
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Safe initialization of objects

Fengyun LIU

Thèse n° 8265

2020

Présentée le 18 décembre 2020

Prof. G. Candea, président du jury
Prof. M. Odersky, directeur de thèse
Prof. P. Müller, rapporteur
Prof. O. Lhotak, rapporteur
Prof. V. Kuncak, rapporteur

à la Faculté informatique et communications
Laboratoire de méthodes de programmation 1
Programme doctoral en informatique et communications

Knowing others is intelligence;
knowing yourself is true wisdom.

Mastering others is strength;
mastering yourself is true power.

— Lao Tzu, Tao Te Ching

To my wife Yinai, who is the best companion in my adventures.

Abstract

The inception of object-oriented programming introduces a category of bugs related to object
construction: initialization errors. Every newly created object goes through several initialization
states: starting from a state where all fields are uninitialized until all of them are assigned. Any
operation on the object during its initialization process, which usually happens in the constructor
via this, has to observe the initialization states of the object for correctness, i.e. only initialized
fields may be used.

Checking safe usage of this statically, without manual annotation of initialization states
in source code, is a challenge, due to aliasing and virtual method calls on this. Mainstream
languages either do not check initialization errors, such as Java, C++, Scala, or they defend
against them by not supporting useful initialization patterns, such as Swift. In parallel, past
research has shown that safe initialization can be achieved for varying degrees of expressiveness
but by sacrificing syntactic simplicity.

Based on formal reasoning about initialization, we advocate four design principles of ini-
tialization systems: monotonicity, authority, scopability and stackability. The principles enable
local reasoning of initialization, which is the key enabler for efficient algorithms. They also
enable sound strong updates in a flow-insensitive system, which is the key to support typestate
polymorphism via subtyping.

We put forward a type-based model for initialization, which consists of three abstractions,
namely cold, warm and hot. The introduction of warm improves the expressiveness of existing
models that classify objects either as initialized (i.e. hot) or non-initialized (i.e. cold).

Finally, we propose a novel type-and-effect inference system for a practical fragment of the
type-based model, which significantly cuts down syntactic overhead of type-based solutions.
The system scales to complex language features, such as functions, traits and inner classes, and
it integrates well with compilers. The system introduces the concept of potentials to control
aliasing in type-and-effect systems.

We implement an initialization system for Scala 3. The experiments on real-world projects
show that our system significantly advances the state-of-the-art.

Keywords: object initialization, aliasing control, local reasoning

1

Résumé

La programmation par objet introduit une catégorie de bogues liés à la construction des objets:
les erreurs d’initialisation. Chaque nouvel objet passe plusieurs états d’initialisation: à partir de
un état où aucun champ est initialisé jusqu’à tous les champs sont assignés. Toute opération sur
l’objet durant son processus d’initialisation, qui a lieu souvent dans le constructeur de classe via
this, doit observer son état d’initialisation pour éviter les erreurs.

Vérifier l’usage sûr de this statiquement, sans annoter manuellement les états d’initialisation
dans le code source, est un défi, en raison d’aliasing et appels des méthodes virtuelles sur this.
Les langages dominants soit ne vérifient pas les erreurs d’initialisation, telles que Java, C++,
Scala, soit les défendent sans supporter les schémas utiles d’initialisation, telles que Swift. En
parallèle, les recherches passées ont montré que l’initialisation sûre peut être atteinte pour des
divers degrés d’expressivité mais en sacrifiant la simplicité syntaxique.

Basé sur le raisonnement formel sur l’initialisation, nous préconisons quatre principes de
conception pour des systèmes d’initialisation: monotonie, autorité, scopabilité et empilabilité.
Les principes permettent le raisonnement local d’initialisation, qui est un facteur clé pour les
algorithmes efficaces. Ils rendent possible aussi les strong updates légitimes dans un système
insensible au flux, qui est la clé pour soutenir typestate polymorphisme via subtyping.

Nous proposons un système basé sur le type pour initialisation, qui se constitue de trois
abstractions, à savoir cold, warm et hot. L’introduction de warm améliore l’expressivité des
modèles existants qui classifient les objets soit comme initialisé (c.-à-d. hot) soit comme non
initialisé (c.-à-d. cold).

Enfin, nous présentons un nouveau système d’inférence de type-et-effet pour un fragment
pratique du modèle mentionné ci-dessus, qui réduit significativement la surcharge syntaxique
dans les solutions basées sur le type. Le système s’adapte bien aux caractéristiques complexes des
langages, tel que fonctions, traits, classes internes, et il s’intègre facilement avec les compilateurs.
Le système introduit le concept de potentiels pour contrôler aliasing dans les systèmes de type-
et-effet.

Nous réalisons un système d’initialisation pour Scala 3. Les expériences sur plusieurs projets
du monde réel montrent que notre système fait avancer l’état de l’art significativement.

Mots-clés: initialisation d’objet, contrôle d’aliasing, raisonnement local

2

Acknowledgments

I would like to thank my advisor Martin Odersky for his unwavering help and support during my
PhD study. I am extremely grateful to him for setting an unsurpassable example of combining
theory and practice in the research and deep commitment to projects, which is one of the most
important lessons in my life.

I sincerely thank my thesis committee, Gorge Candea, Peter Müller, Viktor Kunčak and Ondřej
Lhoták, for reviewing the thesis and providing valuable feedback for improvement.

I’m deeply indebted to Ondřej Lhoták for his unparalleled guidance in the research. I must
also thank Aggelos Biboudis and Paolo Giarrusso for their invaluable insights and pleasant
collaboration during the research.

Special thanks to Natascha Fontana, who extended a great amount of assistance in organizing
conference travels, exams and administrative issues. Thanks should also go to Fabien Salvi for
providing invaluable support for computing infrastructure and facilities. I wish to also thank
France Faille, who organized french lunches and speaks french with me from time to time, which
helped me integrate culturally.

I would like to thank Anatolii Kmetiuk for reviewing the experimental initialization checker
for Scala 3 and for suggesting improvements to its implementation. I am also grateful to Clément
Blaudeau for working on Coq mechanization of the thesis work and finding bugs in the proof.

Working in the lab isn’t fun without great colleagues. I sincerely thank Aggelos Biboudis,
Nicolas Stucki, Olivier Blanvillain, Guillaume Martres, Aleksander Boruch-Gruszecki, Anatolii
Kmetiuk, Sébastien Doeraene, Georg Schmid, Julien Richard-Foy, Jamie Thompson, Denys Sha-
balin, Ólafur Páll Geirsson, Jorge Vicente Cantero, Allan Renucci, Heather Miller, and Manohar
Jonnalagedda for the many interesting discussions, enjoyable activities, as well as great collabo-
rations.

I would like to extend my sincere thanks to Sandro Stucki, Nada Amin, Aleksandar Prokopec,
Dmytro Petrashko and Eugene Burmako for their mentorship and collaboration. Thanks for
sharing your passion and vision for programming language research. Your invaluable guidance
helped me grow from a novice to an independent researcher.

3

I must thank Michel Schinz for the excellent course advanced compiler construction, and I
am impressed by his passion for teaching and motivating students. Thanks should also go to
Prof. Viktor Kunčak, who introduced me to the world of program analysis and verification, and
the discussions with him on various research topics are inspiring.

I am grateful to Prof. Rachid Guerraoui, who opened my eyes to the interesting field of
concurrent computing and distributed computing. I also wish to thank Prof. Babak Falsafi, who
led me to the frontier of research in parallel computer architectures.

I must thank Norman Hardy, the designer of KeyKOS, for reaching out to an unknown young
researcher and providing generous encouragement and mental support.

During the writing of the thesis, it is the time of an outbreak of Coronavirus in Europe. To
ensure I have a quiet place to work on the thesis, Martin stopped the renovation work of the
whole office building. I must also thank Natascha and Darja for quickly extending help.

Doing a PhD is not only an intellectual and psychological challenge, but also a financial one.
I sincerely thank my brother XiaoLei Liu for his relentless support. I’d also like to extend my
gratitude to Liji Cang and Qiang Liu for their generous help.

I would like to express my special thanks to the Chinese Christian Church of Lausanne, which
is like an extended family where we receive innumerable help and care. Thanks also to many
friends of the Chinese community, because of you the life is more interesting.

Finally, I’m extremely grateful to my wife Yinai, this PhD is impossible without her steady
support. I am deeply indebted to my mother Guifang for traveling twice to Switzerland to help us.
I must thank my three little girls, Tianyao, Linxi and Zilan, for the incomparable joy and energy
they bring to life.

Lausanne, July 20, 2020 F. L.

4

Contents

Abstract (English) 1

Abstract (Français) 2

Acknowledgments 3

1 Introduction 10
1.1 The Problem . 11
1.2 Theoretical Challenges . 12
1.3 Practical Challenges . 13
1.4 Engineering Challenges . 14
1.5 Existing Work . 15

1.5.1 Industrial Languages . 15
1.5.2 Masked Types . 16
1.5.3 The Freedom Model . 17

1.6 Contribution . 17

2 Principles: Monotonicity, Authority, Stackability and Scopability 20
2.1 Principles . 20

2.1.1 Monotonicity . 20
2.1.2 Authority . 22
2.1.3 Stackability . 23
2.1.4 Scopability . 24

2.2 Design of Constructors . 25
2.2.1 A Critique of Traditional Constructors . 25
2.2.2 Class Parameters and Mandatory Field Initializers 26

2.3 Related Work . 27
2.4 Conclusion . 28

3 Local Reasoning 29
3.1 A Small Language . 30
3.2 Abstractions: Cold, Warm, Hot . 32

3.2.1 Intuition . 32
3.2.2 Formal Definitions . 33

5

3.3 Formal Local Reasoning . 34
3.3.1 Three Concepts of Monotonicity . 34
3.3.2 Stackability . 35
3.3.3 Scopability . 35
3.3.4 Local Reasoning . 38

3.4 Proof of Scopability . 39
3.4.1 Lemmas . 39
3.4.2 Theorem . 42

3.5 Proof of Weak Monotonicity . 46
3.5.1 Lemmas . 46
3.5.2 Theorem . 46

3.6 Proof of Stackability . 49
3.6.1 Lemmas . 49
3.6.2 Theorem . 49

3.7 Mechanization . 52
3.8 Discussion . 53
3.9 Conclusion . 54

4 The Basic Model 55
4.1 The Formal Language . 55
4.2 Type System . 56

4.2.1 Subtyping . 56
4.2.2 Definition Typing . 56
4.2.3 Expression Typing . 57
4.2.4 Typing Example . 59

4.3 Extension . 59
4.4 Discussion . 60

4.4.1 Promotion before Commitment . 60
4.4.2 Authority, Flow-Insensitivity and Typestate Polymorphism 61

4.5 Related Work . 62
4.6 Conclusion . 65

5 Meta-Theory: The Basic Model 66
5.1 Approach . 66
5.2 Definitions . 67
5.3 Over-Approximation Lemmas . 69
5.4 Monotonicity Lemmas . 70
5.5 Authority Lemmas . 71
5.6 Stackability Lemmas . 71
5.7 Local Reasoning . 72
5.8 Selection Lemmas . 73
5.9 Initialization Lemmas . 73
5.10 Theorem . 74

6

5.11 Discussion . 79
5.11.1 Monotonicity . 79
5.11.2 Stackability . 79
5.11.3 Local Reasoning . 80

5.12 Conclusion . 80

6 An Inference System 81
6.1 Motivation . 81
6.2 A Practical Fragment . 83
6.3 The Design . 83

6.3.1 Potentials and Effects . 83
6.3.2 Two-Phase Checking . 85
6.3.3 Full-Construction Analysis . 86
6.3.4 Cyclic Data Structures . 87

6.4 Formalization . 87
6.4.1 Syntax and Semantics . 87
6.4.2 Effects and Potentials . 88
6.4.3 Expression Typing . 91
6.4.4 Definition Typing . 92
6.4.5 Effect Checking . 93

6.5 Discussions . 95
6.5.1 Why restrict the length of potentials? . 95
6.5.2 Why the cold annotation? . 95

6.6 Extension: Functions . 97
6.7 Related Work . 97
6.8 Conclusion . 98

7 Meta-Theory: The Inference System 99
7.1 Definitions . 99
7.2 Monotonicity Lemmas . 101
7.3 Closure Lemmas . 103
7.4 Potential Lemmas . 105
7.5 Effect Lemmas . 106
7.6 Local Reasoning . 107
7.7 Selection Lemmas . 108
7.8 Method Call Lemmas . 109
7.9 Expression Soundness . 109
7.10 Discussion . 116
7.11 Conclusion . 117

8 Implementation and Evaluation 118
8.1 Motivation . 118
8.2 Design . 120

7

8.3 Formalization . 122
8.3.1 Syntax and Semantics . 122
8.3.2 Effects and Potentials . 126
8.3.3 Expression Typing . 128
8.3.4 Definition Typing . 128
8.3.5 Effect Checking . 131
8.3.6 Potential Propagation . 132
8.3.7 View Change . 135
8.3.8 Termination . 137

8.4 Implementation . 138
8.4.1 Lazy Summarization . 138
8.4.2 Separate Compilation . 139
8.4.3 Debuggability . 139
8.4.4 Functions . 140
8.4.5 Properties . 140
8.4.6 Traits . 141
8.4.7 Local Classes . 141

8.5 Evaluation . 141
8.5.1 Experimental Result . 141
8.5.2 Discovered Bugs . 144
8.5.3 Challenging Examples . 146

8.6 Open Challenges . 147
8.7 Related Work . 148
8.8 Conclusion . 148

9 Conclusion 149

Bibliography 151

A A Step-Indexed Interpreter in Coq 154
A.1 Syntax . 154
A.2 Semantics . 155
A.3 Typing . 157
A.4 Properties . 161
A.5 Some Helpers . 161

Curriculum Vitae 162

8

List of Figures

2.1 Illustration of Stackability . 23

3.1 Semantics of the Experimental Lanugage . 31
3.2 Cold, Warm, Hot . 33
3.3 Illustration of Scoping . 36
3.4 Illustration of Scoping Preservation . 38

4.1 Basic Model: Lattice and Subtyping . 56
4.2 Basic Model: Definition Typing . 57
4.3 Basic Model: Expression Typing . 58
4.4 Comparison of the Freedom Model and the Basic Model 63

5.1 Meta-theory of the Basic Model: Definitions . 68
5.2 Meta-theory of the Basic Model: Object Typing . 69

6.1 Inference System: Potentials and Effects . 88
6.2 Inference System: Expression Typing . 91
6.3 Inference System: Definition Typing . 93
6.4 Inference System: Effect Checking . 94

7.1 Meta-theory of the Inference System: Subtyping 100
7.2 Meta-theory of the Inference System: Definitions 101
7.3 Meta-theory of the Inference System: Object Typing 102
7.4 Meta-theory of the Inference System: Potential Typing and Effect Typing 102

8.1 Inner Class: Semantic Helper Methods . 124
8.2 Inner Class: Semantics . 125
8.3 Inner Class: Potential and Effect Definition . 127
8.4 Inner Class: Expression Typing . 129
8.5 Inner Class: Definition Typing . 130
8.6 Inner Class: Effect Checking . 133
8.7 Inner Class: Potential Propagation . 134
8.8 Inner Class: View Change . 136
8.9 Experimental Results . 142
8.10 Performance Result . 144

9

Chapter 1

Introduction

Life is too short to spend time chasing down irreproducible bugs,
and money is too valuable to waste on the purchase of flaky software.

— Andrew W. Appel, Modern Compiler Implementation in ML

Object-oriented programming is unsafe if objects cannot be initialized safely. The following
code shows a simple initialization problem 1:

1 class Hello {
2 val message = "hello, " + name
3 val name = "Alice"
4 }
5 println(new Hello().message))

The code above at runtime will print “hello, null” instead of “hello, Alice”, as the field
name is not initialized, thus holds the value null, when it is used in the second line.

Software that are vulnerable to such errors crash or misbehave at runtime and may incur
financial loss or cause safety accidents. The errors, sometimes simple sometimes subtle, require
programmer efforts to debug and fix, which drains valuable engineering resources and harms
programmer productivity.

Such errors have come into existence since the inception of object-oriented programming
60 years ago. Despite the fact that object-oriented programming has become the dominant
programming paradigm in the software industry for more than 30 years, programmers are still
frequently bothered and frustrated by initialization errors in software development.

Joe Duffy, in his popular blog post on partially constructed objects [13], wrote:

1In the absence of special notes, the code examples are in Scala.

10

Not only are partially-constructed objects a source of consternation for everyday pro-
grammers, they are also a challenge for language designers wanting to provide guar-
antees around invariants, immutability and concurrency-safety, and non-nullability.

This thesis addresses the problem. We study principles, abstractions and algorithms for
checking safe initialization of objects. The solutions presented in the thesis are validated theoret-
ically and supported empirically, which can be readily used to improve current languages and
design future languages.

1.1 The Problem

Safe initialization of objects is becoming a challenge as the code in constructors is getting
more complex. From past research [14, 16, 12, 9, 24, 19, 11], two initialization requirements are
identified and commonly recognized.

Requirement 1: usage of “this” inside the constructor. The usage of already initialized fields
in the constructor is safe and supported by almost all industrial languages. Based on an extensive
study of over sixty thousand classes, Gil et al. [14] report that over 8% constructors include method
calls on this. Method calls on this can be used to compute initial values for field initialization or
serve as a private channel between the superclass and subclass.

Requirement 2: creation of cyclic data structures. Cyclic data structures are common in pro-
gramming. For example, the following code shows the initialization of two mutually dependent
objects:

1 class Parent { val child: Child = new Child(this) }
2 class Child(parent: Parent)

The objective is to allow cyclic data structures while preventing accidental premature usage of
aliased objects. Accessing fields or calling methods on those aliased objects under initialization
is an orthogonal concern, the importance of which is open to debate.

Tony Hoare introduced null to programming languages, which is commonly known as the
billion dollar mistake [15]. Therefore, a good solution should not resort to null to create cyclic
data structures.

A common misunderstanding is that initialization problems only occur in strict languages.
For example, the following Haskell code loops forever:

1 a = if b then 10 else 20
2 b = a >= 10
3 main = putStrLn (show a)

11

Indeed, there are no initialization errors that cause null-pointer exceptions or segmentation
fault. However, the situation is arguably worse because in the language we may not distinguish
initialization errors from non-termination.

1.2 Theoretical Challenges

There are three theoretical challenges to attack the problems above.

Challenge 1: virtual method calls. While direct usage of already initialized fields via this is
relatively easy to handle, indirect usage via virtual method calls poses a challenge. Such methods
could be potentially overridden in a subclass, which makes it difficult to statically check whether
it is safe to call such a method. This can be demonstrated by the following example:

1 abstract class AbstractFile {
2 def name: String
3 val extension: String = name.substring(4)
4 }
5 class RemoteFile(url:String) extends AbstractFile {
6 val localFile: String = url.hashCode // error
7 def name: String = localFile
8 }

According to the semantics of Scala (Java is the same), fields of a superclass are initialized
before fields of a subclass, so initialization of the field extension proceeds before localFile. The
field extension in the class AbstractFile is initialized by calling the abstract method name. The
latter, implemented in the child class RemoteFile, accesses the uninitialized field localFile.

Challenge 2: aliasing. It is well-known that aliasing complicates program reasoning and it is
challenging to develop practical type systems to support reasoning about aliasing [8, 33]. It is
also the case for safe initialization: if a field aliases this, we may not assume the object pointed
to by the field is fully initialized. This can be seen from the following example:

1 class Knot {
2 val self = this
3 val n: Int = self.n // error
4 }

In the code above, the field self is an alias of this, thus we may not use it as a fully initialized
value. Aliasing may also happen indirectly through method calls, as the following code shows:

1 class Foo {
2 def f() = this
3 val n: Int = f().n // error

12

4 }

Challenge 3: typestate polymorphism. Every newly created object goes through several
typestates [37]: starting from a state where all fields are uninitialized until all of them are assigned.
If a method does not access any fields on this, then it should be able to be called on any typestate
of this. For example, in the following class C, we should be able to call the method g regardless of
the initialization state of this:

1 class C {
2 val a = ...
3 // ...
4 def g(): Int = 100
5 }

The challenge is how to support this feature succinctly without syntactic overhead.

1.3 Practical Challenges

Practical object-oriented programming languages usually have extra language features, such
as first-class functions, inner classes, traits and properties. Each such feature poses additional
challenges for safe initialization.

First-Class Functions. Functions may capture this and the usage of functions may reach
uninitialized fields, as the following example demonstrates:

1 class Rec {
2 val even = (n: Int) => n == 0 || odd(n - 1)
3 even(6) // error
4 val odd = (n: Int) => n == 1 || even(n - 1)
5 even(6) // ok
6 }

In the code above, the first call even(6) is problematic, as it indirectly uses the yet uninitialized
field odd. In contrast, the last line is fine, as odd is already initialized.

Traits. Traits enable flexible code reuse [21, 26], and they are a key language feature of Scala.
Unlike interfaces in Java, it is possible to define fields and methods in traits. Traits are initialized
following a scheme called linearization [2], which complicates the initialization check. The
following example illustrates the subtlety related to linearization:

1 trait TA { val x = "EPFL" }
2 trait TB { def x: String; val n = x.length }
3 class Foo extends TA with TB

13

4 class Bar extends TB with TA
5 new Foo // ok
6 new Bar // error

In the code above, the class Foo and class Bar only differ in the order in which the traits are
mixed in. For the class Foo, the body of the trait TA is evaluated before the body of TB, thus the
expression new Foo works as expected. In contrast, new Bar throws an exception, because the
body of the trait TB is evaluated first, so the field x in TA is not yet initialized when it is used in TB.

Inner Classes. Inner classes [30] are supported in most object-oriented languages. They
create more complexity for initialization, as the instances of inner classes have privileged access
to the outer this. The following example illustrates an interaction between inner classes and
outer classes during initialization:

1 class Trees {
2 class ValDef { counter += 1 }
3 class EmptyValDef extends ValDef
4 val theEmptyValDef = new EmptyValDef
5 private var counter = 0
6 }

The code above is problematic, as the field counter is indirectly used before being initialized
during evaluation of the expression new EmptyValDef.

Properties. In languages such as Scala and Kotlin, fields are actually properties, accesses of
public fields are dynamic method calls, as the following code shows:

1 class A { val a = "Bonjour"; val b: Int = a.size }
2 class B extends A { override val a = "Hi" }
3 new B

The code above will throw a null-pointer exception at runtime when initializing the field A.b,
as the code a.size will access the field B.a, which is not yet initialized.

1.4 Engineering Challenges

Designing a safe initialization system for a practical programming language is an art that strikes
a balance between safety, usability, expressiveness, performance and simplicity.

Safety. A safe initialization checker soundly over-approximates program semantics. A practi-
cal checker should be sound for common and reasonable usage, and the checks should always
terminate. While safety is a noble goal in theoretical work, in practice it may be weakened with
unsafe switches, such as @unchecked, to support rare code patterns. Otherwise, the system may

14

become unnecessarily complex for common usage, which harms usability or even makes the
system impractical.

Usability. A user-friendly initialization system should not incur much syntactic overhead.
The overhead usually manifests itself in the form of annotations. The rules imposed by the
system should be easy to learn and reason about. The error messages should be informative and
facilitate bug fixes.

Expressiveness. An expressive initialization system should support common and reasonable
initialization patterns. In particular, usage of already initialized fields, calling methods on this,
and creation of cyclic data structures should be supported.

Performance. It is recommended that checks for programs should be enabled as compiler
errors whenever possible [4]. Consequently, the checker has to be fast to be integrated in a
compiler.

Simplicity. Compilers are subtle pieces of software with high complexity. An initialization
system should not compound the complexity. In particular, for statically typed languages, it
should not complicate the core type system of the compiler. Ideally, the initialization system
should be able to be explained by a simple theory.

1.5 Existing Work

There have been attempts to address the challenges both in industrial languages and academic
research.

1.5.1 Industrial Languages

Existing programming languages sit at two extremes. On one extreme, we find languages such
as Java, C++, Scala, where programmers can use this even if it is not fully initialized, devoid of
any safety guarantee. On the other extreme, we find languages such as Swift, which ensures safe
initialization, but is overly restrictive. In Swift, the initialization of cyclic data structures is not
supported, calling methods on this is forbidden, even the usage of already initialized fields is
limited. For example, in the following Swift code, while the usage of x to initialize y is allowed,
the usage of y to initialize f is illegal, which is a surprise:

1 class Position {
2 var x, y: Int
3 var f: () -> Int
4 init() {
5 x = 4

15

6 y = x * x // OK
7 f = { () -> Int in self.y } // error
8 }
9 }

The current Swift compiler is incapable of handling the usage of already initialized fields
inside a function. It reports the following error for the code above:

1 code/position.swf:7:14: error: ’self’ captured by a closure before all members were
2 initialized
3 f = { () -> Int in self.y } // error
4 ^
5 code/position.swf:3:10: note: ’self.f’ not initialized
6 var f: () -> Int
7 ^

1.5.2 Masked Types

Masked types [16] is an expressive, flow-sensitive type-and-effect system for safe initialization of
objects.

A masked type T\f denotes objects of the type T , where the masked field f cannot be
accessed. Each method has an effect signature of the form M1 M2, which means that the
method can only be called if this conforms to the masks M1, and the resulting masks for this
after the call is M2. A fully initialized object of class C has all its fields initialized, it thus takes an
unmasked type C. However, there are several obstacles to make the system practical.

First, the system incurs cognitive load and syntactic overhead. Many concepts are introduced
in the system, such as subclass masks, conditional masks, abstract masks, each with non-trivial
syntax. The paper mentions that inference can help to remove the syntactic burden. However, it
leaves open the formal development of such an inference system.

Second, the system, while expressive, is insufficient for simple and common use cases due to
the missing support for typestate polymorphism. This can be seen from the following example,
where we want the method g to be called for any initialization state of this:

1 class C {
2 def g(): Int = 100 // effect of g: ∀M.M M

3 }

As the method g can be called for this with any masks, we would like to give it the (imaginary)
polymorphic effect signature ∀M.M M , which is not supported. Even if an extension of the
system supports polymorphic effect signatures, it will only incur more syntactic overhead.

16

1.5.3 The Freedom Model

Summers and Müller [12] propose a light-weight, flow-insensitive type system for safe initializa-
tion, which we call the freedom model.

The freedom model classifies objects into two groups: free, that is under initialization, and
committed, that is transitively initialized. Field accesses on free objects may get null, while com-
mitted objects can be used safely. To support typestate polymorphism, it introduces the typestate
unclassified, which means either free or committed. With subtyping, typestate polymorphism
becomes just subtyping polymorphism.

The freedom model supports the creation of cyclic data structures with light-weight syntax.
However, the formal system does not address the usage of already initialized fields in the con-
structor. When an object is free, accessing its field will return a value of the type unclassified C?,
which means the value could be null, free or committed. In the implementation, they introduce
committed-only fields which can be assumed to be committed with the help of a dataflow analy-
sis. However, the paper leaves open the formal treatment of the dataflow analysis. Our work will
address the problem.

Moreover, the abstraction free is too coarse for some use cases. This is demonstrated by the
following example:

1 class Parent {
2 var child = new Child(this)
3 var tag: Int = child.tag // error in freedom model
4 }
5 class Child(parent: Parent @free) {
6 var tag: Int = 10
7 }

According to the freedom model, the expression child in line 3 will be typed as free, thus
the type system cannot tell whether the field child.tag is initialized or not. But conceptually we
know that all fields of child are initialized by the constructor of the class Child. In this work we
propose a new abstraction to improve expressiveness in such cases.

To our best knowledge, no existing proposals can be easily extended to handle complex
language features, such as inner classes, functions, properties and traits.

1.6 Contribution

Based on the study of this thesis, we implement an initialization system for Scala 3, which
supports inner classes, traits, properties and functions. No annotations are required for the

17

system to work. Given the following Scala program:

1 abstract class AbstractFile {
2 def name: String
3 val extension: String = name.substring(4)
4 }
5

6 class RemoteDoc(url:String) extends AbstractFile {
7 val localFile: String = url.hashCode // error
8 def name: String = localFile
9 }

Our system will report that the field localFile is used before initialization:

1 -- Error: code/AbstractFile.scala:7:4 ------------------------------
2 7 | val localFile: String = url.hashCode + ".tmp" // error
3 | ^
4 | Access non-initialized field value localFile. Calling trace:
5 | -> val extension: String = name.substring(4) [AbstractFile.scala:3]
6 | -> def name: String = localFile [AbstractFile.scala:8]

Our system also supports interactions between an inner class and an outer class without the
need for any annotation, as the following code shows

1 class Trees {
2 class ValDef { counter += 1 } // error
3 class EmptyValDef extends ValDef
4

5 val theEmptyValDef = new EmptyValDef
6 private var counter = 0
7 }

In the code above, the field counter is used before it is initialized. If we move counter at line 6
before line 5, our system will not issue any warnings.

Our work makes contributions in the following areas:

1. Identification of initialization principles. We identify and advocate four design principles
which originate from formal reasoning about initialization: monotonicity, authority, stackability
and scopability. The principles enable local reasoning as well sound strong updates in a flow-
insensitive system.

2. Principled design of class constructors. Based on the principles, we propose that class-
based programming languages should adopt class parameters and mandatory field initializers. As
far as we know, this is the first work that bases the syntactic design of constructors on initialization
principles.

18

3. Better understanding of local reasoning. Local reasoning is a key requirement for simple
and fast initialization systems. However, while prior work [12] takes advantage of local reasoning
to design simple initialization systems, the concept of local reasoning is neither mentioned nor
defined precisely. Identifying local reasoning as a concept with a better understanding enables it
to be applied in the design of future initialization systems.

4. A more expressive type-based model. We propose a more expressive type-based model for
initialization based on the abstractions cold, warm and hot. The introduction of the abstraction
warm improves the expressiveness of the freedom model [12] which classifies objects as either
initialized (i.e. cold) or uninitialized (i.e. hot).

5. A novel type-and-effect inference system. We propose a type-and-effect inference sys-
tem for a practical fragment of the type-based model. Existing work usually depends on some
unspecified inference or analysis to cut down syntactic overhead [16, 12, 11]. We are the first
to present a formal inference system on the problem of safe initialization. Meanwhile, to our
knowledge, we are the first to demonstrate the technique of aliasing control in a type-and-effect
system with the concept of potentials.

6. Implementation in Scala 3. We implement an initialization system in the Scala 3 com-
piler and evaluate it on several real-world projects. The system is capable of handling complex
language features, such as inner classes, traits and functions.

19

Chapter 2

Principles: Monotonicity, Authority,
Stackability and Scopability

Civilization advances by extending the number of important
operations which we can perform without thinking about them.

— Alfred North Whitehead, An Introduction to Mathematics

In this chapter, we identify four design principles from the formal reasoning about initializa-
tion. The principles shed light on the syntactic design of class constructors.

2.1 Principles

We uphold four design principles for initialization systems, namely monotonicity, authority,
stackability and scopability.

2.1.1 Monotonicity

Roughly, monotonicity means that the initialization states cannot be reversed. Monotonicity is
essential for the safe usage of initialized fields.

One obvious violation of monotonicity is to assign null to a field which is already initialized
with a non-null value. To fix the billion-dollar mistake [15], null can be removed from the
language in favor of the type Option[T].

If a system guarantees that initialized fields continue to be initialized, we say it observes weak

20

monotonicity.

However, stronger concepts of monotonicity are required for initialization safety. The follow-
ing example shows that assignment of non-null values may also cause problems:

1 trait Reporter { def report(msg: String): Unit }
2 class FileReporter(ctx: Context) extends Reporter {
3 ctx.typer.reporter = this // problem: ctx reaches uninitialized object
4 val file: File = new File("report.txt")
5 def report(msg: String) = file.write(msg)
6 }

In the code above, suppose ctx is a transitively initialized value. Now the assignment at line
3 makes this, which is not initialized, reachable from ctx. This makes any operation on ctx
dangerous, as it may indirectly reach uninitialized fields of the current object.

If a system additionally guarantees that transitively initialized objects continue to be transi-
tively initialized, we say it observes strong monotonicity.

However, to enable safe usage of already initialized fields of an object under initialization, we
need an even stronger concept, as the following example demonstrates:

1 trait Reporter { def report(msg: String): Unit }
2 class ProxyReporter(underlying: Reporter) extends Reporter {
3 this.underlying = this // problematic, should be rejected
4 // ...
5 val n = 10
6 // ...
7 }

In the code above, we assume that initially the field underlying of the class ProxyReporter
is transitively initialized — thus the object may be used freely. However, at line 3 we reassign
the field with this, which is not initialized. The assignment is valid in the context of strong
monotonicity, because the object that the field underlying used to refer to is not changed, and
strong monotonicity is only about the initialization state of objects rather than fields. The
assignment makes the initialization state of the field underlying go backward. Now usage of the
field underlying may potentially reach uninitialized fields.

The initialization state of an object not only includes the fields that are assigned, but also the
initialization states of the objects that the fields point to. Perfect monotonicity enforces that the
initialization state of a field, i.e. the initialization state of the object that it points to, is monotone
across mutations.

21

2.1.2 Authority

The principle of authority says that the fields of an object may only be initialized at specific loca-
tions in the class constructor. That is, each field should have a unique location in the constructor
where it is officially initialized. Unrestricted initialization of a field breaks monotonicity thus
compromises initialization safety. This can be demonstrated by the code example below:

1 class A {
2 val c = new C(this)
3 val n = 5
4 }
5

6 class C(a: A) {
7 var x: A = { foo(); a }
8

9 def foo(c: C) = {
10 this.x = new A
11 }
12 }

In the code above, suppose that after evaluating the expression foo() the initialization system
regards the field this.x initialized with a transitively initialized value. Now initializing the field x
with the partially initialized value a breaks perfect monotonicity, as the initialization state of the
field goes backward!

To ensure that the initialization at line 7 maintains monotonicity, we have to make sure that
after executing foo(), the field x is not initialized with a more advanced state. A simple approach
to guarantee that is to enforce that fields may only be initialized at specific locations in the
constructor.

Note that assigning to a field before its formal initialization is semantically harmless as long as
we do not regard the field as initialized at the point of assignment. However, as such assignments
will be overwritten by field initialization later, we think such code patterns should be rejected.

A natural consequence of the principle of authority is that it is only safe to formally promote
the initialization state of an object at the end of the constructor, after all its fields are officially
initialized.

The principle of authority is a direct consequence of enforcing monotonicity in a flow-
insensitive system. Conceptually, in a flow-sensitive system, we may advance the initialization
state of an object at any location, without worrying about whether the advancement at one
location is backwards relative to another location. However, in a flow-insensitive system, if the
initialization status of an object may be advanced at arbitrary locations, there is no guarantee
that an advancement of object status at one location is indeed an advancement, as the object
might be already advanced further at another location.

22

1
2

4

3

time 5 6

1
2

4

3

5 6

stacked non-stacked

Figure 2.1 – Each block represents the initialization duration of an object, i.e., from the creation
of the object to the point where all fields are assigned.

The principle of authority is the key to ensure sound strong updates in a flow-insensitive
system. We will see that flow-insensitivity affords a simple solution to the challenge of typestate
polymorphism and it enables simpler initialization systems (chapter 4).

2.1.3 Stackability

The principle of stackability stipulates that all fields of an object should be initialized at the end
of the class constructor. Consequently, we know that all fields of a freshly created object can be
safely accessed.

Note that having all fields of an object initialized does not mean the object is transitively
initialized, as fields of the object may point to an uninitialized object directly or indirectly.

