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Abstract

This report serves two purposes. The first is to introduce the linear Kalman filter and
the unscented Kalman filter to readers who are unfamiliar with either or both. To this
end, it contains an extensive explanation of these methods, including all equations and
interpretations which proved helpful to the author in realizing the second objective.
Secondly, this report describes an original application of the unscented Kalman filter
to the point reactor kinetics equations. The unscented Kalman filter’s capacity to
estimate the time-dependent behavior of a thermonuclear reactor is demonstrated, as
well as its ability to refine prior estimates of the reactor-specific constants. Limits to
the latter ability are expressed.
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The Unscented Kalman Filter: Introduction and Application
to Point Reactor Kinetics

1 Introduction

The Kalman filter was first proposed in 1960 and many variants have since been developed

[16]. It is a data fusion algorithm with which outputs can be estimated, and their future value

predicted, based on noisy inputs and a linear prediction model. It was originally designed as

a recursive implementation of the least-squares estimator. One range of applications for the

Kalman filter consists of estimating the state1 of a physical system through a combination

of model2 predictions and noisy observations. Its recursive nature makes it particularly well-

suited for real-time applications: Indeed, after obtaining new observations, a new estimate

can be produced using only the last calculated estimate, rather than the entire set of earlier

observations from which the latter was obtained. While the capacity to filter3 observations

in real time “as they appear” is a principal advantage of the Kalman filter, it may equally

be used to smooth4 a number of observations in one batch [5]. The linear Kalman filter is

designed to yield the best linear estimator5 of the sought-for inputs, provided that the system

under consideration is correctly described by a linear model [9]. If the errors follow zero-mean

Gaussian distributions with known variances, this estimator is optimal even among nonlinear

estimators [4]. More elaborate filters have been developed to suit a wider range of models [7,

15, 3, 1]. One of these newer variants is the unscented Kalman filter, which is designed to

estimate the mean and the covariance of any nonlinear model’s output [15].

The point reactor kinetics (PRK) equations are a system of coupled ordinary differential equa-

tions describing the time-dependent behavior of thermonuclear reactors. It is a crucial part

of nuclear safety analysis to correctly assess this behavior, which is determined by time- and

energy-dependent properties of materials — most notably, properties of the fuel and the mod-

erator. In the PRK equations, these properties are averaged over all independent variables6

except time, resulting in a comparatively simple model. However, the resulting averages are

reactor-specific because the distribution of the independent variables differs depending on the

reactor design. Examples of such reactor-specific average quantities include the delayed neu-

tron fraction and the mean neutron generation time. Their values can be obtained through

calculations involving a three-dimensional model of the reactor with measured material and

fuel properties [10]. Another complementary approach is to infer them from empirical data.

1The term state here designates a collection of time-dependent variables related to the physical system of
interest. In particular, the value taken by a state variable at any given time must be fully determined by the
analysis of the system at said time.

2A model is a set of equations which describe, often in a simplified way, how a system evolves from one state
to another.

3 In signal processing, a filter is a device (physical or numeric) which suppresses unwanted components
of a signal. For example, low-pass filters suppress high-frequency oscillations. The Kalman filter reduces the
uncertainty by filtering out the noise from its input. It does so recursively, i.e. it reuses the result of prior
calculations when assimilating new inputs.

4A smoother estimates each state based on all available observations, whereas a filter estimates the state at
time t based only on the observations taken before t.

5Here, best is understood in terms of minimizing the mean squared error. Note that in many cases, the best
linear estimator is outperformed by some nonlinear estimators.

6 In the context of a mathematical function y = f(x, t), the inputs x and t are called independent variables,
whereas the output y is a dependent variable because its value depends on that of the inputs, x and t.
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As shown in the present work, the unscented Kalman filter can be used to estimate (and thus

predict) the neutron population in an experimental test reactor more accurately based on ex-

perimental data. It can further be used to refine existing estimates of reactor-specific average

properties.

The linear Kalman filter is explained in section 2 using a fictitious application case. Section 3

provides a theoretical discussion of the employed models: A simple introduction to the point

reactor kinetics equations is followed by a description of the unscented Kalman filter. The

design by which the latter is applied to the former is relayed in section 4. Finally, the presented

design is tested and results are shown in section 5.

2 The Linear Kalman Filter

The Kalman filter is a data fusion algorithm commonly used to make predictions from noisy

data. It can be efficiently implemented as a recursive filter3 which combines several estimates

of a variable, as well as prior knowledge about the uncertainty associated with each of them,

to produce a more accurate estimate [16]. The linear Kalman filter is equivalent to the optimal

linear least squares estimator. Its mathematical formulation is explained in this section using

a fictitious problem. The problem is further used to showcase the performance of the filter.

2.1 Introductory Problem

A simple problem is devised, to which the linear Kalman filter will be applied. The problem con-

sists of a car which moves on a linear trajectory in two dimensions. The relevant properties of the

car, i.e. its position and velocity, are parameterized in its state vector x(t) = [x1, x2, ẋ1, ẋ2]T (t).

It can be subjected to an acceleration/deceleration profile a(t) = [ẍ1, ẍ2]T (t) ‖ d along a con-

stant direction d, and it is assumed to be at rest at the origin at time t(0): x(t(0)) = 0.

Furthermore, its position can be observed, as well as a linear combination of its velocity com-

ponents ẋ1 and ẋ2. Based on these observations and a postulated model, we are interested in

providing estimates of the car’s state with the highest possible accuracy at a series of n distinct

times {t(i)}i=0,...,n, where t(i) = i ·∆t.

For a sufficiently small time step ∆t, the behaviour of the car is assumed to correspond to a

linear model:

x1(t(i+1)) = x1(t(i)) + ∆t · ẋ1(t(i)) +
∆t2

2
· ẍ1(t(i)) + random noise

x2(t(i+1)) = x2(t(i)) + ∆t · ẋ2(t(i)) +
∆t2

2
· ẍ2(t(i)) + random noise

ẋ1(t(i+1)) = ẋ1(t(i)) + ∆t · ẍ1(t(i)) + random noise

ẋ2(t(i)) = ẋ2(t(i)) + ∆t · ẍ2(t(i)) + random noise

(1)
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Note the presence of random noise terms in eqs. (1): These terms, generally referred to as pro-

cess noise, cause the state vector to be a random variable — hence the need to estimate it. There

are two possible sources of process noise: noisy control inputs and inaccuracies in the model.

In the problem described above, the control input corresponds to the acceleration/deceleration

profile a(t) = [ẍ1, ẍ2]T (t) to which the car is subjected. Assuming that the control input is

noisy is then equivalent with acknowledging that the real acceleration/deceleration profile of

the car differs slightly from the targeted profile, e.g., due to gusts of wind or a varying slope of

the road.

The equations in (1) can be written equivalently in tensor notation, by introducing two matrices:

the state transition matrix, F, which defines how the state evolves in the absence of a control

input, and the control input matrix, B, which defines the effect of the control input. The process

noise is denoted as a random vector w(i) whose size matches that of the state vector:

x(t(i+1)) = F · x(t(i)) + B · a(t(i)) + w(i)

F =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 B =


∆t2

2
0

0 ∆t2

2

∆t 0

0 ∆t

 (2)

Following [4], we will assume for this introductory problem that the process noise w(i) follows

a multivariate zero-mean Gaussian distribution with the covariance matrix Σprocess defined in

eq. (9):

w(i) ∼ N (0,Σprocess) (3)

Similarly, a model can be postulated to describe how observations are generated. As stated in

subsection 2, the Kalman filter considered here is designed for linear models. In particular, it

requires that each observation be a linear transformation of the state vector. The observations

are denoted by zj because they need not correspond exactly to any of the state variables.

Indeed, as long as each zj is fully determined by the state vector x, it contains information that

can be used to refine our estimate of the latter7.

For the hypothetical problem of the moving car, we choose the following model:

z
(i)
1 = x1(t(i)) + random noise

z
(i)
2 = x2(t(i)) + random noise

z
(i)
3 = 0.5 · (ẋ1(t(i)) + ẋ2(t(i))) + random noise

(4)

This model, too, contains random noise: In this context, we call it the observation noise. It is

caused by the limited precision of any used measuring devices: For example, a car’s position

can be measured by GPS signal, but only to a precision of a few meters. Again, we write

7Going one step further, state variables may even be estimated without being observed at all: If they impact
other, observed state variables during the state transformation (eq. 2), then the resulting covariance terms (cf.
eq. 14) eventually lead to an update of the unobserved variables through eqs. (15) and (16).

5



2.1 Introductory Problem
The Unscented Kalman Filter: Introduction and Application

to Point Reactor Kinetics

eqs. (4) in tensor notation by viewing the observation noise as a random vector v(i), and by

introducing the observation matrix H:

z(i) =
[
z

(i)
1 , z

(i)
2 , z

(i)
3

]T
= H · x(t(i)) + v(i−1), H =

 1 0 0 0

0 1 0 0

0 0 0.5 0.5

 (5)

We further assume that the observation noise v(i−1) follows a multivariate zero-mean Gaussian

distribution with the covariance matrix Σobs defined in eq. (7):

v(i−1) ∼ N (0,Σobs) (6)

Two covariance matrices have been introduced in the equations above: Σprocess for the process

noise, and Σobs for the observation noise. They must be specified to complete the models (2)

and (5). Two scalars, σacc and σobs, are introduced to scale the covariance matrices up or down

individually.

