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Abstract

The synchronized firing of distant neuronal populations gives rise to a wide array of functional
brain networks that underlie human brain function. Given the enormous perception, learning,
and cognition potential of the human brain, it is not surprising that network-level repre-
sentations of brain function reveal intrinsically rich organizational structure. What remains
puzzling is how the human brain maintains its vast repertoire of functional connectivity (FC)
states despite being constrained by the underlying fixed anatomical substrate. Fortunately,
advances in modern neuroimaging technologies, such as diffusion-weighted magnetic reso-
nance imaging (DW-MRI), have made it possible to map the brain’s anatomical scaffold, while
functional MRI (fMRI) provides complementary information on neural activity. In this thesis,
we develop and apply methods for combining DW-MRI and fMRI data into an integrated
framework to analyze the interplay between brain structure and function.

We first explored the dynamics of brain function during wakefulness and across the dif-
ferent non-rapid eye movement (NREM) sleep stages. We applied the innovation-driven
co-activation pattern (iCAP) analysis, an advanced approach that can characterize the spatial
and temporal organization of overlapping large-scale brain networks. Our results reveal new
spatial patterns covering regions that support the physiological organization of sleep and
arousal. We observe that the persistence in time of individual brain maps across different
sleep stages was significantly altered. Contrary to the previously observed decreasing FC
that accompanies increasing sleep depth, we instead observe a surge of network activity and
cross-network interactions during NREM stage 2, followed by an abrupt decrease in NREM
stage 3.

We relate the observed changes in FC during sleep to structural connectivity (SC) by going
from voxel-level iCAP analysis to region-wise parcellation of brain data. This downsampling
of functional data to match the resolution of SC is a common practice in the field. Indeed,
graph modeling of brain structure has always been limited to defining nodes as regions of
a brain atlas. In this next step of the thesis, we then propose a new method that models all
brain voxels as nodes of a high-resolution voxel-level brain graph. We provide two ways to
construct the graph and we characterize their properties by performing a spectral analysis
of the graph Laplacian operator. Our findings show that despite the huge dimensionality of
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Abstract

the proposed brain graphs (around 750,000 voxels), the majority of the structural information
is captured by the Laplacian’s lowest frequency eigenmodes. More interestingly, this lower
end of the Laplacian spectra also captures about 85% of the energy content of functional MRI,
suggesting that functional patterns are overall smooth over the structure, thus providing, for
the first time, a direct and quantitative measure of how much brain function is shaped by the
anatomy.

Going beyond a scalar measure of the SC-FC link, we introduce a new framework that in-
terpolates gray matter signals onto the white matter using the structure embedded in the
voxel-level brain grid to guide the process. This enables visualization of key white matter
structures that link temporally coherent gray matter areas. By applying classical dynamic FC
analysis on the interpolated volumes, we observe whole-brain structure-function networks
that extend currently known spatial patterns that are limited within the gray matter only. This
new approach reveals the collective mediation of white matter pathways across short and
long-distance functional connections.

Finally, we assessed the observed collective structural mediation by giving a quantitative
measure of the overall anatomical range between temporally coherent gray matter areas. As
a first major demonstration of the powerful use of the voxel-level brain graph in the context
of graph signal processing (GSP) for functional brain imaging, we utilized a canonical model
of graph diffusion to extract the anatomical range of functional network interactions. We
find that this measure meaningfully differentiates brain regions according to a behaviorally
relevant macroscale gradient that divides the cortex between low-level primary sensory areas
and high-level cognitive functions.

Keywords: Brain structure and function, functional MRI, diffusion MRI, white matter in-

painting, interpolation, voxel-wise brain graph, sleep, diffusion, linear models, Laplacian,
eigenmodes
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Résumé

Lactivation synchronisée de populations neuronales distantes donne lieu a un riche répertoire
de réseaux fonctionnels qui sous-tendent la fonction cérébrale humaine. Au vu de I'énorme
potentiel du cerveau en terme de perception, d’apprentissage et de cognition, il n’est pas
surprenant qu'une telle description révele une riche structure organisationnelle. Toutefois, la
maniére dont celui-ci maintient son vaste répertoire d’états de connectivité fonctionnelle (CF)
malgré une anatomie fixe demeure mystérieuse. Heureusement, les avancées en techniques de
neuroimagerie modernes, comme l'imagerie par résonance magnétique (IRM) par diffusion,
ont rendu possible la cartographie de I'organisation anatomique du cerveau. Dans le méme
temps, 'IRM fonctionnelle apporte une information complémentaire sur I’activité neuronale.
Dans cette these, nous développons et appliquons des méthodes combinant les données
d’IRM fonctionnelle et par diffusion en un outil multimodal pour analyser la dépendance
entre structure et fonction du cerveau.

Nous avons tout d’abord exploré la dynamique de la fonction cérébrale durant I'éveil et les
différents stages du sommeil lent. Nous avons généré des cartes de co-activation par innova-
tion, qui caractérisent I'organisation spatiale et temporelle de réseaux neuronaux superposés
a grande échelle. Celles-ci comprennent de nouvelles configurations spatiales incluant des ré-
gions qui contribuent a I'organisation physiologique du sommeil et de I'éveil. Nous avons aussi
observé que la persistence dans le temps de configurations spécifiques est significativement
modifiée en fonction du stage de sommeil. Contrairement a une CF moindre préalablement
observée lors d'un sommeil plus profond, nous avons mis en lumiére un pic d’activation des
réseaux et une augmentation de leurs interactions pendant le sommeil lent de stage 2, avant
une diminution nette lors du stage 3.

Dans un deuxieéme temps, nous relions les changements de CF observés pendant le sommeil a
la connectivité structurelle (CS) en utilisant une parcellation régionale des données du cerveau
au lieu d’'une description a I'échelle du voxel. Ce sous-échantillonnage des signaux fonction-
nels pour mieux correspondre a la résolution de la CS est une pratique courante; en effet, la
modélisation par graphes de la structure du cerveau a toujours été limitée par la définition des
noeuds représentant les différentes régions du cerveau. Nous proposons ensuite une nouvelle
méthode traitant chaque voxel comme un noeud d’'un graphe a haute résolution du cerveau.
Nous introduisons deux facons de construire le graphe, et nous caractérisons leurs propriétés
par une analyse spectrale de son Laplacien. Nos résultats montrent qu’en dépit de la tres large



Résumé

dimensionalité des graphes obtenus (environ 750,000 voxels), la majorité de I'information
structurelle est capturée par les modes propres du Laplacien avec la fréquence la plus faible.
De plus, cette partie basse du spectre du Laplacien comprend aussi environ 85% du contenu
énergétique de I'IRM fonctionnelle, suggérant que les configurations fonctionnelles sont dans
I'ensemble lisses par rapport a la structure sous-jacente. Ceci permet, pour la premiére fois,
de mesurer directement et quantitativement a quel point la fonction cérébrale est faconnée
par 'anatomie.

Pour aller au-dela d'une mesure scalaire du lien entre CS et CE nous poursuivons par l'inter-
polation des signaux de la matiére grise au sein de la matiére blanche, en utilisant un graphe
structurel du cerveau a I’échelle du voxel pour guider le processus. Ceci permet la visualisa-
tion de structures essentielles de la matiére blanche qui relient des régions temporellement
cohérentes de la matiére grise. En appliquant une analyse classique de CF dynamique sur
les volumes interpolés, nous observons des réseaux structuro-fonctionnels a grande échelle
transcendant les configurations spatiales limitées a la matiére grise connues jusqu’ici. Cette
approche novatrice révele la médiation collective des faisceaux de matiere blanche sur les
connections fonctionnelles de courte et de longue distance.

Finalement, nous avons considéré la médiation structurelle collective par la quantification
du degré anatomique global entre les régions de la matiere grise temporellement cohérentes.
Comme premier jalon de 'usage d'un graphe a I’échelle du voxel dans le traitement de signal
sur graphe pour 'IRM fonctionnelle, nous avons utilisé un modeéle canonique de la diffusion
sur graphe pour extraire I’étendue anatomique des interactions entre réseaux fonctionnels.
Les régions du cerveau sont alors différenciées selon un gradient macroscopique comporte-
mentalement pertinent qui divise le cortex entre les aires sensorielles primaires de bas niveau
et les fonctions cognitives de haut niveau.

Mots-clés : Structure et fonction cérébrale, IRM fonctionnelle, IRM de diffusion, interpolation
de matiere blanche, interpolation, graphe des connexions cérébrales (par voxel), sommeil,
diffusion, modeles linéaires, Laplacien, modes propres
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|§ Introduction

1.1 Motivation

The brain is composed of a myriad of neurons that are grouped into subpopulations according
to their functional specialization. Different regions in the brain are engaged depending on
what we do, perceive, feel, and interact with our surroundings and other human beings.
For example, visual inputs are encoded in the occipital region of the brain following an
orderly arrangement known as retinotopy [Tootell et al., 1998], which emerges from the
spatial specificity of neuronal connections in different parts of the visual system. Similar
organizing principles also govern other sensory inputs: auditory cortex encode tonotopic
maps which reflect the representation of temporal frequency in the cochlea [Romani et al.,
1982], while the somatosensory cortex incorporates maps corresponding to the surface of the
body [Baumgartner et al., 1991]. Although topographic mapping of sensory inputs has been
well-studied in animals for centuries, studies that aim to differentiate human cortical regions
according to their functional roles have only bloomed significantly with the introduction of
functional magnetic resonance imaging (fMRI). By incorporating the timing of the tasks when
analyzing fMRI signals through regression analyses, it is possible to map distinct regions that
respond to specific stimuli [Friston et al., 1994, Friston et al., 1999]. Executive processing, for
instance, typically elicit a response in the prefrontal cortex, while introspection is associated
with activations in the posterior part of the brain [Alvarez and Emory, 2006]. Meanwhile,
other higher-order cognitive functions such as mind-wandering and episodic memory evoke
coordinated responses in different areas in the brain, forming a network or activity maps in
general. Altogether, this coordination of distant and neighboring neurons is measured within
the framework of functional connectivity (FC).

Along with the understanding that coordinated inter-areal communication underlies varied
functionalities, also comes the fundamental question of how these neuronal coordinations
take place. Communication between brain areas relies on specific routes or high-ways that
relay messages from each region of the cortex. White matter (WM) nerve fibers, which are
made up of nerve cell axons that extend from the neuron cell bodies of the gray matter (GM),
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serve to connect the cerebrum. Due to the controversial interpretation of the biophysical
origins of blood oxygenation level-dependent (BOLD) contrast in WM, most research in fMRI
is only limited to GM BOLD. As such, an inevitable discontinuity arises when relating GM and
WM particularly through the landscape of fMRI analysis. A popular avenue for investigating
WM connectivity is through scalar-valued anisotropy measures derived from reconstructed
models of water diffusion at every brain voxel using diffusion-weighted MRI (DW-MRI). In
contrast to neuronal activity that is indirectly measured by the BOLD contrast, DW-MRI
captures the strength of physical local connections between brain voxels, i.e., the likelihood
that two brain voxels are physically connected by a nerve fiber. Although very useful in
identifying structural anomalies in patients suffering from structural brain deficits, these
anisotropy values are merely summarizing measures that reflect maximal diffusivity and WM
morphology. As such, this discontinuity in GM and WM connectivity remains and the question
of how coordinated brain activity is mediated by the anatomy remains unanswered.

Alternative to voxel-level measures of anisotropy values, tractography approximates WM nerve
fibers directly [Catani et al., 2002]. With the understanding that high level of FC suggests
the existence of direct anatomical connections between these brain areas to support the
ongoing information transfer between them, two pioneering studies [Greicius et al., 2009,
van den Heuvel et al., 2009] have directly extracted the anatomical connection between FC
by initializing fiber streamlines at predefined seed regions obtained via prior computation
of FC. This approach allowed them to visualize specific WM tracks that connect a few GM
regions which display temporally coherent activity. The main disadvantage of this method,
however, is the direct selection of regions of interest (ROIs) which makes the analysis observer-
dependent. Moreover, through directly correlating regional measures of FC and averaged fiber
streamlines through structural connectivity (SC), it has been shown that FC commonly exists
between regions with no direct anatomical connectivity, suggesting that brain function is
constrained and shaped by the anatomy, but not entirely [Honey et al., 2009, Andrews-Hanna
et al., 2007, Hagmann et al., 2008]. Thus, taking instead the anatomy as a constraint, other
studies have attempted to reproduce brain activity from predefined SC through numerical
simulations [Galan, 2008, Deco et al., 2011, Deco et al., 2012].

Approximating FC from SC, or vice versa are hypothesis-driven and entail many explicit
assumptions. To understand how distributed patterns of FC arise from a fixed underlying
anatomy, a need for research methodologies that are observer-independent and purely data-
driven is of utmost importance. Moreover, we need to find a solution that jointly integrates
fMRI and DW-MRI into a single integrated framework that puts contributions from GM and
WM at equal footing. Although fiber tracking can be done using each voxel in the GM as a seed,
the complexity of the approach makes it difficult to accurately map the fibers at such a high
spatial resolution. Thus, a more practical solution is to average all approximated fiber bundles
coming from specific regions that are defined by a brain atlas. In doing so, WM contribution is
only incorporated through the strength of SC connecting the GM regions, further amplifying
the discontinuity between observations in GM and WM.



1.1. Motivation

Over the last decade, region-wise parcellations of the brain which summarize measures
that characterize brain structure and function have been the foundation of network neuro-
science [Sporns, 2018] which has propelled our understanding of the brain. With the increasing
interest to understand brain function with a dynamical point of view [Preti et al., 2017] and
along with which lies the fundamental question of how the underlying brain anatomy supports
FC, it is only timely that we advance network neuroscience to a more unifying analysis ap-
proach that takes into account the interplay between brain structure and function. Borrowing
concepts from the emerging field of graph signal processing (GSP), functional data are defined
atop the nodes of a structural graph and treated as time-dependent graph signals, on which
connectome-informed signal processing operations can be performed [Huang et al., 2018a].
Recent findings on GSP have started to elucidate the role of structure-function relationship in
supporting cognition and behavior [Medaglia et al., 2018, Preti and Van De Ville, 2019].

Nevertheless, despite these major advances, the understanding of how the overall brain
organization works in its entirety, considering the interplay between SC and FC remains only
partly answered. In particular, the understanding of GM neuronal coordination through WM
structural mediation remains elusive. To what extent is brain function shaped by the structure?
Which WM tracts are recruited whenever functionally coupled GM areas communicate? In
this thesis, we attempt to answer these questions by developing a new set of methodologies
that jointly integrate information from three imaging modalities based on MRI, namely the
structural MRI, DW-MRI, and fMRI. We advance the GSP concept by extending region-wise
analyses to a voxel-level perspective. In this approach, GM and WM are both defined as
nodes and local structural connectivity is encoded onto voxel-to-voxel edges. This allows
defining all fMRI BOLD signals from each voxel atop the nodes of a high-resolution brain
grid (around 750,000 voxels), thus removing the discrepancy in GM and WM contributions
that is inherent when defining nodes only according to GM regions. Using methods from
GSP that are generalized from classical signal processing, we interpolate functional signals,
measured on the GM onto the WM, using the voxel-level structural brain grid to guide the
process. This allows observing how particular patterns of brain activity jointly rely on an
ensemble of WM pathways. As the interpolated brain signals comprise the whole-brain at the
voxel level, classical dynamic FC approaches can thus be applied to the data, just as how it is
applied to typical fMRI data, enabling the visualization of key WM structures that mediate the
interactions of temporally coherent GM areas.

In the following section, we provide a more detailed overview of the content of the thesis. A
visual summary of the thesis organization and contributions is also supplied in Figure 1.1.
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Figure 1.1 — Thesis Overview and Contributions. In Chapter 3, we applied two recently de-
veloped methodologies — one through (Section 3.1) innovation-driven co-activation patterns
(iCAPs) and another (Section 3.2) through graph learning - to estimate network-level represen-
tations of brain function during tasks, rest, and across different NREM sleep stages. We tackle
the similarity of these networks with region-wise structural connectomes. Chapter 4 extends
region-wise analyses to a higher resolution, voxel-level representation of brain structure. We
discuss the design, construction, and spectral characterization of voxel-level brain graphs that
encode structural information from DW-MRI. We also provide, as the first demonstration of
its potential applications to functional MRI, a direct measure of how much brain function is
shaped by the underlying anatomy. This brain graph will be used in Chapter 5 to guide the
interpolation of human brain activity from GM (GM) into the WM (WM) to extract full brain
structure-function networks. These give the overall picture of how temporally coherent GM
areas are mediated by specific combinations of WM bundles. In Chapter 6, we apply these
newly developed methods in the context of graph signal processing applied to functional brain
imaging. In particular, we propose a new approach that leverages voxel-based graph diffusion
to extract the anatomical range of functional network interactions. The plate in white denotes
contributions where we applied advanced methodologies to functional brain data, while those
in gray correspond to contributions where new methodologies aiming to integrate diffusion
and functional MRI data were designed and developed during the PhD.
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1.2 Thesis Organization and Contributions

This thesis is organized as a compilation of 5 research articles, some of which are published
while others are currently under review/revisions. Chapter 2 presents the background nec-
essary for each of the studies included in this work. It introduces the reader to the basics of
neuroimaging and the current tools and techniques for analyzing MRI data. We present exist-
ing dynamic FC methods for characterizing human brain function, followed by a discussion
on current methods for probing brain structure. We then introduce different techniques in
linking SC and FC, and give emphasis on GSP which is the basis of all analyses performed in
the thesis. Chapters 3 to 6 contain reproduced research articles. Finally, Chapter 7 summarizes
the results and provides a discussion for future research directions.

In the following section, we give a summary of the content of each chapter and present the
goal and the research questions that we aim to answer in each chapter of the thesis.

Chapter 3: Large-scale functional brain network dynamics in tasks, rest, and sleep

This chapter presents two research articles [Tarun et al., 2020d, Tarun et al., 2020c] that
mainly tackle the extraction and characterization of network-level representations of brain
function using two advanced methods, one based on innovation-driven co-activation patterns
(iCAPs) [Karahanoglu and Van De Ville, 2015], and another based on graph learning [Petric
Maretic and Frossard, 2020]. We explore the similarity of the observed networks with the
underlying structure using a direct statistical metric, similar to the classical comparison of SC
and FC [Honey et al., 2009, Liégeois et al., 2016]. This comparison is done at the region-wise
resolution by defining each region following a brain atlas.

Journal Article: NREM sleep stages specifically alter dynamical integration of large-scale
brain networks

How do the dynamics of brain function change across the different sleep stages?

The main hypothesis underlying most FC studies is that large-scale brain networks reflect
ongoing cognitive processes. It was therefore hypothesized that if conscious awareness dissi-
pates as the brain transitions from wakefulness to deep sleep, then the activity of networks
associated with high-level cognitive processes should also decrease. Surprisingly, it has been
shown that these networks persist even in the deepest non-rapid eye movement (NREM)
sleep stage [Larson-Prior et al., 2009]. Nevertheless, significant modifications have also been
observed in terms of their spatial patterns, such as decreases in connection strengths [Larson-
Prior et al., 2009], changes in the hierarchical organization into smaller modules [Boly et al.,
2008], and reduced long-range temporal dependence in the BOLD signal [Tagliazucchi et al.,
2013].

In this section, we highlight the changes in the temporal dynamics of large-scale functional net-
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works as the brain transitions across NREM sleep stages, as well as their interactions/couplings.
Using a novel method that relies on transient brain activity applied to two complementary
studies of simultaneous EEG-fMRI recordings of sleep, we recover a wide array of spatially and
temporally overlapping large-scale brain networks, thus revealing the organization principles
of human brain function from wakefulness to deep sleep. Our results reveal new spatial
patterns covering regions that support the physiological organization of sleep and arousal.
Unexpectedly, contrary to previously observed strong functional dissociations that accom-
pany the deepening sleep, we instead observe a surge of network activity and cross-network
interactions during NREM stage 2, followed by an abrupt decrease of activity in NREM stage
3 [Tarun et al., 2020d]. To relate these findings with the underlying anatomy, we also provide a
dynamic and region-wise comparison of FC and SC across the different NREM sleep stages.
We observe that as FC breaks down during the deep sleep, we find an increasing alignment
between correlation measures of brain structure and function.

Journal Article: Dynamics of Functional Network Organization Revealed by Graph Lapla-
cian Mixture Models

Data-driven estimation of large-scale functional brain networks using graph learning.

Different areas in the brain are activated in a temporally coherent manner according to ongoing
cognition. Classical methodologies in extracting brain networks typically employ regression
techniques that incorporate prior information from the timing of the task paradigms. Due to
the increasing interest in understanding the intrinsic functional organization of the brain in
the absence of any stimulus, several methodologies have been proposed to allow the detection
of prevalent spatial patterns in a purely data-driven manner.

In this section, we introduce a new method based on graph learning to extract meaningful
repeating network patterns from averaged regional time-courses. We used a generative model
that treats functional data as a collection of signals that live on multiple graphs. Using this
approach, we are able to extract functional networks whose activity profiles accurately capture
the timings of the task paradigms. We also present the corresponding connectivity matrices
(i.e., learned graphs) that describe the direct interactions between regions which comprise
these metastates. We then estimate the degree of similarity between the estimated graphs and
the underlying structural connectome at different time-points of task and rest.

Chapter 4: High-resolution voxel-level brain graphs

This chapter presents the first method developed in the thesis which characterizes brain
structure at the voxel-level resolution [Tarun et al., 2019, Tarun et al., 2020a]. Both FC and SC
graph models are typically defined based on region-wise parcellations of brain data. Although
a number of dynamic FC approaches are available at the voxel-level resolution, graph models
of SC are currently limited to region-wise definitions, for which WM contribution is only
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represented through the strength of physical connection encoded in the edge weights between
GM regions. In order to address the research questions raised in this thesis, we propose a new
framework that addresses the discrepancy between GM and WM contributions by removing
the limitation of doing all analyses in region-wise resolution and explicitly defining all brain
voxels as nodes of a high-resolution brain graph. In this chapter of the thesis, we provide two
methods to build a large brain graph onto which voxel-to-voxel connectivity from DW-MRI is
encoded. We then provide, for the first time, a direct measure and a quantitative description
of how much brain function is shaped by the underlying structure.

Journal Article: Voxel-Wise Brain Graphs from Diffusion-Weighted MRI: Spectral Analysis
and Application to Functional MRI

How can we extend region-wise graph models of brain structure to the voxel-level perspective?
To what extent is function shaped by brain structure?

In the previous chapter, we introduce two different approaches for extracting network-level
representations of brain function. In each work, we also provide a comparison between brain
structure and function, but only through direct correlation of SC and FC measures derived
using region-wise parcellations of the brain. Indeed, graph modeling of structural connectivity
has been very useful but has only been limited to defining nodes as regions from a brain
atlas. Recent developments in computational neuroimaging used GSP operations to link brain
structure and function. Region-wise connectomes are first constructed from DW-MRI. Then,
functional data are defined atop the nodes of the graph and are interpreted as time-dependent
graph signals. Signal processing operations can then be performed using methods generalized
from 1D temporal signals to irregular graphs [Huang et al., 2018a]. In this design of the graph,
however, nodes are only defined within GM, and WM is only incorporated in terms of the
strength of the structural connections between GM.

In this chapter, we model WM explicitly as nodes of a high-resolution voxel-level brain grid
(i.e., 750,000 voxels). We propose two different methods for constructing voxel-level brain
graphs that encode structural information from DW-MRI. The properties of the brain graph are
characterized using spectral analysis of the graph Laplacian operator. The intrinsic dimension-
ality of the eigenspace is explored through a Procrustes validation scheme that characterizes
inherent inter-subject variability. By decomposing task and resting-state fMRI data in terms
of low-frequency eigenmodes, we find that about 85% of the energy content of fMRI signals
are concentrated in the lowest 0.125% of the structural eigenspectrum. This provides, for the
first time, a direct measure and a quantitative description of how brain function is shaped by
the underlying anatomy. We conclude the chapter by providing research avenues for directly
integrating brain structure and function at the voxel-level resolution.
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Chapter 5: Recovery of whole-brain structure-function networks

This chapter presents a novel framework that takes advantage of the proposed voxel-level
brain grid to address the main research problem of the thesis. We developed a novel approach
that enables the observation of key white matter structures that mediate the interactions of
temporally coherent GM areas [Tarun et al., 2020b]. This approach is purely data-driven and
combines measures from fMRI and DW-MRI into a single integrated framework.

Journal Article: Structural mediation of human brain activity revealed by WM interpola-
tion of fMRI

How is human brain activity mediated by structure?

So far, most of the works that linked brain function and structure can be categorized into four
different types: (1) employing a direct statistical inter-dependence between two separately
defined metrics for SC and FC [Honey et al., 2009] (e.g., analyses we conducted in Chapter
3), (2) initializing FC and approximating fiber streamlines that connect predefined ROIs that
are implicated [Greicius et al., 2009, van den Heuvel et al., 2009, Chamberland et al., 2015],
(3) approximating brain activity from SC using numerical simulations [Galdn, 2008, Honey
etal., 2007, Deco et al., 2011, Deco et al., 2012], or (4) employing advanced graph theoretical
approaches to examine how FC arises from, is controlled by, and is constrained by measures
of SC [Gu et al., 2015, Becker et al., 2018, Goni et al., 2014]. Extracting SC from FC, or vice versa,
are hypothesis-driven and require explicit assumptions. Moreover, none of these methods
jointly and simultaneously integrates functional and diffusion MRI data into a singleintegrated
framework.

In this chapter, leveraging on the proposed brain grid introduced in Chapter 4, we present a
new method for interpolating functional signals measured on the GM, into the WM, using the
structure encoded in the voxel-wise connectome to guide the process. This gives a visualization
of how temporally coherent GM regions are mediated by combinations of different WM tracks.
The output is a set of 4D volumes, similar to original functional volumes, but also includes
interpolated signals in the WM. Using classical static and dynamic FC analyses, we present,
for the first time, full brain structure-function networks, which extend currently known spatial
patterns that are limited within the GM only. The functional relevance of these structure-
function patterns is then further validated through investigations of their relation to task fMRI.
Our findings reveal the structural mechanisms underlying the dynamic switching between
task-positive and -negative subsystems of the default mode network (DMN) in different phases
of working memory and relational task paradigms
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Chapter 6: Graph signal processing applications on functional brain imaging: a
voxel level perspective

This chapter demonstrates the powerful use of voxel-level brain graphs in the context of GSP
applications for functional brain imaging. We present a novel framework to quantify the
anatomical range of functional network interactions [Tarun and Van De Ville, 2020].

Journal Article: Anatomical range of functional interactions meaningfully differentiates
brain regions

How do we obtain a measure of the anatomical range of functional network interactions?

Functionally coupled brain regions recruit different combinations of white matter structures to
accommodate efficient inter-areal communication. Distance between functionally connected
areas is usually defined using either euclidean or geodesic distance between two ROIs [Achard
et al., 2006, Sepulcre et al., 2010, Oligschlédger et al., 2017]. The brain topology, as observed in
region-wise graphs, has shown small-world properties characterized by short path lengths
and high clustering [Bassett and Bullmore, 2017]. This maintains the efficiency of inter-areal
communication in the brain and minimizes the use of more costly long-distance functional
connections.

In this chapter, we consider a canonical example of signal diffusion as a tool to extract the
anatomical range of functional network interactions. We used a voxel-based graph diffusion
framework that leverages methods borrowed from spectral graph theory [Kondor and Lafferty,
2002] as a canonical example to model the time it takes for a signal from the GM to be diffused
to the WM. Starting from masked GM signals, taken in this application as a source of heat,
we diffuse these signals into the WM using the structure encoded in a voxel-wise brain grid
to guide the process. The length of time it takes for the signals to be completely diffused,
equivalent to the obtained interpolated volumes proposed in Chapter 5, gives the optimal
diffusion time necessary for WM bundles to connect temporally coherent GM areas. We found
that this characteristic time, which is then converted to distance (in millimeters), is different
for each region of the brain, and when projected to a cortical surface, follows an overarching
organization that differentiates low-level primary sensorimotor areas from the more complex
high-order association and limbic areas.






