deformation profiles around clamped boundaries, the
narrow region close to the boundary needs to be densely meshed at the scale below
λl = h

√
E/(12σ̄). In our case this was accomplished using swept meshing. After the

solution is found, dissipation dilution factors are calculated based on the two-dimensional
formulas from Sec. 2.4.1 as

DQ = ρΩ2/k(lin). (A.26)

We use the kinetic energy to find the total spring constant (as described in Sec. 2.3.6),
which simplifies the procedure as it does not require cross-coupling of the static and
dynamic solutions. We also tried computing the nonlinear dilution energy directly from
its definition (Eq. (2.90) in Sec. 2.3.6), and verified that this approach gives the same
result.

For consistency, we calculate dissipation dilution using explicit formulas for the ener-
gies that use only on the deformation profiles and eigenfrequencies of the modes. This
approach avoids relying on complex functionality of the simulation software, which is
heavily version-dependent and was not always backward-compatible in our experience.
We define the bending energy and kinetic energies as integral boundary probes under the
component-level definition node, so that these quantities are computed with the model.
Quality factors are computed as derived values in post-processing (under the “results”
node).

Below we reproduce expression that can be directly copy-pasted to COMSOL. The
bending energy (bend_energy) is given by:

shell.E*h_mbr^3*((dtang(dtang(w,x),x)+dtang(dtang(w,y),y))^2+

2*(1-shell.nu)*(dtang(dtang(w,x),y)^2-
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dtang(dtang(w,x),x)*dtang(dtang(w,y),y)))/(12*(1-shell.nu^2))

Note that the Gaussian curvature term (the last two lines in the expression above)
must be retained unless all edges of the membrane are clamped. The kinetic energy
(kin_energy) is given by:

h_mbr*shell.rho*shell.omega^2*shell.disp^2

and the quality factors are found as:

Qint*kin_energy/bend_energy

The expressions above use standard built-in symbols, including the Young’s modulus
shell.E and the Poisson’s ratio shell.nu, and also two user-defined parameters, the
membrane thickness h_mbr and the intrinsic quality factor of the film Qint.

Finally, we comment on an alternative way to calculate quality factors, which is im-
plemented by adding an imaginary component to the Young’s modulus and substituting
in the material properties E → E(1 − iφ), where φ = 1/Qint is the loss angle of the
film. Vibrational eigenfrequencies found in this case by the FEM solver are complex,
and the ratios of their real and imaginary parts can be expected to directly give diluted
quality factors. While this simple procedure works in some cases, it can also fail to give
the right result. This is not entirely surprising, as finding the eigenmodes of a medium
with complex Young’s modulus is not always straightforward to physically justify, and
in any case, this needs to be done with great care. Overall we find introducing complex
Young’s modulus to be a less reliable approach than the perturbative way of computing
quality factors outlined above.
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A.3 Buckling of thin-film structures

A thin-film mechanical resonator can have high dissipation dilution only as long as it
remains planar. Any buckling effects, which are quite common in structures made of
suspended thin films, need to be avoided. We could identify two different static buckling
mechanisms that affected the devices employed in or works. The first one is related to
compressive stress, and the second one, as we conjecture, to the transverse inhomogeneity
of the film.

The stress distribution of a suspended patterned film can have regions where the local
stress is compressive in some directions even if the film was uniformly biaxially tensioned
prior to suspension. The two-dimensional static stress tensor σ̄ij , which describes the
equilibrium stress in the film, can be diagonalized at any spatial point by an appropriate
rotation of the coordinate axes,

σ̄ij =

[
σp1 0
0 σp2

]
, (A.27)

where i, j = x, y and σp1 and σp2 are the two principal stresses. A direction in which
the stress is compressive exists if one of the principal stresses is less than zero.

In an infinitely thin membrane, a locally compressive principal stress results in expo-
nential growth of the amplitudes of acoustic modes propagating in this direction. This
leads to static buckling instability, i.e. a situation where a non-planar configuration of
the membrane is energetically favorable. In membranes with finite thicknesses, insta-
bilities occur only when threshold compressive stress is exceeded, the value of which
depends on the thickness. In our work, we did not observe buckling of silicon nitride
films thicker than 50 nm for any of the resonator designs that were explored. In contrast,
for some of the 20 nm-thick devices buckling was a major issue.

One example of static buckling that we faced is shown in Figure A.1A. The picture
shows the area around one of the clamping points of a 20 nm-thick steering wheel
trampoline membrane, similar to the ones described in Sec. 2.6.3. On the segment
enclosed by the yellow dash-dotted circle there is a stripe pattern, which is the result of
buckling instability triggered by compressive stress in the direction perpendicular to the
segment. The fact that this segment does have significant compressive stress (down to -30
MPa) is evident from the FEM simulation presented in Figure A.1B. This situation can
be avoided if the widths of the resonator segments are adjusted so that the junctions do
not displace upon film suspension, which is the same as fulfilling the “stress preservation”
condition discussed in Sec. 2.6.1. Note that the simulation in Figure A.1B also predicts
other regions of compressive principal stress, where, apparently, it is not high enough to
trigger instabilities. These regions can be eliminated by tapering membrane segments
as shown in Figure A.1E.