It is assumed that the coordinates of z(i) are obtained through separate measurements. Thus,

the coordinates of v(i) are independent from each other, yielding a diagonal covariance matrix:

Σobs = σ2
obs · I3×3 (7)

The process noise, on the other hand, is assumed to result mainly from a noisy control input8,

i.e. the addition of a Gaussian noise term with variance σ2
acc to the acceleration inputs a(t(i)).

By considering the effect of this hypothetical noise term on the uncertainty of the car’s position

and velocity after one single time step, we obtain the covariance matrix Σideal:

Σideal = σ2
acc · q · qT q =

[
0.5 ·∆t2 · d

∆t · d

]
(8)

The orthogonal covariance matrix Σideal is not quite satisfactory for the physical example of the

moving car, because it would lead to a perfect correlation between any two coordinates of w(i).

An arbitrary departure Σ∆ from the ideal case is therefore introduced. Note that the diagonal

terms of Σ∆ must be larger than its extra-diagonal terms to mitigate the correlation between

individual components of w(i). We then compute Σprocess in a multiplicative way, in order to

preserve the scaling effect of σacc (N.B.: the symbol ◦ is used here to denote the Hadamard or

element-wise product):

Σprocess = Σ∆ ◦Σideal = σ2
acc ·Σ∆ ◦ (q · qT ) Σ∆ =


1.15 0.7 0.75 0.73

0.7 1.1 0.73 0.76

0.75 0.73 1 0.95

0.73 0.76 0.95 1.015

 (9)

8The acceleration of a car cannot be dictated to absolute precision for many reasons, including unpredictable
variations of the friction forces which counteract its movement.
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2.2 Application of the Kalman Filter

The Kalman filter described in [4] is applied to the previously described problem. The estimates

which it provides are plotted against, among others, the true value and the observations, in

figure 1. To this end, the problem and the filter are implemented in Python 3.7.3, using the

open-source libraries pykalman, NumPy and Matplotlib.

2.2.1 Mathematical Formulation

The matrices F, B, H, Σprocess, and Σobs, are stored after setting key parameters: the time

step ∆t, the number of time steps n to be considered, and the scaling factors σacc and σobs.

Then, a discrete acceleration profile {a(i)}i=0,...,n−1 is defined. The products {B · a(i)}i=0,...,n−1

are precomputed and saved as transition offsets {b(i)}i=0,...,n−1:

b(i) = B · a(i), i = 0, . . . , n− 1 (10)

At each time step, a number of variables are computed:

• x(t(i))9: The true state of the car at time t(i) is randomly generated according to eq.

(2).

• z(i)9: A vector of observations is randomly generated using the previously calculated

true state x(t(i)), according to eq. (5). Note that the uncertainty of the observations does

not vary between time steps.

• x̂(i): A purely model-based estimate is computed, which does not take into account

any of the observations. It is computed using the deterministic part of eq. (2):

x̂(i) = F · x̂(i−1) + B · a(i−1) (11)

• Σ
(i)
x̂x̂: The covariance matrix Σ

(i)
x̂x̂ quantifies the uncertainty associated with x̂(i) as

an estimate for x(t(i)). By observing that x̂(i) is entirely deterministic, we find that the

covariance Σ
(i)
x̂x̂ of the error |x̂(i)−x(t(i))| is (the same as) the covariance of the true value

x(t(i)), if the latter is viewed as a random variable at the time t(0). Using the Gaussianity

of the noise terms {w(i)}i=0,...,n−1, we can therefore compute Σ
(i)
x̂x̂ iteratively as:

Σ
(i)
x̂x̂ = F ·Σ(i−1)

x̂x̂ · FT + Σprocess (12)

• x̂(i|i−1): This is called the prediction step of the Kalman filter. At this stage, an estimate

of x(t(i)) is computed using the deterministic part of eq. (2) and the best available estimate

9 The true states x(t(i)), observations z(i), and the best possible estimates x̂(i|i) along with their error

covariances Σ
(i|i)
x̂x̂ , are computed at once by using the pykalman module.
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of the state x(t(i−1)) at the previous time step:

x̂(i|i−1) = F · x̂(i−1|i−1) + B · a(i−1) (13)

• Σ
(i|i−1)
x̂x̂ : The uncertainty associated with x̂(i|i−1) as an estimate for x(t(i)) is quantified

by the covariance matrix Σ
(i|i−1)
x̂x̂ of the error |x̂(i|i−1)− x(t(i))|, which is calculated in the

same way as Σ
(i)
x̂x̂:

Σ
(i|i−1)
x̂x̂ = F ·Σ(i−1|i−1)

x̂x̂ · FT + Σprocess (14)

• x̂(i|i)9: During the update step of the Kalman filter, x̂(i|i−1) and z(i) are combined to

provide the best possible estimate of the state x(t(i)) at the current time step. x̂(i|i) is

given by eq. (16).

• Σ
(i|i)
x̂x̂

9: Analogously, the uncertainty associated with x̂(i|i) as an estimate for x(t(i)) is

quantified by the covariance matrix Σ
(i|i)
x̂x̂ of the error |x̂(i|i) − x(t(i))|, which is given by

eq. (17).

The state of the car at time t(0) is assumed to be perfectly known, hence x̂(0) = x̂(0|0) = x(t(0)) =

0 and Σ
(0)
x̂x̂ = Σ

(0|0)
x̂x̂ = 04×4. The equations for x̂(i|i) and Σ

(i|i)
x̂x̂ are derived in [4]:

K(i) = Σ
(i|i−1)
x̂x̂ ·HT ·

(
H ·Σ(i|i−1)

x̂x̂ ·HT + Σobs

)−1

(15)

x̂(i|i) = x̂(i|i−1) + K(i) ·
(
z(i) −H · x̂(i|i−1)

)
(16)

Σ
(i|i)
x̂x̂ = Σ

(i|i−1)
x̂x̂ −K(i) ·H ·Σ(i|i−1)

x̂x̂ (17)

2.2.2 Results

The previously described calculations are carried out for ∆t = 1s, n = 16, and for σacc and σobs
as stated in figure 1. The resulting x1(t(i)), z

(i)
1 , x̂

(i)
1 , and x̂

(i|i)
1 , are plotted in figure 1 (top)10.

The calculated standard deviations of the estimates are shown in the center plot of figure 1.

The standard deviations associated with z
(i)
1 , x̂

(i)
1 , x̂

(i|i−1)
1 , and x̂

(i|i)
1 , are σobs, σ

(i) =

√(
Σ

(i)
x̂x̂

)
1,1

,

σ(i|i−1) =

√(
Σ

(i|i−1)
x̂x̂

)
1,1

, and σ(i|i) =

√(
Σ

(i|i)
x̂x̂

)
1,1

, respectively. In this model problem, we

have the luxury of knowing the true state of the car at each of the times {t(i)}i=0,...,n. This allows

us to compute and plot the true error of each estimate at each time step in figure 1 (bottom).

In each plot, the blue dotted line traces the entire evolution of the prediction, progressing from

10 The true states x(t(i)) used to produce figures 1, 2, and 3, are randomly sampled from the model (2). This
random sampling was performed multiple times in order to select a particularly illustrative set of images. The
same set of true states was used for all three figures. Note that there is no random generator involved in section
5.
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the updated estimate x̂(i−1|i−1) to the prediction x̂(i|i−1) to the updated estimate x̂(i|i) and so

forth.

Figure 1 illustrates how the predictions produced by the Kalman-filter are generally the most

accurate and how, overall, the update step reduces the estimation error as we move from the

blue dot x̂
(i|i−1)
1 back to the green line x̂

(i|i)
1 in the bottom plot of the figure. Of course, due to

the randomness involved both in the process and in the observation, these generalities do not

hold systematically. In some cases, the estimate produced by the Kalman filter can even be the

the least accurate of the plotted estimates for several time steps in a row. It does, however,

minimize the expected squared error, as shown in the literature [4]. Finally, we can see by

comparing the standard deviations in figure 1 (center), that the uncertainty of the estimate

produced by the Kalman filter at any given time step is lower than that of the observations,

while the uncertainty of the purely model-based estimate steadily grows between subsequent

time steps. Note that it is possible for σ(i|i) to outgrow σobs in particularly “unlucky” cases

where the model and the observations both do worse than their respective standard deviation

would suggest. However, the uncertainty of the estimate is always reduced in the update step

(eq. 17), as seen in the center plot.