If we push an object on a stack when it comes into existence, and remove it from the stack
when all its fields are assigned, we will find that the object to be removed is always at the top of
the stack. That is why we call the principle stackability. This is illustrated in Figure 2.1.

Stackability is broken in languages Java and C++, as they do not require that all fields are
assigned at the end of the constructor. Control effects such as exceptions may also compromise
this property, as the following example shows:

1 class MyException(val b: B) extends Exception("")
2

3 class A {
4 val b = try { new B } catch { case myEx: MyException => myEx.b }
5 println(b.a) // error: a is not initialized
6 }
7

8 class B {

23

9 throw new MyException(this) // problem: should be rejected
10 val a: Int = 1
11 }

In the code above, the exception teleports the uninitialized value wrapped in an exception.
To enforce stackability, we need to ensure that values to control effects are fully initialized.

Without this principle, it will be difficult, for an initialization checker and programmers, to
reason about when an object becomes fully initialized. An initialization checker would have to
explicitly track the set of initialized fields of an object in the program, which gets complex in the
presence of aliasing.

With stackability, the system guarantees that object initialization form stacked time regions,
which greatly simplifies the reasoning about initialization. For example, in the following code,
the object pointed to by the field this.child must be fully initialized if the object pointed to by
this in the class Parent is fully initialized.

1 class Parent { var child: Child = new Child(this) }
2 class Child(parent: Parent)

2.1.4 Scopability

The principle of scopability says that the access to uninitialized objects should be controlled
by static scoping. Intuitively, it means that a method may only access pre-existing uninitialized
objects through its environment, i.e. method parameters and this.

Objects under initialization are dangerous when used without care, therefore the access to
them should be controlled. Scopability imposes discipline on accessing uninitialized objects.
If we regard uninitialized objects as capabilities, then scopability restricts that there should be
no side channels for accessing those capabilities. All accesses have to go through the explicit
channel, i.e. method parameters and this. This makes it much easier to control the capabilities:
we only need to impose rules on the explicit channel.

Control effects like coroutines, delimited control, resumable exceptions may break the prop-
erty, as they can transport a value outwards in the stack (not in scope) to be reachable from
the current scope. Global fields can also serve as a teleport thus breaking this property, as the
following example shows:

1 object O { var a: A = null }
2 class A {
3 O.a = this // problem: should be rejected
4 val b = new B()
5 val name = "a"

24

6 }
7

8 class B {
9 val size = O.a.name.length

10 }

In the code above, the global object O teleports an uninitialized instance of class A, which
results in an initialization error in class B when the object is used. To restore scopability, we need
to ensure that the teleported values are fully initialized.

2.2 Design of Constructors

We reflect on the design of constructors from the perspective of safe initialization.

2.2.1 A Critique of Traditional Constructors

In the light of the design principles, we find that traditional class constructors, like those in Java,
C++, C], Swift, etc., are flawed in several aspects. The following example shows a typical class
with traditional class constructors in Java:

1 class Car {
2 int modelYear;
3 String modelName;
4

5 public Car(int year, String name) {
6 modelYear = year;
7 modelName = name;
8 }
9 }

In traditional class constructors, there is no distinction between field initialization and field
reassignment in the syntax. The fields of a class are usually declared in the class body, and then
initialized by assignment. From the syntax alone, it is not easy to distinguish field initialization
from field reassignment. This causes several problems.

First, it makes enforcement of monotonicity more difficult. As we learned above, mono-
tonicity can only be broken with reassignment, thus special rules should be enforced for field
reassignment. For example, while a field may be initialized with an object under initialization, it
is generally unsafe to do so for reassignment. The indistinguishability in syntax makes it harder
to enforce different rules to field reassignment and field initialization.

Second, the syntax obscures when a field is officially initialized, as required by the principle

25

of authority. It is syntactically possible to initialize a field in a method or inside if-expressions.
This unnecessarily complicates the reasoning about the safe usage of already initialized fields.

Third, it complicates the check whether all fields of a class are initialized at the end of the
constructor. This is because assignment of a field may happen in an if branch or in a method,
thus non-trivial analysis has to be employed to enforce stackability. In the freedom model [12],
definite assignment analysis [7] is used to ensure that all fields of a class are assigned at the end
of the constructor.

Fourth, it complicates the check that an immutable field is not reassigned. The system of
masked types [16] introduces the concept of must-mask to support initialization of immutable
fields, e.g. C\d! means that the field d is definitely not assigned, while a normal mask C\d means
the field d may not be assigned.

In object-oriented programming languages, programmers sometimes create convenience
constructors to call the main constructor (constructor chaining). For example, Scala has the
concept of secondary constructors which are supposed to eventually call the implicit primary
constructor [22]. In Swift, there are designated initializers and convenience initializers, the latter
are supposed to call the former [1]. Our critique of constructors does not extend to convenience
constructors or secondary constructors, as they have no impact on the reasoning principles of
initialization.

2.2.2 Class Parameters and Mandatory Field Initializers

The separation of field declaration and initialization is caused by the fact that the arguments for
object initialization are only available as constructor parameters. However, that is not the only
possibility for the design of object initialization. For example, with Scala-like class parameters,
there is no need for explicit constructors:

1 class RemoteDoc(url:String) {
2 val localFile: String = url.hashCode
3 def name: String = localFile
4 }

We advocate Scala-like class parameters and mandatory field initialization on declaration.
This design has many benefits:

1. We may distinguish field initialization and reassignment in syntax, which makes it possible
to give different rules to enforce monotonicity.

2. The principle of authority is followed with no syntactic overhead, as a field is always
officially initialized when it is declared.

26

language class C(f:Int) var f:Int = e typed year
Java # # 1995
C# # # 2000
D # # 2001

Scala G# 2003
Ceylon # 2011

Dart # # 2011
Kotlin G# 2011

TypeScript # # 2012
Crystal # # 2014

Swift # # 2014
JavaScript # # # 2015

Table 2.1 – Object initialization of industrial object-oriented languages. typed means whether the
language is statically typed. year is the year the language or language feature is first introduced.
The remaining two columns are about whether the language supports class parameters and
whether field initializers are mandatory.

3. It enforces stackability in syntax, as fields are initialized when they are declared.

4. Enforcing no reassignment of immutable fields becomes as simple as a syntactic check.

In Table 2.1, we list the design of object initialization in industrial object-oriented program-
ming languages. As can be seen, Scala and Kotlin are the only two languages that favor class
parameters and mandatory field initialization. However, in Scala, it is possible to work around
mandatory field initializers via the syntax var x: T = _. In Kotlin, late-initialized properties serve
as an escape from mandatory field initializers 1.

2.3 Related Work

Monotonicity is a well-known technique called heap monotonic typestate to ensure soundness
in the presence of aliasing [23]. Monotonicity is enforced in raw types [24], masked types [16] and
the freedom model [12].

The freedom model enforces strong monotonicity instead of perfect monotonicity. As a result,
it has to strengthen monotonicity via an extension called committed-only fields to support the
usage of already initialized fields in the implementation.

The principle of stackability dates back to delayed types [19], and is followed in the freedom
model [12]. However, it is not enforced in masked types [16]. Consequently, the system has to
track the initialized fields of an object explicitly in the system. To deal with aliasing, the authors

1https://kotlinlang.org/docs/reference/properties.html#late-initialized-properties-and-variables

27

introduced conditionally masked types to type check the following program:

1 class Knot {
2 var self: Knot\self[this.self] = this
3 }

The conditional mask Knot\self[this.self] describes that the field self references a partially
initialized object, which will become fully initialized when the field this.self is initialized.

The principle of scopability is related to lexical scoping or static scoping [32]. A language that
follows the discipline of static scoping naturally enjoys the property unless the language supports
control effects, such as delimited control [20, 35] and algebraic effects [6]. In the presence of
control effects, we need to ensure that the teleported values are fully initialized to maintain
scopability. In contrast, dynamic scoping [17] essentially violates the property.

Masked types [16] is a flow-sensitive system, thus it does not need to resort to the principle of
authority. However, the choice of flow-sensitivity makes it difficult for the system to address the
challenge of typestate polymorphism. In general, they have to resort to parametric polymorphism
to solve the problem, which further complicates their system.

The freedom model [12] cleverly uses a flow-insensitive type system to support the creation
of cyclic data structures, and it addresses the challenge of typestate polymorphism via subtyping.
However, the principle of authority is not made clear in their work.

2.4 Conclusion

In this chapter, we identify four design principles from formal reasoning about initialization,
namely monotonicity, authority, stackability and scopability. Based on the principles, we propose
that traditional class constructors should be replaced by class parameters and mandatory field
initializers.

One topic we do not touch is what do the principles mean formally? What roles do they play
in formal reasoning about initialization? That will be the topic of the next two chapters, where
the principles are formalized and their roles in the proofs uncovered.

28

Chapter 3

Local Reasoning

Assumptions are the things you don’t know you’re making.

— Douglas Adams, Mark Cawardine, "Last Chance to See"

An important insight in the freedom model [12] is that if a constructor is called with only
transitively initialized arguments, the resulting object is transitively initialized. We give this
insight a name, local reasoning of initialization; it enables reasoning about initialization without
the global analysis of a program, which is the key for simple and fast initialization systems. The
insight also holds for method calls: if the receiver and arguments of a method call are transitively
initialized, so is the result.

But how can we justify the insight? While a justification can be found in the soundness proof
of the freedom model, it is obscured in a monolithic proof structure (see Lemma 1 in the freedom
model paper [12]). We provide a modular understanding of local reasoning by identifying three
semantic properties, which we call weak monotonicity, stackability and scopability. Identifying
local reasoning as a concept with a better understanding enables it to be applied in the design of
future initialization systems. The properties can be explained roughly as follows:

• Weak monotonicity: initialized fields continue to be initialized.
• Stackability: all fields of a class should be initialized at the end of the class constructor.
• Scopability: access to objects under initialization should be controlled by static scoping.

To study the properties more formally, we first introduce a small language.

29

3.1 A Small Language

Our language resembles a subset of Scala having only top-level classes, mutable fields and
methods.

P ∈ Program ::= (C, D)

C ∈ Class ::= class C(f̂ :T) { F M }
F ∈ Field ::= var f :T = e

e ∈ Exp ::= x | this | e.f | e.m(e) | new C(e) | e.f = e; e

M∈Method ::= def m(x:T) : T = e

S, T, U ∈ Type ::= C

A program P is composed of a list of class definitions and an entry class. The entry class must
have the form class D { def main : T = e }. The program runs by executing e.

A class definition contains class parameters (f̂ :T), field definitions (var f :T = e) and method
definitions. Class parameters are also fields of the class. All class fields are mutable. As a conven-
tion, we use f to range over all fields, and f̂ to only range over class parameters.

An expression (e) can be a variable (x), self reference (this), field access (e.f), method call
(e.m(e)), class instantiation (new D(e)), or block expression (e.f = e; e). The block expression
is introduced to avoid introducing the syntactic category of statements in the presence of
assignments, which simplifies the presentation and meta-theory.

A method definition is standard. We restrict the method body to just expressions. This choice
simplifies the meta-theory without loss of expressiveness thanks to block expressions.

The following constructs are used in defining the semantics:

Ξ ∈ ClassTable = ClassName ⇀ Class

σ ∈ Store = Loc ⇀ Obj

ρ ∈ Env = Name ⇀ V alue

o ∈ Obj = ClassName× (Name ⇀ V alue)

l, ψ ∈ V alue = Loc

We use ψ to denote the value of this, σ corresponds to the heap, ρ corresponds to the local
variable environment of the current stack frame.

The big-step semantics, presented in 3.1 is standard, thus we omit detailed explanation. The
only note is that non-initialized fields are represented by missing keys in the object, instead of a
null value. Newly initialized objects have no fields, and new fields are gradually inserted during
initialization until all fields defined by the class have been assigned.

30

Program evaluation
q
(C, D)

y
= (l, σ)

q
(C, D)

y
= JeK ({ l 7→ (D, ∅) }, ∅, l)

where Ξ = C → C and l is a fresh location
and Ξ(D) = class D { def main : T = e }

Expression evaluation JeK (σ, ρ, ψ) = (l, σ′)

JxK (σ, ρ, ψ) = (ρ(x), σ)
JthisK (σ, ρ, ψ) = (ψ, σ)
Je.fK (σ, ρ, ψ) = (ω(f), σ1) where (l0, σ1) = JeK (σ, ρ, ψ)

and (_, ω) = σ1(l0)
Je0.m(e)K (σ, ρ, ψ) = Je1K (σ2, ρ1, l0)

where (l0, σ1) = Je0K (σ, ρ, ψ)
and (C, _) = σ1(l0)

and lookup(C,m) = def m(x:T) : T = e1

and (l, σ2) = JeK (σ1, ρ, ψ)

and ρ1 = x 7→ l
Jnew C(e)K (σ, ρ, ψ) = (l, σ3)

where (l, σ1) = JeK (σ, ρ, ψ)
and σ2 = [l 7→ (C, ∅)]σ1 where l is fresh
and σ3 = init(l, l, C, σ2)

Je1.f = e2; eK (σ, ρ, ψ) = JeK (σ3, ρ, ψ)
where (l1, σ1) = Je1K (σ, ρ, ψ)
and (l2, σ2) = Je2K (σ1, ρ, ψ)
and σ3 = assign(l1, f, l2, σ2)

Initialization
init(ψ, l, C, σ) =

q
F

y
(σ1, ψ)

where lookup(C) = class C(f̂ :T) { F M }
and σ1 = assign(ψ, f̂ , l, σ)

Jvar f : D = eK (σ, ψ) = assign(ψ, f, l1, σ1) where (l1, σ1) = JeK (σ, ∅, ψ)

Helpers
JeK (σ, ρ, ψ) = fold e (Nil, σ) f where

f (ls, σ1) e = let (l, σ2) = JeK (σ1, ρ, ψ) in (l :: ls, σ2)q
F

y
(σ, ψ) = fold F σ f where f σ1 F = JFK (σ1, ψ)

assign(ψ, f, l, σ) = [ψ 7→ (C, [f 7→ l]ω)]σ where (C,ω) = σ(ψ)

assign(ψ, f, l, σ) = [ψ 7→ (C, [f 7→ l]ω)]σ where (C,ω) = σ(ψ)

Figure 3.1 – Big-step semantics, defined as a definitional interpreter.

Note that this language does not enjoy initialization safety, and it is the task of later sections
to make it safe. However, the language enjoys local reasoning of initialization.

31

3.2 Abstractions: Cold, Warm, Hot

3.2.1 Intuition

In object-oriented programming, objects are connected with each other to form a graph. The
objects are connected via fields: the field value of an object may point to another object. Naturally,
the initialization status of an object not only includes the initialization status of its own fields,
but also the initialization status of all reachable objects. Consequently, we may classify objects
in the graph into three categories according to their initialization status:

• Objects with uninitialized fields.
• Objects with their own fields initialized, but reaching objects with uninitialized fields.
• Objects which do not reach any object with uninitialized fields (including themselves).

We name the categories above cold, warm and hot respectively. If the initialization of objects
is monotone, then object initialization is the process of going from cold to warm and eventually
to hot.

The initialization status of objects matters, because objects of different status may be used
differently in the program. If an object is cold, then it is illegal to access fields on the object, as
they might not be initialized yet. For a warm object, field access is generally safe. However, the
result of the access must be used with care, as it may be cold or warm. For hot objects, they can
be used freely without the worry of reaching an uninitialized field, as all reachable objects from
a hot object are initialized.

From the perspective of usage, we may safely treat a hot object as a warm or cold object, or
a warm object as a cold object in the program, without worrying about creating initialization
errors. This suggests the following slightly adapted definition:

cold A cold object may have uninitialized fields.
warm A warm object has all its fields initialized.

hot A hot object has all its fields initialized and only reaches hot objects.

The relationship of the three states are illustrated in Figure 3.2. If we think of the states in
terms of maturity levels, then the states form a lattice: hot v warm v cold. We will employ the
ordering to check whether a value conforms to the expected initialization state of a parameter in
a method call in chapter 4. Passing a cold value as a hot value to a method is an error, while it is
safe to use a hot value as a cold value.

32

hot

warm

cold

Figure 3.2 – The arrow indicates the states that an object passes through during its initialization.

3.2.2 Formal Definitions

D E F I N I T I O N 3.1 (reachability). An object l′ is reachable from l in the heap σ, written σ � l l′,
is defined below:

l ∈ dom(σ)

σ � l l

σ � l0 l1 (_, ω) = σ(l1) ∃ f. ω(f) = l2 l2 ∈ dom(σ)

σ � l0 l2

L E M M A 3.1 (transitivity of reachability). If σ � l1 l2 and σ � l2 l3, then σ � l1 l3.

Proof. By induction on the definition of reachability.

D E F I N I T I O N 3.2 (reachability for set of locations).

σ � L l , ∃l′ ∈ L.σ � l′ l

σ � l L , ∃l′ ∈ L.σ � l l′

D E F I N I T I O N 3.3 (cold). An object is cold if it exists in the heap, formally

σ � l : cold , l ∈ dom(σ)

D E F I N I T I O N 3.4 (warm). An object is warm if all its fields are assigned, formally

σ � l : warm , ∃(C,ω) = σ(l)
∧
fields(C) ⊆ dom(ω)

D E F I N I T I O N 3.5 (hot). An object is hot if all reachable objects are warm, formally

σ � l : hot , l ∈ dom(σ)
∧
∀l′.σ � l l′ =⇒ σ � l′ : warm

33

From the definition, it is easy to see that hot implies warm and warm implies cold.

An immediate result of the definition of hot is transitivity:

L E M M A 3.2 (hot transitivity). If σ � l : hot and σ � l l′, then σ � l′ : hot.

Proof. For any l′′, if σ � l′ l′′, then σ � l l′′. As l is hot, thus σ � l′′ : warm.

D E F I N I T I O N 3.6 (initialization state of sets). A set of objects has an initialization state µ if all
objects in the set have that initialization state, formally

σ � L : µ , ∀l ∈ L.σ � l : µ

3.3 Formal Local Reasoning

3.3.1 Three Concepts of Monotonicity

The idea of monotonicity dates back to heap monotonic typestates [25]. There are, however, at
least three different concepts of monotonicity.

Weak monotonicity means initialized fields continue to be initialized. More formally, we may
prove the following theorem:

T H E O R E M 3.1 (Weak Monotonicity).

JeK (σ, ρ, ψ) = (l, σ′) =⇒ σ � σ′

In the above, the predicate weak monotonicity (σ � σ′) is defined below:

D E F I N I T I O N 3.7 (Weak Monotonicity).

σ � σ′ , ∀l ∈ dom(σ).(C,ω) = σ(l) =⇒ (C,ω′) = σ′(l)
∧
dom(ω) ⊆ dom(ω′)

While weak monotonicity is sufficient to justify local reasoning, stronger monotonicity is
required for initialization safety. For example, the freedom model [12] enforces strong mono-
tonicity:

σ � σ′ , ∀l ∈ dom(σ).σ � l : µ =⇒ σ′ � l : µ

In the above, we abuse the notation by using µ to denote either cold, warm or hot. Strong
monotonicity additionally ensures that hot objects continue to be hot. Therefore, it is always safe
to use hot objects freely. However, to enforce safer usage of already initialized fields of non-hot

34

objects, we need an even stronger concept, perfect monotonicity:

σ � σ′ , ∀l ∈ dom(σ). (C,ω) = σ(l) =⇒

(C,ω′) = σ′(l)
∧

∀f ∈ dom(ω).σ � ω(f) : µ =⇒ σ′ � ω′(f) : µ

In the above, we abuse the notation by writing directlyω′(f) to require that dom(ω) ⊆ dom(ω′).
Perfect monotonicity in addition ensures that initialization states of object fields are monotone.
It will be problematic if a field is initially assigned a hot value and later reassigned to a non-hot
value. The formal system of the freedom model [12] actually allows this. Consequently, in the
implementation, they have to introduce committed-only fields to restore perfect monotonicity
to support the safe usage of already initialized fields with the help of a dataflow analysis.

3.3.2 Stackability

Conceptually, stackability ensures that all newly created objects during the evaluation of an
expression e are warm, i.e. all fields of the objects are assigned. Formally, the insight can be
proved as a theorem:

T H E O R E M 3.2 (Stackability).

JeK (σ, ρ, ψ) = (l, σ′) =⇒ σ � σ′

The predicate σ � σ′ is defined below, which says that for any object in the heap σ′, either
the object is warm, or the object pre-exists in the heap σ.

D E F I N I T I O N 3.8 (Stacking).

σ � σ′ , ∀l ∈ dom(σ′).σ′ � l : warm
∨
l ∈ dom(σ)

Definite assignment [7] can be used to enforce stackability in programming languages. Java,
however, only requires that final fields are initialized.

3.3.3 Scopability

Scopability says that the access to uninitialized objects should be controlled by static scoping.
Intuitively, it means that a method may only access pre-existing uninitialized objects through its
environment, i.e. method parameters and this.

Objects under initialization are dangerous when used without care, therefore the access to
them should be controlled. Scopability imposes discipline on accessing uninitialized objects.

35

1

7
2

4

3

5

6

1

7 2
4

3

5

6
8

9

˟

Heap σ Heap σ’

⟦e⟧(σ, ø, 2)

Figure 3.3 – Each circle represents an object and numbers are locations. An arrow means that
an object holds a reference to another object. The thick circles and links on the right heap are
new objects and links created during the execution. The gray circle indicates the result of the
evaluation.

If we regard uninitialized objects as capabilities, then scopability restricts that there should be
no side channels for accessing those capabilities. All accesses have to go through the explicit
channel, i.e. method parameters and this. In contrast, global variables or control-flow effects
such as algebraic effects may serve as side channels for teleporting values under initialization.
To maintain local reasoning, an initialization system needs to make sure that only initialized
values may travel by side channels.

More formally, we can prove the following theorem:

T H E O R E M 3.3 (Scopability).

JeK (σ, ρ, ψ) = (l, σ′) =⇒ (σ, codom(ρ) ∪ { ψ }) l (σ′, { l })

In the above, the predicate (σ, L) l (σ′, L′) is defined below:

D E F I N I T I O N 3.9 (Scoping). A set of addresses L′ ⊆ dom(σ′) is scoped by a set of addresses
L ⊆ dom(σ), written (σ, L) l (σ′, L′), is defined as follows

(σ, L) l (σ′, L′) , ∀l ∈ dom(σ). σ′ � L′ l =⇒ σ � L l

The theorem means that if e evaluates to l, then l and every location l′ reachable from l in
the new heap is either fresh, in that it did not exist in the old heap, or it was reachable from
codom(ρ) ∪ { ψ } in the old heap.

Note that in the definition of scoping, we use σ1 � L1 l instead of σ2 � L1 l. This
is because in a language with mutation, l may no longer be reachable from L1 in σ2 due to
reassignment. This can be seen in Figure 3.3. Due to scopability, we have (σ, {2}) l (σ′, {8}). It
means if the result object 8 reaches any object which pre-exists in the heap σ, then the object

36

must be reachable from object 2 in the heap σ. The object 7, which is reachable from the object 2
in the heap σ, is no longer reachable from object 2 in the heap σ′ due to the removal of the link
from object 1 to object 7.

However, the definition of scoping is only part of the story. In an evaluation JeK (σ, ρ, ψ) =

(l, σ′), not only the result l is scoped by codom(ρ) ∪ ψ, but also existing scoped relations should
continue to hold. In other words, existing scoping relations are preserving. More formally, the
following property is also a result of scopability:

JeK (σ, ρ, ψ) = (l, σ′) =⇒ σ σ′ l codom(ρ) ∪ { ψ })

The predicate σ1 σ2 l L is defined as follows:

D E F I N I T I O N 3.10 (Scoping Preservation).

σ1 σ2 l L , ∀σ0, L0, L1.

(σ0, L0) l (σ1, L)
∧

(σ0, L0) l (σ1, L1)

=⇒ (σ0, L0) l (σ2, L1)

Scoping preservation is a triple relation among σ2, σ1 and L. Intuitively, the set L can be
thought of as the current stack frame. It is needed because not all lexical scopings are preserving
due to reassignment; only those scopings by a stack frame that is still on the stack. In the
definition, we may think of L0 as the previous stack frame, (σ0, L0) l (σ1, L) ensures L0 is still on
the stack. The definition says that any set L1 which is scoped by L0 continues to be scoped by L0

in the heap migration from σ1 to σ2. In particular, L1 can be L.

Scoping preservation is illustrated in Figure 3.4. In the heap migration from σ to σ′, we have
(σ, 1) l (σ′, 6), as the object 6 only reaches the object 7 in σ′, the latter is also reachable from the
object 1 in σ. However, we do not have (σ, 1) l (σ′′, 6), because the object 6 reaches the object 2
in σ′′, which is not reachable from the object 1 in σ. Thus the scoping relation (σ, 1) l (σ′, 6) is
not preserved in the heap migration from σ′ to σ′′.

In contrast, in the heap migration from σ to σ′, we have (σ, 4) l (σ′, 6), as the object 6 only
reaches the object 7 in σ′, the latter is also reachable from the object 4 in σ. Meanwhile, we also
have (σ, 4)l (σ′′, 6), because all objects in σ that the object 6 may reach in σ′′, are reachable from
the object 4 in σ. Thus the scoping relation (σ, 4)l (σ′, 6) is preserved in the heap migration from
σ′ to σ′′.

Without scoping preservation, in an evaluation JeK (σ, ρ, ψ) = (l, σ′), we cannot even conclude
that (σ, L) l (σ′, L), where L = codom(ρ) ∪ { ψ }. With the property, we may prove (σ, L) l
(σ′, L) by choosing σ0 = σ and L′ = L, as (σ, L) l (σ, L) holds trivially. The two properties are
interdependent, thus they are proved together.

37

1

7
2

4

3

5

6

1

7 2
4

3

5

6
8

9

˟

Heap σ’ Heap σ’’

1

7
2

4

3

5

⟦e⟧(σ, ø, 4)

Heap σ

⟦e.m()⟧(σ, ø, 4)

˟

⟦e’⟧(σ’, ø, 2)

˟

Figure 3.4 – Illustration of scoping preservation. Gray circles indicate the result of the evaluation.
Thick circles and thick arrows represent newly created objects and links. We assume the body of
the method m is e′.

This property is related to separation logic [28], where the part of the heap that a command
actually uses is called its footprint. Here, we over-approximate the footprint of an expression by
the set of objects reachable from codom(ρ) and ψ, and we may think unreachable heap regions
from codom(ρ) and ψ are valid frames for an expression.

3.3.4 Local Reasoning

With weak monotonicity, stackability and scopability, we may prove the theorem of local reason-
ing.

L E M M A 3.3 (Local Reasoning). The following proposition holds

(σ, L) l (σ′, L′) σ � σ′ σ � σ′ σ � L : hot

σ′ � L′ : hot

Proof. Let’s consider a reachable object l from L′, i.e. σ′ � L′ l. Depending on whether
l ∈ dom(σ), there are two cases.

• Case l /∈ dom(σ).
Use the fact that σ � σ′, we know σ′ � l : warm.

• Case l ∈ dom(σ).
Use the fact that (σ, L) l (σ′, L′), we have σ � L l. From the premise σ � L : hot, we have
σ � l : warm. From σ � σ′, we have σ′ � l : warm.

38

In both cases, we have σ′ � l : warm, by definition we have σ′ � L′ : hot.

T H E O R E M 3.4 (Local Reasoning). The following proposition holds:

JeK (σ, ρ, ψ) = (l, σ′) σ � { ψ } ∪ codom(ρ) : hot

σ′ � l : hot

Proof. Immediate from Lemma 3.3, the preconditions are satisfied by Theorem 3.3, Theorem 3.1
and Theorem 3.2.

In particular, if e is a method body, we can conclude that if the receiver and all the method
parameters are hot, then the return value is also hot.

This theorem echoes the insight in the freedom model [12]: if a constructor is called with all
committed arguments, then the constructed object is also committed.

3.4 Proof of Scopability

3.4.1 Lemmas

L E M M A 3.4 (Scoping Reflexivity). For all σ, L2 ⊆ L1, we have (σ, L1) l (σ, L2).

Proof. Immediate from the definition of scoping.

L E M M A 3.5 (Scoping Subset). If (σ1, L1) l (σ2, L2 ∪ L), then (σ1, L1) l (σ2, L).

Proof. Immediate from the definition of scoping.

L E M M A 3.6 (Scoping Union). If (σ1, L)l(σ2, L1) and (σ1, L)l(σ2, L2), then (σ1, L)l(σ2, L1∪L2).

Proof. Immediate from the definition of scoping.

L E M M A 3.7 (Scoping Reachability). For all σ, l1, l2, if σ � l1 l2, then (σ, l1) l (σ, l2).

Proof. Immediate from the definition of scoping.

L E M M A 3.8 (Scoping Transitivity). Given

• dom(σ1) ⊆ dom(σ2)

• (σ1, L1) l (σ2, L2)

• (σ2, L2) l (σ3, L3)

39

then

• (σ1, L1) l (σ3, L3)

Proof. From the definition of scoping, we need to prove that for any l3 ∈ L3 and l ∈ dom(σ1), if
(A1) holds, then (A2) holds too:

• (A1) σ3 � l3 l

• (A2) ∃l1 ∈ L1. σ1 � l1 l

From l ∈ dom(σ1) and dom(σ1) ⊆ dom(σ2), we have

• (B1) l ∈ dom(σ2)

Use (A1), (B1) and (σ2, L2) l (σ3, L3), we have

• (C1) ∃l2 ∈ L2.σ2 � l2 l

Pick l2 in (C1), now use (C1) and (σ1, L1) l (σ2, L2), we arrive at (A2) immediately.

L E M M A 3.9 (Preserving Transitivity). Given

• σ1 σ2 l L1

• σ2 σ3 l L2

• (σ1, L1) l (σ2, L2)

then

• σ1 σ3 l L1

Proof. From the definition of scoping preservation, we need to prove that for any σ0,L ⊆ dom(σ1)

and L0 ⊆ dom(σ0), if (A1) and (A2) hold, then (A3) holds too:

• (A1) (σ0, L0) l (σ1, L1)

• (A2) (σ0, L0) l (σ1, L)

• (A3) (σ0, L0) l (σ3, L)

From (A1), (A2) and the premise σ1 σ2 l L1, we have

• (B1) (σ0, L0) l (σ2, L)

From the premise (σ1, L1) l (σ2, L2) and (A1), we use Lemma 3.8:

• (C1) (σ0, L0) l (σ2, L2)

From (B1), (C1) and the premise σ2 σ3 l L2, we arrive at (A3) immediately.

40

L E M M A 3.10 (Preserving Regularity - Degenerate Case).
If σ1 σ2 l L, then (σ1, L) l (σ2, L).

Proof. By the definition of scoping preservation with σ0 = σ1, L1 = L and L0 = L, the precondi-
tion (σ1, L) l (σ1, L) holds trivially.

L E M M A 3.11 (Preserving Regularity). If σ1 σ2 l L, (σ0, L) l (σ1, L) and (σ0, L) l (σ1, L1),
then (σ0, L) l (σ2, L1).

Proof. By the definition of scoping preservation.

L E M M A 3.12 (Preserving Transitivity - Degenerate Case). Given

• σ1 σ2 l L1

• σ2 σ3 l L1

then

• σ1 σ3 l L1

Proof. Use Lemma 3.9 and Lemma 3.10.

L E M M A 3.13 (Assignment). Given

(1) σ1 σ2 l L1

(2) (σ1, L1) l (σ2, l)

(3) (σ1, L1) l (σ2, l
′)

(4) (C,ω) = σ2(l)

(5) ω′ = [f 7→ l′]ω

(6) σ′2 = [l 7→ (C,ω′)]σ2

then we have

(a) σ1 σ′2 l L1

(b) (σ1, L1) l (σ′2, l)

Proof. We prove the two separately.

Proof of σ1 σ′2 l L1.

From the definition of scoping preservation, we need to prove that for any σ0, L ⊆ dom(σ1),
L0 ⊆ dom(σ0), if (A1) and (A2) hold, then (A3) holds:

• (A1) (σ0, L0) l (σ1, L1)

• (A2) (σ0, L0) l (σ1, L)

41

• (A3) (σ0, L0) l (σ′2, L)

From (A1), (A2) and σ1 σ2 l L1, we have

• (B1) (σ0, L0) l (σ2, L)

From (σ1, L1) l (σ2, l
′), (A1) and Lemma 3.8, we have

• (C1) (σ0, L0) l (σ2, l
′)

To prove (A3), we need to show that for any l2 ∈ L and l0 ∈ dom(σ0), if (D1) holds, then (D2)
holds too:

• (D1) σ′2 � l2 l0
• (D2) ∃l ∈ L0.σ0 � l l0

For (D1), we consider the path that begins from l2 to l0. Note that the two heap graphs σ2 and
σ′2 only differ by the edge l l′.

If the path does not contain the edge l l′, then the path must exist in σ2, i.e. σ2 � l2 l0.
Now use (B1) we arrive at (D2) immediately.

If the path contains the edge l l′, then we have σ2 � l′ l0. Now use (C1), we arrive at (D2)
too.

Proof of (σ1, L1) l (σ′2, l).

Suppose that there exists l1 ∈ dom(σ1), such that σ′2 � l l1. We consider the path that
begins from l to l1 without loops. Note that the two heap graphs σ2 and σ′2 only differ by the edge
l l′.

If the path from l to l1 does not contain the edge l l′, then the path must exist in σ2, i.e.
σ2 � l l1. Now from precondition (2) we have ∃la ∈ L1.σ1 � la l1, which completes the proof
goal.

Otherwise, if the path from l to l1 contains the edge l′ l, then l1 is reachable from l′, i.e.
σ2 � l′ l2. Now use precondition (3), we arrive at the result similarly as above.

3.4.2 Theorem

T H E O R E M 3.5 (Scopability). If JeK (σ, ρ, ψ) = (l, σ′), then we have

(1) (σ, codom(ρ) ∪ { ψ }) l (σ′, l)

(2) σ σ′ l codom(ρ) ∪ { ψ }

42

Proof. By induction on the structure of e.

• case e = x

(1) holds by choosing the existential to be ρ(x).
(2) holds trivially by Lemma 3.4 due to σ′ = σ.

• case e = this

(1) holds by choosing the existential to be ψ.
(2) holds trivially by Lemma 3.4 due to σ′ = σ.

• case e = e0.f

From the induction hypothesis on e0, we know there exists l0 such that:
– (A1) Je0K (σ, ρ, ψ) = (l0, σ

′)

– (A2) (σ, ψ ∪ codom(ρ)) l (σ′, l0)

– (A3) σ σ′ l ψ ∪ codom(ρ)

– (A4) (C,ω) = σ′(l0)

– (A5) l = ω(f)

From σ′ � l0 l and Lemma 3.7 we have
– (B1) (σ′, l) l (σ′, l0)

From (A2), (B1) and Lemma 3.8 we have
– (C1) (σ, ψ ∪ codom(ρ)) l (σ′, l)

(1) holds from (C1).
(2) holds from (A3).