Buckling due to transverse compressive stress, according to our understanding, also
limited the aspect ratios of unit cells in the tapered PnC beams described in Sec. 2.5.2.
Figure A.1C shows a dark-field microscope image of a 20 nm-thick silicon nitride PnC
beam where the unit cell buckling manifests as a blurring of the wide segment edges,
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Figure A.1: Static deformation-induced compressive stress and buckling in suspended 20 nm-
thick silicon nitride resonators. Panels B, D and E show FEM simulations of compressive stress
and static film deformations; here black contours show undeformed geometries and the deforma-
tion magnitudes are amplified by a factor of 20. A) Microscope image of a segment of a steering
wheel trampoline membrane (courtesy of Alberto Beccari). The yellow and white contours enc-
lose regions where the film is deformed out of the figure plane. B) FEM simulation of the region
shown in A. C) Microscope image (dark-field) of a PnC beam segment which is buckled in the
transverse direction. D) Finite-element simulation of the segment in C which shows the existence
of regions of strong compressive principal stress. E) Simulations of doubly clamped ribbons that
show the elimination of compressive principal stress regions by tapering. y(x) are the functions
defining the free ribbon edges.
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which occurs as the edges go out of the microscope’s focus. We conjecture that the
different colors of the unit cells imaged in dark field are caused by buckling in opposite
directions. The FEM simulation presented in Figure A.1C confirms that the structure
has a strong, up to -200 MPa, compressive stress in the transverse direction.

We also observed out-of-plane deformations of structures which were not so readily
explained by compressive principal stress. Such deformations can be seen in Figure A.1A,
where the edges of long segments (e.g. inside the regions enclosed in the white dashed
ellipses) are out of focus, which indicates that the ribbons are deformed out of plane. We
conjecture that this can be a consequence of the non-homogeneity of the film along the
vertical direction. It is expected that this deformation can also be removed by increasing
the film thickness or by engineering stress so that it is tensile in all directions. Indirect
evidence in favor of this is that we did not observe such deformations in steering wheel
resonators with segments tapered as shown in Figure A.1E.
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A.4 Closed-cycle low-vibration cryogenic setup

Cryogenic experiments with mechanical resonators are attractive for a number of rea-
sons. First of all, thermal noises are reduced at low temperatures, including extraneous
noises in optical cavities, which can prevent quantum-limited position readout, and the
thermal force noises acting on mechanical modes, which result in the decoherence of
mechanical states. Second, material dissipation is also improved at cryogenic tempera-
tures (though not always monotonously with lowering the temperature), which further
reduces mechanical decoherence. For our silicon nitride devices, we typically observed
moderate improvements in quality factors, about a factor of three, between the room
temperature and 6K. In other cases, as for resonators made of crystalline materials,
improvements can be larger. Finally, experiments with low damping rate thin-film me-
chanical resonators require a high-vacuum environment, which borders with UHV for
the current state-of-the-art devices. Such an environment can be conveniently created
by the cryopumping of sample chamber parts cooled to 5K, as this temperature is below
the freezing point of atmospheric gases.

Our cryogenic setup is shown in Figure A.2. The cooling power is provided by a GM
cryocooler (Sumitomo) driven by its own helium compressor. Vibrations, created by the
pulsed operation of closed-cycle cryocoolers, is a notorious challenge for combining them
with setups requiring interferometric stability. Vibration isolation is therefore required,
which in our case relies on two mechanisms. The first one is a proprietary “Stinger”
system of delivering the cooling power from the cryocooler to the sample space. This is
done by recirculating helium gas inside a closed line so that the gas is pre-cooled to 7
Kelvin around the cryocooler, and then around the sample holder, it passes through a
thin capillary and delivers the cooling power utilizing the Joule-Thompson process. The
helium gas flow line is flexible and therefore efficiently decouples the sample chamber
from the vibrations of the cryocooler. The second isolation mechanism is more standard.
It consists of a Helium gas-gap isolation stage, so that the cooling Stinger line is not
attached to the cryocooler directly, and transmits even fewer vibrations to the sample
chamber.

The cryostat vacuum chamber, shown in Figure A.2B, was designed in collaboration
with the supplier company (ColdEdge) and is similar to the vacuum chambers of our
room-temperature setups. It allows continuous operation at 5K temperature with the
residual pressure, as detected by a vacuum gauge mounted on the chamber, around
5× 10−9 mBar. We note that the vacuum level is not necessarily reliably determined by
the gauge, but the true value is more likely to be lower than higher.