The covariance matrix of the estimate x̂(i|i) is shown for each time step in figure 2. Figure 3

contains the corresponding matrices of correlation coefficients. As expected, the variance gener-

ally increases over time. The apparent division of the matrix into four two-by-two submatrices

indicates that the variances of the first two coordinates of the state
(
x̂

(i|i)
1 and x̂

(i|i)
2

)
are much

greater than those of the remaining coordinates
(

ˆ̇x
(i|i)
1 and ˆ̇x

(i|i)
2

)
. Moreover, the correlation of

the errors of x̂
(i|i)
1 and x̂

(i|i)
2 decreases over time, as the regular observations provide separate,

equally accurate and independent estimates for these two variables. Naturally, after several

seconds, the error of the velocity estimate ˆ̇x
(i|i)
1 is more strongly correlated with that of the dis-

tance estimate x̂
(i|i)
1 than with that of x̂

(i|i)
2 , and vice versa. This is to be expected, considering

that a false estimate of one coordinate of the velocity, say ˆ̇x
(i|i)
1 , leads to the accumulation over

time of a growing error on the corresponding coordinate of the distance, x̂
(i|i)
1 , while leaving the

other coordinate unaffected.
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Figure 1: Estimation of the state variable x1(t) with the Kalman filter. This figure was obtained
for ∆t = 1s, n = 13, and for the values of σacc and σobs specified in the top plot.
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x̂(i|i). ∆t = 1s, n = 13, σacc = 0.3 m s−2 and σobs = 2 m.
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3 Theoretical Background

This section lays out the theory upon which the present work is based. On the one hand, there

are the point reactor kinetics (PRK) equations, which form a simple model to describe the

time-dependent behavior of thermonuclear reactors. The equations are first introduced from

simplified physical principles in section 3.1.1. Then, typical situations such as reactor start-up

and shut-down are discussed in section 3.1.2 based on these equations. On the other hand, this

work is also founded on the unscented Kalman filter (UKF), which is contextualized in section

3.2.1 and explained in section 3.2.2.

3.1 Point Reactor Kinetics

Reactor kinetics is the study of power transients11 in nuclear reactors. Such transients occur

during normal start-up and shut-down, as well as in various accidental scenarios. Understanding

these events is therefore an important task in reactor safety analysis [8]. The Point Reactor

Kinetics equations describe this transient behavior under a set of simplifying assumptions.

The transient behavior of nuclear reactors is mainly driven by the neutron flux Φ(t, r, E,Ω),

which represents the total distance travelled per unit time by neutrons moving through a point

r in a given direction Ω with a given kinetic energy E. In reality, the described quantity is

subject to random fluctuations and the neutron flux can be interpreted as a time- and space-

dependent instantaneous average [8]. Most importantly, the neutron flux determines the rate of

nuclear fission reactions, which in turn dictates the rate at which heat is released in the reactor

— in other words: the thermal reactor power.

3.1.1 Interpretation and Mathematical Formulation

In essence, the rate of change of the neutron flux equals the difference between the rate of

neutron production on one side, and the rates of neutron absorption12 and leakage13 on the

other:
d
dt

Φ = Production− (Absorption+ Leakage) (18)

However, all of these rates depend on the neutron flux itself:

Production = p(Φ, . . . )

Absorption = a(Φ, . . . )

Leakage = l(Φ, . . . )

(19)

11The term transient here denotes the evolution of a physical quantity which is not constant in time.
12The term neutron absorption accounts for neutrons that cause the fission of a fuel nucleus, as well as those

which are captured by non-fuel nuclei.
13Some neutrons cross the boundary of the reactor and are therefore lost to the chain reaction of nuclear

fission taking place inside it.
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Due to this interdependence, the neutron flux is governed by a differential equation known as

the transport equation [8].

The rate of neutron production, in turn, is almost entirely (generally more than 99.3 %) ac-

counted for by neutrons created in the fission of fuel nuclei. Crucially, however, this is not the

only neutron source: Firstly, external sources can be applied. And secondly, some unstable fis-

sion products have a (low) non-zero probability of releasing neutrons after a random delay [11].

These fission products are generally referred to as neutron precursors. The important thing

to note here is that this phenomenon introduces a delay between the fission of a fuel nucleus

and the emission of a neutron from one of the fission products. Neutrons emitted by neutron

precursors are therefore referred to as delayed neutrons, as opposed to the prompt neutrons

created in the fission process itself.

The existence of delayed neutrons makes it possible for the neutron population to rise slowly.

Indeed, the “time taken for one neutron to continue the chain process by fissioning the next

fuel nucleus” is very short: it is generally of the order of 10−3 s to 10−6 s, depending on reactor

type [11]. The average time for one neutron to cause another fission is known as reproduction

time or mean neutron generation time. If, on average14, each neutron produces more than one

prompt neutron (a state known as prompt supercriticality), then the neutron flux increases ex-

ceedingly fast due to the short reproduction time — fast enough to melt the entire fuel within

a fraction of a second. Prompt supercriticality must therefore be avoided at all times. Luckily,

the delayed neutrons create a viable window where the following two conditions are satisfied

simultaneously: Firstly, and most importantly, the prompt neutrons produced by one fissioning

nucleus cause slightly less than one other nucleus to fission on average14 (the reactor is not

prompt supercritical). Yet, secondly, when the prompt and delayed neutrons produced by one

fissioning nucleus are added together, they cause slightly more than one other nucleus to fission

on average14 and the reactor power increases over time. The delayed neutrons, which tip the

balance in this situation, are added to the system significantly later, leaving enough time for

control mechanisms to intervene and for heat to be transferred away from the fuel.

Due to their critical role, neutron precursors and delayed neutrons must be included in any

model attempting to accurately represent the transient behaviour of a reactor that is not prompt

supercritical.

The different neutron precursors are empirically divided into a number of precursor groups based

on their half life time [8]. The rate of decay of each neutron precursor group is proportional

to the group’s concentration in the fuel. On the other hand, the rate of production of neutron

precursors is roughly proportional to the reaction rate of nuclear fission in the fuel and therefore

also to the neutron flux:

d
dt
Concentration` = Production`(Φ, . . . )−Decay`(Concentration`, . . . ) (20)

This results in a coupled system of differential equations, consisting of the transport equation

and the equations which govern the concentration of each precursor group.

Much like the neutron flux Φ(t, r, E,Ω), the dependent variables in this set of equations are

functions of time, space, energy and direction. The point reactor kinetics (PRK) equations are

14 The averages marked with this footnote include all neutrons, including those which leave the system.
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obtained by assuming isotropic15 conditions in a homogeneous16 reactor and then averaging

over the energy range through weighted integration, thus leaving time as the only remaining

independent6 variable. They are derived in [8] and stated as follows:

d
dt
n(t) =

ρ(t)− β(t)

Λ(t)
n(t) +

∑
`

λ`c`(t) + q(t) (21)

d
dt
c`(t) =

β`(t)

Λ(t)
n(t)− λ`c`(t) for each precursor group ` (22)

The following variables and constants are used in eqs. (21) and (22):

• n(t) : The neutron population actually represents the number density of neutrons

per unit volume, but it is proportional both to the total neutron population in the reactor

(due to the assumption of homogeneity) and to the thermal reactor power. It is closely

related to the neutron flux, Φ.

• c`(t) : This variable represents the concentration (number density) of neutron pre-

cursors of group `. It is proportional to the total number of neutron precursors of group

` due to the assumption of homogeneity.

• ρ(t) : The reactivity ρ(t) is defined as:

ρ(t) =
keff (t)−1

keff (t)
(23)

With keff denoting the ratio of neutron production to losses (absorption and leakage)

in the neutron balance equation (eq. 18). keff is known as the effective multiplication

factor.

In the point reactor kinetics (PRK) model, ρ(t) is viewed as an external constraint im-

posed on the reactor. This is an approximation, because internal variables of the reactor,

such as the fuel and moderator temperatures, influence the reactivity.

• β`(t) : The fractional yield of each precursor group ` represents the proportion of

neutrons emitted as delayed neutrons by precursors of group `, relative to the total number

of neutrons emitted (delayed and prompt). It varies depending on the fuel composition

and the reactor type, among others.

• β(t) : The delayed neutron fraction corresponds to the proportion of neutrons emit-

ted as delayed neutrons (by any precursor), relative to the total number of neutrons

15Under isotropic conditions, all physical quantities are independent of the direction. In the case of the trans-
port equation, isotropic conditions correspond to the assumption that the number of neutrons traversing any
given point, at any given speed, during any given time window and in any given direction, will, in expectation,
be equal for all possible directions.

16A physical system is called homogeneous if, and only if, the physical quantities of the system are inde-
pendent of the actual location inside the system. The assumption of a homogeneous reactor is a considerable
simplification, since it implies that the neutron flux is the same in the moderator, as it is in the fuel.
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emitted (delayed and prompt). It is clear from their definitions that the delayed neutron

fraction is simply the sum of each precursor group’s fractional yield:

β(t) =
∑
`

β`(t) (24)

• Λ(t) [s] : Conceptually, the mean neutron generation time, also called reproduction

time, is described as the mean time from neutron emission until it causes the fission of

another fuel nucleus [11]. It is defined as follows:

Λ(t) = n(t)
RR(t)·ν (25)

Where RR(t) denotes the reaction rate of fission and ν is the total number of neutrons

emitted per fission. Note that ν accounts for delayed neutrons as well as prompt neutrons.

