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Abstract

The nonlinear KdV equation in a bounded interval equipped with the Dirichlet boundary condition and 
the Neumann boundary condition on the right is considered. It is known that there is a set of critical lengths 
for which the solutions of the linearized system conserve the L2-norm if their initial data belong to a finite 
dimensional space M. We show that all solutions of the nonlinear system decay to 0 at least with the rate 
1/t1/2 when dimM = 1 or when dimM is even and a specific condition is satisfied, for sufficiently small 
initial data. Our analysis is inspired by the power series expansion approach and involves the theory of 
quasi-periodic functions. Consequently, we rediscover all known results by a different approach and obtain 
new results. We also show that the decay rate is not slower than ln(t + 2)/t for all critical lengths.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

MSC: 35B40; 35C20; 35Q53; 93B05

Keywords: KdV equations; Critical lengths; Decay of solutions; Asymptotically stable; Quasi-periodic functions

1. Introduction

1.1. Introduction and statement of the main results

We consider the nonlinear Korteweg-de Vries (KdV) equation in a bounded interval (0, L)

equipped with the Dirichlet boundary condition and the Neumann boundary condition on the 
right:
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⎧⎪⎪⎨⎪⎪⎩
ut (t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

u(t, x = 0) = u(t, x = L) = ux(t, x = L) = 0 for t ∈ (0,+∞),

u(t = 0, ·) = u0 in (0,L),

(1.1)

where u0 ∈ L2(0, L) is the initial data. The KdV equation has been introduced by Boussinesq 
[2] and Korteweg and de Vries [13] as a model for propagation of surface water waves along 
a channel. This equation also furnishes a very useful nonlinear approximation model including 
a balance between a weak nonlinearity and weak dispersive effects and has been studied exten-
sively, see e.g. [22,16].

Regarding (1.1), Rosier [18] introduced a set of critical lengths N defined by

N :=
⎧⎨⎩2π

√
k2 + kl + l2

3
; k, l ∈N∗

⎫⎬⎭ . (1.2)

This set plays an important role in both the decay property of the solution u of (1.1) and the 
controllability property of the system associated with (1.1) where ux(t, L) is a control instead of 
0.

Let us briefly review the known results on the controllability of (1.1) where ux(t, L) is a 
control:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut (t, x) + ux(t, x) + uxxx(t, x) + u(t, x)ux(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

u(t, x = 0) = u(t, x = L) = 0 for t ∈ (0,+∞),

ux(·, x = L) : is a control,

u(t = 0, ·) = u0 in (0,L).

(1.3)

For initial and final datum in L2(0, L) and controls in L2(0, T ), Rosier [18] proved that system 
(1.3) is small-time locally controllable around 0 provided that the length L is not critical, i.e., 
L /∈ N . To this end, he studied the controllability of the linearized system using the Hilbert 
Uniqueness Method and compactness-uniqueness arguments. He also established that when the 
length L is critical, i.e., L ∈ N , the linearized system is not controllable. More precisely, he 
showed that there exists a non-trivial finite-dimensional subspace M (= ML) of L2(0, L) such 
that its orthogonal space in L2(0, L) is reachable from 0 whereas M is not. To tackle the control 
problem for the critical length L ∈N , Coron and Crépeau introduced the power series expansion 
method [9]. The idea is to take into account the effect of the nonlinear term uux absent in the 
linearized system. Using this method, they showed [9] (see also [8, section 8.2]) that system (1.3)
is small-time locally controllable if L = m2π for m ∈ N∗ satisfying

�(k, l) ∈ N∗ ×N∗ with k2 + kl + l2 = 3m2 and k �= l, (1.4)

with initial and final datum in L2(0, L) and controls in L2(0, T ). In this case, dimM = 1 and 
M is spanned by 1 − cosx. Cerpa [4] developed the analysis in [9] to prove that (1.3) is locally 
controllable at a finite time in the case dimM = 2. This corresponds to the case where
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L = 2π

√
k2 + kl + l2

3

for some k, l ∈N∗ with k > l, and there is no (m, n) ∈N∗ ×N∗ with m > n and m2 +mn +n2 =
k2 + kl + l2. Later, Crépeau and Cerpa [6] succeeded to extend the ideas in [4] to obtain the local 
controllability for all other critical lengths at a finite time. Recently, Coron, Koenig, and Nguyen 
[10] prove that when (2k + l)/3 /∈N∗, one cannot achieve the small time local controllability for 
initial datum in H 3(0, L) and controls in H 1 (in time). We also establish the local controllability 
for finite time of (1.3) for some subclass of these pairs (k, l) with initial datum in H 3(0, L)

and the controls in H 1(0, T ). This is surprising when compared with known results on internal 
controls for system (1.1). It is known, see [3,15,17], that system (1.1) is locally controllable using 
internal controls whenever the control region contains an arbitrary open subset of (0, L).

We next discuss the decay property of (1.1). Multiplying the equation of u (real) with u and 
integrating by parts, one obtains

L∫
0

|u(t, x)|2 dx +
t∫

0

|ux(s,0)|2 ds =
L∫

0

|u(0, x)|2 dx for all t > 0. (1.5)

As a consequence of (1.5), one has

L∫
0

|u(t, x)|2 dx ≤
L∫

0

|u(0, x)|2 dx for all t > 0. (1.6)

In the case L /∈ N , Menzala, Vasconcellos, and Zuazua [15] proved that the solutions of (1.1)
with small initial datum in L2(0, L) decay exponentially to 0. Their analysis is based on the 
exponential decay of the linearized system for which it holds, see [18, Proposition 3.3],

t∫
0

|ux(s,0)|2 ds ≥ ct

L∫
0

|u(0, x)|2 for all t > 0. (1.7)

When a local damping was added, they also obtained the global exponential stability using the 
multiplier technique, compactness arguments, and the unique continuation for the KdV equa-
tions. Related results on modified nonlinear KdV equations can be found in [19,14]. It is known 
from the work of Rosier [18] that for u0 ∈M, the solution u of the linearized system satisfies

t∫
0

|ux(s,0)|2 ds = 0 for all t > 0, (1.8)

which implies in particular that (1.7) does not hold for any t > 0. The work of Menzala, Vascon-
cellos, and Zuazua naturally raises the question whether or not the solutions of (1.1) go to 0 as 
the time goes to infinity (see [15, Section 4] and also [17, Section 5]). Quite recently, progress 
has been made for this problem. Concerning the decay property of (1.1) for critical lengths, when 
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dimM = 1, Chu, Coron, and Shang [7] showed that the solution u(t, ·) goes to 0 as t → +∞ for 
all small initial data in L2(0, L). Moreover, they showed that there exists a constant C depending 
only on L such that

‖u(t, ·)‖L2(0,L) ≤ C√
t

for t > 0. (1.9)

It is worth mentioning that the set of L ∈ N such that dimM = 1 is infinite [9]. When k = 2
and l = 2 (the smallest length for which dimM = 2), Tang, Chu, Sang, and Coron [20] also 
established the decay to 0 of the solutions by establishing an estimate equivalent to (1.9) (see 
[20, (1.20) in Theorem 1.1]). The analysis in [7,20] is based on the center manifold theory in 
infinite dimensions, see e.g. [12], in particular the work [21]. To this end, the authors showed 
the existence and smoothness of a center manifold associated with (1.1), which have their own 
interests.

In this paper, we show that all solutions of (1.1) decay to 0 at least with a rate 1/t1/2 provided 
their initial data in L2(0, L) is small enough when dimM = 1 or when condition (1.14) below 
holds (this requires in particular that dimM is even). Given a critical length L, condition (1.14)
can be checked numerically, a scilab program is given in the appendix (see Corollary 1.1 for a 
range of validation). Our approach is inspired by the spirit of the power series expansion due to 
Coron and Crépeau [9] and involves the theory of quasi-periodic functions.

Before stating our results, let us introduce some notations associated with the structure of 
M, see e.g. [18,9,5]. Recall that, for each L ∈ N , there exists exactly nL ∈ N∗ pairs (km, lm) ∈
N∗ ×N∗ (1 ≤ m ≤ nL) such that km ≥ lm, and

L = 2π

√
k2
m + kmlm + l2

m

3
. (1.10)

For 1 ≤ m ≤ nL, set

pm = p(km, lm) = (2km + lm)(km − lm)(2lm + km)

3
√

3(k2
m + kmlm + l2

m)3/2
, (1.11)

and denote

PL =
{
pm given by (1.11);1 ≤ m ≤ nL

}
. (1.12)

For L ∈N and 1 ≤ m ≤ nL with pm �= 0, let σj,m (1 ≤ j ≤ 3) be the solutions of

σ 3 − 3(k2
m + kmlm + l2

m)σ + 2(2km + lm)(2lm + km)(km − lm) = 0,

and set, with the convention σj+3,m = σj,m for j ≥ 1,

sm = s(km, lm) :=
3∑

j=1

σj,m(σj+2,m − σj+1,m)
(
e

4πi(km−lm)
3 e2πiσj,m + e−2πiσj,m

)
. (1.13)

We are ready to state the main result of the paper:
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Theorem 1.1. Let L ∈N . Assume that either dimM = 1 or

pm �= 0 and sm �= 0 for all 1 ≤ m ≤ nL. (1.14)

There exists ε0 > 0 depending only on L such that for all (real) u0 ∈ L2(0, L) with ‖u0‖L2(0,L) ≤
ε0, the unique solution u ∈ C

([0, +∞); L2(0, L)
) ∩ L2

loc

([0, +∞); H 1(0, L)
)

of (1.1) satisfies

lim
t→0

‖u(t, ·)‖L2(0,L) = 0. (1.15)

More precisely, there exists a constant C depending only on L such that, for t ≥ C/‖u0‖2
L2(0,L)

and ‖u0‖L2(0,L) ≤ ε0, it holds

‖u(t, ·)‖L2(0,L) ≤ 1

2
‖u(0, ·)‖L2(0,L). (1.16)

As a consequence, we have

‖u(t, ·)‖L2(0,L) ≤ c/t1/2 for t ≥ 0, (1.17)

for some positive constant c depending only on L.

Remark 1.1. Let L ∈ N . Condition pm �= 0 for all 1 ≤ m ≤ nL is equivalent to the fact that 
dimM is even, see e.g. [5].

Remark 1.2. Note that sm is a antisymmetric function of (σ1,m, σ2,m, σ3,m) and hence the con-
dition (1.14) does not depend on the order of (σ1,m, σ2,m, σ3,m).

Remark 1.3. When pm �= 0 for all 1 ≤ m ≤ nL, the condition sm �= 0 for all 1 ≤ m ≤ nL is almost 
equivalent to the fact that the second order approximation of solutions with initial conditions in 
ML decays (the first oder approximation conserves the L2-norm as shown by Rosier).

Remark 1.4. Assume (1.14). Applying Theorem 1.1, one derives from (1.6) that 0 is (locally) 
asymptotically stable with respect to L2(0, L)-norm for system (1.1).