The helium flow valves, the cryocooler and the recirculator of the cryostat can be
remotely controlled from a PC. For convenience, we implemented a custom driver for the
valve control manifold, which can be found on GitHub and on the local group server. A
GUI-based MATLAB program for the remote control of the cryostat was implemented
as a part of the data acquisition system.

At the moment of writing, the cryogenic setup is mostly used for the characterization
of high-stress crystalline mechanical resonators, which are not covered in this thesis.
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Figure A.2: Schematic and photographs of the closed-cycle low-vibration cryogenic setup. A)
Conceptual layout of the setup. JT: Joule-Thompson. B) Sample space inside the vacuum
chamber, with the radiation shield removed. C) Cryostat with the vacuum chamber closed. The
microscope and the other optics above the chamber are parts of a free-space mechanical quality
characterization setup (the layout is described in Sec. 2.7). D) Cryocooler with the buffer gas-gap
vibration isolation.

While the essential optical layout is the same, it operates at a different wavelength—
1550 nm, and uses an optical drive with a weak 780 nm light beam.

170



A.5 Scalable data acquisition framework

A.5 Scalable data acquisition framework

Present-day physics experiments record very nearly all measurement data in one or
another digital form. Organizing digital data acquisition and storage for sophistica-
ted experiments can involve a good deal of programming. Correspondingly, common
software engineering problems such as code reusability, scalability, and version control
cannot be ignored. This leads to the evolution of small-scale experiment-specific scien-
tific software into more systematic frameworks. Whereas there is no sharp transition
here, the usual signature of a software framework is that it can automate experimental
routines while having the flexibility to be transferred between different setups to be con-
tinuously adapted to new experimental goals and hardware changes without extensive
reprogramming. Several data acquisition and instrument control frameworks that emer-
ged in recent years are open-source python-based projects, including Qudi [260], QTLab
[261] (which is used by the superconducting circuit optomechanics team at LPQM), and
QCoDeS [262]. There is also at least one commercial solution, Labber [263]. Numerous
other projects that serve the same goals certainly exist within the scientific community,
but most of them are either less developed or not given wide publicity by their creators.

The flexibility of measurement software frameworks is achieved with the help of ab-
stractions that decouple different functionalities and separate the software into building
blocks. The blocks can be modified independently and combined with one another to
fit the needs of a particular experiment. The blocks are commonly (but not necessarily)
implemented as software classes, meaning the usage of an object-orient approach.

Over the course of this thesis the author together with Nils Engelsen developed a
MATLAB-based data acquisition and analysis framework to facilitate our experimental
activity. The code is freely available from GitHub2 and is supplemented by some docu-
mentation. The structure of our software inherits several features from the predecessor
LabVIEW-based system developed by Dalziel Wilson, and also uses many conceptual
solutions common with the python-based projects cited above.

The main motivation behind our software system was to automate, and to make a
graphical interface for, the following tasks:

1. Recording data from a variety of physical instruments and saving it in a human-
readable format with metadata that contains the state of all other instruments at
the time of acquisition.

2. On-the-fly fitting and calibration of measurement traces, in most of the cases to
extract mechanical and optical quality factors, vacuum optomechanical coupling
rates and classical noise levels.

3. Continuous logging of setup parameters (usually vacuum pressure and cryogenic
temperature) and the browsing of existing logs.

At the moment of writing, the part of the software responsible for these tasks have been
extensively employed in our experiments for about two years, and proved its practical
utility. The software is currently utilized on four measurement setups.

2https://github.com/engelsen/Instrument-control/wiki
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The implementation details of our software system can be found in the wiki of the git
repository. One core abstraction that it uses is the “instrument” class, instances of which
are responsible for maintaining communication each with one physical device. The con-
cept of instrument class in fact appears in all python-based data acquisition frameworks
cited above. In our case instrument objects also acquire data, perform pre-processing
on it, and make the data available in a standardized format for further analysis and
saving. While modern physical instruments can contain hundreds of hardware settings,
all of them are rarely relevant to one experiment. In our implementation, the function
of an instrument class is also to define a relevant subset of settings and provide easy
access to them. Another key element of our software framework is a plotter app (see
Figure A.3B), which function is to receive data traces acquired by instrument objects
and makes them available for interactive analysis using connected sub-apps.
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A

B

Figure A.3: Screenshots of the data acquisition software. A) Mechanical ringdown spectroscopy
program. B) The plotter app with the RIN calibration routine.
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[65] G. González. “Suspensions thermal noise in the LIGO gravitational wave detec-
tor”. In: Classical and Quantum Gravity 17 (21) (2000), p. 4409.