The product RR(t) · ν hence represents the rate at which prompt neutrons and precur-

sors are produced, without accounting for the delay between the creation of a neutron

precursor and the emission of a delayed neutron.

• λ` [s−1] : Neutron precursors are characterized by the fact that they undergo radioactive

decay. Each decay constant λ` characterizes the rate of decay of precursor group `.

Conceptually, it is the inverse of the mean lifetime of nuclei in said group.

• q(t) [s−1]: Finally, q(t) represents the neutrons added to the system by an external

source.

Eqs. (21, 22) can be written in matrix form. The state vector is labelled d(t), to avoid confusion

with the state vector x(t) used in the Kalman filter. The resulting equations are:

d(t) = [n(t), c1(t), . . . , cN`
(t)]T (26)

d
dt

d(t) = A(t) · d(t) + q(t)

A(t) =


ρ(t)−β(t)

Λ(t)
λ1 · · · λN`

β1(t)
Λ(t)

−λ1 (0)
...

. . .
βN`

(t)

Λ(t)
(0) −λN`

 q(t) =


q(t)

0
...

0

 (27)

3.1.2 Typical Power Transients

Figures 4 shows the evolution of the neutron population (normalized with its initial value) over

time if the reactivity jumps from 0 to a certain value at time t = 0. Before the reactivity

insertion, the reactor is at equilibrium state: d
dt
n(t) = d

dt
c`(t) = 0. For the supercritical, but

not prompt supercritical, reactivity ρ = 0.15 · β, the neutron population sees a sudden increase
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by about 20 %, followed by a much slower exponential increase. This sudden change is known

as the prompt jump. It is equally present in the case of a negative reactivity insertion, for which

the neutron population suddenly decreases by a fixed amount and then slowly decays over time.
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Neutron population after reactivity insertion

Figure 4: Normal power transients during operation: positive reactivity safely below β for
reactor start-up, and negative reactivity for reactor shut-down.

The evolution of the neutron population in a prompt supercritical reactor is shown on a semilog-

arithmic scale in figure 5. The reactivity is merely 0.1 % above the prompt supercriticality

threshold, and yet he initial neutron population is multiplied billionfold in the first 2 s — and

the theoretical reactor power with it. In reality, reactors are designed in such a way that the

reactivity does not remain constant during such a power excursion. Instead, it is lowered by

negative temperature feedback when the fuel and moderator temperatures rise as a consequence

of the spike in power. Still, it is worth noting that the same amount of negative reactivity

induces a relatively slow decrease of the neutron population and the thermal reactor power,

as seen in figure 4. After the full 40 s, while the supercritical reactor is over 100 orders of

magnitude above the initial neutron population, the subcritical one is still at 8 % thereof. This

is due to the slow decay of the neutron precursors, which continue to produce neutrons and

heat for after shut-down. The heat produced by the neutron precursors’ decay after shut-down

is known as decay heat.
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Figure 5: Semilogarithmic plot of a prompt supercritical excursion with constant reactivity.

3.2 The Unscented Kalman Filter

In this work, the point reactor kinetics (PRK) model is combined with experimental observa-

tions with the double aim of yielding a more reliable prediction of the time-dependent reactor

behavior and more accurate estimates of the reactor properties and the reactivity. The latter

are viewed as independent variables for simplicity. This double goal is achieved by applying the

unscented Kalman filter (UKF) to the PRK equations and using the resulting model to filter

the observations. The UKF is compared with other algorithms in section 3.2.1 and thoroughly

explained in section 3.2.2.

3.2.1 Context

The PRK equations (26, 27) form a nonlinear model and thus cannot be written as in the linear

eqs. (2, 3). For instance, the reactivity ρ(t), which is viewed as a control input, is multiplied

with the neutron population n(t) (a state variable) in eq. (21) to obtain the rate of change of

the neutron population. In the notation used for eq. (2), this corresponds to the multiplication

of x(t(i)) with a(t(i)). The linear Kalman filter introduced in section 2 is therefore unfit for

general application to the PRK equations, although it may be used for state estimation in the

simplest case where the matrix A(t) from eq. (27) does not depend on the state d(t) and is

taken to be correctly known.

A natural approach to overcoming this issue is to apply the Kalman filter to a linearized version
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of the nonlinear model. This approach is known as the extended Kalman filter (EKF), where

the state transition matrix and the observation matrix are computed at each time step as the

first term in a Taylor series expansion of the general state transition and observation models,

respectively [15]. Thus, the EKF requires Jacobians to be computed for both models at each

time step [7]. Two main issues of the EKF are raised in the literature: For one, the linearization

of a model introduces an approximation error which may be unacceptably high for some models

[15]. However, it has been shown that a first-order approximation using Taylor series expansion

is sufficient for the accurate solution of the PRK equations [12]. Secondly, it has been pointed

out that certain non-linear models, such as neural network models, bring a rich, multi-model

structure to the distribution of the state, which the Gaussian approximation fails to capture

appropriately [2]. Nevertheless, the EKF has successfully been used to model reactor kinetics

using the PRK equations [7].

Both of the aforementioned issues of the EKF are addressed by Monte-Carlo methods, such as

the particle filter and the ensemble Kalman filter (EnKF) [2]. These filters involve the discrete

approximation of the probability density function17 of the state by means of a large number of

weighted sample points (“particles”) which are scattered over the state space18 and propagated

through the system at each time step [1, 3]. One of the main drawbacks of the particle filter

is its computational complexity, caused by the large number of particles required to provide

sufficient accuracy [15]. Moreover, in certain applications, the particles tend to collapse to a

point after a number of time steps [1].

The unscented Kalman filter (UKF) achieves higher-order accuracy than the EKF with the

same order of computational complexity [15]. Like the particle filter, it uses a sampling ap-

proach and does not require the explicit computation of derivatives. The main difference lies in

the selection of the sample points or particles: The UKF is built around the entirely determin-

istic unscented transform (UT), which selects a minimal set of weighted sample points called

sigma points [15, 14]. Figure 6 (taken from [15]) illustrates the difference in the prediction step

between the particle filter (left, based on general sampling methods), the EKF (center), and

the UKF (right, based on the UT).

The sigma points are a special set of particles, chosen to entirely capture the mean and covari-

ance of any distribution with as little particles as possible [15, 14].

By using the UT for particle selection, the UKF requires orders of magnitude less sample

points than general sampling methods such as Monte-Carlo estimation, resulting in reduced

computational complexity [15]. The drawback is that, contrary to general sampling methods,

only the first two moments (mean and covariance) of the state distribution are accurately

tracked in the unscented transform. Compared to the EKF, however, the mean and covariance

are tracked more accurately, especially so in the presence of strong nonlinearities. Although

this advantage seems to be of little importance in the context of point reactor kinetics, it is not

17The distribution of an n-dimensional random variable X is entirely described by its probability density
function (PDF), commonly denoted as f(x). The PDF f(x) is the derivative of the cumulative density function
(CDF) F (x), which is itself defined as the probability that a random vector sampled from X is at most x:
F (x) = P [X ≤ x]

18The state space is the set of all values which the state could possibly take.
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Figure 6: Illustration of the prediction step for three different filters: particle filter (left), EKF
(center), and UKF (right). Taken from [15].

mitigated by known major disadvantages and has therefore led to the spread of the UKF and

its inclusion in the open-source pykalman library for Python [13, 14, 15, 12].

Both the EKF and the UKF may be used for parameter estimation [7]. This is accomplished by

including the parameters of interest in the state along with the system’s dependent variables.

The state transition function is then specified in such a way, that the parameters remain

constant in the absence of noise. With each observation, eq. (16 b) causes their values to be

updated depending on their influence on the observed quantities, as well as on their previous

(estimated) uncertainty.

3.2.2 Mathematical Formulation

The unscented Kalman filter is designed for a general nonlinear model, consisting of a general

state transition function F (eq. 28) and a general observation function H (eq. 29):

x(t(i+1)) = F
(
x(t(i)),w(i), t(i)

)
(28)

z(i) = H
(
x(t(i)),v(i−1), t(i)

)
(29)

Control inputs may be accounted for by specifying a dependence of the functions F or H on

the independent variable t(i).

Like the linear Kalman filter, the UKF is divided into a prediction step and an update step.