¥4 Background

Magnetic resonance imaging (MRI) has made it possible to map the brain’s anatomical scaffold
from diffusion-weighted MRI (DW-MRI), and in parallel, extract proxy of neural activity using
functional MRI (fMRI). The main focus of this thesis is understanding the link between brain
structure and function using simultaneous analysis of functional, structural, and diffusion
MRI data. As such, we begin the chapter by providing an overview of the physical principles
that underlie the acquisition of MRI. We delve into the use of functional MRI to capture blood-
oxygnenation levels as a proxy of neural activity, structural MRI to image brain morphology,
and diffusion MRI to capture white matter connectivity. We demonstrate how these modalities
are exploited in different aspects of brain research. Specifically, we discuss the current methods
and findings in the field of dynamic functional connectivity, followed by a discussion on region-
wise structural connectomes. Finally, we enumerate recent developments in integrating
complementary information from structural, diffusion and functional MRI to probe how brain
function is shaped by the underlying structure.

2.1 Magnetic Resonance Imaging (MRI)

MRI has remarkably shaped the field of clinical and computational neuroscience over the past
decades. It offers extensive possibilities to probe the brain’s organization in different contexts.
Although it is a relatively young field, the number of publications utilizing this modality in
brain research is rapidly growing, thanks to its numerous advantages, such as its non-invasive
feature and high spatial resolution.

Nuclear Magnetic Resonance (NMR)

Long before MRI was invented, there was nuclear magnetic resonace (NMR) which is applied to
study the variation in molecular electron distribution of different chemicals. This technique is
founded upon the idea that charged nuclei of atoms (e.g., hydrogen atom) under the influence
of a static magnetic field resonate when induced with a weak and secondary oscillating
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Figure 2.1 — Basic principles of MRI. (A) Major parts of an MRI scanner. (B) Hydrogen proton
spins and acts like a bar of magnet. (C) Without magnetic field, protons spin in random
orientations; with magnetic field By, they spin and precess around the direction of By. All
individual protons can be visualized as vectors — the sum of their magnetic moments is equal
to the (D) Longitudinal Magnetization in the By-direction. Under the influence of an RF
pulse, this net magnetization becomes transverse to By. When the RF pulse is removed, the
protons go back to their alignment with By and relaxation occurs. Finally, (E) the NMR signal is
localized using gradient fields in x—, y—, and z— directions. Figure in (A) and (E) were adapted
and reproduced with permission from [Currie et al., 2013].

magnetic field [Block et al., 1946]. Many years later in the 1970s, it was observed that there is a
stark difference in magnetic resonance of cancerous and non-cancerous tissues due to the fact
that cancerous cells hold more water, and consequently more hydrogen atoms than normal
cells [Damadian et al., 1974]. This idea motivated Paul Lauterbur to use magnetic resonance to
image living tissues [Lauterbur, 1973], and together with Peter Mansfield, introduced magnetic
field gradients in three different directions to idenfity localized sources of NMR signal, enabling
them to produce high resolution 3D images of bodily tissues.

To put simply, MRI relies on magnetic fields, radio-frequency (RF) pulse, and their interactions
with protons found in water that makes up living tissues — for a comprehensive review, see
[Currie et al., 2013]. We can therefore think of the hydrogen nuclei as the main driving element
in producing signals in MR-brain imaging. It consists of a proton which spins in random
directions, and whose motion can be likened to tiny toy tops that wobble as they spin. This
movement causes it to generate its own magnetic field, known as its magnetic moment, and
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consequently behave like little bars of magnets (see Figure 2.1(B)).

When a subject lies down in the bore of the MRI scanner, a static magnetic field (Bp) is
introduced along the antero-posterior direction or the z-axis as shown in Fig 2.1(A). The
presence of this field triggers the realignment of individual hydrogen nuclei to either anti-
parallel or parallel to By (Figure 2.1(C)) causing them to precess around this axis, but at
different phases. When all magnetic moments are summed up (Figure 2.1(D)), the overall
magnetization My of these group of protons, known as longitudinal magnetization, point
towards the direction of By. Since these protons precess, there is no net polarization in the
x— or y—axes, however, one particular proton at any moment in time will be pointing in
some direction in the xy plane. The number of times that these protons spin within a second
is known as the Lamor frequency, which is proportional to the magnetic field according
to woy = YBoy, where vy is the gyromagnetic ratio unique to each nuclei (i.e., for hydrogen,
y = 42.57).

Now, when a radio-frequency (RF) pulse oscillating at the transverse plane is applied, the
orientation of these protons are disturbed and they fall off from their alignment with By. This
only happens when the frequency of the RF pulse matches the precessional frequency of the
proton, a phenomennon called resonance. The transfer of energy from the RF pulse to the
protons causes some of them to (1) gain energy and flip their alignment anti-parallel to By
and to (2) spin in phase so that all protons are in the same orientation at all times. The first
effect increases the number of opposing protons and consequently reduces the amplitude
of the longitudinal magnetization. The second effect induces a moving net polarization in
the transverse direction to By, known as the transverse magnetization (M7). When the RF
pulse is turned off, the protons relax and go back to their alignment with By. The process of
relaxation occurs in terms of two aspects: (1) M starts to go back to its original value after the
application of the RF pulse, and (2) Mt disappears as protons fall out of phase with each other
due to magnetic field variations (inhomogeneity) within local tissue. Another reason for the
loss of phase coherence among group of photons along the x-y plane is due to inhomogeneity
within By. Magnetic field variations cause slightly different Larmor frequencies for protons
at different locations within the field. This process describing the effects that result from the
combination of T2 relaxation and the de-phasing due to inhomogeneity in B0 is characterized
by the T2* (T2 star) relaxation. The evolution of these relaxations follow an exponential
relationship of My (£) = My(1—e~"'T1) and My (t) = Mye™ T2, with time constants T} and T»,
respectively [Block et al., 1946].

Image Localization of MRI using Gradient Fields

The MR signal comes from the indirect detection of moving transverse magnetization rotating
at the Larmor frequency. This induces an alternating voltage in a conductive receiver coil
which in turn generates electrical current. The goal is to convert this signal into a resolved
three-dimensional picture of the body. Just as how pixels comprise each square of a 2D picture,
MRI obtains a 3D image that is made up of tiny voxels of different signal intensities. To do this,
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MR, in addition to the basic principles of NMR discussed above, introduces spatially varying
gradient fields which allow for the detection of localized signals in living tissues. These are
applied along the x—, y—, and z— directions. Recall that protons only exchange energy with
one another efficiently if the frequency of RF pulse matches their precession frequency. When
a magnetic field gradient is introduced within a specific location or slice along the z—direction,
the protons in this area experience a slightly different magnetic field, resulting to a gradient of
precession frequencies that differ. The scanner can therefore select a particular slice to image
by altering the frequency of the excitation pulses in order to match the frequency at the desired
slice position. Meanwhile, protons next to the considered slice which precess at a different
frequency will remain unaffected. Next, to identify the intensity values along the xy-plane,
gradients along the x— and y— directions, called frequency-encoding and phase-encoding
gradients, respectively, are used [Kumar et al., 1975]. The gradients in the fields along these
directions induce different spin frequencies and phases across the protons, respectively. By
modifying the temporal sequence of these gradients, the resulting signals encoded in the
frequency domain, the so-called the k-space, can be converted to a two-dimensional image
following an application of the inverse Fourier transform. This process is done for each slice
along the z-direction until a full 3D brain volume is obtained.

2.1.1 Acquisition of functional MRI to monitor neurovascular coupling: a proxy
for neural activity

The addition of the three-step gradient pulses causes de-phasing of the transverse magnetisa-
tion. In order to off-set this result and to ensure maximum signal intensity, a process known
as gradient echo is performed. That is, two additional gradient pulses are applied: one imme-
diately after the slice-selection and the other before the frequency-encoding [Winkler et al.,
1975]. Next, to obtain a series of 3D brain volumes, the whole process discussed above, from
the excitation to localization, is repeated at every constant and short temporal window. The
time it takes between two successive acquisition is called the Repetition Time (TR), which is
typically around 2 seconds for functional MRI acquired in regular clinical research studies.
Functional data used for most part of this thesis are acquired using a much faster technique
(TR < 1 second) and widely applied approach called echo-planar imaging [Mansfield, 1977].

The role of physiology

Functional brain imaging relies on the change in the oxygen state of the haemoglobin in the
blood [Ogawa et al., 1990], which is based on the metabolical processes underlying brain
activation, the so-called neurovascular coupling. Neural signaling in the brain requires a
local increase in energy consumption, which in turn results to an up-regulated cerebral
metabolic rate of oxygen at the affected brain area. By luck of nature, it turned out that oxy-
genated haemoglobin is diamagnetic, similar to most tissues in the brain, while deoxygenated
haemoglobin is strongly paramagnetic due to the presence of unpaired electrons. This induces
local magnetic field gradients detected by the MRI whose strength depends on the deoxy-
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genated haemoglobin concentration. Recall from the discussion above that T2* relaxation is
caused by the magnetic field inhomogeneities. These depend upon the physiological state
of the brain, and in particular the composition of the local blood supply. Functional MRI,
through the detection of the T2*, therefore relies on the increased local cerebral blood flow
(CBF) and changes in oxygenation concentration (Blood Oxygen Level Dependent, or BOLD
contrast), following neuronal activation. Thus, the signal we capture is not a direct measure of
neural activity, but rather only a proxy of it. Because fMRI relies on haemodynamic changes,
the signal that is measured is not instantaneous, and instead follow a 5-second delay described
by the haemodynamic response function (HRF) [Logothetis et al., 2001].

2.1.2 Acquisition of structural and diffusion MRI to capture brain morphology
and white matter connectivity

Gray matter (GM) contains cell bodies, dendrites, and axon terminals of neurons, while the
white matter (WM) is made of long myelinated axons or nerve fibers. These two tissues can
be distinguished by manipulating the imaging parameters that is set before a MRI scan is
launched. In structural and diffusion MRI, the TR and TE are the primary parameters that the
MRI technician chooses in order to influence the tissue weighting of the image to be generated.
T2 relaxation characterized by the time constant T2 varies across different tissue types. Bone
and lungs, for example, have short T2 values, while water and cerebrospinal fluids (CSF)
have longer relaxation times and therefore long T2. Meanwhile, WM and GM have relatively
shorter T2 values than CSE but longer than bones and lungs. This difference in T2 values
allows neighboring tissue types in the brain to be differentiated from one another resulting
to a contrast image. Complementary, different tissue types also have different T1 relaxation
times. An image contrast that is predominantly due to differences in tissue T1 relaxation time
is called a T1-weighted image. One of the most widely used imaging setting in acquiring high-
resolution anatomical data uses a T1-based weighting is called the Magnetization Prepared
Rapid Gradient Echo (MPRAGE) [Mugler III and Brookeman, 1991]. In most part of this thesis,
we simply use T1 when we refer to the anatomical/structural brain data.

WM can be thought as a highway that acts as a relay to coordinate communication between
different GM areas. It’s physically made of bundles or tracts. When MRI images the brain, it
captures the diffusion of water molecules as they traverse long narrow tissues. In this scenario,
the diffusion is anisotropic and the water molecules are expected to follow a specific fiber
direction. Diffusion MRI utilizes a type of imaging sequence called the spin-echo, which is the
refocusing of spin magnetisation by introducing a 180 degrees RF pulse, opposite to By, after
an initial 90 degrees excitation [Hahn, 1950]. This causes the protons to precess in the opposite
direction, such that those who spin the slowest are suddenly in the front. At some point in
time, the ones who spin fast catch up and all the protons begin to spin in phase, resulting to a
maximal signal intensity.
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2.2 Probing brain function in task and rest

After the acquisition of fMRI data, we are usually left to deal with noisy 4D volumes (temporal
sequence of 3D volumes). Basic preprocessing steps are as follows: (1) Motion correction is
performed by realigning all frames to their mean functional image; (2) These volumes are then
co-registered to a higher resolution T1-weigthed image, which is (3) subsequently segmented
to obtain tissue probability maps for GM, WM, and CSF; (4) Co-registered volumes undergo
spatial smoothing using a Gaussian filter with a full-width-half-max (FWHM) within the
range of 4-6 mm; (5) Because each brain has different size and shape, all functional volumes
are normalized to a common template or coordinates so that group-level analysis can be
performed. There are many variants of pre-processing steps, for a review see [Van Dijk et al.,
2010]. In this thesis, we used these basic preprocessing steps, and are followed by nuissance
regression (6 motion parameters, signal drifts, and WM and CSF mean signals), except when
stated differently.

First studies of fMRI relied on task-based paradigms, where functional brain changes induced
by an applied stimulus were mapped directly using regression analysis, the most widely
used of which is the General Linear Model (GLM) [Friston et al., 1994]. To describe simply,
subjects are subjected to an external stimulus or task during specified blocks (task blocks),
and are asked not to do anything during the control epochs. Statistical contrast of BOLD
signal during the task block is then generated with respect to the control blocks. The resulting
maps show specific brain regions that are attributed to the specific stimulus/task. Because
of direct mappings between neural and cognitive states, many open-source meta-analytical
tools are available, such as the brainmap.org [Fox and Lancaster, 2002] and the Neurosynth
database [Yarkoni et al., 2011], wherein an automated brain-mapping framework is performed
in order to support a more generalized decoding of broad cognitive states from brain activity.

2.2.1 Time-averaging quantification of brain function

Regression analyses are classic examples of static quantification of brain function and are
particularly useful for mapping spatial maps related to different epochs of a task paradigm.
However, without the predefined timings of the task that guide post-experiment analyses,
the GLM approach cannot be used. The discovery that BOLD signal obtained from a resting
brain is not just noise, and rather a manifestation of meaningful functional connectivity of the
brain [Biswal et al., 1995] has led to a number of studies that attempted to obtain large-scale
functional brain networks derived from spontaneous brain recordings — for a review of static
FC approaches, see [van den Heuvel and Hulshoff Pol, 2010] and [Smitha et al., 2017].

One of the simplest and classical ways to extract static spatial maps is through the seed-
based correlation analysis. This was method adopted by [Biswal et al., 1995] and colleagues
when they identified regions of the sensorimotor cortex to be activated secondary to hand
movement. Seed-based analysis is a model-based method in which users are able to select a
seed or region of interest (ROI), and of which mean BOLD signals are linearly correlated to all
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Figure 2.2 — Intrinsic FC networks during rest reproduced from a previous study [Thomas
Yeo et al., 2011] using a large cohort of subjects (N=1000). Local networks are confined to
sensory and motor cortices while association networks are composed of spatially distributed
regions.

other voxels in the entire brain, resulting to a seed-based FC map. Due to the need to specify a
seed, it is not possible to extract multiple brain patterns at once. Nevertheless, such approach
has led to the discovery of a wide array of resting-state networks (RSNs), such as primary and
secondary visual, temporal/ACC network, left and right fronto-parietal networks, to name a
few. If instead of brain voxels, we consider each region as a seed in an atlased data consisting
of N regions, then taking the Pearson correlation of each seed to the rest of all other regions
will generate N x (N —1)/2 values describing the functional interplay of each pair of regions.
This is the classic definition of a functional connectome or FC.

Another method that is widely used in understanding the functional architecture of the brain
is graph theory. A graph, mathetically represented as ¥ := (.#,A), models brain regions
as nodes (A), where | /| = N, and the degree of their functional interplay as edges. The
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connectivity information is described in an adjacency matrix A, which in fact, constitutes
the classic definition of FC (i.e.,, statistical interdependence of brain areas [Friston, 1994]).
Using different graph metrics (e.g., shortest path, degree, clustering, modularity), the overall
functional organization of the brain can be examined and insights in how the human brain
operates can be derived [Bullmore and Sporns, 2009, Achard and Bullmore, 2007].

2.2.2 Time-resolved quantification of brain function

For a while, FC analyses with static assumptions dominated the field of computational neuro-
science. However, since the discovery that fluctuations in the BOLD signal can be meaning-
ful [Chang and Glover, 2010], most methodological developments for extracting FC has taken
the dynamic perspective into account — for a comprehensive review of dynamic FC methods,
see [Preti et al., 2017] and for the dFC’s relation to cognition and behavior, see [Bolton et al.,
2020].

Most of the early dynamic FC methods were extensions of the static approaches. One perfect
example is the sliding-window analysis, which computes FC within each temporal window
that is cascaded at a constant time step over the whole duration of a resting-state scan. Due to
its simplicity, many studies utilized it to uncover intrinsic functional brain dynamics [Kucyi
and Davis, 2014, Elton and Gao, 2015]. An important parameter in this technique is the user-
defined temporal window length. Too short windows would increase the risk of introducing
spurious fluctuations, while too long windows would not detect the meaningful temporal
variations that are being investigated [Leonardi and Van De Ville, 2015].

As an extension of sliding-window, which can also be viewed as an extension of a static graph-
based analysis, is dynamic graph analysis, in which graph measures are computed for each
temporal window of FC modeled as a graph, so that a temporal evolution of various graph
metrics (e.g., modularity [Betzel et al., 2016b] can be obtained [Tagliazucchi et al., 2012b].
Further extensions include decomposition of dynamic FC matrices into distinct connectivity
states using principal component analysis (PCA) [Leonardi et al., 2013] or singular value
decomposition (SVD), k-means clustering [Allen et al., 2014], or hierarchical clustering [Yang
et al., 2014]. Meanwhile, a direct extension of ICA is the approximation of the time-course for
each individual independent components by back-reconstruction [Erhardt et al., 2011].

In the discussed methods above, information from all time-points are used, however, it is not
for certain that the brain undergoes ever changing temporal dynamics. In the same time that
sliding-window analysis was rising in popularity, Tagliazucchi and colleagues proposed the
idea that equivalent results extracted using static FC analyses can be obtained by investigating
only timepoints that show a relatively large amplitude [Tagliazucchi et al., 2012a, Tagliazucchi
et al., 2016]. Known as the point-process analysis (PPA), only relevant timepoints above a
certain threshold contain the same amount of information as a regular full timecourse. This is
advantageous because it decreases the amount of data needed to extract meaningful patterns,
and it preserves the temporal information, unlike the averaging-effect of classic seed-analyses.
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In fact, it was shown that if we take the average of all frames corresponding to the top 15% of
mean BOLD activation within a chosen seed region, the result is equivalent of that of seed-
correlation map [Liu and Duyn, 2013]. Moreover, if we run a clustering algorithm in the original
frames whose mean BOLD signal within the seed were above the chosen threshold, we generate
a set of co-activation patterns (CAPs) corresponding to the chosen ROI. Furthermore, if we
consider the transients or moments of activity changes in the BOLD signal instead of the peaks
as is done in regular CAPs, we can extract whole-brain FC networks without the need of an
ROI, and at the same time, be able to capture the temporally overlapping nature of intrinsic
brain organization [Karahanoglu and Van De Ville, 2015]. Known as the innovation-driven
co-activation patterns (iCAPs), this method takes into account the the effects of the HRF
in the BOLD signal, and apply a deconvolution step followed by a derivative to obtain the
transients [Karahanoglu et al., 2013], which are then fed to a clustering algorithm.

From frame-resolved family of approaches, one may also consider methods of extracting
dFC states using temporal modeling. Using k-means clustering, Allen and colleagues were
able to extract recurring connectivity patterns (cluster centroids) which are temporally non-
overlapping [Allen et al., 2014]. Alternatively, there is also the hidden Markov Model (HMM)
approach which considers a temporal sequence of hidden states parameterized by a covari-
ance matrix [Eavani et al., 2013]. Similarly, principal component analysis can be used to
maximize the variance in resting-state data [Leonardi et al., 2013].

2.2.3 Dynamics of brain function in the descent to sleep

The study of sleep, as well as studies related to consciousness and different levels of arousal
(e.g., anesthesia, and drugs), are notable areas of research that largely benefit from continu-
ous development of data-driven methodological tools that allow to detect prevalent spatial
brain patterns. Many seminal works, especially those that initially sought to understand the
neurophysiological relevance of the default mode network (DMN), a set of regions known
to be engaged when there is no extraneous task [Greicius et al., 2003], assumed that these
RSNs reflect spontaneous ongoing cognition [Andrews-Hanna, 2012]. It was therefore hy-
pothesized that if conscious awareness decreases as the brain transitions from wakefulness
to deep sleep, then it should rightly follow that the regions of the brain associated with high
cognition also decrease in activity. This hypothesis was tested by [Larson-Prior et al., 2009]
and they observed that FC was maintained in each network throughout the descent from
wakefulness to light NREM sleep, as can be seen in a side-by-side comparison of the networks
in Figure 2.3(A). This was verified by a later work performed by Tagliazucchi et. al, which
reported that even in deep sleep (N3), almost all of the observed RSNs during wakefulness
can also be retrieved [Tagliazucchi et al., 2013]. These findings therefore oppose the general
notion that RSNs merely reflect spontaneous ongoing cognition. Moreover, stronger evidence
against this notion is provided by separate studies that demonstrate maintained RSNs even in
cases where conscious awareness is presumed to be completely abolished, such as in subjects
under anesthesia and even in coma [Boly et al., 2008].
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Figure 2.3 — FC states in the descent to sleep. (A) Using static seed correlation analysis, Larson-
Prior and colleagues showed maintained RSNs in (i) wake and (ii) N1 sleep. (B) Meanwhile, it
was also revealed that a dissociation between the posterior DMN and the anterior cingulate
occurs when the brain transitions to deep sleep [Horovitz et al., 2009]. (C) Using a dynamic
temporal modeling approach, the likelihood of different brain states to occur at different sleep
stages and the key trajectories that the brain undergoes from wakefulness to deep sleep are
presented [Stevner et al., 2019]. All figures are adapted with permission from the publishers.

Nevertheless, the maintained presence of these networks does not consequently mean that
they remain the same all throughout different brain states. This is specially not surprising
since the brain undergoes physiologically distinct changes which are particularly well-studied
using electroencephalography (EEG). Our natural sleep can be broadly divided into rapid
eye movement (REM) and non-rapid eye movement (NREM) sleep. The latter can further be
subdivided into different sleep stages characterized by relaxed wakefulness (N1) to light sleep
(N2), up to slow-wave sleep (SWS) or deep sleep (N3). Using static FC analysis, several works
have attempted to compare the difference in FC patterns across NREM sleep stages. One very
prominent finding is the dissociation of the DMN into posterior and anterior parts [Horovitz
etal., 2009] as illustrated in Figure 2.3(B).
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While static FC analyses has been very insightful, there are a lot of information yet to be
explored in terms of the temporal dynamics of FC in the descent to sleep. Lately, an elegant
framework that utilizes Bayesian-based temporal modelling has been introduced, which uses a
HMM [Vidaurre et al., 2017] to estimate repeating spatial brain paterns in NREM sleep [Stevner
et al,, 2019]. They showed that there are specific FC networks that have higher propensity
to occur at different sleep stages — see Figure 2.3(C). For instance, wake-related HMM states
comprise regions from the thalamus, and some key regions of the DMN. Meanwhile, at the
other extreme, deep sleep is characterized by an increased activation in somatosensory areas
and a strong decrease of activation in the parietal and temporal cortices. These states were
then elegantly laid out in terms of the tendency to shift from one state to another as the
brain transitions from wakefulness and across all NREM sleep. One specific drawback of this
method, however, is the strong assumption of temporal segregation between states, i.e., only
one state can occur per time instance. This is particularly questionable, especially in light of
recent findings that FC networks are spatially and temporally overlapping [Karahanoglu and
Van De Ville, 2015], and that the brain exhibits unstable synchronization in N2 sleep [Kung
et al., 2019]. In the latter work, they investigated changes in variance of FC across temporal
windows in a sliding-window analysis. They showed that FCs computed across all temporal
windows within N2 sleep are highly fluctuating, suggesting instability in brain integration.
In contrast, FC networks during N3 exhibit low variance thereby reflecting a low but stable
inter-regional coordination [Kung et al., 2019].

In this thesis, we tackle changes in the dynamics of FC in wakefulness and across different
NREM sleep stages using the iCAPs approach, which was introduced in the previous section.
This method is able to extract spatially and temporally overlapping networks [Karahanoglu
and Van De Ville, 2015], which gives a more accurate network-level representation of brain
function. We will explore these changes and give interpretations of their physiological rele-
vance, especially in terms of their relation to consciousness [Tononi, 2004, Tagliazucchi and
van Someren, 2017].

2.3 Characterization of brain structure

2.3.1 Voxel-wise characterization of brain structure using scalar anisotropy mea-
sures

DTImodels the diffusion of water molecules in nerve fibers using diffusion tensors represented
by a 3 x 3 x 3 matrix. A popular method to characterize brain structure is the use of diffusion
anisotropy measures [Basser and Pierpaoli, 1996], such as fractional anisotropy (FA), apparent
mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). All of these measures
are scalar valued and rotation-invariant. We can imagine diffusion tensors as ellipsoids of
varying size and sphericity, which is determined by the comparative length of their three
major cross-sectional axes (also known as the tensor’s eigenvalues). AD is equivalent to the
largest eigenvalue which is proportional to the length of the major axis of the ellipsoid. The

21



Chapter 2. Background

average between the two other eigenvalues is given by the RD. MD is the average of all three.
Meanwhile, FA, the most widely used among all four, describes the degree of anisotropy in
that particular voxel. This is proportional to the sum of squared differences of all eigenvalues
to their mean. A value of zero would mean that the diffusion is isotropic and that the tensor is
perfectly spherical in shape. On the other end, a value of one would mean that water diffusion
occurs only along one axis and is fully restricted along all other directions. Due to a direct and
easy interpreation of FA as a measure of white matter integrity in the area being investigated,
several clinical research studies have adopted its use [Lerner et al., 2014], such as Alzheimer’s
disease [Nir et al., 2013], brain tumor (Jellison et al., 2004], and multiple sclerosis [Cercignani
etal., 2000], to name a few.

2.3.2 Region-wise characterization of brain structure

Diffusion anisotropy measures, as described above, capture white matter integrity at the voxel
level. A more advanced approach in characterizing white matter structures is the approxi-
mation of fiber streamlines using tractography. Signal reconstruction models of DW-MRI,
such as the ODF and the tensor dictates the primary direction of water diffusion. In brief,
tractography uses this local voxel-to-voxel information to trace the direction of fibers from
one seed-position to another [Jbabdi et al., 2015]. There are many variants of tractography
algorithms, and improving its accuracy remains to be one of the mostly sought research area
in neuroscience [Maier-Hein et al., 2017].

The number of fiber streamlines connecting two regions of the brain gives an approximation of
the strength of structural connectivity between them. It is then useful to summarize the results
from tractography into a structural connectome or N x N structural connectivity (SC) matrix,
where each entry a;; describes the number of fiber streamlines connecting regions i and j.
This is typically normalized by dividing the number of fibers with the average of the sizes of the
two ROIs in question. From here, various analyses can be done to characterize brain structure.
Just as how graph theory is useful in characterizing FC, it is also used in understanding the
topology of the brain’s anatomy. In particular, the human brain is described to have a small-
world property, which combines high clustering and low path lengths [Bassett and Bullmore,
2006, Bassett and Bullmore, 2017] to maintain efficiency in inter-areal communication. This
transfer of information is done, thanks to network hubs [van den Heuvel and Sporns, 2011]
that are highly interconnected among themselves, forming a so-called rich club.