Remark 1.5. Assume that (1.16) holds. By the regularity properties of the KdV equations, one 
derives that the same rate of decay holds for t > 1 when ‖ · ‖L2(0,L) is replaced by ‖ · ‖Hm(0,L)

for m ≥ 1.

Condition (1.14) can be checked numerically. For example, using scilab (the program is given 
in the appendix), we can check sm �= 0 for all (km, lm) ∈ N∗ with 1 ≤ lm < km < 2000. As a 
consequence, we have

Corollary 1.1. Let L ∈ N . Assume that either dimM = 1 or 1 ≤ km, lm ≤ 1000 for some 1 ≤
m ≤ nL. Then (1.17) holds if pm �= 0 for all 1 ≤ m ≤ nL.

We thus rediscover the decay results in [7,20] by a different approach and obtain new results.
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Remark 1.6. Concerning (1.14), we expect that sm �= 0 holds for all L ∈ N but we are not able 
to show it.

Remark 1.7. In Appendix C, we show that sm �= 0 for a class of (km, lm).

The optimality of the decay rate 1/t1/2 given in (1.17) is open. However, we can establish the 
following result for all critical lengths.

Proposition 1.1. Let L ∈N . There exists c > 0 such that for all ε > 0, there exists u0 ∈ L2(0, L)

such that

‖u0‖L2(0,L) ≤ ε and ‖u(t, ·)‖L2(0,L) ≥ c ln(t + 2)/t for some t > 0.

It is natural to ask if the decay holds globally, i.e., without the assumption on the smallness 
of the initial data. In fact, this cannot hold even for non-critical lengths. More precisely, Doronin 
and Natali [11] showed that there exist (infinite) stationary states of (1.1) for any length L, which 
is critical or not.

1.2. Ideas of the analysis and structure of the paper

The key of the analysis of Theorem 1.1 is to (observe and) establish the following fact (see 
Lemma 5.1): Let L ∈ N . Under condition (1.14) or dimM = 1, there exist two constants T0 >

0 and C > 0 depending only on L such that for T ≥ T0, one has, for all u0 ∈ L2(0, L) with 
‖u0‖L2(0,L) sufficiently small,

‖u(T , ·)‖L2(0,L) ≤ ‖u0‖L2(0,L)

(
1 − C‖u0‖2

L2(0,L)

)
for T ≥ T0, (1.18)

where u is the unique solution of (1.1).
To get an idea of how to prove (1.18), let us consider the case u0 ∈M \{0}, which is somehow 

the worst case. The analysis is inspired by the spirit of the power expansion method [9]. Let ̃u1
be the unique solution of⎧⎪⎪⎨⎪⎪⎩

ũ1,t (t, x) + ũ1,x(t, x) + ũ1,xxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

ũ1(t, x = 0) = ũ1(t, x = L) = ũ1,x(t, x = L) = 0 for t ∈ (0,+∞),

ũ1(t = 0, ·) = u0/ε in (0,L),

(1.19)

with ε = ‖u0‖L2(0,L) > 0, and let ̃u2 be the unique solution of

⎧⎪⎪⎨⎪⎪⎩
ũ2,t (t, x) + ũ2,x(t, x) + ũ2,xxx(t, x) + ũ1,x(t, x)̃u1(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

ũ2(t, x = 0) = ũ2(t, x = L) = ũ2,x(t, x = L) = 0 for t ∈ (0,+∞),

ũ2(t = 0, ·) = 0 in (0,L).

(1.20)
By considering the system of εũ1 + ε2ũ2 − u, we can prove that, for arbitrary τ > 0,
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‖(εũ1 + ε2ũ2 − u)x(·,0)‖L2(0,τ ) ≤ cτ ε
3, (1.21)

for some cτ > 0 depending only on τ and L, provided that ε is sufficiently small. Since ̃u1(t, ·) ∈
M for all t > 0, one can then derive that

ũ1,x(t,0) = 0 for t ≥ 0.

Thus, if one can show that, for some τ0 > 0 and for some c0 > 0

‖ũ2,x(·,0)‖L2(0,τ0)
≥ c0, (1.22)

then from (1.21) one has, for ε small enough,

‖ux(·,0)‖L2(0,τ0)
≥ c0ε

2.

This implies (1.18) with T0 = τ0 by (1.5).
To establish (1.22), we first construct a special solution W of the system{

Wt(t, x) + Wx(t, x) + Wxxx(t, x) + ũ1,x(t, x)̃u1(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

W(t, x = 0) = W(t, x = L) = Wx(t, x = L) = 0 for t ∈ (0,+∞),

(1.23)
via a separation-of-variable process. Moreover, we can prove for such a solution W that

W is bounded by ‖ũ1(0, ·)‖L2(0,L) up to a positive constant,

and Wx(·,0) is a non-trivial quasi-periodic function. (1.24)

The proof of this property is based on some useful observations on pm and the boundary con-
ditions considered in (1.1), and involves some arithmetic arguments. It is in the proof of the 
existence of W and the second fact of (1.24) that assumption (1.14) or dimM = 1 is required. 
Note that, for all δ > 0, there exists Tδ > 0 such that it holds, for τ ≥ Tδ ,

‖yx(·,0)‖L2(τ,2τ) ≤ δ‖y0‖L2(0,L), (1.25)

for all solution y ∈ C
([0, +∞); L2(0, L)

) ∩ L2
loc

([0, +∞); H 1(0, L)
)

of the system{
yt (t, x) + yx(t, x) + yxxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

y(t, x = 0) = y(t, x = L) = yx(t, x = L) = 0 for t ∈ (0,+∞).

Combining (1.24) and (1.25), we can derive (1.22) after applying the theory of quasi-periodic 
functions, see e.g. [1].

The proof of Proposition 1.1 is inspired by the approach which is used to prove Theorem 1.1
and is mentioned above.

The paper is organized as follows. The elements for the construction of W are given in Sec-
tion 2 and the elements for the proof of (1.24) are given in Section 3. The proof of Theorem 1.1
is given in Section 5 where (1.18) is formulated in Lemma 5.1. The proof of Proposition 1.1 is 
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given in Section 6. In the appendix, we reproduce a proof of a technical result, which is obtained 
in [10], and provide the scilab code.

2. Construction of auxiliary functions

Let us begin with recalling and introducing some useful notations motivated by the structure 
of M, see e.g. [18,9,5]. For L ∈ N and for 1 ≤ m ≤ nL, denote⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η1,m = −2πi(2km + lm)

3L
,

η2,m = η1,m + 2πi

L
km = 2πi(km − lm)

3L
,

η3,m = η2,m + 2πi

L
lm = 2πi(km + 2lm)

3L
.

(2.1)

Set {
ψm(x) = ∑3

j=1(ηj+1,m − ηj,m)eηj+2,mx for x ∈ [0,L],
	m(t, x) = e−itpmψm(x) for (t, x) ∈R× [0,L],

(2.2)

(recall that pm is defined in (1.11)). It is clear from the definition of ηj,m in (2.1) that

eη1,mL = eη2,mL = eη3,mL. (2.3)

This property of ηj,m associated with L is used several times in our analysis.

Remark 2.1. One can check that ηj,m are the solutions of the equation

λ3 + λ − ipmλ = 0.

This implies in particular that pm1 �= pm2 if (km1, lm1) �= (km2, lm2) as observed in [4].

It is known that 	m is a solution of the linearized KdV system; moreover,

	m,x(·,0) = 0,

i.e.,{
	m,t (t, x) + 	m,x(t, x) + 	m,xxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

	m(t,0) = 	m(t,L) = 	m,x(t,0) = 	m,x(t,L) = 0 for t ∈ (0,+∞).
(2.4)

These properties of 	m can be easily checked. It is known that, see e.g. [5],

M = span
{{�(ψm(x));1 ≤ m ≤ nL

}
∪

{
�(ψm(x));1 ≤ m ≤ nL

}}
. (2.5)

Here and in what follows, for a complex number z, we denote �z, �z, and z̄ its real part, its 
imaginary part, and its conjugate, respectively.
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In this section, we prepare elements to construct the function W mentioned in the introduction. 
Assume that u0 ∈M \ {0} and let ε = ‖u0‖L2(0,L). By (2.5), there exists (αm)

nL

m=1 ⊂ C such that

1

ε
u0 = �

{
nL∑

m=1

αm	m(0, x)

}
. (2.6)

The function ̃u1 defined by (1.19) is then given by

ũ1(t, x) = �
{

nL∑
m=1

αm	m(t, x)

}
= �

{
nL∑

m=1

αme−ipmtψm(x)

}
.

Using the fact, for an appropriate complex function f ,

�f (t, x)�fx(t, x) = 1

2

(
(�f (t, x))2

)
x

= 1

8

((
f (t, x)2)x + (

f̄ (t, x)2)
x

+ 2(|f (t, x)|2)x
)
,

we derive from (2.2) and (2.6) that

ũ1,x(t, x)̃u1(t, x) =1

8

nL∑
m1=1

nL∑
m2=1

(
αm1αm2e

−i(pm1+pm2 )tψm1(x)ψm2(x)
)

x
(2.7)

+ 1

8

nL∑
m1=1

nL∑
m2=1

(
αm1αm2e

−i(pm1+pm2 )tψm1(x)ψm2(x)
)

x

+ 1

4

nL∑
m1=1

nL∑
m2=1

(
αm1 ᾱm2e

−i(pm1−pm2 )tψm1(x)ψ̄m2(x)
)

x
.

Motivated by (2.7), in this section, we construct solutions of system (2.12)-(2.13) and system 
(2.33)-(2.34) below.

We begin with the following simple result whose proof is omitted.

Lemma 2.1. Let L ∈N and 1 ≤ m1, m2 ≤ nL. We have, in [0, L],

(
ψm1ψm2

)′
(x)

=
3∑

j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(ηk+1,m2 − ηk,m2)(ηj+2,m1 + ηk+2,m2)e
(ηj+2,m1+ηk+2,m2 )x, (2.8)

and
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(
ψm1ψ̄m2

)′
(x)

=
3∑

j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(η̄k+1,m2 − η̄k,m2)(ηj+2,m1 + η̄k+2,m2)e
(ηj+2,m1+η̄k+2,m2 )x . (2.9)

We next introduce

Definition 2.1. For z ∈C, let λj = λj (z) (1 ≤ j ≤ 3) be the roots of the equation

λ3 + λ − iz = 0, (2.10)

and set

Q(z) =

⎛⎜⎜⎝
1 1 1

eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L

⎞⎟⎟⎠ . (2.11)

Remark 2.2. Some comments on the definition of Q are in order. The matrix Q is antisymmetric 
with respect to λj (j = 1, 2, 3), and its definitions depend on a choice of the order of (λ1, λ2, λ3). 
Nevertheless, we later consider either the equation detQ = 0 or a quantity depending on Q in 
such a way that the order of (λ1, λ2, λ3) does not matter. The definition of Q is only considered 
in these contexts.

Remark 2.3. The definition of λj (z) in Definition 2.1 is slightly different from the one given in 
[10] where iz is used instead of −iz in (2.10).