Before the prediction step, sigma points X (i−1|i−1) are computed to represent the distributions
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of the process noise w(i−1) and the observation noise v(i−1), as well as the estimated distribution

of the state x
(
t(i−1)

)
:

w(i−1) ∼ N (0,Σprocess) v(i−1) ∼ N (0,Σobs)

x
(
t(i−1)

)
follows approximately N

(
x̂(i−1|i−1),Σ

(i−1|i−1)
x̂x̂

)
The sigma points are computed based on the sigma point function S(µ,Σ), which is described

in the literature [15, 14] (cf. figure 6). Their associated weights W are constants19. X (i−1|i−1)
x

X (i−1)
w

X (i−1)
v

 = S

 x̂(i−1|i−1)

0

0

 ,
 Σ

(i−1|i−1)
x̂x̂ 0 0

0 Σprocess 0

0 0 Σobs

 (30)

These sigma points are subsequently used in the prediction step, to approximate the distribu-

tions of the state x
(
t(i)
)

and the observation z(i). First, the sigma points are transformed by

the state transition and observation functions, respectively:

X (i|i−1)
x = F

(
X (i−1|i−1)
x ,X (i−1)

w , t(i)
)

(31)

Z(i) = H
(
X (i|i−1)
x ,X (i−1)

v , t(i)
)

(32)

Subsequently, the mean and the covariance of the estimated distribution of x
(
t(i)
)

and z(i) are

computed as the empirical mean and variance of the transformed sigma points:

x̂(i|i−1) = W ·X (i|i−1)
x =

∑
k

Wk ·
(
X (i|i−1)
x

)
k

(33)

Σ
(i|i−1)
x̂x̂ =

∑
k

Wk

[(
X (i|i−1)
x

)
k
− x̂(i|i−1)

] [(
X (i|i−1)
x

)
k
− x̂(i|i−1)

]T
(34)

ẑ(i|i−1) = W ·Z(i) =
∑
k

Wk ·Z(i)
k (35)

Σ
(i|i−1)
ẑẑ =

∑
k

Wk

[
Z(i)
k − ẑ(i)

] [
Z(i)
k − ẑ(i)

]T
(36)

The covariance of the estimated distribution of x
(
t(i)
)

with that of z(i|i−1) is computed analo-

gously as:

Σ
(i|i−1)
x̂ẑ =

∑
k

Wk

[(
X (i|i−1)
x

)
k
− x̂(i|i−1)

] [
Z(i)
k − ẑ(i|i−1)

]T
(37)

The update step is similar to eqs. (15, 16, 17) of the linear Kalman filter. By introducing the

mean ẑ(i|i−1) = H · x̂(i|i−1) and covariance Σ
(i|i−1)
ẑẑ = H ·Σ(i|i−1)

x̂x̂ ·HT of the estimated distribution

19The weights associated with the sigma points depend only on the dimensionality of the state space, which
also determines the number of sigma points.
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function for the i-th observation z(i), as well as the covariance Σ
(i|i−1)
x̂ẑ = Σ

(i|i−1)
x̂x̂ ·HT , we can

rewrite eqs. (15, 16) as:

K(i) = Σ
(i|i−1)
x̂ẑ ·

(
Σ

(i)
ẑẑ + Σobs

)−1

(15 b)

x̂(i|i) = x̂(i|i−1) + K(i) · (z(i) − ẑ(i)) (16 b)

Σ
(i|i)
x̂x̂ = Σ

(i|i−1)
x̂x̂ −K(i) ·Σ(i|i−1)

ẑx̂ (17 b)

x̂(i|i) and Σ
(i|i)
x̂x̂ are indeed computed by eq. (16 b), respectively eq. (17 b), in the UKF. The

Kalman gain K(i) is computed without Σobs, because the observation noise is already taken

into account in eqs. (30) and (32):

K(i) = Σ
(i|i−1)
x̂ẑ ·

(
Σ

(i)
ẑẑ

)−1

(38)

4 Application of the Unscented Kalman Filter to the

Point Reactor Kinetics Equations

The unscented Kalman filter is applied to the point reactor kinetics (PRK) model with N` =

6 precursor groups. The delayed neutron fraction β, the fractional yields β` and the mean

generation time Λ are assumed to be constant with respect to time. Measurements from an

experiment conducted on 19/10/2016 inside the experimental zero-power reactor CROCUS at

EPFL are used as an example application. In this experiment, the reactor was subjected to

a step reactivity insertion, so the reactivity ρ is equally taken to be constant. β, β`, Λ, λ`
and ρ may safely be viewed as constant in the particular case of CROCUS, mainly because

temperature variations and the fuel burn-up remain negligible at all times. They are hence

referred to as independent variables6. The independent variables are estimated along with

the (still) dependent variables: the neutron population n(t) and the concentration of neutron

precursors of each group, c`(t). The model is implemented in Python 3.7.3, using the open-source

libraries pykalman, NumPy, SciPy, and Matplotlib.

4.1 Experimental Set-up

The measurement taken in CROCUS on 19/10/2016 consists of a series of neutron counts,

z(i), taken at intervals of 0.1 %. The neutron counts are already recorded while the reactor is

brought to critical state and stabilised. Then, one fully inserted control rod is quickly raised

by 600mm, which corresponds to a step reactivity insertion of 112± 6 pcm20.

The exact time of the reactivity insertion is not marked in the sequence of recorded counts.

The method by which it is estimated is illustrated in Figure 7: In a first step, the initial 1000

observations are smoothed. The time at which the smoothed signal reaches its minimum is

20 The unit pcm stands for pour cent-mille. It is simply a factor of 10−5.
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selected as an approximation of the time at which the reactivity insertion took place. The

first neutron count after that is denoted as z(0). This approach is not generally applicable,

because the minimum value of the smoothed signal could lie anywhere before the reactivity

insertion. It is therefore recommended for future experiments, that the time at which the

reactivity insertion occurs be measured with sufficient precision to identify the corresponding

observation. Nevertheless, the described method of estimation is sensible in this particular case,

because the minimum value is located near the change of overall slope.
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Figure 7: Estimating the time at which the reactivity insertion took place. The first 1000
observations are smoothed and the minimum of the smoothed signal is found.

4.2 State

In eq. (26), the state d(t) is defined as a vector containing the N`+1 = 7 dependent variables of

the point reactor kinetics equations. For the purpose of parameter estimation, a 3 ·N`+3 = 21-

dimensional state vector x(t) is defined, containing the independent variables along with the

dependent variables:

x(t) = [n(t), c1(t), . . . , c6(t), ρ, β1, · · · , β6, λ1, · · · , λ6,Λ]T (39)

Note that the delayed neutron fraction β is not included in the state as it is fully determined

by the fractional yields β1, · · · , β6 (cf. eq. 24).
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4.3 State Transition Function and Process Noise

As discussed in section 3.2.1, the state transition function must be specified in such a way, that

the independent variables remain constant in the absence of noise. Given the state x(t(i)) and

a process noise vector w(i), the state transition function F
(
x(t(i)),w(i), t(i)

)
returns the state

x(t(i+1)) as follows:

1. The state is split into a vector of dependent variables, d, and a vector of independent

variables, e:

d(t(i)) =

 x1(t(i))
...

x7(t(i))

 =


n(t(i))

c1(t(i))
...

c6(t(i))

 e(t(i)) =

 x8(t(i))
...

x21(t(i))

 =



ρ

β1
...

β6

λ1
...

λ6

Λ


(40)

2. The matrix A(t(i)) (cf. eq. 27) is computed using the independent variables e(t(i)).

3. The system in eq. (27) is solved in the interval
[
t(i), t(i+1)

]
for A(t) = const. = A(t(i)),

setting the initial condition d0 = d(t(i)). It is solved using the explicit Runge-Kutta

method of order 5, which is described in [6] and implemented in the open-source SciPy

package.

4. As explained in the next paragraph, the noise is factored in multiplicatively for the de-

pendent variables only, using the solution of the previous step, d∗(t(i+1)):

d(t(i+1)) =
[
d∗1(t(i+1)) ·

(
1 + w

(i)
1

)
, · · · , d∗7(t(i+1)) ·

(
1 + w

(i)
7

)]T
(41)

5. d(t(i+1)) is concatenated back together with e(t(i)):

x(t(i+1)) = F
(
x(t(i)),w(i), t(i)

)
=

[
d(t(i+1))

e(t(i))

]
(42)

For the UKF as well as the linear Kalman filter, the process noise w(i) is defined by eq. (3) as a

multivariate Gaussian random variable (GRV) with covariance Σprocess and mean 0. However,

contrary to the linear filter, w(i) can now contribute to the state transition function in a variety

of ways. A distinction is made between the independent variables e and the dependent variables

d:

The former, e, may safely viewed as unchanging, at least for the duration of the experiment.

This is realized by specifying the uncertainty of their prior estimates in the covariance of the
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initial state Σ
(0|0)
x̂x̂ (cf. section 4.5) and leaving e entirely unaffected by process noise. This

suggests that the process noise needs only be N` + 1 = 7-dimensional, however the pykalman

package requires that w and x have the same number of dimensions. Furthermore, the variance

of each coordinate of w(i) must be strictly positive for Σprocess to be positive definite, which is

required by the sigma function S(µ,Σ) in eq. (30). For that reason, the last 14 coordinates of

w(i) are simply ignored.

As seen in eq. (41), the dependent variables d are affected by process noise in a multiplicative

way. This is partly motivated by the fact that they increase by several orders of magnitude

between the beginning and the end of the measurement. Adding to d a noise term of constant

variance would therefore have a vastly different impact at different times in the simulation.