2.4 Structural basis of brain function

2.4.1 Current methods for linking brain structure and function

Both FC and SC describe the relationships between brain regions that are chosen using a
predefined atlas. If this is chosen to be the same when computing FC and SC, then it is
straightforward to compare the two by simply taking a direct SC-FC correlation for the whole

22



2.4. Structural basis of brain function

(A ) SC-FC correlation | @ SC from FC ch FC from SC using
\ N numerical simulations

Participant B, 998 ROIs

1
Empirical functional
connectivity

Structural
connectivity

o o002 004 006 008
Fiber Distance™ (mm™)

k Honey, et.al., 2009 J \ van den Heuvel, 2009 J k Deco, et.al., 2013

@ Fusion of FC and SC Concurrent WM-GM networks Track-weighted dF

brain regions Scheme of the “hybrid" connICA

J
o)

FC between regions . SC between regions
| (connected pairs)

¥
1
'
'

- i -

19. pefault Mode

= :w“o“ : I

FCN | 1

w2 T AT 8
& component 1 component M TN ED
s 2 sc1
— el ¥

H

) e —
Amico, et.al., 2018 v\

\ Hybrid trait 1 Hybeid trait M

10. Fronto-Parietal L

OE FC from SC using Control and a . wa pathlength  pathlength (o o rmation  path transitivity \
Network Theory H (weighted) (steps)
s @ S @ s @

s.\} so\} \} \\‘ ' \\
/A T N >

Controllability

of SC ‘@ ) / /
Suto 3 Stato 1 t@® t.j (./
Spectral mapping of FC from SC analytic measures
P pping . of network
R ol communication
\ Becker, et.al., 2018 Gu, et.al., 2015 Sute s Goii, et.al., 2014 )

Figure 2.4 — Overview of existing methods for linking SC and FC. (A) By vectorizing the SC
and FC matrices, one can directly compute the correlation between resting-state FC and (i) SC
or (ii) the inverse of fiber distance [Honey et al., 2009]. (B) SC can be derived from predefined
ROIs computed using classical FC [Greicius et al., 2009, van den Heuvel et al., 2009]. (C) In
contrast, FC can be approximated from SC using numerical simulations [Deco et al., 2013].
(D) Alternatively, vectorized SC and FC measures can be combined together forming a hybrid
datamatrix [Amico and Goii, 2018] on which ICA can be applied to obtain concurrent WM-GM
networks [O’Muircheartaigh and Jbabdi, 2018]. Meanwhile, a more integrated approach that
maintains the dynamic view is to compute the average FC of voxel endpoints corresponding
to all fibers that passed every single voxel in the WM [Calamante et al., 2017]. (E) Finally, more
advanced methods borrowed from other research fields such as control theory [Gu et al., 2015]
and network or graph theory [Becker et al., 2018, Goni et al., 2014] examine how FC arises
from, is controlled by, and is constrained by measures of SC.
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duration of the RS scan [Honey et al., 2009]. Using this simple measure, it was found that
the persistence and strength of FC are constrained by the underlying anatomical bedrock,
even in between regions that have no direct structural linkage. When this analysis is applied
in different sliding temporal windows [Liégeois et al., 2016], FC patterns can be observed to
oscillate between different phases of high and low modularity, which are primarily shaped by
the anatomy and the inter-network connectivity, respectively.

Due to the bivariate nature of the correlation analysis, such measures are merely reflect-
ing the general trend of the relationship between SC and FC. Another direct approach is to
approximate SC from FC by initially specifying regions that are temporally coherent, then
initialize one of these regions as a seed where fiber streamlines can be estimated using trac-
tography [Greicius et al., 2009, van den Heuvel et al., 2009, Chamberland et al., 2015]. Using
this approach, it was confirmed, for the first time, that major regions of the DMN, such as the
medial pre-frontal cortex (MPFC) and the posterior cingulate cortext (PCC) are structurally
connected via the cingulum, while the medial temporal lobe (MTL) is directly linked to the
PCC via the hippocampal cingulum.

In contrast to extracting SC from predefined FC, one can also approximate FC based on prior
measures of SC using numerical simulations [Galdn, 2008, Honey et al., 2007, Deco et al.,
2011]. Estimating FC from SC or vice versa are hypothesis-driven and requires many explicit
assumptions at the beginning of the analyses. To overcome this limitation, several studies
proposed methods that are data-driven, such as ICA applied to a hybrid data matrix composed
of vectorized FC and SC measures [Amico and Goiii, 2018]. The output of this are joint
functional-structural patterns that are task-dependent. Also with ICA, concurrent GM and WM
network patterns were extracted from a whole-brain tractography data [O’Muircheartaigh and
Jbabdi, 2018], where paired GM "nodes" are extracted together with associated anatomically
meaningful white matter "edges". As in any ICA analysis, the choice of number of ICs remain
a crucial parameter, which can be complicated to choose on top of the caveats that come with
its principal assumption of spatial independence.

ICA applied to a hybrid data-matrix is one of the very few examples of a family of methods
that jointly integrate SC and FC. Another example is that of Calamante and colleagues, the
so-called track-weighted dynamic FC (TW-dFC), where each voxel in the WM is assigned a
certain value based on the average of all FC measures between fiber endpoints [Calamante
etal., 2017]. Thus, as a first step, tractography is launched to approximate fiber bundles that
connect one GM voxel to another. Some pairs of GM voxels may not have fiber streamlines
connecting them. Then, for each voxel in WM, TW-dFC computes the FC between the voxel
endpoints in GM of each fiber that passed through this WM voxel. The average of the computed
FC from all fibers is recorded in each WM voxel. This process is repeated for each temporal
sequence of a sliding window, forming a temporal sequence of 3D FC volumes.

An alternative family of techniques in relating FC and SC consists of advanced methods bor-
rowed from other research fields to approximate SC’s influence in formation of FC. Using
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control and network theory, Gu and colleagues studied how the anatomy constrains the
brain as it moves between cognitive states [Gu et al., 2015]. They found that structural network
differences between functional subsystems determine their distinct role in brain function.
Highly modular networks, as such as that of the default mode system facilitate movements
of the brain to easily reachable states. Contrary, weakly connected areas such as in cognitive
control systems support movement of the brain to difficult-to-reach states. Meanwhile, aver-
aged modular systems such as attentional control systems dictate facilitate the integration
or segration of cognitive systems. In line with these findings, using spectral graph theory,
it has also been demonstrated that the amount of structural walks between two regions in-
fluence the formation of functional correlations [Becker et al., 2018], just as how analytical
measures of network communication (e.g., path transitivity) was found to predict resting brain
activity [Goni et al., 2014].

2.4.2 Graph signal processing for functional brain imaging

Graph theory applied to brain studies remain a popular approach in characterizing both brain
structure and function. In fact, it has delineated itself as a separate field of interdisciplinary
research called network neuroscience [Bassett and Bullmore, 2017]. As discussed, structural or
functional-based connectomes are typically defined separately, where vertices are associated
to brain regions, and the links are weighted according to the strength of the physical con-
nection, or the coherence of neural co-activation, e.g., pairwise Pearson correlation of brain
activity between vertices, respectively. These connectomes are then analyzed using various
graph measures in order to get a better understanding of the organization principles of brain
networks, and determine its influence in cognitive function [Bullmore and Sporns, 2009].

Throughout the years, more interest has been given to addressing neuroscientific questions
with a dynamical point of view, and along with it, lies the fundamental question of how the
brain’s fixed anatomy supports the emergence of spatially and temporally varying distributed
patterns of brain activity. With this fundamental research question at hand, it is only fitting
that network neuroscience advances to a more sophisticated approach of integrating brain
structure and function. Borrowing from the emerging field of graph signal processing (GSP), a
new and elegant framework has been recently introduced, where functional data are defined
atop a fixed anatomical structure. These datapoints are interpreted as time-dependent graph
signals on which structurally-informed signal processing methods can be performed [Huang
etal., 2018a].

The GSP framework generalizes principles from classical discrete signal processing for time
series to graph signal processing of signals defined on irregular structures. The most important
entity to establish is the SC, from which the graph ¥ := (4, A) is defined, i.e., SC is equivalent
to A. The graph Laplacian matrix is then computed as L = D — A, where D is the degree matrix
which contains the degree of each node on its diagonal: D; ; =} jc 4 a;,j. This is essentially a
discrete representation of a continuous second order derivative A that is used in many areas

25



Chapter 2. Background

D BoLD Functional data
=
S
g MW \'\V\\,/J\/W
o
o
s
g
e ) [ e - N\
A Structural connectivity ) C Graph Fourier transform
ime ‘ low-frequency modes
) o0 .
. A -~ ® ©s © o,
| Rl = & 0800 % c.elfe s
SIS B Spectral domain soie®he Qi
N Laplacian spectrum Adjacency spectrum 5 . R R,
! 1 2 e@Per. 29t Poc.
° /' J £e 00 o 2 Y e 1oL o £ 1
3 i ; v 08 Qo s v % %o
2 < N AT R AT
.ng)‘ / S o ° L ° »
w
high-frequency modes Io
B . ... N
2 sl ¥ LR PR
= E Transformed functional data | JURRNES (RS
o © o “
& Amplitude ‘ ."00 u > a’J % :
_ \ERP Rl Prere
P W Ty o e A Yo 1 -
o < . ¢ '3
== = B Y » N (Y
- AXR™ YN e
Regions ' 4 '
. J/ \ J

Lt e

Time )

.. Mode 2

Figure 2.5 — Graph signal processing overview for fMRI. SC, constructed from DW-MRI, con-
tains region-wise description of the brain’s anatomy, which can be rewritten via the Laplacian.
This can be decomposed into orthogonal basis functions called the eigenmodes together with
their associated frequency/eigenvalues. Using low-frequency eigenmodes, slowly varying
spatial patterns can be decomposed; meanwhile, highly varying spatial maps are made up
of higher frequency eigenmodes. Using these modes that form the basis of Graph Fourier
Transform (GFT), any functional data can be decomposed, which can then be analyzed using
graph signal processing (GSP) tools. Figure is adapted with permission from [Huang et al.,
2018a].

of physics and engineering.

The fundamental GSP concepts that are employed in neuroscience are Graph Fourier Trans-
forms (GFT) and graph filters, both of which are rooted from spectral graph theory and build
on the decomposition of the graph Laplacian matrix. Because it is a positive, semi-definite
matrix, L can be diagonalized to satisfy L = UVU', where U are the eigenvectors, or better
known in neuroimaging as eigenmodes, and V contains the associated eigenvalues. Previous
works have demonstrated that these eigenmodes are reminiscent of well-known functional
networks [Atasoy et al., 2016]. In the same manner that sinusoids form a basis for Fourier
transforms, these eigenvectors represent a building block for GFT, and the corresponding
eigenvalues carry the notion of frequency, or spatial variability. Functional signals in both
healthy and clinical populations can be decomposed through these connectome-specific
components [Atasoy et al., 2017], and are related to behavior and cognition [Medaglia et al.,
2018, Preti and Van De Ville, 2019]. The theory of GSP has been rapidly growing throughout
the years [Shuman et al., 2013], and with these developments come new avenues for better
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integration of brain structure and function. For a detailed review of GSP applied to functional
brain imaging, see [Huang et al., 2018a].
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8] Large-scale functional brain network
dynamics in task, rest, and sleep

3.1 General Motivation

Before we go directly to methods development for integrating brain structure and function,
we first introduce two novel approaches for time-resolved characterization of brain function.
Since the inception of the idea that the brain is always active even at rest, several methods
that attempt to characterize spontaneous brain activity have been proposed [van den Heuvel
and Hulshoff Pol, 2010, Beckmann et al., 2005]. This goal has become even more exciting with
the discovery that brain activity exhibits meaningful fluctuations [Chang and Glover, 2010]. As
such, succeeding methodological developments were geared towards data-driven methods
that also take into account the brain’s dynamic nature [Preti et al., 2017, Tagliazucchi et al.,
2012a, Liu and Duyn, 2013].

This chapter is dedicated to contributions that largely focus on the extraction of large-scale
functional brain networks and the analysis of their temporal properties. In the first study, we
investigate how the dynamics of functional brain networks are altered across the different
NREM sleep stages. Many neuroimaging studies have used the brain’s functional connectivity
(FC) to investigate alterations in network integrity along transitions across various vigilance
states [Larson-Prior et al., 2009, Picchioni et al., 2014, Horovitz et al., 2009]. These alterations
are mostly observed in terms of spatial modifications of whole-brain connectivity patterns. In
this work, we focus on the changes in the temporal dynamics of large-scale functional networks
as the brain transitions from wakefulness to deep sleep. We use an advanced approach called
innovation-driven co-activation pattern (iCAP) analysis that relies on transient brain activity
or moments of activity changes in the BOLD signal. This is done by undoing the effect of
the hemodynamics through spatio-temporal deconvolution [Karahanoglu et al., 2013, Farouj
et al.,, 2017] combined with a regular derivative. This allows us to observe a wide-array
of functional networks that reveal important contributions to sleep and arousal. Unlike
previous methodologies that assume temporally segregated networks [Stevner et al., 2019], the
iCAP approach warrants the recovery of spatial maps that are both spatially and temporally
overlapping, thus giving a more accurate description of functional brain organization during
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sleep. We derive the activity time-courses of each network at the frame-wise resolution, and
investigate how long they usually last. We also identify which networks are active at the same
time. We investigate these temporal properties across the different NREM sleep stages and
identify alterations in individual networks and in all iCAPs as a whole. We then relate the
overall dynamics of the iCAPs to one of the most prominent theories regarding consciousness
and its association with the brain’s capacity to integrate information [Tononi, 2004]. Due to
the unique nature of the iCAP approach to recover transient brain activity, we observe new
features of information integration of consciousness during sleep, and provide a concrete
evidence for the presence of unstable yet distributed global synchronization in NREM stage
2. Additional analyses probing the relationship of FC with structural connectivity (SC) is also
discussed at the end of this study to investigate how the SC-FC link changes from wakefulness
to deep sleep.

In the second study, we explore the effectiveness of a new methodology based on graph learn-
ing to identify functional brain networks from task and resting-state data. This new approach
treats functional data as a collection of signals that live on multiple graphs. We layout the
details of the Graph Laplacian Mixture Model (GLMM) and demonstrate its potential to extract
network patterns that correspond well to the timings of task paradigms. We demonstrate that
the extracted networks also consist of brain areas that are consistent with previously observed
regions using classical regression analyses. We then apply the approach to resting-state data
and extract well-known intrinsic networks. One notable advantage of the GLMM approach is
its ability to recover learned graph matrices corresponding to each functional network. These
graph matrices describe the direct interactions of the regions that comprise the associated
networks, akin to precision matrices which have been shown to reveal stronger correlation to
structural connectivity (SC) [Liégeois et al., 2020]. We then take advantage of the learned graph
matrices by investigating their general link to SC [Honey et al., 2009, Liégeois et al., 2016]. We
implement the classical method of directly comparing SC and FC using Pearson correlation.

30



3.2. Journal Article: NREM sleep stages specifically alter dynamical integration of
large-scale brain networks

3.2 Journal Article: NREM sleep stages specifically alter dynamical
integration of large-scale brain networks

A. Tarun, D. Wainstein-Andriano, V. Sterpenich, M. Solms, L. Bayer, L. Perogamvros, M. Solms,
N. Axmacher, S. Schwartz, D. Van De Ville.
Full Research Article Accepted for Publication in iScience (2020)

Author Contributions

A. Tarun performed all stages of the analysis, from conceptualization, methodology, validation,
formal analysis, and writing and editing of the manuscript, D. Wainstein-Andriano provided
the data for Study 2, V. Sterpenich provided the data and conducted the manual sleep scoring
for Study 1, L. Bayer and L. Perogamvros both conducted the sleep scoring for Study 2, M.
Solms, N. Axmacher, and S. Schwartz edited and reviewed the manuscript, and D. Van De
Ville offered continuous guidance.

Abstract

Functional dissociations in the brain observed during non-rapid eye movement (NREM) sleep
have been associated with reduced information integration and impaired consciousness that
accompany increasing sleep depth. Here, we explored the dynamical properties of large-scale
functional brain networks derived from transients or moments of activity changes in fMRI.
Spatial brain maps that are largely related to the physiological organization of sleep and arousal
display significant modifications in terms of their tendency to occur across wakefulness and
NREM sleep. Unexpectedly, almost all networks predominated in activity during NREM stage 2
before an abrupt loss of activity is observed in NREM stage 3. Yet, we observed that functional
connectivity and mutual dependencies between these networks progressively broke down with
increasing sleep depth. Thus, the efficiency of information transfer during NREM stage 2 is low
despite the high attempt to communicate. Critically, our approach provides relevant data for
evaluating functional brain network integrity and our findings robustly support a significant
advance in our neural models of human sleep and consciousness.
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3.2.1 Introduction

Spontaneous brain activity, as assessed by resting-state functional Magnetic Resonance Imag-
ing (fMRI), has provided key insights into the functional architecture of the brain. Resting-state
networks (RSNs) identify sets of brain regions that exhibit synchronized fluctuations of activity
over the whole duration of a resting-state session (typically 10-20 min of continuous scanning).
The main hypothesis underlying most functional connectivity (FC) studies is that different
RSNs reflect distinct ongoing cognitive/affective processes/states. For instance, the default
mode network (DMN) typically shows reduced activity when subjects perform an externally
oriented task [Greicius et al., 2003] and, contrastingly, the DMN becomes more engaged when
self-referential processes or internal mentation predominate [Andrews-Hanna, 2012]. Accord-
ing to this interpretation of RSNs, we expect that if conscious awareness dissipates as the brain
transitions from wakefulness to deep sleep, we should observe a parallel and net decrease in
activity and/or FC across regions of the brain involved in higher-order cognitive operations,
such as reasoning, monitoring, or metacognition. Yet, some early evidence also suggested that
several RSN, including those encompassing association networks, persisted or even increased
their connectivity during the descent from wakefulness to light sleep [Larson-Prior et al., 2009]
or during anesthesia and coma, when conscious awareness is presumed to be completely
abolished [Boly et al., 2008]. Therefore, RSNs may reflect intrinsic dynamical properties of the
brain’s functional organization that are maintained across distinct levels of consciousness.

From a behavioral point of view, the brain in sleep undergoes marked and well-characterized
physiological changes. Based on polysomnography (PSG), which is a combined use of EEG,
electro-oculography, and electromyography, natural sleep can be broadly divided into rapid
eye movement (REM) and non-rapid eye movement (NREM) periods. The latter is further sub-
divided into different sleep stages characterized by relaxed wakefulness (N1) to light sleep (N2),
up to slow-wave sleep (SWS) or deep sleep (N3). It is therefore not surprising that, although
RSNs may be detected across different sleep stages, their connectivity patterns [Horovitz et al.,
2009, Sdmann et al., 2011] and FC strengths undergo significant modifications [Tagliazucchi
et al., 2013]. For instance, upon reaching N3, the DMN has been found to dissociate into sub-
components, with a decrease in the connectivity between the medial prefrontal cortex (MPFC)
and the posterior cingulate cortex (PCC) [Horovitz et al., 2009]. Furthermore, several studies
looked at changes in FC for regions associated with the reticular activation system (RAS) that
regulate the physiological state of arousal during sleep (e.g. thalamus, hypothalamus) and
reported decreased connectivity between these regions and the rest of the cortex during light
and deep sleep [Hale et al., 2016, Picchioni et al., 2013, Tagliazucchi and Laufs, 2014]. These
changes in brain network integrity, particularly its marked reduction from wakefulness to
deep sleep, have been associated to diminished level of information integration [Tononi, 2004].
That is, when the brain switches to more local cortical processing, this would lead to a global
loss of information integration and a concomitant reduction in consciousness [Tononi and
Koch, 2015].

Methodological tools allowing the detection of prevalent brain spatial patterns, such as FC

32



3.2. Journal Article: NREM sleep stages specifically alter dynamical integration of
large-scale brain networks

analyses, are particularly useful when assessing imaging data collected outside of a predefined
experimental paradigm (or in the absence of any temporally-defined independent variable),
namely when regression techniques cannot be applied. This is typically the case for continu-
ous data collected during varying levels of arousal or states of consciousness (e.g. resting-state,
sleep, anesthesia, and drugs). The simplest approach to investigating changes in FC is to
use a sliding-window technique, where time-courses from sets of brain regions (e.g. from
atlas-based parcellation) are segmented into successive temporal windows so that various
assessments of FC (e.g. bivariate Pearson correlations) can be applied to obtain time-evolving
connectivity matrices. Another approach is to derive analogous information on resting-state
FC based on time-points where the regional BOLD signal exceeds a particular threshold [Tagli-
azucchi et al., 2012a]. Temporal clustering can also be applied to activity patterns occurring at
these active fMRI time-points to obtain patterns of co-activity among regions, also known as
co-activation patterns (CAPs) [Liu and Duyn, 2013].

Furthermore, to account for the fundamental dynamic nature of the changes in neural FC, the
latest developments on non-stationary FC approaches have started to successfully incorporate
methods of temporal modeling. Using a dynamic Bayesian approach (i.e., Hidden Markov
Model; HMM), Stevner and colleagues [Stevner et al., 2019] could recently demonstrate that
some specific whole-brain functional connections are associated to each of the different
stages of NREM. They found that networks with high specificity to occur in stages N2 and N3
generally expressed longer mean lifetimes, with each HMM state lasting from a few seconds
to tens of seconds. They also examined the transition probabilities between the networks by
extracting modules of HMM states that transitioned more often between each other than to
other states [Vidaurre et al., 2017], allowing them to identify key trajectories of network activity
from wake to NREM sleep.

Despite these major methodological advancements, it remains unsettling that coordinated
network activity is assumed to be strictly temporally segregated, and that whole-brain states
are not overlapping in time (i.e., only one RSN can occur per time instance). To overcome this
limitation, we recently proposed to consider innovation-driven co-activation patterns (iCAPS),
which capture transient brain activity, i.e., physiologically significant moments of regional
activation and deactivation [Karahanoglu et al., 2013, Karahanoglu and Van De Ville, 2015],
instead of the actual activity time-points. This framework allows for the recovery of RSNs that
are both spatially and temporally overlapping, providing a more plausible and thus putatively
more accurate description of functional brain organization. Furthermore, unlike standard
CAPs and other data-driven approaches (e.g., independent component analysis [Smith et al.,
2012]), the iCAP approach explicitly accounts for temporal blurring by the hemodynamic
response function (HRF) by incorporating a deconvolution step in the preprocessing of the
fMRI signal.

Here, we adopt an iCAP approach to recover functional brain networks from fMRI data
recorded during wakefulness and NREM sleep stages. We obtain temporally overlapping
activity time-courses of each network for each participant and evaluate their temporal prop-
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erties to capture important features of cortical organization as the brain goes from a fully
awake state to deep sleep. We observe that resting-state networks such as control, salience,
visual and sensory networks [Shirer et al., 2012] persist until the deep sleep, and that some
of these networks dissociate into subcomponents (e.g., DMN). Moreover, since the activity
time-courses are not constrained to be temporally segregated, many networks tend to overlap
in time, and that these numbers are altered across the different levels of sleep. To test these hy-
potheses, temporal measures, such as their overall accumulated durations and mean lifetimes,
were computed, as well as their co-occurrences and temporal overlaps. Using a more accurate
model to extract network-level representations of brain organization, we put the focal point
into detecting the temporal alterations of large-scale brain activity across the distinct vigilance
states.

3.2.2 Materials and Methods
Functional MRI Datasets

We used two complementary sets of simultaneously recorded EEG-fMRI data acquired in
the context of two different studies. Ethics approval was obtained for each study and all
participants signed written informed consent forms. The first dataset came from a study on
sustained sleep (denoted from here onwards as Study 1), where participants were allowed
to sleep for as long as they could manage, while EEG and fMRI data were simultaneously
and continuously recorded. Twenty-six right-handed healthy participants participated in
this study. All of the participants filled out questionnaires and underwent a semi-structured
interview that established the absence of neurological, psychiatric, or sleep disorders. They
were non-smokers, moderate caffeine drinkers, and were not taking any medication. The
experiment was conducted at around 10 pm and the total recording time lasted between 51
min and 2 hrs 40 min (mean: 1 hr 43 min). We excluded a total of 5 participants who were
not able to sleep inside the scanner (resulting in 21 subjects, mean age + SD: 22 +2.4 years; 15
women).

The second dataset focused on the sleep onset period (denoted below as Study 2). Ten healthy
subjects (4 female) underwent simultaneous EEG-fMRI recording. All participants had no
history of neurological or psychiatric disease, no previous or current use of psychoactive drugs,
and were non-smokers. The experiment was conducted at around 9:30 pm and the awakening
recording lasted 1 hr 30 mins. Participants were placed in the MRI scanner and asked to fall
asleep. Successive awakenings of up to 10 rounds per session were performed during this
period to record possible dreaming that occurred. The whole experiment included around
4 to 5 sessions (5 nights) per participant. As expected from this experimental design, in the
majority of the recordings, participants were in the awake state to light sleep (N1). Figure 1
displays the two experimental paradigms, together with the distribution of sleep states reached
by participants. We excluded 3 subjects due to difficulty in scoring the EEG data (7 subjects
remaining, mean age + SD: 20.5 + 1 year; 5 women). In the present work, we did not investigate
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the dream reports collected in Study 2 because our main goal was to characterize dynamic
neurophysiological changes occurring from wakefulness to deep sleep, and also because we
did not collect dream data in Study 1 (waking up participants would have prevented them
from reaching deeper sleep stages).

EEG preprocessing and sleep scoring

For the data in Study 1, the EEG setup included a 64-channel MRI-compatible EEG cap, two
pairs of electrocardiogram (ECG), horizontal and vertical electrooculography (EOG), and 1
pair of chin electromyographic (EMG) electrodes (BrainAmp MR plus, Brain Products GmbH,
Gilching, Germany). For the data in Study 2, a 14-channel MR-compatible system (Brain
Products GmbH, Gilching, Germany) was used, plus a total of ten cortical (EEG) electrodes.
Two of the ten cortical EEG electrodes served to measure EOG, three EMG chin electrodes,
and one ECG electrode on the back were used to monitor participants’ sleep patterns. The
preprocessing of both datasets was done using the Brain Analyzer software (Brain Products
GmbH, Gilching, Germany). Specifically, gradient artifacts were removed offline using a
sliding average of 21 averages and subsequently, the EEG data, initially sampled at 5000 Hz,
was down-sampled to 500 Hz and low-pass filtered with a finite-impulse response filter with
a bandwidth of 70 Hz. For the 64-channel recordings in Study 1, ICA was the most reliable
method to remove ballistocardiogram and oculo-motor artifact, while a template subtraction
method was used for the 14-electrode recordings in Study 2.

The preprocessed EEG data for Study 1 and Study 2 were then scored by three experts each,
according to standardized American Academy of Sleep Medicine (AASM) polysomnographic
criteria for sleep scoring (Iber 2007).

Functional MRI acquisition and preprocessing

For Study 1, MRI data were acquired on a 3 Tesla whole-body MR scanner (Tim Trio, Siemens,
Erlangen, Germany) using a 12-channel head coil. Functional images were acquired with a
gradient-echo EPI sequence (repetition time [TR]/ echo time [TE]/flip angle = 2100 ms/40
ms/90) and parallel imaging (GRAPPA; acceleration factor = 2). Each functional image com-
prised 32 axial slices (thickness = 3.2 mm without gap, FOV = 235 x 235 mm, matrix size = 128
x 84, voxel size: 3.2 x 3.2 x 3.84 mm,) oriented parallel to the inferior edge of the occipital and
temporal lobes. On average 2789 functional images were recorded during one continuous
scanning session (between 1459 and 3589 images). Structural images were acquired with a
T1-weighted 3D sequence (MPRAGE, TR/inversion time [TI]/TE/flip angle = 1900 ms/900
ms/2.32 ms/ 9, FOV = 230 x 230 x 173 mm3, matrix size = 256 x 246 x 192 voxels, voxel size =
0.9 mm isotropic).

For Study 2, MRI recording was performed on a 3 Tesla Philips Achieva MRI scanner. Functional
images were acquired using a gradient-echo EPI sequence (repetition time [TR]/ echo time
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[TE]/ flip angle = 3000 ms/ 30 ms/ 83). Each functional image comprised 50 axial slices
(thickness = 2.5 mm without gap, FOV = 96 mm x 96 mm, voxel size: 2.5 mm isotropic) oriented
parallel to the inferior edge of the occipital and temporal lobes. Structural images were
acquired with a T1-weighted 3D sequence (TR/inversion time [TI]/TE/flip angle = 1570 ms/8.4
ms/3.42 ms/ 8, FOV = 256 x 256 x 220 mm3, matrix size = 256 x 256 x 220 voxels, voxel size =
0.929 mm x 0.929 mm x 1mm).