Remark 2.4. It is known that if z ∈ PL for some L ∈N , then

λj = ηj,m for some 1 ≤ m ≤ nL.

Hence, by (2.3),

eλ1L = eλ2L = eλ3L.

Remark 2.5. Note that (2.10) has simple roots for z �= ±2/(3
√

3). Thus, a general solution of 
the equation

y′′′(x) + y′(x) − izy(x) = 0 in [0,L],

is of the form 
∑3

j=1 aj e
λj (z)x when z �= ±2/(3

√
3). For z = ±2/(3

√
3), equation (2.10) has 

three roots

λ1 = ∓2i/
√

3 and λ2 = λ3 = ±i/
√

3.
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We now recall a useful property of solutions of the equation detQ = 0 which is established in 
[10] (a consequence of [10, Remark 2.7]).

Lemma 2.2. Let z ∈ R. Then detQ(z) = 0 if and only if either z = ±2/
√

3 or (L ∈ N and 
z ∈PL). Moreover,

{ ± 2/
√

3
} ∩PL = ∅ for all L ∈N .

The proof of Lemma 2.2 is reproduced in the appendix for the convenience of the reader.

Let L ∈ N and 1 ≤ m1, m2 ≤ nL. As mentioned above, we are interested in constructing a 
solution of the system

−i(pm1 + pm2)ϕm1,m2(x) + ϕ′
m1,m2

(x) + ϕ′′′
m1,m2

(x) +
(
ψm1ψm2

)′
(x) = 0 in (0,L), (2.12)

and

ϕm1,m2(0) = ϕm1,m2(L) = ϕ′
m1,m2

(L) = 0. (2.13)

We have

Proposition 2.1. Let L ∈N and 1 ≤ m1, m2 ≤ nL. Let λj = λj (pm1 + pm2) and Q = Q(ipm1 +
ipm2) where λj and Q are defined by (2.10) and (2.11). When pm1 �= 0 and pm2 �= 0, set

D = Dm1,m2 =
3∑

j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(ηk+1,m2 − ηk,m2)

3ηj+2,m1ηk+2,m2

, (2.14)

and

χm1,m2(x) = −
3∑

j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(ηk+1,m2 − ηk,m2)

3ηj+2,m1ηk+2,m2

e(ηj+2,m1+ηk+2,m2 )x in [0,L].

(2.15)
We have

1) Assume that pm1 �= 0, pm2 �= 0, and pm1 + pm2 /∈ PL ∪ {
2/(3

√
3)

}
. The unique solution of 

system (2.12)-(2.13) is given by

ϕm1,m2(x) = χm1,m2(x) +
3∑

j=1

aj e
λj x, (2.16)

where (a1, a2, a3) is uniquely determined via (2.13), i.e.,

Q(a1, a2, a3)
T = D(1, e(η1,m1 +η1,m2 )L,0)T. (2.17)
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2) Assume that pm1 �= 0, pm2 �= 0, and pm1 + pm2 ∈ PL. A solution of system (2.12)-(2.13) is 
given by (2.16) where (a1, a2, a3) satisfies

a1 + a2 + a3 = D and λ1a1 + λ2a2 + λ3a3 = 0. (2.18)

3) Assume that pm1 �= 0, pm2 �= 0, and pm1 + pm2 = 2/(3
√

3). Consider the convention

λ1 = −2i/
√

3 and λ2 = λ3 = i/
√

3. (2.19)

System (2.12)-(2.13) has a unique solution given by

ϕm1,m2(x) = χm1,m2(x) + a1e
λ1x + (a2 + a3x)eλ2x, (2.20)

where (a1, a2, a3) is uniquely determined via (2.13), i.e.,

Q1(a1, a2, a3)
T = D(1, e(η1,m1+η1,m2 )L,0)T, (2.21)

where

Q1 =

⎛⎜⎜⎝
1 1 0

eλ1L eλ2L Leλ2L

λ1e
λ1L λ2e

λ2L (λ2L + 1)eλ2L

⎞⎟⎟⎠ . (2.22)

4) Assume that pm1 = pm2 = 0 and thus m1 = m2 = m. A solution of system (2.12)-(2.13) is

ϕm,m(x) = 4

(
L sinx + 1

6
− x sinx − 1

6
cos(2x)

)
. (2.23)

Proof. We proceed with the proof of 1), 2), 3), and 4) in Steps 1, 2, 3, and 4 below, respectively.

Step 1: Proof of 1). Since η = ηj,m (1 ≤ j ≤ 3) is a root of the equation

η3 + η − ipm = 0,

it follows that

ηj,m1 �= −ηk,m2

(since otherwise pm1 = −pm2 which is impossible), and

(ηj,m1 + ηk,m2)
3 + (ηj,m1 + ηk,m2) − i(pm1 + pm2) = 3ηj,m1ηk,m2(ηj,m1 + ηk,m2).

Since pm1 �= 0 and pm2 �= 0, we derive from Lemma 2.1 that χm1,m2 is a solution of (2.12). 
Since a general solution of the equation ξ ′′′ + ξ ′ = i(pm1 + pm2)ξ is of the form 

∑3
j=1 aj e

λj x

by Remark 2.5, it follows that
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a general solution of (2.12) is of the form χm1,m2(x) +
3∑

j=1

aj e
λj x . (2.24)

We have

−χm1,m2(0) = D, −χm1,m2(L)
(2.3)= De(η1,m1+η1,m2 )L, and − χm1,m2,x(L)

(2.3)= 0. (2.25)

It follows that a function of the form χm1,m2(x) + ∑3
j=1 aj e

λj x satisfies (2.13) if and only if

3∑
j=1

aj = D,

3∑
j=1

aj e
λj L = De(η1,m1+η1,m2 )L,

3∑
j=1

ajλj e
λj L = 0,

which is equivalent to (2.17). Since pm1 +pm2 /∈PL ∪{
2/(3

√
3)

}
and pm1 +pm2 > 0, it follows 

from Lemma 2.2 that detQ �= 0. Therefore, one obtains 1).

Step 2: Proof of 2). A solution of (2.12) is of the form χm1,m2(x) + ∑3
j=1 aj e

λj x . This function 
satisfies (2.13) if and only if, by Remark 2.4 (recall that pm1 + pm2 ∈PL),

3∑
j=1

aj = D, eλ1L

3∑
j=1

aj
(2.3)= De(η1,m1+η1,m2 )L,

3∑
j=1

ajλj
(2.3)= 0.

This system has a solution if

eλ1L = e(η1,m1+η1,m2 )L, (2.26)

and a solution is given by (2.16) where (a1, a2, a3) satisfies (2.18).
It remains to prove (2.26). Assume, for some pm3 ∈ PL, that

pm1 + pm2 = pm3 . (2.27)

To establish (2.26), it suffices to prove that, by (2.3) and Remark 2.4,

e(η2,m1+η2,m2 )L = eη2,m3 L

which is equivalent to the fact, by (2.1),

km3 − lm3

3
− km1 − lm1

3
− km2 − lm2

3
∈Z. (2.28)

From (2.27) and the definition of pm in (1.11), we have

(km3 − lm3)(2km3 + lm3)(2lm3 + km3)

= (km1 − lm1)(2km1 + lm1)(2lm1 + km1) + (km2 − lm2)(2km2 + lm2)(2lm2 + km2). (2.29)
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Since

(kmj
− lmj

)(2kmj
+ lmj

)(2lmj
+ kmj

) = lmj
− kmj

mod 3,

it follows from (2.29) that

km3 − lm3 = km1 − lm1 + (
km2 − lm2

)
mod 3,

which yields (2.28). The proof of Step 2 is complete.

Step 3: Proof of 3). A solution of (2.12) is of the form χm1,m2(x) + a1e
λ1x + (a2 + a3x)eλ2x . 

This function satisfies (2.13) if and only if, by (2.25),

a1 + a2 = D, a1e
λ1L + a2e

λ2L + a3Leλ2L = De(η1,m1+η1,m2 )L,

and

a1λ1e
λ1L + a2λ2e

λ2L + a3(λ2L + 1)eλ2L = 0,

which is equivalent to (2.21).
Hence, it suffices to prove that Q1 is invertible. Replacing the third row of Q1 by itself minus 

λ2 times the second row, we obtain

Q2 =

⎛⎜⎜⎝
1 1 0

eλ1L eλ2L Leλ2L

(λ1 − λ2)e
λ1L 0 eλ2L

⎞⎟⎟⎠ . (2.30)

We have

detQ2 = e2λ2L − (
1 − L(λ1 − λ2)

)
e(λ1+λ2)L.

Using (2.19), we derive that detQ2 = 0 if and only if

e3λ2L = 1 + 3λ2L.

Since the equation eix = 1 + ix has only one solution x = 0 in the real line, one derives that 
detQ2 �= 0. Therefore, Q1 is invertible. The proof of Step 3) is complete.

Step 4: Proof of 4). Since pm = 0, it follows that km = lm, and L = 2πkm. One then has

η1,m = −i, η2,m = 0, η3,m = i.

It follows from the definition of ψm in (2.2) that

ψm(x) = 2i(cosx − 1). (2.31)

This implies
262



H.-M. Nguyen Journal of Differential Equations 295 (2021) 249–291
(
ψ2

m(x)
)
x

= 8(cosx − 1) sinx.

A straightforward computation gives the conclusion.

The proof of Proposition 2.1 is complete. �
Remark 2.6. In the case, pm1 = 0 and pm2 �= 0, one cannot construct a solution of (2.12)-(2.13)
in general. In fact, one can check that

χm1,m2(x) = −
∑

j=1,2

3∑
k=1

(ηj+1,m1 − ηj,m1)(ηk+1,m2 − ηk,m2)

3ηj+2,m1ηk+2,m2

e(ηj+2,m1+ηk+2,m2 )x

−
3∑

k=1

(η1,m1 − η3,m1)(ηk+1,m2 − ηk,m2)ηk+2,m2

3ηk+2,m2
2 + 1

xeηk+2,m2x (2.32)

is a solution of (2.12). However,

χm1,m2(0) �= e−η1,m2Lχm1,m2(L)

since, in general,

3∑
k=1

(ηk+1,m2 − ηk,m2)ηk+2,m2

3ηk+2,m2
2 + 1

�= 0.

Hence one cannot find (a1, a2, a3) ∈ C3 such that the function χm1,m2(x) + ∑3
j=1 aj e

λj x , with 
λj = λj (pm2), verifies (2.13).

