
 1 

Optimized kW-Range Boost Converter Based on Impulse 
Rectification with 52 kW/l and 98.6% Efficiency 

 
Armin Jafari, Student Member, IEEE, Mohammad Samizadeh Nikoo, Member, IEEE, Remco van Erp  

and Elison Matioli, Member, IEEE 
 

Abstract—Maximizing the efficiency and power density of dc-
dc converters demands parallel optimizations in design and 
control, especially for variable-frequency converters operating 
over wide frequency ranges. This work presents the full-scale 
optimization of a kilowatt-range MHz-class boost converter 
based on impulse rectification. To maximize the heat extraction 
from the converter and increase its power density, the entire 
power stage is implemented on a single-layer insulated-metal 
substrate (IMS). For high efficiencies over wide frequency 
ranges, high-performance Gallium Nitride (GaN) transistors are 
employed and various high-frequency materials (MnZn, NiZn, 
air) with different geometries are compared to realize a wide-
bandwidth inductor. Silicon Carbide (SiC) Schottky diodes with 
zero reverse recovery are utilized for efficient high-frequency 
rectification, and the impact of the device current rating on its 
generated reactive power and the overall system efficiency is 
investigated at different power levels up to 1 kW. A proposed 
optimum duty cycle control maximizes the conversion efficiency 
at different gains and powers and prevents fatal device hard 
switching at high frequencies. The optimized converter enables a 
peak efficiency of 98.6% along with an ultra-high power density 
of 52 kW/l (850 W/inch3). A loss breakdown summarizes major 
efficiency bottlenecks to be overcome by future advances in 
power electronics. 
 

Index Terms—Boost, impulse rectification, GaN, SiC, high 
power density, high-frequency, wide-bandwidth inductor, soft-
switching, optimum duty cycle control, IMS PCB, dc-dc.  

I. INTRODUCTION 
IGH-PERFORMANCE Gallium Nitride (GaN) and 
Silicon Carbide (SiC) devices enable soft-switched 

converters to operate efficiently at high frequencies [1]; 
nonetheless, simultaneous maximization of efficiency and 
power density - typically two opposing objectives - requires an 
advanced hardware configuration - from printed circuit board 
(PCB) design for an efficient heat extraction to high-quality 
passive component design and proper wide-band-gap (WBG) 
device selection - as well as optimum control strategies [2].  
 Boost converters are the main building block in power 
electronics and are used in a wide range of applications. In a 
conventional boost converter, the transistor is subjected to 
hard switching, which hinders its efficient operation at very-
high frequencies and in turn results in higher inductor 
volumes. A boost converter based on impulse rectification can 
potentially overcome the aforementioned drawbacks by 
maintaining soft switching [3]. This work focuses on a full- 
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Fig. 1.  Boost converter design using IMS PCB technology. (a) Single-layer 
design of the power stage and (b) the compact final design with a 35-mm 
diameter. (c) The PCB layout enables an extremely-high thermal conductivity 
(> 60 W/mK), suitable for an ultra-high power density. 

 
scale hardware and control optimization of a boost converter 
based on impulse rectification, resulting in a kilowatt-range 
MHz-class converter design with an outstanding power 
density of 52 kW/l (850 W/inch3) and a peak efficiency of 
98.6%. Here, we discuss the PCB design on a single-layer 
insulated-metal substrate (IMS) which enabled an ultra-high 
power density. Next, high-frequency magnetic materials with 
different winding geometries are compared to realize a wide-
bandwidth inductor. A discussion on the diode selection is 
followed by introducing an optimum duty cycle control 
method for maximizing the efficiency over the entire voltage 
gains and power levels. A loss breakdown is presented to 
identify the efficiency bottleneck, and the concurrently 
superior efficiency and power density of the boost converter 
are benchmarked against state-of-the-art dc-dc converters. 