Both functional datasets were first preprocessed following standard procedures [Van Dijk et al.,
2010]. Functional volumes were realigned to their mean images using SPM12!. The realigned
functional images underwent nuisance regression (mean white matter and cerebrospinal
fluid, constant, linear, and quadratic drifts). We then applied spatial smoothing using an
isotropic Gaussian kernel of 6 mm full width at half maximum. For the final analyses, the first
10 volumes were discarded to achieve steady-state magnetization of the fMRI data. To correct
for large motion, we applied scrubbing [Power et al., 2012] in the functional data by marking
time-points with framewise displacements of more than 0.5 mm. The iCAPs framework
require a constant sampling rate, therefore, marked frames were replaced by interpolating the
disconnected frames using spline interpolation (Karahanoglu et al. 2013). Finally, structural
scans (T1) were co-registered to the mean functional image, and the transformed volume was
segmented using SPM 12 Segmentation to obtain probabilistic gray matter masks.

Total Activation and iCAPs framework

We applied the Total Activation (TA) procedure to the subject-space fMRI recordings for each
participant of Study 1 and Study 2 datasets. The TA procedure started by a deconvolution of
fMRI time-series at each voxel to remove hemodynamic effects [Karahanoglu et al., 2013, Farouj
etal., 2017]. Temporal transitions or transients (changes in activity) were then derived for each
participant in Study 1 and each session of each night in Study 2. Highly significant transient
frames (functional images) were identified and normalized to MNI coordinate space. The
normalized functional images of all subjects were then concatenated, forming one single
data matrix with all significant transients. The data matrix with a dimension of number of
voxels times number of significant transients was fed into a clustering procedure to obtain
temporally co-activating brain patterns. Because the functional networks were obtained by
clustering significant transient brain activity, also known herewith as innovations, the resulting
co-activation patterns are referred to as innovation-driven co-activation patterns, hence the
name iCAPs. The optimal number of clusters used in the clustering procedure was determined
using consensus clustering [Monti et al., 2003], which implements a multiple subsampling
procedure. We evaluated multiple numbers of cluster values in the set K= {10, 11, 12, ..., 25}.
The optimal K was selected based on different stability metrics. One measure is the cluster
consensus which reflects the consistency of a transient frame to be clustered in the same iCAP.
After obtaining stable iCAPs, we used a spatio-temporal transient-informed regression [Zoller
etal., 2019] to extract the activity time-courses of iCAPs for each participant. The TA and iCAPs

Ihttp:/ /'www.filion.ucl.ac.uk/spm/
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pipelines are publicly available?, and additional information as well as the mathematical
details of the whole method are laid out in Appendix A.1.1.

Extraction of temporal characteristics of iCAPs in each sleep stages

Comparison of the iCAPs time-courses across different sleep stages was performed by z-
scoring the entire iCAP time-courses per participant’s recording, and thresholding at |z| > 1.5.
The time points that survived thresholding were considered as “active”. The choice of threshold
was motivated by previous works that implemented TA and iCAPs framework [Karahanoglu
and Van De Ville, 2015, Zoller et al., 2019]. We then computed the temporal characteristics
(e.g., cumulated durations, average durations, temporal overlaps, and network interactions
or couplings) of iCAPs in each sleep stage. Scrubbed frames (i.e., those with framewise
displacement more than 0.5 mm) are taken into account and are not included in each temporal
measure explored. The relative cumulated durations (RCD) computed in percentage pertains
to the likelihood of an iCAP to occur in wakefulness and in each sleep stage. This is computed
by counting the number of time-points that an iCAP is active divided by the total length of
time a participant spent in that particular sleep stage. The overall RCD can go above 100%
due to the overlapping nature of the iCAP time-courses (i.e., more than one iCAP can occur
at one time-point). The average duration, measured in seconds, is the length of time that an
iCAP is continuously active. We also evaluated the interaction of iCAPs with other networks by
computing the overall percentage of temporal overlaps in wakefulness and sleep, as well as the
number of pair-wise iCAP co-activations. The latter is represented by the co-occurrence which
reflects the number of time-points during which a pair of iCAPs were both active divided by the
total number of time-points that at least either one of them was active. We take into account
the signs of the activations (similarly signed or opposite signed). Z-scoring the time-courses
allows positive and negative activation signs. Positive (negative) activation signs reflect the
time-points when an iCAP is at least 1.5 standard deviations above (below) the overall mean
amplitude of iCAPs.

Statistical analysis

Duration measures of individual iCAPs were compared across the different sleep stages using
paired t-tests and 1000 rounds of permutation testing (randomly shuffled). The corresponding
t-statistics, p-values and effect sizes are displayed in Table. A.2. The overall comparison of iCAP
cumulated durations (general trend), network temporal overlap and coupling indices were
done through the Analysis of Variance (ANOVA), and the p-values were obtained using succes-
sive multiple comparison test (Tukey’s range test). The corresponding F-statistics (ANOVA)
and the corrected p-values for the temporal overlap and coupling indices are displayed in
Tables A.3 3 and A.4, respectively. For the analysis of temporal characteristics (e.g., average
durations, RCD, temporal overlaps, and couplings), we only included subjects who reached

2Code Available on: https: //c4science.ch/source/iCAPs/
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A. Two experimental paradigms on simultaneous EEG-fMRI recordings of sleep
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Figure 3.1 — Experimental paradigm. (A) The two experimental paradigms are the (i) Sus-
tained Sleep lasting between 51 mins to 2 hrs 40 mins and the (ii) Sleep Onset experiment
lasting between 5 minutes up to 20 minutes. (B) The distribution of sleep states shows how
long the subjects lingered in each sleep state, with Sustained Sleep covering up to N3, while
Sleep Onset covers mostly wake and N1, and a small duration in N2. (C) Example of sleep
scoring (or hypnogram) for one participant in the Sustained Sleep experiment.

N3, and thus we only limit this part of the analysis to Study 1.

3.2.3 Results
Data distribution across Study 1 and Study 2

Figure 3.1 illustrates the two experimental paradigms on simultaneously acquired EEG and
fMRI recordings of sleep. We used a total of 21 subjects in Study 1 (13 reached N3), and a total
of 7 subjects in the Study 2 (all of them reached N1 sleep). The distribution of accumulated
data from each sleep stage for each dataset is also shown in Figure 3.1, with Study 1 generating
a substantial amount of N3 sleep (more than 8 hours in total), while Study 2 was predominated
by wake and N1 sleep (about 8h and 4h of data, respectively).

Spatial patterns in sleep and wake

We applied a deconvolution process called total activation (TA) to all functional volumes
of Study 1 and Study 2. Transient frames (i.e., moments of activity changes) are extracted
through a derivative step that is incorporated in the TA framework. These frames correspond
to timepoints when a change is observed in the amplitude of the fMRI BOLD signal. Significant
transient frames are then selected using a two-step thresholding process (see Supplementary
Methods or ‘ [Karahanoglu and Van De Ville, 2015]. Frames that survived are concatenated
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Figure 3.2 — Spatial patterns of the 17 innovation-driven co-activation patterns (iCAPs) de-
rived from all recordings across both experiments. The iCAPs are numbered according to the
total number of significant transients found (descending order), which are shown below the
functional maps in yellow font. The cluster consensus of each iCAP is written in red. Pie charts
indicate the distribution of each iCAP across sleep stage. MNI coordinates of each brain slice
are indicated in white font. DMN - default mode network, ECN — executive control network,
CEB - cerebellum, OFC - orbitofrontal.

together and underwent a clustering procedure known as the iCAPs framework to obtain the
most prevalent brain spatial patterns. We observed 17 large-scale brain networks displayed
in Figure 3.2, representing the different functional maps that dominate brain activity from
wakefulness to deep sleep. The iCAPs are ordered in descending order according to the
number of times that they appeared in the significant transient frames. We then looked at
the wake/sleep stages where these significant transient points occurred, and identified which
iCAP they corresponded to. Figure 3.2 also shows the clustering distribution for each iCAP in
pie charts, revealing the proportion of transient frames that the clustered iCAP occurred in
each wake/sleep stage. Spatial similarities between iCAPs generated separately using Study 1
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and Study 2 are shown in Supplementary Figure A.4.

Figure 3.3 — Visual-sensory iCAP reveals deactivation in subcortical regions. (A) Arousal-
related network showing the deactivation in dorsal midline thalamus (figure adapted from
previous study ((Liu et al. 2018). (B) Visual-sensory iCAP also shows negative patterns in
subcortical regions. (C) Lowering the threshold (z < -0.2) of the z-scored spatial map reveals a
general deactivation in the subcortical region (orbitofrontal, and amygdala), which resembles
almost similar but oppositely signed spatial pattern of iCAP 9 (amygdala/OFC). Weak and
negative activation in primary sensory cortices are also observed in iCAP 9.

The first iCAP (iCAP 1) featured both visual and somatosensory regions, and resembles a pre-
viously observed functional pattern that distinguishes sleep from waking conditions. These
regions were found to be more prevalent in N1 and N2 sleep here, like in previous work [Tagli-
azucchi et al., 2013, Tagliazucchi and Laufs, 2014]. Unlike any other iCAP extracted, this
iCAP also reveals a negative activation in subcortical regions, very much similar to what was
observed by Liu and colleagues (Liu et al. 2018), as is shown side-by-side in Figure 3.3.

ICAP 2 featured regions of the salience network and presented a strong and selective activation
of the insula, as well as portions of the thalamus. This network showed the highest likelihood
to occur during N2 sleep. ICAP 3 predominantly occurred during wakefulness, displaying
the anterior portion of the default mode network (DMN), and in particular the anterior
cingulate. By contrast, iCAP 11 (posterior DMN) and iCAP 13 (precuneus, ventral DMN)
were predominantly active during deep sleep (N3), and displayed stronger activation in the
posterior regions (e.g., PCC, precuneus, IPC). Notice that the anterior and posterior DMN were
separately extracted during the clustering procedure despite their spatial similarity, as shown
in Figure 3.4. This reflects a strong dissociation between the DMN sub-networks in terms of
their temporal dynamics across the different sleep stages.

Meanwhile, attention-related networks such as the iCAPs 4 and 7 (left and right executive
control (ECN) networks), and iCAP 15 (visuospatial) were also observed. Interestingly, both
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ECN networks mostly resulted from transients occurring during wakefulness, whereas the
visuospatial network predominated during N3 sleep. ICAP 9 contained the amygdala and
the orbitofrontal cortex, with limbic-emotional iCAPs predominating during N2. We also
found various networks corresponding to sensory areas corresponding to transients from
the deep sleep (N3). These included iCAP 8 (auditory/motor), iCAP 14 (early visual), iCAP 16
(sensorimotor), and iCAP 17 (somatosensory). Finally, similar to the DMN, we also observed a

A. Default Mode Network (DMN)

y =49
iCAP 3 (anterior DMN) | I iCAP 11 (posterior DMN)

iCAP 10 (anterior CEB) | NN iCAP 6 (posterior CEB)

Figure 3.4 — Dissociation of DMN and cerebellum into posterior and anterior parts. (A)
Overlay of iCAPs corresponding to anterior DMN (yellow) and posterior DMN (red). (B)
Overlay of anterior cerebellum (yellow) and posterior cerebellum (red). We also see some
co-activation in the thalamus in the anterior cerebellum.

dissociation of the cerebellum in the form of iCAPs 6 and 10, both featuring the anterior and
posterior regions of the cerebellum, respectively. These iCAPs are overlaid in Figure 3.4B. A
detailed description of the regions in each iCAP (AAL regions [Tzourio-Mazoyer et al., 2002])
and their similarity to Greicius networks [Shirer et al., 2012] are displayed in the Table A.1.

iCAP relative cumulated durations are consistent with the cluster distribution of signifi-
cant transients, and both reveal stage-dependent network activity

The iCAPs were obtained by clustering the significant transients from the data (i.e., instances
when functional maps markedly increased or decreased activity). The pie charts in Fig 3.2
display how the significant transients contributing to each iCAP were distributed across
wake/sleep stages. In order to obtain the activity time-courses of iCAPs per participant in
fMRI TR resolution (i.e., frame-wise), and be able to compute their durations (in contrast
to only transients or activity changes), we performed a spatio-temporal transient-informed
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back-projection of the iCAPs onto the HRF-deconvolved frames.

In Figure 3.5A, we display the RCD or the likelihood of each iCAP to appear in a specific sleep
stage. This is a measure describing the cumulated time that a particular iCAP was active di-
vided by the total time that the participant spent in a particular sleep stage. This normalization
thus ensured that the reported persistence of an iCAP within one sleep stage was independent
of the duration of that stage. Unsurprisingly, the relative cumulated iCAP durations appeared
mostly consistent with the clustering distribution observed in Figure 3.2. Attention-related
iCAPs such as the left and right ECN showed predominant sustained activity in wakefulness.
Conversely, sensory-related iCAPs (e.g., early visual, somatosensory, sensorimotor) were more
persistent in N2 and N3 sleep compared to wakefulness and N1. The insula/thalamus iCAP
also displayed predominant activity in N2 sleep. In addition, we found that the relative cu-
mulated durations of iCAPs related to anterior DMN is higher during wakefulness, while the
posterior DMN iCAP showed higher likelihood to appear in N3. These findings are well in
line with previous observations of DMN dissociating into posterior and anterior parts upon
reaching deep sleep [Larson-Prior et al., 2009, Sdémann et al., 2011]. Interestingly, we also
observed the posterior (but not the anterior) cerebellum to be preferentially activated during
wakefulness compared to N3. The corresponding test statistics (e.g., p-values, t-statistic, and
effect sizes) for individual networks are reported in Table A.2.

We then looked at the general trend of network activity across the different sleep stages (inset
of Figure 3.5A), and found that the RCD of iCAPs significantly increased during N2 with respect
to wakefulness and N1, followed by a steep decrease in N3. Please note that values above
100% are due to the temporal overlapping nature of iCAPs, with two or more iCAPs occurring
at the same time. We then computed a network-based normalization of RCD, displayed
in Figure 3.5B. This is equivalent to normalizing the number of active time-points in each
sleep stage by successive division to two factors: (1) overall number of time instances that
an iCAP is present over the whole duration of the recording and (2) the total time that the
participant spent in a particular sleep stage. The bar plots in Figure 5B show that almost all
iCAPs displayed proportions above 25% in N2 sleep (broken horizontal line). We observed
a marked disparity in iCAP proportions during wakefulness and N3, in contrast to the more
uniform distribution in N1 and N2 sleep. Moreover, iCAPs that were more represented in
wakefulness were less represented in N3, which is consistent with the RCD measures of each
iCAP across wake/sleep stages in Figure 3.5A (all p<0.05). Specifically, iCAPs that reached more
than 25% activity during specific sleep/wake stages are: (1) wakefulness — visual-sensory, left
and right ECN and posterior CEB, (2) N1 - posterior CEB, visual-sensory, secondary visual,
and (3) N3 - posterior DMN, somatosensory, precuneus, early visual, sensorimotor.

Contrasting with the RCD above, the average duration or mean lifetimes of an iCAP represents
the average bouts (in seconds) of continuous activity. Overall, we observed iCAPs to be
active between 4.5 to 10.5 seconds (7.3 + 1.7 seconds; Figure 3.5C). In general, we also found
iCAP activity to have longer durations in N2 compared to N3 (p < 0.01), and compared to
wakefulness (p < 0.01). For some of the networks, the average durations were proportional to
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A. Relative Cumulated Durations (RCD) B. Normalized RCD (%)
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Figure 3.5 - Duration measures of iCAPs in different sleep stages (A) Total durations of iCAPs
(in percent) showing each network’s likelihood to occur in different sleep stages. The inset
in shows the overall trend of the iCAP total duration in wakefulness/sleep stages, which are
all above 100%, reflecting the tendency of iCAPs to overlap in time. (B) Number of time-
points that an iCAP is active per sleep stage divided by the number of timepoints that an
iCAP is active in the whole time-course. The normalized total durations in wake, N1, N2,
and N3 for each iCAP is always equal to 100%. The broken horizontal line in each subplot
indicates 25% likelihood, while the arrows in N3 subplot indicate visual and sensory-related
iCAPs that are above the 25% line. (C) Average durations (in seconds) of iCAPs reflecting
the length of continuous activity of iCAPs. The inset in (C) correspond to the overall trend
of iCAP average durations. The height of the bars shows the mean and error bars indicate
their corresponding standard deviations. The horizontal lines at the bottom of the bar plot
correspond to significant differences evaluated through paired t tests and permutation testing.
Horizontal lines with 3 stars and 2 stars in the insets represent significant differences with
p-values less than 0.001 and 0.01, respectively.

their relative propensity to occur in each sleep stage. For instance, the left ECN displayed the
least likelihood to occur in N3, and also exhibited the shortest average duration during that
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stage.

Alterations in network co-occurrences in different sleep stages

To go beyond the iCAPs’ individual temporal properties, we looked at the probability of
having either none, one, two, or more iCAPs occurring at one time-point. Figure 3.6A shows
the likelihood for different numbers of overlapping iCAPs to occur in wakefulness and in
different sleep stages. We observed the overlaps to be maximally N = 10, and thus we limit the
histogram for the range N=0,1,2, ..., 10. Among all vigilance states, N2 displayed a relatively
flatter distribution especially compared to wakefulness and N3 (both p < 0.05), with a higher
likelihood of having 2 to 5 overlapping iCAPs. For a table of test-statistics, see Supplementary
Table A.3. Given that individual iCAPs had higher likelihood to occur in N2 compared to other
sleep stages, it is not surprising that iCAPs are also more likely to overlap in time during N2.

A. Number of overlapping iCAPs

o 030 030 030

Wake N1 N2 N3

Probability (n)
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01 23 456 78 91 01 23 456 728 910 01 23 456 728 910 0‘\2345_&78?10
number of iCAPs number of iCAPs number of iCAPs number of iCAPs

B. Co-occurrences between iCAPs C. Pearson correlation D. Normalized Mutual
Information (NMI)

Same-signed co-occurrence Opposite-signed co-occurrence
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Pearson’s r

Co-occurrence

015 0
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Figure 3.6 — Network interactions across different sleep depth. (A) The probability of differ-
ent numbers of iCAPs to overlap is displayed for wakefulness and different sleep stages. (B) The
iCAP co-occurrence pertains to the number of time-points during which a pair of iCAPs were
both active, divided by the total number of time-points that at least one of them was active.
This was computed separately for similar signed activations (same-signed co-occurrences) or
opposite signed activations (opposite-signed co-occurrences). Co-occurrence was computed
for each network (i.e., pair-wise co-occurrence of one network with all the other networks).
(C) Mean of classical FC metric (Pearson’s r) applied to iCAP time-courses. (D) Mean of nor-
malized mutual information (NMI) of pairwise iCAP time-courses. The computation for the
co-occurrence between pairs of iCAP is illustrated on the bottom of the figure.

We then evaluated the pair-wise co-occurrence between each iCAP and all other networks
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(Figure 3.6B). The co-occurrence is a normalized measure of the number of time-points at
which an overlap occurs between two pairs of iCAPs, divided by the total number of time-
points that at least either one is active. This is different from the temporal overlap measure
observed in Figure 6A because we focus on pair-wise co-occurrence between two iCAPs.
This can also be referred to as the Jaccard similarity score of two iCAP time-courses. We
also take into account the signs of the activations, see illustrations in Fig 6. In general, all
iCAPs showed a high mean same-signed co-occurrence and opposite-signed co-occurrence
in wakefulness and N2, and a decrease in N1 and N3 (p<0.001, see Supplementary Table A.4).
Next, we compared these observations using classical FC analysis (i.e., Pearson correlation)
and normalized mutual information (NMI) applied to the iCAP time-courses. We observed
that the pairwise network FC across iCAPs decreased with increasing sleep depth (with no
increase in N2). The same trend can be observed in Figure 3.6D which shows the overall NMI
of iCAP time-courses, suggesting that the mutual dependence between iCAPs decreases from
wakefulness to deep sleep. These observations are consistent with the general notion that
connectivity breaks down with increasing sleep depth [Tagliazucchi and Laufs, 2014]. Both FC
and the NMI also has the lowest variance (Figure A.5) during N2 and N3 sleep.

Robustness of results across datasets and across choice of parameters

In order to see whether the resulting iCAPs are robust with regards to the dataset from which
the contributing frames belong to, we perform an averaging of significant transient frames
corresponding to iCAP indices within a similar dataset (i.e., among those belonging Study 1
and among those belonging to Study 2). Study 1 contributes 58373 frames while the Study
2 contributes 39235, giving a total of 97608 significant frames. The number of contributing
frames coming from each dataset is shown in Figure A.4 and is written in red and yellow fonts
for Study 1 and Study 2, respectively. The distribution of clustering assignments is particularly
telling, especially on the contribution of each dataset reflecting the tendency of the iCAP to
appear in either Study 1 (reaching deep sleep) or in Study 2 (wake to N1). We observe the visual-
sensory, anterior DMN, posterior cerebellum, and the left and right executive control networks
to be mostly contributed by frames belonging to the Study 2 dataset. On the other hand, the
Study 1 contributed more on the recovery of the remaining networks. We computed the spatial
similarity of the resulting iCAPs. Figure A.4 provides an overlay of the iCAPs computed using
frames belonging to Study 1 versus Study 2. Visually, all iCAPs display similar spatial patterns
in both the Study 1 and Study 2, which is also well supported by their Dice coefficients.

Moreover, we also evaluated the robustness of the results in terms of the observed temporal
characteristics using the data from Study 2. We computed the occurrences and co-occurrences
of iCAPs using only subjects from Study 2. These are displayed in Figure A.6 and Figure A.7,
respectively. In these figures, there are no values for N3 since subjects from Study 2 only reach
NREM stage 2. Consistent with the findings in Study 1, we find a surge in iCAP activity during
NREM stage 2. We also observe a higher likelihood for 3 or more iCAPs to overlap in this stage
of sleep. Meanwhile, the iCAPs overlap the least during wakefulness.
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Finally, we evaluated the robustness of the results with respect to the choice of the number of
clusters, K. The choice of the number of clusters was motivated by a quantitative approach
for optimal class discovery (Monti et al., 2003). To assess whether the choice of K affects the
final outcome of the analysis, we also repeated the clustering procedure to the whole dataset
using K = 20. Figure A.8 displays the side-by-side analysis done using K= 17 and K = 20. Here,
we find that the general spatial characteristics are the same for both analyses, and that the
distribution (pie charts) show similar proportions across NREM sleep stages. Moreover, we
also find that increasing the number of K, beyond the optimally observed K = 17, results in the
recovery of similar repeating spatial patterns that are already present for K=17.

3.2.4 Discussion

General findings

Here we extracted large-scale brain networks or iCAPs by clustering moments of significantly
changing brain activity from two studies using simultaneous EEG and fMRI recordings during
sleep. The use of transient fMRI activity allowed us to obtain temporally overlapping spatial
patterns together with subject-specific time-courses at a time-scale of seconds. Altogether,
our findings help establish the following: (1) that coordinated activation of regional brain
areas during wakefulness was largely preserved in N1, N2, and N3 sleep, yet with specific
relative distributions and dynamic modulations across NREM stages, (2) that functional brain
networks sustain continuous bouts of activity on an average of about 7.3 + 1.7 seconds, and
for some networks, their mean lifetimes changed accordingly to their likelihood to occur in
each sleep stages, (3) that these networks exhibit maximal activity in N2 sleep and the least in
N3, and (4) that the pair-wise network co-occurrences generally show marked increase in N2
sleep followed by a decrease in N3, even though (5) FC and mutual information between these
networks progressively broke down from wakefulness to N3.

The first observation is largely consistent with previous work reporting the persistence of
large-scale brain networks during sleep [Horovitz et al., 2009, Sdimann et al., 2011] with various
modifications when reaching deeper sleep stages, such as decreased connection strengths in
RSNs [Larson-Prior et al., 2009], changes of hierarchical organization into smaller independent
modules [Boly et al., 2008], or reduced long-range temporal dependencies in the BOLD
signal [Tagliazucchi et al., 2013]. For instance, the well-known attention-related networks, such
as the bilateral ECN, occurred preferentially during wakefulness and N1, whereas networks
associated with primary sensory systems were most present during N2 and N3, consistent
with some earlier observations [Horovitz et al., 2009, Larson-Prior et al., 2009].

In the next subsections, we discuss the most important findings of the work and give interpre-
tations to the observed dynamical characteristics of cross-network interactions.
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Visual-sensory iCAP confirms the emergence of arousal-related network

The first iCAP (iCAP 1, Figure 3.2), corresponding to the network of regions contributing
to the highest number of significant transients in our dataset, was the visual-sensory iCAP,
which predominated during the transition to sleep (N1). It included a large portion of the
visual cortex, as well as some sensory and motor regions. This network also displayed a
unique characteristic of having negative activations in subcortical areas. Using combined
electrophysiological and fMRI signals, Liu and colleagues (2018) described a very similar
spatial pattern, with negative activation in basal forebrain and thalamus paralleled by positive
activations in sensory cortices, which arose during momentary drops in arousal, indexed by a
spectral shift in local field potentials toward low frequencies. In Figure 3.3, we provide a side-by-
side comparison between our visual-sensory iCAP 1 and the arousal-related network observed
by Liu et al. While both networks displayed positive activations in visual, sensory, and motor
regions, they also exhibited negative activation in the dorsal midline thalamus, as well as the
nucleus basalis. Because the thalamus holds an important role in regulating the physiological
state of arousal during sleep [Gent et al., 2018, Saper et al., 2010] and is responsible for relaying
motor and sensory signals to the cerebral cortex, we can suggest that reduced thalamic activity
favors sleep onset while limiting incoming external sensory stimulation. This interpretation is
also supported by the fact that most of the frames that contributed to this iCAP came from
wake and N1, suggesting that this iCAP might play a key role in the onset of sleep. Interestingly,
however, we found that this network exhibited a persistent likelihood in terms of the cumulated
duration to occur in N2, before decreasing in N3. Fittingly, it has also been found in previous
studies that there is an increase in BOLD signal variance in sensory and motor cortices during
N1 and N2 sleep, which has been used as diagnostic for detecting sleep in typical resting-state
recordings. On the other hand, high activities in frontal, parietal, and temporal cortices are
typically associated with wake conditions [Tagliazucchi and Laufs, 2014, Tagliazucchi et al.,
2013]. These two brain spatial patterns bear resemblance to the visual-sensory iCAP and
the bilateral ECN, respectively, whose temporal properties show consistent behavioral stage-
dependence. In addition, [Stevner et al., 2019] reported the same visual-sensory network to be
implicated also in N1.

DMN and cerebellum dissociates into posterior and anterior regions

The DMN has been well studied particularly in light of its connectivity changes when sub-
jects transition from wake to light sleep, and deep sleep. The initial hypothesis was that the
DMN supports a range of self-related mental processes, such as unconstrained self-referential
thought and recollection. However, previous studies have found the DMN to persist during
light sleep, as well as in deep sleep with reduced connectivity between the medial prefrontal
cortex (MPFQC) and the rest of the network [Horovitz et al., 2009, Larson-Prior et al., 2009]. In
the present work, we observed a dissociation of the DMN sub-components into its posterior
and anterior parts (Figure 3.4A). The pie-chart distributions of cluster frame indices displayed
in Figure 3.2 and the cumulated durations in Figure 3.5A reveal that the anterior region of the
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DMN mostly occurred during wake and N1 sleep whereas the posterior DMN predominated in
N2 and N3 sleep. We found a similar antero-posterior dissociation in the cerebellum (overlap
shown in Figure 3.4B). Studies that investigated FC in the posterior and the anterior regions
of the cerebellum have remained inconclusive regarding their potential roles in sleep. The
cerebellum has been found to be related to motor control and motor memory formation [Gao
et al., 2012]. It has also been observed to show sleep stage-dependent activity, whose im-
pairments disrupt the sleep-wake cycle which then leads to sleep disorders [DelRosso and
Hoque, 2014]. As a general observation, signals in the cerebellum appear to be lower during
N1 as compared to wakefulness [Hiroki et al., 2005, Kaufmann et al., 2006]. However, a map
summarizing major cerebellar research in sleep using fMRI and PET revealed a localized
change in cerebellar activity during SWS surrounding the cerebellum’s larger lobules (parts
IV, V, VI, and VII), as well as marked correlations with slow spindles in N2 [Canto et al., 2017].
These lobules make up the anterior region of the cerebellum [Dang-vu et al., 2010]. Moreover,
it has been previously shown that the sensorimotor domain is related to the anterior cerebellar
lobe, while the cognitive domain corresponds to the posterior cerebellar region [Stoodley and
Schmahmann, 2010]. This particular finding is consistent with the observed co-activation of
the anterior cerebellum with regions corresponding to the sensorimotor network represented
by iCAP 10 (see also [Shirer et al., 2012]) and Supplementary Table A.1) Meanwhile, the inferior
posterior lobe has been associated with the frontal gray matter, a well-known core area of
executive function [Jung et al., 2019, Tiemeier et al., 2010]. Altogether, these studies support
our current findings on the preferential tendency of posterior and anterior cerebellum to
persist in wakefulness and N2, respectively.