Let L ∈ N and 1 ≤ m1, m2 ≤ nL. We are next interested in constructing a solution of the 
system

−i(pm1 − pm2)φm1,m2(x) + φ′
m1,m2

(x) + φ′′′
m1,m2

(x) +
(
ψm1ψ̄m2

)′
(x) = 0 in (0,L), (2.33)

and

φm1,m2(0) = φm1,m2(L) = φ′
m1,m2

(L) = 0. (2.34)

We have

Proposition 2.2. Let L ∈N and 1 ≤ m1, m2 ≤ nL. Let ̃λj = λj (pm1 − pm2) and Q̃= Q(ipm1 −
ipm2) where λj and Q are defined by (2.10) and (2.11). When pm1 �= 0 and pm2 �= 0, set

D̃ = D̃m1,m2 =
3∑ 3∑ (ηj+1,m1 − ηj,m1)(η̄k+1,m2 − η̄k,m2)

3ηj+2,m1 η̄k+2,m2

(2.35)

j=1 k=1
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and

χ̃m1,m2(x) = −
3∑

j=1

3∑
k=1

(ηj+1,m1 − ηj,m1)(η̄k+1,m2 − η̄k,m2)

3ηj+2,m1 η̄k+2,m2

e(ηj+2,m1+η̄k+2,m2 )x in [0,L].

(2.36)
We have

1) Assume that pm1 �= 0, pm2 �= 0, pm1 �= pm2 , and pm1 − pm2 /∈ PL. The unique solution of 
system (2.33)-(2.34) is given by

φm1,m2(x) = χ̃m1,m2(x) +
3∑

j=1

aj ẽ
λj x, (2.37)

where (a1, a2, a3) is uniquely determined via (2.34), i.e.,

Q̃(a1, a2, a3)
T = D̃(1, e(η1,m1 +η̄1,m2 )L,0)T. (2.38)

2) Assume that pm1 �= 0, pm2 �= 0, pm1 �= pm2 , and pm1 − pm2 ∈ PL. A solution of system 
(2.33)-(2.34) is given by (2.37) where (a1, a2, a3) satisfies

a1 + a2 + a3 = D̃ and λ̃1a1 + λ̃2a2 + λ̃3a3 = 0. (2.39)

3) Assume that pm1 = pm2 �= 0 and thus m1 = m2 = m. System (2.33)-(2.34) has a unique 
solution

φm,m(x) = −
3∑

j=1

3∑
k=1

(ηj+1,m − ηj,m)(η̄k+1,m − η̄k,m)

3ηj+2,mη̄k+2,m

e(ηj+2,m+η̄k+2,m)x

+
3∑

j=1

3∑
k=1

(ηj+1,m − ηj,m)(η̄k+1,m − η̄k,m)

3ηj+2,mη̄k+2,m

.

4) Assume that pm1 = pm2 = 0 and thus m1 = m2 = m. A solution of system (2.33)-(2.34) is

φm,m(x) = −4

(
L sinx + 1

6
− x sinx − 1

6
cos(2x)

)
. (2.40)

Proof. We proceed with the proof of 1), 2), 3), and 4) in Steps 1, 2, 3, and 4 below, respectively.

Step 1: Proof of 1). The proof is similar to Step 1 in the proof of Proposition 2.1. One just notes 
that

(ηj,m1 + η̄k,m2)
3 + (ηj,m1 + η̄k,m2) − i(pm1 − pm2) = 3ηj,m1 η̄k,m2(ηj,m1 + η̄k,m2),

and
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ηj,m1 + η̄k,m2 �= 0

since pm1 �= pm2 .

Step 2: Proof of 2). The proof is almost the same as Step 2 in the proof of Proposition 2.1. The 
details are omitted.

Step 3: Proof of 3). One can check that φm,m is a solution of (2.33)-(2.34). The uniqueness 
follows from the fact that equation (2.10) has simple roots for z = 0.

Step 4: Proof of 4). The conclusion is from 4) of Proposition 2.1 by noting that

|ψm(x)|2 (2.31)= −ψm(x)2 if pm = 0.

The proof is complete. �
3. Properties of auxiliary functions

The main goal of this section is to establish, for L ∈N and 1 ≤ m ≤ nL with pm �= 0, that

ϕ′
m,m(0) �= 0 (3.1)

provided (1.14) holds (see Proposition 3.1) where ϕm,m is determined in Proposition 2.1. We 
begin with

Lemma 3.1. Let L ∈N and 1 ≤ m ≤ nL with pm �= 0. Set

Em :=
3∑

j=1

ηj+1,m − ηj,m

ηj+2,m

. (3.2)

We have

Dm,m = −χm,m(0) = 1

3
E2

m, (3.3)

and

Em = − 27kmlm(km + lm)

(km + 2lm)(2km + lm)(km − lm)
�= 0. (3.4)

Proof. It is clear to see from (2.15) that

Dm,m = −χm,m(0) = 1

3
E2

m.

With the notation γj,m = Lηj,m/(2πi), we have

γ1,m = −2km + lm
, γ2,m = km − lm

, γ3,m = km + 2lm
. (3.5)
3 3 3
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It follows that

Em =
3∑

j=1

γj+1,m − γj,m

γj+2,m

= 3km

km + 2lm
− 3lm

2km + lm
− 3(km + lm)

km − lm
.

Since

km(2km + lm)(km − lm) − lm(km + 2lm)(km − lm) − (km + lm)(km + 2lm)(2km + lm)

= 2(k2
m − l2

m)(km − lm) − (km + lm)(km + 2lm)(2km + lm)

= (km + lm)
(

2k2
m − 4kmlm + 2k2

m − 2k2
m − 2l2

m − 5kmlm

)
= −9kmlm(km + lm),

we derive that

Em = − 27kmlm(km + lm)

(km + 2lm)(2km + lm)(km − lm)
�= 0.

The proof is complete. �
We next show in Lemmas 3.2 and 3.3 below that for L ∈N and for 1 ≤ m ≤ nL with pm �= 0, 

it holds

2pm �= 2/(3
√

3) and 2pm /∈ PL.

As a consequence ϕm,m is constructed via 1) and 4) in Proposition 2.1. We begin with

Lemma 3.2. Let L ∈N and 1 ≤ m ≤ nL. Then

2pm �= 2/(3
√

3).

Proof. We first claim that there is no k, l ∈N∗ with k ≥ l such that

(2k + l)(2l + k)(k − l) = (k2 + l2 + kl)3/2. (3.6)

We prove this by contradiction. Assume that there exists such a pair (k, l). Set

H =
{
(k, l) ∈N∗ ×N∗, k ≥ l, and (3.6) holds

}
.

Set

h = min
{
k + l; (k, l) ∈ H

}
> 0.

Fix (k, l) ∈ H such that k + l = h. Since

(2k + l)(2l + k)(k − l) is even,
266



H.-M. Nguyen Journal of Differential Equations 295 (2021) 249–291
it follows from (3.6) that k2 + l2 + kl is even. Hence both k and l are even. We write k = 2k1 and 
l = 2l1 for some k1, l1 ∈ N∗. It is clear that

k1 ≥ l1,

and

(2k1 + l1)(2l1 + k1)(k1 − l1) = (k2
1 + l2

1 + k1l1)
3/2.

This implies

(k1, l1) ∈ H.

We have

k1 + l1 = (k + l)/2 = h/2 and h > 0.

This contradicts the definition of h. The claim is proved.
We are ready to derive the conclusion of Lemma 3.2. Since 2pm = 2/(3

√
3) for some 1 ≤

m ≤ nL and for some L ∈N if and only if, by the definition of pm in (1.11),

(2km + lm)(km − lm)(2lm + km) = (k2
m + l2

m + kmlm)3/2,

the conclusion follows from the claim. �
We next prove

Lemma 3.3. There is no quadruple (k1, l1, k2, l2) ∈ N4∗ satisfying the system⎧⎪⎪⎨⎪⎪⎩
k1 > l1, k2 > l2,

k2
1 + k1l1 + l2

1 = k2
2 + k2l2 + l2

2,

(2k2 + l2)(2l2 + k2)(k2 − l2) = 2(2k1 + l1)(2l1 + k1)(k1 − l1).

(3.7)

Consequently, for L ∈N and 1 ≤ m ≤ nL, we have

2pm /∈PL if pm �= 0. (3.8)

Proof. We prove the non-existence by contradiction. Assume that there exists a quadruple 
(k1, l1, k2, l2) ∈ N4∗ satisfying (3.7). Set

G =
{
(k1, l1, k2, l2) ∈N4∗; (3.7) holds

}
, (3.9)

and let

g = min
{
k1 + l1 + k2 + l2; (k1, l1, k2, l2) ∈ G

}
> 0. (3.10)
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Fix (k1, l1, k2, l2) ∈ G such that k1 + l1 + k2 + l2 = g. Set

A := k2
1 + k1l1 + l2

1 = k2
2 + k2l2 + l2

2 (by the second line of (3.7)). (3.11)

Since, for (k, l) ∈R,

(2k + l)(2l + k) = 2(k2 + kl + l2) + 3kl and (k − l)2 = (k2 + kl + l2) − 3kl,

it follows from the square of the last line of (3.7), with

x1 = 3k1l1 and x2 = 3k2l2, (3.12)

that

(2A + x2)
2(A − x2) = 4(2A + x1)

2(A − x1).

This implies

(4A3 − 3Ax2
2 − x3

2) = 4(4A3 − 3Ax2
1 − x3

1), (3.13)

or equivalently

12A3 = 3A(4x2
1 − x2

2) + 4x3
1 − x3

2 . (3.14)

Using (3.12), we derive that A3 = 0 mod 3, which yields

A = 0 mod 3.

Putting this information into (3.14) and using again (3.12), we obtain

x3
1 − x3

2 = 0 mod 34.

We deduce from (3.12) that

(k1l1)
3 − (k2l2)

3 = 0 mod 3. (3.15)

By writing k1l1 under the form k2l2 + 3q + r with q ∈Z and r ∈ N with 0 ≤ r ≤ 2, we have

(k1l1)
3 − (k2l2)

3 = 3k2
2 l2

2(3q + r) + 3k2l2(3q + r)2 + (3q + r)3. (3.16)

Combining (3.15) and (3.16) yields that r = 0. Putting this information into (3.14), we obtain

A3 = 0 mod 34.

This implies

A = 0 mod 9.
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We deduce from (3.11) that

k1 = 0 mod 3, l1 = 0 mod 3, k2 = 0 mod 3, l2 = 0 mod 3.

Let k̂1, ̂l1, k̂2, ̂l2 ∈ N∗ be such that

k1 = 3k̂1, l1 = 3l̂1, k2 = 3k̂2, l2 = 3l̂2.

One can easily check that (k̂1, ̂l1, k̂2, ̂l2) ∈ G and

k̂1 + l̂1 + k̂2 + l̂2 = g/3 < g.

We obtain a contradiction. The non-existence associated with (3.7) is proved.
It is clear that (3.8) is just a consequence of the non-existence by the definition of L and pm

as a function of km and lm in (1.10) and (1.11). The proof is complete. �
We are ready to state and prove the main result of this section:

Proposition 3.1. Let L ∈N and 1 ≤ m ≤ nL. Then

ϕ′
m,m(0) = 4πL = −φ′

m,m(0) if pm = 0, (3.17)

and, if pm �= 0 and sm �= 0 then

ϕ′
m,m(0) �= 0. (3.18)

Proof. Assertion (3.17) follows immediately from 4) of Propositions 2.1 and 2.2. We next con-
sider the case pm �= 0. By Lemmas 3.2 and 3.3, we have

ϕ′
m,m(0) = 0

only if, with α = e2η2,mL and λj = λj (2pm),⎧⎪⎪⎨⎪⎪⎩
∑3

j=1 λjaj = 0 (= ϕ′
m,m(0) since χ ′

m,m(0) = 0),∑3
j=1 λj e

λj Laj = 0 (= ϕ′
m,m(L) since χ ′

m,m(L) = 0),∑3
j=1(e

λj L − α)aj = 0 (= −χm,m(L) + αχm,m(0) since χm,m(L) = αχm,m(0)).