Instead, the process noise is viewed as a relative change caused by random effects (cf. eq.

41). This relative change is specified to have the same variance σ2
process � 1 for all dependent

variables. The covariance of any two distinct coordinates of w is set to 0 for simplicity. As

the coordinates of w corresponding to the independent variables are ignored, Σprocess is simply

defined as a multiple of the identity matrix:

Σprocess = I21×21 · σ2
process (43)

4.4 Observation Function and Observation Noise

The single observed quantity z(i) is the number of neutrons recorded by the probe located in

CROCUS in the interval
[
t(i−1), t(i)

)
. The observation function H

(
x(t(i)), v(i−1), t(i)

)
, along with

the variance σ2
obs of the (zero-mean Gaussian) observation noise v, should be able to explain

the observed neutron counts z(i) given the true states x(t(i)).

Each neutron count z(i) is viewed as a Poisson-distributed discrete random variable whose

parameter is proportional to the neutron population:

z(i) ∼ Poisson(µ(i)) µ(i) = E
[
z(i)
]

= V ar
(
z(i)
)
∝ n(t(i)) (44)

The parameter µ(i) is unknown, as is the scaling factor between µ(i) and n(t(i)). For simplicity,

this scaling factor is set to one:

µ(i) = n(t(i)) by assumption (45)

This assumption is equivalent to setting an initial condition for the system of coupled ordinary

differential equations (ODEs) in eqs. (21, 22).

It is possible to obtain a truly Poisson-distributed random variable with parameter µ(i) =

n(t(i)) using the quantile function21 of the Poisson distribution and the CDF of the Gaussian

21The quantile function F−1X (p), also known as percent point function, is defined as the inverse of the cumu-
lative distribution function (CDF) FX(x) = P [X ≤ x].
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distribution:

v(i) ∼ N (0, 1) =⇒ F−1

Poiss(µ(i))

(
FN (0,1)

(
v(i)
) )
∼ Poisson

(
µ(i)
)

(46)

Nonetheless, as only the mean and the covariance of distributions are accurately tracked in

the UKF, it is superfluous to model the third and higher moments of the observations’ true

distribution. On the contrary, it suffices to specify H
(
x(t(i)), v(i−1), t(i)

)
such that it yields a

continuous GRV with mean and variance equal to µ, like so:

v(i) ∼ N (0, 1) =⇒ µ(i) +
√
µ(i) · v(i) ∼ Poisson

(
µ(i)
)

(47)

Accordingly, we specify the observation function and the observation noise as:

σ2
obs = 1 (48)

H
(
x(t(i)), v(i−1), t(i)

)
= z(i) + v(i) ·

√
z(i) (49)

4.5 Initial State

The initial state is known to a certain accuracy. In the context of the UKF, it is viewed as a

multivariate GRV, whose mean x̂(0|0) and covariance Σ
(0|0)
x̂x̂ must be specified. For simplicity,

only the diagonal terms of the covariance matrix Σ
(0|0)
x̂x̂ are specified22, while the extra-diagonal

terms are set to 0. This is equivalent to believing that the errors on any two coordinates of the

initial state are uncorrelated.

The means and variances of the reactor properties β`, λ`,Λ are initialized with an estimate

provided by the Laboratory for Reactor Physics and Systems Behaviour (LRS) at EPFL. The

uncertainties reported on them are calculated by randomly sampling the nuclear data of the

Serpent model from the ENDFB/VII.1 covariance matrices [10]. The reactivity ρ, on the other

hand, is deduced from the position of the control rod in the experiment by following an empirical

rule provided by the LRS. An empirical standard deviation is provided together with this rule.

The initial estimates of these independent variables are listed in table 1.

The means of the dependent variables, on the other hand, are initialized with the stationary

solution to the PRK equations, using the means listed in table 1 for the independent variables.

This does not correspond to the experiment, where the reactor was not in a stationary state

at the time of the reactivity insertion. Nevertheless, as the initial state is entirely unknown, it

cannot and needs not be specified more accurately. The stationary solution is obtained from

eqs. (21, 22) by applying the stationary conditions:

ρ = 0 d
dt

x(t) = 0 (50)

22The k-th diagonal term of the covariance matrix of a multivariate random variable x is the variance of its
k-th coordinate, xk.
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Initial estimate

Unit Mean (µ) Standard deviation (σ)

∣∣∣∣σµ
∣∣∣∣

ρ pcm 112 6 5.4 %
β1 pcm 23.8149 1.211 5.1 %
β2 pcm 126.101 2.88393 2.3 %
β3 pcm 122.866 2.75795 2.2 %
β4 pcm 283.823 4.14416 1.5 %
β5 pcm 126.319 2.89798 2.3 %
β6 pcm 52.5235 1.77496 3.4 %
λ1 s−1 0.013 353 5 3.066 38× 10−6 0.0 %
λ2 s−1 0.032 612 3 9.880 13× 10−6 0.0 %
λ3 s−1 0.121 058 2.044 21× 10−5 0.0 %
λ4 s−1 0.305 665 1.411 16× 10−4 0.0 %
λ5 s−1 0.861 038 6.096 98× 10−4 0.0 %
λ6 s−1 2.892 02 2.933 29× 10−3 0.0 %
Λ s 4.686 78× 10−5 9.682 23× 10−8 0.0 %

Table 1: Means and standard deviations of the initial estimates of the independent variables.

However, when these conditions are applied, the resulting system of N`+1 equations is linearly

dependent23 and has rank N`. To find an unique solution, one additional condition must be

specified. In conformity with eq. (45), the initial neutron population is set to the value of the

first observation (which serves as an estimate of the parameter µ(0):

n(t(0)) = z(0) ≈ µ(0) (51)

Finally, as their values at the beginning of the measurement are essentially unknown, the initial

standard deviation of each dependent variable is set proportional to its initial mean:(
Σ

(0|0)
x̂x̂

)
k,k

=
(
σinitial · x̂(0|0)

k

)2

k = 1, · · · , 7 (52)

The factor σinitial should be as large as possible, while still ensuring that the sigma points X (0|0)
x

are positive. Indeed, the initial values of the dependent variables are approximated as GRV,

which has a positive probability of taking a negative value. As σinitial increases, so does the

spread of that GRV, and the sigma points grow further apart to account for it. By trial and

error, it was determined that some sigma points become negative as soon as σinitial exceeds the

value of 0.575.

23Eq. (21) simply becomes the negative sum of eqs. (22) due to the relation in eq. (24).
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5 Results

The measurement described in section 4.1 is filtered using the UKF (σinitial = 0.5, σprocess =

10−3), to estimate the (scaled-down, cf. eq. 45) neutron population n(t), the reactivity ρ, and

the reactor properties β`, λ`,Λ. The parameters to be chosen are σprocess (eq. 43) and σinitial
(52). For a first execution, σinitial is set to 0.5, safely below the limit discussed in section 4.5.

The standard deviation σprocess is set to 10−3. This is equivalent to assuming that the discrete

PRK model produces a true relative error in the order of 0.1 % after 0.1 s24.

5.1 Estimation of the Neutron Population

In figure 8 (top), the observed neutron counts z(i) are plotted against the predicted neutron

population nPRK(t), calculated using the PRK model (without Kalman filtering), and the

filtered neutron population nfilt(t) estimated using the UKF.

It appears in figure 8 (top) that the reactivity insertion was initially overestimated, as the

purely model-based estimate nPRK(t) grows slightly faster than the measured neutron count.

Although the filtered signal nfilt(t) fits the observations much better quantitatively, it is worth

noting that its shape does not entirely conform with the PRK theory: In the first 10 seconds,

nfilt(t) is not monotonically increasing. This is likely an artefact caused by the observed neutron

counts and by the uncertain time of the reactivity insertion (compare with the smoothed signal

in figure 7).

Figure 8 (center) shows the estimated standard deviation σobservation of the observations z(i), the

estimated standard deviation σPRK of the model-based estimates nPRK(t), and the estimated

standard deviation of the filtered estimate nfilt(t). All three increase exponentially with time

due to the exponential increase of the true neutron population n(t) itself. However, the variance

of the filtered signal is more than one order of magnitude smaller than that of the observations,

while σPRK is the largest by several orders of magnitude. Note that σobservation is not involved

in any calculations, but instead serves exclusively for comparison with σfilt. It is calculated

as σ
(i)
observation =

√
z(i) in reference to eq. (44) (cf. eq. 51). nPRK(t) and σPRK are obtained

by applying a simplified version of the UKF where the update step is skipped entirely. In this

modified filter, eqs. (53) and (54) are substituted for eqs. (16 b) and (17 b), respectively.

x̂(i|i) = x̂(i|i−1) (53)

Σ
(i|i)
x̂x̂ = Σ

(i|i−1)
x̂x̂ (54)

24 0.1 s corresponds to the time between subsequent observations.
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Figure 8: Estimates of the neutron population for σinitial = 0.5, σprocess = 10−3, their estimated
variance, and their relative error with respect to the observations. The time between subsequent
observations is 0.1 s.
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The relative error of the estimates nPRK(t) and nfilt(t) is shown in figure 8 (bottom). It is

defined as the absolute value of the relative difference between the estimate and the corre-

sponding observation. Though this definition differs from the true (relative) error in that the

observations are themselves different from the true state, it is consistent with the concept of

least-squares estimation. Following the exponential increase of the neutron population n(t), the

relative errors also follow an exponential progress. The relative error of nfilt(t), whose standard

deviation is consistently close to one tenth of σobservation according to figure 8 (center), decays

exponentially. The relative error of nPRK(t), on the contrary, grows exponentially.