Alterations in network temporal characteristics and interactions during sleep reveal para-
doxical trend

Previous connectivity analyses of brain regions found a general decrease of FC with increasing
sleep depth [Haimovici et al., 2017, Spoormaker et al., 2010, Tagliazucchi et al., 2016]. Clas-
sical FC approaches capture statistical inter-dependencies between activity from two brain
regions [Friston, 2011]. Typically, if two regional time-courses exhibit simultaneous positive
(or negative) values over some time-windows, and exactly opposite values on some other
time-windows, the final correlation (and derived FC) between both regions would be close
to zero, despite the synchronized deviations from the baseline, albeit the incoherent signs.
Therefore, it follows that a decrease in FC does not mean a decrease in global network activity.
This is also true in measures of mutual information.

In this work, we demonstrated that network activations increased when participants went
from wakefulness to N2, while they decreased when reaching N3. This important observation
was captured because we were able to extract network temporal activity at the frame-wise level
for each individual iCAP. In contrast, classical dynamic FC analyses only capture the statistical
relationship among ROIs comprising the networks, and not the actual activity of the networks
themselves. Complementary, NMI measures the general relationship and detects both linear
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and non-linear mutual dependencies between these networks. Furthermore, because the
iCAP approach allows networks to overlap in time, we were able to observe that functional
networks show a higher likelihood to overlap (e.g., 2 to 4 iCAPs active at the same time) in
N2 compared to other stages. Congruently, we also found high co-occurrences in N2. By
contrast, N1 and N3 generally showed much lower co-occurrences. What is remarkable is
the simultaneous increase in both the same-signed and opposite-signed activations in N2
(Figure 3.6B). Meanwhile, classical Pearson correlation measure applied to iCAP time-courses
displayed a decreasing trend from wakefulness to deep sleep, consistent with FC findings
based on regional fMRI time-courses [Haimovici et al., 2017, Kung et al., 2019, Spoormaker
et al., 2010, Tagliazucchi et al., 2016]. This loss of FC is supported by the observed decline of
iCAP mutual dependence based on NMI measures in Figure 3.6D further strengthening the
observed paradox between network activity and network interactions from wakefulness to
deep sleep.

The remarkable increase in network activity during N2 is particularly telling and perhaps
not coincidental, as it is to be noted that N2 sleep acts as an intermediate epoch between
drowsiness and deep sleep. This is also the period when various paroxysmal events occur,
i.e., spindles and K-complexes [Jahnke et al., 2012]. Functionally, the role of K-complexes is
under debate whether it acts to promote deeper sleep, or whether it does the opposite and
correlates with cortical arousal [Bastien et al., 2000]. As such, it is believed to often emerge at
times of brain instability. Thus, it cannot be discounted that the general increase of network
activity and co-occurrences in N2 may be due to a common cause or a global drive that occurs
at this sleep stage. Meanwhile, the overall decrease in network activity and co-occurrences
during N3 fit previous findings on global increase in functional segregation during deep
sleep [Boly et al., 2012, Horovitz et al., 2009, Spoormaker et al., 2012]. Deep sleep is first and
foremost characterized by high-amplitude, low-frequency brain waves. It is manifested by
unresponsiveness, and the decline of the ability to react to external stimuli [Cirelli and Tononi,
2008]. Fittingly, similar findings have been shown for other unconscious brain states, such as
in propofol anesthesia [Monti et al., 2013].

We therefore summarize three important findings regarding network temporal characteristics
of sleep stage N2: (1) FC and NMI between networks decreaseds with sleep depth, (2) there is a
higher likelihood for stereotyped networks or iCAPs to emerge in N2 compared to wakefulness
and other sleep stages, and (3) both same-signed and opposite-signed co-occurrences between
iCAPs increased in N2. In line with previous works, we speculate that the decreased in FC
and more strongly the reduced NMI, both reflect a global reduced efficiency of information
transfer between networks. These observations are possible manifestations of reduced brain
network integrity [Nofzinger et al., 2013] that is commonly interpreted to reflect reduced
consciousness during sleep [Cirelli and Tononi, 2008]. This interpretation is consistent with
the general consensus among previous studies that view consciousness not as a persistence of
functional brain networks to occur, but rather the degree of interactions among them [Horovitz
etal., 2009, Nofzinger et al., 2013, Sdmann et al., 2011, Spoormaker et al., 2010]. Intriguingly,
despite the decrease in mutual dependence between networks in N2, a general increase in
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network activity is observed, possibly reflecting the unstable dynamics among iCAPs. In
other words, observation (1) likely corresponds to a decrease in global network integration,
while observations (2) and (3) can be presumed to express network attempts to communicate
specifically during N2 resulting in an increased inter-network co-occurrence with nonetheless
unstable synchronizations. This latter finding is in agreement with a very recent observation
by [Kung et al., 2019], who reported a very high variance in the dynamic FC evaluated across
sliding windows during N2, compared to during wakefulness, N1, and N3. High dynamic FC
variance in N2 was interpreted in their study as elevated instability of information transfer
between networks, whereas low mean dFC was deduced to reflect decreased intra-network
consistency.

Concerning N3, we observed (1) an overall decrease of global network occurrence, (2) a
decrease in network mean lifetimes, and (3) a decrease in functional association characterized
by lowest cross-network FC and mutual dependence through NMI. Altogether, our results
are consistent with the interpretation of a more stable brain state [Jobst et al., 2017] yet more
localized signal integration in SWS [Deco et al., 2017]. Spatially, the huge drop in anterior
DMN'’s likelihood to occur in deep sleep compared to other stages, together with the high
persistence of unimodal primary sensory networks, provide further support to the notion of
a break-down of long-distance functional connections [Tagliazucchi et al., 2013] in favor of
short-distance associations [Boly et al., 2012]. The global decrease of network activity, mean
lifetimes in N3, and mutual dependence between networks are, altogether, potential indicators
of a more stable state of the system, but also a general loss of effective information integration.

Methodological Aspects and Limitations

The iCAPs framework has already been applied to resting-state fMRI data of healthy [Kara-
hanoglu and Van De Ville, 2015], clinical populations [Z6ller et al., 2019], and spinal cord
fMRI [Kinany et al., 2020]. The recovered iCAPs in the present study were highly similar to
the ones observed in the first two studies, while additional spatial patterns unique in the
sleep were also found (e.g., visual-sensory network with deactivations in subcortical regions,
cerebellum, and insula). While dynamic FC analyses relying on direct statistical interdepen-
dencies of brain regions are effective in capturing coherent fluctuations between brain areas,
it does not capture individual brain activity at a single time-point. The framework is unique
in its ability to detect transients which allows for the extraction of spatially and temporally
overlapping functional networks at each time-point, which is a particular advantage that is
beyond the classical methodologies applied in sleep studies. Using this advantage, we were
able to show, for the first time, individual network activity at precise fMRI temporal resolution
across sleep stages and found a distinct stage-dependent activity for each network.

Although the method used is advantageous particularly in our goal to characterize functional
brain dynamics during sleep, it also comes with some limitations. Unlike classical FC studies
where one can evaluate the integrity of connectivity within a network (i.e., correlate one ROI
to another ROI within the same network), the iCAP approach extracts the spatial patterns
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as a whole. Thus, we are not able to evaluate the strength of connectivity within a network.
Nevertheless, the clustering step itself reveals data-driven dissociations of well-known spatial
patterns, such as the DMN and the cerebellum, which essentially reflects the spatial modifica-
tions that the brain undergoes as it transitions to SWS. Furthermore, while our approach does
remove hemodynamic effects resulting to a much cleaner representation of the BOLD activity,
the model used to deconvolve the HRF is assumed to be the same across all brain voxels,
following the general practice in the fMRI field. Nevertheless, for the research questions that
we aim to answer in this work, these effects can be reasonably ignored for our main findings.

Lastly, while the extracted temporal overlaps and co-occurrences between iCAPs give useful
insights on the overall global brain dynamics, these measures do not reflect causal influence
between these networks and therefore cannot be used to directly assess different levels of
consciousness. In contrast, FC, and more strongly, NMI, capture linear and non-linear inter-
dependencies between iCAPs. The agreeable outcome between these two measures provides
further evidence on reduced information integration that accompany increasing sleep depth,
and give stronger confidence on the observed paradox between the activity of large-scale
brain networks and their mutual dependencies. Nevertheless, in order to more accurately
quantify the level of consciousness across NREM sleep, additional analysis is suggested using
previously prescribed measures of integrated information [Krohn and Ostwald, 2017, Tononi,
2008, Tononi et al., 2016].

In summary, we investigated the dynamic properties of large-scale functional networks dur-
ing wakefulness and NREM sleep. We used the TA and iCAPs framework to capture precise
moments of transient brain activity, giving us a quantitative view of how the brain dynamically
evolves across the different stages of NREM sleep. We found new networks that are largely
related to regions that support the physiological organization of sleep and arousal. We also
uncovered whole brain spatial patterns that resemble currently known RSNs whose tempo-
ral profiles are consistent with previous findings. The temporal dynamics these networks
exhibited alterations between different sleep stages. In particular, we observed a global disso-
ciation/decrease of brain activity both in spatial and temporal domains, from wakefulness
to deep sleep. Unexpectedly, we found an increase in network activity in N2 and a global
increase in simultaneous positive and negative network co-occurrence, signaling instability of
network synchronization and ineffective brain integration. Altogether, these findings support
the general consensus of relating cortical integration to consciousness dissipation during sleep
and provide new evidence for the presence of unstable yet distributed global inter-regional
co-activation in N2 sleep.

3.2.5 Additional results

In the journal article presented in the previous section, we limited our analysis to characteriz-
ing brain dynamics across the different NREM sleep stages. In this section, we assess how the
dynamics of brain function can be related to the underlying anatomy as the brain transitions
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from wakefulness to deep sleep. Using the same set of subjects used in the previous study,
we estimate brain dynamics using classical sliding-window analysis (i.e., Pearson correlation)
and relate each window to the underlying structure by directly correlating it with SC, following
the method employed by [Liégeois et al., 2016].

Methods

Estimating brain dynamics using classical seed-correlation. We used AAL Anatomical atlas
to parcellate the functional data into 90 regions. For the functional data, we calculated the
mean signal within each region of the AAL, forming a 90 x 90 x Nr¢ datamatrix, where Nrc is
the length of the whole fMRI recording of each subject. Because subjects were allowed to sleep
for as long as they manage, N7 is different for each subject. The mean BOLD signal in each
region is correlated to all other regions to obtain a static connectivity matrix, FCsqsic. Next,
using a temporal window of length TR = 30 (equivalent to 1 minute) and a step of 1TR, we
performed a sliding-window correlation in the parcellated functional data. For each temporal
window, we normalized the resulting FC with FCs;4;;.. Finally, we vectorized the FC measure
in each temporal window and computed the mean of all pair-wise inter-regional correlations.

Subject 1
1.2 T T T T T T T T
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Figure 3.7 - Example dynamic FC evolution of two subjects, and their relation to SC. As the
mean FC breaks down during NREM stage 3, the coupling between FC and SC increases, as can
be observed in blue regions. Transitions between NREM sleep stages are also clearly reflected
in the fluctuations of dynamic FC and SC-FC coupling.
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Probing the link between brain structure and function. We used the conventional approach
of extracting SC matrix from diffusion data, as discussed in Chapter 2. We used a total of
100 subjects, all of which were downloaded from the Human Connectome Project (HCP)
database, WU-Minn Consortium. These data were downloaded in a preprocessed format.
The details of the preprocessing are well-documented elsewhere [Glasser et al., 2013]. All
volumes are then processed using MRTrix3® with the following operations: multi-shell multi-
tissue response function estimation, constrained spherical deconvolution, and tractogram
generation. We used the AAL atlas to parcellate the cortex and estimate the corresponding SC
matrix. Each pair-wise fiber counts were normalized with the average of the volumes of the
two regions being considered. The final SC matrix is obtained by averaging the SC of all 100
subjects. Finally, we vectorized this mean SC by taking only the upper triangular section of the
connectivity matrix.

To link SC and FC, we performed a sliding-window correlation between the vectorized SC and
FC matrices, using the same parameters used in approximating the dynamic FC. For each
temporal window of length 30TR, we directly computed the Pearson correlation of FC to SC
and normalized them with the correlation between FCg;4ic and SC. Mathematically, this is
given by the following formula:

R(t) = corr(FC(1),SC)

= . (3.1)
corr(FCstatic, SC)

The SC-FC coupling can have a value greater than 1.

Results and Discussion

FC breaks down as the brain transitions to deep sleep. Figure 3.7 shows (in blue) examples
of averaged dynamic FC evolution from two representative subjects as they transition from
wakefulness to deep sleep. From the two plots, we can clearly observe a huge drop in the
overall dynamic FC during NREM stage 3, in agreement with what was observed in previous
studies [Spoormaker et al., 2010, Kung et al., 2019]. This further supports our findings using the
iCAPs approach - that there is a significant reduction of the overall occurrence of functional
networks during the deep sleep. This is more straightforward to observe in Figure 3.8(A) which
shows a decreasing mean dynamic FC across NREM sleep, averaged from all subjects.

FC increases coupling with SC during deep sleep. In contrast to the observed decrease in
mean FC during the deep sleep, Figure 3.7 instead shows (in red) an increase in the SC-FC
correlation, demonstrating the tendency of brain function to increase coupling with the
underlying anatomy during deep sleep. This observation is also generalized across all subjects
in Figure 3.8(B) which shows significant increase in SC-FC correlation upon reaching NREM
stage 3.

The observation that the anatomical-functional coupling is stronger during the deep sleep

Shttp://www.mrtrix.org/
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Figure 3.8 — SC-FC relationship across NREM sleep. (A) Average dynamic FC measure across
all temporal windows corresponding to each NREM sleep stage. (B) Average FC-SC relationship
computed across all temporal windows corresponding to each NREM sleep. Only temporal
windows that have non-changing sleep stage within at least 30TR is considered, i.e., in one
sliding temporal window of 30TR, no sleep stage transition has to occur. All p-values are
corrected for multiple comparison, p < 0.001.

is well in-line with what was previously found by Tagliazucchi and colleagues, where the
similarity between the anatomical and functional connectivity networks increased during
the deep sleep [Tagliazucchi et al., 2016]. In particular, they have shown that FC in primary
cortices resembles that of the anatomy, in contrast to loosening structure-functional coupling
between higher-order integrative cortices. Recall that in the journal article presented in the
previous section, we observed that the normalized RCD during the deep sleep is dominated
by the occurrence of early visual, somatosensory, and sensorimotor iCAPs. Meanwhile, at the
other end, high-order association areas such as the bilateral executive control networks (ECN)
and the limbic networks displayed the least RCD. This trend is of the exact opposite of that
in wakefulness. We surmise that these findings reflect a previous observation that the brain
retains low-order processes during deep sleep, and anchors itself on the fixed anatomy to
restore its functionality upon awakening.
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Abstract

Understanding the organizational principles of distributed human brain activity remains a
major challenge in neuroscience. Here, we introduce a full data-driven approach based on
graph learning to extract meaningful repeating network patterns from regionally-averaged
time-courses. The Graph Laplacian Mixture Model (GLMM) is a generative model that treats
functional data as a collection of signals that live on multiple graphs. Three types of information
can be obtained using this approach: (1) meta-stable functional networks; (2) the activity profile
of each network; (3) the learned graphs that describe direct interactions between regions that
comprise these networks. We first validate the reliability of the proposed technique by applying
it to task fMRI. The probability of each network to occur at each time-point is found to be
consistent with the timing of the task paradigm, while the spatial patterns associated to each
epoch of the task are in line with previously established knowledge using classical regression
analyses. Second, the application to resting state leads to extracted metastates that correspond
to well-known functional networks. Finally, we take advantage of the learned graph matrices to
investigate the general link with anatomy. Using a dissimilarity index computed between the
GLMM-based functional connectivity (FC) and structural connectivity (SC), we show that the
strength of the FC-SC relationship gives rise to a behaviorally-relevant macroscale gradient that
distinguishes brain regions associated to low-level and high-level cognitive functions.
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3.3.1 Introduction

Functional magnetic resonance imaging (fMRI) is a unique tool to probe the functional
architecture of the human brain. Specifically, spontaneous fluctuations of blood-oxygenation-
level dependent (BOLD) signal have shown to be synchronised between brain regions during
resting state (RS) despite the absence of task or external stimuli [Biswal et al., 1995, Smith
et al., 2009]. A repertoire of functional networks have been identified in healthy [Beckmann
et al., 2005, Thomas Yeo et al., 2011, Shirer et al., 2012], clinical populations [Tagliazucchi
etal., 2010, Liao et al., 2014, Zoller et al., 2019], and across various brain states, for instance,
different levels of sleep [Larson-Prior et al., 2009, Tarun et al., 2020d] and coma [Boly et al.,
2008]. These functional networks include both sensory regions and higher-level cognitive ones,
such as the default-mode network (DMN), which generally shows reduced activity during an
externally-oriented task [Greicius et al., 2003], and becomes more engaged during internal
mentation [Andrews-Hanna, 2012].

The interest in understanding the intrinsic functional organization of the human brain has
motivated many new methods to deal with RS. Functional connectivity (FC), conventionally
measured as Pearson correlation between pairs of timecourses, allows to constitute a whole-
brain functional connectivity matrix [Bullmore and Sporns, 2009]. In its conventional form,
FC is computed using the whole RS scan, but several dynamic extensions that acknowledge
temporal fluctuations of FC have seen the light [Chang and Glover, 2010, Preti et al., 2017,
Bolton et al., 2020]). One popular approach is the sliding-window technique [Kucyi and
Davis, 2014, Elton and Gao, 2015, Madhyastha and Grabowski, 2014], where timecourses are
segmented into temporal windows so that a time-dependent FC matrix can be obtained. Then
further analysis by graph metrics [Betzel et al., 2016a], or dimensionality reduction methods
such as singular value decomposition (SVD) [Leonardi et al., 2013], k-means clustering [Allen
et al., 2014], or hierarchical clustering [Yang et al., 2014], can be applied.

From the analysis of windowed correlation of time-courses, one can also consider the ex-
traction of dynamic FC states directly from averaged time-courses (i.e., in contrast to taking
cross-regional correlation) within specified regional atlas. The high-dimensionality of the
approach, however, requires a dimensionality-reduction step using PCA to extract information
that gives the highest amount of variance in the data. This then allows the use of Bayesian
temporal modeling (i.e.,, Hidden Markov Models) to extract repeating network patterns in a
whole-brain fMRI data [Vidaurre et al., 2017]. A particular advantage of this approach is the
elimination of crucial parameters such as the choice of window lengths [Leonardi and Van
De Ville, 2015], as well as the ability to extract temporal characteristics (e.g., probability of
occurrence of each metastate at each time point) for each dynamic FC state.

In this work, we propose a new framework to estimate multiple functional brain networks, or
metastates, by building upon an emerging field of graph learning [Dong et al., 2019]. From
this point onwards, we will use the terms metastates and networks interchangeably to pertain
to repeating functional spatial patterns in the brain. Starting from the whole-brain time-
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series of parcellated fMRI data, we apply a recently introduced Bayesian-based [Tzikas et al.,
2008] generative model for mixed signals living on multiple networks [Petric Maretic and
Frossard, 2020]. The Graph Laplacian Mixture Model (GLMM) infers different metastates
directly from the data, and at the same time, extracts the corresponding underlying graph that
gives rise to these networks. We first demonstrate the powerful use of the tool by capturing
distinct networks corresponding to each task epochs of task fMRI data downloaded from the
Human Connectome Project (HCP) database. The performance of the method is validated by
comparing the extracted probability of occurrence of each metastate to the timing of the task
paradigm. We show that the extracted metastates consist of brain areas that are consistent
with previously observed regions that are implicated in the corresponding task. We then
apply the GLMM to RS fMRI data and obtain the most prevalent networks of spontaneously
interacting brain areas.

Furthermore, in addition to understanding the organizational principles of human brain
function, recent studies in neuroimaging are also starting to elucidate the role of structure
in cognition and behavior [Preti and Van De Ville, 2019, Medaglia et al., 2018]. To extract
meaningful interpretation of the learned graphs, we show that the estimated graph Laplacian
matrices from fMRI reveal indicative similarities with the structural connectome (SC) derived
from diffusion-weighted MRI (DW-MRI). We demonstrate that the degree of their similarity
captures behaviorally-relevant gradient that is consistent with the previously observed macro-
scale organization of the cortex that ranks low-level sensory processing to high-level cognitive
ones [Preti and Van De Ville, 2019, Margulies et al., 2016].

3.3.2 Materials and Methods
Data and Preprocessing

The functional data were downloaded from the publicly available Human Connectome Project
(HCP) database, WU-Minn Consortium. MRI acquisition protocols of the HCP are exten-
sively described and discussed in an existing work [Glasser et al., 2013]. We used 50 subjects
consisting of 4 sessions of RS scans (1200 volumes each, a total of 4800 frames), and 2 ses-
sions each of task fMRI data (working memory, relational memory, social, language, emotion,
and motor tasks). Functional volumes underwent the standard preprocessing steps [2]. All
functional images were realigned to the mean functional volume for each participant. The re-
aligned volumes were registered to the structural T1 data using rigid-body registration (SPM12,
https://www.fil.ion.ucl.ac.uk), and were de-trended (i.e., constant, linear, quadratic) to remove
signal drifts. Then, the images were smoothed using a Gaussian kernel with FWHM equal
to 6mm. Finally, we used the Automated Anatomical Labeling (AAL, 90 regions) atlas that
was resliced to fMRI resolution to parcellate fMRI volumes and compute regionally averaged
fMRI signals. Meanwhile, structural data of each subject were downloaded from the HCP
and were processed using MRtrix3 (http://www.mrtrix.org/). The SC of each subject was
generated based on the total number of fibers connecting two regions divided by the volumes
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of connecting regions. The normalization is done to ensure that the strength of the connection
is not biased towards the size of the bundles. The final SC matrix was obtained by averaging
all SC matrices of all subjects.

A. Data preparation

Single participant, two sessions X 568 timepoints x 90 regions 50 subjects data matrix Y
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Figure 3.9 — General workflow: from fMRI signals to the extraction of networks. (a) Mean
BOLD signals from four sessions of fMRI recordings are computed within each region of the
AAL90 atlas and are concatenated together to form the subject data matrix X. The final data
(Y) is obtained by concatenating 50 HCP subjects. (b) Plate notation of the generative model
for extracting functional metastates and their corresponding estimated graphs represented
through the Laplacians. (c) The output of the algorithm are K-number of metastates, their
corresponding graph Laplacians, and the probability that each metastate would occur at a
particular time-point. In the above example, we show K = 3.

Graph Laplacian Mixture Model

The Graph Laplacian Mixture Model is a generative model for a collection of signals which
naturally live on different graphs [Petric Maretic and Frossard, 2020]. It assumes that there are
several unknown networks, and each signal is generated from one of them. The interactions
within each network are modeled with a graph Laplacian matrix. A graph Laplacian is defined
as L =D — A, where D is a diagonal matrix of node degrees, and A is the adjacency matrix.
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It is unknown a priori which signals correspond to which (unknown) network. The model
fits the observed data to recover signal clusters, as well as the associated networks and graph
structures. Specifically, with observed fMRI signals, it assumes they group into clusters defined
by different unknown brain networks. The model recovers these clusters, together with brain
networks and graph Laplacians which model interactions within each network.

Formally, each of the observed M samples x,, € R belongs to exactly one cluster k determined
by the graph Laplacian Ly € RV*Y and mean p; € RV, A binary latent variable z,, € RX has
exactly one value 1, denoting the cluster k that x,;, belongs to. Probability ¢y models the
relative size of cluster k and defines a prior distribution of x,, belonging to cluster k, namely
p(zmi = 1) = ag, Vm. Finally, the graph Laplacian L; € RN*Y models smooth changes in
signals. Large values in Ly thus capture pairs of vertices that change their values in similar
ways. These connections can be seen as partial correlations between two vertices [Dempster,
1972]. Under these assumptions, signals in each cluster k follow a Gaussian distribution
determined through the graph Lapla(:ian4 X~ (g, L;l) [Dong et al., 2016]:

PEm|zm i = 1) = Ol L) = A (g, L) (3.2)

Recall that the cluster of each signal is unknown. Marginalising over latent variables z denoting
which cluster the signal x,, belongs to, we have:

pXm) =Y p(zm) p(Xmlzm) 3.3)
K
=Y P@mi=DpEmlzmir=1) (3.4)
k=1
K
=Y ar N (ue L, (3.5)
k=1
s.t. Lpe?,Vk (3.6)
K
Y ap=1, (3.7)
k=1
ap>0,Vk. (3.8)

Here (3.6) ensures that all Lgs are valid Laplacian matrices, &£ = {L|L;j = Lj; < 0,Vi #
Jj & Z?’z 1 Li,j=0,Vi}. (3.7) and (3.8) ensure that « defines a valid probability measure.

GLMM algorithm

Given M observed N - dimensional signals, X € RNV*M wye want to recover the parameters of
our generative model (3.5). To do so, we will look at the maximum a posteriori (MAP) estimate
for our parameters: probabilities @ = a;...ag, means p = y;...ux and graph Laplacians L =
L,...Lg. Namely, assuming the data has been sampled independently from the distribution in

4Note that LEI here denotes a pseudo-inverse of the graph Laplacian L
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(3.5), and allowing for a prior on the graph structure, we want to maximise over the a posteriori
distribution of our model:

argmax In p(a,py, LX) 3.9
a,u,L
ox argmax In p(X|a, u, L)p(L) (3.10)
a,u,L
M
=argmax In [ p(xmla,p, L)p(L) (3.11)
a,u,L m=1
M K
=argmax In 1_[ Z ak,/V(xml/.tk,Lzl)p(Lk) (3.12)
a,u,L m=1k=1
M K
=argmax Y. In Y ag N (Xmlu L) p(Li), (3.13)
a,puL m=1 k=1

which does not have a closed form solution. The problem is simplified through posterior

probabilities y € RM*K  with y,, , modelling the probability that signal x,, belongs to cluster
k:
Ym,k = P(Zm,k =1 X, ,Uk,Lk) (3.14)
_ PEmik=Dp&mlzme =1, ti, Lk) (3.15)
X1 PGy = DpCimlzm, =1, 11, L)
N ,84(L
@ N (x|, 8 (Lk)) (3.16)

YK aiNGplu, g2 (L)

The parameters can now be estimated iteratively using expectation maximisation (EM) al-
gorithm. The graph Laplacians are estimated with a graph learning scheme, while the other
parameters have closed-form solutions [Petric Maretic and Frossard, 2020].

Application to fMRI data

The general workflow of this work is summarized in Figure 3.9. We began by extracting the
mean BOLD signals within regions of the AAL atlas for each session of each subject. We built
a data matrix X that contains the timecourses of all AAL 90 regions. The timecourses of all
sessions and all subjects are then concatenated together to form a huge data matrix Y. This is
then fed to the GLMM algorithm which estimates the means or metastates (1x), learned graphs
represented in the output as the graph Laplacians (L), and signal clustering probabilities (y).

We then validated the performance of the proposed framework using task fMRI by demon-
strating that the timing of the task paradigms are captured by the averaged y-values across all
subjects. The hyper-parameters of the model (A, 0) are optimized using Normalized Mutual
Information (NMI) using the task paradigm as the reference ground truth. Meanwhile, the
number of clusters (K) is optimized using a feedback step where t cannot expect it to corre-
spond to the number of tasks, since the metastates may be formed as a combination of tasks.
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For that reason, we evaluated the results by iteratively changing K and performing a visual
evaluation of the dynamics of y with respect to the experimental task paradigm. Doing so, we
observe that the meaningful clusters consistently appear in a very similar fashion, regardless
of the proposed number of clusters K. Furthermore, fixing K in such a way resulted in better
overall accuracy, suggesting that the number of optimal clusters might be different from the
number estimated through more traditional methods.