(3.19)

Since Em �= 0 by Lemma 3.1, one has a non-trivial solution (a1, a2, a3) of this system. This 
implies

detK1 = 0 where K1 :=

⎛⎜⎜⎝
λ1 λ2 λ3

λ1e
λ1L λ2e

λ2L λ3e
λ3L

eλ1L − α eλ2L − α eλ3L − α

⎞⎟⎟⎠ . (3.20)

Set
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λ̂j = λjL.

Condition (3.20) is equivalent to

detK2 = 0 where K2 :=

⎛⎜⎜⎜⎝
λ̂1 λ̂2 λ̂3

λ̂1e
λ̂1 λ̂2e

λ̂2 λ̂3e
λ̂3

eλ̂1 − α eλ̂2 − α eλ̂3 − α

⎞⎟⎟⎟⎠ . (3.21)

A computation yields

detK2 =
3∑

j=1

λ̂j

(
(λ̂j+1 − λ̂j+2)e

λ̂j+1+λ̂j+2 − α(λ̂j+1e
λ̂j+1 − λ̂j+2e

λ̂j+2)
)
,

which implies

detK2 =
3∑

j=1

λ̂j (λ̂j+1 − λ̂j+2)
(
e−λ̂j + αeλ̂j

)
. (3.22)

Here we used the fact 
∑3

j=1 λ̂j = L 
∑3

j=1 λj = 0. From the definition of λj = λj (2pm) given in 
Definition 2.1, we have ⎧⎪⎪⎨⎪⎪⎩

λ̂1 + λ̂2 + λ̂3 = 0,

λ̂1λ̂2 + λ̂1λ̂3 + λ̂2λ̂3 = L2,

λ̂1λ̂2λ̂3 = 2ipmL3.

Define σj,m by

λ̂j = 2πiσj,m

3
.

We then have ⎧⎪⎪⎨⎪⎪⎩
σ1,m + σ2,m + σ3,m = 0,

σ1,mσ2,m + σ1,mσ3,m + σ2,mσ3,m = −3(k2
m + l2

m + kmlm),

σ1,mσ2,mσ3,m = −2(2km + lm)(2lm + km)(km − lm),

where in the last identity, we used the fact

pmL3 = 1

27
(2π)3(2km + lm)(2lm + km)(km − lm).

It is clear that detK2 = 0 if and only if (1.14) holds. The proof is complete. �
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4. Useful properties related to quasi-periodic functions

In this section, we derive some properties for Wx(·, 0) given in the introduction using the 
quasi-periodic-function theory. The main result of this section is Proposition 4.1. We begin with 
its weaker version.

Lemma 4.1. Let � ∈ N∗, aj ∈ C, qj ≥ 0 for 1 ≤ j ≤ �, and Mj1,j2, Nj1,j2 ∈ C with 1 ≤ j1, j2 ≤
�. Assume that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qj1 �= qj2 for 1 ≤ j1 �= j2 ≤ �,

Mj,j �= 0 for 1 ≤ j ≤ �,

(Mj,j is real and Nj,j �= 0) if qj = 0,

aj ∈ iR if qj = 0,

(4.1)

and

�∑
j=1

|aj |2 > 0. (4.2)

Set, for t ∈R,

g(t)

:=
�∑

j1=1

�∑
j2=1

(
aj1aj2Mj1,j2e

−i(qj1+qj2 )t + āj1 āj2M̄j1,j2e
i(qj1+qj2 )t + 2aj1 āj2Nj1,j2e

−i(qj1−qj2 )
)
.

(4.3)

There exists t ∈R+ such that

g(t) �= 0. (4.4)

Proof. We prove (4.4) by recurrence in �. It is clear that the conclusion holds for � = 1. Indeed, 
if q1 �= 0 then since e2q1t , 0, and e−2q1t are independent, the conclusion follows. Otherwise, 
q1 = 0. Since M1,1 is real and a1 ∈ iR, we have

g(t) = 2|a1|2N1,1.

The conclusion in the case � = 1 follows since N1,1 �= 0.
Assume that the conclusion holds for � ≥ 1, we prove that the conclusion holds for � + 1. 

Without loss of generality, one might assume that

0 ≤ q1 < q2 < · · · < q� < q�+1. (4.5)
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We will prove (4.4) for � + 1 by contradiction. Assume that there exist aj and qj ≥ 0 with 
1 ≤ j ≤ � + 1, Mj1,j2 , Nj1,j2 ∈ C with 1 ≤ j1, j2 ≤ � + 1 such that (4.1), (4.2), and (4.5) hold, 
and, for all t ∈R+,

�+1∑
j1=1

�+1∑
j2=1

(
aj1aj2Mj1,j2e

−i(qj1 +qj2 )t + āj1 āj2M̄j1,j2e
i(qj1+qj2 )t + 2aj1 āj2Nj1,j2e

−i(qj1−qj2 )
)

= 0.

(4.6)
Since the function e−2iq�+1t defined in R+ does not belong to the space

span
({

e−it (qj1+qj2 );1 ≤ j1 ≤ � + 1;1 ≤ j2 ≤ �
}
,

{
eit (qj1+qj2 );1 ≤ j1 ≤ � + 1;1 ≤ j2 ≤ � + 1

}
,

{
e−it (qj1−qj2 );1 ≤ j1 ≤ � + 1;1 ≤ j2 ≤ � + 1

})
,

for t ∈R+ by (4.5), we have

a2
�+1M�+1,�+1 = 0.

This yields, since M�+1,�+1 �= 0,

a�+1 = 0.

It follows from (4.6) that

�∑
j1=1

�∑
j2=1

(
aj1aj2Mj1,j2e

−i(qj1 +qj2 )t + āj1 āj2M̄j1,j2e
i(qj1+qj2 )t + 2aj1 āj2Nj1,j2e

−i(qj1−qj2 )
)

= 0.

(4.7)
We now can use the assumption on the recurrence to obtain a contradiction. The proof of (4.4) is 
complete. �

Using Lemma 4.1 and the theory of quasi-periodic functions, see e.g. [1], we can derive the 
following useful result for the proof of Theorem 1.1.

Proposition 4.1. Let � ∈ N∗, aj ∈ C, qj ≥ 0 for 1 ≤ j ≤ �, and Mj1,j2 , Nj1,j2 ∈ C with 1 ≤
j1, j2 ≤ �. Assume that (4.1) holds and denote g by (4.3). For all 0 < γ1 < γ2 there exist γ0 > 0
and τ0 > 0 depending only on γ1, γ2, �, qj , Mj1,j2 , and Nj1,j2 such that if

γ1 ≤
�∑

j=1

|aj |2 ≤ γ2, (4.8)

then

‖g‖L2(τ,2τ) ≥ γ0 for all τ ≥ τ0. (4.9)
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Proof. Instead of (4.9), it suffices to prove

‖g‖L∞(τ,2τ) ≥ γ0 for τ ≥ τ0 (4.10)

by contradiction since |g′(t)| ≤ C in R. Assume that for all n ∈ N∗ there exist (aj,n)
�
j=1 ⊂ C

and (tn) ⊂ R such that γ1 ≤ ∑�
j=1 |aj,n|2 ≤ γ2, tn ≥ n, and

‖gn‖L∞(tn,2tn) ≤ 1/n, (4.11)

where gn is defined in (4.3) where aj1 and aj2 are replaced by aj1,n and aj2,n. Without loss of 
generality, one might assume that

lim
n→+∞aj,n = aj ∈ C

and γ1 ≤ ∑N
j=1 |aj |2 ≤ γ2. Consider g defined by (4.3) with these aj . We have

lim
n→+∞‖gn − g‖L∞(R) = 0. (4.12)

Since g is an almost-periodic function with respect to t (see e.g. [1, Corollary on page 38]), it 
follows from the definition of almost-periodic functions, see e.g. [1, Section 44 on pages 32 and 
33], that for every ε > 0, there exists Lε > 0 such that every interval (α, α + Lε) containing a 
number τ(ε, α) for which it holds

|g(t + τ(ε,α)) − g(t)| ≤ ε for all t ∈ R. (4.13)

The proof is now divided into two cases.

Case 1: lim infε→0 Lε < +∞. Denote L0 = lim infε→0 Lε . We claim that g is T -periodic for 
some period T ≤ L0 + 1. Indeed, by (4.13) applied with α = 1/2, there exists a sequence (τn) ⊂
(1/2, L0 + 1) such that, for large n,

|g(t + τn) − g(t)| ≤ 1/n for all t ∈ R.

By choosing T = lim infn→+∞ τn, we have

g(t + T ) = g(t) for all t ∈R.

The claim is proved.
Since g is T -periodic, we have

‖g‖L∞(tn,tn+T +1) = ‖g‖L∞(0,T +1) for n ∈N∗,

and since g is analytic and g �= 0 by Lemma 4.1, we obtain

‖g‖L∞(0,T +1) > 0.
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This contradicts (4.11) and (4.12). The proof of Case 1 is complete.

Case 2: limε→0 Lε = +∞. Set

ρ = ‖g‖L∞(0,1). (4.14)

It follows from Lemma 4.1 that g is not identically equal to 0. Since g is analytic, we derive that

ρ > 0. (4.15)

Let n0 ≥ 2 be such that

‖gn − g‖L∞(R) < ρ/4, ‖gn‖L∞(tn,2tn) < ρ/4 for n ≥ n0.

Such an n0 exists by (4.11), (4.12), and (4.15). We have, for n ≥ n0,

‖g‖L∞(tn,2tn) ≤ ‖gn − g‖L∞(tn,2tn) + ‖gn‖L∞(tn,2tn) ≤ ρ/4 + ρ/4 = ρ/2. (4.16)

Fix 0 < ε < ρ/4 and fix n ≥ n0 such that 1 ≤ Lε ≤ tn/2. Such a number n exists since tn ≥ n. It 
follows from the definition of τ(ε, tn) that

τ(ε, tn) ∈ (tn, tn +Lε) ⊂ (tn,3tn/2), (4.17)

and ∣∣g(
t + τ(ε, tn)

) − g(t)
∣∣ ≤ ε for all t ∈R. (4.18)

This yields

‖g‖L∞(tn,2tn)

(4.17)≥ ‖g‖L∞(τ (ε,tn),τ (ε,tn)+1)

(4.18)≥ ‖g‖L∞(0,1) − ε ≥ ρ − ρ/4 = 3ρ/4. (4.19)

Combining (4.16) and (4.19) yields a contradiction since ρ > 0 by (4.15). The proof of Case 2 is 
complete. �
5. An upper bound for the decay rate - Proof of Theorem 1.1

This section containing two subsections is devoted to the proof of Theorem 1.1. The main 
ingredient is given in the first section and the proof is presented in the second one.