• case e = e0.m(e)

From the induction hypothesis on e0, we know there exists l0 and σ0 such that:
– (A1) Je0K (σ, ρ, ψ) = (l0, σ0)

– (A2) (σ, ψ ∪ codom(ρ)) l (σ0, l0)

– (A3) σ σ0 l ψ ∪ codom(ρ)

– (A4) (σ, ψ ∪ codom(ρ)) l (σ0, ψ ∪ codom(ρ)) B By (A3) and Lemma 3.10
– (A5) (C,ω) = σ0(l0)

By using induction hypothesis repeatedly on all arguments, we get σi such that
– (B1) JeiK (σi−1, ρ, ψ) = (li, σi)

– (B2) (σi−1, ψ ∪ codom(ρ)) l (σi, li)

– (B3) σi−1 σi l ψ ∪ codom(ρ)

– (B4) (σi−1, ψ ∪ codom(ρ)) l (σi, ψ ∪ codom(ρ)) B By (B3) and Lemma 3.10

As the method call succeeds, we must have
– (D1) lookup(C,m) = @µ def m(xi:Ti) : T = em

43

– (D2) ρ′ = xi:li
– (D3) JemK (σn, ρ

′, l0) = (lm, σm)

Now we can use the induction hypothesis for em:
– (E1) (σn, l0 ∪ codom(ρ′)) l (σm, lm)

– (E2) σn σm l l0 ∪ codom(ρ′)

From (A2), (A4), (B2), (B4) and Lemma 3.11, we have
– (F1) (σ, ψ ∪ codom(ρ)) l (σn, l0 ∪ codom(ρ′))

– (F2) σ σn l ψ ∪ codom(ρ) B By Lemma 3.12

(1) holds from (E1), (F1) and Lemma 3.8.
(2) holds from (E2), (F1), (F2) and Lemma 3.9.

• case e = new C(e)

Let σ0 = σ, use induction hypothesis on arguments repeatedly:
– (A1) (σi−1, ψ ∪ codom(ρ)) l (σi, li)

– (A2) σi−1 σi l ψ ∪ codom(ρ))

From (A1), (A2) and Lemma 3.11, we have
– (C1) (σ, ψ ∪ codom(ρ)) l (σn, {l1, · · · , ln})
– (C2) σ σn l ψ ∪ codom(ρ) B By Lemma 3.12

We define σ′0 with a fresh location l:

– (D1) σ′0 = σn ∪ {l 7→ (C, f̂i = li)}

We have the following:
– (E1) (σ, ψ ∪ codom(ρ)) l (σ′0, l) B from (C1) and (D1)
– (E2) σn σ′0 l ψ ∪ codom(ρ) B from (D1) and definition
– (E3) σ σ′0 l ψ ∪ codom(ρ) B by (C2), (E2) and Lemma 3.12

We perform induction on m — the number of fields in the class body.

The basic case m = 0 trivially holds from (E1) and (E3).

Let us consider m = i+ 1. From induction hypothesis, we have
– (F1) (σ, ψ ∪ codom(ρ)) l (σ′i, l)

– (F2) σ σ′i l ψ ∪ codom(ρ)

– (F3) (σ, ψ ∪ codom(ρ)) l (σ′i, ψ ∪ codom(ρ)) B By (F2) and Lemma 3.10

Consider the (i+1)-th field in the class body var fi+1 : Ti+1 = ei+1. Use induction hypothesis
on ei+1, we know there exists li+1, σ̂i+1 such that:

44

– (G1) (σ′i, l) l (σ̂i+1, li+1)

– (G2) σ′i σ̂i+1 l l

Now we have
– (I1) (σ, ψ ∪ codom(ρ)) l (σ̂i+1, li+1) B from (F1), (G1) and Lemma 3.8
– (I2) (σ, ψ ∪ codom(ρ)) l (σ̂i+1, l) B from (F1), (F3), (G2) and Lemma 3.11
– (I3) σ σ̂i+1 l ψ ∪ codom(ρ) B from (F1), (F2), (G2) and Lemma 3.9

We define σ′i+1 as follows:
– (H1) (C,ω) = σ̂i+1(l)

– (H2) ω′ = [fi+1 7→ li+1]ω

– (H3) σ′i+1 = [l 7→ (C,ω′)]σ̂i+1

The conclusion follows from Lemma 3.13.

• case e = (e0.f = e1; e2)

From the induction hypothesis on e0, we know there exists l0 and σ0 such that:
– (A1) (σ, ψ ∪ codom(ρ)) l (σ0, l0)

– (A2) σ σ0 l ψ ∪ codom(ρ)

– (A3) (σ, ψ ∪ codom(ρ)) l (σ0, ψ ∪ codom(ρ)) B By (A2) and Lemma 3.10

From the induction hypothesis on e1, we know there exists l1 and σ1 such that:
– (B1) (σ0, ψ ∪ codom(ρ)) l (σ1, l1)

– (B2) σ0 σ1 l ψ ∪ codom(ρ)

– (B3) (σ, ψ ∪ codom(ρ)) l (σ1, l1) B from (B1), (A3) and Lemma 3.8
– (B4) (σ, ψ ∪ codom(ρ)) l (σ1, l0) B from (A1), (A3) and (B2)

We define σ′1 as follows
– (C1) (C,ω) = σ1(l0)

– (C2) ω′ = [f 7→ l1]ω

– (C3) σ′1 = [l0 7→ (C,ω′)]σ1

Now from Lemma 3.13 we have
– (D1) (σ, ψ ∪ codom(ρ)) l (σ′1, l)

– (D2) σ σ′1 l ψ ∪ codom(ρ)

– (D3) (σ, ψ ∪ codom(ρ)) l (σ′1, ψ ∪ codom(ρ)) B By (D2) and Lemma 3.10

Now use induction hypothesis on e2, we have
– (E1) (σ′1, ψ ∪ codom(ρ)) l (σ2, l2)

– (E2) σ′1 σ2 l ψ ∪ codom(ρ)

(1) holds from by (D3), (E1) and Lemma 3.8.

45

(2) holds from by (D2), (E2) and Lemma 3.12.

3.5 Proof of Weak Monotonicity

3.5.1 Lemmas

L E M M A 3.14 (Reflexivity). For all σ, σ � σ.

Proof. By the definition of the predicate weak monotonicity.

L E M M A 3.15 (Transitivity). If σ1 � σ2 and σ2 � σ3, then σ1 � σ3.

Proof. By the definition of the predicate weak monotonicity.

L E M M A 3.16 (Assignment). For all σ, σ′, l, l′, f , if

(1) (C,ω) = σ(l)

(2) ω′ = [f 7→ l′]ω

(3) σ′ = [l 7→ (C,ω′)]σ

then σ � σ′

Proof. Immediate by definition, as assignment does not cause fields to be uninitialized.

L E M M A 3.17 (Warm Monotone). If σ � σ′ and σ � l : warm, then σ′ � l : warm.

Proof. Immediate by definition.

3.5.2 Theorem

T H E O R E M 3.6 (Weak Monotonicity). If JeK (σ, ρ, ψ) = (l, σ′), then σ � σ′.

Proof. By induction on the structure of e.

• case e = x

Trivial due to σ′ = σ.

46

• case e = this

Trivial due to σ′ = σ.

• case e = e0.f

From the induction hypothesis on e0, we know there exists l0 such that:
– (A1) σ � σ′

– (A2) (T0, ω) = σ′(l0)

– (A3) l = ω(f)

• case e = e0.m(e)

From the induction hypothesis on e0, we know there exists l0 and σ0 such that:
– (A1) σ � σ0

– (A2) (C,ω) = σ0(l0)

By using induction hypothesis repeatedly on all arguments, we get σi such that
– (B1) σi−1 � σi

As the method call succeeds, we must have
– (D1) lookup(C,m) = @µ def m(xi:Ti) : T = em
– (D2) ρ′ = xi:li
– (D3) JemK (σn, ρ

′, l0) = (lm, σm)

Now we can use the induction hypothesis for em:
– (E1) σn � σm

Now by transitivity, we have
– (F1) σ � σm

• case e = new C(e)

Let σ0 = σ, use induction hypothesis on arguments repeatedly:
– (A1) σi−1 � σi

By transitivity, we have
– (B1) σ � σn

We define σ′0 with a fresh location l:

– (C1) σ′0 = σn ∪ {l 7→ (C, f̂i = li)}

We have the following:
– (D1) σn � σ′0 B from (C1) and definition
– (D2) σ � σ′0 B by (B1), (D1) and transitivity

47

Suppose the class has m fields in class body, we prove that the following invariant holds:
– (E1) σ′0 � σ′m

By induction on m. The basic case m = 0 trivially holds as σ′m = σ′0.

Let us consider m = i+ 1. From induction hypothesis, we have
– (F1) σ′0 � σ′i
– (F2) σ′0 � σ′i

Consider the (i+1)-th field in the class body var fi+1 : Ti+1 = ei+1. Use induction hypothesis
on ei+1, we know there exists li+1, σ̂i+1 such that:

– (G1) Jei+1K (σ′i, ∅, l) = (li+1, σ̂i+1)

– (G2) σ′i � σ̂i+1

We define σ′m as follows:
– (H1) (C,ω) = σ̂i+1(l)

– (H2) ω′ = [fi+1 7→ li+1]ω

– (H3) σ′m = [l 7→ (C,ω′)]σ̂i+1

Now use the Lemma Assignment, we have
– (I1) σ′0 � σ′m

The conclusion σ � σ′m holds from (I1) and (D2) by transitivity.

• case e = (e0.f = e1; e2)

From the induction hypothesis on e0, we know there exists σ0 such that:
– (A1) σ � σ0

From the induction hypothesis on e1, we know there exists σ1 such that:
– (B1) σ0 � σ1

We define σ′1 as follows
– (C1) (C,ω) = σ1(l0)

– (C2) ω′ = [f 7→ l1]ω

– (C3) σ′1 = [l0 7→ (C,ω′)]σ1

By Lemma Assignment, we have the following holds
– (D1) σ1 � σ′1

Now use induction hypothesis on e2, we have
– (E1) σ′1 � σ2

48

The conclusion follows by transitivity.

3.6 Proof of Stackability

3.6.1 Lemmas

L E M M A 3.18 (Reflexivity). For all σ, σ � σ.

Proof. By the definition of the predicate stacking.

L E M M A 3.19 (Transitivity). If σ1 � σ2, σ2 � σ3 and σ2 � σ3, then σ1 � σ3.

Proof. From premises, we have

• (A1) ∀l3 ∈ dom(σ3).σ3 � l3 : warm ∨ l3 ∈ dom(σ2)

• (A2) ∀l2 ∈ dom(σ2).σ2 � l2 : warm ∨ l2 ∈ dom(σ1)

Consider l3 ∈ dom(σ3), if we have σ3 � l3 : warm, we are done. If σ3 � l3 : warm does not
hold, then from (A1) we have l3 ∈ dom(σ2). Now use (A2), it cannot be the case that σ2 � l2 : warm

due to σ2 � σ3. Therefore, we have l3 ∈ dom(σ1), which completes the proof.

L E M M A 3.20 (Assignment). For all σ, σ′, l, l′, f , if

(1) (C,ω) = σ(l)

(2) ω′ = [f 7→ l′]ω

(3) σ′ = [l 7→ (C,ω′)]σ

then σ � σ′

Proof. The assignment does not create new objects, thus the result holds trivially.

3.6.2 Theorem

T H E O R E M 3.7 (Stackability). If JeK (σ, ρ, ψ) = (l, σ′), then σ � σ′.

Proof. By induction on the structure of e.

49

• case e = x

Trivial due to σ′ = σ.

• case e = this

Trivial due to σ′ = σ.

• case e = e0.f

From the induction hypothesis on e0, we know there exists l0 such that:
– (A1) σ � σ′

– (A2) (C,ω) = σ′(l0)

– (A3) l = ω(f)

• case e = e0.m(e)

From the induction hypothesis on e0, we know there exists l0 and σ0 such that:
– (A1) σ � σ0

– (A2) σ � σ0 B By Theorem 3.6
– (A3) (C,ω) = σ0(l0)

By using induction hypothesis repeatedly on all arguments, we get σi such that
– (B1) σi−1 � σi
– (B2) σi−1 � σi B By Theorem 3.6

As the method call succeeds, we must have
– (D1) lookup(C,m) = @µ def m(xi:Ti) : T = em
– (D2) ρ′ = xi:li
– (D3) JemK (σn, ρ

′, l0) = (lm, σm)

Now we can use the induction hypothesis for em:
– (E1) σn � σm
– (E2) σn � σm B By Theorem 3.6

Now by transitivity, we have
– (F1) σ � σm

• case e = new C(e)

Let σ0 = σ, use induction hypothesis on arguments repeatedly:
– (A1) σi−1 � σi
– (A2) σi−1 � σi B By Theorem 3.6

By transitivity we have
– (B1) σ � σn
– (B2) σ � σn B By Theorem 3.6

50

We define σ′0 with a fresh location l:

– (C1) σ′0 = σn ∪ {l 7→ (C, f̂i = li)}

We have the following:
– (D1) σn � σ′0 B from (C1) and definition
– (D2) σ � σ′0 B by (B2), (D1) and transitivity

Suppose the class has m fields in class body, we prove that the following invariant holds:
– (E1) σ′0 � σ′m
– (E2) σ′0 � σ′m

By induction on m. The basic case m = 0 trivially holds as σ′m = σ′0.

Let us consider m = i+ 1. From induction hypothesis, we have
– (F1) σ′0 � σ′i
– (F2) σ′0 � σ′i B By Theorem 3.6

Consider the (i+1)-th field in the class body var fi+1 : Ti+1 = ei+1. Use induction hypothesis
on ei+1, we know there exists li+1, σ̂i+1 such that:

– (G1) Jei+1K (σ′i, ∅, l) = (li+1, σ̂i+1)

– (G2) σ′i � σ̂i+1

– (G3) σ′i � σ̂i+1 B By Theorem 3.6

We define σ′m as follows:
– (H1) (C,ω) = σ̂i+1(l)

– (H2) ω′ = [fi+1 7→ li+1]ω

– (H3) σ′m = [l 7→ (C,ω′)]σ̂i+1

Now use the Lemma Assignment, we have
– (I1) σ′0 � σ′m
– (I2) σ′0 � σ′m

As all fields of the object l has been assigned, we have
– (J1) σ′m � l : warm

Suppose there exists lc ∈ dom(σ′m) where lc is not warm in σ′m. We have
– (K1) lc ∈ dom(σ′0) B from (I1)
– (K2) lc 6= l B because l is warm

From the definition of σ′0 in (C1), we have lc ∈ dom(σn). Note that lc cannot be warm in σn.
Otherwise, lc will be warm in σ′m due to the following fact:

51

– (L1) σn � σ′m B from (D1) and (I2)

Now from (B1) and ¬σn � lc : warm, we have lc ∈ σ, which completes the proof that
σ � σ′m.

• case e = (e0.f = e1; e2)

From the induction hypothesis on e0, we know there exists σ0 such that:
– (A1) σ � σ0

– (A2) σ � σ0 B By Theorem 3.6

From the induction hypothesis on e1, we know there exists σ1 such that:
– (B1) σ0 � σ1

– (B2) σ0 � σ1 B By Theorem 3.6

We define σ′1 as follows
– (C1) (C,ω) = σ1(l0)

– (C2) ω′ = [f 7→ l1]ω

– (C3) σ′1 = [l0 7→ (C,ω′)]σ1

By Lemma Assignment, we have the following holds
– (D1) σ1 � σ′1
– (D2) σ1 � σ′1 B By Theorem 3.6

Now use induction hypothesis on e2, we have
– (E1) σ′1 � σ2

– (E2) σ′1 � σ2 B By Theorem 3.6

The conclusion follows by transitivity.

3.7 Mechanization

Clément Blaudeau worked on Coq mechanization of local reasoning. The code is located in the
following address:

https://github.com/clementblaudeau/celsius

During the mechanization, he found that several well-formedness conditions are missing.
First, in the definition of scoping, we need to add the requirement that dom(σ1) ⊆ dom(σ2)

(Definition 3.9). Otherwise, in proving the Lemma 3.9, we will be unable to supply the evidence

52

https://github.com/clementblaudeau/celsius

dom(σ1) ⊆ dom(σ2) required by the Lemma 3.8. With the addition in the definition, we may
remove the premise dom(σ1) ⊆ dom(σ2) from the Lemma 3.8.

Second, we need to assume that field values are valid locations of the heap, i.e.

wf(σ) , ∀l.(C,ω) = σ(l) ∧ l′ = ω(f) =⇒ l′ ∈ dom(σ)

We will be able to prove the following theorem:

wf(σ) codom(ρ) ∪ { ψ } ⊆ dom(σ) JeK (σ, ρ, ψ) = (l, σ′)

wf(σ′) ∧ l ∈ dom(σ′)

We need to add wf(σ) and codom(ρ) ∪ { ψ } ⊆ dom(σ) as premises to the theorem of
scopability (Theorem 3.5) and the theorem of local reasoning (Theorem 3.4).

Third, the initial definition of weak monotonicity does not enforce that the class of an object
remains the same, which poses a difficulty in proving that a warm object continues to be warm.
We already fixed the problem in the definition.

We choose to not address the first two mechanization findings due to the following consid-
erations. First, the fixes will clutter the proofs without addition of insights. Second, we feel it is
valuable to keep some gaps in the pen and paper proofs such that interested readers can learn
more from the mistakes. Third, there might be different fixes.

3.8 Discussion

One might attempt to define scoping preservation as follows:

D E F I N I T I O N 3.11 (Scoping Preservation - Incorrect Attempt).

σ1 σ2 l L , ∀σ0, L
′. (σ0, L) l (σ1, L

′) =⇒ (σ0, L) l (σ2, L
′)

This definition says that if a set of locations L′ is scoped by L, it continues to be scoped by
L during the heap migration from σ1 to σ2. While the definition is reasonable, the induction
hypothesis it generates is too weak for the case of method calls.

Suppose we have a method call evaluation Jthis.m(e)K (σ1, ρ, ψ) = (lm, σ3), we need to prove

1. (σ1, codom(ρ) ∪ { ψ }) l (σ3, lm)

2. σ1 σ3 l codom(ρ) ∪ { ψ }

The first proof goal says that the final result is scoped by the initial evaluation environment.

53

The second proof goal says that all locations previously scoped by the initial evaluation environ-
ment continue to be scoped.

The evaluation recurs on the argument e and method body em:

(1) JeK (σ1, ρ, ψ) = (le, σ2)

(2) JemK (σ2, { x 7→ le }, ψ) = (lm, σ3)

where we get the following as induction hypothesis:

(A1) σ1 σ2 l codom(ρ) ∪ { ψ }
(A2) (σ1, codom(ρ) ∪ { ψ }) l (σ2, le)

(A3) σ2 σ3 l { ψ1, le }
(A4) (σ1, { ψ2, le }) l (σ3, lm)

We may prove the first goal by the following steps:

(B1) (σ1, codom(ρ) ∪ { ψ }) l (σ2, ψ). B From (A1)
(B2) (σ1, codom(ρ) ∪ { ψ }) l (σ2, { le, ψ }) B From (B1) and (A2)
(B3) (σ1, codom(ρ) ∪ { ψ }) l (σ3, lm) B From (B2), (A4) and transitivity of scoping

However, we get stuck on the second goal. The reason is that the induction hypothesis (A3) is
too weak: it only says that all locations scoped by { ψ1, le } continue to be scoped, while we want
to prove that all locations scoped by codom(ρ) ∪ { ψ } continue to be scoped. In particular, we
are unable to prove (σ1, codom(ρ) ∪ { ψ }) l (σ3, codom(ρ)), which is an immediate result if the
second goal holds.

3.9 Conclusion

We formally prove local reasoning (Theorem 3.4), which provides the semantic justification for
the importance of the principles for initialization. The property of scopability obviously holds,
but its proof is not obvious at all — we need to prove at the same time that scoping is preserving
relative to some set of addresses (Theorem 3.5).

54

Chapter 4

The Basic Model

Simplicity is the ultimate sophistication.

— Leonardo da Vinci

In this chapter, we present a type system for safe initialization based on the abstractions hot,
warm and cold.

4.1 The Formal Language

We formalize the basic model in a class-based language with mutations. Our language resembles
a subset of Scala having only top-level classes, mutable fields and methods.

P ∈ Program ::= (C, D)

C ∈ Class ::= class C(f̂ :T) { F M }
F ∈ Field ::= var f :T = e

e ∈ Exp ::= x | this | e.f | e.m(e) | new C(e) | e.f = e; e

M∈Method ::= @µ def m(x:T) : T = e

S, T, U ∈ Type ::= Cµ

µ ∈ mode ::= hot | warm | cold

The only change compared to the language in the previous chapter is the definition of types.
Types are composed of a mode µ and a class name, written as Cµ. The mode consists of the three
abstractions: hot, warm and cold.

Methods are now annotated with modes, i.e. @µ def m(x:T) : T = e, the mode µ means this

55

Mode Lattice

hot v warm v cold

t(µ1, µ2) = max(µ1, µ2)

u(µ1, µ2) = min(µ1, µ2)

Subtyping

T <: T (S - R E F L)
T1 <: T2 T2 <: T3

T1 <: T3

(S - T R A N S)
µ1 v µ2

Cµ1 <: Cµ2
(S - M O D E)

Figure 4.1 – Lattice and Subtyping

has the type Cµ inside the method m of the class C. The semantics of the language remain the
same as the language introduced in the last chapter.

4.2 Type System

4.2.1 Subtyping

The subtyping rules are presented in Figure 4.1. The ordering, meet and join of the lattice
are defined naturally. The rule S - R E F L and S - T R A N S are standard for subtyping. The rule
S - M O D E extends the mode lattice to types.

4.2.2 Definition Typing

The typing rules for definitions are presented in Figure 4.2. When type checking a program (C, e)
with the rule T- P R O G, the system checks that every class is well-typed, and the entry expression
is well typed.

When type checking a class, the rule T- C L A S S first checks the field definitions. Then it
checks that each method is well-typed.

When type checking a field definition var f :T = e, the rule T- F I E L D ensures that the
expression e can be typed as T in an empty environment. The type of this is assumed to be Ccold.

When type checking a method, the rule T- M E T H O D checks that the method body e conforms
to the method return type S, in the environment of method parameters x:T , assuming this to
take the mode of the method.

56

Program Typing ` P

Ξ = C → C Ξ(D) = class D { def main : T = e } ∅;Dhot ` e : T Ξ ` C
` (C, D)

(T- P R O G)

Class Typing Ξ ` C

Ω0 = f̂ Ξ;CΩi ` Fi Ωi+1 = Ωi ∪ { fi } Ξ;C ` M

Ξ ` class C(f̂ :T) { F M }
(T- C L A S S)

Field Typing Ξ;CΩ ` F

∅;CΩ ` e : T

Ξ;CΩ ` var f : T = e
(T- F I E L D)

Method Typing Ξ;C ` M

x:T ;Cµ ` e : S

Ξ;C ` @µ def m(x:T) : S = e
(T- M E T H O D)

Figure 4.2 – Definition Typing

4.2.3 Expression Typing

The typing rules for expressions are presented in Figure 4.3. The typing judgements for expres-
sions have the form Γ;T1 ` e : T2, which means that the expression e can take the type T2, given
the environment Γ, and the type T1 as the type of this.

These and later definitions assume helper methods fieldType(C, f), methodType(C,m) and
constrType(C) to look up in class table Ξ the type, respectively, of field C.f , of method C.m and
of the constructor of C.

The rule T- S U B is standard in type systems with subtyping. The rule T- VA R looks up the
type of the variable from the environment, and the rule T- T H I S assumes the type T for this.

The rule T- S E L H O T ensures that field selection on a hot object always returns a hot value.
The rule T- S E LW A R M enforces that field selection on a warm object takes the type of the field.

When checking a new-expression new C(e), the rule T- N E W first checks that the arguments
e conform to the types of the class parameters. If any of the arguments is cold or warm, then the
result is warm; otherwise, the result is hot. This rule is expressed as µ = (t µi)uwarm. Note that
this rule is more expressive than the following rule:

57

Expression Typing Γ;T ` e : T

Γ;T1 ` e : T2 T2 <: T3

Γ;T1 ` e : T3
(T- S U B)

x : U ∈ Γ

Γ;T ` x : U
(T- VA R)

Γ;T ` this : T (T- T H I S)

Γ;T ` e : Dhot Cµ = fieldType(D, f)

Γ;T ` e.f : Chot
(T- S E L H O T)

Γ;T ` e : Dwarm U = fieldType(D, f)

Γ;T ` e.f : U
(T- S E LW A R M)

Ti = constrType(C) Γ;T ` ei : Cµii Cµii <: Ti µ = (t µi) u warm
Γ;T ` new C(e) : Cµ

(T- N E W)

Γ;T ` e : Cµ0 (µm, Ti, D
µr) = methodType(C,m)

µ0 v µm Γ;T ` ei : Dµi
i Dµi

i <: Ti µ = (t µi = hot)?hot : µr

Γ;T ` e.m(e) : Dµ
(T- I N V O K E)

Γ;T ` e1.f : Cµ Γ;T ` e2 : Chot Γ;T ` e : T1

Γ;T ` e1.f = e2; e : T1
(T- B L O C K)

Figure 4.3 – Expression Typing

Cµii = constrType(C) Γ;T ` ei : Cµii µ′ = (t µi) u warm
Γ;T ` new C(e) : Cµ

′ (T- N E W ’)

The difference is that the rule T- N E W uses the actual mode of the actual arguments, while
the rule T- N E W ’ uses the mode of the formal parameters. The former achieves a kind of mode-
polymorphism — it gives more precise types when the arguments are hot. The justification of
the rule is based on local reasoning of initialization (Chapter 3).

The same insight applies to the rule T- I N V O K E: if the actual receiver and arguments of a
method call are hot, then the result should be hot regardless of the declared method result type.
Otherwise, the result takes the declared method result type. The rule T- I N V O K E also checks
that the receiver e is well-typed and its mode conforms to the mode of the method, and the
arguments e confirm to the types of method parameters.

58

When checking a block expression e1.f = e2; e, the rule T- B L O C K ensures that only assign-
ment of hot values is allowed. Note that this typing rule would disallow assignment to a cold
value because e1.f will not type check. While assigning hot values to fields of cold values will
not cause soundness problems, this rule is motivated for two reasons: (1) it disallows code like
class A { a=5; var a=10 }, which assigned to a variable in vain before it is initialized; (2) it en-
forces modularity of initialization, as all fields of a class have to be assigned inside the class. Note
that allowing assignment of hot values to a field of a cold object does not necessarily violate the
principle of authority, as long as the field is not assumed to hold a hot value after the assignment
in the type system.

4.2.4 Typing Example

We demonstrate how the following circular data structure can be type checked in our formal
model.

1 class Parent {
2 var child: Child @warm = new Child(this)
3 }
4 class Child(parent: Parent @cold) {
5 var tag: Int = 10
6 }

The main steps of type derivation for type checking the class Parent are given below:

∅;Parentcold ` this : Parentcold µ = (tcold) u warm = warm
(T- N E W)

∅;Parentcold ` new Child(this) : Childwarm
(T- F I E L D)

Parent ` var c : Child@warm = new Child(this)
(T- C L A S S)

Ξ ` class Parent { var c : Child@warm = new Child(this) }

4.3 Extension

The type system does not allow the usage of already initialized fields, as this is given the type
Ccold in checking the fields of a class C. The design is intentional to make the model simple and
reusable. We will show systems that support the usage of fields in later chapters.

As a simple exercise, we may also extend the type system with the type CΩ to support the
usage of already initialized fields:

59

Ω ::= { f1, f2, . . . }
µ ::= cold | warm | hot | Ω
T ::= Cµ

In the above, we introduce the type CΩ to support the usage of already initialized fields — Ω

denotes the set of initialized fields. The type is well-formed only if Ω contains only fields of the
class C. The lattice for modes µ is defined below:

hot v µ warm v Ω Ω1 ∪ Ω2 v Ω1 µ v cold

The modes hot and cold are respectively bottom and top of the lattice, and Ω is in the middle.

Programmers do not need to use the type CΩ explicitly in the program. We adapt the typing
rule for classes and fields to handle the type automatically:

Ω0 = f̂ Ξ;CΩi ` Fi Ωi+1 = Ωi ∪ { fi } Ξ;C ` M

Ξ ` class C(f̂ :T) { F M }
(T- C L A S S)

∅;CΩ ` e : T

Ξ;CΩ ` var f : T = e
(T- F I E L D)

As can be seen from above, when checking a field Fi, we set the type of this to be CΩi , where
Ωi is the set of already initialized fields. We just need one more typing rule to support field access:

Γ;T ` e : DΩ f ∈ Ω U = fieldType(D, f)

Γ;T ` e.f : U
(T- S E L O B J)

4.4 Discussion

4.4.1 Promotion before Commitment

The paper freedom before commitment [12] popularized the concept commitment point, where a
single object or a group of cyclic objects are formally taken as initialized. The insight of commit-
ment point is an instance of local reasoning (chapter 3).

Our system has a promotion step before commitment: an object is first promoted to warm
before it is eventually committed as hot. This promotion step is explicit in the meta-theory of
the basic model (chapter 5).

60

The meta-theory of the freedom model [12] introduces the concept locally initialized which
means all fields of an object are assigned. The concept is almost the same as warm in our formal
model. However, the concept is not introduced as an abstraction for programming.

Given the importance of warm and promotion in the formal reasoning of initialization, we
believe it is worth making it available as an abstraction for programming.

4.4.2 Authority, Flow-Insensitivity and Typestate Polymorphism

As expected, local reasoning plays an important role in the soundness of the system. An important
semantic property that is not covered by the insight of local reasoning is what we call authority,
which is defined in terms of store typings below (see chapter 5):

∀l ∈ dom(Σ).Σ(l) = CΩ =⇒ Σ′(l) = CΩ

ΣB Σ′

In the above, Σ and Σ′ are the store typings before and after evaluating an expression. Intu-
itively, it says that we may not advance the initialization state of existing objects during evaluation
of an expression. It leaves the only possibility to advance object state at special locations in the
constructor.

Without this property, we may not prove perfect monotonicity. The reason can be demon-
strated by the following program:

1 class C { var x: D @warm = e; var y: Int = 10 }

In the code above, suppose the type of ψ (the value for this) starts as C∅, and a side-effect of
evaluating e updates the type ofψ toCµ. After assigning the value of e, denoted as le, to the field x,
we update the type of this to Cµ

′
. We would like µ′ v { x } to record that field x is initialized, and

monotonicity requires that µ′ v µ. The property of authority ensures that µ = ∅, which enables
one simple solution to these constraints, namely µ′ = { x }. This is a sound choice because we
do know that the field x has been assigned the value le, which is of the type Dwarm (known by
induction hypothesis) as required by the semantic typing of the object ψ as Cx.

Without the property of authority, it would be allowed to update the type of ψ as a side-effect
of evaluating e, for example to Chot. Then the constraint µ′ v µ would force µ to be hot. However,
there is no guarantee that le is transitively initialized. From the induction hypothesis, we only
know that it has the type Dwarm. So setting µ′ to hot would be unsound, since this might no
longer be transitively initialized after this.x is assigned the value le.

Note that the definition only talks about types of the formCΩ. The store typing never contains
types like Ccold, a value takes such a type by subtyping. Authority for values of the type Cwarm

61

is not necessary for soundness. The reason is that the next monotone state is always Chot, it is
impossible for monotonicity to fail. For the type Chot, monotonicity guarantees that the type
stays the same.

The semantic property authority reflects a subtle design of the system. A key design idea
of the freedom model, which is also followed in the current system, is the usage of subtyping
to support typestate polymorphism. However, one point that is not made clear in the freedom
model [12] is that a flow-insensitive system is needed to support typestate polymorphism via
subtyping. In a flow-sensitive system, we cannot resort to subtyping because a method has to
represent the typestates of this both before and after the method call, which generally requires
parametric polymorphism. In a flow-insensitive system, the typestate of this does not change
inside a method. Therefore, there is only the need to represent the current typestate of this, thus
subtyping can be used.

In a flow-insensitive system, how can we safely advance object typestates, i.e. strong updates?
It is unsafe to do so at arbitrary points in the program due to flow-insensitivity, as the strong
update may break monotonicity if the typestate of the object has been advanced further via
aliases elsewhere. The property of authority suggests that it is only safe to perform strong updates
by an outstanding alias at definite locations in the program. The outstanding alias is not unique
due to the presence of aliasing to create cyclic data structures. In the experimental language, the
outstanding alias is this, and the locations are the points of field initializations.

4.5 Related Work

The basic model is inspired by the freedom model [12]. The models are illustrated in Figure 4.4.
Both models introduce three initialization states. In the freedom model the states have the
following meaning:

• committed: the object is initialized.
• free: the object is under initialization.
• unclassified: the object may be initialized or under initialization.

The lifetime of an object passes from free to committed in the freedom model. In the basic
model, however, three states are used to describe the lifetime of an object, which goes from cold
to warm and eventually to hot.

Conceptually, free roughly corresponds to cold, and committed corresponds to hot. However,
there are two crucial differences between the two models:

• In the basic model, hot is a subtype of cold, whereas in the freedom model, committed is
not a subtype of free.
• The basic model introduces warm, which has no correspondent in the freedom model.

62

free committed

unclassified

(a) The Freedom Model

cold

warm

hot

(b) The Basic Model

Figure 4.4 – The freedom model and the basic model. The arrow means whether a value in the
source state is a value in the target state.

The first difference is justified both semantically and practically. Semantically, a fully initial-
ized object should be able to be used as an object under initialization. Practically, if a method
may be called on an object under initialization, it should be able to be called when the object is
fully initialized.

The second difference aims for improved expressiveness. For example, our model supports
the following code example, while it is impossible to type check the code in the freedom model:

1 class Parent {
2 var child = new Child(this)
3 var tag: Int = child.tag // OK in the basic model, error in freedom model
4 }
5

6 class Child(parent: Parent @cold) {
7 var tag: Int = 10
8 }

The difference lies in the way the expression new Child(this) is handled. In our model, the
expression returns a warm value, while in the freedom model it returns a free value. As a result,
the selection of the field tag is safe in the basic model, as all fields of warm values are initialized.
In contrast, the freedom model cannot tell whether the field tag is initialized or not.

To be fair, there are code examples that type check in the freedom model, but fail to type
check in the basic model. The following is one such example:

1 class A(b: B) {
2 var c: C = new C(this)
3 b.m(this)
4 }
5 class B {
6 def m(a: A @free): Unit = a.c = new C(a) // !!
7 }
8 class C(a: A @free)

63

The assignment a.c = new C(a) in class B will be rejected in the basic model, as new C(a) is
a value under initialization (it holds a reference to a free value a). In the basic model, it is only
possible to assign hot values to fields of cold objects, while in the freedom model it is possible to
assign non-committed values to fields of non-committed values.

However, we are unaware of such code patterns in our case studies. This is also observed in
the empirical studies of the freedom model [12]:

“So far in the code we have examined, we have not seen any cases where an object
escapes from its constructor and then has its fields written via other methods.”

Another reason to reject the code is that it breaks monotonicity: the field before the reassign-
ment might hold a hot value, and after the assignment it holds a warm value, monotonicity is
thus compromised. As a result, it is unsafe to use already initialized fields in the freedom model.
In the implementation, the freedom model has to introduce another modifier committed-only
to reject the assignment above for commited-only fields. This tweak restores monotonicity and
enables the usage of already initialized fields. Therefore, we think this loss of expressiveness is a
justified design choice.

The meta-theory of the freedom model [12] introduces the concept locally initialized which
means all fields of an object are assigned, which is almost the same as warm in our formal model.
However, the concept is not introduced as an abstraction for programming.