As for RS, which is lacking a ground truth, the number of clusters K was chosen based on the
optimized silhouette measure and the consensus clustering procedure [Monti et al., 2003],
which is a resampling-based method for optimal class discovery. Both metrics suggested 3
as the optimal number of clusters. K has eventually been varied according to the procedure
mentioned above, in order to capture multiple networks. In practice, changing the optimal
number of clusters does not seem to affect the final estimation, instead, it opens the possibility
of inferring more networks.

Comparison of learned functional graphs to brain structure

An important benefit of the GLMM algorithm compared to other clustering methods is the
estimation of graph Laplacians (L). Not only this does help in obtaining more meaningful
networks or metastates (means), but it also conveys much more information and details
about our clusters. From here onwards, we use the term graphs to refer to the learned graph
Laplacians and networks or metastates to refer to the functional means or clusters.

We explored the similarity of the learned functional graphs to the structural connectome
derived from DW-MRI by using the spectral euclidean difference as a metric. This is done
by first decomposing the adjacency matrices (A) of each graph derived from the Laplacians
(A = D - L) into their constituent eigenvalues and eigenvectors. The eigenspectrum of A
are transformed using the procrustes algorithm [Kendall, 1989, Goodall, 1991] to match the
ordering of the eigenvectors of SC.

The output of the Procrustes transform is the rotation matrix that is used to retrieve the
transformed (functional) eigenvalues. In particular, given the rotation matrix Z generated by
the transformation, the rotated eigenvalues are computed as follows:

A= ZEW, (3.17)

where W is the weighted adjacency matrix of the functional network taken into consideration
and E is the vector of its original eigenvalues.

Considering all the functional networks inferred, regardless of the task, we computed the
euclidean spectral distance between the eigenvalues of the SC and the transformed graphs.
This metric reflects the degree of similarity between the learned graphs in each task and the
anatomy. Thus, each network will have a certain score of distance that indicates how that
function couples with structure: the smaller the metric, the closer the estimated graph to the
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Figure 3.10 — Estimated timecourses with respect to selected task paradigms. The y values
are plotted over the experimental paradigm of Language (A), Emotion (B), Social (C) and
Relational Memory (D) tasks. The black signal corresponds to the probability of belonging to a
specific metastate.

structure. We perfomed bootstrapping to extract networks that show statistically different
values. We then performed a Neurosynth meta-analysis similar to the one implemented by
Margulies et.al. [Margulies et al., 2016] and Preti et.al. [Preti and Van De Ville, 2019], where
topic terms from the database [https://neurosynth.org/] were matched with the derived
euclidean spectral difference of the functional graphs and the SC. The active areas of the
estimated networks were correlated with the database present in literature, thereby capturing
anumber of possible behavioral domains. The same 24 topics adopted these two studies were
considered. This behavioral gradient has been sorted according to a weighted mean of the
resulting z-statistics.
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Figure 3.11 — Spatial patterns corresponding to each epochs in the (A) Language task and (B)
Emotional task paradigms. Each node corresponds to each brain region in the AAL atlas. The
colors denote the signs of the extracted clusters (means), the edges denote the connectivity
derived from the estimated graph Laplacians, and the size the nodes indicate the degree of
each node’s connections. The rest epochs of the two tasks show regions of the default mode
network.

3.3.3 Results

Estimated network time-courses are consistent with the timing of the task paradigms

The proposed framework extracts consistent patterns of brain activity in each of the considered
tasks, and along with it is the estimation of their likelihood to occur at each time-point.
Figure 5.2 displays the estimated time-courses for six selected tasks overlaid with the task
paradigm which are distinguished in colors. Metastate 2 and 3 of the Language task capture
time-points when subjects undergo the Story and Math epochs, respectively while Metastate 1
corresponds to the resting epoch of the task. Meanwhile, Metastate 3 consistently captures
the RS epoch in the Social task. However, the algorithm does not distinguish the metastates
corresponding to Mental and Random phases since the likelihood estimation of Metastate
2 corresponded to both task epochs. On the other hand, Metastate 3 captures the transition
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between the rest and task epochs. The same observation can be made in the other tasks, in
particular, the motor, relational, and working memory. In each of these tasks, some metastates
capture transitions between epochs and uniquely identifies whether it is a transition between
rest and task epoch or a transition between two different task epochs i.e., Metastate 4 in
Relational Memory captures transitions between Relation and Match, while Metastate 2
captures transitions between rest and any of the two tasks.

GLMM captures spatial networks corresponding to each task consistent with their known
established neurophysiological descriptions

Figure 5.3(A) and (B) displays an example set of results that we obtained when running the
GLMM algorithm to the Language and Emotion tasks, respectively. The RS epochs of both
tasks reveal metastates that are akin to the DMN network. The regions implicated in Metastate
2 (Math) include the parietal areas (superior and inferior) and the frontal region (e.g., middle
frontal gyrus, opercular part of the inferior frontal gyrus). These regions are well in-line with
the established associated areas corresponding to numbers and calculations [Arsalidou et al.,
2018]. On the other hand, active areas in Metastate 3 (Story) are the hippocampus, frontal,
and the bilateral superior and anterior temporal cortex, consistent with previously observed
regions implicated with story processing tasks [Barch et al., 2013].

Meanwhile, Metastate 1 corresponding to the Rest epoch of Emotion task again captures the
DMN pattern. Metastates 2 and 3 corresponding to the Fear and Neutral phases, respectively
both show stark differences in terms of the regions activated. In particular, Fear triggers
activations in the bilateral central gyrus, superior occipital gyrus, and the parietal cortices.
These regions cover the somatosensory cortex, which is a known region responsible not only
for processing sensory information from various parts of the body but also for emotional
processing, including generation of emotional states and emotion regulation [Dolan, 2002,
Bufalari et al., 2007, Kropf et al., 2019]. Meanwhile, the metastate for Neutral shows activation
of visual regions that are strongly related to shape [Anzai et al., 2007, Hegdé and Van Essen,
2000]. Unexpectedly, we found relatively low means in the amygdala, a well-known region that
is typically activated in emotional matching paradigms [Hariri and Mazziotta, 2000, Preckel
etal., 2019].

Extracted metastates during rest

After validating the outcome of the proposed framework with task fMRI using the known
experimental task paradigm as the ground truth, we applied the method to RS fMRI. Figure 3.12
displays the estimated metastates together with the approximated likelihood to occur at each
time-point for one representative subject. This likelihood of occurrence gives a proxy of
the metastate’s activity profiles. As expected, we observe the DMN to be highly occurring.
We found a metastate that clearly covers areas of the visual cortex, another metastate that
shows regions corresponding to the auditory network and some portions of the frontoparietal
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Figure 3.12 — Extracted spatial maps during rest (A) Six metastates corresponding to the RS
data. Values in percentage show the occurrences of each metastate across all 50 subjects
considered. (B) Example activtity profile of each metastate for an example subject. (C)
Correlation of estimated means corresponding to DMN-networks extracted from rest and all
task fMRI data.

cortex, and another one that contains the bilateral temporal cortices and the insula, which is
analogous to the salience network. Additionally, we also found separately clustered activations
in the left and right portion of the brain.

Comparison of learned graphs that give rise to DMN patterns

We found that metastates corresponding to the rest epochs of the tasks always corresponded
to the DMN, which is expected. To understand the nature of the recovered DMN-related
metastates, we computed the correlation across all pair-wise networks corresponding to
each task and RS data. Figure 3.12(C) displays the correlation between the extracted DMN-
related metastates from all tasks and RS fMRI. The x— and y-axes were sorted from lowest to
highest correlation, showing a distinction between tasks that require low-level sensory-motor
functions (e.g., language, motor, rest) versus tasks that associated to high-level cognition (e.g.,
emotion, working memory, relational memory, and social).
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Learned graphs bear similarity to the underlying brain structure and their relation reveals
behaviorally-relevant organization

For each of the tasks evaluated, we obtained different metastates and corresponding graph
Laplacian matrices. We, therefore, have a total of 28 metastates across all tasks, and con-
sequently, also 28 graph Laplacian matrices. We evaluated the similarity of these graph
Laplacian matrices to the underlying brain structure derived from DW-MRI. Figure 3.13(A)
shows the group-averaged structural connectome across all subjects considered in this work,
and Figure 3.13(B) displays an example adjacency matrix computed from the estimated graph
Laplacian matrix of an example task. The adjacency matrix is visually more sparse than the
SC. Moreover, a direct statistical measure (i.e., Pearson correlation) between the estimated
GLMM adjacency matrices and SC reveals a similarity values within the range of r = 0.48 to
r = 0.60 as is shown in Figure 3.13(C). Compared to the classical FC-SC relationship where FC
is obtained by correlating inter-regional BOLD time-courses using either Pearson correlation
or Partial correlation, the strength of FC-SC coherence is much higher using GLMM-based FC.

We then performed a meta-analysis [Yarkoni et al., 2011] of this SC-FC relationship by using
spectral difference as a measure. In essence, this translates to a dissimilarity index between
the SC and the GLMM-based FC obtained in all tasks and RS fMRI. Figure 3.13(D) shows the
results of the meta-analysis performed using the Neurosynth database, analogous to previous
works of Preti, et.al. [Preti and Van De Ville, 2019] and Marguiles, et.al., [Margulies et al., 2016].
We displayed seven metastates that showed a statistically significant spectral difference. This
is shown in the figure as columns which is sorted in increasing order. The 24 behavioral topics
describing the rows are sorted according to their z-score. The ordering of both axes reveals
an organized behavioral gradient that naturally arises from this SC-FC relationship. Low-
level processes (highlighted in blue) reveal a general low spectral difference while high-level
cognitive behavior (in red) show high difference. A diagonal trend can be glimpsed.

An important aspect to note in this analysis is the use of spectral difference to define a
decoupling index between SC and FC. This choice was motivated by the SC-FC decoupling
measure introduced in previous work [Preti and Van De Ville, 2019]. In order to be consistent,
we opted to use a dissimilarity measure instead of similarity (e.g., correlation). It is to be noted,
however, that results do not change when using either correlation or spectral difference, as
can be seen in Figure A.1.

3.3.4 Discussion
General findings

We proposed a new framework for extracting repeating functional brain patterns based on a
generative model that assumes functional data as a collection of signals that live on multiple
graphs. Using this technique, we were able to obtain: (1) distinct sets of networks that the
brain cycles to, (2) the likelihood of these networks to occur at each time-point, and (3) the
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Figure 3.13 — Learned Laplacian matrix and its relation to the structural connectome and
behavior. (A) Group-averaged SC matrix corresponding to all subjects considered in this work.
(B) Adjacency matrix extracted from an example Laplacian matrix. (C) Similarity between SC
and different FC measures: using (1) GLMM-based adjacency extracted from learned graphs
and classical measures of FC using (2) Pearson Correlation and (3) Partial Correlation. (D) Meta-
analysis of SC-FC relationship using spectral distance as a metric. The distinction between
low level and high-level processing arises thanks to the sorting of the spectral difference and
the z-score assigned to a behavioral topic.

underlying graphs that describe the interactions of the regions composing these networks.
We validated the approach by demonstrating that the extracted metastates corresponded to
spatial patterns that are consistent with their established neurophysiological descriptions.
We also showed that the probability of these networks to occur at each time-point generally
captured the timing of the task paradigms we evaluated. Then, we applied the approach to
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RS data to reveal some of the well-known RS networks, such as the DMN, visual, auditory/at-
tention, and salience networks. Finally, we took advantage of the estimated graph Laplacian
matrices to understand the interactions of the regions composing these networks, and how
they are related to the underlying brain structure obtained from DW-MRI. We showed that
the adjacency matrices computed from the graph Laplacians bear closer similarity to SC
than conventionally defined FC measures, e.g., Pearson correlation of inter-regional BOLD
signals. We then demonstrated that the degree of similarity between the learned graphs and
the SC captures behaviorally-relevant gradient which distinguishes low-level and high-level
cognitive processes that is consistent with previously observed macro-scale organization in
the cortex [Preti and Van De Ville, 2019, Margulies et al., 2016].

Within-network regional interactions of brain function are coupled with anatomical con-
nectivity

The relationship between brain structure and function is one of the fundamental questions in
neuroscience [Goni et al., 2014, Atasoy et al., 2016, Betzel et al., 2016c¢, Gu et al., 2015, Tarun
et al., 2020b]. One of the most straightforward method for comparing structure-function
relationship is done by correlating FC with SC (e.g., Pearson correlation) [Honey et al., 2009,
Supekar et al., 2010, Horn et al., 2014]. The simplicity of the approach, however, bears with
it indispensable limitations. Pearson correlation reflects the marginal association between
regions and does not capture a direct relationship between two variables without confounding
effects of other variables. To address this issue, partial correlation has been shown to improve
the results by regressing out the effects of other variables [Smith et al., 2011, Wang et al.,
2016]. In our approach, the GLMM algorithm extracts both an estimate of the (1) the mean
signals that are activated at every time instance as well as (2) a connectivity matrix (i.e.,
Laplacian matrix) which captures regions that are directly and coherently fluctuating together,
without the confounds of the activity of other areas. As can be observed in Figure 3.13(B),
the adjacency matrix derived from an example Laplacian matrix is more sparse than SC. It is
therefore showing fewer connections than classical FC [Honey et al., 2009], thus highlighting
only very specific regions that are implicated in the recovery of each metastate. We also
show in (Figure 3.13(C)) that compared to FC’s computed using classical Pearson correlation
analysis and partial correlation, the GLMM adjacency matrices bear higher similarity to
SC. Two reasons are believed to be the cause of this observation. First, unlike classical FC,
GLMM adjacency matrices do not include spurious connections, and only captures direct
interactions between regions within a network. Second, the GLMM method is a dynamic
approach, whereby each GLMM FC matrix corresponds to a particular temporal window
(i.e., each task epoch corresponds to a specific metastate, and consequently to a specific FC
matrix). It has been shown in previous work [Liégeois et al., 2016] that there are phases of
synchronization and desynchronization between FC and SC matrices when sliding-window
analysis is applied instead of static FC. Our findings therefore provide further evidence on
the role of structure as a transitory architecture between different functional brain state. The
fact that metastate-specific graphs show closer similarity to the fixed SC (Figure 3.13(C))
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reflects the inherent preferential organization of the brain to be constrained by its underlying
anatomical bedrock [Honey et al., 2009, Liégeois et al., 2016, Cabral et al., 2011].

Behaviorally-relevant macro-scale organization of the cortex is linked to brain functional-
anatomical coupling

In addition to the findings above, there is a growing evidence for strongly linked brain structure
and function that is related to cognition and behavior [Preti and Van De Ville, 2019, Medaglia
etal., 2018]. Strongly coupled SC and FC are observed to be associated with low-level sensory-
motor functions while strongly dissimilar SC and FC correspond to high-level processing [Preti
and Van De Ville, 2019]. A similar macroscale organization in the cortex is also observed
by another study using only FC measures [Margulies et al., 2016]. These findings are well
in-line with what we have found in Figure 3.13(D) using the same meta-analysis performed in
these two studies. Although a diagonal trend is not as apparent, we can see a clear ordering
of the behavioral topics from top to bottom, from low-level processes (e.g., face/affective
processing, visual semantics, motor, eye movements, and action) to high-level ones (e.g,,
autobiographical memory, social cognition, reward-based decision making, cognitive control,
and numerical cognition). This organization naturally emerged together with the ordering of
the spectral difference between GLMM-based FC and SC from low distance (i.e., similar) to
high distance (i.e., dissimilar). These findings confirm that the strength of FC-SC coupling
follows a behaviorally-relevant gradient that describes the topographical organization of cortex
in humans [Margulies et al., 2016, Preti and Van De Ville, 2019].

Methodological perspectives

Dynamic analyses of functional imaging data during rest and tasks have been going on for a
decade [Chang and Glover, 2010]. Since its inception, several methodological advances have
been introduced to probe the functional organization of the brain in a dynamical point of
view. A recent review of the existing methodological tools [Preti et al., 2017] has classified
existing approaches into four distinct groups of methods: (i) sliding-window correlations,
(ii) frame-wise analyses [Liu and Duyn, 2013, Karahanoglu and Van De Ville, 2015], (iii) state
modeling [Leonardi et al., 2013, Allen et al., 2014], and (iv) temporal modeling [Vidaurre
et al., 2017]. We situate our proposed technique to be an integration of state and temporal
modeling, whereby the GLMM approach captures the dFC states and their corresponding
activity timecourses, akin to how HMM models [Vidaurre et al., 2017, ?] are able to capture
various brain states and their likelihood to occur at each time-point. Unlike HMMs, however,
GLMM extracts the metastates directly from the averaged BOLD data within parcellated brain
regions without a dimensionality reduction step (e.g., PCA). The reason for this is the implicit
dimensionality reduction which occurs in GLMM by imposing a Laplacian structure on the
inferred graphs [Petric Maretic and Frossard, 2020]. The model has been shown to outperform
standard clustering methods on high-dimensional tasks, even when intuitively there is no
inherent graph structure in the data, achieving better clustering accuracy. Finally, the inferred
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Laplacians add a strong layer of interpretability to our findings and offers multiple possibilities
for further analysis and understanding of brain networks. The extracted individual graph
structures describe the interactions of regions comprising the dFC states. Apart from the
enhanced visual understanding of interactions between the brain regions, these graphs enable
further comparison of different brain networks, as shown in Figures 3.12 and 3.13.

Technical Limitations

While the proposed method tries to capture more information about recovered brain networks,
it still suffers from numerous technical limitations, mostly due to the oversimplification of
a very complex problem. Firstly, the method makes the assumption that each fMRI signal
corresponds to exactly one cluster, ie. one brain network. When fitting the model, it does
return probabilities of the signal belonging to each of the clusters, but that is largely different
from assuming that one signal actually originated as a combination of several networks, a
phenomena that could very well be present in practice. Furthermore, the method takes no
temporal information into account. This fact helped us evaluate the method, showing that
even with no temporal information meaningful clusters are successfully obtained. However,
in practice the temporal information is valuable and incorporating it could lead to more
accurate results, which this method does not support at the moment. Finally, while the
additional information in terms of inferred graph Laplacians is very interesting and can lead
to more accurate results, the method does not support imposing any similarities on the graph
Laplacian structures. Namely, imposing any additional information known from the literature,
as well as similarities or differences between networks could render the inference problem
more simple, thus resulting in a higher accuracy and more reliable findings. These limitations
could be addressed in future work, where the method described in this paper could serve
as baseline, enabling easy comparison with more complex models and clearly underlying
possible benefits obtained from the incorporation of additional information and literature
knowledge.

3.3.5 Conclusion

This study presents a new framework for uncovering meaningful network-level representations
of brain function, each of which is supported by a separately defined graph that describes
the interactions of implicated regions. The extracted graphs are sparse and only recover links
between regions that have direct interactions. These graphs also bear closer similarity to
structural connectivity, more than classical definitions of FC (e.g.., Pearson correlation, Partial
correlation). We demonstrate that the degree of dissimilarity between brain function and
structure gives rise to a macro-scale gradient in the cortex which reflects the preferential
tendency of brain regions involved in low-level sensory-motor processing to be similar to
structure, and in contrast, those involved in high-level cognitive processing are discordant.
Overall, our findings validate the potential of the proposed technique in providing additional
perspective with regards to understanding the organizational principles of human brain
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function and its relation to structure.
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High-resolution voxel-level brain
graphs

4.1 General Motivation

Graph modeling of structural connectivity has proven itself very useful in characterizing brain
network topology [Bassett and Bullmore, 2017]. Moreover, graph measures derived from
functional connectivity have also been demonstrated to present insightful neurobiological
underpinnings [Sporns, 2018], which makes them effective biomarkers for delineating healthy
and disease [Wang et al., 2010]. Recently, an increasing interest is given on the use of graph
signal processing (GSP) to analyze the interplay between brain structure and function [Huang
et al., 2018a]. This family of method is essentially a step more advanced than classical network
neuroscience since it gives an integrated approach to study brain dynamics on the basis of
the anatomy. Notably, the latest studies that utilized GSP tools have started to elucidate the
importance of the structure-function link in supporting coordinated cognition and behav-
ior [Preti and Van De Ville, 2019, Medaglia et al., 2018]. It is therefore very timely to survey this
approach, and in particular, take a closer look on the definition of the brain graph itself, from
which, all succeeding GSP operations are based upon.

Indeed, most of the GSP studies are so far limited to defining nodes as regions from a brain
atlas. This Chapter is dedicated to the design and construction of high-resolution voxel-level
brain graphs that are meant to extend current region-wise GSP approaches to voxel-level
perspective. In particular, we propose two designs for constructing the brain graphs, one
based on diffusion tensor imaging and another based on diffusion orientation distribution
functions. We differentiate the designs by characterizing their respective degree distributions,
followed by a comparison of their eigenvalue spectra to the weighted zero crossings of their
corresponding eigenvectors. We assess the intrinsic dimensionality of the eigenspace using a
Procrustes validation scheme that characterizes the inherent inter-subject variability. Finally,
we demonstrate the powerful use of the proposed technique in integrating brain structure
and function by decomposing resting-state and task fMRI in terms of the Laplacian’s lowest
frequency eigenmodes. We end the chapter with enumerated possibilities for future research
directions, in particular, in the field of GSP applied to functional brain imaging.
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Abstract

Understanding the interaction between brain structure and function is key to elucidate how
human cognition and behavior arise. Recent studies in computational neuroimaging employ
signal processing operations to analyze brain activity signals associated to the nodes of structural
brain graphs. Current graph models for characterizing structural connectivity are mostly limited
to defining nodes as gray matter regions from a brain atlas, while incorporating white matter
connectivity as edge weights between nodes. Here, we model white matter explicitly as nodes
of a high-resolution voxel-wise brain graph—containing around 750 000 voxels—for which
local connectivity is computed from diffusion-weighted MRI data. We propose two methods for
encoding structural connectivity, one based on diffusion tensor imaging and the other based
on diffusion orientation distribution functions. To assess the properties of the brain graph,
we apply spectral analysis to the graph Laplacian operator. The Laplacian eigenmodes are
spatially highly resolved, reflecting distributed structural features that correspond to major
white matter tracts. We study the intrinsic dimensionality of the eigenspace of the proposed
graphs across 100 subjects through a Procrustes validation scheme that characterizes inter-
subject variability. We then demonstrate the extent to which functional MRI data are shaped
by the underlying anatomical structure by decomposing task and resting-state data using low-
[frequency eigenmodes. The proposed methods open a range of possibilities for new research
avenues, especially in jointly integrating brain structure and function.
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4.2.1 Introduction

Magnetic resonance imaging (MRI) has become an essential neuroimaging modality that has
provided effective means to map the brain’s anatomical scaffold, using diffusion-weighted
MRI (DW-MRI), and, in parallel, to track brain neural activity using functional MRI (fMRI).
In the age of bio-banks, extensive datasets that include diffusion and functional data on the
same set of subjects, such as the Human Connectome Project (HCP) [Essen et al., 2013], have
been made freely available, and with such accessibility, various methodological developments
that aimed to integrate the two modalities have emerged.

Computational neuroimaging has successfully adopted graph theory and made it evolve into
anew field of interdisciplinary research called network neuroscience [Bassett and Bullmore,
2017]. Structural and functional connectomes are independently defined, and are analyzed
using graph theory measures to provide a better understanding of their organizing network
principles and to determine their influence in cognitive function [Bassett and Bullmore,
2017, Bullmore and Sporns, 2009]. Recently, there has been increasing interest in addressing
neuroscientific questions from the point of view of brain dynamics [Preti et al., 2017, Bolton
et al., 2020], along with which lies the fundamental question of how the underlying brain
anatomy supports the emergence of spatially and temporally varying distributed patterns of
functional activity. In this perspective, it is fitting to consider advancing network neuroscience
to a more unifying analysis approach that accounts for the interplay between brain structure
and function. Leveraging principles from the field of graph signal processing (GSP) [Shuman
et al., 2013, Ortega et al., 2018, Stankovic et al., 2020] that has emerged in the last decade,
a new neuroimaging framework is taking form, in which functional data are interpreted as
defined atop the structural connectome, treated as time-dependent graph signals, and, in
turn, processed using methods that are informed by the structure; e.g., see [Huang et al.,
2018a, Behjat et al., 2015, Atasoy et al., 2017].

The GSP framework generalizes principles from classical discrete signal processing for time
series to data defined on irregular domains. It has been successfully applied to various
datasets in many different fields, such as image processing [Cheung et al., 2018], sensor
networks and smart grids [Jablonski, 2017, Stankovic et al., 2019], community detection in
graphs [Tremblay and Borgnat, 2014], urban analysis [Jain et al., 2014], energy networks [He
etal., 2018], transportation networks [Hasanzadeh et al., 2017] and food industry [Masoumi
etal., 2020]. The fundamental GSP concepts that have to date been employed for neuroimaging
are (i) the graph Fourier transform (GFT), e.g. through which functional signals on region-wise
graphs have been characterized by connectome-specific components [Atasoy et al., 2017],
and (ii) spectral graph filters, e.g. using which low- and high-level cognitive functions were
associated to the relative smoothness of functional signals over the structural graph [Medaglia
et al., 2018, Preti and Van De Ville, 2019]. Both of these concepts are rooted in spectral graph
theory built on the graph Laplacian matrix [Chung, 1997], wherein the Laplacian eigenvectors
form the basis of the GFT, in the same manner that complex exponentials form the basis
of the conventional Fourier transform. As such, the Laplacian eigenvalues carry a notion
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of frequency (spatial saliency) in the context of structural brain graphs. We refer the reader
to [Huang et al., 2018a] for a detailed review of the application of GSP on region-wise human
brain connectomes.

Research questions that can be answered through GSP-based analyses are fundamentally
reliant on the definition of the graph, from which all succeeding operations are derived. The
majority of existing applications of GSP in functional brain imaging are limited to region-wise
analyses, where the regions are defined using a priori brain atlases containing 100 to 1000
regions. Motivated by the promising results from existing GSP studies in linking brain structure
and function, we propose the construction of large-scale brain graphs at the resolution of
voxels. We introduce two methods to derive the strength of connection between adjacent
voxels using DW-MRI data, one based on tensors estimated from diffusion tensor imaging
(DTT) [Basser et al., 1994], and the other based on diffusion orientation distribution func-
tions (ODF) estimated from high angular resolution diffusion imaging (HARDI) data [Tuch,
2004]. The tensor and ODF models both aim to represent structural information on the intra-
voxel axon fiber arrangement [Le Bihan, 2003]. The diffusion tensor model can be seen as
a multivariate Gaussian describing the distribution of fiber bundle alignment, whereas the
diffusion ODF model defines the radial projection of the diffusion function and estimates the
empirical distribution of water diffusion. For a detailed description of the DTI and ODF signal
reconstruction methods, we refer to [Alexander et al., 2007] and [Tuch, 2004], respectively.

We validate the two proposed structure-encoding graph methods, in particular, in relation
to their spectral properties, using diffusion data of the 100 unrelated subjects from the HCP
dataset [Essen et al., 2013]. We then investigate the intrinsic dimensionality of their eigenspace
across subjects using a Procrustes validation scheme that characterizes inter-subject variability.
Finally, we demonstrate the relevance of the proposed high-resolution graphs within a GSP
setting, particularly through studying the energy spectral density of resting-state and task
fMRI data on these graphs. We conclude the paper by discussing potential future research
avenues in using the proposed graph designs in addressing the interaction between brain
structure and function.