5.1. A key lemma

In this section, we prove

Lemma 5.1. Let L ∈ N . Assume that dimM = 1 or (1.14) holds. There exist ε0 > 0, C > 0, 
and T0 > 0 depending only on L such that for all (real) u0 ∈ L2(0, L) with ‖u0‖L2(0,L) ≤ ε0, the 
unique solution u ∈ C

([0, +∞); L2(0, L)
) ∩ L2

loc

([0, +∞); H 1(0, L)
)

of system (1.1) satisfies

‖u(T , ·)‖L2(0,L) ≤ ‖u0‖L2(0,L)

(
1 − C‖u0‖2

2

)
for T ≥ T0. (5.1)
L (0,L)
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Proof. We first collect several known facts. Let T1 > 0 be such that

‖vx(·,0)‖L2(0,t) ≥ 1

2
‖v(0, ·)‖L2(0,L) for t ≥ T1, (5.2)

for all solutions v ∈ C
([0, +∞); L2(0, L)

) ∩ L2
loc

([0, +∞); H 1(0, L)
)

of the system{
vt (t, x) + vx(t, x) + vxxx(t, x) = 0 in (0,+∞) × (0,L),

v(t, x = 0) = v(t, x = L) = vx(t, x = L) = 0 in (0,+∞),
(5.3)

with v(0, ·) ∈ L2(0, L) satisfying the condition

v(0, ·) ⊥ M

(the orthogonality is considered with respect to L2(0, L)-scalar product). The existence of such 
a constant T1 follows from [18].

There exist two positive constants ε0 and c1 such that if ‖u0‖L2(0,L) ≤ ε0, then

‖u‖C
([0,T1];L2(0,L)

) + ‖u‖L2(
(0,T1);H 1(0,L)

) ≤ c1‖u0‖L2(0,L) (5.4)

(see e.g., [9, Proposition 14]).
There is a positive constant c2 such that if ũ0 ∈ L2(0, L), f̃ ∈ L1

(
(0, T1); L2(0, L)

)
, and 

ỹ ∈ C
([0, T1); L2(0, L)

) ∩ L2
([0, T1); H 1(0, L)

)
is the unique solution of the system⎧⎪⎪⎨⎪⎪⎩

ũt (t, x) + ũx(t, x) + ũxxx(t, x) = f̃ in (0, T1) × (0,L),

ũ(t, x = 0) = ũ(t, x = L) = ũx(t, x = L) = 0 in (0, T1),

ũ(t = 0, ·) = ũ0 in (0,L),

(5.5)

then

‖ũx(·,0)‖L2(0,T1)
+ ‖ũ‖C

([0,T1];L2(0,L)
) + ‖ũ‖L2(

(0,T1);H 1(0,L)
)

≤ c2

(
‖ũ0‖L2(0,L) + ‖f̃ ‖L1(

(0,T1);L2(0,L)
)). (5.6)

There exists a positive constant c3 depending only on L such that, for all T > 0,

‖ξξx‖L1(
(0,T );L2(0,L)

) ≤ c3‖ξ‖2
L2(

(0,T );H 1(0,L)
) (5.7)

(the constant c3 is independent of T ).
We now decompose u0 into two parts:

u0 = u0,1 + u0,2 in (0,L), (5.8)

where
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u0,1 = ProjectionMu0

with respect to L2(0, L)-scalar product.
The proof is now divided into two cases, with 0 < ε = ‖u0‖L2(0,L) < ε0 (the conclusion is 

clear if ε = 0),

• Case 1: ‖u0,2‖L2(0,L) ≥ βε2 = β‖u0‖2
L2(0,L)

,

• Case 2: ‖u0,2‖L2(0,L) < βε2 = β‖u0‖2
L2(0,L)

,

where

β = 4c2
1c2c3. (5.9)

Case 1: Assume that

‖u0,2‖L2(0,L) ≥ βε2 = β‖u0‖2
L2(0,L)

. (5.10)

Let û ∈ C
([0, T1); L2(0, L)

) ∩ L2
([0, T1); H 1(0, L)

)
be the unique solution of⎧⎪⎪⎨⎪⎪⎩

ût (t, x) + ûx(t, x) + ûxxx(t, x) = 0 in (0, T1) × (0,L),

û(t,0) = û(t,L) = ûx(t,L) = 0 in (0, T1),

û(0, ·) = u0 in (0,L).

(5.11)

Then

‖(û − u)x(·,0)‖L2(0,T1)

(5.6)≤ c2‖uux‖L1(
(0,T1);L2(0,L)

) (5.4),(5.7)≤ c2
1c2c3ε

2. (5.12)

Let ûj ∈ C
([0, T1); L2(0, L)

) ∩ L2
([0, T1); H 1(0, L)

)
with j = 1, 2 be the unique solution 

of ⎧⎪⎪⎨⎪⎪⎩
ûj,t (t, x) + ûj,x(t, x) + ûj,xxx(t, x) = 0 for t ∈ (0, T ), x ∈ (0,L),

ûj (t,0) = ûj (t,L) = ûj,x(t,L) = 0 for t ∈ (0, T ),

ûj (0, ·) = u0,j in (0,L).

(5.13)

Then

û = û1 + û2 in [0, T1] × [0,L].

We have

û1,x(·,0) = 0 in [0, T1], (5.14)

and, by the choice of T1 via (5.2),
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‖û2,x(·,0)‖L2(0,T1)
≥ 1

2
‖û2(0, ·)‖L2(0,L) = 1

2
‖u0,2‖L2(0,L). (5.15)

It follows from (5.10) that

‖ûx(·,0)‖L2(0,T1)
≥ 1

2
βε2. (5.16)

From (5.12) and (5.16), we obtain

‖ux(·,0)‖L2(0,T1)
≥ ‖ûx(·,0)‖L2(0,T1)

− ‖(u − û)x(·,0)‖L2(0,T1)

≥
(

1

2
β − c2

1c2c3

)
ε2 (5.9)≥ c2

1c2c3ε
2.

In other words,

‖ux(·,0)‖L2(0,T1)
≥ c2

1c2c3‖u0‖2
L2(0,L)

. (5.17)

Case 2: Assume that

‖u0,2‖L2(0,L) < βε2 = β‖u0‖2
L2(0,L)

. (5.18)

Since

‖u0,1‖2
L2(0,L)

+ ‖u0,2‖2
L2(0,L)

= ‖u0‖2
L2(0,L)

= ε2,

by considering ε sufficiently small, one can assume that

‖u0,1‖L2(0,L) ≥ ε/2.

Let αm ∈ C (1 ≤ m ≤ nL) be such that

1

ε
u0,1 = �

{
nL∑

m=1

αm	m(0, x)

}
. (5.19)

Since u0,1 ∈ M, such a family of (αm)
nL

m=1 exists. Since

1/2 ≤ ‖1

ε
u0,1‖L2(0,L) ≤ 1

and 
(
	m(0, ·)

)
is orthogonal in L2(0, L) (with respect to the complex field), one can assume in 

addition that

0 < γ1 ≤
nL∑

|αm|2 ≤ γ2,
m=1
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for some constants γ1, γ2 depending only on L. Moreover, since 	m(0, x) ∈ iR for x ∈ [0, L]
(by (2.31)) if pm = 0 (see e.g. (2.31)), one can also assume that am ∈ iR if pm = 0.

Let γ0 > 0 and τ0 > 0 be the constants given in Proposition 4.1 with � = nL, γ1 and γ2
determined above, qm = pm given by (1.11),

Mm1,m2 = 1

8
ϕ′

m1,m2
(0) and Nm1,m2 = 1

8
φ′

m1,m2
(0), (5.20)

where ϕm1,m2 and φm1,m2 are defined in Proposition 2.1 and Proposition 2.2, respectively; in the 
case the definition of ϕm1,m2 and φm1,m2 in Proposition 2.1 and Proposition 2.2 are not unique, 
we fix a choice of ϕm1,m2 and φm1,m2 .

By Proposition 3.1, we have

Mm,m �= 0,

and

(Mm,m is real and Nm,m �= 0) if pm = 0.

Then, by Proposition 4.1, for all aj ∈ C (1 ≤ j ≤ N) satisfying γ1 ≤ ∑N
j=1 |aj |2 ≤ γ2, it 

holds

‖g‖L2(τ,2τ) ≥ γ0 for all τ ≥ τ0, (5.21)

where

g(t) =
nL∑

m1=1

nL∑
m2=1

(
am1am2Mm1,m2e

−i(pm1+pm2 )t

+ ām1 ām2M̄m1,m2e
i(pm1+pm2 )t + 2am1 ām2Nm1,m2e

−i(pm1−pm2 )
)
. (5.22)

Define

A = β + 2
nL∑

m1=1

nL∑
m2=1

‖ϕm1,m2‖L2(0,L) + 2
nL∑

m1=1

nL∑
m2=1

‖φm1,m2‖L2(0,L), (5.23)

and set

c4 = 1/(2A). (5.24)

Let T2 ≥ 2τ0 be such that

‖yx(·,0)‖L2(T2/2,T2)
≤ c4γ0‖y(0, ·)‖L2(0,L), (5.25)

for all solutions y ∈ C
([0, +∞); L2(0, L)

) ∩ L2
([0, +∞); H 1(0, L)

)
of
loc

278



H.-M. Nguyen Journal of Differential Equations 295 (2021) 249–291
{
yt (t, x) + yx(t, x) + yxxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

y(t,0) = y(t,L) = yx(t,L) = 0 for t ∈ (0,+∞),
(5.26)

with y(0, ·) ∈ L2(0, L). Note that T2 is independent of y(0, ·). The existence of T2 can be proved 
by decomposing y(0, ·) = y1(0, ·) + y2(0, ·) with y1(0, ·) ∈ M, and noting that (5.25) holds 
for the solution with initial data being y2(0, ·) since the solution is exponential decay, and the 
contribution for yx(·, 0) from the solution with initial data is y1(0, ·) is 0.

Let ̃u1, ũ2 ∈ C
([0, +∞); L2(0, L)

) ∩ L2
loc

([0, +∞); H 1(0, L)
)

be the unique solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ũ1,t (t, x) + ũ1,x(t, x) + ũ1,xxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

ũ1(t,0) = ũ1(t,L) = ũ1,x(t,L) = 0 for t ∈ (0,+∞),

ũ1(0, ·) = 1

ε
u0,1 in [0,L],

(5.27)

and⎧⎪⎪⎪⎨⎪⎪⎪⎩
ũ2,t (t, x) + ũ2,x(t, x) + ũ2,xxx(t, x) + ũ1ũ1,x = 0 for t ∈ (0,+∞), x ∈ (0,L),

ũ2(t,0) = ũ2(t,L) = ũ2,x(t,L) = 0 for t ∈ (0,+∞),

ũ2(0, ·) = 1

ε2 u0,2 in [0,L].
(5.28)

Set

V (t, x) =
nL∑

m=1

αm	m(t, x) and U(t, x) = �V (t, x).