Qi and Myers [16] introduce an expressive type system for initialization based on masked
types. In the system, methods and constructors have effects, which are essentially the mappings
of initialization status of this before and after the call. To support cyclic data structures, they
introduce conditional masked types, written T\f [x1.g1, . . . , xn.gn]. It means that the field f points
to a partially initialized object, which will become fully initialized when all fields xi.gi are initial-
ized. Using conditional masked types, we may type check the example in the beginning of the
chapter as follows:

1 class Parent {
2 val child: Child\parent[this.child, this.name] = new Child(this)
3 val name = "parent"
4 }
5

6 class Child(parent: Parent\child\name) {
7 println(parent.name) // error: name is not initialized
8 }

Despite the expressiveness, the system is verbose and it lacks simple abstractions that may
reduce cognitive burdens for programmers.

Fähndrich et al. [24] introduce raw types like T raw(S) — a value of such a type is possibly

64

under initialization, and all fields up to the superclass S are initialized. Class fields may not hold
raw values, thus it does not support creating cyclic data structures. To overcome the limitation,
they introduce delayed types [19]. The system ensures that the initialization of objects forms
stacked time regions.

The Billion-Dollar Fix [9] introduces a new linguistic construct placeholders and placeholder
types to support initialization of circular data structures. The work is orthogonal to the current
work, in that we are constrained from introducing new language constructs and semantics.

4.6 Conclusion

We presented a type-based system based on the three abstractions , namely hot, warm and cold.
The introduction of the abstraction warm improves the expressiveness of the freedom model
[12], which classifies objects either as committed (i.e. hot) or free (i.e. cold).

The type system, however, requires type annotations on methods and fields, which impacts
usability. Meanwhile, it is not obvious how to extend the model to support language features like
inheritance, traits, inner classes, and properties. In later chapters, we will show how to develop an
inference system for a practical fragment of the basic model to cut down the syntactic overhead.

65

Chapter 5

Meta-Theory: The Basic Model

Mathematics, rightly viewed, possesses not only truth, but supreme beauty.

— Bertrand Russell

In this chapter, we prove soundness of the extended system (which includes the type CΩ)
presented in the last chapter.

5.1 Approach

To show that the type system is sound, we follow the approach of definitional interpreters [10, 5].
In order to reason about the definitional interpreter formally as a function, it has to be total. It
means we need to deal with non-termination and errors explicitly. The standard approach is to
introduce a fuel k to deal with non-termination, and handle errors with an option monad.

The step-indexed interpreter defined in Coq can be found in Appendix A. In the definition, we
use None to represent timeouts, Some None to represent errors, and Some(Some(l, s)) to represent
the successful result.

We always assume a well-typed class table Ξ, which is part of the implicit context. In the Coq
definition, the class table is parameterized, thus there is no need to pass it around everywhere,
which makes the presentation clean (Appendix A).

The soundness statement says that well-typed programs do not go wrong:

P R O P O S I T I O N 5.1 (Soundness). If ` P , then ∀k. evalProg(P)(k) 6= Some None

66

5.2 Definitions

We let Σ range over store typings, that is finite maps from locations to types:

Σ ∈ StoreTyping = Loc ⇀ Type

Store typing can be seen as an abstraction of the concrete heap. It also establishes the
relationship between static semantics, i.e. typing and concrete semantics.

We next define typing judgements on the runtime state. The definitions are presented in
Figure 5.1.

The store typing judgement Σ � σ guarantees that the object stored at each store location is
well-typed according to Σ. Other typing judgments then refer to Σ to verify the type of a location.
Since objects can form cycles, verifying that an object matches a certain type without using store
typings would run into cycles, and introducing store typings is a standard solution [27, Chapter
13].

Store typings evolve during evaluation, so we define an ordering across store typing4, such
that if Σ1 updates to Σ2 then Σ1 4 Σ2. Moreover, we show that if Σ1 4 Σ2 then any typing
judgment established under store typing Σ1 still holds under store typing Σ2: that is, typing
judgments referring to store typings are monotonic (Lemmas 5.3, 5.4 and 7.2). As usual, if Σ1 4 Σ2,
then the updated store typing Σ2 can have more entries than Σ1.

During the initialization of an object, we need to reason that a field is not already taken as
initialized in the store typing (whether it is initialized in the heap does not matter), so that after
the field initialization, we may update the store typing to include the field without breaking
monotonicity. Updating the store typing with CΩ will violate monotonicity if the object under
initialization is already taken as warm or hot in the store typing. This is what the property
authority guarantees: if Σ1 B Σ2, then it ensures that if Σ1(l) = CΩ, then Σ2(l) = CΩ. It means
that the initialization status of a field in the type system (not in the heap) may only advance
during field initialization. Consequently, the initialization status of an object can be safely
promoted at the end of class constructors (Lemma 5.20). This property is a direct result of the
principle of authority.

For expression soundness, we need to show that the store typing follows the principle of
stackability, written as Σ1 � Σ2. The property Σ1 � Σ2 is an over-approximation of σ1 � σ2

(Lemma 5.2).

The value typing judgement Σ � l : T is standard: it just retrieves the type of the location
from the store typing. As our language supports subtyping, we allow subtyping on values as well.

The environment typing judgement Γ; Σ � ρ is also standard, and lifts value typing to envi-

67

Store typing Σ � σ

∀ l ∈ dom(Σ). Σ � σ(l) : Σ(l)

Σ � σ

Monotonicity Σ1 4 Σ2

∀ l ∈ dom(Σ1). Σ2(l) <: Σ1(l)

Σ1 4 Σ2

Authority Σ1 B Σ2

∀l ∈ dom(Σ1).Σ1(l) = CΩ =⇒ Σ2(l) = CΩ

Σ1 B Σ2

Stackability Σ1 � Σ2

∀l ∈ dom(Σ2).Σ2 � l : warm
∨
l ∈ dom(Σ1)

Σ1 � Σ2

Value typing Σ � l : T

Σ(l) = T1 T1 <: T2

Σ � l : T2

Environment typing Γ; Σ � ρ

∅; Σ � ∅ Γ; Σ � ρ Σ � l : T

Γ, x:T ; Σ � ρ, x:l

Convenience Definitions

Σ � l : Dµ

Σ � l : D

Σ � l : Dµ

Σ � l : µ

∀l ∈ L.Σ � l : µ

Σ � L : µ

Figure 5.1 – Store typing, environment typing and value typing

ronments. In other words, it ensures that the value of a variable in the runtime environment ρ
corresponds to the type of the variable in the typing environment Γ.

To simplify presentation, we also assume some convenience definitions, Σ � l : D, Σ � l : µ

and Σ � L : µ.

68

Object typing Σ � o : T

(C,ω) = o ∀ f ∈ dom(ω). Σ � ω(f) : fieldType(C, f)

Σ � o : Cdom(ω)

(C,ω) = o ∀ f ∈ dom(ω). Σ � ω(f) : fieldType(C, f)

Σ � o : Ccold

(C,ω) = o ∀ f ∈ fields(C). Σ � ω(f) : fieldType(C, f)

Σ � o : Cwarm

(C,ω) = o ∀ f ∈ fields(C). (_, D) = fieldType(C, f)
∧

Σ � ω(f) : Dhot

Σ � o : Chot

Figure 5.2 – Object typing

Finally, we get to object typing, which is presented in Figure 5.2. The object typing judgement
Σ � o : T checks that the object o is well-typed according to the semantics of initialization states.
For example, to check that an object is hot, it verifies that every field of the object is hot. The
typing of objects in the store typing is an over-approximation of the actual states of objects in
the heap (Lemma 5.1).

5.3 Over-Approximation Lemmas

The lemmas here are not used in the soundness proof. However, we find it insightful to show
them here.

L E M M A 5.1 (Object Over-Approximation). The store typing is an over-approximation of initial-
ization states of the heap, formally

Σ � σ Σ � l : µ

σ � l : µ

Proof. The case where µ = cold and µ = warm are easy from the definitions. For the case µ = hot,
we know that any object l′ reachable from l can be typed hot from the Lemma 5.9. By definition
of object typing, we know all fields of the object are assigned, therefore σ � l′ : warm. Now
σ � l : hot holds by definition.

L E M M A 5.2 (Over-Approximation of Stackability). Σ1 � Σ2 is an over-approximation of σ1 � σ2,
formally

69

Σ1 � σ1 Σ2 � σ2 dom(Σ2) = dom(σ2) Σ1 � Σ2

σ1 � σ2

Proof. Consider l ∈ dom(σ2), from Σ1 � Σ2, we know Σ2 � l : warm
∨
l ∈ dom(Σ1). If we have

Σ2 � l : warm, from Lemma 5.1, we have σ2 � l : warm. If we have l ∈ dom(Σ1), by definition we
have l ∈ dom(σ1). Thus, for all l ∈ dom(σ2), either σ2 � l : warm or l ∈ dom(σ2), which completes
the proof.

However, the property of monotonicity is not an over-approximation of weak monotonicity.
Logically, it should not be due to the fact that the store tying is an over-approximation of objects
(Lemma 5.1). The reason is that the actual heap is too noisy, it may capture properties that are
not assumed in the store typing, i.e. from σ � l : µ we may not conclude Σ � l : µ. Therefore, the
following proposition does not hold:

Σ1 � σ1 Σ2 � σ2 Σ1 � Σ2

σ1 � σ2

5.4 Monotonicity Lemmas

L E M M A 5.3 (Value Typing Monotonicity). If Σ1 4 Σ2 and Σ1 � l : T , then Σ2 � l : T .

Proof. We use inversion on value typing and the definition of store typing ordering to show
Σ2(l) <: Σ1(l) <: T . We can conclude by transitivity of subtyping.

L E M M A 5.4 (Environment Typing Monotonicity). If Σ1 4 Σ2 and Γ; Σ1 � ρ, then Γ; Σ2 � ρ.

Proof. We use induction on Γ; Σ1 � ρ to apply value typing monotonicity (Lemma 5.3) to each
environment entry.

L E M M A 5.5 (Object Typing Monotonicity). If Σ 4 Σ′ and Σ � o : T , then Σ′ � o : T .

Proof. By inversion on the given derivation of object typing, the definition of store typing order-
ing, and value typing monotonicity (Lemma 5.3).

L E M M A 5.6 (Monotonicity Reflexivity). For all Σ, Σ � Σ.

Proof. Immediate by definition of monotonicity.

L E M M A 5.7 (Monotonicity Transitivity). If Σ1 � Σ2 and Σ2 � Σ3, then Σ1 � Σ3.

70

Proof. By definition of monotonicity and transitivity of subtyping.

L E M M A 5.8 (Environment Regularity). If Γ | Σ � ρ and Γ;U ` x:T , then Σ � ρ(x) : T .

Proof. By induction on the definition of environment typing.

L E M M A 5.9 (Hot Transitivity). If an object is typed as hot, then any object reachable from it is
typed as hot. Formally,

Σ � l : hot Σ � σ σ � l l′

Σ � l′ : hot

Proof. By structural induction on the derivation of reachability.

5.5 Authority Lemmas

L E M M A 5.10 (Authority Reflexivity). For all Σ, ΣB Σ.

Proof. Immediate by definition of monotonicity.

L E M M A 5.11 (Authority Transitivity). If Σ1 B Σ2, Σ2 B Σ3 and Σ1 � Σ2, then Σ1 B Σ3.

Proof. By definition of authority. The premise Σ1 � Σ2 is used to ensure that for any location l, if
l ∈ dom(Σ1), then l ∈ dom(Σ2).

5.6 Stackability Lemmas

L E M M A 5.12 (Stackability - Reflexivity). For all Σ, Σ� Σ.

Proof. By the definition of the predicate stacking.

L E M M A 5.13 (Stackability - Transitivity). If Σ1 � Σ2, Σ2 � Σ3 and Σ2 � Σ3, then Σ1 � Σ3.

Proof. From premises, we have

• (A1) ∀l3 ∈ dom(Σ3).Σ3 � l3 : warm ∨ l3 ∈ dom(Σ2)

• (A2) ∀l2 ∈ dom(Σ2).Σ2 � l2 : warm ∨ l2 ∈ dom(Σ1)

71

Consider l3 ∈ dom(Σ3), if we have Σ3 � l3 : warm, we are done. If Σ3 � l3 : warm does not
hold, then from (A1) we have l3 ∈ dom(Σ2) Now use (A2), it cannot be the case that Σ22 : warm

due to Σ2 � Σ3. Therefore, we have l3 ∈ dom(Σ1), which completes the proof.

5.7 Local Reasoning

L E M M A 5.14 (Synchronization). If we have

• Σ � σ
• ∀l′.σ � l l′ =⇒ Σ � l′ : warm

then there exists Σ′ such that

1. Σ′ � σ, Σ � Σ′, ΣB Σ′ and Σ� Σ′

2. ∀l′.σ � l l′ =⇒ Σ′ � l′ : hot

Proof. Define Σ′ as follows:

Σ′(l′) =

{
Dhot if σ � l l′ and Σ � l′ : Dµ,

Σ(l′) otherwise

It is straightforward to show that ΣB Σ′, because we never change typing for an object l′ where
Σ(l′) = Cf . The proof goals Σ 4 Σ′ and Σ � Σ′ follow immediately from definition of Σ′. The
proof goal that all values reachable from l can be typed as hot also follows from the definition of
Σ′. We must then prove Σ′ � σ, that is:

∀l′ ∈ dom(Σ′).Σ′ � σ(l′) : Σ′(l′)

For any location l′ that is not reachable from l, we have Σ′(l′) = Σ(l′) = Cµ, Σ′ � σ(l′) : Cµ

follows from object typing monotonicity (Lemma 7.2).

If instead σ � l l′, Σ′ � σ(l′) : Chot follows from the definition of object typing.

L E M M A 5.15 (Local Reasoning). The following proposition holds

(σ1, L1) l (σ2, L2) Σ1 � Σ2 Σ1 B Σ2

Σ1 � Σ2 Σ1 � σ1 Σ2 � σ2 Σ1 � L1 : hot

∃Σ′.Σ1 � Σ′ Σ1 � Σ′ Σ1 B Σ′ Σ′ � σ2 Σ′ � L2 : hot

Proof. Let’s consider a reachable object l from L2, i.e. σ2 � L2 l. Depending on whether
l ∈ dom(σ1), there are two cases.

72

• Case l /∈ dom(Σ1).
Use the fact that Σ1 � Σ2, we know Σ2 � l : warm.

• Case l ∈ dom(Σ1).
Use the fact that (σ1, L1) l (σ2, L2), we have σ1 � L1 l. From the premise that L1 is hot
and Lemma 5.9, we have Σ1 � l : warm. From Σ1 � Σ2, we have Σ2 � l : warm.

In both cases, we have Σ2 � l : warm. Now we may use Lemma 5.14 for all locations in L2,
the conclusion follows immediately.

5.8 Selection Lemmas

L E M M A 5.16 (Hot Selection). If Σ � σ, Σ � l : Chot, (C,ω) = σ(l) and fieldType(C, f) = Dµ,
then Σ � ω(f) : Dhot.

Proof. It is easy to know σ � l : hot, thus all its fields are assigned. By object typing for σ(l) we
immediately get the result.

L E M M A 5.17 (Warm Selection). If Σ � σ, Σ � l : Cwarm, (C,ω) = σ(l) and fieldType(C, f) = T ,
then Σ � ω(f) : T .

Proof. By the definition of object typing for σ(l).

L E M M A 5.18 (Object Selection). If Σ � σ, Σ � l : Cf , (C,ω) = σ(l), f ∈ f and fieldType(C, f) =

T , then Σ � ω(f) : T .

Proof. By the definition of object typing for σ(l).

5.9 Initialization Lemmas

L E M M A 5.19 (Field Initialization). If we have

• Σ � σ
• Σ(l) = Cf

• (C,ω) = σ(l)

• fieldType(C, f ′) = T

• Σ � l′ : T
• ω′ = [f ′ 7→ l′]ω

• σ′ = [l 7→ (C,ω′)]σ

73

• Σ′ = Σ ∪ { l 7→ Cf∪f
′ }

then

• Σ′ � σ′

• Σ � Σ′

• Σ� Σ′

Proof. The conclusion Σ � Σ′ and Σ� Σ′ holds by definition. Σ′ � σ′ as the only changed object
l continues to type check, other objects type check due to monotonicity.

L E M M A 5.20 (Promotion). If we have

• Σ1 B Σ2

• Σ1 � Σ2

• l /∈ dom(Σ1)

• Σ2(l) = Cf

• Σ2 � σ2

• f = fields(C)

• Σ3 = Σ2 ∪ { l 7→ Cwarm }

then

• Σ1 B Σ3

• Σ1 � Σ3

• Σ3 � σ2

Proof. Σ1 B Σ3 holds because l /∈ dom(Σ1) and Σ1 B Σ2. Σ1 � Σ3 holds by transitivity of mono-
tonicity. Σ3 � σ2 holds as the typing for l holds by definition, other values type check due to
monotonicity.

5.10 Theorem

T H E O R E M 5.1 (Expression Soundness). Given

(1) Γ;U ` e : T

(2) Γ; Σ � ρ
(3) Σ � σ
(4) Σ;σ � ψ : U

(5) JeK (ρ, σ, ψ)(k) = Some result

then there exists l, σ′, Σ′ such that:

74

(a) result = Some(l, σ′)

(b) Σ � Σ′, Σ� Σ′, ΣB Σ′ and Σ′ � σ′

(c) Σ′;σ′ � l : T

Proof. By induction on k. The case k = 0 trivially holds. For the case k = n + 1, perform induction
on the typing judgement (1).

In each case, to deal with fuel, we show that any recursive calls evaluating subexpressions of
e do not “time out” — that is, they do not return None. This follows because JeK (σ, ρ, ψ)(k) itself
does not time out.

• case e = x

Choose l = ρ(x), σ′ = σ and Σ′ = Σ.

• case e = this

Choose l = ψ, σ′ = σ and Σ′ = Σ.

• case e = e0.f

From the induction hypothesis on e0, we know there exists l0, σ0 and Σ0 such that:
– (A1) Σ � Σ0, Σ� Σ0, ΣB Σ0 and Σ0 � σ0

– (A2) Σ0 � l0 : T0

There are only two possible rules for type checking e.
– case T- S E L H O T. We know T0 = Dhot, use Lemma 5.16.
– case T- S E LW A R M. We know T0 = Dwarm, use Lemma 7.26.
– case T- S E L O B J. We know T0 = Df , f ∈ f use Lemma 5.18.

• case e = e0.m(e)

From the induction hypothesis on e0, we know there exists l0 and σ0 such that:
– (A1) Σ � Σ0, Σ� Σ0, ΣB Σ0 and Σ0 � σ0

– (A2) Σ0 � l0 : T0

– (A3) (C,ω) = σ0(l0)

Due to the typing for e, we have
– (B1) lookup(C,m) = @µ def m(xi:Ti) : Tr = em
– (B2) Γ;U � ei : Ti

By using induction hypothesis repeatedly on all arguments, we get li, σi and Σi such that
– (C1) Σi−1 � Σi, Σi−1 � Σi, Σi−1 B Σi and Σi � σi
– (C2) Σi � li : Ti

We prepare the environment for evaluating the method body em as follows:
– (D2) ρ′ = xi:li

75

– (D3) JemK (σn, ρ
′, l0) = Some(result)

Now we can use the induction hypothesis for em:
– (E1) Σn � Σm, Σn � Σm, Σn B Σm and Σm � σm
– (E2) Σn � lm : Tr

The case T = Tr follows immediately by transitivity lemmas. The difficult case is to reason
that lm is hot if l0 and li are hot. In the latter case, we use the Lemma 5.15.

• case e = new C(e)

From the typing rule T- N E W, we have
– (A1) Ti = constructorType(C)

– (A2) Γ;U � ei : Cµii
– (A3) Cµii <: Ti
– (A4) µ = (tµi) u warm
– (A5) T = Cµ

Let Σ0 = Σ, use induction hypothesis on arguments repeatedly:
– (B1) Σi−1 � Σi, Σi−1 � Σi, Σi−1 B Σi and Σi � σi
– (B2) Σi � li : Ti

By transitivity, we have
– (C1) Σ � Σn

– (C1) Σ� Σn

– (C2) ΣB Σn

– (C3) Σn � li : Ti

We define σ′0 and Σ′0 with a fresh location l:

– (D1) σ′0 = σn ∪ {l 7→ (C, f̂i = li)}
– (D2) Σ′0 = Σn ∪ {l 7→ C f̂i}
– (D3) Σn � Σ′0, Σn B Σ′0 and Σ′0 � σ

′
0 B By definition

By transitivity, we have:
– (E1) Σ � Σ′0
– (E2) ΣB Σ′0

Suppose the class has m fields in class body, we prove that the following invariant holds:
– (F1) Σ � Σ′m
– (F2) ΣB Σ′m
– (F3) Σ′0 � Σ′m
– (F4) Σ′m(l) = C{ f̂1,...,f̂n,f1,...,fm }

76

By induction on m. The basic case m = 0 trivially holds as σ′m = σ′0 and Σ′m = Σ′0.

Let us consider m = i+ 1. From induction hypothesis, we have
– (G1) Σ � Σ′i
– (G2) ΣB Σ′i
– (G3) Σ′0 � Σ′i
– (G4) Σ′i(l) = C{ f̂1,...,f̂n,f1,...,fi }

Consider the (i+1)-th field in the class body var fi+1 : Ti+1 = ei+1. Use induction hypothesis
on ei+1, we know there exists li+1, σ̂i+1 such that:

– (H1) Jei+1K (σ′i, ∅, l) = (li+1, σ̂i+1)

– (H2) Σ′i � Σ̂i+1, Σ′i � Σ̂i+1, Σ′i B Σ̂i+1 and Σ̂i+1 � σ̂i+1

– (H3) Σ̂i+1 � li+1 : Ti+1

Now we have:
– (I1) Σ � Σ̂i+1

– (I2) ΣB Σ̂i+1 B From (H2), (G1), (G2) and Lemma 5.11
– (I3) Σ′0 � Σ̂i+1

– (I4) Σ̂i+1(l) = C{ f̂1,...,f̂n,f1,...,fi } B From (H2) and (G4)

We define σ′m and Σ′m as follows:
– (H1) (C,ω) = σ̂i+1(l)

– (H2) ω′ = [fi+1 7→ li+1]ω

– (H3) σ′m = [l 7→ (C,ω′)]σ̂i+1

– (H4) Σ′m = Σ̂i+1 ∪ { l 7→ C{ f̂1,...,f̂n,f1,...,fi,fi+1 } }

Now use Lemma 5.19, we have
– (K1) Σ̂i+1 � Σ′m
– (K2) Σ̂i+1 � Σ′m
– (K3) Σ′m � σ

′
m

Using transitivity again, we
– (L1) Σ � Σ′m B From (I1) and (K1)
– (L2) ΣB Σ′m B From (I2), (H4) and l /∈ dom(Σ)

– (L3) Σ′0 � Σ′m B From (I3) and (K2)

As l /∈ dom(Σ), we can use Lemma 5.20:
– (M1) Σ′ = Σ′m ∪ { l 7→ Cwarm }
– (M2) Σ′ � σ′m
– (M3) Σ � Σ′

– (M4) ΣB Σ′

77

The proof goal Σ� Σ′ holds from (C1) and Σn � Σ′. The latter holds from (L3), (M1), (D2)
and the fact that l now is warm.

If µ = warm, the conclusion is immediate by choosing l, σ′ = σ′m and Σ′.

When µ = hot, then by the typing rule T- N E W all arguments li are hot. In this case, we
need to repeat the induction steps above with an additional hypothesis:

– (N1) (σn, li) l (σm, l)

It holds trivially in the case m = 0, as its fields are exactly li. For the case m = i + 1,
it continues to hold by induction hypothesis. Now use Lemma 5.15, we arrive at the
conclusion.

• case e = (e0.f = e1; e2)

From the typing derivation, we have
– (A1) Γ;U � e0 : Cµ0

– (A2) Dµ = fieldTpye(C, f)

– (A3) Γ;U � e1 : Dhot

– (A4) Γ;U � e2 : T2

From the induction hypothesis on e0, we know there exists l0, σ0 and Σ0 such that:
– (B1) Σ � Σ0, Σ� Σ0, ΣB Σ0 and Σ0 � σ0

– (B2) Σ0 � l0 : Cµ0

From the induction hypothesis on e1, we know there exists l1, σ1 and Σ1 such that:
– (C1) Σ0 � Σ1, Σ0 � Σ1, Σ0 B Σ1 and Σ1 � σ1

– (C2) Σ1 � l1 : Dhot

We define σ′1 and Σ′1 as follows
– (D1) (C,ω) = σ1(l0)

– (D2) ω′ = [f 7→ l1]ω

– (D3) σ′1 = [l0 7→ (C,ω′)]σ1

– (D4) Σ′1 = Σ1

We have the following by definition
– (E1) Σ1 � Σ′1, Σ1 � Σ′1, Σ1 B Σ′1 and Σ′1 � σ

′
1

Now use induction hypothesis on e2, there exists l2, σ2 and Σ2 such that
– (F1) Σ′1 � Σ2, Σ′1 � Σ2, Σ′1 B Σ2 and Σ2 � σ2

– (F2) Σ2 � l2 : T2

The conclusion follows by transitivity.

78

C O R O L L A R Y 5.1 (Soundness). If ` P , then ∀k. evalProg(P)(k) 6= Some None.

5.11 Discussion

5.11.1 Monotonicity

One might attempt to define monotonicity without resorting to store typing:

D E F I N I T I O N 5.1 (Monotonicity - Wrong Attempt).

σ � σ′ , ∀l ∈ dom(σ). (C,ω) = σ(l) =⇒

(C,ω′) = σ′(l)
∧

∀f ∈ dom(ω).σ � ω(f) : µ =⇒ σ′ � ω′(f) : µ

This definition, while reasonable, is too rigid to be used, as it enforces more constraints than
what the type system assumes. One particular difficulty with this definition is that in reasoning
about monotonicity during object initialization, we need to reason that either a field is vacant or
it holds a value that is less initialized than the value produced by the field initializer. This creates
unnecessary complexity in the proofs.

Semantically, it is fine to assign to a field before its formal initialization, as long as the type
system only assumes that the field is assigned after its formal initialization in the constructor.
Store typing helps here to abstract over the concrete heap and thus avoids the nasty details. The
property of authority ensures that the initialization status of an object is only officially advanced
in the constructor, even if the actual state of the object in the heap already advances.

A related question is: can we prove monotonicity separately? The concept of monotonicity
we adopt in our system is perfect monotonicity. Unlike weak monotonicity, the proof of perfect
monotonicity depends on expression soundness in the case of assignment. Consequently, it is
impossible to prove monotonicity separately from expression soundness.

5.11.2 Stackability

Another question is, why do we need to define stackability as Σ � Σ′, instead of using the
definition σ � σ′ from chapter 3? The reason is that σ � σ′ is too weak, as it only says what is
happening in the actual heap, but it says nothing about the abstract heap, i.e. the store typing.
More technically, in the Lemma 5.15, we need to reason that all newly created objects in σ2 are
formally typed as warm in Σ2. This is required when we advance the store typing in Lemma 5.14,
as it is only safe to advance the state of objects which are already taken as warm in the store

79

typing. Otherwise, we run the risk of breaking authority (Σ1BΣ2), which is necessary in reasoning
monotonicity (Σ1 � Σ2) during field initialization and in the promotion of an object to warm
when all fields of the object are formally initialized.

5.11.3 Local Reasoning

Local reasoning (Lemma 5.15) plays an important role in the soundness proof. In contrast to
local reasoning presented in chapter 3, which is defined on the concrete heap, the local reasoning
in this chapter is defined on the abstract heap, i.e. the store typing. The abstract local reasoning
is more complex as we also need to show that authority (Σ1 B Σ2), stackability (Σ1 � Σ2), and
monotonicity (Σ1 � Σ2) are preserved in the update of the store typing.

5.12 Conclusion

In this chapter, we proved soundness of the basic model. Local reasoning (Lemma 5.15) plays
an important role in the proof. The proof also shows that the semantic property authority is
important for soundness, which justifies the principle of authority.

The meta-theory developed here is used as a foundation for developing the meta-theory of
the type-and-effect system in the next chapter.

80

Chapter 6

An Inference System

There are two ways of constructing a software design. One way is to
make it so simple that there are obviously no deficiencies.

And the other way is to make it so complicated that
there are no obvious deficiencies.

— Tony Hoare

Joe Duffy, in his popular blog post [13], wrote the following about the type-based approach
to safe initialization:

To be honest, the reason this approach has likely not yet seen widespread use is that
the cost is not commensurate with the benefit. ... For systems programmers, this
makes sense. For many other programmers, it would be useless ceremony with no
perceived value.

In this chapter, we present an inference system for a practical fragment of the basic model to
cut down its syntactic overhead.

6.1 Motivation

If we use the type system presented in the last chapter, we would have to add the annotations
@cold in the following program to make it type check:

1 abstract class AbstractFile {
2 @cold def name: String

81

3 val extension: String = name.substring(4)
4 }
5

6 class RemoteFile(url:String) extends AbstractFile {
7 val localFile: String = url.hashCode
8 @cold def name: String = localFile // error
9 }

The annotations incur overhead in programming thus harm usability. Meanwhile, we find
the type-based approach not expressive enough as it suffers from the fragile base class problem,
as the following code demonstrates:

1 class Base { def g(): String = "hello" }
2 class Foo extends Base { val a = this.g() }
3 class Bar extends Base {
4 val b: String = "b"
5 override def g(): String = this.b
6 }

This program is correct. However, if we follow a type-based approach, in order to call g() in
the class Foo, the method Base.g has to be annotated @cold, so that it may not access any fields
on this. For soundness, the overriding method Bar.g has to be annotated @cold too: but now it
may not access the field this.b in the body of the method Bar.g. This unnecessarily restricts
expressiveness of the system.

Meanwhile, it is unclear to us how to extend the type system to support complex language
features, such as traits. Reasoning about initialization gets subtle in the presence of traits [21,
26], as the following example shows:

1 trait TA { val x = "EPFL" }
2 trait TB { def x: String; val n = x.length }
3 class Foo extends TA with TB
4 class Bar extends TB with TA
5 new Foo // ok
6 new Bar // error

In the code above, the class Foo and class Bar only differ in the order in which the traits are
mixed in. For the class Foo, the body of the trait TA is evaluated before the body of TB, thus the
expression new Foo works as expected. In contrast, new Bar throws an exception, because the
body of the trait TB is evaluated first, and at the time the field x in TA is not yet initialized when it
is used in TB.

In the following, we identify a practical fragment of the basic model, and then develop an
effective inference system for the fragment that scales better to complex language features and
significantly reduces syntactic overhead of the basic model.

82

6.2 A Practical Fragment

The fragment of the basic model that we identify demands that (1) method arguments must
be hot, and (2) non-hot class parameters must be annotated. The fragment supports calling
methods on this in the constructor, as well as creation of cyclic data structures. There are several
considerations for the restrictions.

First, from practical experience, there is little need to use non-hot values as method argu-
ments. Meanwhile, virtual method calls on this are allowed, which covers most use cases in
practice [14].

Second, it agrees with good programming practices that values under initialization should
not escape [18]. Therefore, when there is the need to pass non-hot arguments to a constructor, it
is a good practice to mark it explicitly.

Third, demanding method arguments to be hot saves us from changing the core type system
of a language to check safe overriding of virtual methods. Integrating a type-based system in the
compiler poses an engineering challenge, as the following example demonstrates:

1 class Knot {
2 val self: Knot @cold = this
3 }

In the code above, the type of the field self depends on when we ask for its type. If it is
queried during the initialization of the object, then it has the type Knot @cold. Otherwise, it has
the type Knot. We do not see a principled way to implement the type-based solution in the Scala
3 compiler.

Finally, for such a fragment, there exists an effective inference algorithm in the style of
type-and-effect systems [36, 31], which can significantly cut down the syntactic overhead of
type-based approaches.

6.3 The Design

In this section, we discuss the design ideas behind the type-and-effect inference system.

6.3.1 Potentials and Effects

Consider the following erroneous program, which accesses the field y before it is initialized:

1 class Point {

83

2 var x: Int = this.y // Point.this.y!

3 var y: Int = 10
4 }

A natural idea to ensure safe initialization is to analyze the fields that are accessed at each step
of initialization, and check that only initialized fields are accessed. This leads to the fundamental
effect in initialization: field access effect, e.g. C.this.f !.

Fields may also be accessed indirectly through method calls, as the following code shows:

1 class Point {
2 var x: Int = this.m() // Point.this.m♦
3 var y: Int = 10
4 def m(): Int = this.y // Point.this.y!

5 }

For this case, we may introduce method calls as effects, which act as placeholders for the
actual effects that happen in the method: method call effects, e.g. C.this.m♦.

If we first analyze effects of the method m and map the effect Point.this.m♦ to the set of
effects {Point.this.y!}, then we may effectively check the initialization error in the code above.

On subtlety in the design is how to handle aliasing. We illustrate with the following example:

1 class Knot {
2 var self = this // potentials of "self": { Knot.this }
3 var x: Int = self.x // effects of "self.x": { Knot.this.self.x ! }
4 }

In the code above, the field x is used via the alias self before it is initialized. To check such
errors, we need a way to represent the aliasing information in the system. That leads us to the
concept of potentials. A set of potentials represents aliasing of objects possibly under initial-
ization. If an expression has an empty set of potentials, it means at runtime the value of the
expression is always hot.

A potential encodes aliasing information in the form of paths, such as C.this, C.this.f or
C.this.m. The paths are of finite length, and the maximum length can be parameterized. In the
code example above, the field self takes the potential of its initializer, i.e. the set { Knot.this }.
Now an initialization checker may take advantage of the aliasing information and report an error
for the code self.x.

To enforce that all arguments to method calls are hot, we introduce promotion effects that
promote potentials to be hot, e.g. C.this↑. The checking system will check that only hot objects
are promoted. The following example illustrates the usage of the effect:

84

1 class Point {
2 var x: Int = this.m() // Point.this.m♦
3 def m(): Int = call(this) // Point.this↑
4 }

In the code above, the method call effect Point.this.m♦ incurs the promotion effect
Point.this ↑. The system finds that at the point of the call this.m(), the value of this is not
hot, such promotion is thus illegal.

The promotion effect has a semantic interpretation. Semantically, potentials keep track of
objects possibly under initialization in order to maintain a directed segregation of initialized
objects and objects under initialization: the latter may point to the former, but not vice versa.
A promotion effect means that the object pointed to by the potential ascends to the initialized
world, and the system gives up on tracking it. The system will have to ensure that by the time
this happens, the object is hot.

Note that field access C.this.a! and field promotion C.this.a↑ are different effects, because
field access does not necessarily need to promote the field, as demonstrated by the following
example:

1 class Knot {
2 var a = this
3 var b = this.a // Knot.this.a! , but no promotion
4 }

Aliasing and promotion may also happen through methods, as the following example shows:

1 class Fact {
2 var value = escape(this.m()) // Fact.this.m↑
3 def m() = this // potentials of m: { Fact.this }
4 }

The type-and-effect system knows that the return value of the method m aliases this, thus the
promotion of this.m() at line 2 indirectly promotes this.

A similar distinction is drawn on methods: (1) the method invocation effectC.this.m♦means
that the method m is called with the receiver this; (2) the method promotion effect C.this.m↑
means that the return value of the call this.m is promoted.