5.2 Estimation of the Independent Variables

Figure 8 is obtained by estimating the independent variables and the dependent variables

simultaneously. The sought-for result is a more accurate estimate of the independent variables,

which can be used to predict power transients more accurately. In this section, the estimation

of the independent variables is presented and the possibility of overfitting is discussed.

5.2.1 Estimation with the UKF

The final estimates of the independent variables for σinitial = 0.5 and σprocess = 10−3 are listed in

table 2. The evolution of the estimates, along with their estimated variances, is further shown

in figure 9. Each plot shows the initial mean (straight black line) and the initial 68% confidence

interval25 (dashed black line) of one variable, along with the evolution of its estimate (green

line). The shaded region indicates the estimated 68% confidence interval25 of the estimate,

based on the covariance matrix Σ
(i|i)
x̂x̂ . Note that there is no shaded region for βfilt: This is

because βfilt is not directly estimated. The plotted values are calculated from eq. (24). Finally,

the numerical values of the estimates at the final time step are shown in the top left plot.

It is immediately apparent in figure 9 that some estimates are more accurate after the simulation

than initially, while others are entirely unchanged. By looking at table 2, we confirm that the

estimate of the reactivity ρ is substantially improved (its standard deviation is divided by four),

while the final estimates of the decay constants λ` and of the mean neutron generation time Λ

equal their initial estimates almost exactly.

Generally speaking, three factors influence the extent to which a specific state variable xj is

updated in a given step i of the UKF (eqs. 16 b, 38, 37): How much the observation z(i) differs

from the expected observation ẑ(i), how large the estimated variance of x
(i|i−1)
j was before the

update, and how strongly xj really impacts the observed quantities z. In the present case, the

observed quantity is the one-dimensional neutron count z(i), which makes the Kalman gain K(i)

a column vector. Following eq. (16 b), the difference ẑ(i) − z(i) does not affect how much the

state variables are updated relative to each other, but rather scales the entire update. How

much each state variable is updated in relation to the others is determined by the Kalman gain

25 When a Gaussian random variable with mean µ and variance σ2 is realized, 68.27 % is the probability that
it falls at most σ away from µ (σ is the standard deviation): X ∼ N

(
µ, σ2

)
=⇒ P (|X − µ| ≤ σ) = 0.6827
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Final estimate Relative difference

[Unit] Mean (µ) Standard deviation (σ)
∆µ

µinitial

∆σ

σinitial

∣∣∣∣ ∆µ

σinitial

∣∣∣∣
ρ pcm 102.7 1.4 -8.3 % -75.6 % 157.5 %
β1 pcm 24.1063 1.202 +1.2 % -0.8 % 24.1 %
β2 pcm 127.183 2.83239 +0.9 % -1.8 % 37.5 %
β3 pcm 123.337 2.75030 +0.4 % -0.3 % 17.1 %
β4 pcm 284.465 4.13787 +0.2 % -0.2 % 15.5 %
β5 pcm 126.446 2.89707 +0.1 % -0.03 % 4.4 %
β6 pcm 52.5493 1.77486 +0.05 % -0.0 % 1.5 %
λ1 s−1 0.013 353 5 3.066 37× 10−6 +0.0 % -0.0 % 0.01 %
λ2 s−1 0.032 612 3 9.880 10× 10−6 +0.0 % -0.0 % 0.4 %
λ3 s−1 0.121 058 2.044 21× 10−5 +0.0 % -0.0 % 0.4 %
λ4 s−1 0.305 665 1.411 16× 10−4 +0.0 % -0.0 % 0.6 %
λ5 s−1 0.861 038 6.096 97× 10−4 -0.0 % -0.0 % 0.02 %
λ6 s−1 2.892 02 2.933 29× 10−3 -0.0 % -0.0 % 0.09 %
Λ s 4.686 53× 10−5 9.681 68× 10−8 -0.0 % -0.0 % 2.5 %

Table 2: Means and standard deviations of the final estimates of the independent variables,
after filtering the observations with the UKF. The difference between the final values and the
initial values, relative to the initial values, is listed in the “Relative difference” column.

K(i), which is a scalar multiple of the covariance Σ
(i|i−1)
x̂ẑ since the covariance (σ2

ẑẑ)
(i)

is scalar

(eq. 38). Finally, by eq. (37), each coordinate of Σ
(i|i−1)
x̂ẑ depends on how much this coordinate

varies in the k different sigma points
(
X (i|i−1)
x

)
k
, as well as how far the resulting Z(i)

k strays

from ẑ(i) when
(
X (i|i−1)
x

)
k

is indeed different from x̂(i|i−1). The former (i.e., how far the sigma

points are spread along the j-th dimension) is a direct consequence of the estimated variance

of the corresponding coordinate x
(i|i−1)
j of the estimate of the state prior to the current step.

The latter, on the other hand, is a combined result of that same estimated variance and of how

strongly the state variable xj really does impact the neutron population n(t(i)).

This leaves two plausible reasons for the major difference between the estimated independent

variables: A difference in the standard deviations of the initial estimates, or a difference in

each variable’s impact on the neutron population. Clearly, the former is the case for the

decay constants λ` and the mean neutron generation time Λ: Table 1 shows that the standard

deviation of each of these variables’ initial estimate was three or more orders of magnitude

smaller than the estimate itself, whereas the same ratio is about 5 % for ρ or β1.

However, the estimates of ρ and β1 are not updated to the same degree either, despite their

similar relative uncertainties. To a slightly lesser extent, the same can be said when comparing ρ

to any fractional yield β`. This suggests that the fractional yields impact the neutron population

less than the reactivity. To investigate whether this is the case, the result of a 20 % change

in each of these independent variables is plotted in figure 10. Figure 10 was obtained like the

figures in section 3.1.2, using the PRK equations with the initial estimates of all independent
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variables and without Kalman filtering.

Figure 10 confirms that, after upwards of 100 s, a change in reactivity has a greater effect on the

neutron population than the same relative change in any single fractional yield. Furthermore,

the figure explains the differences between the fractional yields of the various precursor groups.

Note that the order of decreasing ∆σ
σinitial

and
∣∣∣ ∆µ
σinitial

∣∣∣ is: group 2 > group 1 > groups 3 & 4 >

group 5 > group 6 (cf. table 2). When the precursor groups are ordered by decreasing impact

on the neutron population, group 1 comes slightly after, rather than slightly before, groups 3

& 4. This discrepancy is readily explained by the particularly high initial
∣∣∣σµ ∣∣∣ ratio of group 1

(cf. table 1). Hence, jointly, figure 10 and table 1 explain the different relative magnitude of

the update for the individual precursor groups and the reactivity. The estimated uncertainty

of the final estimate for the reactivity remains surprisingly low, particularly when its relative

change is compared to that of the estimated uncertainties of the fractional yields.
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All values β1 = 24.106 λ1 = 1335.3 s−1

×10−5 β2 = 127.18 λ2 = 3261.2 s−1

β3 = 123.33 λ3 = 12105 s−1

ρ = 102.73 β4 = 284.46 λ4 = 30566 s−1

β = 738.08 β5 = 126.44 λ5 = 86103 s−1

Λ = 4.6865 s β6 = 52.549 λ6 = 289202 s−1

Final estimates of the indep. variables

0 100 200
Time [s]

0.0010

0.0011

ρinitial (µ)
ρinitial (µ± σ)

ρfilt
ρfilt (µ± σ)

0 100 200
Time [s]

0.00730

0.00735

0.00740

βinitial (µ)
βinitial (µ± σ)

βfilt

0 100 200
Time [s]

0.0000468

0.0000469

Λinitial (µ)
Λinitial (µ± σ)

Λfilt

Λfilt (µ± σ)

0 100 200
Time [s]

0.00023

0.00024

0.00025

β1,initial (µ)
β1,initial (µ± σ)

β1,filt

β1,filt (µ± σ)

0 100 200
Time [s]

0.013352

0.013354

0.013356

λ1,initial (µ)
λ1,initial (µ± σ)

λ1,filt

λ1,filt (µ± σ)

0 100 200
Time [s]

0.00124

0.00126

0.00128

0.00130

β2,initial (µ)
β2,initial (µ± σ)

β2,filt

β2,filt (µ± σ)

0 100 200
Time [s]

0.03261

0.03262

λ2,initial (µ)
λ2,initial (µ± σ)

λ2,filt

λ2,filt (µ± σ)

Independent variable estimation with UKF (σinitial = 0.5, σprocess = 10−3)
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Figure 9: Estimates of the independent variables for σinitial = 0.5, σprocess = 10−3, and their
estimated 68% confidence intervals. The time between subsequent observations is 0.1 s.
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Figure 10: Effect of different independent variables on the neutron population.
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5.2.2 Discussion of Overfitting

When 15 independent variables are estimated based on 1-dimensional observations, overfitting

may sometimes occur. Figure 11 shows that this possibility is real in the case of the PRK

model with the present experimental set-up. Indeed, when considering the entire duration

of the positive reactivity insertion (stretching over 250 s), a given signal may be equally well

explained by contradictory combinations of independent variables. This is showcased by the

two lines with triangle (respectively cross) markers. One is obtained by increasing β2, while

the other is obtained by decreasing it and simultaneously decreasing ρ to overcompensate the

decrease in β2.
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Neutron population after reactivity insertion

Figure 11: Possibility of overfitting the PRK model.