[66] G. Cagnoli et al. “Damping dilution factor for a pendulum in an interferometric
gravitational waves detector”. In: Physics Letters A 272 (1) (July 2000), pp. 39–
45.

[67] S. S. Verbridge et al. “High quality factor resonance at room temperature with
nanostrings under high tensile stress”. In: Journal of Applied Physics 99 (12)
(June 15, 2006), p. 124304.

178

http://dx.doi.org/10.1109/JMEMS.2008.916321
http://dx.doi.org/10.1109/JMEMS.2008.916321
http://dx.doi.org/10.1016/j.sna.2007.01.008
http://dx.doi.org/10.1063/1.4747726
http://dx.doi.org/10.1063/1.4747726
http://dx.doi.org/10.1021/acs.nanolett.7b00573
http://dx.doi.org/10.1021/acs.nanolett.7b00573
http://dx.doi.org/10.1103/PhysRevLett.106.047205
http://dx.doi.org/10.1103/PhysRevLett.106.047205
http://dx.doi.org/10.1038/ncomms1212
http://dx.doi.org/10.1364/OE.22.006810
http://dx.doi.org/10.1364/OE.22.006810
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1103/PhysRevB.61.5600
http://dx.doi.org/10.1103/PhysRevB.77.205436
http://dx.doi.org/10.1103/PhysRevB.77.205436
http://dx.doi.org/10.1103/PhysRevB.84.245450
http://dx.doi.org/10.1016/j.physrep.2013.09.003
http://dx.doi.org/10.1088/0957-4484/26/46/465501
http://dx.doi.org/10.1088/0957-4484/26/46/465501
http://dx.doi.org/10.1016/j.mee.2006.01.218
http://dx.doi.org/10.1016/j.mee.2006.01.218
http://dx.doi.org/10.1103/PhysRevLett.113.227201
http://dx.doi.org/10.1103/PhysRevLett.113.227201
http://dx.doi.org/10.1088/0264-9381/17/21/305
http://dx.doi.org/10.1088/0264-9381/17/21/305
http://dx.doi.org/10.1016/S0375-9601(00)00411-4
http://dx.doi.org/10.1016/S0375-9601(00)00411-4
http://dx.doi.org/10.1063/1.2204829
http://dx.doi.org/10.1063/1.2204829


BIBLIOGRAPHY

[68] B. M. Zwickl et al. “High quality mechanical and optical properties of commercial
silicon nitride membranes”. In: Applied Physics Letters 92 (10) (Mar. 10, 2008),
p. 103125.

[69] P.-L. Yu, T. P. Purdy, and C. A. Regal. “Control of Material Damping in High-
Q Membrane Microresonators”. In: Physical Review Letters 108 (8) (Feb. 2012),
p. 083603.

[70] L. D. Landau and E. M. Lifshitz. Theory of elasticity. London Pergamon Press,
1970.

[71] K. Y. Fong, W. H. P. Pernice, and H. X. Tang. “Frequency and phase noise of
ultrahigh Q silicon nitride nanomechanical resonators”. In: Physical Review B
85 (16) (Apr. 27, 2012), p. 161410.
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[236] G. I. González and P. R. Saulson. “Brownian motion of a torsion pendulum with
internal friction”. In: Physics Letters A 201 (1) (May 15, 1995), pp. 12–18.

[237] M. Kajima et al. “Wide-band measurement of mechanical thermal noise using a
laser interferometer”. In: Physics Letters A 263 (1) (Nov. 22, 1999), pp. 21–26.

[238] V. B. Braginsky, F. Y. Khalili, and A. A. Kulaga. “Quantum-non-demolition
measurement of the phase”. In: Physics Letters A 202 (1) (June 12, 1995), pp. 1–
6.

[239] I. Martin and W. H. Zurek. “Measurement of Energy Eigenstates by a Slow
Detector”. In: Physical Review Letters 98 (12) (Mar. 23, 2007), p. 120401.

[240] A. A. Gangat, T. M. Stace, and G. J. Milburn. “Phonon number quantum
jumps in an optomechanical system”. In: New Journal of Physics 13 (4) (2011),
p. 043024.

[241] A. Nunnenkamp et al. “Cooling and squeezing via quadratic optomechanical cou-
pling”. In: Physical Review A 82 (2) (Aug. 31, 2010), p. 021806.

[242] T. P. Purdy et al. “Tunable Cavity Optomechanics with Ultracold Atoms”. In:
Physical Review Letters 105 (13) (Sept. 22, 2010), p. 133602.
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Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator. Physical
Review X, 7(3):031055, 2017.
DOI: 10.1103/PhysRevX.7.031055.
*Indicates equal contributor.

[9] V. Sudhir, D. J. Wilson, R. Schilling, H. Schütz, S.A. Fedorov, A.H. Ghadimi, A. Nun-
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