4.2.2 Preliminaries

Graphs and their spectra

Let ¥ := (/,A) denote an undirected, single-connected, weighted graph, consisting of a node
set A, where [A| = N, and a symmetric N x N weighted adjacency matrix A, wherein any of
its nonzero elements a;; represent the weight of an edge (i, j) in the graph. The graph degree
matrix D is diagonal with elements d; ; = Z?’: , aij. One useful operator defined on ¥ is the
normalized graph Laplacian, which is defined as the symmetric and positive semi-definite
matrix

L=1-D'2AD"'/2, 4.1)
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where I denotes the identity matrix. Through eigendecomposition, L can be diagonalized as
L=UAUT, where U = [uj,uy, ..., uy] is an orthonormal matrix stacking the eigenvectors u;,
i=1,...,N,inits columns, and A is a diagonal matrix whose diagonal elements are the corre-
sponding eigenvalues A; ; = 1;, i =1,..., N. Due to symmetry and positive semi-definiteness
of L, its eigenvalues are real and non-negative, and its eigenvectors form an orthonormal set;
ie., ul.Tu j= 0 j» where 0 is the Kronecker-delta. Without loss of generality, we assume that
the diagonal elements in A, and the corresponding columns in U, are sorted based on the
magnitude of the eigenvalues, i.e., Vi, j if i < j then A; ; < Aj j. As such, the graph Laplacian
eigenvalue set satisfies {0 = 1; < Ay - < A := Amax < 2}, where the upper bound is guaranteed
due to the use of the normalized Laplacian matrix [Chung, 1997]. This set of values define the

Laplacian spectrum of the graph, and the eigenvector set {u;};=; .. n defines an orthonormal

basis that spans the R" space of vectors defined on the nodes of the graph. Hereon, we refer
to the Laplacian eigenvectors as the eigenmodes, for consistency with the nomenclature used

in the neuroimaging community.

Spectral decomposition of graph signals

A graph signal defined on the nodes of a graph can be represented as a vector x € R, where the
i-th element, x[i], is the signal value at the i-th node of the graph. The spectral representation
of x, commonly known as the graph Fourier transform (GFT) of x, is given as X = U'x. The
signal can be perfectly recovered through the inverse GFT operation as, x = UX, which can
be expanded as x = Zﬁ.\i ,X[i]u;. As such, any given graph signal can be seen as a linear
combination of the orthonormal set of Laplacian eigenvectors. In particular, |%[i]|? gives the
energy spectral density of the signal associated to the i-th eigenmode. For this work, we define
our graph signals in terms of their demeaned and normalized version, obtained as

x = (x—ulTxul)/le—ulTxulllz, 4.2)

which ensures |X'[1]]? = 0 and Zﬁ.\il IX'[i])2 = 1.

Spatial saliency of graph Laplacian eigenvectors

In classical Fourier analysis, the complex exponentials entail a specific notion of saliency by
their frequency. Similarly, the eigenvalues of a graph Laplacian carry a notion of frequency,
which is directly linked to the extent of spatial saliency manifested by their corresponding
eigenvectors. To understand this link, a metric known as total variation (TV) [Sandryhaila and
Moura, 2014] can be computed for each eigenvector. For a given graph signal x € RV, the TV of x
is defined as TV (x) = x' Lx, which is a measure that quantifies the extent of variation observed
in x relative to the underlying graph structure. Given that the eigenvectors are orthonormal,
ie., ul.Tui =1, and that Lu; = A;u;, it follows that the TV of Laplacian eigenvectors reduces to

TV(u;) =u] Lu; = A;, 4.3)
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showing that the variability of each Laplacian eigenvector is reflected by the associated eigen-
value, or in other words, that the Laplacian eigenvectors associated to larger eigenvalues
reflect a greater extent of spatial variability.

An alternative way to quantify the degree of spatial variability of graph Laplacian eigenvectors
is to compute their number of zero-crossings. In particular, we define a weighted zero-crossing
measure as )

ZC(uy) = > Y aijH(—ug[ilug[j]), (4.4)

i#]

where H() is the Heaviside step function and a;; is the edge weight that connects voxels
vi and v;. The higher the zero-crossing metric, the greater the associated variability in the
eigenvectors’ spatial patterns.

4.2.3 Materials and Methods
Datasets

We constructed and studied brain graphs using MRI data downloaded from the publicly
available HCP dataset—the 100 unrelated subjects, WU-Minn Consortium. MRI acquisition
protocols of the dataset and preprocessing guidelines for diffusion MRI are extensively de-
scribed elsewhere [Glasser et al., 2013]. The diffusion and anatomical data were downloaded
in a readily preprocessed format. Each subject’s resting-state and task fMRI scans were then
realigned to their mean images, and were registered and resampled onto the diffusion data
through rigid-body registration using SPM'. Two signal reconstruction methods were applied
to the diffusion data: (1) DTI tensor fitting using FSL?, and (2) ODF estimations using DSI
Studio®. These steps were done to extract the associated signal representation in individual
voxels across the brain, cf. sections 4.2.3 and 4.2.3.

Brain graph design

For each subject, we define a weighted brain graph characterized by a node set A" =1{1,..., N}
defined based on the set of voxels that fall within the subject’s brain mask, covering gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF), representing a 3D mesh arrangement.
In particular, each node i is associated to a voxel, denoted v;, with coordinates (x;, y;, z;). The
graph edges are defined based on the adjacency of voxels within the Moore neighborhood
cubic lattice of size 3 x 3 x 3 and 5 x 5 x 5, where the latter size is only used in the ODF-based
design. For the 5 x 5 x 5 design, voxels in the outer layer that fall in parallel to the voxels
within the inner layer were excluded, enabling encoding of connections to a maximum of 98
voxels/directions in the neighborhood of each focal voxel, whereas the 3 x 3 x 3 design enables

Thttps:/ /www.fil.ion.ucl.ac.uk/spm/software/spm12/
Zhttps://fsl.fmrib.ox.ac.uk
Shttp://dsi-studio.labsolver.org
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B. ODF a=4n/26

Figure 4.1 — Quantification of diffusion orientation for defining graph edge weights. (A) In
the DTI-based graph, the diffusion tensor model associated to each voxel is discretized along
the direction of voxels within its 3 x 3 x 3 neighborhood, using a frequency formulation. (B)
In the ODF-based design, the diffusion ODF model associated to each voxel is discretized by
computing the area of the ODF that falls within a solid angle subtended from the center of the
voxel along the direction of voxels within either the 3 x 3 x 3 or 5 x 5 x 5 neighborhood.

encoding connections to a maximum of 26 different directions. As such, the 5-connectivity
design trades localization for better angular resolutions. With this definition of edges, each
node i entails a neighborhood set of the indices of nodes in .4 that are adjacent to it, denoted
N, where | A;| < 26 and < 98 for the 3- and 5-connectivity designs, respectively.

We define the edge weights based on a measure of inter-voxel fiber coherence across all pairs
of adjacent voxels. In particular, we propose the use of two different signal representation
models extracted from DW-MRI data: (1) diffusion tensors and (2) diffusion ODFs; we denote
the resulting edge weighting schemes as the DTI-based and ODF-based methods, respectively.
Let r;; denote the vector pointing from the center of the voxel v; to the center of the voxel
vj. Let {p(i,r;;)}jer; denote estimates of the extent of diffusion at voxel v; in directions
{rijlje. In the following, we first present a DTI-based and an ODF-based approach to
estimate {{p(i,rij)}jem}ﬁ.\il, cf. Sections 4.2.3 and 4.2.3, respectively. We then use these
estimates to define a measure of inter-voxel fiber coherence to define as the entries of the
adjacency matrix, a; j, cf. Section 4.2.3.

DTI-based quantification of diffusion orientation. DTI is a model-based method for recon-
structing the diffusion signal from DW-MRI. The assumption in DTI is that the diffusion
pattern follows the shape of a 3D ellipsoid. The molecular displacement of water at voxel i
in the direction r;; can be approximated by a 3D Gaussian distribution with real symmetric
diffusion tensor T as the covariance matrix:

Yo T, s
P(r,])— exp( 4rijT r”), (4.5)

1
vV (4m)3|T|

where |T| is the determinant of the diffusion tensor. The calculation of p(i,r;;) requires a dis-
cretization step that guarantees a one-to-one mapping between the (continuous) multivariate
Gaussian model and the (discrete) weighting of nodes in the brain graph. For the 3 x3 x 3
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neighborhood encoding scheme, for a given voxel v;, the set of values {p(i,r; )} je4; can be ar-
ranged into 3 x 3 x 3 discrete representation, which mimics the structure of a 3D finite impulse
response (FIR) filter. As such, the problem of obtaining {p(i,r;;)} jc.4; can be alternatively
seen as that of obtaining the coefficients of an FIR filter, denoted h[-, -, ], characterized by it’s
frequency response H(w) as

H) = i i i h(v, 1, kle @V e i®lgm Ik, (4.6)
v=—1]=—1k=-1

Given (4.5), we compute its Fourier transform, which is another Gaussian function. The
coefficients h can then be obtained by a one-to-one mapping from the continuous domain to
the discrete domain through the matching of corresponding frequencies. In particular, noting
that e® =327 x*/k!, both representations can be approximated as low order Taylor series,
and thus, the filter coefficients are obtained by matching the coefficients of the lowest order
polynomial terms. We refer to Appendix 4.2.7 for a proof.

ODF-based quantification of diffusion orientation. Unlike diffusion tensors, ODFs do not

follow a specific model and shape. Thus, a one-to-one discretization of a continuous function

similar to that presented for the DTI model cannot be applied. Here we build on the construc-

tion previously presented by Iturria-Medina [Iturria-Medina et al., 2007]. Within standard

spherical coordinates, parametrized by (1,0, ¢,), let O;(i1) denote the ODF associated to voxel

v; with its center of coordinate being the voxel’s center, with (6, ¢) = (sin(0)cos(p), sin(0)sin(¢p), cos(0) "
denoting the unit direction vector. Given O;(#i), a measure of the extent of diffusion at voxel

v; along direction r;; can be obtained as

1
Qij

pli,ri}) = f OM(i)dQ, 4.7)
Qi

where the exponent n > 0 is a desired power factor to sharpen the ODE Q;; denotes a given
solid angle around r;; and dQ = sin(0)d6fd¢ denotes the infinitesimal solid angle element;
in particular, a solid angle of 47/26 and 4/98 is used for the 3- and 5-connectivity schemes,
respectively. As such, p(i,r;;) gives an average measure of the surface area of the ODF within
a spherical cap defined by the solid angle. Given a discrete representation of O; (1) in form of
N, samples, denoted {O; k}]ljil, along N, spherical directions from the center of voxel v;, (4.7)
can be approximated as

pli,xj) = 1 Y or, (4.8)
Zijl ez,
where 9; ; denotes a subset of direction indices {1,..., N,} whose associated set of directions fall
within Q; ;. The normalization by the cardinality of 2;; is due to the difference in the number
of ODF samples that fall within the solid angle subtended along the different neighborhood
directions. Figure 4.1 gives a visual aid in quantifying diffusion orientation to define edge
weights for the DTT design and the ODF design.
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Figure 4.2 — Degree distribution of the (A) DTI-based, (B) 3-connectivity ODF-based, and
(C) 5-connectivity ODF-based voxel-wise brain graphs for a representative subject. (D) The
distribution of the number of nodes in each tissue type across all 100 subjects.

Brain graph edge weights. The graph edge weights a; ; are defined by using the estimates of
diffusion orientation at the associated voxels v; and v, i.e., p(i,r;;) and p(j,r;;), as well as
the strength of anisotropy at those voxels. In particular, for a given voxel v;, let F(v;) and Q(v;)
denote the voxel’s fractional anisotropy (FA) and quantitative anisotropy (QA), respectively.
FA can be calculated directly from the eigenvalues of the diffusion tensor [Alexander et al.,
2007] and QA pertains to the amount of diffusion anisotropy along the fiber orientation as
originally defined by Yeh et. al. [Yeh et al., 2010]. Using these measures, we define the graph
edge weights a;; as

magnitude orientation
N A

‘Prnag(Vi)Pmag(v)) ( p(i, i) N p(,rii)\

a2 Zﬁ,’ 2,3]' ’
where @ = maxy{Pmag(vi)}, Br = 2maxje 4, {p(k, i)} and Pmag(v;) denotes the magnitude of
anisotropy at voxel i, defined as

aij = 4.9)

F(v;), DTI-based design
Pmag(vi) = (4.10)
Q(v;), ODF-based design.

The connectivity structure of the graph is then characterized in A, such that a;; > 0, given as
in (4.9), if nodes i and j are connected through an edge, and a;; = 0 if otherwise.
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Figure 4.3 — (A) First Laplacian eigenmode of 3-connectivity DTI, 3-connectivity ODF and
5-connectivity ODF brain graphs of a representative subject. Below these are the next lowest
frequency eigenmodes corresponding to the 3-connectivity ODF brain graph. (B) Lower-end
spectra of DTI-3, ODF-3 and ODF-5 graphs, consisting of their first 1000 eigenvalues, and (C)
weighted zero-crossing of their corresponding eigenmodes; solid lines show the mean value
and shades show the standard deviation across the 100 subjects.

The orientation term in (4.9) gives a measure of diffusion orientation coherence between
the two connected voxels, whereas the anisotropies give a magnitude measure that is useful
in delineating tissues. For example, given two adjacent voxels that exhibit highly coherent
diffusion orientations, a large weight is associated to the connection only if the two voxels also
exhibit notably large anisotropies. This interplay between the orientation term and magnitude
term enables, for example, to prevent associating large weight to an edge between a WM voxel
and a CSF voxel. Furthermore, the normalizations incorporated in the definition, i.e., the «
and S terms, ensure having an unbiased definition of weights relative to the structure of the
diffusion tensors/ODFs across the brain, and, mathematically, they impose bounds on the
orientation and magnitude terms—both terms bounded to [0, 1], which in turn results in a;;
also being bounded to [0, 1].

Group-level eigenmodes

The voxel-wise nature of the proposed graphs renders their size excessively large, with 7.8 +
0.7 x 10° nodes across the 100 subjects considered. The sheer size of the proposed graphs
impedes computing the full eigendecomposition of the graph Laplacian, and, therefore, we
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compute and study the first leading 1000 eigenvectors corresponding to the lowest spectral
frequencies, which can be efficiently computed using the Krylov—Schur algorithm [Stewart,
2001]. To preserve subtle subject-specific spatial details, we construct all graphs in the native
space of each subject’s diffusion data. To enable inter-subject comparison of eigenmodes,
the DARTEL normalization algorithm [Ashburner, 2007] implemented in SPM12 was used to
define a group-level template coordinate space, based on the group’s T1-weighted MRI data.
This results in a structural T1-weighted template as well as a set of transformation maps per
subject. Each subject’s eigenmodes are then transformed into the template space using the
subject-specific transformations, resulting in inter-subject spatially aligned eigenmodes.

Consistent inter-subject ordering of eigenmodes

Although DARTEL-normalized eigenmodes are in the same template space, the ordering
of eigenmodes is not necessarily consistent across subjects, including sign ambiguity and
linear combinations between modes with close eigenvalues. To obtain a consistent order-
ing of the eigenmodes, and enable inter-subject comparison of individual eigenmodes, we
used the Procrustes transform [Goodall, 1991], which finds the optimal rotation, translation,
and/or reflection between two linear subspaces. We implemented a scheme of Procrustes
transformation, where the subspace is defined by the first K DARTEL-normalized eigen-
modes of any M subset of subjects. Let u; ,,, denote the i-th eigenmode of subject m, and let
Xk,m = U,m U2, - Uk, ml.
Algorithm 1: group-level matching of eigenmodes
Xavg - XK,I
for j=1to Jdo
for m=1to M do
Xk,m — Reorder columns in Xg ,, such that the resulting permuted matrix best
matches Xy
end for
Xavg — average {Xg 1,..., Xg M}
end for

The reordering is done based on Procrustes transformation estimates, and J denotes the
optimal number of iterations to ensure that X,,¢ does not remain biased towards its initial

value, i.e., Xk,1. The columns of the resulting {X K,m}% are reordered in such a way that they

=1
optimally match each other and can thus be compared across the subjects.

Quantification of the extent of inter-subject structural variability as encoded in brain graphs

The precision of the Procrustes transformation can be evaluated by quantifying the cosine
similarity between corresponding eigenmodes of different subjects, after DARTEL normaliza-
tion and Procrustes transformation. For any pair of subjects, a symmetric cosine similarity
matrix is obtained, where the deviation of the off-diagonal elements of the matrix from zero
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quantifies inter-subject structural variability. If the set of eigenmodes of two subjects has
been ideally matched, the cosine similarity matrix should be the identity matrix. Therefore, to
quantify the mismatch between a pair of subjects m and n based on their first K eigenmodes,
we define a measure of the extent of inter-subject structural variability, termed Procrustes
error, using cosine similarity between eigenmodes as

T 2
u. u;
L]n) 4.11)

In particular, we used this error term to determine J in Algorithm 1; see Figure B.1 of Ap-
pendix Bs.

To validate the performance of the Procrustes transformation, we implemented a boot-
strap scheme, which successively applies the transformation on the first K eigenmodes of
two randomly chosen subjects; the implementation is summarized in the following algo-
rithm:

Algorithm 2: Procrustes validation
for K =100 to 1000 step 100 do
for j =1t0 1000 do
{m, n} — randomly select 2 values € {1,...,100}
{XKk,m» Xk,n} — Algorithm 1 on {Xx ,, Xx n}
€j — Em,n(K)
end for
px — mean of {e} j=1,... 1000
ok < standard deviation of {€;} j=1,...,1000
end for

When comparing two brain graph designs, the design that results in a higher g, with reason-
ably small o, is interpreted as capturing more subject-specific structural features.

4.2.4 Results

We constructed and studied three different brain graphs for each subject: the 3-connectivity
DTI-based graph, denoted DTI-3, and the 3- and 5-connectivity ODF-based graphs, denoted
ODF-3 and ODF-5, respectively. Figure 4.2 shows the degree distributions of the graphs across
the different tissue types. The connectivity strength is highest in WM nodes compared to
GM and CSF nodes. The degree distribution of ODF-5 graphs is a shifted version of that
of the ODF-3 graphs towards a higher degree, reflecting the larger number of connections
possible with the ODF-5 design. In addition, ODF-3 bears larger differences across tissue
types, especially compared to DTI-3. Figure 4.2(D) shows the distribution of nodes for the
different tissue types across all subjects; the median number of nodes for GM, WM, and CSF
were 254 299, 221 964, and 294 028, respectively, with standard deviations 25 322, 28 579, and
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Figure 4.4 - (A) Cosine similarity measures of the first 300 eigenmodes before (left) and
after (right) Procrustes transformation of two representative subjects. (B) Group-averaged
eigenmodes— 2, 3, and 4 — across all transformed subjects. (C) Quantification of the extent of
inter-subject structural variability captured by the eigenmodes, cf. Algorithm 2.

25 742, respectively.

Spectral Properties of the Brain Graphs

Figure 4.3(A) (top) shows the first Laplacian eigenmodes obtained from the three brain graphs
of a representative subject. Noting that the first eigenmode of L is a function of the graph
nodal degrees—u; = D'/21 where 1 denotes the constant function that assumes the value
of 1 on each node, the spatial pattern manifested by the first eigenmodes is a corroboration
of the results shown in Figure 4.2(A)-(C), demonstrating that the distinction between tissue
types naturally arises from the assignment of the connectivity weights in the brain graph,
in particular through the assignment of the magnitude term in (4.9). The second and third
eigenmodes shown in Figure 4.3(A) (bottom) manifest global morphological organization
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of the brain, contrasting the posterior and anterior, and the left and right brain regions,
respectively. The next eigenmodes exhibit a greater extent of spatial variability and localized
information.

Figure 4.3(B) shows the lower-end graph spectra, manifesting the rate of increase in the
first 1000 eigenvalues of the graphs. The ODF-5 graph has relatively larger eigenvalues than
the ODF-3 and DTI-3 graphs. Given that the eigenvalues entail a notion of spatial saliency
(see Sect. 4.2.2), the increase in local connectivity in the ODF-5 implies that the associated
eigenmodes have greater “degrees of freedom”, and as such, spatial saliency can become higher.
An alternative way to verify the eigenmodes’ spatial saliency is to compute their weighted zero-
crossing, cf. (4.4). Figure 4.3(C) shows a trend that is consistent with that of the eigenvalues,
thereby confirming the general notion that higher indexed eigenmodes encompass a larger
extent of spatial saliency.

Procrustes Validation

The cosine similarity matrices of two sets of eigenmodes before and after applying Procrustes
transformation are shown in Figure 4.4(A). The diagonal structure of the cosine similarity ma-
trix associated to the transformed eigenmodes shows the effectiveness of the transformation
in aligning eigenmodes of the same neuroanatomical spatial nature. The insets show traces of
flipped signs and unordered eigenmodes in the original vectors, which were corrected after
Procrustes transformation. The precision of the Procrustes analysis, evaluated through E,;,; ,,
cf. 4.11, improves after several rounds of the transformation. The evolution of the Procrustes
error for each successive iterations of Procrustes transformation is displayed in Figure B.1.
After the first iteration of Procrustes transformation, we see a big drop in the error (about 60%
change), whereas after three rounds (for J = 3, 94% drop of error), we obtained the final set
of group-averaged eigenmodes, the first few of which are displayed in Figure 4.4(B). Major
WM features that are relatively smoother than subject-specific bundles are preserved, whereas
subject-specific local structures are lost.

While the Procrustes transformation maximally matches eigenmodes between subjects, it
cannot account for inherent inter-subject variability. As such, the off-diagonal elements of
the cosine similarity matrix are not zero even after performing several rounds of the trans-
formation. We therefore implemented a Procrustes validation scheme that characterizes
inter-subject variability of the Laplacian eigenspace as explained in Sect. 4.2.3. Furthermore,
to serve as a null for comparing and validating the brain graphs, we synthesized 100 random
orthonormal vectors of the same dimension as each of the subject-specific eigenmodes, ap-
plied DARTEL normalization, and then subjected the resulting vectors to Procrustes validation.
In Figure 4.4(C), all three brain graphs show a decreasing trend, and they get closer to that of
the null upon reaching higher K-values. Despite the differences in the Procrustes errors across
the three brain graphs for low values of K, all errors eventually converge to a single point for
high K. The knee points of the curves for the 3 designs are at the same K = 300. In addition,
the ODF-based designs show higher Procrustes errors than the DTI-based design, across K.
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Spectral decomposition of fMRI

To provide a proof-of-concept result on the applicability of the proposed voxel-wise brain
graphs for the analysis of brain function on top of brain structure, we evaluated the extent
to which fMRI data are spatially shaped by the underlying structure of the brain as encoded
by the proposed graphs. In particular, we constructed fMRI graph signals through extracting
voxels from within the functional volumes associated to graph nodes, from six functional tasks
as well a resting-state acquisition, across 100 subjects. We then studied the energy spectral
density of the extracted graph signals associated to the first 1000 spectral indices of the ODF-
3 graph. To serve as a null, we also evaluated the energy spectral density of synthesized
shuffled fMRI signals—obtained through random permutation of voxel indices of each fMRI
volume to destroy spatial order, as well as white Gaussian noise signals. Figure 4.5(A) shows
the resulting ensemble energy spectral densities. The energy spectral density of the fMRI
data is characterized by a power-law behavior. The lowest frequency components of the
spectrum capture the majority of the energy content of the fMRI, which is about two orders of
magnitude more than what is captured by the 1000th eigenmode. This observation is more
apparent by inspecting the cumulative energy spectral densities, see Figure 4.5(B), particularly
in comparison to the energy profiles of shuffled fMRI data and Gaussian noise. Functional
brain activity is expressed preferentially by lower-frequency components; approximately up to
45% of the energy content is captured by the first 1000 eigenvectors, wherein the contributions
from the first eigenmode are equal to zero due to that the data were demeaned, cf. (4.2).
Despite the large size of the voxel-wise brain graph, the energy spectral density of fMRI signals
shows clear evidence that functional patterns are smooth over the structural connectome,
consistent with previous findings in voxel-resolution gray matter graphs [Behjat et al., 2015,
Behjat and Larsson, 2020] and region-wise connectomes [Preti and Van De Ville, 2019, Atasoy
etal., 2016].

4.2.5 Discussion and Perspectives

The proposed brain graphs encode subject-specific structural connections at the resolution of
voxels. The Laplacian eigenmodes of both DTI- and ODF-based designs manifest major WM
bundles as well as inter-gyri connections. Low-frequency eigenmodes display geometrical
information of the head shape, demonstrating low spatial variability in spatial features. Eigen-
modes corresponding to higher eigenvalue indices show a greater extent of spatial variability.
These findings were supported by the eigenvalue spectra and the observed weighted zero-
crossings of the eigenmodes, confirming the general notion that GFT-based decompositions
allow a similar interpretation of variability across regions of the brain.

We evaluated each brain graph design by characterizing the inherent inter-subject variability
encoded in the graphs, through the Procrustes transform, which finds the optimal configura-

4Approximately 70% of the total signal energies were captured by the first eigenmodes, which were removed in
the demeaning step, and as such, the total amount of energy captured by the first 1000 eigenmodes amounts to
approximately 85% of total signal energies, i.e., 70 + 0.45 x 30.
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Figure 4.5 — Ensemble energy spectral density of fMRI data with respect to the first 1000
eigenmodes of ODF-3 brain graph: (A) ensemble energies associated to individual eigenmodes,
(B) cumulative ensemble energies.

tion that matches single subject eigenmodes to an averaged set. This step, however, cannot
account for subject-specific WM tracts encoded in the eigenmodes, as manifested by the co-
sine similarity analysis of pairs of subjects. The ODF-based designs captured higher Procrustes
errors than the DTI-based design. The ODF-5 design slightly outperformed the ODF-3 design,
suggesting the benefit of using the larger neighborhood in encoding fiber orientations with
better angular resolution.

An important assumption of the Procrustes validation analysis is the presumed consistent
precision and accuracy of spatial normalization using DARTEL across subjects and graph de-
signs. The normalization step in itself aims to maximize the degree of spatial agreement across
subjects through matching individual subjects’ data to the group-level template. Maximizing
image registration’s precision therefore requires minimizing the amount of residual spatial
variability across individuals. All eigenmodes were registered using the same subject-specific
deformation, and as such the performance of DARTEL can be assumed consistent across the
three designs. The residual spatial variability is then carried on to the group-level matching
using Procrustes transform, and are subsequently accounted through the Procrustes errors.

Although the use of voxel-wise brain graphs comes with a high dimensionality problem, we
show through the energy spectral density of rest and task fMRI data (Figure 4.5) that human
brain activity can be well approximated by a small subset of low-frequency components of
the graph Laplacian spectra. This observation is, on the one hand, consistent with the energy
profile of fMRI graph signals on voxel-wise gray matter graphs [Behjat et al., 2015, Behjat and
Larsson, 2020], as well as region-wise brain graphs [Preti and Van De Ville, 2019], which is
reminiscent of a power-law behavior, and on the other hand, can be linked to the decreasing
trend observed in the Procrustes validation errors (see Figure 4.4(D)), where increasing K-
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values reduce the error close to that of a randomly generated graph. This is interesting
in light of the increasing evidence of scale-free behavior in human brain activity [Van De
Ville et al., 2010, He et al., 2010, Ciuciu et al., 2012] observed in both temporal and spatial
scales [Maxim et al., 2005]. The practical implication of such energy profiles is that the lower-
spectral-end energy content of fMRI data on the proposed voxel-wise graphs can provide
meaningful information, which significantly reduces the computational complexity associated
to diagonalization of the graph Laplacian. Alternatively, to study the energy profile across
the spectrum, graph filter design schemes that adapt to the ensemble signal content can be
used to efficiently filter the data [Behjat et al., 2016], which can be made computationally
efficient through leveraging a polynomial approximation scheme to estimate the ensemble
energy content [Behjat and Van De Ville, 2019], thus, obviating the very need to diagonalize
the Laplacian matrices.