II. DESIGN FOR ULTRA-HIGH DENSITY 
The main challenges for realizing an ultra-high density 

converter are an efficient thermal interface design and reduced 
high-frequency losses [4]. To obtain an efficient thermal 
interface, the entire power stage was implemented on a 

H 
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Fig. 2.  Converter waveforms. (a) Experimental vDS and vGS waveforms 
measured with 1-GHz TPP1000 Tektronix voltage probes, with (b) iL and iDS 
waveforms extracted from spice simulation. The converter operated at 430 W 
of input power and 400 V of output voltage, at G = 2.3. By adjusting the duty 
cycle, full ZVS is achieved, enabling high efficiencies at MHz frequencies. 

single-layer IMS PCB, as shown in Fig. 1a. IMS technology is 
known for its outstanding thermal performance in high-power 
light-emitting diodes (LEDs) and high-speed motor drives [5], 
[6]. Fig. 1b presents the full converter design including the 
high-frequency inductor along with the IMS PCB layout 
composed of a 35-μm copper layer, a 50-μm VT4B5 insulation 
material and a 1-mm aluminum substrate (Fig. 1c). The overall 
thermal conductivity (kt) over the entire PCB thickness (Lt) 
can be expressed as 

                 t
t

1 1 2 2 3 3

L
k

L k L k L k
=

+ +
          (1) 

in which k1=385 W/mK, k2=4.2 W/mK and k3=205 W/mK 
represent thermal conductivities of copper, VT4B5 insulation 
material and aluminum, respectively, and L1 to L3 are the 
corresponding thicknesses of each layer. Using (1), the IMS 
PCB offers kt > 60 W/mK. Considering the board cross section 
area, an overall thermal resistance of < 0.02 K/W was 
obtained, which is much lower than the junction-to-case 
thermal resistance of the transistor (0.5 K/W for GS66508B) 
and the diode (~1 K/W for IDDD08G65C6), granting a very 
efficient heat extraction from the devices. For a better inductor 
cooling, one can employ high thermally conductive epoxies in 
the so-called potting process, which is widely used for 
improving the thermal performance of electrical machines, 
transformers, inductors, and transistor packages [7]–[10]. 
These materials fill the space between the windings and the 
IMS board and can provide up to two orders of magnitude 
higher thermal conductivities compared to air. 
 Additionally, zero-voltage switching (ZVS) of the boost 
converter in impulse rectification mode significantly reduced 

high-frequency losses [3]. To the same end, a GaN device 
(GS66508B) with very low soft-switching losses was selected 
[1]. Fig. 2a presents the gate-to-source (vGS) and drain-to-
source (vDS) waveforms when the boost was fully soft 
switched at 1.6 MHz, with a 400-V dc output voltage and a 
voltage gain (G) of 2.3 times. Inductor current (iL) and drain-
to-source current (iDS) from spice simulation are shown in Fig. 
2b for the same operating conditions.  

III. WIDE-BANDWIDTH INDUCTOR DESIGN  
 Power in a boost converter in impulse rectification mode is 
regulated by switching frequency (f). To preserve a high 
efficiency over the entire load range, designing a wide-
bandwidth inductor with high quality factor (Q) is essential. 
For an inductor with inductance L and ac resistance RAC, Q 
can be defined as 
          AC2Q f L Rp=                 (2) 

which can be thought as the ratio of the energy stored in the 
inductor to the dissipated energy at each cycle. Therefore, 
improving Q directly results in higher efficiencies.  
 To optimize the inductor design, small-signal Q was 
measured for spiral and toroidal inductors of comparable 
volumes, as listed in TABLE I. Using the same Litz wires 
(S675/AWG48), different materials were compared, as shown 
in Fig. 3. Although the ferrite 68 material exhibits the highest 
Q, due to a relatively large magnetic coercivity (HC) of NiZn 
materials, the Q drops drastically at high currents [11], [12]. 
N49 and N87 MnZn ferrites operate efficiently (with Q > 100) 
only for a very limited frequency range. With the same overall 
size, air-core inductors present the widest bandwidths upon 
which Q > 100. Although the spiral inductor has higher Q than 
its toroidal counterpart, its magnetic field is not confined and 
its Q is prone to substantial degradation in the vicinity of 
metallic objects (e.g. PCBs, cold plates etc.). Therefore, we 
opted for the air-core toroidal design shown in Fig. 4a. 
 In an air-core inductor with Litz windings, RAC consists of a 
conductive resistance (RCOND) and a proximity-effect 
resistance (RPROX). RCOND is associated with the dc resistance 
and the skin effect over the strands, and RPROX is the result of 
current crowding caused by external magnetic fields from 
adjacent conductors/strands [13]. Based on the theory 
proposed by Carretero et. al. [14], RCOND is inversely 
proportional to the number  of  strands,  whereas  RPROX  scales  
 

 
Fig. 3.  Small-signal Q measurements for different inductor geometries and 
various high-frequency materials (listed in TABLE I), using an E4990A 
Keysight impedance analyzer. All the inductance values are close to 7 μH.  
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linearly with the strand number. Additionally, RCOND affects Q 
in the low-frequency ranges, whilst RPROX is dominant at high 
frequencies. Thus, for a fixed inductance value, one can 
change the strand number to tune the inductor Q and 
bandwidth. As Fig. 4b shows, by increasing the number of 
strands in the Litz winding from 180 to 1100, the peak of Q 
increases, while its bandwidth decreases.  