We have⎧⎪⎪⎪⎨⎪⎪⎪⎩
U(t, x) + Ux(t, x) + Uxxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

U(t, x = 0) = U(t, x = L) = Ux(t, x = L) = 0 for t ∈ (0,+∞),

U(t = 0, ·) = 1

ε
u0,1 in [0,L].

(5.29)

This implies

ũ1 = U in (0,+∞) × (0,L).

Define

V1(t, x) =
nL∑

m1=1

nL∑
m2=1

αm1αm2ϕm1,m2(x)e−i(pm1 +pm2 )t , (5.30)

and
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V2(t, x) =
nL∑

m1=1

nL∑
m2=1

αm1 ᾱm2φm1,m2(x)e−i(pm1 −pm2 )t . (5.31)

Then, by the construction of ϕm1,m2 ,{
V1,t (t, x) + V1,x(t, x) + V1,xxx(t, x) + (

V (t, x)V (t, x)
)
x

= 0 for t ∈ (0,+∞), x ∈ (0,L),

V1(t,0) = V1(t,L) = V1,x(t,L) = 0 for t ∈ (0,+∞),

(5.32)
and, by the construction of φm1,m2 ,{

V2,t (t, x) + V2,x(t, x) + V2,xxx(t, x) + (|V (t, x)|2)
x

= 0 for t ∈ (0,+∞), x ∈ (0,L),

V2(t,0) = V2(t,L) = V2,x(t,L) = 0 for t ∈ (0,+∞).

(5.33)
Set

W = 1

8

(
V1 + V̄1 + 2V2

)
in (0,+∞) × (0,L). (5.34)

It follows from (5.22) that Wx(t, 0) = g(t) in R+ and hence, by (5.21),

‖Wx(t,0)‖L2(τ,2τ) ≥ γ0 for all τ ≥ τ0. (5.35)

Since (
V (t, x)V (t, x)

)
x

+ (
V (t, x)V (t, x)

)
x

+ 2
(|V (t, x)|2)

x
= 8U(t, x)Ux(t, x),

we derive from (5.34) that{
Wt(t, x) + Wx(t, x) + Wxxx(t, x) + U(t, x)Ux(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

W(t,0) = W(t,L) = Wx(t,L) = 0 for t ∈ (0,+∞).

(5.36)
Let W̃ ∈ C

([0, +∞); L2(0, L)
) ∩ L2

loc

([0, +∞); H 1(0, L)
)

be the unique solution of⎧⎪⎪⎨⎪⎪⎩
W̃t (t, x) + W̃x(t, x) + W̃xxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

W̃ (t,0) = W̃ (t,L) = W̃x(t,L) = 0 for t ∈ (0,+∞),

W̃ (0, ·) = ũ2(0, ·) − W(0, ·).
(5.37)

Then

ũ2 = W̃ + W in (0,+∞) × (0,L). (5.38)

We have

‖ũ2,x(·,0)‖L2(T /2,T )

(5.38)≥ ‖Wx(·,0)‖L2(T /2,T ) − ‖W̃x(·,0)‖L2(T /2,T ), (5.39)

2 2 2 2 2 2
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‖W̃x(·,0)‖L2(T2/2,T2)

(5.25)≤ c4γ0‖W̃ (0, ·)‖L2(0,L), (5.40)

and, since T2 ≥ τ0,

‖Wx(·,0)‖L2(T2/2,T2)

(5.35)≥ γ0. (5.41)

Since, by (5.30), (5.31), and (5.34)

8W(0, x) =
nL∑

m1=1

nL∑
m2=1

αm1αm2ϕm1,m2(x)

+
nL∑

m1=1

nL∑
m2=1

ᾱm1 ᾱm2 ϕ̄m1,m2(x) + 2
nL∑

m1=1

nL∑
m2=1

αm1 ᾱm2φm1,m2(x),

it follows that

‖W(0, ·)‖L2(0,L) ≤ 2
nL∑

m1=1

nL∑
m2=1

‖ϕm1,m2‖L2(0,L) + 2
nL∑

m1=1

nL∑
m2=1

‖φm1,m2‖L2(0,L). (5.42)

By the definition of A in (5.23), we obtain from (5.18) and (5.42) that

A ≥ ‖ũ2(0, ·)‖L2(0,L) + ‖W(0, ·)‖L2(0,L)

(5.38)≥ ‖W̃ (0, ·)‖L2(0,L). (5.43)

Combining (5.39), (5.40), (5.41), and (5.43) yields

‖ũ2,x(·,0)‖L2(T2/2,T2)
≥ γ0 − c4γ0A.

Since c4 = 1/(2A) by (5.24), we obtain

‖ũ2,x(·,0)‖L2(T2/2,T2)
≥ γ0/2. (5.44)

Set

ud = εũ1 + ε2ũ2 − u in (0,+∞) × (0,L),

and

fd = uux − ε2ũ1ũ1,x in (0,+∞) × (0,L). (5.45)

We have, by (5.27) and (5.28),⎧⎪⎪⎨⎪⎪⎩
ud,t (t, x) + ud,x(t, x) + ud,xxx(t, x) = fd(t, x) for t ∈ (0,+∞), x ∈ (0,L),

ud(t, x = 0) = ud(t, x = L) = ud(t, x = L) = 0 for t ∈ (0,+∞),

u (t = 0, ·) = 0 in (0,L).

(5.46)
d
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It is clear that

‖fd‖L1(
(0,T2);L2(0,L)

) ≤ Cε2,

where C is a positive constant depending only on T2 and L. It follows that

‖ud‖C
([0,T2];L2(0,L)

) + ‖ud‖L2(
(0,T2);H 1(0,L)

) ≤ Cε2.

This in turn implies that

‖fd‖L1(
(0,T2);L2(0,L)

) ≤ Cε3,

and therefore,

‖ud,x(·,0)‖L2(0,T2)
≤ Cε3. (5.47)

Combining (5.44) and (5.47), and noting that ̃u1,x(t, 0) = 0 yield

‖ux(·,0)‖L2(T2/2,T2)
≥ Cε2. (5.48)

The analysis of Step 2 is complete.

The conclusion now follows from Case 1 where one obtains (5.17) and Case 2 where one 
obtains (5.48) by choosing T0 = max{T1, T2} and using (1.5). The proof is complete. �

We are ready to give

5.2. Proof of Theorem 1.1

By Lemma 5.1, we have

‖u(T2, ·)‖L2(0,L) ≤ ‖u(0, ·)‖L2(0,L)

(
1 − C‖u(0, ·)‖2

L2(0,L)

)
.

This yields, with ‖u(0, ·)‖L2(0,L) = ε > 0 and p being the largest integer less than 1/(2Cε2),

‖u(pT2, ·)‖L2(0,L) ≤ 1

2
‖u(0, ·)‖L2(0,L).

Here we also used (1.5). Using (1.5) again, it follows that, for T ≥ C/‖u(0, ·)‖2
L2(0,L)

,

‖u(T , ·)‖L2(0,L) ≤ 1

2
‖u(0, ·)‖L2(0,L).

This implies, by recurrence, that

‖u(T , ·)‖L2(0,L) ≤ 2−n‖u0‖L2(0,L) for T ≥ C

n−1∑
22p/‖u(0, ·)‖2

L2(0,L)

p=0
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since ‖u(t, ·)‖L2(0,L) is a non-increasing function with respect to t . In particular, we obtain, since 
‖u(t, ·)‖L2(0,L) is a non-increasing function with respect to t ,

‖u(t, ·)‖L2(0,L) ≤ C/t1/2. (5.49)

The proof is complete. �
6. A lower bound for the decay rate - Proof of Proposition 1.1

Fix 1 ≤ m ≤ nL and αm ∈ C with |αm| = 1 such that

�(αmϕm,m(x)) is not identically equal to 0 in [0,L].

Let ̃u1 ∈ C
([0, +∞); L2(0, L)

) ∩ L2
loc

([0, +∞); H 1(0, L)
)

be the unique solution of⎧⎪⎪⎨⎪⎪⎩
ũ1,t (t, x) + ũ1,x(t, x) + ũ1,xxx(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

ũ1(t, x = 0) = ũ1(t, x = L) = ũ1,x(t, x = L) = 0 for t ∈ (0,+∞),

ũ1(0, ·) = �(αmϕm,m).

(6.1)

Set

V1(t, x) = α2
mϕm,m(x)e−2ipmt , (6.2)

V2(t, x) = |αm|2φm,m(x), (6.3)

and denote

ũ2 = 1

8

(
V1 + V̄1 + 2V2

)
in (0,+∞) × (0,L). (6.4)

Since φm,m is real by 3) of Proposition 2.2, it follows that V2 is real and hence so is ̃u2.
As in the proof of Lemma 5.1, we have

ũ1(t, x) = �
(
αmϕm,m(x)e−ipmt

)
,

and{
ũ2,t (t, x) + ũ2,x(t, x) + ũ2,xxx(t, x) + ũ1(t, x)̃u1,x(t, x) = 0 for t ∈ (0,+∞), x ∈ (0,L),

ũ2(t, x = 0) = ũ2(t, x = L) = ũ2,x(t, x = L) = 0 for t ∈ (0,+∞).

Let u ∈ C
([0, +∞); L2(0, L)

) ∩ L2
loc

([0, +∞); H 1(0, L)
)

be a (real) solution of (1.1) with

‖u(0, ·)‖L2(0,L) ≤ �ε,

where
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� := sup
t

‖ũ1(t, ·)‖L2(0,L) + 1.

Set

ũ2(t, x) = W(t, x) in (0,+∞) × (0,L),

ud = εũ1 + ε2ũ2 − u in (0,+∞) × (0,L),

fd = uux − ε2ũ1ũ1,x in (0,+∞) × (0,L).

We have⎧⎪⎪⎨⎪⎪⎩
ud,t (t, x) + ud,x(t, x) + ud,xxx(t, x) = fd(t, x) for t ∈ (0,+∞), x ∈ (0,L),

ud(t, x = 0) = ud(t, x = L) = ud(t, x = L) = 0 for t ∈ (0,+∞),

ud(t = 0, ·) = 0 in (0,L).

(6.5)

Denote

gd = ε3(̃u1ũ2,x + ũ2ũ1,x) + ε4ũ2ũ2,x . (6.6)

We write fd under the form

fd =(u − εũ1 − ε2ũ2)ux + (εũ1 + ε2ũ2)(u − εũ1 − ε2ũ2)x + gd

= − udux − (εũ1 + ε2ũ2)ud,x + gd.