6.3.2 Two-Phase Checking

A common issue in program analysis is how to deal with recursive methods. We tackle the
problem with two phase checking. In the first phase, the system computes effect summaries
for methods and fields. In the second phase, the system checks that no fields are used before

85

they are initialized. During the checking, it uses the effect summaries from the first phase. For
example, assume the following program:

1 class Foo {
2 var a: Int = h()
3 def h(): Int = g()
4 def g(): Int = h()
5 }

In the first phase, the computed summary for the methods h and g is as follows:

method effects potentials
h { Foo.this.g♦ } { Foo.this.g }
g { Foo.this.h♦ } { Foo.this.h }

In the second phase, while checking the method call h(), the analysis propagates the effects
associated with the method h until it reaches the fixed point { Foo.this.g♦, Foo.this.h♦ }. As
the set does not contain accesses to any uninitialized fields of this nor invalid promotion, the
program passes the check. Note that the domain of effects has to be finite for the existence of the
fixed point.

6.3.3 Full-Construction Analysis

Another common issue in initialization is how to handle virtual method calls. The approach we
take is full-construction analysis: we treat the constructors of concrete classes as entry points,
and check all super constructors as if they were inlined. The analysis spans the full duration of
object construction. This way, all virtual method calls on this can be resolved statically. From
our experience, full-construction analysis greatly improves user experience, as no annotations
are required for the interaction between subclasses and superclasses.

Full-construction analysis easily solves the fragile base class problem mentioned at the begin-
ning of the chapter. Moreover, we believe it is the only practical way to handle complex language
features such as properties and traits. In languages such as Scala and Kotlin, fields are actually
properties, public field accesses are dynamic method calls, as the following code shows:

1 class A { val a = "Bonjour"; val b: Int = a.size }
2 class B extends A { override val a = "Hi" }
3 new B

In the code above, when the constructor of class B calls the constructor of class A, the ex-
pression a.size will dynamically dispatch to read the field a declared in class B, not the field a
declared in class A. This results in a null-pointer exception at runtime because at the time the

86

field a in class B is not yet initialized. Without full-construction analysis, it is difficult to make the
analysis sound for the code above.

6.3.4 Cyclic Data Structures

Cyclic data structures are supported with an annotation @cold on class parameters, as the
following example demonstrates:

1 class Parent { val child: Child = new Child(this) }
2 class Child(parent: Parent @cold) {
3 val friend: Friend = new Friend(this.parent)
4 }
5 class Friend(parent: Parent @cold) { val tag = 10 }

The annotation @cold indicates that the actual argument to parent during object construction
might not be initialized. The type-and-effect system will ensure that the field parent is not used
directly or indirectly when instantiating Child. However, aliasing the field to another cold class
parameter is fine, thus the code new Friend(this.parent) at line 3 is accepted by the system. This
allows programmers to create complex aliasing structures during initialization.

Our system tracks the return value of new Child(this) as the set of potentials { warm[Child] }.
All fields of a warm value are assigned, but they may hold values that are not fully initialized.

6.4 Formalization

We start by introducing the syntax and semantics of our experimental language.

6.4.1 Syntax and Semantics

Our language is almost the same as the language introduced in chapter 3, except for the defi-

nition of class parameters. In a class definition like class C(f̂ :T) { F M }, we introduce cold
class parameters, which have the syntax f̃ . Cold class parameters may take a value that is not
transitively initialized. A class parameter f̂ is also a field of its defining class. By default, we
use f to range over all fields, f̂ to range over class parameters, and f̃ to range over cold class
parameters.

The tilde annotation on f̃ is only used in the type-and-effect system; it does not have runtime
semantics. That is the only annotation that is required in source code.

The semantics is the same as the language in chapter 3, we thus omit the details.

87

6.4.2 Effects and Potentials

Potentials and Effects

T ::= C | D | E | · · · type
β ::= C.this | warm[C] | cold root
π ::= β | β.f | β.m potential
Π ::= { π1, π2, · · · } potentials
φ ::= π↑ | β.f ! | β.m♦ effect
Φ ::= { φ1, φ2, · · · } effects
Ω ::= { f1, f2, · · · } fields
∆ ::= fi 7→ (Φi,Πi) field summary
S ::= mi 7→ (Φi,Πi) method summary
E ::= C 7→ (∆,S) effect table

Select

select(Π, f) = Π.map(π ⇒ select(π, f)).reduce(⊕)

select(β, f̃) = (∅, {cold})
select(β, f̂) = (∅, ∅)
select(β, f) = ({β.f !}, {β.f}) where β 6= cold

select(cold, f) = ({cold↑}, ∅)
select(π, f) = ({π↑}, ∅) where π = β.f or π = β.m

Call

call(Π,m) = Π.map(π ⇒ call(m,π)).reduce(⊕)
call(β,m) = ({β.m♦}, {β.m}) where β 6= cold

call(cold,m) = ({cold↑}, ∅)
call(π,m) = ({π↑}, ∅) where π = β.f or π = β.m

Init

init(C, f̂i = Πi) = (∪Πk 6=j↑, {warm[C]}) if ∃f̃j ,Πj 6= ∅
init(C, f̂i = Πi) = (∪Πi↑, ∅)

Helpers

Π↑ = { π↑ | π ∈ Π }
(A1, A2)⊕ (B1, B2) = (A1 ∪B1, A2 ∪B2)

Figure 6.1 – Definition of Potentials and Effects

88

As seen from Figure 6.1, the definition of potentials (π) and effects (φ) depends on roots
(β). Roots are the shortest path that represents an alias of a value that may not be transitively
initialized. There are three kinds of roots in the current system:

• C.this represents aliasing of the underlying object referenced by this inside class C.
• warm[C] represents aliasing of an instance of the class C, all fields of which are assigned,

but it may not be transitively initialized.
• cold represents a value whose initialization status is unknown. It is used to represent

the potential of cold class parameters. Field access or method calls on such an object is
forbidden.

Potentials (π) represent aliasing information. They extend roots with field aliasing β.f and
method aliasing β.m. Field aliasing β.f represents aliasing of the field f of β, while method
aliasing β.m represents aliasing of the return value of the method m with the receiver β.

Effects (φ) include field accesses, method calls and promotions of possibly uninitialized val-
ues. A promotion effect is represented with π↑, which enforces that the potential π is transitively
initialized. The field access effect β.f ! means that the field f is accessed on β. The method call
effect β.m♦means that the method m is called on β.

There are three helpers for the creation of potentials and effects:

• Field selection: select(Π, f)

• Method call: call(Π,m)

• Class instantiation: init(C, f̂i = Πi)

The helper method select(Π, f) has five cases:

• selection of cold class parameter f̃ on β
• selection of non-cold class parameter f̂ on β
• selection of body field f on C.this or warm[C]

• selection of body field f on cold
• selection of a field f on β.f or β.m

In the first case, the field f̃ may hold a value that is not transitively initialized, thus the
potential is represented as cold. The effect is empty, as class parameters are always initialized
before the class body is executed.

For the same reason, in the second case, the effects are empty. The potentials are empty
because a non-cold class parameter may only hold a value that is transitively initialized, thus we
do not need to track it in the system.

In the third case, selecting a body field on C.this produces the effect C.this.f ! due to field
access, and the potential C.this.f due to the fact that the field f may hold a value which is not
transitively initialized. The case for select(warm[C],m) is similar.

89

The case select(cold, f) simply promotes the potential cold, which will cause the program to
be rejected if the effect is triggered during object initialization.

In the last case, the system just promotes the potential π, which is equivalent to say that π is a
transitively initialized value, thus the potential of the selection is empty. The system restricts the
length of effects and potentials to make the domain finite. In the formalization, we set the length
to 2. When the maximum length is reached, we promote the potential and give up tracking of it
in the system.

The helper method call(Π,m) distinguishes three cases:

• the receiver is C.this or warm[C]

• the receiver is cold
• the receiver is β.f or β.m

In the first case, it produces the effect β.m♦ and potential β.m — remember β.m♦ is a place-
holder to say all effects associated with the method m, and β.m to all potentials associated with
the return value of the method m.

The case call(cold,m) simply promotes the potential cold, which will cause the program to be
rejected if the effect is triggered during object initialization.

In the last case, the system just promotes the potential π, just as the case of selection. The
resulting potential is empty, which means the result is also transitively initialized. This is guaran-
teed by local reasoning of initialization, given that both the receiver and arguments are transi-
tively initialized.

The helper method init(C, f̂i = Πi) distinguishes two cases:

• the class parameters of C accept values under initialization and there exists at least one
corresponding argument whose potential is non-empty.

• either class C does not accept values under initialization or all potentials for cold class
parameters f̃ are empty.

In the first case, it promotes all potentials that do not correspond to cold class parameters,
which is equivalent to saying that these arguments are transitively initialized. The potentials
corresponding to cold class parameters f̃ are absorbed by the fields f̃ in the resulting potential
warm[C].

In the second case, it promotes all potentials of the arguments to ensure that they are tran-
sitively initialized. The result potential is empty, i.e., it must be a transitively initialized value,
which is guaranteed by local reasoning (chapter 3).

To simplify our presentation, we use the syntax Π↑ to denote the set { π↑ | π ∈ Π }.

90

6.4.3 Expression Typing

Expression Typing Γ;C ` e : D ! (Φ,Π)

x : D ∈ Γ

Γ;C ` x : D ! (∅, ∅)
(T- VA R)

Γ;C ` this : C ! (∅, {C.this}) (T- T H I S)

Γ;C ` e : D ! (Φ,Π) (Φ′,Π′) = select(Π, f) E = fieldType(D, f)

Γ;C ` e.f : E ! (Φ ∪ Φ′,Π′)
(T- S E L)

Γ;C ` e0 : E0 ! (Φ,Π) Γ;C ` ei : Ei ! (Φi,Πi)

(xi:Ei, D) = methodType(E0,m) (Φ′,Π′) = call(Π,m)

Γ;C ` e0.m(e) : D ! (Φ ∪ Φi ∪Πi↑ ∪ Φ′,Π′)
(T- C A L L)

f̂i:Ei = constrType(C) Γ;C ` ei : Ei ! (Φi,Πi) (Φ′,Π′) = init(C, f̂i = Πi)

Γ;C ` new C(e) : C ! (∪Φi ∪ Φ′,Π′)
(T- N E W)

Γ;C ` e0 : E0 ! (Φ0,Π0) E1 = fieldType(E0, f)
Γ;C ` e1 : E1 ! (Φ1,Π1) Γ;C ` e2 : E2 ! (Φ2,Π2)

Γ;C ` e0.f = e1; e2 : E2 ! (Φ0 ∪ Φ1 ∪Π1↑ ∪Φ2,Π2)
(T- B L O C K)

Figure 6.2 – Expression Typing

Expression typing (Figure 6.2) has the form Γ;C ` e : D ! (Φ,Π), which means that the
expression e in class C under the environment Γ, can be typed as D, and it produces effects Φ

and has the potential Π. Generally, when typing an expression, the effects of sub-expressions
will accumulate, while potentials may be refined (via selection), promoted (used as arguments
to methods).

The definitions assume several helper methods, such as fieldType(C, f), methodType(C,m)

and constrType(C), to look up in class table Ξ the type, respectively, of field C.f , of method C.m
and of the constructor of C.

In the typing rule T- VA R, the effects are empty, because accessing a variable cannot cause
any initialization error. The potential is empty because the design of the system ensures that
variables are transitively initialized, thus they do not need to be tracked in the system.

In the typing rule T- T H I S, the effect is empty, and the potential is C.this, as it aliases this in
class C.

91

The typing rule T- S E L first computes the effects Φ and potentials Π of the expression e. Then
it calls select(Π, f) to produce the final potentials Π′ and accompanied effects Φ′.

The typing rule T- C A L L first checks the receiver e0 and the arguments ei. Then it calls the
helper function call(Π,m).

Note that in the current system, method arguments must be transitively initialized. This fact
is expressed in the method call by promoting all potentials of the arguments as effects.

To type check new−expressions, the typing rule T- N E W first type checks all arguments, then

it calls the helper method init(C, f̂i = Πi).

Finally, to type check a block expression e0.f = e1; e2, the typing rule T- B L O C K first type
checks e0, e1 and e2 separately. Then in the final effect, it promotes the potentials Π1 for e1, which
ensures that the value of e1 is transitively initialized. This is how monotonicity of initialization is
enforced in the system.

6.4.4 Definition Typing

Definition typing (Figure 6.3) defines how programs, classes, fields and methods are checked.
The checking happens in two phases:

(1) first phase: conventional type checking is performed and effect summaries are computed;
(2) second phase: effect checking is performed to ensure initialization safety.

The two-phase checking is reflected in the typing rule T- P R O G. To type check a program
(C, e), first each class is type checked separately for well-typing and the effect summary for fields
∆c and methods Sc is computed. Then effect checking is performed modularly on each class
with the help of the effect table E . The typing rule T- P R O G also checks that the entry expression
e is well-typed with the empty environment and the type Null for this. The usage of Null for
the type of this for the entry expression e unifies the semantics and typing rules for top-level
expressions and expressions inside classes, which simplifies the meta-theory.

When type checking a class, the rule T- C L A S S checks that the body fields and methods are
well-typed, and the associated effects and potentials are computed. The effects and potentials
associated with a field are the effects and potentials of its initializer (the right-hand-side expres-
sion). The effects and potentials associated with a method are the effects and potentials of the
body expression of the method. The effect summaries are used during the second phase in T-
C H E C K, which checks that given the already initialized fields, the effects on the right-hand-side
of each field are allowed.

The typing rule T- F I E L D checks the right-hand-side expression e in an empty typing envi-
ronment, as there are no variables in a class body (class parameters are fields of their defining

92

Program Typing ` P

Ξ = C 7→ C Ξ(D) = class D { def main : T = e } ∅;D ` e : T ! (Φ,Π)

Ξ ` C ! (∆c,Sc) E = C 7→ (∆c,Sc) Ξ; E ` C
` (C, D)

(T- P R O G)

Effect Checking Ξ; E ` C

(∆, _) = E(C) (Φ, _) = ∆(fi) E ;C{ f1,··· ,fi−1 } ` Φ

Ξ; E ` class C(f̂ :T) { F M }
(T- C H E C K)

Class Typing Ξ ` C ! (∆,S)

Ξ;C ` Fi ! (Φi,Πi) ∆ = fi 7→ (Φi,Πi) Ξ;C ` Mi ! (Φi,Πi) S = mi 7→ (Φi,Πi)

Ξ ` class C(f̂ :T) { F M } ! (∆,S)
(T- C L A S S)

Field Typing Ξ;C ` F ! (Φ,Π)

∅;C ` e : D ! (Φ,Π)

Ξ;C ` var f : D = e ! (Φ,Π)
(T- F I E L D)

Method Typing Ξ;C ` M ! (Φ,Π)

x:D;C ` e : E ! (Φ,Π)

Ξ;C ` def m(x:D) : E = e ! (Φ,Π)
(T- M E T H O D)

Figure 6.3 – Definition Typing

class). In the typing rule T- M E T H O D, the method parameters x : D are used as the typing
environment to check the method body. They correspond to the semantics for field initialization
and method calls respectively.

6.4.5 Effect Checking

The effect checking judgment E ;CΩ ` Φ (Figure 6.4) means that the effects Φ are permitted
inside class C when the fields in Ω are initialized. It first checks that there is no promotion of this
in the closure of the effects, as the underlying object is not transitively initialized, the promotion
thus is illegal. Then it checks that each accessed field is in the set Ω, i.e., only initialized fields are

93

Propagate Potentials E ` π Π

E ` β ∅

(∆, _) = E(C) (_,Π) = ∆(f)

E ` C.this.f Π

(_,S) = E(C) (_,Π) = S(m)

E ` C.this.m Π

E ` C.this.f Π Π′ = [C.this 7→ warm[C]]Π

E ` warm[C].f Π′

E ` C.this.m Π Π′ = [C.this 7→ warm[C]]Π

E ` warm[C].m Π′

Propagate Effects E ` φ Φ

E ` β.f ! ∅

E ` π Π

E ` π↑ Π↑

(_,S) = E(C) (Φ, _) = S(m)

E ` C.this.m♦ Φ

E ` C.this.m♦ Φ Φ′ = [C.this 7→ warm[C]]Φ

E ` warm[C].m♦ Φ′

Closure

Φ ⊆ Φ′ ∀φ ∈ Φ′.E ` φ Φ′′ =⇒ Φ′′ ⊆ Φ′

Φc = Φ′

Π ⊆ Π′ ∀π ∈ Π′.E ` π Π′′ =⇒ Π′′ ⊆ Π′

Πc = Π′

Check E ; Ω;C ` Φ

β↑/∈ Φc ∀C.this.f ! ∈ Φc. f ∈ Ω

E ;CΩ ` Φ

Figure 6.4 – Effect Checking

used.

The closure of effects and potentials is presented in a declarative style for clarity, but it
has a straight-forward algorithmic interpretation: it just propagates the effects or potentials
recursively until a fixed-point is reached. The fixed-point always exists as the domain of effects
and potentials is finite for any given program.

The main step in fixed-point computation is the propagation of effects and potentials. In
effect propagation E ` φ Φ, field access β.f ! is an atomic effect, thus it propagates to the
empty set. For a promotion effect π↑, we first propagate the potential π to a set of potentials Π,
and then promote each potential in Π. For a method call effect C.this.m♦, it looks up the effects

94

associated with the method from the effect table.

In potential propagation E ` π Π, root potentialsC.this propagate to the empty set, as they
do not contain proxy aliasing information in the effect table. For a field potential like C.this.f ,
it just looks up the potentials associated with the field f from the effect table. For a method
potential C.this.m, it looks up the potentials associated with the method m from the effect table.

6.5 Discussions

6.5.1 Why restrict the length of potentials?

The reader might ask, why restrict the length of potentials, thus effects? Let us look at the following
program:

1 class A {
2 var a: A = this.g
3 def g: A = this.g.g
4 }

Suppose we do not have the restriction. When checking the effect A.this.g♦, the expansion
would encounter the effect A.this.g.g♦. To check such an effect, the natural approach is to first
expand the prefix potential A.this.g, and then call the method g on the expanded potential. The
potential A.this.g always expands to A.this.g.g in one step. As a result, the process leads to the
following infinite sequence:

A.this.g♦
=⇒ A.this.g.g♦
=⇒ A.this.g.g.g♦
=⇒ A.this.g.g.g.g♦
=⇒ . . .

The example shows that non-termination may happen with simple programs if the abstract
domain is infinite. We have to restrict the length of potentials to terminate the checking process.

6.5.2 Why the cold annotation?

The reader might be wondering, can we do better without the cold annotation on class parame-
ters? For example, with the cold abstraction, the following code does not type check:

1 class C {
2 val name = "c"

95

3 val d : D = new D(this)
4 }
5

6 class D(c: C @cold) {
7 println(c.name) // error: parent is cold
8 }

A natural idea is, instead of saying that new D(this) has the potential warm[D], can we invent a
potential like warm[D, c=C.this]? The idea looks promising. However, to follow the path, we will
also need the object construction effect warm[D, c=C.this].init, to denote the possible effects
in the constructor of the class D. Now effect checking for the class C works as follows:

warm[D, c = C.this].init

=⇒ warm[D, c = C.this].c.name!

=⇒ C.this.name!

As the field name is already initialized at the point, the code above will be accepted.

However, naive extension of the system will make effect checking non-terminating, as the
following example shows:

1 class C(c: C @cold) { val c2 = new C(this) }

The non-termination can be seen from the expansion:

warm[C, c = C.this].init

=⇒ warm[C, c = warm[C, c = C.this]].init

=⇒ warm[C, c = warm[C, c = warm[C, c = C.this]]].init

=⇒ . . .

In the above, we have an infinite sequence of effects of the form πi.init, where π0 =

warm[C, c = C.this] and πi = warm[C, c = πi−1].

We have to resort to a standard technique in abstract interpretation, widening [34]. As any
potential can be regarded as cold, it suffices to widen a dependent potential to cold if it exceeds
some size limit, e.g.:

warm[C, c = C.this].init

=⇒ warm[C, c = warm[C, c = C.this]].init

=⇒ warm[C, c = warm[C, c = cold]].init

=⇒ warm[C, c = warm[C, c = cold]].init

This guarantees that the expansion of effects always reaches a fixed point. We will take
advantage of this insight in the implementation.

96

6.6 Extension: Functions

Nowadays most languages combine object-oriented programming with functional programming,
such as Java, Scala, Swift. To support functions, we add a new potential λ(Φ,Π), where Φ is the
set of effects to be triggered when the function is called, while Π is the set of potentials for the
result of the function call. The effect domain is still finite, as the set of function potentials is
constrained by the number of function literals in a given program.

The addition improves expressiveness. For example, it enables the following code, which is
rejected in Swift:

1 class Rec {
2 val even = (n: Int) => n == 0 || odd(n - 1)
3 val odd = (n: Int) => n == 1 || even(n - 1)
4 val flag: Boolean = odd(6)
5 }

In functional programming, the recursive binding construct letrec may introduce similar
initialization patterns as the code above. With the latest checker [3], OCaml still does not support
the code below in the construct let rec.

1 let rec even n = n = 0 || odd (n - 1)
2 and odd n = n = 1 || even (n - 1)
3 and flag = odd 3

The OCaml compiler (version 4.06.0) complains that:

File "./code/letrect.ml", line 9, characters 13-18:
Error: This kind of expression is not allowed as right-hand side of ‘let rec’

6.7 Related Work

Lucassen and Gifford first introduced type-and-effect systems [36]. To the best of our knowledge,
we are the first to introduce the concept of potentials to control aliasing in type-and-effect
systems.

Qi and Myers [16] introduce a flow-sensitive type-and-effect system for initialization based
on masked types. In the system, methods and constructors have effects, which are essentially
the mappings of initialization status of this before and after the call. Their system does not
introduce a concept like potentials to track aliasing. The system suffers from the problem of
typestate polymorphism, i.e. it lacks parametric polymorphism over masks to support simple use

97

cases. The system depends on unspecified type-and-effect inference to cut down its syntactic
verbosity.

Summers and Müller [12] show that initialization of cyclic data structures can be supported
in a light-weight, flow-insensitive type system with three modifiers (free, committed and unclas-
sified). To call a method on this, annotations are required on the method. The system depends
on an unspecified dataflow analysis to support usage of already initialized fields.

The language X10 employs an inter-procedural analysis to ensure safe initialization [11],
which removes the annotation burden required when calling final or private methods on this.
However, the analysis algorithm is not presented in the paper, nor studied formally. To call virtual
methods on this, the annotation @NoThisAccess is required on the method definition. They do
not propose a way to handle aliasing, nor do they support cyclic data structures.

All the existing work depends on some unspecified inference or analysis to cut down syntactic
overhead [16, 12, 11]. We are the first to present a formal inference system on the problem of safe
initialization.

The Swift language features a two-phase initialization scheme 1. The scheme requires that
the fields of a class are initialized first, then the super constructor is called to initialize fields
of super classes. Before the super constructor call, the usage of this is forbidden. After the call,
this can be used freely, as all fields of the object are initialized. This scheme does not address
the need for usage of this during the initialization of fields. Meanwhile, it is incompatible with
the initialization of cyclic data structures, as in this case an object is not transitively initialized
even when all fields are initialized. Moreover, the scheme does not work with diamond-like
inheritance structures, such as multiple inheritance or traits.

6.8 Conclusion

In this chapter, we presented a simple type-and-effect system that can significantly cut down
the syntactic overhead of the basic model. One novelty of the system is that it controls aliasing
based on the abstraction potentials. The system performs two-phase checking to handle recursive
methods, and it resorts to full-construction analysis to deal with inheritance, traits, and properties.
The system can be easily extended to handle first-class functions.

1https://docs.swift.org/swift-book/LanguageGuide/Initialization.html

98

Chapter 7

Meta-Theory: The Inference System

The logical picture of the facts is the thought.

— Ludwig Wittgenstein, Tractatus Logico-Philosophicus

In this chapter, we study the meta-theory of the type-and-effect system.

7.1 Definitions

We take advantage of the definitions and results of the basic model. In particular, we reuse the
definition of modes, types and subtyping. For completeness, the definitions are reproduced in
Figure 7.1. Recall that a type CΩ is well-formed only if Ω are fields of the class C.

We also reuse the semantic result of scopability developed in the meta-theory of the basic
model, thanks to the fact that the languages share the same semantics.

For expression soundness, we need also reuse the definition of monotonicity (Σ1 � Σ2),
authority (Σ1 B Σ2), stackability (Σ1 � Σ2). Value typing stays the same as before, while in envi-
ronment typing, we require all values to be hot. For completeness, the definitions are reproduced
in Figure 7.2.

The semantic typing for objects, presented in Figure 7.3, has changed. The typing judgment
Σ; l � o : Cµ says that the object may take the type Cµ given that the object address is l. The
address of the object is required to give semantic meaning to potentials, which represent aliasing
information. If µ = hot, the typing rule checks that each field can be typed as hot. Otherwise,
when µ = warm or µ = f , it checks that each field has the right potential, which represents
aliasing of values under initialization.

99

Modes and Types

Ω = { f1, f2, . . . }
µ = cold | warm | hot | Ω
T = Cµ

Mode Ordering

hot v µ warm v Ω Ω1 ∪ Ω2 v Ω1 µ v cold

Subtyping

T <: T
T1 <: T2 T2 <: T3

T1 <: T3

µ1 v µ2

Cµ1 <: Cµ2

Figure 7.1 – Subtyping

Note that objects are never typed as Ccold, though object references may be typed as Ccold by
subtyping. It is harmless to add an object typing rule for Ccold, as it is done in the meta-theory
for the basic model. We prefer simplicity here and thus exclude the rule.

The semantics for potentials and effects are defined in Figure 7.4. Note that both potential
typing and effect typing are defined relative to the value ψ for this — that is partly expected, as
potentials and effects are in essence tracking aliasing and field accesses relative to this.

In potential typing Σ;ψ � l : Π, a location l may take any set of potentials Π if l is hot. In
particular, Π can be an empty set. Otherwise, there should exist a potential β in JΠKC , such that
Σ;ψ � l : β. There are three cases:

• β = C.this. In this case, the rule checks that l = ψ.
• β = warm[C]. The rule checks that l can be typed as Cwarm.
• β = cold. The rule checks that the value is well-typed.

An immediate result of this definition is that if Σ;ψ � l : Π, then either l is hot or there exists
β such that Σ;ψ � l : β. This is exactly what we want: if an expression may take a value that is
not transitively initialized, then the potentials of the expression should include the potential β,
which means the value may not be fully initialized.

In an effect typing judgment Σ;ψ � Φ, we ensure that all effects Φ are allowed given the value
ψ for this and the store typing Σ. This is enforced by checking that each effect φ in Φc, which is
the closure of Φ, is allowed. There are several cases depending on φ:

• φ = π↑: if π is C.this, warm[C] or cold, then ψ must be hot.
• φ = C.this.f !: f must be an initialized field of ψ.
• φ = β.m♦: placeholder effects are ignored.

100

Store typing Σ � σ

dom(Σ) = dom(σ) ∀ l ∈ dom(Σ). Σ; l � σ(l) : Σ(l)

Σ � σ

Monotonicity Σ1 4 Σ2

∀ l ∈ dom(Σ1). Σ2(l) <: Σ1(l)

Σ1 4 Σ2

Authority Σ1 B Σ2

∀l ∈ dom(Σ1).Σ1(l) = CΩ =⇒ Σ2(l) = CΩ

Σ1 B Σ2

Stackability Σ1 � Σ2

∀l ∈ dom(Σ2).Σ2 � l : Cwarm
∨
l ∈ dom(Σ1)

Σ1 � Σ2

Value typing Σ � l : T

Σ(l) = T1 T1 <: T2

Σ � l : T2

Environment typing Γ; Σ � ρ

∅; Σ � ∅ Γ; Σ � ρ Σ � l : Chot

Γ, x:C; Σ � ρ, x:l

Convenience Definitions

Σ � l : Dµ

Σ � l : D

Σ � l : Dµ

Σ � l : µ

∀l ∈ L.Σ � l : µ

Σ � L : µ

Figure 7.2 – Store typing, environment typing, value typing

7.2 Monotonicity Lemmas

We inherit most lemmas from the meta-theory for the basic model. Here we only state new lem-
mas related to effects and potentials, and lemmas related to object typing, as they are changed.

101

Object Typing Σ; l � o : Cµ

(C,ω) = o classParameters(C) ⊆ dom(ω)
∀ f ∈ dom(ω). D = fieldType(C, f) =⇒ Σ; l � ω(f) : potential(C, f)

Σ; l � o : Cdom(ω)

(C,ω) = o ∀ f ∈ fields(C). D = fieldType(C, f) =⇒ Σ; l � ω(f) : potential(C.this, f)

Σ; l � o : Cwarm

(C,ω) = o ∀ f ∈ fields(C). D = fieldType(C, f) =⇒ Σ � ω(f) : Dhot

Σ; l � o : Chot

Field Potential

potential(β, f̃) = { cold }
potential(β, f̂) = ∅
potential(β, f) = { β.f }

Figure 7.3 – Object typing

Potential Typing Σ;ψ � l : Π

Σ � l : hot

Σ;ψ � l : Π

∃π ∈ Πc.Σ;ψ � l : π

Σ;ψ � l : Π

l = ψ

Σ;ψ � l : C.this

Σ � l : Cwarm

Σ;ψ � l : warm[C]

Σ � l : Dµ

Σ;ψ � l : cold

Effect Typing Σ;ψ � Φ

∀φ ∈ Φc. Σ;ψ � φ

Σ;ψ � Φ

π = β =⇒ Σ � ψ : hot

Σ;ψ � π↑

Σ � ψ : Cf f ∈ f
Σ;ψ � C.this.f !

Σ;ψ � warm[C].f !

Σ;ψ � β.m♦

Figure 7.4 – Definition of potential typing and effect typing

L E M M A 7.1 (Potential Typing Monotonicity). For all Σ,Σ′,Π, ψ, l, if Σ 4 Σ′ and Σ, ψ � l : Π, then
Σ′, ψ � l : Π.

102

Proof. By the definition of potential typing there are two cases.

• case Σ � l : Chot.
By Lemma 5.3, we have Σ′ � l : Chot. Using the definition of potential typing we have
Σ′;ψ �: Π.
• case Σ;ψ � l : π where π ∈ Πc.

There are three cases depending on the shape of π:
– case π = C.this

We have l = ψ, using the same rule we get Σ′;ψ � l : C.this. Now use the definition of
potential typing.

– case π = warm[C]

We have Σ � l : Cwarm. Using Lemma 5.3, we have Σ′ � l : Cwarm. Now use the
definition of potential typing.

– case π = cold

We have Σ � l : Dµ. Using Lemma 5.3, we have Σ′ � l : Cµ. Now use the definition of
potential typing.

L E M M A 7.2 (Object Typing Monotonicity). For all Σ,Σ′, T,Π, l and object o, if Σ 4 Σ′ and Σ; l �
o : Cµ, then Σ′; l � o : Cµ.

Proof. By definition of object typing, Lemma 5.3 and Lemma 7.1.

L E M M A 7.3 (Effect Typing Monotonicity). For all Σ,Σ′,Φ and value ψ, if Σ 4 Σ′ and Σ, ψ � Φ,
then Σ′, ψ � Φ.

Proof. By the definition of effect typing and Lemma 5.3.

L E M M A 7.4 (Environment Regularity). If Γ; Σ � ρ and Γ;C ` x:D, then Σ � ρ(x) : Dhot.

Proof. By induction on the typing derivation Γ; Σ � ρ.

7.3 Closure Lemmas

The following lemmas are about the properties of the closure of effects and potentials.

L E M M A 7.5 (Closure Distribution). The closure operation is distributive:

• (Π1 ∪ · · · ∪Πn)c = Πc
1 ∪ · · · ∪Πc

n

• (Φ1 ∪ · · · ∪ Φn)c = Φc
1 ∪ · · · ∪ Φc

n

103

Proof. Let us consider the case for potentials, the case for effects is similar. First, it is obvious that
Π1 ∪ · · · ∪Πn ⊆ Πc

1 ∪ · · · ∪Πc
n due to that Π1 ⊆ Πc

1 and so on. Second, for any π ∈ Πc
1 ∪ · · · ∪Πc

n,
there must exist i such that π ∈ Πc

i . Now by the definition of Πc
i , if E ` π Π′, then Π′ ⊆ Πc

i .
Therefore, Π′ ⊆ Πc

1 ∪ · · · ∪Πc
n. The conclusion follows by definition.

L E M M A 7.6 (Closure Extensivity). The closure operation is extensive:

• Π ⊆ Πc

• Φ ⊆ Φc

Proof. Immediate from the definition.

L E M M A 7.7 (Closure Monotonicity). The closure operation is monotone:

• Π1 ⊆ Π2 =⇒ Πc
1 ⊆ Πc

2

• Φ1 ⊆ Φ2 =⇒ Φc
1 ⊆ Φc

2

Proof. Immediate from the Lemma 7.5.

L E M M A 7.8 (Closure Idempotency). The closure operation is idempotent:

• Πc = (Πc)c

• Φc = (Φc)c

Proof. Immediate from the definition.

L E M M A 7.9 (Closure Prefix Constancy). If D.this ∈ { C.this.f }c, then D = C.

Proof. By the definition of field typing, method typing and expression typing, we know if any
potential for fields or methods of a classC has the formD.this, then we must haveD = C. Based
on the fact, now it suffices to perform induction on the potential expansion rules to prove the
following lemma:

prefix(Πc) ⊆ prefix(Π)

where prefix is defined as follows:

prefix({ C.this } ∪Π) = { C.this } ∪ prefix(Π)

prefix({ C.this.f } ∪Π) = { C.this } ∪ prefix(Π)

prefix({ C.this.m } ∪Π) = { C.this } ∪ prefix(Π)

prefix({ π } ∪Π) = prefix(Π)

The result immediately follows from the lemma above.

L E M M A 7.10 (Prefix Substitution). The following propositions hold

104

• ([C.this 7→ warm[C]]Π)c = [C.this 7→ warm[C]](Πc)

• ([C.this 7→ warm[C]]Φ)c = [C.this 7→ warm[C]](Φc)

Proof. By induction on the size of Π and case analysis on potential expansion rules.

L E M M A 7.11 (Closure Expansion Regularity). The following propositions hold

1. If C.this ∈ {C.this.f}c, then warm[C] ∈ {warm[C].f}c.
2. If warm[D] ∈ {C.this.f}c, then warm[D] ∈ {warm[C].f}c.
3. If C.this ∈ {C.this.m}c, then warm[C] ∈ {warm[C].m}c.
4. If warm[D] ∈ {C.this.m}c, then warm[D] ∈ {warm[C].m}c.

Proof. Immediate from Lemma 7.10.

7.4 Potential Lemmas

L E M M A 7.12 (Potential Typing Regularity). If Σ;ψ � l : Π, then Σ � l : hot or β ∈ Πc.

Proof. By the definition of potential typing, there are two cases. If Σ � l : hot, which completes
the proof goal immediately. Otherwise, there exist π ∈ Πc such that Σ;ψ � l : π. There are three
cases, for each case we have π = β.

L E M M A 7.13 (Empty Potential Regularity). If Σ;ψ � l : ∅, then Σ � l : hot.

Proof. By definition of potential typing, the only possibility is Σ � l : hot.

L E M M A 7.14 (Potential Weakening). If Σ;ψ � l : Π and Π ⊆ Π0, then Σ;ψ � l : Π0.

Proof. From the definition of potential typing, there are two cases: either Σ � l : hot or ∃π ∈
Πc.Σ;ψ � l : π. In the first case, applying the definition of potential typing, we get the result
immediately. We only need to consider the second case, where Σ;ψ � l : π.