In Figs. 4c, d, the efficiency (η) versus input power (PIN) 
and f is plotted for G = 10 and G = 4, respectively. The overall 
η has a strong dependence on the inductor Q. The inductor 
with 1100 strands (S1100) has the highest efficiency at f < 0.5 
MHz (cf. Figs. 4b, c). Nonetheless, for f > 2 MHz, the 180-
strand design (S180) has the highest Q and thus the highest η 
(cf. Figs. 4b, d). The impact of inductor Q factor on η becomes 
more pronounced at higher G values (cf. Figs. 4c, d), whereas 
for low gains and high powers, the 675-strand design (S675)  
 

 
Fig. 4.  Inductor design and its quality effect on the converter efficiency. (a) 
shows the toroidal inductor design with (b) small-signal Q measurements for 
various AWG48 Litz wires with strand numbers of 180, 675 and 1100. Boost 
efficiency versus input power and frequency are presented for voltage gains of 
(c) G = 10 and (d) G = 4. The small-signal Q of the inductor significantly 
affects the conversion efficiency, especially at higher voltage gains. 

enables efficiencies similar to that of the1100-strand design 
(S1100), as shown in Fig. 4d, but at a lower cost. For 
optimizing other circuit parameters, the S675 inductor, which 
had the largest bandwidth below 3 MHz, was chosen. 

IV. CHOICE OF THE DIODE 
 Zero reverse recovery in SiC Schottky diodes makes them 
great candidates for high-frequency operation in the boost 
converter. Although synchronous rectification can potentially 
reduce the conduction losses, it increases layout design and 
control complexities. Thus, to optimize the efficiency with 
diode rectifiers, it is important to quantify the effect of device 
parameters on the overall η. Fig. 5a presents the junction 
capacitance (CJ) against rated current for diodes with different 
current ratings (from a similar device family). CJ scales 
linearly with the current, increasing the reactive power, while 
at the same time, device resistance and forward voltage drop 
decrease. For evaluating the effect of aforementioned 
parameters on the converter efficiency, 4-A, 8-A and 12-A 
diodes were operated up to 2.4 MHz and 1 kW, as shown in 
Fig. 5b. The 12-A diode notably increased the efficiency at 
heavy loads, resulting in a peak efficiency of 98.6%. At high 
power, f is relatively low; thus, conduction loss is dominant. 
Therefore, utilizing diodes with higher rated currents improves 
the η. At light loads (f  > 2 MHz), the diode with lower CJ (i.e. 
4-A device) generates less reactive power, which in turn 
results in higher η. In all the cases, the air-core inductor 
(S675/AWG48) was employed. 

V. OPTIMUM DUTY CYCLE CONTROL 
 Losing ZVS at high frequencies can result in transistor 
failure due to excessive thermal and electrical stresses. In 
impulse rectification regime, the power of a boost converter is 
regulated by f [3]; therefore, applying an optimum duty cycle  
 

Fig. 5.  (a) CJ versus rated current for a family of SiC Schottky diodes. (b) η 
versus PIN and f was extracted using 4-A, 8-A and 12-A rated diodes. At light 
loads, the reactive power of CJ limits the efficiency, whereas at heavy loads, 
the conduction losses become dominant.  
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TABLE I 
COMPARISON OF INDUCTOR GEOMETRIES AND CORE MATERIALS  

Geometry Core Material Limitation 
Spiral Air Magnetic field is not confined 

Toroidal Air Maximum Q is limited 
Toroidal NiZn: 68 HC is large, only good at low currents 
Toroidal MnZn: N49, N87 Q is not broad over frequency 
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Fig. 6.  Optimum duty cycle pattern. (a) DOPT versus PIN, showing its 
logarithmic dependence. (b), (c) A(G) and B(G) versus G, used to determine 
DOPT for a given voltage gain. Optimum duty cycle control is essential to safe 
and efficient operation of boost converters in impulse rectification mode.  