Multiplying the equation of ud with ud (which is real), integrating by parts in (1, t) × (0, L), and 
using the form of fd just above give

L∫
0

|ud(t, x)|2 dx ≤
L∫

0

|ud(1, x)|2 dx + 2

t∫
1

L∫
0

|ud |2|ux |dx ds

+
t∫

1

L∫
0

(ε|̃u1| + ε2 |̃u2|)x |ud |2 dx ds + 2

t∫
1

L∫
0

|gd ||ud |. (6.7)

Since

L∫
0

|u(t, x)|2 dx ≤
L∫

0

|u(0, x)|2 ≤ Cε for t ≥ 0,

and the effect of the regularity, one has

|u(t, x)| + |ux(t, x)| ≤ Cε for t ≥ 1, x ∈ [0,L]. (6.8)
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Let a be a (small) positive constant defined later (the smallness of a depending only on L). 
Let t0 ∈ [1, a/ε] be such that

L∫
0

|ud(t0, x)|2 dx = max
t∈[1,a/ε]

L∫
0

|ud(t, x)|2 dx.

Combining (6.7) with t = t0 and (6.8) yields

L∫
0

|ud(t0, x)|2 dx ≤
L∫

0

|ud(1, x)|2 dx + Ca

L∫
0

|ud(t0, x)|2 dx +
a/ε∫
1

L∫
0

ε−1|gd |2 dx.

This implies, if a is sufficiently small,

L∫
0

|ud(t0, ·)|2 dx dx ≤ C

L∫
0

|ud(1, x)|2 dx + Cε4

by (6.6).
On the other hand, one has

L∫
0

|ud(t, ·)|2 dx dx ≤ C

L∫
0

|ud(0, x)|2 dx + Cε4 for t ∈ [0,1].

We have just proved that, for a sufficiently small,

sup
t∈[0,a/ε]

‖ud(t, ·)‖L2(0,L) ≤ C
(
‖ud(0, ·)‖L2(0,L) + ε2

)
.

Continuing this process, we obtain

sup
t∈[0,an/ε]

‖ud(t, ·)‖L2(0,L) ≤ Cn‖ud(0, ·)‖L2(0,L) +
n∑

k=1

Ckε2. (6.9)

We now consider u with

u(0, ·) = εũ1(0, ·) + ε2ũ2(0, ·).

Thus

ud(0, ·) = 0. (6.10)
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Fix γ > 0 such that

inf
t∈R

L∫
0

|̃u1(t, x)|2 dx ≥ 4γ. (6.11)

With n being the largest integer number such that Cn+1 ≤ γ ε−1 (we assume now and later on 
that C ≥ 2), we derive from (6.9) and (6.10) that

sup
t∈[0,an/ε]

‖ud(t, ·)‖L2(0,L) ≤ γ ε.

Since

ud = εũ1 + ε2ũ2 − u,

by the choice of γ , we have, for ε sufficiently small,

‖u(an/ε, ·)‖L2(0,L) ≥ γ ε.

We deduce that, with τ = an/ε ∼ ε−1 ln ε−1 (hence ε−1 ∼ τ/ ln τ ),

‖u(τ, ·)‖L2(0,L) ≥ γ ε ≥ Cγ ln τ/τ.

The proof is complete. �
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Appendix A. Proof of Lemma 2.2

Let L ∈N and z ∈ PL. Then, from [18], z = pm for some 1 ≤ m ≤ nL and

λj = ηj,m.

One can then check that detQ = 0. On the other hand, if z �= ±2/(3
√

3) and detQ(z) = 0, it 
follows that there exists (a1, a2, a3) ∈ C3 \ {0} such that the function ξ defined by

ξ(x) =
3∑

j=1

aj e
λj (z)x

satisfies
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ξ(0) = ξ(L) = ξ ′(L) = 0.

Since ξ ′′′ + ξ ′ = izξ , by an integration by parts, one has

ξ ′(0) = 0 if z is real.

Hence, from [18], if z ∈ R \ {±2/(3
√

3)} and detQ(z) = 0, then L ∈ N and z = pm for some 
1 ≤ m ≤ nL. We finally note that, {±2/(3

√
3)} ∩PL = ∅ for all L ∈N since, for k ≥ l ≥ 1,

0 ≤ (2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
= (2k + l)(k2 + kl − 2l2)

3
√

3(k2 + kl + l2)3/2
<

(2k + l)

3
√

3(k2 + kl + l2)1/2
<

2

3
√

3
.

The proof is complete. �
Appendix B. Scilab program for checking s(k, l) �= 0

c l c
N=2000;
t =100;
a =0;
b =0;
f o r k =2:N

f o r l =1 : k−1
h1 = 3 ∗ ( k∗k + l ∗ l + k∗ l ) ;
h0= 2 ∗ (2∗ k + l )∗ (2∗ l + k ) ∗ ( k−l ) ;
p = p o ly ( [ h0 −h1 0 1 ] , ’ x ’ , ’ c ’ ) ;
r = r o o t s ( p ) ;
c=exp (4 ∗ %p i ∗ %i ∗ ( k−l ) / 3 ) ;
a1= c∗ exp (2 ∗ %i ∗ %p i ∗ r ( 1 ) / 3 )

+ exp(−2 ∗ %i ∗ %p i ∗ r ( 1 ) / 3 ) ;
a2 = c∗ exp (2 ∗ %i ∗ %p i ∗ r ( 2 ) / 3 )

+ exp(−2 ∗ %i ∗%p i ∗ r ( 2 ) / 3 ) ;
a3=c∗ exp (2 ∗ %i ∗ %p i ∗ r ( 3 ) / 3 )

+ exp(−2 ∗ %i ∗ %p i ∗ r ( 3 ) / 3 ) ;
s = r ( 1 )∗ ( r ( 3 ) − r ( 2 ) ) ∗ a1

+ r ( 2 )∗ ( r ( 1 ) − r ( 3 ) ) ∗ a2
+ r ( 3 )∗ ( r ( 2 ) − r ( 1 ) ) ∗ a3 ;

i f abs ( s ) < t t h e n t = abs ( s ) ; a=k ; b= l ;
end

end
end
d i s p ( a , b , t ) ;

The outcome is t = 0.0000164, a = 736, and b = 611. This means

min
{
|s(k, l)|;1 ≤ l < k ≤ 2000

}
= t = 0.0000164

and
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s(736,611) = t.

Appendix C. A range of k and l for which s(k, l) �= 0

In this section, we prove

Proposition C1. There exists a constant C ≥ 1 such that for k, l ∈ N∗ satisfying the conditions 
that k > l, k + l is odd, and

C(k − l)2 ≤ k,

we have

s(k, l) �= 0.

Proof. Instead of proving s(k, l) �= 0, we will prove the following equivalent fact, by (3.22),

S(k, l) �= 0,

where

S(k, l) =
3∑

j=1

λj (λj+2 − λj+1)
(
e2η2Leλj L + e−λj L

)
, (C1)

where λj are the solutions of

λ3 + λ = 2ip

with p = p(k, l), and η2 = η2(k, l) = 2πi(k − l)/(3L).
We have

k2 + kl + l2 = 3k2 + 3k(l − k) + (l − k)2,

which implies

L = 2πk

(
1 + l − k

k
+ (l − k)2

3k2

)1/2

.

Using the fact, for small x,

(1 + x)1/2 = 1 + 1

2
x − 1

8
x2 + O(x3),

we derive that
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L =2πk

(
1 + l − k

2k
+ (l − k)2

24k2 + O
(
(k − l)3/k3)) (C2)

=π

(
k + l + (l − k)2

12k
+ O

(
(k − l)3/k2)) . (C3)

Here and in what follows for a number a, we denote O(a) the quantity which is bounded by C|a|
for some positive constant C independent of k and l.

Set

M = M(k, l) = (2k + l)(2l + k)(k − l).

Then

M = k2
(

3 + l − k

k

)(
3 + 2(l − k)

k

)
(k − l) = 9k2(k − l)

(
1 + l − k

k
+ O

(
(k − l)2/k2)) .

(C4)
We have

p =
(

2π

3L

)3

M
(C2),(C4)= 1

3k
(k − l)

(
1 − l − k

2k
+ O

(
(k − l)2/k2)) (C5)

= 1

3k
(k − l)

(
1 + O

(
(k − l)/k

))
. (C6)

From the definition of λj , we obtain

λ1 = −i − ip + 3ip2

2
+ O(p3), λ2 = 2ip + O(p3), λ3 = i − ip − 3ip2

2
+ O(p3). (C7)

It follows from (C1) that

S(k, l) = (−i − ip + 3ip2/2)(i − 3ip − 3ip2/2)
(
e−λ1L + e2η2Leλ1L

)
+ 2ip(−2i + 3ip2)

(
e−λ2L + e2η2Leλ2L

)
+ (i − ip − 3ip2/2)(i + 3ip − 3ip2/2)

(
e−λ3L + e2η2Leλ3L

)
+ O(p3). (C8)

We have

λ1L − λ3L
(C7)= (−2i + 3ip2)L + O(p3L)

(C3),(C6)= −2(k + l)πi − πi(l − k)2

6k
+ 3ip2L + O(p3L)

(C2),(C6)= −2(k + l)πi − 3
ip2L + 3ip2L + O(p3L)
4
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= −2(k + l)πi + 9

4
ip2L + O(p3L). (C9)

Here in the third identity, we used the fact that

p2L = 2π

9

(k − l)2

k
+ O((k − l)3)/k2 = 2π

9

(k − l)2

k
+ O(p3L).

It follows from (C9) that

e−λ3L + e2η2Leλ3L = e−λ1L+ 9
4 ip2L+O(p3L) + e2η2Leλ1L− 9

4 ip2L+O(p3L)

= e−λ1L(1 + 9

4
ip2L) + e2η2Leλ1L(1 − 9

4
ip2L) + O(p4L2).

Since

(−i − ip + 3ip2/2)(i − 3ip − 3ip2/2) + (i − ip − 3ip2/2)(i + 3ip − 3ip2/2)

= −4p + 6p3 + O(p4),

and

(i − ip − 3ip2/2)(i + 3ip − 3ip2/2) = −1 − 2p + O(p2),

we derive from (C8) that

S(k, l) = (−4p + 6p3)
(
e−λ1L + e2η2Leλ1L

)
− 9

4
ip2L(1 + 2p)

(
e−λ1L − e2η2Leλ1L

)
+ (4p − 6p3)

(
e−λ2L + e2η2Leλ2L

)
+ O(p4L2).

(C10)

Here we also used the fact p2 = O(p3L). Note that

λ1L
(C7)= −iL − ipL + 3ip2L

2
+ O(p3L)

(C3),(C2),(C6)= −π(k + l)i − η2L + O(p2L),

and

λ2L
(C2),(C6)= 2η2L + O

(
(k − l)2/k

) = 2η2L − 9ip3L

4
+ O(p4L2).

From (C10), we obtain
290
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S(k, l) =2(−4p + 6p3)eη2Leπ(k+l)i + (4p − 6p3)
(
e−2η2L + e4η2L

)
+ O(p4L2) (since e3η2L = 1)

=2(−4p + 6p3)eη2L
(
eπ(k+l)i − 1

)
+ O(p4L2) (since e3η2L = 1).

The proof is complete. �
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