From π ∈ Πc, Π ⊆ Π0 and Lemma 7.7, we have π ∈ Πc
0. The result follows immediately from

the fact that Σ;ψ � l : π and π ∈ Πc
0.

L E M M A 7.15 (Potential Strengthening - Closure). If Σ;ψ � l : Πc, then Σ;ψ � l : Π.

Proof. From the definition of potential typing, there are two cases. In the first case, we know l is
hot, the conclusion follows trivially. In the second case, the conclusion follows from the fact that
(Πc)c = Πc.

105

L E M M A 7.16 (Potential View Change - Field). If Σ; l0 � l : {C.this.f} and Σ;ψ � l0 : warm[C],
then Σ;ψ � l : {warm[C].f}.

Proof. From the definition of potential typing, there are two cases: either Σ � l : Dhot or there
exists π in the closure { C.this.f }c such that Σ;ψ � l : π. In the first case, applying the definition
of potential typing, we get the result immediately. We only need to consider the second case.
There are following possibilities for π:

• π = C.this

We have l = l0 by the definition of potential typing. As C.this ∈ {C.this.f}c, we must have
warm[C] ∈ {warm[C].f}c from Lemma 7.11. The result follows from Σ;ψ � l : warm[C].

• π = warm[E]

We have Σ � l : Ewarm. As warm[E] ∈ {C.this.f}c, we must have warm[E] ∈ {warm[C].f}c

from Lemma 7.11. The result follows from Σ;ψ � l : warm[E].

• π = cold

We have Σ � l : Dµ. The result follows from the potential typing for cold.

L E M M A 7.17 (Potential View Change - Method). If Σ; l0 � l : {C.this.m} and Σ;ψ � l0 :

warm[C], then Σ;ψ � l : {warm[C].m}.

Proof. Similar as the Lemma 7.16 above.

7.5 Effect Lemmas

L E M M A 7.18 (Effect Weakening). If Σ;ψ � Φ and Φ0 ⊆ Φ, then Σ;ψ � Φ0.

Proof. From the definition of effect typing, we know ∀φ ∈ Φc.Σ;ψ � φ. From Φ0 ⊆ Φ, we have
Φc

0 ⊆ Φc from Lemma 7.7. Thus it follows that ∀φ ∈ Φc
0.Σ;ψ � φ. The result follows immediately

from the definition of effect typing.

L E M M A 7.19 (Effect Strengthening - Closure). If Σ;ψ � Φ, then Σ;ψ � Φc.

Proof. From the definition of effect typing, we know ∀φ ∈ Φc.Σ;ψ � φ. The result follows imme-
diately from the fact that (Φc)c = Φc.

L E M M A 7.20 (Hot Effect Regularity). If Σ � ψ : Chot, then Σ;ψ � Φ.

106

Proof. By the definition of effect typing.

L E M M A 7.21 (Field Check Regularity). If E ;CΩ ` Φ and Σ � ψ : CΩ, then Σ;ψ � Φ.

Proof. We need to prove that for all φ ∈ Φc, we have Σ;ψ � φ. If Φc = ∅, then the conclusion
holds trivially by the definition of effect typing.

The only cases that do not hold trivially are when φ = π↑ or φ = C.this.f !. In the first case,
from the definition of E ;CΩ ` Φ, we know β↑/∈ Φc. Thus, π 6= β, Σ;ψ � π↑ holds trivially. In the
second case φ = C.this.f !, and from effect checking we have f ∈ Ω. Now use the definition of
effect typing, the result follows immediately.

L E M M A 7.22 (Effect View Change - Method). If Σ;ψ � warm[C].m♦, and Σ 6� ψ : hot, and
Σ;ψ � l0 : warm[C], then Σ; l0 � C.this.m♦.

Proof. For any φ ∈ { C.this.m♦ }c, . We perform case analysis on φ.

• case φ = C.this.f !

We have Σ � l0 : warm, thus Σ; l0 � C.this.f ! holds trivially.

• case φ = warm[E].f !

Σ; l0 � φ holds trivially by definition.

• case φ = π↑
If π 6= β, Σ; l0 � φ holds trivially. Otherwise, [C.this 7→ warm[C]]β ↑∈ { warm[C].m♦ }c

by Lemma 7.10. We have Σ;ψ � [warm[C] 7→ C.this]β ↑, which requires Σ � ψ : hot, a
contradiction with the premise that ψ is not hot.

• case φ = β.m♦
Σ; l0 � π holds trivially by definition.

7.6 Local Reasoning

L E M M A 7.23 (Effect Potential Cancellation). Given

• Σ;ψ � Π↑
• Σ′;ψ � l : Π

• Σ � ψ : hot =⇒ Σ′ � l : hot

Then we have

107

• Σ′ � l : hot

Proof. From Lemma 7.12, we have either β ∈ Πc or Σ′;ψ � l : hot. The case l is hot is trivial, we
only need to consider β ∈ Πc. From the definition of Σ;ψ � Π↑, we know Σ;ψ � β↑. From the
definition of effect typing, we have Σ � ψ : hot. Now using the premise, we get Σ′ � l : hot.

7.7 Selection Lemmas

L E M M A 7.24 (Hot Selection). If Σ � l : Chot, Σ � σ, and fieldType(C, f) = D, then for all ψ and
Π we have Σ;ψ � field(σ, l, f) : Π.

Proof. By the definition of object typing, we have Σ;ψ � field(σ, l, f) : hot. Now using the
definition of potential typing, the conclusion follows immediately.

L E M M A 7.25 (This Selection). If Σ;ψ � l : C.this, and Σ � σ, and potential(C.this, f) ⊆ Π, and
fieldType(C, f) = D, then we have Σ;ψ � field(σ, l, f) : Π.

Proof. By the definition of object typing, we have Σ;ψ � field(σ, l, f) : potential(C.this, f). Now
using Lemma 7.14, the conclusion follows immediately.

L E M M A 7.26 (Warm Selection). If Σ;ψ � l : warm[C], and Σ � σ, and potential(warm[C], f) ⊆
Π, and fieldType(C, f) = D, then we have Σ;ψ � field(σ, l, f) : Π.

Proof. By the definition of object typing, we have Σ; l � field(σ, l, f) : potential(C.this, f). There
are three cases for potential(C.this, f):

• Case potential(C.this, f) = ∅
In this case we know field(σ, l, f) is hot, thus the result holds trivially.

• Case potential(C.this, f) = { cold }
The result holds by Lemma 7.14.

• Case potential(C.this, f) = { C.this.f }
By definition of potential, we have

– (A1) potential(warm[C], f) = { warm[C].f }

Using Lemma 7.16, we have the following
– (B1) Σ;ψ � field(σ, l, f) : { warm[C].f }

Now using Lemma 7.14, the conclusion follows immediately.

108

L E M M A 7.27 (Potential Selection). If β 6= cold, β ∈ Πc
0 and (_,Π1) = select(Π0, f), then we have

potential(β, f) ⊆ Πc
1.

Proof. By induction on the size of Π0 and case analysis on the definition of select.

L E M M A 7.28 (Cold Selection). If cold ∈ Πc and (Φ, _) = select(Π, f), then we have cold↑∈ Φc.

Proof. By induction on the size of Π and case analysis on the definition of select.

7.8 Method Call Lemmas

L E M M A 7.29 (Potential Invoke). If β 6= cold, β ∈ Πc
0 and (_,Π1) = call(Π0,m), then we have

β.m ⊆ Πc
1.

Proof. By induction on the size of Π0 and case analysis on the definition of call.

L E M M A 7.30 (Cold Invoke). If cold ∈ Πc and (Φ, _) = call(Π,m), then we have cold↑∈ Φc.

Proof. By induction on the size of Π and case analysis on the definition of call.

7.9 Expression Soundness

With the definitions above, we will be able to prove the following lemma:

L E M M A 7.31 (Expression Soundness). Given

(1) Γ;C ` e : D ! (Φ,Π)

(2) Γ; Σ � ρ
(3) Σ � σ
(4) Σ � ψ : C

(5) Σ;ψ � Φ

(6) JeK (ρ, σ, ψ)(k) = Some result

then there exist l, σ′, Σ′ such that:

(a) result = Some (l, σ′)

(b) Σ 4 Σ′, Σ� Σ′, ΣB Σ′ and Σ′ � σ′

(c) Σ′ � l : D

109

(d) Σ′;ψ � l : Π

(e) Σ � ψ : hot =⇒ Σ′ � l : hot

Proof. The proof follows the same structure as the expression soundness for the basic model.
The proof for Σ� Σ′, ΣB Σ′ and Σ′ � l : D are almost the same, thus we omit the details. The
result Σ � ψ : hot =⇒ Σ′ � l : hot follows from Lemma 5.15 and Theorem 3.5. It is not strictly
necessary, but it simplifies the usage of the Lemma 7.23.

We focus on how effects and potentials are handled in the proof.

• case T- V A R. e = x

From the typing rule T- VA R, we have the following:
– (A1) Φ = ∅
– (A2) Π = ∅

Choose l = ρ(x), σ′ = σ,Σ′ = Σ. From Lemma 7.4, we have
– (B1) Σ � l : hot

Now using the definition of potential typing, we have Σ;ψ � l : ∅.

• case T- T H I S. e = this

From the typing rule T- T H I S, we have the following:
– (A1) Φ = ∅
– (A2) Π = {C.this}
– (A3) D = C

Choose l = ψ, σ′ = σ,Σ′ = Σ. The result Σ′;ψ � ψ : { C.this } holds by definition of
potential typing.

• case T- S E L. e = e0.f

From the typing rule T- S E L, we have the following:
– (A1) Σ;C ` e0 : E ! (Φ0,Π0)

– (A2) D = fieldType(E, f)

– (A3) (Φ′,Π) = select(Π0, f)

– (A4) Φ = Φ0 ∪ Φ′

From the induction hypothesis on e0, we know there exist l0, σ′ and Σ′ such that:
– (B1) Σ 4 Σ′, Σ� Σ′, ΣB Σ′ and Σ′ � σ′

– (B2) Σ′ � l0 : E

– (B3) Σ′;ψ � l0 : Π0

– (B4) Σ � ψ : hot =⇒ Σ′ � l0 : hot

– (B5) (E,ω) = σ′(l0)

110

Now case analysis on the typing derivation for (B3):
– case Σ′ � l0 : hot

Choose ω(f), σ′ and Σ′. We have Σ′ � ω(f) : Π′ because ω(f) is hot.

– case ∃π ∈ Πc
0.Σ
′;ψ � l0 : π

There are three cases:
∗ case π = E.this

By definition of potential typing and object typing, we have
· (a1) l0 = ψ

· (a2) E = C

· (a3) ∀f ∈ dom(ω). D = fieldType(C, f) =⇒ Σ′;ψ � ω(f) : {C.this.f}

From (A3) and Lemma 7.27, we have
· (b1) potential(C.this, f) ⊆ Πc

Now using the Lemma 7.25 and Lemma 7.15, we have
· (b1) Σ′;ψ � ω(f) : Π

∗ case π = warm[E]

Similar as the case above with the Lemma 7.26.

∗ case π = cold

From Lemma 7.28, we have
· (a1) cold↑∈ Φ′c

From monotonicity of effect typing, Lemma 7.19 and Lemma 7.18, we have
· (b1) Σ;ψ � cold↑

From the definition of effect typing, we know
· (c1) Σ � ψ : hot

From (B4), we know l0 is hot. Now use Lemma 5.16.

• case T- C A L L. e = e0.m(e)

From the typing rule T- C A L L, we have the following:
– (A1) Σ;C ` e0 : E0 ! (Φ0,Π0)

– (A2) Σ;C ` ei : Ei ! (Φi,Πi)

– (A3) (xi:Ei, D) = methodType(E0,m)

– (A4) (Φ′,Π) = call(E0.m,Π0)

– (A5) Φ = Φ0 ∪ Φi ∪Πi↑ ∪ Φ′

From the induction hypothesis on e0, we know there exist l0, σ0,Σ0 such that:

111

– (B1) Σ 4 Σ0, Σ� Σ0, ΣB Σ0 and Σ0 � σ0

– (B2) Σ0 � l0 : E0

– (B3) Σ0;ψ � l0 : Π0

– (B4) Σ � ψ : hot =⇒ Σ0 � l0 : hot

In order to use induction hypothesis on the arguments, we need to check that the precon-
ditions hold. It follows trivially from monotonicity, thus we have:

– (C1) Γ; Σ0 � ρ
– (C2) Σ0 � ψ : C

– (C3) Σ0;ψ � Φ

By using induction hypothesis and monotonicity repeatedly on all arguments, we get li, σi
and Σi such that

– (D1) Σi−1 4 Σi, Σi−1 � Σi, Σi−1 B Σi and Σi � σi
– (D2) Σi � li : Ei
– (D3) Σi;ψ � li : Πi

– (D4) Σi−1 � ψ : hot =⇒ Σi � li : hot

From monotonicity of effect typing, we have:
– (E1) Σi;ψ � Πi↑

Let Σ′ = Σn, using Lemma 7.23 and Lemma 5.3, we have
– (F1) Σ′ � li : hot

The method E0.m is well typed, thus we have
– (G1) xi:Ei;E0 � em : D ! (Φm,Πm)

We prepare the environment ρ′ and ψ′ for the method call as follows:
– (H1) ρ′ = xi:li
– (H2) ψ′ = l0

Now do case analysis on the potential derivation for (B3):
– case Σ0 � l0 : hot

As both the receiver and method parameters are hot, we have:
∗ (a1) Σ′; l0 � Φm B Lemma 7.20

Now we can use the induction hypothesis for (G1):
∗ (b1) Σ′ 4 Σm, Σ′ � Σm, Σ′ B Σm and Σm � σm
∗ (b2) Σm � lm : D

∗ (b3) Σm; l0 � lm : Πm

∗ (b4) Σ′ � l0 : hot =⇒ Σm � lm : hot

112

Choose lm, σm and Σm. As lm is hot, it may take any potential by the definition of
potential typing.

– case ∃π ∈ Πc
0.Σ0 � l0 : π

We only consider Σ0 6� l0 : hot in this case. Otherwise, it suffices to follow the case
above. There are three cases for π:
∗ case π = C.this

By definition of potential typing for l0, we have
· (a1) E0 = C

· (b1) l0 = ψ

From Φm ⊆ { C.this.m♦ }c ⊆ Φ′c ⊆ Φc, Lemma 7.18, and Lemma 7.3, and
Lemma 7.19, we know
· (b1) Σ′;ψ � Φm

Now we can use the induction hypothesis for (G1):
· (c1) Σ′ 4 Σm, Σ′ � Σm, Σ′ B Σm and Σm � σm
· (c2) Σm � lm : D

· (c3) Σm;ψ � lm : Πm

· (c4) Σ′ � ψ : hot =⇒ Σm � lm : hot

From Lemma 7.29 , we have
· (d1) C.this.m ∈ Πc

From (c3), Πm ⊆ { C.this.m }c ⊆ Πc, and Lemma 7.14, and Lemma 7.15, we have
· (e3) Σm;ψ � lm : Π

∗ case π = warm[E0]

From warm[C].m♦ ∈ Φ′c ⊆ Φc, Lemma 7.18, and Lemma 7.3, and Lemma 7.19,
we know
· (a1) Σ′;ψ � warm[C].m♦

Now use Lemma 7.22:
· (b1) Σ′; l0 � C.this.m♦

From Φm ⊆ { C.this.m♦ }c and Lemma 7.18, and Lemma 7.19, we know
· (c1) Σ′; l0 � Φm

Now we can use the induction hypothesis for (G1):
· (d1) Σ′ 4 Σm, Σ′ � Σm, Σ′ B Σm and Σm � σm
· (d2) Σm � lm : D

· (d3) Σm; l0 � lm : Πm

113

· (d4) Σ′ � l0 : hot =⇒ Σm � lm : hot

From (d3) and Πm ⊆ { C.this.m }c and Lemma 7.14 and Lemma 7.15, we have
· (e1) Σm; l0 � lm : { C.this.m }

From Lemma 7.17 we have
· (f1) Σm;ψ � lm : { warm[C].m }

From (A4) and Lemma 7.29, we have
· (g1) { warm[C].m }c ⊆ Πc

Using Lemma 7.14, and Lemma 7.15, we have
· (e3) Σm;ψ � lm : Π

∗ case π = cold

From Lemma 7.30, we have
· (a1) cold↑∈ Φ′c

From monotonicity of effect typing, Lemma 7.19 and Lemma 7.18, we have
· (b1) Σ;ψ � cold↑

From the definition of effect typing, we know
· (c1) Σ � ψ : hot

Now using (B4), we know l0 is hot, thus it may follow the same proof steps as the
first case.

• case T-New. e = new D(e)

From the typing rule T- N E W, we have the following:

– (A1) f̂i:Ei = constrType(D)

– (A2) Γ;C ` ei : Ei ! (Φi,Πi)

– (A3) (Φ′,Π′) = init(D, f̂i = Πi)

– (A4) Φ = ∪Φi ∪ Φ′

– (A5) Π = Π′

Let Σ0 = Σ, σ0 = σ, use induction hypothesis on arguments consecutively:
– (B1) Σi−1 4 Σi, Σi−1 � Σi, Σi−1 B Σi and Σi � σi
– (B2) Σi � li : Ei
– (B3) Σi;ψ � li : Πi

– (B4) Σi−1 � ψ : hot =⇒ Σi � li : hot

We define σ′0 and Σ′0 with a fresh location l:

114

– (C1) σ′0 = σn ∪ {l 7→ (D, f̂i = li)}
– (C2) Σ′0 = Σn ∪ {l 7→ D{f̂i}} B class parameters

The fields f̃ of the value l type check because the potential typing for C.this.f̃ allows any
value, other fields type check because they are hot.

Now we may repeat the proof steps in the basic model to arrive at σ′ and Σ′ such that
– (D1) Σ′ � l : Dwarm

– (D2) Σ′ � σ′

– (D3) Σ � Σ′

– (D4) Σ� Σ′

– (D5) ΣB Σ′

From the definition of init, there are two cases:
– case Π = {warm[C]}

The conclusion Σ′;ψ � l : Π follows from (D1) and the definition of potential typing.

– case Π = ∅
In this case, we know all arguments li are hot. By the same reasoning in the basic
model, we know l is hot as well. The conclusion Σ′;ψ � l : Π follows immediately from
the definition of potential typing.

• case T-Block. e = (e0.f = e1; e2)

From the typing rule T- B L O C K, we have the following:
– (A1) Γ;C ` e0 : E ! (Φ0,Π0)

– (A2) B = fieldType(E, f)

– (A3) Γ;C ` e1 : B ! (Φ1,Π1)

– (A4) Γ;C ` e2 : D ! (Φ2,Π)

– (A5) Φ = Φ0 ∪ Φ1 ∪Π1↑ ∪Φ2

From the induction hypothesis on e0, we know there exist l0, σ0 and Σ0 such that:
– (B1) Σ 4 Σ0, Σ� Σ0, ΣB Σ0 and Σ0 � σ0

– (B2) Σ0 � l0 : E

– (B3) Σ0;ψ � l0 : Π0

– (B4) Σ � ψ : hot =⇒ Σ0 � l0 : hot

– (B5) (E,ω0) = σ0(l0)

From the induction hypothesis on e1, we know there exist l1, σ1 and Σ1 such that:
– (C1) Σ0 4 Σ1, Σ0 � Σ1, Σ0 B Σ1 and Σ1 � σ1

– (C2) Σ1 � l1 : B

– (C3) Σ1;ψ � l1 : Π1

– (C4) Σ0 � ψ : hot =⇒ Σ1 � l1 : hot

115

From the premise Σ;ψ � Φ, (A5) and monotonicity of effect typing, we have
– (D1) Σ1;ψ � Π1↑

From (C3), (C4), (D1) and Lemma 7.23, we have
– (E1) Σ1 � l1 : Bhot

We define σ′1 as follows
– (F1) σ′1 = σ1 ∪ {l 7→ [f 7→ l1]σ1(l0)}
– (F2) Σ1 � σ′1 B by (E1) and definition

Now using induction hypothesis on e2 in (A4), we have
– (G1) Σ1 4 Σ2, Σ1 � Σ2, Σ1 B Σ2 and Σ2 � σ2

– (G2) Σ2 � l2 : D

– (G3) Σ2;ψ � l2 : Π

– (G4) Σ1 � ψ : hot =⇒ Σ2 � l2 : hot

The result follows immediately.

C O R O L L A R Y 7.1 (Soundness). If ` P , then ∀k. evalProg(P)(k) = Some(r) =⇒ r 6= None.

7.10 Discussion

The most important insight is the semantic interpretation of potentials and effects. While the
semantics of effects is relatively straight-forward, the semantics of potentials is subtle.

Our first attempt was to store potentials directly in the store typing Σ. This leads us nowhere,
as a potential does not have a meaning on its own. Potentials represent aliasing information,
they are relational in nature. This means that the potential of a value may only be defined relative
to another value.

As the potentials of a class field are defined relative to this, it is natural to check that the field
value of an object always has the potential { C.this.f } relative to the value of this, where C is
the class of the object.

Meanwhile, potentials are an over-approximation of values that are possibly under initializa-
tion. Consequently, if a value is hot, we may disregard its potentials, i.e. it may take any potentials.
Otherwise, if the value is not hot, then it should take one of the root potentials (β) directly or
indirectly, which represents a value under initialization.

116

With the insights above, we arrive at the definitions presented in Figure 7.3 and Figure 7.4.

7.11 Conclusion

In this chapter, we proved the soundness of the type-and-effect system. The meta-theory heavily
depends on the meta-theory developed for the basic model, which evidences the foundational
role it plays in developing more complex algorithms and their meta-theories.

117

Chapter 8

Implementation and Evaluation

Thoughts without content are empty,
intuitions without concepts are blind.

— Immanuel Kant

The inference system presented in Chapter 6 works on an experimental language with neither
inheritance nor inner classes. Does it scale to real-world programming languages? We answer
the question affirmatively by showing concretely how to scale the technique to handle inner
classes and inheritance. Based on the extended system, we implement an initialization checker
for the Scala programming language.

8.1 Motivation

We have presented an inference system for a simple experimental language in Chapter 6. Real-
world programming languages, however, have many more language features than the experi-
mental language. One particular challenge is related to inner classes [30]. Though inner classes
are flattened as part of compilation, there are several compelling reasons for the checker to work
directly with inner classes before the flattening:

• Flattening will create a lot of synthetic code, e.g. outer accessors, and the names and posi-
tions for the synthetic code are sometimes meaningless for programmers. Consequently, it
is difficult to report user-friendly error messages.

• The full-construction analysis requires the source code of parent constructors, which
could be located in another separately-compiled library. In the Scala 3 compiler, the code
is available in an intermediate representation before any lowering, such as flattening or

118

closure conversion. Therefore, the checker cannot avoid inner classes that are present in
libraries.

• The inference system in chapter 6 is not expressive enough to support interactions between
inner classes and outer class during initialization.

The last point can be seen from the example below:

1 class Trees {
2 private var counter = 0
3 class ValDef { counter += 1 }
4 val theEmptyValDef = new ValDef
5 }

The code above is semantically equivalent to the following after lowering:

1 class Trees {
2 var counter: Int = 0
3 val theEmptyValDef = new ValDef(this)
4 }
5 class ValDef(outer: Trees) { outer.counter += 1 }

If we depend on flattening of inner classes and then resort to the inference system in Chapter
6 to check initialization of classes, the code above would be rejected, even if we automatically
mark outer as @cold. This is because we cannot access the field outer.counter of the cold object
outer.

The combination of inheritance and inner classes may create complex initialization code, as
the following example shows:

1 abstract class NameInfo
2 abstract class NameKind(val tag: Int) { self =>
3 class Info extends NameInfo {
4 def kind = self
5 }
6 }
7 object SignedName extends NameKind(SIGNED) {
8 case class SignedInfo(sig: Signature) extends Info {
9 override def toString: String = s"$kind $sig"

10 }
11 val signedInfo = SignedInfo(Signature.NotAMethod)
12 val signedTxt = signedInfo.toString
13 }

Inheritance and inner classes may also combine to create some subtle code patterns:

119

1 class Outer { outer =>
2 class Inner extends Outer {
3 val x = 5 + outer.n
4 }
5 val inner = new Inner
6 val n = 6
7 }

We will show how to implement a type-and-effect inference system that is capable of handling
the complex features above. For the example above, it reports the following error message:

1 -- Error: code/inner-loop.scala:6:6 ----------------------------------
2 6 | val n = 6
3 | ^
4 | Access non-initialized field n. Calling trace:
5 | -> val inner = new Inner [inner-loop.scala:5]
6 | -> val x = 5 + outer.n [inner-loop.scala:3]

The careful reader will find that the program actually loops and causes stack overflow, instead
of accessing the uninitialized field n. The checker soundly over-approximates the concrete
semantics, it is thus justified to report an error here.

8.2 Design

The main challenge here is how to deal with inner classes. Given the following code example:

1 class Trees {
2 class ValDef {
3 counter += 1
4 def isEmpty = theEmptyValDef == this
5 }
6 class EmptyValDef extends ValDef
7 val theEmptyValDef = new EmptyValDef
8 private var counter = 0 // error
9 }

The first question is, what are the potentials and effects of the expression new EmptyValDef?

The potential is not empty, as the object holds a hidden reference to the outer this, which
enables it to access the field counter and theEmptyValDef. A tentative answer is warm, as all fields
of the object are initialized and it is in accord with the potential of the expression after flattening.
For the system of chapter 6, we know that all outer this should be regarded as cold for soundness.
This means it is impossible to support the following code:

120

1 class Trees {
2 private var counter = 0
3 class ValDef {
4 counter += 1 // Trees.this is cold!
5 def isEmpty = theEmptyValDef == this
6 }
7 class EmptyValDef extends ValDef
8 val theEmptyValDef = new EmptyValDef
9 }

For practicality of the system, we find it important to support the code patterns above that
involve the interaction between inner classes and outer classes. A natural idea is to add more
information to warm to remember the potentials for the outer. This idea gives us a potential like
warm(C, π), where C is the concrete class of the object, and π is the outer for the class C. In the
code above, the potential for the new-expression would be warm(EmptyValDef, Trees.this).

The reader may have a doubt in mind: an object may span several different classes in the
inheritance chain, possibly with a different outer for each class. The potential warm(C, π) seems
insufficient to represent the outers for all classes in the inheritance chain. Here, the crucial
insight is that the outers for parent classes are decided by the outer for the most concrete class. This
can be seen from the following example:

1 class Parent {
2 class Base
3 }
4 class Child(p: Parent) extends Parent {
5 class A extends p.Base
6 class B extends this.Base
7 }
8 def test(c1: Child, c2: Child) = {
9 val a = new c1.A

10 val b = new c2.B
11 }

In the code above, we create two objects of the class A and B in the method test. For the object
a, the outer for Base is c1.p. For the object b, the outer for Base is c2. Both of them can be derived
from the definitions of the class and the outer for the most concrete class. This insight will be
made concrete in the semantics.

Therefore, the potentialwarm(C, π) is a good choice. In the context of two-phase checking, the
summarization phase will create potentials like warm(C, π) for new-expressions new p.C(args).
In the checking phase, we compute the outers for parent classes from the potential warm(C, π).

Another complexity concerns deeply nested inner classes, where an inner class may be
enclosed by several outer classes, as the following code shows:

121

1 class A {
2 class B {
3 class C {
4 B.this
5 A.this
6 }
7 }
8 }

Does it suffice to just store the potentials of the immediate outer π inwarm(C, π)? The answer
is affirmative, as non-immediate outers are determined by the immediate outer π. In the above,
the non-immediate outer A.this for class C can be computed as the immediate outer of B.this,
which is in turn the immediate outer of C.this. The formal semantics will take advantage of this
insight.

Now we turn to the other half of the question: what are the effects of the expression new
EmptyValDef? Semantically, the expression will execute the constructor of the class EmptyValDef,
which in turn will call its super constructor. This is similar to method call effects, we represent
them aswarm(C, π).init(C). Why do we choose the prefixwarm(C, π)? First, what we care about
in this effect is possible accesses of uninitialized fields of the outer π, thus it has to be reflected
in the prefix. Second, initialization errors related to uninitialized fields of the inner class will be
checked separately, we thus assume all fields of the inner class are initialized in the effect.

8.3 Formalization

We start by introducing the syntax and semantics of our experimental language.

8.3.1 Syntax and Semantics

Our language resembles a subset of Scala with inner classes, immutable fields and methods:

P ∈ Program ::= class C { F M C }
C ∈ Class ::= class C(f̂ :T) extends p.D(e) { F M C } |

class C(f̂ :T) { F M C }
F ∈ Field ::= val f :T = e

e ∈ Exp ::= x | C.this | e.f | e.m(e) | new p.C(e)

p ∈ Path ::= C.this | p.f | x
T ∈ Type ::= C

M∈Method ::= def m(x:T) : T = e

122

A program is just a parameter-less class, which may contain deeply nested classes in its class
body. Classes have two variants, those that extend other classes, and those that do not extend
any class. We do not assume a universal Object class in the language. We assume class names are
unique in a program.

As expected, now this has to be prefixed with a class name to indicate the class that it refers
to, due to the existence of inner classes. Meanwhile, to create an instance of a class, we need to
specify its outer, which is required to be a path p, as in new p.C(e).

Why restrict the outer to be a path? Theoretically, it can be any expression, and it is exactly
what Java supports. A superficial answer is that the restriction resembles path-dependent types
in Scala. The deep semantic reason is that the restriction enables us to only store one immediate
outer for an object, and to derive the outers for all classes in the inheritance chain. This property
simplifies the representation of objects. Otherwise, we would have to store multiple outers for
an object, one for each class in the inheritance chain.

The following constructs are used in defining the semantics:

Ξ ∈ ClassTable = ClassName ⇀ (ClassName× Class)
σ ∈ Store = Loc ⇀ Obj

ρ ∈ Env = Name ⇀ V alue

o ∈ Obj = ClassName× Loc× (Name ⇀ V alue)

l, ψ ∈ V alue = Loc

We assume a global class table Ξ, which maps a class name to its definition and the name of its
immediate outer class. For the top-level class, we assume its outer class is itself. The information
will never be used, thus it is not a problem.

An object stores its class name, its outer, and a mapping of field values, which includes all
fields defined in the inheritance chain. We assume that field names are unique in the class
inheritance hierarchy.

An immediate problem in the semantics is, what is the meaning of C.this, encountered in a
class D, where the value for D.this is ψ? Note that the concrete class of ψ may be a subclass of D.
The resolution is represented by resolveThis(C,ψ, σ,D), which is defined in Figure 8.1.

In the simplest case, C = D, thus the result is just ψ. Otherwise, C must be an outer
class of D. Suppose the concrete class of ψ is E, the immediate outer of E for ψ is l, we
may compute the immediate outer of D as l0 with resolveOuter(E, l, σ,D). Then we call
resolveThis(C, l0, σ, owner(D)) recursively.

The method resolveOuter(E, l0, σ, C) computes the immediate outer of the classC, given the
immediate outer of class E is l0. Note that as a prerequisite, E must be a subclass of C. In the
simplest case, if E = C, then the result is just l0. Otherwise, we need to go up the inheritance

123

This Resolution
resolveThis(C,ψ, σ, C) = ψ
resolveThis(C,ψ, σ,D) = resolveThis(C, lo, σ, owner(D))

where (E, l,_) = σ(ψ)
and lo = resolveOuter(E, l, σ,D)

Outer Resolution
resolveOuter(C, lo, σ, C) = lo
resolveOuter(E, lo, σ, C) = resolveOuter(D, lp, σ, C)

where lookup(E) = class E(f̂ :T) extends p.D(e) { . . . }
and lp = JpK (σ, ∅, lo, E).1

Method Resolution
resolveMethod(C,m) = (C,meth) if Some(meth) = lookup(C,m)
resolveMethod(E,m) = resolveMethod(D,m) if None = lookup(E,m)

where lookup(E) = class E(f̂ :T) extends p.D(e) { . . . }

Owner Resolution
owner(C) = D where (D, _) = Ξ(C)

Figure 8.1 – Semantic Helper Methods

chain. If class E extends another class D with the prefix p, we may compute the outer for class D
as lp, then call resolveOuter(D, lp, σ, C) recursively.

Here we see concretely why the restriction of the outer to be a path matters: we may derive
the outer from p by just querying the heap. If the path is an arbitrary expression or it refers to a
mutable variable, it will be impossible to derive the outer. As the values for outers are immutable,
it makes sense to cache them in an interpreter or generate additional fields for them in the
compiler to avoid recomputation.

With the helper methods, now we may define semantics of the language, which is presented
in Figure 8.2. The semantics of a program is defined by creating an instance of the top-level class.
The top-level object does not have an outer, so we set its outer to itself.

The evaluation of an expression has the form JeK (σ, ρ, ψ, C) = (l, σ′), which means that the
expression inside the class C evaluates to l and the heap σ′, given the heap σ, the environment ρ,
and the value ψ for C.this. Without the additional parameter C, it would be impossible to give
semantics to the expression E.this. Note that ψ might be a subclass of C, thus we cannot derive
C from ψ. The following code example demonstrates the semantic subtlety:

1 class Outer {
2 val inner = new Inner

124

Program evaluation
q
class C { F M C }

y
= (l, σ)

q
class C { F M C }

y
= (l, σ)

where σ = init(l, ∅, C, { l 7→ (C, l, ∅) }, l)
and l is a fresh location, and Ξ = C 7→ (D, C)

Expression evaluation JeK (σ, ρ, ψ, C) = (l, σ′)

JxK (σ, ρ, ψ,C) = (ρ(x), σ)
JE.thisK (σ, ρ, ψ,C) = (resolveThis(E,ψ, σ, C), σ)
Je.fK (σ, ρ, ψ,C) = (ω(f), σ1) where (l0, σ1) = JeK (σ, ρ, ψ,C)

and (_, _, ω) = σ1(l0)
Je0.m(e)K (σ, ρ, ψ,C) = Je1K (σ2, ρ1, ψ, C)

where (l0, σ1) = Je0K (σ, ρ, ψ, C)
and (D, _, _) = σ1(l0)

and resolveMethod(D,m) = (E, def m(x:T) : T = e1)

and (l, σ2) = JeK (σ1, ρ, ψ,E)

and ρ1 = x 7→ l
Jnew p.D(e)K (σ, ρ, ψ, C) = (l, σ3)

where lp = JpK (σ, ∅, ψ, C).1

and (l, σ1) = JeK (σ, ρ, ψ, C)
and σ2 = [l 7→ (D, lp, ∅)]σ1 where l is fresh
and σ3 = init(l, l,D, σ2, lp)

Initialization
init(ψ, l, C, σ, lo) = init(ψ, lu, D, σ3, lp)

if lookup(C) = class C(f̂ :T) extends p.D(e){ F M C }
where σ1 = assign(ψ, f̂ , l, σ)

and (lu, σ2) = JeK (σ1, ∅, lo, owner(C))
and lp = JpK (σ2, ∅, lo, owner(C)).1

and σ3 =
q
F

y
(σ2, ψ, C)

init(ψ, l, C, σ, lo) = σ2 if lookup(C) = class C(f̂ :T) { F M C }
where σ1 = assign(ψ, f̂ , l, σ)

and σ2 =
q
F

y
(σ1, ψ, C)

Jval f : T = eK (σ, ψ,C) = assign(ψ, f, l1, σ1) where (l1, σ1) = JeK (σ, ∅, ψ, C)

Helpers
JeK (σ, ρ, ψ, C) = fold e (Nil, σ) f where

f (ls, σ1) e = let (l, σ2) = JeK (σ1, ρ, ψ, C) in (l :: ls, σ2)q
F

y
(σ, ψ,C) = fold F σ f where f σ1 F = JFK (σ1, ψ, C)

assign(ψ, f, l, σ) = [ψ 7→ (C, lo, [f 7→ l]ω)]σ where (C, lo, ω) = σ(ψ)

assign(ψ, f, l, σ) = [ψ 7→ (C, lo, [f 7→ l]ω)]σ where (C, lo, ω) = σ(ψ)

Figure 8.2 – Big-step semantics, defined as a definitional interpreter.