 
(DOPT) is essential to the safe and efficient operation of the 
converter. For D > DOPT, soft switching is compromised, and 
for D < DOPT, less charging time is provided for the inductor, 
resulting in a lower power transfer and reduced efficiencies, 
especially under light-load high-gain conditions [3]. 
 Fig. 6a presents the DOPT for the boost converter operating 
at various G values and different powers. DOPT can be 
extracted as function of the input power and voltage gain as 
             

INOPT IN
( , ) ( ) ln( ) ( )D P G A G P B G= +               (3). 

At a fixed gain, DOPT is a logarithmic function of PIN. One can 
formulated coefficients A(G) and B(G) in (3) as 

        3
10

2
( ) (1 ( ) )

G c
A G c c

c
= + +                    (4)  

          3
10

2
( ) (1 ( ) )

G dB G d d
d

= + +              (5) 

in which c0 to c3 and d0 to d3 are constants extracted from the 
fitting of (4) and (5) to the experimental data, as shown in 
Figs. 6b, c. By utilizing (3) in a real-time controller or 
deriving a look-up table and hard coding DOPT values, the 
efficiency is maximized and the risk of device failure is 
eliminated. 

VI. BENCHMARKING AND LOSS BREAKDOWN 
  In Fig. 7a, the boost converter is benchmarked against state-
of-the-art dc-dc converters in terms of peak efficiency and 
volumetric power density [4], [15]–[34]. The converter was 
operated at a fixed output voltage of 400 V and input voltages 
up to 175 V. 
 The efficiency of the converter (using the S675/AWG48 air-
core inductor and the 12-A diode) at G = 2.3 reached a 
maximum of 98.6% (corresponding to PIN = 431.2 W), and η > 
98% was maintained up to PIN > 1 kW. To identify the 
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Fig. 7.  (a) Peak efficiency versus volumetric power density for state-of-the-
art dc-dc converters [4], [15]–[34]. The red star indicates the demonstrated 
Boost design in this work. (b) System loss breakdown at f = 1.6 MHz and PIN 
= 431.2 W with η = 98.6%. The inductor is the efficiency bottleneck. (c) 
Transistor loss breakdown for GS66508B according to the measurement 
results from [1]. 
 
efficiency bottleneck, a comprehensive loss breakdown was 
performed using device spice models and measured transistor 
soft-switching losses [1]. The inductor was modeled by its 
parameters extracted from the small-signal Q measurements 
(see Fig. 4b). Fig. 7b presents a system-level loss breakdown 
at the most efficient operating point of the converter, and Fig. 
7c summarizes transistor losses due to its conduction and ON-
resistance (RDS(ON)) degradation, as well as gate and output 
capacitance (COSS) losses [1], [35]. At f = 1.6 MHz and a peak 
current of 6 A, the inductor contributes to more than half of 
the overall converter losses. Despite its relatively high Q (Q > 
200, see Fig. 4b), the inductor is still the bottleneck for 
obtaining higher efficiencies (and of course higher power 
densities). Development of new high-frequency magnetic 
materials is key to higher efficiencies and power densities in 
converters based on inductive power transfer. 

VII. CONCLUSION 
A MHz-class kilowatt-range boost converter based on 

impulse rectification was optimized for high efficiency and 
high power density, using high-performance GaN transistors 
and SiC Schottky diodes with zero reverse recovery. A 
compact single-layer PCB design based on IMS technology 
enabled a superior thermal conductivity of > 60 W/mK. A 
comparison between different geometries and high-frequency 
materials resulted in designing wide-bandwidth toroidal air-
core inductors. It was shown that higher number of Litz wire 
strands in the air-core inductors increases the peak of quality 
factor and reduces the bandwidth, which can be adjusted to 
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maximize the efficiency at different power levels. Using 
diodes with higher current ratings resulted in better 
efficiencies at high power levels; nonetheless, the major trade-
off was the increased reactive power which degraded light-
load efficiencies. We introduced an optimum duty cycle 
control strategy which maximizes the efficiency at any given 
operating point and prevents the risk of transistor failure due 
to an unwanted hard switching at extremely high frequencies. 
The boost converter was benchmarked against state-of-the-art 
dc-dc converters, exhibiting an excellent figure of merit with a 
peak efficiency of 98.6% at an ultra-high power density of 52 
kW/l (850 W/inch3). Finally, a detailed loss breakdown 
identified the inductor losses as the efficiency bottleneck.   
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