In cases where accurate prior estimates are unavailable for more than one independent variable,

the estimation should be performed multiple times using different measurements to inspect

the consistency of the results. In the present case, fortunately, the presence of accurate prior

estimates for all independent variables makes gross overfitting easy to detect (see figure 13 for an

example). Moreover, such overfitting is prevented by the Kalman filter thanks to the existence

of accurate prior estimates. Indeed, we observe in figure 9 and table 2 that all independent

variables are updated in a consistent way: The fractional yields are estimated higher, while

the reactivity is estimated lower. Each of these changes by itself results in a slower rise of the
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neutron population. All other independent variables are virtually unchanged.

5.3 Influence of the Parameters σinitial and σprocess

In the model presented in section 4, the choice of σinitial and σprocess is free (partly free for the

former). The influence of these freely chosen parameters is tested in this section.

5.3.1 σinitial: Uncertainty of the Dependent Variables’ Initial Estimates

The filter is tested with σinitial = 10, σinitial = 3 and σinitial = 0.05, while σprocess = 10−3 is held

constant.

σinitial = 10: As stated in section 4.5, for a value of σinitial > 0.575, some sigma points of

the first prediction step become negative, which results in nonphysical model behavior in eq.

(31). In fact, for σinitial = 10, this translates into extreme fluctuations as seen in figures 12

and 13. With σinitial = 10, the model crashes because one of the estimated covariance matrices

is not positive definite. Figures 12 and 13 were obtained by manually replacing the negative

eigenvalue of the affected covariance matrix with a small positive number. This problem was

not encountered in the production of any of the other figures.

σinitial = 3: This value is still above the safe threshold of 0.575. Nevertheless, the per-

formance of the filter is overall the same as with σinitial = 0.5. Both the neutron population

in figure 14 and the independent variables in figure 15 exhibit mild fluctuations in the first

20 s, respectively the first 100 s. However, the means and estimated standard deviations for

the estimates of all independent variables are nearly the same for both parameter settings. For

example, the estimated standard deviation of the final estimate for the reactivity merely rises

from 1.43 pcm to 1.45 pcm.

σinitial = 0.05: A particularly low value of σinitial means that the initial values of the depen-

dent variables are fairly well-known, which is precisely not the case. As seen in figures 16 and

17, this discrepancy leads to a rapid and substantial adaptation of the independent variables.

The true (and underestimated) initial error of the dependent variables is essentially spread

evenly across all variables.

These findings show that the value of σinitial is crucial to the success of the proposed filtering.

If it is specified too far above the empirical limit of 0.575, then spurious effects take over

entirely. On the other hand, it must adequately reflect the amount of trust accorded to the

initial estimates of the dependent variables.
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Figure 12: Estimates of the neutron population for σinitial = 10 and σprocess = 10−3, their
estimated variance, and their relative error with respect to the observations. The time between
subsequent observations is 0.1 s. This figure was obtained by “fixing” an estimated covariance
matrix that was not positive definite.
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Figure 13: Estimates of the most relevant independent variables for σinitial = 10 and σprocess =
10−3, and their estimated 68% confidence intervals. The time between subsequent observations
is 0.1 s. This figure was obtained by “fixing” an estimated covariance matrix that was not
positive definite.
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Figure 14: Estimates of the neutron population for σinitial = 3 and σprocess = 10−3, their
estimated variance, and their relative error with respect to the observations. The time between
subsequent observations is 0.1 s.
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Figure 15: Estimates of the most relevant independent variables for σinitial = 3 and σprocess =
10−3, and their estimated 68% confidence intervals. The time between subsequent observations
is 0.1 s.
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Figure 16: Estimates of the neutron population for σinitial = 0.05 and σprocess = 10−3, their
estimated variance, and their relative error with respect to the observations. The time between
subsequent observations is 0.1 s.
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Figure 17: Estimates of the most relevant independent variables for σinitial = 0.05 and σprocess =
10−3, and their estimated 68% confidence intervals. The time between subsequent observations
is 0.1 s.
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5.3.2 σprocess: Additional Uncertainty after each Step

The filter is tested with σprocess = 10−5 and σprocess = 0.05, while σinitial = 0.5 is held constant.

σprocess = 10−5: As shown in figure 18 changing σprocess from 10−3 to 10−5 has no discernible

effect on the estimate neutron population, however it decreases the estimated uncertainty of

the estimate itself. For the most part, this is simply the belief that the model is particularly

accurate, producing a relative error in the order of only 10−5 in the time between two consecutive

observations (cf. section 4.3).

This same belief slightly reduces the estimated uncertainty of the estimated independent vari-

ables. This effect is not marked enough to be perceptible in figure 19. For instance, the

estimated uncertainty of the reactivity drops from 1.43 pcm to 1.38 pcm.

σprocess = 0.05: Figure 20 shows the estimate of the neutron population with this setting.

It fluctuates notably for the entire duration of the experiment, and in fact the estimated un-

certainty is nearly equal to that of the observations themselves. By setting σprocess so high, we

are allowing the model to explain the noise in the measurements. This results in an insufficient

smoothing of the observed signal and a failure to produce an improved estimate.

The estimation of part of the independent variables with σinitial = 0.5 and σprocess = 0.05 is

shown in figure 21. The means are nearly identical to those obtained with σprocess = 10−3. Only

the estimated standard deviation of the reactivity is greater in figure 21. Because more of the

signal is explained by process noise, its influence on the estimation of the independent variables

is reduced.
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Figure 18: Estimates of the neutron population for σinitial = 0.5 and σprocess = 10−5, their
estimated variance, and their relative error with respect to the observations. The time between
subsequent observations is 0.1 s.
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Figure 19: Estimates of the most relevant independent variables for σinitial = 0.5 and σprocess =
10−5, and their estimated 68% confidence intervals. The time between subsequent observations
is 0.1 s.
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Figure 20: Estimates of the neutron population for σinitial = 0.5, σprocess = 0.05, their estimated
variance, and their relative error with respect to the observations. The time between subsequent
observations is 0.1 s.
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Figure 21: Estimates of the most relevant independent variables for σinitial = 0.5, σprocess = 0.05,
and their estimated 68% confidence intervals. The time between subsequent observations is
0.1 s.
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6 Conclusion and Outlook

Existing estimates of the reactor-specific properties involved in the point reactor kinetics (PRK)

equations were refined using the unscented Kalman filter (UKF). Firstly, the linear Kalman

filter was introduced and applied to a fictitious problem. The theoretical background of the

PRK equations and the UKF was then laid out before our application of the UKF to the

six-group PRK model was presented. The proposed method was finally applied to a sequence

of neutron counts acquired during previous experiments on the experimental thermonuclear

reactor CROCUS at the LRS.

A significantly more accurate estimate of the reactivity in CROCUS during the experiment was

obtained. The estimates of the — constant, hence more generally useful — reactor properties

(the fractional yields β` and decay constants λ` of each neutron precursor group `, and the mean

neutron generation time Λ) were only marginally improved. This is due in part to the higher

accuracy of their previously available estimates (especially λ` and Λ). For some, an additional

inhibitor was their comparatively lower impact on the neutron population (especially β5 and

β6).

It was shown that the UKF removes the risk of overfitting if the two free parameters of the

model, σinitial and σprocess, are chosen sensibly. It was further demonstrated that the sen-

sible range for these parameters is reasonably wide. However, trivial implementation errors

may potentially set one or more initial values outside of their sensible range. It is therefore

recommended to visualize the initial estimates (means and variances), as was done in figure 9.

The presented method should be applied to additional experimental data to validate the refined

estimates produced in this work. To that end, the time at which the reactivity insertion occurs

could be tracked accurately in future experiments. It would further be beneficial to measure

the experimental reactivity insertion more precisely, in order to obtain more accurate estimates

of the fractional yields. With regards to the estimation of the decay constants and the mean

generation time, it appears that the UKF is out-competed by the method by which the initial

estimates have been generated. Finally, the UKF could be applied to a more complex reactor

kinetics model. For instance, the PRK equations could be augmented by temperature feedback

coefficients of reactivity or substituted with a spatio-temporal reactor model.
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