125

3

4 inner.foo
5 inner.bar
6

7 class Inner extends Outer {
8 def foo = Outer.this
9 }

10

11 def bar = Outer.this
12 }

In the code above, the method call inner.foo and inner.bar will return different results,
though they contain the same code and share the same value for this. The reason is that the
meaning of Outer.this depends on where it is located. In the method bar, Outer.this is the same
as the receiver. In contrast, it refers to the outer object in the method foo. This example shows
that the following tempting optimization of the semantics is incorrect:

JD.thisK (σ, ρ, ψ,C) = ψ if classOf (ψ) <: D

Another noticeable change in the semantics is that in instantiating a class, we need to follow
the inheritance chain and accumulate all fields. There is no need to store the outer for each class
in the inheritance chain, because they can be derived from the outer for the most concrete class.

8.3.2 Effects and Potentials

The definition of effects and potentials are defined in Figure 8.3. Compared to the system in
chapter 6, now a warm potential takes the form warm(C, π), where C is the concrete class of
the object, π is the potential for the immediate outer of C. The potential π.outer(C) refers to
the immediate outer of the class C, where C.this takes the potential π. It is used as a proxy to
give meaning to outer this references, whose concrete meaning will be resolved during effect
checking. We also introduce the effect π.init(C), which denotes the effects of the constructor of
class C, where C.this has the potential π.

The outer potential is created by outer selection. The helper function out is also parameterized
by the length limit of potentials, so that it is possible to tweak how much interaction between
inner classes and outer classes are allowed when initializing an instance of the outer class.

The potentialwarm(C, π) and effect π.init(C) are used in the helper function init. The system
requires all method parameters and class parameters to be fully initialized, only the outer may
be under initialization. In the latter case, the resulting potential is warm, and the resulting effects
contain a constructor call effect.

126

Potentials and Effects

T ::= C | D | E | · · · type
β ::= this | warm(C, π) | cold root

π ::= β | π.f | π.m | π.outer(C) potential
Π ::= { π1, π2, · · · } potentials
φ ::= π↑ | π.f ! | π.m♦ | π.init(C) effect
Φ ::= { φ1, φ2, · · · } effects
Ω ::= { f1, f2, · · · } fields
∆ ::= fi 7→ (Φi,Πi) field summary
S ::= mi 7→ (Φi,Πi) method summary
E ::= C 7→ (∆,S) effect table

Select

select(Π, f) = Π.map(π ⇒ select(π, f)).reduce(⊕)

select(π, f̂) = (∅, ∅)
select(cold, f) = ({cold↑}, ∅)
select(π, f) = ({π.f !}, {π.f}) if length(π) < LIMIT
select(π, f) = ({π↑}, ∅) otherwise

Call

call(Π,m) = Π.map(π ⇒ call(m,π)).reduce(⊕)
call(cold,m) = ({cold↑}, ∅)
call(π,m) = ({π.m♦}, {π.m}) if length(π) < LIMIT
call(π,m) = ({π↑}, ∅) otherwise

Outer Selection

out(Π, C) = Π.map(π ⇒ out(m,π)).reduce(⊕)
out(cold, C) = ({cold↑}, ∅)
out(π,C) = (∅, {π.outer(C)}) if length(π) < LIMIT
out(π,C) = ({π↑}, ∅) otherwise

Init

init(C, πi, f̂j = Πj) = (∪Πj↑ ∪ warm(C, πi).init(C), warm(C, πi))

init(C, ∅, f̂i = Πi) = (∪Πi↑, ∅)

Helpers

Π↑ = { π↑ | π ∈ Π }
(A1, A2)⊕ (B1, B2) = (A1 ∪B1, A2 ∪B2)

Figure 8.3 – Potential and Effect Definition

127

8.3.3 Expression Typing

Expression typing is presented in Figure 6.2. The expression typing judgment takes the form
Γ;C ` e : D ! (Φ,Π), which means that the expression e in class C under the environment Γ, can
be typed as D, it produces effects Φ and has the potential Π.

There are two noticeable changes. First, in the typing rule T- T H I S, forC.this to be well-typed,
C must be visible from the current class D, or equivalently, D must be enclosed inside the class
C. This is enforced by the helper method resolveThis, which traverses the owner classes of the
current class D, and generates a potential of the form π.outer(E) relative to this. If the outer
class is too many levels away beyond the length limit of potentials, the result potentials will be
empty, and the effects will contain a promotion of the outer this.

Second, due to the support of inheritance in the source language, now the type system has
to introduce subtyping. As a result, we need the standard rule T- S U B. The subtyping system is
straight-forward, we thus omit detailed explanation.

8.3.4 Definition Typing

Definition typing defines how programs, classes, fields and methods are checked. The checking
happens in two phases:

(1) first phase: conventional type checking is performed and effect summaries are computed;
(2) second phase: effect checking is performed to ensure initialization safety.

In type checking a class, it checks that field definitions, method definitions and the optional
parent class call are well-typed. The effects for the constructor are accumulated as Φinit, and
stored in the method summary map S. Note that the checking does not go to parent classes nor
inner classes, as each class is type checked and summarized separately.

Note that for field typing, we assume that field names are unique in the inheritance hierarchy,
thus they are not checked. In contrast, for methods, we only assume method names are unique
within a class. Due to overriding, we have to check that the overriding is valid, i.e. the method
parameter types are contra-variant, while the return type is co-variant.

Effect checking of a class takes the form Ξ; E ;BΩ ` C BΩ′ , which means that given an
object of class B with fields in Ω initialized, initializing the fields of class C ensures that fields in
Ω′ of the object are initialized. As a precondition,B must be a subclass ofC. It first checks parent
classes, then checks the effects of each field initialization in the current class.

Note that we do not check the effects in the parent call p.D(e). The reason is that when
we check each class separately, we assume its outers are fully initialized, thus no initialization
effects are observable. The outers for parent classes are determined by the outer of the most

128

Expression Typing Γ;C ` e : D ! (Φ,Π)

x : D ∈ Γ

Γ;C ` x : D ! (∅, ∅)
(T- VA R)

(Φ,Π) = resolveThis(C, ∅, { this }, D)

Γ;D ` C.this : C ! (Φ,Π)
(T- T H I S)

Γ ` e : D ! (Φ,Π) (Φ′,Π′) = select(Π, f) E = fieldType(D, f)

Γ;C ` e.f : E ! (Φ ∪ Φ′,Π′)
(T- S E L)

Γ;C ` e0 : E0 ! (Φ,Π) Γ;C ` ei : Ei ! (Φi,Πi)

(xi:Ei, D) = methodType(E0,m) (Φ′,Π′) = call(Π,m)

Γ;C ` e0.m(e) : D ! (Φ ∪ Φi ∪Πi↑ ∪ Φ′,Π′)
(T- C A L L)

f̂i:Ei = constrType(C) Γ;E ` ei : Ei ! (Φi,Πi)

Γ;C ` p : D ! (Φp,Πp) D <: owner(C) (Φ′,Π′) = init(C,Πp, f̂i = Πi)

Γ;E ` new p.C(e) : C ! (∪Φi ∪ Φp ∪ Φ′,Π′)
(T- N E W)

Γ;C ` e : D ! (Φ,Π) D <: E

Γ;C ` e : E ! (Φ,Π)
(T- S U B)

Subtyping C <: D

C <: C (S - R E F L)

D <: C C <: B

D <: B
(S - T R A N S)

lookup(D) = class D(f̂ :T) extends p.C(e) { . . . }
D <: C

(S - E X T E N D)

This Resolution

resolveThis(C,Φ,Π, C) = (Φ,Π)
resolveThis(C,Φ,Π, D) = resolveThis(C.this,Φ′ ∪ Φ,Π′, owner(D))

where (Φ′,Π′) = out(Π, D)

Figure 8.4 – Expression Typing

129

Program Typing ` P

Ξ = C 7→ (D, C) Ξ;D ` C ! (∆c,Sc)

E = C 7→ (∆c,Sc) Ξ; E ;C f̂ ` C CΩ

` class C { F M C }
(T- P R O G)

Effect Checking Ξ; E ;BΩ ` C BΩ′

lookup(C) = class C(f̂ :T) [extends p.D(e)] { F M C }
Ξ; E ;BΩ∪f̂D ` D BΩ′ (∆, _) = E(C)

(Φf , _) = ∆(fi) E ;BΩ′∪{f1,··· ,fi−1} ` Φf

Ξ; E ;BΩ ` C BΩ′∪f i
(T- C H E C K)

Class Typing Ξ;D ` C ! (∆,S)

∅;E ` p : B ! (Φp,Πp) Tj = constrType(D) B <: owner(D)

∅;E ` e : Tj ! (Φj ,Πj) Ξ;C ` Fi ! (Φi,Πi) Ξ;C ` Mi ! (Φi,Πi)

Φinit = Φp ∪ Φj ∪ Φi ∪Πj↑ ∪ this.init(D)

∆ = fi 7→ (Φi,Πi) S = mi 7→ (Φi,Πi) ∪ { init 7→ (Φinit, ∅) }

Ξ;E ` class C(f̂ :T) [extends p.D(e)] { F M C } ! (∆,S)
(T- C L A S S)

Field Typing Ξ;C ` F ! (Φ,Π)

∅;C ` e : D ! (Φ,Π)

Ξ;C ` val f : D = e ! (Φ,Π)
(T- F I E L D)

Method Typing Ξ;C ` M ! (Φ,Π)

x:T ;C ` e : E ! (Φ,Π)

superClass(C) = B ∧methoType(B,m) = (x : S,D) =⇒ S <: T ∧ E <: D

Ξ;C ` def m(x:T) : E = e ! (Φ,Π)
(T- M E T H O D)

Figure 8.5 – Definition Typing

130

concrete class, as the latter is fully initialized, so are the former. In the case where the outer
is not fully initialized, it is handled in the effect checking of the outer class with the effect
warm(Inner, π).init(Inner). As expected, the effects of class constructors contain the effects of
parent calls, which can be seen in the typing rule T- C L A S S.

8.3.5 Effect Checking

Effect checking judgments take the form E ;CΩ ` φ, which means that given fields Ω of the object
of class C are initialized, the effects φ are allowed. We use the notation E ;CΩ ` Φ to mean that
we check each effect in Φ separately.

We explain the rules below:

• C - A C C 1
The effect this.f ! accesses the field f on the current object, thus it suffices to check that
f ∈ Ω.

• C - A C C 2
All fields of warm objects are initialized, thus the effect warm(D,π).f ! is always safe.

• C - A C C 3
In this case, π might be an outer potential of the form π′.outer(D) or π′.f or π′.m. In such
cases, we just propagate the potential π, and check that field accesses on the propagated
potentials are safe.

• C - I N V 1
For a member call on the current object, we first resolve the virtual method call by using
the concrete class B of the current object. Next, we look up the effects of the method m,
which we denote as Φ. Finally, we check that the effects in Φ are safe.

• C - I N V 2
Similar as above, but the view change uses warm(D,π) to replace this.

• C - I N V 3
Similar to C - A C C 3.

• C - U P 1
To promote the potential warm(D,π) to be fully initialized, it suffices to check that the
outer π may be promoted.

• C - U P 2
Similar to C - I N V 3. Note that π may not be cold or this, as there are no rules to propagate

131

potentials for them.

• C - I N I T.
Similar to C - I N V 2 Note that our system ensures that the prefix π of an initialization effect
π.init(E) always has the form warm(D,π′).

8.3.6 Potential Propagation

Potential propagation judgments take the form E ;C ` π (Φ,Π), which means that the poten-
tial π propagates to the potentials Π and effects Φ, given that this refers to an object of the class
C. We need the effects Φ as part of the propagation result, because the propagation may generate
potentials that are beyond the length limit, in which case we promote the potentials to be fully
initialized and return an empty set of potentials in order to terminate the effect checking.

We explain the rules below:

• P- A C C 1.
For a field access on the current object, we first resolve the field f to its defining class D.
Next, we look up the potentials of the field f in D, which we denote as Π. Finally, we return
Π as the result.

• P- A C C 2.
Similar as above, but the view change uses warm(C, π) to replace this.

• P- A C C 3
In this case, π might be an outer potential of the form π′.outer(D) or π′.f or π′.m. In such
cases, we just propagate the potential π, and select the field f on the propagated potentials.
This is one of the places where we may generate effects due to the selection.

• P- I N V 1
Similar to P- A C C 1, but work on methods.

• P- I N V 2
Similar to P- A C C 2, but work on methods.

• P- I N V 3
Similar to P- A C C 3. This is another place where we may generate effects due to the
selection.

• P- O U T 1
In this case, we are referring to the outer of the current class, which is fully initialized.
Recall that when we check each class separately, we assume its outer is fully initialized.

132

Effect Checking E ;CΩ ` φ

f ∈ Ω

E ;CΩ ` this.f !
(C - A C C 1)

E ;CΩ ` warm(D,π).f ! (C - A C C 2)

E ;C ` π (Φ,Π) (Φ′, _) = select(Π, f) E ;CΩ ` Φ′ ∪ Φ

E ;CΩ ` π.f !
(C - A C C 3)

(D, _) = resolve(C,m) Φ = effectsOf (D,m) E ;CΩ ` Φ

E ;CΩ ` this.m♦
(C - I N V 1)

(E, _) = resolve(D,m) Φ = effectsOf (E,m)
warm(D,π) ` Φ Φ′ E ;CΩ ` Φ′

E ;CΩ ` warm(D,π).m♦
(C - I N V 2)

E ;C ` π (Φ,Π) (Φ′, _) = call(Π,m) E ;CΩ ` Φ′ ∪ Φ

E ;CΩ ` π.m♦
(C - I N V 3)

E ;CΩ ` π↑
E ;CΩ ` warm(D,π)↑

(C - U P 1)

E ;C ` π (Φ,Π) E ;CΩ ` Π↑ ∪Φ

E ;CΩ ` π↑
(C - U P 2)

Φ = effectsOf (E, init) warm(D,π) ` Φ Φ′ E ;CΩ ` Φ′

E ;CΩ ` warm(D,π).init(E)
(C - I N I T)

Figure 8.6 – Effect Checking

133

Propagate Potentials E ;C ` π (Φ,Π)

(D, _) = resolve(C, f)
Π = potentialsOf (D, f) D;C.this ` Π Π′

E ;C ` this.f (∅,Π′)
(P- A C C 1)

(D, _) = resolve(C, f)
Π = potentialsOf (D, f) warm(C, π) ` Π Π′

E ;E ` warm(C, π).f (∅,Π′)
(P- A C C 2)

E ;C ` π (Φ,Π) (Φ′,Π′) = select(Π, f)

E ;C ` π.f (Φ′ ∪ Φ,Π′)
(P- A C C 3)

(D, _) = resolve(C,m) Π = potentialsOf (D,m)

E ;C ` this.m (∅,Π)
(P- I N V 1)

(D, _) = resolve(B,m)
Π = potentialsOf (D,m) warm(C, π) ` Π Π′

E ;E ` warm(C, π).m (∅,Π′)
(P- I N V 2)

E ;C ` π (Φ,Π) (Φ′,Π′) = call(Π,m)

E ;C ` π.m (Φ′ ∪ Φ,Π′)
(P- I N V 3)

E ;C ` this.outer(D) (∅, ∅) (P- O U T 1)

Π = resolveOuter(E, π,D)

E ;C ` warm(E, π).outer(D) (∅,Π)
(P- O U T 2)

E ` π (Φ,Π) (Φ′,Π′) = out(Π, D)

E ;C ` π.outer(D) (Φ ∪ Φ′,Π′)
(P- O U T 3)

Outer Resolution

resolveOuter(C, π,C) = { π }
resolveOuter(E, π,C) =

⋃
resolveOuter(D,πi, C)

where lookup(E) = class E(f̂ :T) extends p.D(e){ . . . }
and ∅; owner(E) ` p : B ! (_,Π)
and π ` Π πi

Figure 8.7 – Potential Propagation

134

As a result, all outers for the object in the inheritance chain are fully initialized. The case
where outer is not fully initialized is handled in checking the initialization of the outer
class, not the inner class.

• P- O U T 2
In this case, we know the current object is warm(E, π), we need to resolve the immediate
outer for the class D. The system ensures that we must have E <: D. Note that the result is
not π, because it could be that E is not D, but a subclass of D. The outer is resolved with
the helper function resolveOuter. The function starts from the outer for E, and goes up
the inheritance chain by computing the outer from the parent prefix p until it reaches the
class D. The helper method looks similar to its semantic counterpart, but works on the
abstract domain.

• P- O U T 3
Similar to P- A C C 3.

8.3.7 View Change

View change judgments for potentials take the form π ` π1 π2, which roughly means that
the potential π1 becomes π2 if we replace this with π. We need to perform view change when
checking an effect like warm(C, π).m♦, where we need to replace this with warm(C, π) in the
effects for the method m.

We explain the rules below:

• A S - P O T- T H I S

It simply returns π, which is intended to replace this.

• A S - P O T- C O L D

The potential cold stays unchanged.

• A S - P O T- W A R M 1
It substitutes the potential π in warm(D,π) recursively. However, we changed the
substitute from warm(E, πo) to warm(E, cold) in order to make effect checking terminate.
This is discussed in more detail in the next section.

• A S - P O T- W A R M 2
It just performs the substitution recursively.

• A S - P O T- A C C

The same as above.

135

View Change - Potentials π ` π π

π ` this π (A S - P O T- T H I S)

π ` cold cold (A S - P O T- C O L D)

warm(E, cold) ` π π′

warm(E, πo) ` warm(D,π) warm(D,π′i)
(A S - P O T- W A R M 1)

π0 ` π π′

π0 ` warm(D,π) warm(D,π′i)
(A S - P O T- W A R M 2)

π0 ` π π′

π0 ` π.f π′.f
(A S - P O T- A C C)

π0 ` π π′

π0 ` π.m π′.m
(A S - P O T- I N V)

π0 ` π π′

π0 ` π.outer(D) π′.outer(D)
(A S - P O T- O U T)

View Change - Effects π ` φ φ

π0 ` π π′

π0 ` π↑ π′↑
(A S - E F F - U P)

π0 ` π π′

π0 ` π.f ! π′.f !
(A S - E F F - A C C)

π0 ` π π′

π0 ` π.m♦ π′.m♦
(A S - E F F - I N V)

π0 ` π π′

π0 ` π.init(D) π′.init(D)
(A S - E F F - I N I T)

Figure 8.8 – View Change

136

• A S - P O T- I N V

The same as above.

• A S - P O T- O U T

The same as above.

The view change rules for effect simply performs substitution for the potential part, we thus
omit the detailed explanation.

8.3.8 Termination

In effect checking, we assume the maintenance of a set of already checked effects during the
checking of each class. This gives us a simple way to avoid non-termination caused by recursive
methods, which is essentially the same as computing the closure of effects for the type-and-effect
system in chapter 6. Meanwhile, it improves performance by avoiding checking the same effect
twice. To avoid cluttering the effect checking rules, we omit chaining the already checked set of
effects in the rules.

In the system of chapter 6, the domain of effects and potentials is finite for a given program
thanks to the limited length of potentials. In the current system, we also restrict the length of
potentials. However, the domain is still infinite due to the existence of the potential warm(C, π),
which poses a problem for the termination of effect checking.

The non-termination of effect checking can be triggered with a simple program, if the effect
checking rules are designed naively:

1 class B {
2 class C extends B
3 val c: C = new C
4 }

In the code above, the class C extends the class B, and we create an instance of the class C in
the body of the classB. When checking the initialization of an instance ofB, we would encounter
the effect φ = warm(C, this).init(C). Note that φ is an effect in the constructor of class B, thus
indirectly in the constructor of class C. When we are checking the effect warm(C, π).init(C), we
will encounter the effect [this 7→ warm(C, π)]φ, for any π. Thus, with naive effect checking, it will
follow the infinite sequence below:

warm(C, this).init(C)

=⇒ warm(C,warm(C, this)).init(C)

=⇒ warm(C,warm(C,warm(C, this))).init(C)

=⇒ . . .

137

The key to stop the sequence is the rule A S - P O T- W A R M 1 in Figure 8.8, where we change
the potential to warm(E, cold) to avoid building up more complex nested potentials. With this
rule, we will get a terminating sequence below:

warm(C, this).init

=⇒ warm(C,warm(C, cold)).init

=⇒ warm(C,warm(C, cold)).init

Actually, this is the place where we use the potential cold. This is another evidence that the
abstractions in the basic model play a fundamental role in the design of initialization systems.

8.4 Implementation

In this section, we show the implementation of a practical initialization checker for the Scala
programming language. The implementation is already integrated in the Scala 3 compiler and
available to Scala programmers via the compiler option -Ycheck-init.

One advantage of the type-and-effect system is that it integrates well with the compiler
without changing the core type system. In contrast, integrating a type-based system in the
compiler poses an engineering challenge, as the following example demonstrates:

1 class Knot {
2 val self: Knot @cold = this
3 }

In the code above, the type of the field self depends on when we ask for its type. If it is
queried during the initialization of the object, then it has the type Knot @cold. Otherwise, it has
the type Knot. We do not see a principled way to implement the type-based solution in the Scala
3 compiler.

8.4.1 Lazy Summarization

The approach of two-phase checking will blindly summarize the effects and potentials of all
methods, regardless of whether such methods are actually called or not during initialization.
Given the following code, the summarization will summarize the method doWork, though it is not
called during initialization:

1 class Worker(timeOut: Int) {
2 def doWork() = { /* 500 lines of code omitted */ }
3 }

138

In practice, most methods will not be called during initialization, so blind summarization is
a waste of computation that harms compiler performance. In the implementation, we follow the
strategy of lazy summarization: a method is summarized and cached the first time the summary
is required.

8.4.2 Separate Compilation

The Scala 3 compiler provides a standard intermediate representation of Scala code, called
TASTy. All libraries are distributed with TASTy, which can be loaded by the compiler together
with symbol and type information.

Our implementation takes advantage of the existing compiler infrastructure to implement
full-construction analysis. The analysis requires access to code in the parent class, which could
be located in a separately compiled library.

8.4.3 Debuggability

Error reports should facilitate diagnosis and bug fix. The formal system only tells whether a
program can be accepted or not, but it does not report why the program is incorrect when it is
rejected. For example, given the following program:

1 class Greeting {
2 val message: String = this.welcome()
3 val name: String = "Jack"
4 def welcome() = "Hello, " + name // error
5 }

If the checker only reports that the field name is not initialized at the last line, the programmer
still has no clue what the problem is. In a complex program, there can be many paths that lead
to an initialization error. For diagnosis, showing the execution path that leads to an error is more
helpful. The implemented checker reports the following error:

1 -- Error: code/greeting.scala:3:6 --
2 3 | val name: String = "Jack"
3 | ^
4 |Access non-initialized field name. Calling trace:
5 | -> val message: String = this.welcome() [greeting.scala:2]
6 | -> def welcome() = "Hello, " + name [greeting.scala:4]

The error message above contains the stack trace that leads to the error, which makes it much
easier to figure out why the error happens.

139

Implementing this feature is easy: it suffices to maintain a stack of method calls as context for
checking effects. When we check a method call effect, we augment the context with the method
call, and use the augmented stack to check the effects inside the method.

8.4.4 Functions

We introduce the potential Fun(Φ,Π) to represent the potential of a function literal, where Φ is
the set of effects to be triggered when the function is called, while Π is the set of potentials for
the result of the function call. With the extension, we can easily support the following usage:

1 class Rec {
2 val even = (n: Int) => n == 0 || odd(n - 1)
3 val odd = (n: Int) => n == 1 || even(n - 1)
4 val flag: Boolean = odd(6)
5 }

8.4.5 Properties

In languages such as Scala and Kotlin, fields are actually properties, public field accesses are
actually dynamic method calls, as the following code shows:

1 class A {
2 val a = "Bonjour"
3 val b: Int = a.size
4 }
5

6 class B extends A {
7 override val a = "Hi"
8 }
9

10 new B

The code above will throw a null-pointer exception at runtime when initializing the field A.b,
because the code a.size will access the field B.a, which is not yet initialized.

The checker treats field accesses as method calls, it can resolve dynamic-dispatching property
access on this statically by the concrete type of this, thanks to the full-construction analysis. In
the presence of properties, we think full-construction analysis is the only reasonable choice for
safe initialization.

140

8.4.6 Traits

Traits are a key language feature of Scala. Unlike interfaces in Java, it is possible to define fields
and methods in traits. The following example illustrates the subtlety related to initialization of
traits:

1 trait TA { val x = "EPFL" }
2 trait TB { def x: String; val n = x.length }
3 class Foo extends TA with TB
4 class Bar extends TB with TA
5 new Foo // ok
6 new Bar // error

In the code above, the class Foo and class Bar only differ in the order in which the traits are
mixed in. For the class Foo, the body of the trait TA is evaluated before the body of TB, thus the
expression new Foo works as expected. In contrast, new Bar throws an exception, because the
body of the trait TB is evaluated first, and at the time the field x in TA is not yet initialized when it
is used in TB.

Formally, traits are initialized following a scheme called linearization [2]. The implementation
follows the linearization semantics in initialization check as well as in the resolution of virtual
method calls. The subtlety with traits is another justification for full-construction analysis.

8.4.7 Local Classes

Local classes are handled as if they were inner classes located in the closest enclosing classes.
This approach is safe, because in the system all method parameters and local definitions are
required to be hot. The only possible initialization effects that could be observed in a local class
are the initialization effects of its enclosing class.

8.5 Evaluation

We evaluate the implementation on a significant number of real-world projects, with zero
changes to the source code.

8.5.1 Experimental Result

The experimental results are shown in Figure 8.9. The first three columns show the size of the
projects and warnings reported for each project:

141

Project KLOC W/K W X1 X2 X3 X4 A B C D E F G H

D O T T Y 106.0 0.73 77 742 447 146 350 7 16 2 32 0 3 4 13
I N T E N T 1.8 39.53 71 10 290 0 1 0 0 0 71 0 0 0 0

A L G E B R A 1.3 4.70 6 1 6 0 0 0 0 0 0 0 0 6 0
S T D L I B 2 1 3 43.6 0.62 27 231 104 8 99 14 0 4 2 0 1 6 0
S C A L A C H E C K 5.5 1.08 6 39 70 6 83 0 0 0 6 0 0 0 0
S C A L A T E S T 378.9 0.39 149 1037 718 18 664 0 0 8 114 0 8 19 0
S C A L A X M L 6.8 0.15 1 36 13 0 0 0 0 0 0 0 0 1 0
S C O P T 0.3 0.00 0 6 4 0 0 0 0 0 0 0 0 0 0
S C A L A P 2.2 5.43 12 62 57 2 108 0 0 0 7 5 0 0 0
S Q U A N T S 14.1 0.00 0 9 0 0 0 0 0 0 0 0 0 0 0
B E T T E R F I L E S 2.8 0.00 0 17 1 0 0 0 0 0 0 0 0 0 0
S C A L A P B 16.2 0.31 5 28 10 0 6 4 0 0 1 0 0 0 0
S H A P E L E S S 2.5 0.79 2 5 0 0 0 0 0 0 0 2 0 0 0
E F F P I 5.7 0.53 3 15 5 0 12 0 0 0 3 0 0 0 0
S C O N F I G 21.8 0.60 13 70 43 0 8 13 2 2 0 0 1 6 2
M U N I T 2.7 1.13 3 32 73 1 13 0 0 0 2 0 0 0 1
S U M 612.1 0.61 375 2340 1841 181 1344 38 18 16 238 7 13 42 16

Figure 8.9 – Experimental result. The column W/K is the number of warnings per KLOC, and the
column W is the number of warnings issued for the corresponding project. Other columns are
explained in the text.

• KLOC - the number of lines of code (KLOC) in the project checked by the system
• W/K - the number of warnings issued by the system per KLOC
• W - the number of warnings issued by the system

We can see that for over 0.6 million lines of code, the system reports 375 warnings in total,
the average is 0.61 warnings per KLOC. We can better interpret the data in conjunction with the
following columns:

• X1 - the number of field accesses on this during initialization
• X2 - the number of method calls on this during initialization
• X3 - the number of field accesses on warm objects during initialization
• X4 - the number of method calls on warm objects during initialization

The data for the columns above are censused by the initialization checker, one per source
location. Without type-and-effect inference, the system would have to issue one warning for
each method call on this and warm objects 1, which contributes to more than 3K warnings,
which is 8 times more warnings!

We manually analyzed all the warnings, and classified them into 8 categories:

• A - Use this as constructor arguments, e.g. new C(this)
• B - Use this as method arguments, e.g. call(this)
• C - Use inner class instance as constructor arguments, e.g. new C(innerObj)
• D - Use inner class instance as method arguments, e.g. call(innerObj)

1If we forget that non-private field accesses are also method calls in Scala.

142

• E - Use uninitialized fields as by-name arguments
• F - Access non-initialized fields
• G - Call external Java or Scala 2 methods
• H - others

The warnings in category A and C are related to the creation of cyclic data structures. From
the theory, we know such code patterns can be supported by declaring a class parameter to be
cold. The current implementation does not support any annotations yet, we plan to introduce
explicit annotations in the next version of the system.

Most of the warnings lie in the category D, which refer to cases like the following:

1 object Foo {
2 case class Student(name: String, age: Int)
3 call(Student("Jack", 30) // should be OK, currently a warning
4 }

For the code above, our system currently issues a warning, as it only knows that the object
created by Student("Jack", 20) is warm, while method arguments are required to be hot. Check-
ing whether an inner class instance may be safely promoted to hot or not can be expensive if
the inner class contains many fields and methods. However, it suggests that the system could be
improved for common use cases that only involve small classes, such as the example above.

The category E refers to cases like the following, which is not supported currently:

1 def foo(x: => Int) = new A(x)
2 class A(init: => Int)
3 class Foo {
4 val a: A = foo(b) // category E
5 val b: Int = 100
6 }

As an over-approximation, we expect the warnings in category F are all false positives. How-
ever, to our delight, the system actually finds 8 true positives in ScalaTest, and one true positive
in the Scala standard library. It also discovers two bugs in the Scala 3 compiler and they are fixed
already.

The category G involves method calls on this in the constructor, but the target method is
compiled by Java or the Scala 2 compiler. The category H involves code that performs pattern
matching on this, or calling methods on cold values.

The performance impact of the initialization checker on compilation is shown in Figure 8.10.
Overall, the initialization checker takes about 10% to 30% of the compilation time. The perfor-
mance is dependent on projects: the more complex the initialization code is, the more time it
takes.

143

 0

 20

 40

 60

 80

 100

 120

do
tty

in
te

nt

al
ge

br
a

st
dL

ib
21

3

sc
al
ac

he
ck

sc
al
at

es
t

sc
al
aX

m
l

sc
op

t

sc
al
ap

sq
ua

nt
s

be
tte

rfi
le
s

Sca
la
PB

sh
ap

el
es

s
ef

fp
i

sc
on

fig

m
un

it

P
e
rc

e
n
t
(%

)

Figure 8.10 – Performance of the initialization checker. The numbers indicate the percentage of
time for initialization check relative to the whole compilation time.

8.5.2 Discovered Bugs

As an over-approximation, we expect the warnings are all false positives. However, to our delight,
our initialization system finds real bugs in high-quality projects, such as the Scala 3 compiler,
Scala standard library and ScalaTest.

In the ScalaTest project, the checker reports 8 true positives 2. The errors have similar forms,
the following code demonstrates two of them:

1 sealed abstract class Fact {
2 val isVacuousYes: Boolean
3 val isYes: Boolean
4

5 final def stringPrefix: String =
6 if (isYes) {
7 if (isVacuousYes) "VacuousYes" else "Yes"
8 }
9 else "No"

10 }
11

12 class Binary_&(left: Fact, right: Fact) extends Fact {
13 val rawFactMessage: String = {
14 // ...
15 factDiagram(0)
16 }
17

18 val isYes: Boolean = left.isYes && right.isYes
19 val isVacuousYes: Boolean = isYes && (left.isVacuousYes || right.isVacuousYes)

2https://github.com/scalatest/scalatest/issues/1481

144

20

21 override def factDiagram(level: Int): String = {
22 stringPrefix
23 }
24 }

The problem with the code above is that when we create an instance of Binary_&, it will
call factDiagram, which in turn calls stringPrefix, where the properties isYes and isVacuousYes
are used before they are initialized in the class Binary_&. Such errors never cause null-pointer
exceptions, and when they slip into a large code base, it will take significant efforts to debug.

The following code demonstrates a bug in the Scala 3 compiler 3:

1 class Scanner(...) {
2 val indentSyntax = ...
3 // ...
4 nextToken() // the call indirectly reach the property indentSyntax
5 }
6

7 class LookaheadScanner(indent: Boolean = false) extends Scanner(...) {
8 override val indentSyntax = indent
9 // ...

10 }

Our checker reports the following error:

1 [warn] -- Warning: dotty/compiler/src/dotty/tools/dotc/parsing/Scanners.scala:885:34
2 [warn] 885 | override val indentSyntax = indent
3 [warn] | ^
4 [warn] |Access non-initialized field indentSyntax. Calling trace:
5 [warn] | -> class LookaheadScanner(...) { [Scanners.scala:884]
6 [warn] | -> nextToken() [Scanners.scala:1323]
7 [warn] | -> if (isAfterLineEnd) handleNewLine(lastToken) [Scanners.scala:311]
8 [warn] | -> indentIsSignificant = indentSyntax [Scanners.scala:484]

The problem is that when we create an instance of LookaheadScanner, the call nextToken()
in the super class Scanner will reach the overridden property indentSyntax, which is not yet
initialized in the sub-class.

The other bug found in the Scala 3 compiler is related to a subtle optimization of lazy value
definitions in traits 4, which is not in accord with the language specification. Without the initial-
ization checker, the bug would be latent longer in the compiler.

3https://github.com/lampepfl/dotty/issues/7660
4https://github.com/lampepfl/dotty/issues/7434

145

The bug in the Scala standard library 5 can be illustrated with the code below:

1 object Promise {
2 val Noop = new Transformation[Nothing, Nothing](...)
3

4 class Transformation[-F, T] (...) extends DefaultPromise[T]() with ... {
5 def this(...) = this(...)
6 }
7

8 class DefaultPromise[T](initial: AnyRef) extends ... {
9 def this() = this(Noop: AnyRef)

10 }
11 }

The problem is that when we initialize the field Noop, it creates an instance of Transformation,
which calls the super constructor in DefaultPromise, where Noop is accessed before initialization.

8.5.3 Challenging Examples

One design goal of the Scala 3 initialization system is to keep the core type system of the compiler
intact. Consequently, we require that all arguments to methods are fully initialized, which is in
line with good initialization practices. Otherwise, new types such as T@cold must be introduced
in the language to handle safe method overriding.

There are two problems related to changing the type system. First, integrating the types in
a statically typed language poses engineering challenge. Second, type mismatches are usually
reported as errors, while for initialization violations warnings are more appropriate.

The current implementation is based on a type-and-effect system. It elegantly lays on top of
the type system, thus avoids the problems that a type-based solution would cause.

However, during the experiment we do encounter some reasonable code patterns that the
current implementation does not support. The following code about LazyList construction is
one such example:

1 trait LazyList[A] { ... }
2 implicit class Helper[A](l: => LazyList[A]) {
3 def #:: [B >: A](elem: => B): LazyList[B] = ...
4 }
5 class Test {
6 val a: LazyList[Int] = 5 #:: b
7 val b: LazyList[Int] = 10 #:: a
8 }

5https://github.com/scala/bug/issues/11979

146

In the code above, inside the class Test, we use b (before it is initialized) as a by-name
argument to initialize the field a. Similar code patterns also appear in by-name implicits 6.

To support the example above, the system has to support passing objects under initialization
as arguments to methods and constructors. There is a chance to support the usage above without
complicating the type system if we restrict that the methods are effectively final. The restriction
removes the burden of overriding checks. Class constructors are inherently final, thus this is not
a problem.

However, the restriction cannot handle some use cases. The following code is a common
pattern in the Scala 3 compiler to create cyclic type structures:

1 class RecType(parentExp: RecType => Type) {
2 val parent = parentExp(this)
3 }

A solution based on types would change the type of parentExp to something like RecType
@cold =>Type @cold. The solution requires changes to the core type system, thus is not feasible
as we discussed above.

We can make the field parent lazy to silence the warning about the escape of this. However,
as compilers are performance-sensitive, we cannot do that due to the potential performance
penalty with lazy fields. Currently, we have to resort to @unchecked for such cases.

Making a field lazy and adding the annotation @unchecked are currently the two ways to
suppress warnings for complex initialization code. The lazy trick is a panacea with the slight
danger of turning actual initialization errors into non-termination. On the other hand, drawing
the line of when @unchecked should be used is a difficult language design decision. We expect the
design principles of initialization will contribute to the decision process.

8.6 Open Challenges

Most object-oriented languages support static fields. safe initialization of static fields is a chal-
lenge that this thesis does not address.

Conceptually, we may regard static fields as fields of a dummy class encapsulating the module
(i.e. project), then the technique for handling inner classes can be used. For it to be safe, module
dependencies should be an acyclic graph, so that modules may be initialized in total order.

However, it is not the case in the Java world, where cycles are possible. Moreover, JVM does
not have the concept of modules, and static fields are initialized along with the loading of class

6https://docs.scala-lang.org/sips/byname-implicits.html

147

definitions.

We believe the proper handling of static fields will be to replace them with module fields and
enforce that module dependencies are non-cyclic.

Another theoretical challenge is about the storage of partially constructed objects in generic
data structures. From our empirical experience, such code patterns are rare. Nevertheless, it is
challenging to support such use cases.

8.7 Related Work

Igarashi and Pierce are the first to study inner classes formally [30]. Their system sidesteps
initialization problems by disallowing the usage of this in the constructor, like that of Feather-
weight Java [29]. Their language supports the expression new e.C(e), where the outer may be
any expression. Our language only allows the outer to be a path, and we point out the semantic
advantage of this restriction.

All the existing work on initialization depends on some unspecified inference or analysis to
cut down syntactic overhead [16, 12, 11]. We are the first to present a formal inference system
on the problem of safe initialization, as well as demonstrate in detail how it scales to language
features like inheritance and inner classes.

8.8 Conclusion

This chapter shows that the inference system presented in Chapter 6 scales to complex language
features, such as inner classes, functions, and inheritance.

We implement an initialization checker for Scala in the Scala 3 compiler. The experiments on
several real-world projects show that the checker advances the state-of-the-art.

148

Chapter 9

Conclusion

Models are not right or wrong; they are more or less useful.

— Martin Fowler

This thesis studied principles, abstractions and algorithms to ensure safe initialization of
objects. The solution provided in the thesis satisfies the two initialization requirements, and
overcomes the theoretical, practical and engineering challenges outlined in the introduction.

We identify four design principles for safe initialization:

• Monotonicity: initialization states of objects may not be reversed.
• Authority: fields may only be initialized at specific locations in the constructor.
• Stackability: all fields of a class should be initialized at the end of the class constructor.
• Scopability: access to uninitialized objects should be controlled by static scoping.

The principles are essential for formal reasoning about initialization. Without monotonicity,
it will be unsafe to ever use any field. The combination of monotonicity, stackability, and scopa-
bility enables local reasoning about initialization, which not only captures the natural way how
programmers reason about initialization, but is also the key enabler of efficient algorithms.

Without authority, we may not guarantee sound strong updates in a flow-insensitive system.
Flow-insensitivity affords a simple solution to the challenge of typestate polymorphism via
subtyping and it enables simpler initialization systems.

From the principles, we provided a critique of traditional class constructors. We advocated
class parameters and mandatory field initializers to align with the design principles.

We put forward a type-based system, the basic model, for safe initialization of objects, which
consists of three abstractions, namely cold, warm and hot. The introduction of warm improves
the expressiveness of existing models, which usually classify objects as either initialized (i.e. hot)

149

or uninitialized (i.e. cold).

To overcome the syntactic overhead of type-based solutions, we put forward a type-and-effect
inference system for a practical fragment of the basic model. The inference system scales to
complex language features and integrates well with compilers. One theoretical contribution is
the introduction of the concept of potentials to control aliasing in type-and-effect systems.

Object-oriented programming is unsafe if objects cannot be initialized safely. With the prin-
ciples, abstractions and algorithms proposed in this thesis, we hope more object-oriented lan-
guages will guarantee initialization safety.

150

Bibliography

[1] Apple Inc. Swift Language Guide: Initialization. https://docs.swift.org/swift-book/
LanguageGuide/Initialization.html. 2019.

[2] Martin Odersky. Scala Language Specification. https://scala-lang.org/files/archive/
spec/2.13/. 2019.

[3] Alban Reynaud, Gabriel Scherer, and Jeremy Yallop. “A right-to-left type system for
mutually-recursive value definitions”. In: arXiv preprint arXiv:1811.08134 (2018).

[4] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan.
“Lessons from building static analysis tools at Google”. In: Commun. ACM 61 (2018), pp. 58–
66.

[5] Nada Amin and Tiark Rompf. “Type soundness proofs with definitional interpreters”. In:
POPL. 2017.

[6] Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and handlers”. In:
Journal of logical and algebraic methods in programming 84.1 (2015), pp. 108–123.

[7] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. “The Java Language
Specification, Java SE 8 Edition”. In: 2015.

[8] Dave Clarke, James Noble, and Tobias Wrigstad. “Aliasing in Object-Oriented Programming.
Types, Analysis and Verification”. In: Lecture Notes in Computer Science. 2013.

[9] Marco Servetto, Julian Mackay, Alex Potanin, and James W Noble. “The Billion-Dollar Fix -
Safe Modular Circular Initialisation with Placeholders and Placeholder Types”. In: ECOOP.
2013.

[10] Jeremy Siek. Type Safety in Three Easy Lemmas. http://siek.blogspot.com/2013/05/
type-safety-in-three-easy-lemmas.html. 2013.

[11] Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat. “Object initialization
in X10”. In: European Conference on Object-Oriented Programming. Springer. 2012, pp. 207–
231.

[12] Alexander J. Summers and Peter Müller. “Freedom Before Commitment: A Lightweight
Type System for Object Initialisation”. In: OOPSLA. OOPSLA ’11. New York, NY, USA: ACM,
2011, pp. 1013–1032. I S B N: 978-1-4503-0940-0. D O I: 10.1145/2048066.2048142.

[13] Joe Duffy. On partially-constructed objects. http://joeduffyblog.com/2010/06/27/on-
partiallyconstructed-objects/. 2010.

151

https://docs.swift.org/swift-book/LanguageGuide/Initialization.html
https://docs.swift.org/swift-book/LanguageGuide/Initialization.html
https://scala-lang.org/files/archive/spec/2.13/
https://scala-lang.org/files/archive/spec/2.13/
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
http://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
https://doi.org/10.1145/2048066.2048142
http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/
http://joeduffyblog.com/2010/06/27/on-partiallyconstructed-objects/

[14] Joseph Gil and Tali Shragai. “Are We Ready for a Safer Construction Environment?” In:
ECOOP. 2009.

[15] Tony Hoare. Null References: The Billion Dollar Mistake. https://www.infoq.com/present
ations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/. 2009.

[16] Xin Qi and Andrew C. Myers. “Masked Types for Sound Object Initialization”. In: POPL.
POPL ’09. ACM. Savannah, GA, USA, 2009, pp. 53–65. I S B N: 978-1-60558-379-2.

[17] Éric Tanter. “Beyond static and dynamic scope”. In: ACM Sigplan Notices 44.12 (2009),
pp. 3–14.

[18] Joshua Bloch. Effective Java (2nd Edition) (The Java Series). 2nd ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2008. I S B N: 0321356683, 9780321356680.

[19] Manuel Fähndrich and Songtao Xia. “Establishing object invariants with delayed types”.
In: OOPSLA. 2007.

[20] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen. “Adding delimited
and composable control to a production programming environment”. In: ACM SIGPLAN
Notices 42.9 (2007), pp. 165–176.

[21] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P Black.
“Traits: A Mechanism for Fine-grained Reuse”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 28.2 (2006), pp. 331–388.

[22] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. “An
Overview of the Scala Programming Language”. In: 2004.

[23] Manuel Fähndrich and K Rustan M Leino. “Heap monotonic typestates”. In: Interna-
tional Workshop on Aliasing, Confinement and Ownership in object-oriented programming
(IWACO). 2003.

[24] Manuel Fähndrich and K. Rustan M. Leino. “Declaring and checking non-null types in an
object-oriented language”. In: OOPSLA. 2003.

[25] Manuel Fähndrich and Rustan Leino. “Heap Monotonic Typestate”. In: 2003.

[26] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. “Traits: Com-
posable Units of Behaviour”. In: European Conference on Object-Oriented Programming.
Springer. 2003, pp. 248–274.

[27] Benjamin C. Pierce. Types and Programming Languages. 1st. MIT Press, 2002.

[28] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data Structures”. In: LICS.
2002.

[29] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Featherweight Java: a minimal
core calculus for Java and GJ”. In: ACM Trans. Program. Lang. Syst. 23 (2001), pp. 396–450.

[30] Atsushi Igarashi and Benjamin C. Pierce. “On Inner Classes”. In: Inf. Comput. 177 (2000),
pp. 56–89.

152

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

[31] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. “Principles of Program Analysis”.
In: Springer Berlin Heidelberg. 1999.

[32] Luca Cardelli, Florian Matthes, and Martin Abadi. “Extensible syntax with lexical scoping”.
In: (1994).

[33] John Hogg, Doug Lea, Alan Wills, Dennis de Champeaux, and Richard C. Holt. “The Geneva
convention on the treatment of object aliasing”. In: OOPS Messenger 3 (1992), pp. 11–16.

[34] Patrick Cousot and Radhia Cousot. “Comparison of the Galois Connection and Widening/-
Narrowing Approaches to Abstract Interpretation”. In: JTASPEFT/WSA. 1991.

[35] Olivier Danvy and Andrzej Filinski. “Abstracting control”. In: Proceedings of the 1990 ACM
conference on LISP and functional programming. 1990, pp. 151–160.

[36] John M. Lucassen and David K. Gifford. “Polymorphic effect systems”. In: Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM. 1988, pp. 47–57.

[37] Robert E. Strom and Shaula Yemini. “Typestate: A programming language concept for
enhancing software reliability”. In: IEEE Transactions on Software Engineering SE-12
(1986), pp. 157–171.

153

Appendix A

A Step-Indexed Interpreter in Coq

A.1 Syntax

1 Module Syntax.
2 (** Mode lattice *)
3 Inductive Mode: Type := hot | warm | cold.
4

5 Definition CID := nat. (* class name *)
6 Definition VID := nat. (* variable name *)
7 Definition FID := nat. (* field name *)
8 Definition MID := nat. (* method name *)
9

10 Definition Typ: Type := Mode * CID.
11

12 Inductive Exp: Type :=
13 | var (x: VID) (* Var 0 is this *)
14 | new (cid: CID)(args: [Exp])
15 | select(exp: Exp)(f: FID)
16 | call (exp: Exp)(m: MID)(args: [Exp])
17 | block (lhs: Exp)(f: FID)(rhs: Exp)(exp: Exp).
18

19 Definition Field : Type := Typ * Exp.
20 Definition Method : Type := ([Typ]) * Typ * Exp.
21 Definition Class : Type := ([Typ]) * ([Field]) * ([Method]).
22

23 Parameter Ξ : [Class]. (* class table *)
24 Parameter entry : CID. (* entry class id *)
25

26 (** Helper methods *)
27 Definition classInfo (cid: CID): option Class :=
28 nth_error Ξ cid.

154

29

30 Definition classOfTyp (T: Typ): option Class :=
31 match T with
32 | (_, cid) => classInfo cid
33 end.
34

35 Definition fieldInfo (cid: CID)(fid: FID): option Field :=
36 do (_, fields, _) ← classInfo cid;
37 nth_error fields fid.
38

39 Definition methodInfo (cid: CID)(mid: MID): option Method :=
40 do (_, _, methods) ← classInfo cid;
41 nth_error methods mid.
42 End Syntax.

A.2 Semantics

1 Module Semantics.
2 Import Syntax.
3

4 Definition Loc : Type := nat.
5 Definition Obj : Type := CID * [Loc].
6 Definition Heap : Type := [Obj].
7 Definition Env : Type := [Loc].
8

9 Definition Res(T: Type):= option (option T).
10

11 Definition update (A: Type)(lst: [A])(i: nat)(v’: A): [A] :=
12 let f v acc :=
13 match acc with
14 | (k, res) => (S k, (if i =? k then v’ else v) :: res)
15 end
16 in
17 match fold_right f (0, nil) lst with
18 | (_, lst) => lst
19 end.
20

21 Definition assign (l1 : Loc)(f: FID)(l2: Loc)(σ: Heap): option Heap :=
22 do (cid, ω) ← nth_error σ l1 ;
23 do _ ← nth_error ω f;
24 let ω2 := update Loc ω f l2 in
25 let o’ := (cid, ω2) in
26 Some (update Obj σ l1 o’).
27

28 Definition init_field (l1 : Loc)(f: FID)(l2: Loc)(σ: Heap): option Heap :=
29 do (cid, ω) ← nth_error σ l1 ;

155

30 if (length ω) =? f then
31 let o’ := (cid, ω ++ (l2 :: nil)) in
32 Some (update Obj σ l1 o’)
33 else None.
34

35 Reserved Notation "’J’ e ’K’ ’(’ σ ’,’ ρ ’)’ ’(’ n ’)’" (at level 80).
36

37 Fixpoint eval (exp: Exp)(σ: Heap)(ρ: Env)(n: nat): Res (Loc * Heap) :=
38 match n with
39 | 0 => TimeOut
40 | S n’ =>
41 let evals (exps: [Exp])(σ: Heap): Res ([Loc] * Heap) :=
42 let f acc e :=
43 do (vs, σ1) ⇐ acc;
44 do (l, σ2) ⇐ JeK(σ1, ρ)(n’);
45 Success (vs ++ (l :: nil), σ2)
46 in fold_left f exps (Success (nil, σ))
47 in
48 let init (l: Loc)(ρ: Env)(cid: CID)(σ: Heap): Res Heap :=
49 do (_, fields, _) ← classInfo cid;
50 let fn acc field :=
51 match field with
52 | (_, e) =>
53 do (fid, σ1) ⇐ acc;
54 do (l1 , σ2) ⇐ JeK(σ1, (l :: ρ))(n’);
55 do σ3 ← init_field l fid l1 σ2;
56 Success (S fid, σ3)
57 end
58 in do (_, σ2) ⇐ fold_left fn fields (Success (0, σ));
59 Success σ2
60 in
61 match exp with
62 | var id =>
63 do l ← nth_error ρ id;
64 Success (l, σ)
65

66 | select e f =>
67 do (l, σ’) ⇐ JeK(σ, ρ)(n’);
68 do (_, fs) ← nth_error σ’ l;
69 do l’ ← nth_error fs f;
70 Success (l’, σ’)
71

72 | call e m args =>
73 do (l, σ1) ⇐ JeK(σ, ρ)(n’);
74 do (cid, _) ← nth_error σ1 l;
75 do (_, _, methods) ← classInfo cid;
76 do (_, _, body) ← nth_error methods m;
77 do (argsV, σ2) ⇐ evals args σ1;

156

78 JbodyK(σ2, (l :: argsV))(n’)
79

80 | new cid args =>
81 do (argsV, σ1) ⇐ evals args σ;
82 let obj := (cid, nil) in
83 let l := length σ1 in
84 let σ2 := σ ++ (obj :: nil) in
85 do σ3 ⇐ init l argsV cid σ2;
86 Success (l, σ3)
87

88 | block lhs f rhs e =>
89 do (l1 , σ1) ⇐ JlhsK(σ, ρ)(n’);
90 do (l2, σ2) ⇐ JrhsK(σ1, ρ)(n’);
91 do σ3 ← assign l1 f l2 σ2;
92 JeK(σ3, ρ)(n’)
93 end
94 end
95

96 where "’J’ e ’K’ ’(’ σ ’,’ ρ ’)’ ’(’ n ’)’" := (eval e σ ρ n).
97

98 Definition evalProg(n: nat): Res (Loc * Heap) :=
99 match classInfo entry with

100 | Some (nil, nil, (nil, _, e) :: nil) =>
101 let o := (entry, nil) in
102 JeK((o :: nil), (0 :: nil))(n)
103

104 | _ => None
105 end.
106

107 End Semantics.

A.3 Typing

1 Module Typing.
2 Import Syntax.
3

4 Definition join (μ1 μ2: Mode): Mode :=
5 match μ1, μ2 with
6 | hot, _ => μ2
7 | _, hot => μ1
8 | cold, _ => cold
9 | _, cold => cold

10 | _, _ => warm
11 end.
12

13 Definition meet (μ1 μ2: Mode): Mode :=

157

14 match μ1, μ2 with
15 | hot, _ => hot
16 | _, hot => hot
17 | cold, _ => μ2
18 | _, cold => μ1
19 | _, _ => warm
20 end.
21

22 Inductive S_Mode: Mode -> Mode -> Prop :=
23 | s_mode_hot : forall μ, S_Mode hot μ
24 | s_mode_cold : forall μ, S_Mode μ cold
25 | s_mode_warm : S_Mode warm warm.
26

27 Notation " m1 u m2 " := (meet m1 m2) (at level 40).
28 Notation " m1 t m2 " := (join m1 m2) (at level 40).
29

30 (** subtyping *)
31 Inductive S_Typ: Typ -> Typ -> Prop :=
32 | s_typ_ctor : forall C μ1 μ2, S_Mode μ1 μ2 ->
33 S_Typ (μ1, C) (μ2, C).
34

35 Notation " T1 <: T2 " := (S_Typ T1 T2) (at level 40).
36

37 Inductive S_Typs: ([Typ]) -> ([Typ]) -> Prop :=
38 | s_typs_nil : S_Typs nil nil
39 | s_typs_cons: forall T1 T2 ts1 ts2, S_Typs ts1 ts2 ->
40 T1 <: T2 ->
41 S_Typs (T1 :: ts1) (T2 :: ts2).
42

43 Definition P_hot (T: Typ): Prop :=
44 match T with
45 | (hot, _) => True
46 | _ => False
47 end.
48

49 Fixpoint P_hots (ts: [Typ]): Prop :=
50 match ts with
51 | nil => True
52 | T :: ts’ => P_hot T ∧ P_hots ts’
53 end.
54

55 (** typing rules *)
56 Reserved Notation "Γ ` e ∈ T" (at level 69).
57

58 Inductive T_Exp: ([Typ]) -> Exp -> Typ -> Prop :=
59 | t_var:
60 forall Γ vid T,
61 nth_error Γ vid = Some T -> T_Exp Γ (var vid) T

158

62

63 | t_new: forall Γ cid args paramTs fields methods,
64 classInfo cid = Some (paramTs, fields, methods) ->
65 T_Exps Γ args paramTs ->
66 Γ ` (new cid args) ∈ (warm, cid)
67

68 | t_new_hot: forall Γ cid args argTs paramTs fields methods,
69 classInfo cid = Some (paramTs, fields, methods) ->
70 T_Exps Γ args argTs ->
71 P_hots argTs ->
72 S_Typs argTs paramTs ->
73 Γ ` (new cid args) ∈ (warm, cid)
74

75 | t_select_hot: forall Γ e f C D μ init,
76 Γ ` e ∈ (hot, C) ->
77 fieldInfo C f = Some ((μ, D), init) ->
78 Γ ` (select e f) ∈ (hot, D)
79

80 | t_select_warm: forall Γ e f C T init,
81 Γ ` e ∈ (warm, C) ->
82 fieldInfo C f = Some (T, init) ->
83 Γ ` (select e f) ∈ T
84

85 | t_call: forall Γ e m args paramTs retT body thisT μ C,
86 Γ ` e ∈ (μ, C) ->
87 (μ, C) <: thisT ->
88 methodInfo C m = Some (thisT :: paramTs, retT, body) ->
89 T_Exps Γ args paramTs ->
90 Γ ` (call e m args) ∈ retT
91

92 | t_call_hot: forall Γ e m args argTs paramTs retT body thisT C,
93 Γ ` e ∈ (hot, C) ->
94 (hot, C) <: thisT ->
95 methodInfo C m = Some (thisT :: paramTs, retT, body) ->
96 T_Exps Γ args argTs ->
97 P_hots argTs ->
98 S_Typs argTs paramTs ->
99 Γ ` (call e m args) ∈ retT

100

101 | t_block: forall Γ e1 f e2 e3 C μ T,
102 Γ ` (select e1 f) ∈ (μ, C) ->
103 Γ ` e2 ∈ (hot, C) ->
104 Γ ` e3 ∈ T ->
105 Γ ` (block e1 f e2 e3) ∈ T
106

107 with
108 T_Exps: ([Typ]) -> ([Exp]) -> ([Typ]) -> Prop :=
109 | t_exps_nil: forall Γ, T_Exps Γ nil nil

159

110

111 | t_exps_cons: forall Γ Ts es T e, T_Exps Γ es Ts ->
112 Γ ` e ∈ T ->
113 T_Exps Γ (e :: es) (T :: Ts)
114

115 where "Γ ` e ∈ T" := (T_Exp Γ e T).
116

117 Definition T_Field (Γ: [Typ])(field: Field): Prop :=
118 match field with
119 | (T, e) => Γ ` e ∈ T
120 end.
121

122 Fixpoint T_Fields (Γ: [Typ])(fields: [Field]): Prop :=
123 match fields with
124 | nil => True
125 | f :: fs => T_Field Γ f ∧ T_Fields Γ fs
126 end.
127

128 Definition T_Method (method: Method): Prop :=
129 match method with
130 | (Γ, retT, e) =>
131 Γ ` e ∈ retT
132 end.
133

134 Fixpoint T_Methods (methods: [Method]): Prop :=
135 match methods with
136 | nil => True
137 | m :: ms => T_Method m ∧ T_Methods ms
138 end.
139

140

141 Definition T_Class (cid: CID)(class: Class): Prop :=
142 match class with
143 | (paramTs, fields, methods) =>
144 T_Fields ((cold, cid) :: paramTs) fields ∧
145 T_Methods methods
146 end.
147

148 Fixpoint T_Classes (rest: [Class])(cid: nat): Prop :=
149 match rest with
150 | nil => True
151 | class :: rest’ => (T_Class cid class) ∧ T_Classes rest’ (cid + 1)
152 end.
153

154 Definition T_Prog: Prop :=
155 match classInfo entry with
156 | Some (nil, nil, (nil, T, e) :: nil) =>
157 ((hot, entry) :: nil) ` e ∈ T ∧ T_Classes Ξ 0

160

158 | _ =>
159 False
160 end.
161 End Typing.

A.4 Properties

1 Module Properties.
2 Import Semantics.
3 Import Typing.
4

5 Parameter well_typed: T_Prog. (* the program is well typed *)
6

7 Definition Soundness: Type := forall n, evalProg(n) <> Error.
8 End Properties.

A.5 Some Helpers

1 Notation "’Error’" := (Some None).
2 Notation "’TimeOut’" := None.
3 Notation "’Success’ t" := (Some (Some t)) (at level 60).
4

5 Notation "’do’ p ⇐ e1 ; e2" :=
6 match e1 with
7 | Some (Some p) => e2
8 | Some _ => Error
9 | None => TimeOut

10 end
11 (right associativity, at level 60, p pattern).
12

13 Notation "’do’ p ← e1 ; e2" :=
14 match e1 with
15 | Some p => e2
16 | None => None
17 end
18 (right associativity, at level 60, p pattern).
19

20 Notation "’[’ X ’]’" := (list X) (at level 40).

161

Curriculum Vitae

EDUCATION

PhD in Computer Science 2016.6 – present

EPFL, Switzerland
Advisor: Prof. Martin Odersky

Master in Computer Science 2014.9 – 2016.2

EPFL, Switzerland

Master in Western Philosophy 2007.9 – 2010.6

Nanjing University, China

Bachelor in Software Engineering 2003.9 – 2007.6

Nanjing University, China

RESEARCH

I work extensively on the Scala 3 compiler, Dotty.

Safe Initialization of Objects
Safe object initialization is an open problem since the introduction of object-oriented pro-
gramming. Checking safe initialization in the presence of aliasing and virtual method calls is a
challenge.

Identifying local reasoning as the fundamental reasoning principle for designing initialization
systems, we propose a type-and-effect inference system that can effectively ensure object initial-
ization with zero syntactic overhead. A technical novelty is the introduction of the concept of
potentials to control aliasing in type-and-effect systems.

It is by far the most expressive and usable initialization system, and its reliability is grounded on
formal semantics and soundness proof.

162

https://github.com/lampepfl/dotty
http://dotty.epfl.ch/docs/reference/other-new-features/safe-initialization.html

Exhaustivity Check
I propose a new and generic algorithm for checking exhaustivity of pattern matching based
on a space algebra, which is much simpler than the DPLL-based algorithm in Scala 2. The new
algorithm fixes more than 20 open issues in Scala issue tracker. It is later adopted in the Swift
compiler and fixes 7 open issues on its first implementation.

Implicit State Machines
What is the essence of registers and sequential circuits? In this work we propose a fundamental
abstraction for sequential circuits that plays the same role as Boolean algebra for combinational
circuits. The concept affords a novel view of sequential circuits. We conjecture the abstraction has
big potential for logic design, logic synthesis, logic verification and novel hardware architectures.

Meta-programming
The project gestalt is an experimental macro system for Scala 3. The problem it tackles is how to
support portable macros among different compiler implementations, where each has its own
AST definitions. Reflecting on the nature of macros being transforming the shape of programs,
not the material, we propose to implement macros based on abstract extractors and constructors,
in contrast to conversion-based standard ASTs. It concretely demonstrates that there exists a
better approach to macros than Scalameta. I’m also deeply involved in developing the theory for
meta-programming in Scala 3.

Foundations for Programming with Capabilities
In the project stoic, we study the fundamental abstractions for programming with capabilities.
We propose stoic functions as a key abstraction for disciplined programming with capabilities.
Stoic functions may not capture capabilities or non-stoic functions from the environment.
In a calculus with mutations, we prove the property of non-interference and show that effect
polymorphism can be achieved without introducing effect variables.

PUBLICATION & REPORTS

Digital Design with Implicit State Machines (under submission)
F. Liu, A. Prokopec, M. Odersky

A Theory of Quoted Code Patterns (under submission)
N. Stucki, F. Liu, A. Biboudis, M. Odersky

A Type-and-Effect System for Safe Initialization
F. Liu, O. Lhotak, A. Biboudis, P. Giarrusso, M. Odersky, OOPSLA, 2020

Stoic: Towards Disciplined Capabilities (Technical Report)
F. Liu, S. Stucki, N. Amin, P. Giarrusso, M. Odersky, 2019

163

https://github.com/apple/swift/pull/8908
https://github.com/apple/swift/pull/8908
https://infoscience.epfl.ch/record/273879
https://github.com/liufengyun/gestalt
https://scalameta.org/
https://github.com/liufengyun/stoic
https://infoscience.epfl.ch/record/273879
https://infoscience.epfl.ch/record/273643
https://infoscience.epfl.ch/record/273642

Theory and Practice of Coroutines with Snapshots
A. Prokopec, F. Liu, ECOOP, 2018

Simplicitly: Foundations and Applications of Implicit Function Types
M. Odersky, O. Blanvillain, F. Liu, A. Biboudis, H. Miller et al, POPL, 2017

A Generic Algorithm for Checking Exhaustivity of Pattern Matching
F. Liu, Scala Symposium, 2016

A Study of Capability-based Effect Systems
F. Liu, master thesis, EPFL, 2016

OPEN-SOURCE CONTRIBUTIONS

Dotty: The Scala 3 compiler
With about 800 commits, my main contributions include the following :

• I propose and implement a simpler algorithm for exhaustivity check which fixes more than
20 open issues. The algorithm is later adopted by the Swift compiler, and 7 open issues are
fixed immediately.
• I propose and implement a type-and-effect inference system for safe initialization of

objects. It is by far the most expressive and usable initialization system in programming
languages. The reliability of the system is based on formalization and proofs.

Regressional Benchmarking Framework for Dotty
I conceptualize and implement the regressional benchmarking framework for Dotty, with over
1000 commits. The system is commonly used in the development of Dotty.

• It supports on-demand performance test for open PRs
• It supports extensible custom test profiles
• The system does not depend on local database systems

ScalaTest: The Test Framework for Scala
I re-implement all ScalaTest macros in the new Scala 3 macro system and make the test set green.
The work makes the following contributions:

• The first open-source project compiled by Scala 3 that runs its test set
• The first project that uses Scala 3 macro system
• It paves the way for migration of the whole eco-system to Scala 3
• It finds 20+ bugs and contributes to evolution of Scala 3 macro system

164

https://infoscience.epfl.ch/record/261288
https://infoscience.epfl.ch/record/229878
https://infoscience.epfl.ch/record/225497
https://infoscience.epfl.ch/record/219173
https://github.com/lampepfl/dotty
https://github.com/apple/swift/pull/8908
http://dotty.epfl.ch/docs/reference/other-new-features/safe-initialization.html
https://github.com/lampepfl/bench
https://github.com/scalatest/scalatest
https://github.com/lampepfl/dotty/issues/5491

MENTORSHIP

Radoslaw Wasko, master student, EPFL 2020.2 – present

Guide the student on Coq mechanization of a calculus of quoted pattern matching for meta-
programming.

Clément Blaudeau, master student, EPFL 2020.2 – present

Guide the student on Coq mechanization of a calculus for safe initialization.

Simon Le Bail-Collet, master student, EPFL 2020.2 – present

Guide the student on the design and implementation of stackful coroutines based on CPS transfor-
mation in the Scala 3 macro system.

Vlad Mihaescu, master student, EPFL 2019.9 – 2020.1

Guide the student on implementation of a staged SQL to C compiler.

Loïc Wisniewski, master student, EPFL 2018.9 – 2019.1

Guide the student to experiment constant expression types in Scala 3 compiler.

Thomas Garcia, master student, EPFL 2018.9 – 2019.1

Guide the student to experiment SAT solving with the help of deep learning.

Valdis Adamsons, master student, EPFL 2017.2 – 2017.6

Guide student to implement macros in the experimental macro system Gestalt.

George Zakhour, master student, EPFL 2017.2 – 2017.6

Guide the student on the study of an effect calculus.

WORK EXPERIENCE

Full-stack Ruby on Rails Web Developer 2011.7 – 2014.8

Freelancer, Nanjing, China

Software Engineer 2010.7 – 2011.6

Fujitsu-Nanda Software Tech Inc., Nanjing, China

TEACHING ASSISTANT

I have been teaching assistant to the following courses:

Foundations of Software, EPFL Fall 2017, 2018, 2019

165

Advanced Compiler Construction, EPFL Spring 2019

Parallelism and Concurrency, EPFL Spring 2018

For the master course foundation of software on the theory of programming languages, I develop
the content for System Fω and dependent types and give the lecture. I also develop a Coq project
based on Jupyter notebook to teach students how to do proofs in Coq and see concretely the
connection between type theory and proof theory.

EXTRA

Run full Lausanne Marathon, 2018
Receive teaching assistant award from IC school of EPFL, 2019

166

https://fos2019.github.io/slides/week15.pdf
https://c4science.ch/diffusion/9452/

	Abstract (English)
	Abstract (Français)
	Acknowledgments
	Contents
	Introduction
	The Problem
	Theoretical Challenges
	Practical Challenges
	Engineering Challenges
	Existing Work
	Industrial Languages
	Masked Types
	The Freedom Model

	Contribution

	Principles: Monotonicity, Authority, Stackability and Scopability
	Principles
	Monotonicity
	Authority
	Stackability
	Scopability

	Design of Constructors
	A Critique of Traditional Constructors
	Class Parameters and Mandatory Field Initializers

	Related Work
	Conclusion

	Local Reasoning
	A Small Language
	Abstractions: Cold, Warm, Hot
	Intuition
	Formal Definitions

	Formal Local Reasoning
	Three Concepts of Monotonicity
	Stackability
	Scopability
	Local Reasoning

	Proof of Scopability
	Lemmas
	Theorem

	Proof of Weak Monotonicity
	Lemmas
	Theorem

	Proof of Stackability
	Lemmas
	Theorem

	Mechanization
	Discussion
	Conclusion

	The Basic Model
	The Formal Language
	Type System
	Subtyping
	Definition Typing
	Expression Typing
	Typing Example

	Extension
	Discussion
	Promotion before Commitment
	Authority, Flow-Insensitivity and Typestate Polymorphism

	Related Work
	Conclusion

	Meta-Theory: The Basic Model
	Approach
	Definitions
	Over-Approximation Lemmas
	Monotonicity Lemmas
	Authority Lemmas
	Stackability Lemmas
	Local Reasoning
	Selection Lemmas
	Initialization Lemmas
	Theorem
	Discussion
	Monotonicity
	Stackability
	Local Reasoning

	Conclusion

	An Inference System
	Motivation
	A Practical Fragment
	The Design
	Potentials and Effects
	Two-Phase Checking
	Full-Construction Analysis
	Cyclic Data Structures

	Formalization
	Syntax and Semantics
	Effects and Potentials
	Expression Typing
	Definition Typing
	Effect Checking

	Discussions
	Why restrict the length of potentials?
	Why the cold annotation?

	Extension: Functions
	Related Work
	Conclusion

	Meta-Theory: The Inference System
	Definitions
	Monotonicity Lemmas
	Closure Lemmas
	Potential Lemmas
	Effect Lemmas
	Local Reasoning
	Selection Lemmas
	Method Call Lemmas
	Expression Soundness
	Discussion
	Conclusion

	Implementation and Evaluation
	Motivation
	Design
	Formalization
	Syntax and Semantics
	Effects and Potentials
	Expression Typing
	Definition Typing
	Effect Checking
	Potential Propagation
	View Change
	Termination

	Implementation
	Lazy Summarization
	Separate Compilation
	Debuggability
	Functions
	Properties
	Traits
	Local Classes

	Evaluation
	Experimental Result
	Discovered Bugs
	Challenging Examples

	Open Challenges
	Related Work
	Conclusion

	Conclusion
	Bibliography
	A Step-Indexed Interpreter in Coq
	Syntax
	Semantics
	Typing
	Properties
	Some Helpers

	Curriculum Vitae