The ODF-based design is an extension of previous work in [Iturria-Medina et al., 2007], mod-
ified in three ways. First, by using the QA measure, we amplify the strength of connection
between adjacent nodes that exhibit high anisotropy. Instead of using quantitative anisotropy
(QA) derived from the DW-MRI data, the design in [Iturria-Medina et al., 2007] uses probabilis-
tic tissue maps to delineate the magnitude of each node among tissue types; similar to the
use of QA, we use FA for the DTI design. This modification in the design has been inspired
by diffusion tractography frameworks [Conturo et al., 1999, Staempfli et al., 2006], where FA
maps are used as a mask to constrain fiber trajectories. Second, we sharpen the ODFs to boost
the fiber coherence between aligned anisotropies, given the limited degree to which diffusion
ODFs can differentiate fiber orientations [Jones et al., 2013]. Third, we include the entire
set of voxels within the brain mask, rather than just GM and WM. Although including CSF
voxels entails a greater computational complexity, the inclusion was due to several reasons.
By including all voxels within the brain mask, the delineation of the tissue types is naturally
reflected by the diffusion information encoded in the graph edge weights, as verified, particu-
larly, by the spatial patterns manifested by the first eigenmodes, see Figure 4.3(A). Moreover,
this modification bypasses the need for tissue segmentation, which is not convenient within
clinical studies including patients with structural brain deficits, for which normalization of
segmented tissue maps is also challenging [Glass et al., 2008]. Nevertheless, if high-resolution
structural data are available, it is possible to exclude the CSE through pruning edges that
connect voxels that lie on opposite sides of the brain pial surface [Behjat and Larsson, 2020]
and through morphological operations to remove the ventricles. Furthermore, in terms of
the encoding of structural data, within-voxel axonal orientation is currently assumed to be
symmetric, thus, a potential improvement of the brain graph design could be an extension to
the use of asymmetric fiber orientation estimates [Bastiani et al., 2017].

Voxel-wise brain graphs hold the potential to open new possibilities for the study of the brain.
The eigenvalues of voxel-wise brain graphs encoding cortical morphology have been found to
provide distinguishable features of gender and hemispheric asymmetry [Maghsadhagh et al.,
2019]. Similarly, the extent of variability observed in the lower-end spectra of the proposed
graphs across subjects, particularly for the ODF-based design—see Figure 4.3(B), suggests their
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potential for deriving markers to distinguish population groups and individuals. The proposed
brain graphs may also prove beneficial in deriving novel structural connectivity measures that
account for both direct and indirect pathways, as for example proposed by a conductance
model in [Frau-Pascual et al., 2019], through using shortest path algorithms from graph
theory. Moreover, identifying individuals using patterns of functional brain connectivity [Finn
et al., 2015, Amico and Goni, 2018]—a.k.a. connectome fingerprinting—has been recently
generalized to include structural connectomes [Mars et al., 2018]. Information embedded in
structural connectomes can be explored not only for individual fingerprinting, but also for
studying neuroplasticity in longitudinal data [Yeh et al., 2016].

In relating brain structure to function, in a similar manner that low-frequency eigenmodes
show strong association to low-sensory functions in region-wise integration of structure and
function, the recruitment of low-frequency components in the voxel-wise Laplacian can also
be associated to long-distance interactions in the brain. Functional connectivity has often
been associated to Euclidean distance [Achard et al., 2006, Ercsey-Ravasz et al., 2013,Alexander-
Bloch et al., 2013], whereas using the eigenmodes, distance can be better interpreted in terms
of the spectral representations of functional signals. Functional variations that are captured
using low-frequency eigenmodes are smooth with respect to long-distance WM bundles,
whereas localized and short-distance functional associations are expected to be dominated
by higher frequency components. GSP measures such as the energy spectral density and
total variations highlight these differences and can be straightforwardly applied to distinguish
spatial variations in fMRI data across different functional tasks [Behjat and Larsson, 2020]. The
voxel-to-voxel ODF-based encoding proposed in this work has been exploited for inpainting
WM fMRI from cortical fMRI data [Tarun et al., 2020b] through graph signal recovery [Chen
et al., 2015a], revealing the mediation of WM structures across temporally-coherent gray
matter areas. Furthermore, preliminary results have shown the effectiveness of using the voxel-
wise diffusion informed graphs in enhancing fMRI activation mapping in WM [Abramian et al.,
2020], in-line with previous findings on voxel-wise gray matter graphs [Behjat et al., 2015].
Finally, a potential application of the proposed voxel-wise graphs is in assessing the extent to
which the brain structural-functional relation holds at a spatially finer mesoscale using the
concept of graph Slepians [Van De Ville et al., 2017, Bolton et al., 2018, Petrovic et al., 2019],
which are linearly recombined sets of eigenmodes that are constrained to be localized in a
subset of nodes. This allows to put focus the representation on particular nodes given specific
hypotheses about brain function, at a higher level of resolution than conventional region-wise
applications.

4.2.6 Conclusion

We proposed two methods for constructing voxel-wise brain graphs from DW-MRI data.
Through a Procrustes validation scheme that reflects inter-subject structural differences, it was
shown that low-frequency eigenmodes reflect the highest amount of structural information
from DW-MRI. This finding was corroborated by the manifested energy spectral density of
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functional signals showing the preferential expression of human brain activity onto lower
frequency components. Potential applications of the proposed brain graph were discussed,
particularly in relation to integrating brain structure and function through applications of GSP
to functional brain imaging.

4.2.7 Proof: Cartesian discretization of a Gaussian using its Fourier domain rep-
resentation

For simplicity of notation, we present the discretization process for a 1D Gaussian, which can
be readily extended to higher dimensions. The 1D Gaussian is given as

_1 2
Gx) = e 202 (4.12)

1
V2no?

is a constant which describes the variance of the curve and —L

V2no?

2

where o is a normalization

factor. Its Fourier transform is given by:
222, 2

Gw)=e 2T (4.13)

Obtaining a 3-sample discretization of the Gaussian using it’s Fourier domain representation
is a problem that can be equivalently seen as finding the coefficients of a 3-tap FIR filter, h,
matching the Frequency response given in (4.13), with its frequency response # (w) given as

n=1 . . .
H()= Y hinle /*"=h[-1]e/* +h[0] +h[1]e /. (4.14)

n=-1

Noting that e* = z"zo xk1k!, Taylor series expansion of (4.13) and (4.14) up to the second order
gives

Gw) = 1-27%0%w? + %(—2712020)2)2 (4.15)
and
H(w) =h[-1]+h[0] +h[1] + (h[-1] = h[1]) jw

1 (4.16)
5 hi-1] +h[1)w?,

respectively. Matching the coefficients of the polynomials in (4.15) and (4.16), a system of
linear equations is obtained as

1=h([-1]+h[0] +h[1]
0=h[-1]-h[1]
2m?0? = L(h[-1] +h[1)),
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where the solution gives the desired FIR impulse response as
h = [27%0%,1 - 4n% 0%, 27° 7). (4.17)

In the case of the 3D multivariate Gaussian density, the exponentin (4.12) becomes — %XTZ’lx—
a quadratic form in the 3D vector variable x covering x—, y—, and z—directions—and o2 is
replaced by a 3 x 3 invertible covariance matrix Z that is equivalent to the tensor T in (4.5). The
goal is then to find the coefficients of a 3 x 3 x 3 FIR filter by matching its frequency response
J€(w), as given in (4.6), to the Fourier transform of the 3D Gaussian, in a similar way as done
for the 1D case above.
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5] Recovery of whole-brain structure-
function networks

5.1 General Motivation

In Chapter 3, we provided a comparison between structural and functional connectivity mea-
sures, across different brain states and different tasks, by directly computing the correlation of
SC and FC at the region-wise level. Meanwhile, in Chapter 4, we introduced a new technique
that extends region-wise characterization of brain structure to voxel-level analysis. We also
demonstrated the potential of the proposed brain graph to be used in GSP analysis by decom-
posing resting-state and task fMRI data in terms of the lowest frequency components of the
brain graph’s Laplacian eigenspectra. The energy spectral densities gave a direct measure of
how much information in fMRI is captured by the anatomical data from DW-MRI. However,
the exact manner in which dynamically evolving functional brain networks observed during
rest and sleep (see Chapter 3) are supported by the underlying brain anatomy remains elusive.
Which white matter tracks are implicated in the formation of resting-state networks?

In this chapter, we finally address this question by providing an extended picture of human
brain activity, not only within the GM but also in the WM. Leveraging on the voxel-level brain
graph introduced in Chapter 4, we interpolate GM signals onto the WM using the structural
information encoded in the brain grid to guide the process. This results in a 4D functional
volume that includes interpolated WM signals, which can be analyzed using conventional
static and dynamic FC approaches reviewed in section 2.2.2. We focus the analysis into
unraveling the structure-function co-activating patterns related to the default mode network
(DMN), a set of brain regions known to be predominant during rest [Greicius et al., 2003]. The
results allow us to observe various combinations of WM tracks that mediate the interactions
of these functionally connected brain areas. In particular, we demonstrate how different
brain areas and associated WM tracks corresponding to the default mode subsystems are
recruited in different phases of working memory and relational task paradigms. At the end of
the chapter, we enumerate two main research avenues for future structure-function studies
based on the proposed technique.
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Abstract

Understanding how the anatomy of the human brain constrains and influences the formation
of large-scale functional networks remains a fundamental question in neuroscience. Here, given
measured brain activity in gray matter, we interpolate these functional signals into the white
matter on a structurally-informed high-resolution voxel-level brain grid. The interpolated
volumes reflect the underlying anatomical information, revealing white matter structures
that mediate the interaction between temporally coherent gray matter regions. Functional
connectivity analyses of the interpolated volumes reveal an enriched picture of the default mode
network (DMN) and its subcomponents, including the different white matter bundles that are
implicated in their formation, thus extending currently known spatial patterns that are limited
within the gray matter only. These subcomponents have distinct structure-function patterns,
each of which are differentially observed during tasks, demonstrating plausible structural
mechanisms for functional switching between task-positive and -negative components. This
work opens new avenues for the integration of brain structure and function, and demonstrates
the collective mediation of white matter pathways across short and long-distance functional
connections.
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5.2.1 Introduction

The coordination of distant neuronal populations gives rise to a vast repertoire of functional
networks that underpin human brain function. Using functional magnetic resonance imaging
(fMRI), temporally coherent activity can be investigated using measures of functional connec-
tivity (FC) [Friston, 1994]. On the other hand, inter-regional communication is mediated by
the anatomical scaffold which can be conveniently summarized by structural connectivity
(SC) extracted from diffusion-weighted MRI (DW-MRI) [Bullmore and Sporns, 2009]. Over
the past decade, a particular focus has been dedicated to unraveling how the human brain
maintains its vast repertoire of FC states despite being constrained by a rigid anatomical
substrate. To bridge the gap between SC and FC, several methods have been proposed. The
simplest ones are the seminal works that directly probed the statistical interdependence (e.g.,
Pearson correlation) between separately defined SC and FC measures [Andrews-Hanna et al.,
2007, Hagmann et al., 2008, Honey et al., 2009, Supekar et al., 2010, Horn et al., 2014]. Limited
by the bivariate and summarizing nature of this analysis, the effect is capturing only a general
trend of correlation. In order to directly capture white matter structures that connect tem-
porally coherent areas, several studies initially compute FC and specify implicated regions
of interests (ROI) as a seed for estimating fiber streamlines [Greicius et al., 2009, van den
Heuvel et al., 2009, Chamberland et al., 2015]. Most of these works were specifically directed to
the analysis of the default mode network (DMN), a set of brain regions that are known to be
more engaged during rest [Greicius et al., 2003]. In contrast to extracting SC from FC priors,
anumber of studies have attempted to reproduce brain activity from predefined structural
connectomes through numerical simulations [Galdn, 2008, Honey et al., 2007, Deco et al.,
2011, Deco et al., 2012, Deco et al., 2013, Goni et al., 2014].

Studies that extract SC from FC or vice versa are mostly hypothesis-driven and entail many
explicit assumptions (see [Damoiseaux and Greicius, 2009, Zhu et al., 2014] for early reviews).
To understand how distributed patterns of functional activity arise from a fixed underlying
structure, a need for research methodologies that are observer-independent and data-driven
is of utmost importance. A common approach for data-driven methods is based on blind-
decomposition techniques. By combining diffusion anisotropy (e.g., fractional anisotropy,
axial and radial diffusivities) and classical FC to build a joint SC-FC measure [Sui et al., 2013, Sui
et al., 2015], structural and functional alterations in healthy and clinical populations are
extracted using multimodal canonical correlation analysis and joint independent component
analysis (ICA) [Amico and Goni, 2018]. On the same line, using ICA, concurrent white matter
(WM) bundles and gray matter (GM) networks from a tractography-based data matrix have
been proposed [O’Muircheartaigh and Jbabdi, 2018]. Also using tractography, Calamante and
colleagues [Calamante et al., 2017] introduced the concept of track-weighted dynamic FC (TW-
dFC), where as a first step, WM streamlines from two structurally connected voxel endpoints
are obtained. Then, these streamlines are weighted according to the FC at their endpoints.
To render the approach dynamic, FC measures were computed over a sliding-window whose
length is arbitrarily chosen. TW-dFC then produces a set of four-dimensional volumes showing
the averaged FC between corresponding streamline endpoints onto the WM at the temporal
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resolution of the window used. While several studies have made considerable progress in
linking structure and function, not only with fMRI but also with other imaging modalities
such as electroencephalography (EEG) and magnetoencephalography (MEG) [Deslauriers-
Gauthier et al., 2019,Fukushima et al., 2015], none of these methods jointly and simultaneously
integrates functional and diffusion data into a single integrated framework, which allows the
natural emergence of full-brain spatial patterns that cover both the WM and the GM.

Lately, to further transcend our current understanding of structure-function relationships,
attention has been set on studying SC and FC through the lens of more technical frameworks
borrowed from other research fields, such as propagator-based methods [Robinson, 2012,
Robinson et al., 2016, Atasoy et al., 2016], and control network theoretical tools [Gu et al., 2015].
Graph signal processing (GSP) for neuroimaging is another emerging field [Huang et al., 2018a],
where initially, a graph is defined by identifying regions in GM as nodes, and the strength of
their SC through WM as edge weights (e.g., number of streamlines connecting GM regions).
Functional data are then defined atop the graph and are interpreted as time-dependent graph
signals, on which connectome-informed signal processing operations can be performed. This
framework incorporates connectivity through the WM, but only as SC between pairs of GM
regions (i.e., WM regions are not explicitly defined as nodes).

In this work, we advance the GSP concept by extending the existing approach from region-
wise analysis to a high-resolution (i.e., 850,000 voxels) voxel-level perspective. This translates
to modeling the WM explicitly as nodes of the brain graph for which local connectivity is
known from DW-MRI. We then define the blood-oxygenation level-dependent (BOLD) time-
series from resting-state fMRI as dynamic signals residing on the nodes of the brain graph.
By generalizing principles of classical signal processing in regular domains [Buades et al.,
2010, Rudin et al., 1992, Chambolle, 2004, Candés et al., 2006] to irregular graphs [Shuman
et al.,, 2013, Chen et al., 2015b], we interpolate functional signals, measured on the GM,
into the WM, using a whole-brain voxel-wise connectome to guide the process. This allows
relating measures of brain activity on the GM with their mediation through WM; i.e., how
particular patterns of brain activity jointly rely on an ensemble of WM pathways. We then
apply the WM interpolation on all volumes of resting-state data, thereby generating a set of
4D-volumes on which conventional static and dynamic FC tools can be applied. Using the
posterior cingulate cortex (PCC), a well-known subcomponent of the DMN, as a seed region,
we retrieved new structure-function networks that extend the well-known GM-limited DMN
pattern to include the WM. The functional relevance of these structure-function networks is
further validated through investigations of their relation to task fMRI. Our results illustrate
the structural mechanism for the dynamic switching between task-positive and -negative
subsystems of the DMN in different phases of working memory and relational task paradigms.

96



5.2. Journal Article: Structural mediation of human brain activity revealed by
white-matter interpolation of fMRI

5.2.2 Materials and Methods

Data

We used a total of 51 subjects obtained from the publicly available Human Connectome
Project dataset (HCP 1200 release), WU-Minn Consortium. Preprocessed diffusion MRI, origi-
nal functional MRI, and anatomical data are downloaded following a random subject selection
scheme while maintaining a uniform demographic distribution (male and female, ages 22-50).
MRI acquisition protocols of the HCP and preprocessing guidelines for diffusion MRI are
fully described and discussed elsewhere [Glasser et al., 2013]. On the other hand, fMRI data
were acquired using Gradient-echo EPI sequence (repetition time [TR] /echo time [TE]/flip
angle =720 ms/ 33.1 ms/ 52 deg). Following the standard preprocessing protocol [Van Dijk
et al., 2010], four sessions of resting-state fMRI scans (1200 volumes each session, giving a
total of 4800 volumes per subject) were realigned to their mean images. The results were
then registered and resampled onto the diffusion data using rigid-body registration (SPM12,
https://www.fil.ion.ucl.ac.uk). The registered images were de-trended (i.e., constant, linear)
and smoothed using a Gaussian kernel (FWHM = 6mm). The first 10 frames were removed
to achieve steady-state magnetization of the fMRI data. Meanwhile, the diffusion data were
processed using DSI Studio (http://dsi- studio.labsolver.org) to estimate the orientation den-
sity functions (ODFs) associated with individual voxels across the brain. T1 images were
downloaded from the HCP in a readily aligned format corresponding to the diffusion subject
space. Individual tissue maps (WM, GM, and cerebrospinal fluid (CSF)) were then segmented
from the T1 image using SPM12. The GM probability maps outputted from the segmentation
algorithm were thresholded at 0.3 and were used to mask GM voxels.

Building the voxel-wise brain grid

Similar to classical brain graphs, we define our grid as ¢ := (¥,A), where ¥ = {1,2,3, ..., N} is
the set of N nodes representing the brain voxels (i.e., N = 700 — 900 thousand), and Ae N x N
is an adjacency matrix that encodes the likelihood of water molecules to diffuse from their
current position to neighboring voxels. We used an ODF-based weighting-scheme on a three-
dimensional 26-neighborhood mesh. ODF is an empirical distribution of water diffusion at
different orientations introduced to solve fiber-crossing confounds that are typically observed
in model-dependent reconstruction techniques from DW-MRI [Tuch et al., 2003]. For more
details regarding the choice of the signal reconstruction technique and the design of the
brain graph, we refer to Chapter 4 and [Tarun et al., 2019]. The topology of the brain grid is
then validated by defining the graph Laplacian matrix in its symmetric normalized form (L =
I-D:AD": ), whose eigendecomposition leads to a complete set of orthonormal eigenvectors
that span the graph spectral domain with their corresponding real, non-negative eigenvalues.
The top eigenfunctions corresponding to the lowest spatial variation are provided in Figure 4.3.
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Figure 5.1 — Workflow of the graph signal recovery framework. (A) GM BOLD signals are
extracted from fMRI volumes, one signal per time instance, through masking the volume
by the thresholded probabilistic GM map (threshold=0.3). ODFs associated to all voxels are
extracted from the diffusion MRI data. The ODFs are then embedded on a three-dimensional,
26-neighborhood connectivity grid, forming a probabilistic connectome at voxel-level reso-
lution. A signal value can be associated to each voxel on the grid. To initiate signal recovery
at each time instance, the associated GM BOLD signal is mapped to the GM voxels within
the grid, and the remaining voxels are set to zero. The interpolated BOLD volume is obtained
through minimizing a cost function that balances between (1) retaining the GM signal fixed
and (2) obtaining a smooth signal over the entire brain grid relative to the underlying structure.
(B) Axial, sagittal, and coronal views of a single slice of a BOLD volume compared to its corre-
sponding interpolated BOLD volume. (C) Original and interpolated BOLD signal time-series
of PCC, mPFC and cingulum,; the selected time frame in (B) corresponds to the highlighted
time point.

Graph signal recovery formulation

The overall goal of this work is to be able to interpolate signals from the GM into the WM based
on the structural information encoded in the voxel-wise connectome. To do this, we consider
a cost function that includes a least-squares data-fitting term equal to the residual sum of
squares (RSS), and an L2 regularization term that takes into account smoothness with respect
to the brain grid, given by
X =argmin ||y—BxH2+}LxTLx, (5.1)
X

where y is a vector of length N containing initial BOLD values within GM nodes and zero
elsewhere, B is an indicator matrix that selects the GM nodes, and A is the regularization
parameter. L is the symmetric normalized graph Laplacian, which encodes the voxel-level
anatomical structure. The cost function balances between (1) minimizing the RSS and retain-
ing the original GM signals, and (2) imposing smoothness with respect to the structure of the
graph. The balance between the two is dictated by the choice of regularization parameter A.
The parameter A was selected by evaluating the cost of the regularization term x’ Lx across
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a sufficiently large range of 1s, specifically, A = {1,2,3,...,60}. This procedure allowed for a
subject-dependent and data-driven choice of the regularization parameter. Figure S3 shows
the plot of the evaluation for all 51 subjects considered in this study; the optimal 1 were 9(10),
10(39), 11(2), where the values in the parentheses indicate their frequency of occurrence.
The solution to Equation 5.1 gives the interpolated volume for one time-point in the fMRI.
The interpolation is then done repeatedly at each time instance (i.e., each volume) in the
functional data.
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Figure 5.2 — PCC-seed correlation for the (A) original BOLD volumes and the (B) interpolated
volumes, averaged across all subjects. WM bundles connecting temporally-coherent GM
regions are uncovered from interpolated volumes. (C) 3D view of the observed WM structure.
PCC - posterior cingulate cortex, mPFC - medial prefrontal cortex, Lcst - left cortico-spinal
tract, Fminor - forceps minor, Lcing - cingulum, Lslf - left superior longitudinal fasciculus, Lilf
- Left inferior longitudinal fasciculus, Lcing2 - hippocampal cingulum.

Static functional connectivity analysis

The output of the graph signal recovery problem is a set of 4D whole-brain functional volumes
at a frame-wise resolution. We used the classical method of static FC analysis (i.e., Pearson
correlation) in the interpolated volumes, wherein the averaged BOLD time-course of an ROl is
correlated to the activity profiles of all brain voxels to locate temporally coherent areas. We
used the PCC, a core region of the DMN, as a seed to observe the joint structural-functional
patterns associated with it. This is done to each of the four sessions of resting-state (RS)
fMRI sequences per subject, and the corresponding Fisher Z-transformed correlations were
averaged across the group.
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Temporal decomposition of DMN-related co-activation patterns

Next, we extended the analysis from static to dynamic FC perspective, using the so-called
co-activation pattern (CAP) analysis [Liu and Duyn, 2013]. We used the PCC to extract time-
varying structural mediation of functional cross-talks implicated with the DMN. To obtain the
CAPs, we performed a two-step temporal decomposition: (1) subject-level clustering and (2)
group-level matching. For the first part, the top 15% significant frames corresponding to the
PCC are extracted in each of the four sessions of resting-state scan from the HCP. Significant
volumes that survived the thresholding are concatenated together in each subject. The choice
of the threshold is motivated by finding the optimal level of similarity between averaged
significant PCC volumes at different thresholds to that of the PCC-seed connectivity outcome
(see Figure C.4(A)). These significant volumes are then decomposed into multiple co-activation
maps by running the k-means clustering algorithm which groups and averages together those
with spatially similar frames. The optimal number of clusters was determined using consensus
clustering, a resampling based procedure for optimal class discovery [Monti et al., 2003] (see
Figure C.4(B)). We used cosine as a distance metric and performed 10-folds replicates to obtain
the final clustering at the individual level. After obtaining the co-activation maps for each
subject, we performed the group-level matching by first transforming all individual maps
into a common template (MNI), followed by a one-to-one matching and averaging of the
correspondingly similar spatial patterns across subjects.

When doing the clustering at the subject-level, the assignment of CAP indices in one subject
does not necessarily correspond to the cluster ordering of another subject. Therefore, when
doing the group-level averaging, it is necessary to perform a one-to-one CAP matching and
index re-labeling. The one-to-one group-level CAP matching is done using the Hungarian
algorithm [Kuhn, ], which solves for the optimal pairing that has the most similar spatial
combinations as defined by their cosine similarity. The first matching is done on the first two
subjects, matching spatially similar CAPs and re-labeling their respective frame indices. Then,
the average of the first two is computed, producing a temporary group level CAP from which
the third subject is paired with. This process continues until we reach the last pair of subjects
to match. The whole process is repeated again, but this time, the first subject is realigned with
the overall average obtained from the first round of group-level CAP matching. Two rounds
of subject-to-subject Hungarian matching were done to remove bias on the effect of the first
subject.

5.2.3 Results
Recovery of activity in white matter that is compatible with structural connectivity

Signal recovery is a classical task that relates to image denoising [Buades et al., 2010], signal
inpainting [Rudin et al., 1992, Chambolle, 2004], and sensing [Candés et al., 2006]. Here, we
embed the three-dimensional voxel-level grid into a graph where the nodes are voxels, and the
edges encode the voxel-wise strength of structural connectivity measured by DW-MRI. Each
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node has maximally 26 edges and is connected to its closest neighboring voxels. Functional
volumes are preprocessed and upsampled to the same resolution as this structural grid. The
values from the functional volumes are assigned to each node in the GM, while the remaining
nodes, in particular, those in the WM, remain unassigned. The values of the unassigned nodes
are then recovered by solving an optimization problem that relies on two assumptions: (i)
values in the GM nodes should strongly influence the data fitness (and thus remain reasonably
unchanged); (ii) whole-brain signals should maintain smoothness according to the graph
structure. The assumption of smoothness with respect to the graph ensures that signals are
interpolated according to the brain’s structural scaffold. It is important to note, however, that
the term interpolation does not denote newly generated information, but rather a resulting
pattern retrieved by incorporating GM measures with the WM structure.

The overall pipeline is illustrated in Figure 5.1(A). For an illustrative frame of resting-state fMRI,
we show in Figure 5.1(B) an example of the original and the interpolated volumes. Visually, we
observe high activity in the PCC and medial prefrontal cortex (mPFC) in the original BOLD
signal. After performing the WM interpolation, we recovered additional patterns, such as
the cingulum bundle (Lcing) that mediate PCC and mPFC. In addition to major WM bundles
that are captured, we also find short-range WM connectivity within the cortical foldings of
the GM [Koch et al., 2002]. For a quantitative comparison, we used a probabilistic WM atlas
provided by Zhang and Arfanakis [Zhang and Arfanakis, 2018] to compute the average signal
within the cingulum bundle (R/Lcing), and plotted its overall trend throughout the whole
timecourse together with the mean signals in the PCC and mPFC. Figure 5.1(C) shows that
the original PCC-averaged signal bears close similarity (cosine = 0.95) to its interpolated
counterpart, a direct consequence of the first constraint imposed in the signal recovery
formulation (i.e., retaining the signals within the GM nodes fixed). In contrast, we observe
comparatively lower similarities in the mean signals of the interpolated BOLD within the
R/Lcing compared to the original BOLD (cosine similarity = 0.34). Meanwhile, PCC, mPFC
and the recovered R/Lcing signals all show similar trends (all cosine similarity pairs > 0.9),
while the original R/Lcing signal displays incoherent activity (cosine similarity with PCC =
0.036). These observations demonstrate that the interpolated functional signals are smooth
over the structural brain grid, reflecting in this particular case the existing anatomical pathway
(R/Lcing) running from the rostral aspect of the PCC towards the mPFC [Greicius et al.,
2009, van den Heuvel et al., 2009].

PCC-seed connectivity map

In order to capture the joint structural-functional connection of the DMN, we perform a
PCC seed-connectivity analysis [Biswal et al., 1995] on the interpolated volumes derived
from four sessions of resting-state scans in a population of 51 subjects (244,800 volumes in
total). The superior axial slice (z=25) in Figure 5.2(A) and (B) shows the PCC and the mPFC,
including the bilateral inferior parietal cortex (IPC). In addition to the expected GM FC pattern,
Figure 5.2(B) also shows the distinct WM structures that support the structural connections
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between these temporally coherent cortical regions. The most prominent connections are
the R/Lcing that connect the PCC and the mPFC, the forceps minor (Fminor) that provides
intra-connectivity between gyri within the mPFC, and the left and right superior longitudinal
fasciculi (R/Lslf) that support the long-range connection between the IPC, and the posterior
and frontal regions. Interestingly, we also find the two-sided corticospinal tracts (R/Lcst)
that traverse the brainstem all the way to the motor cortex, the genu of the corpus callosum
connecting the two hemispheres, as well as the bilateral hippocampal cingulum (R/Lcing2)
that exit the caudal aspect of the PCC and continue towards the medial temporal lobe (MTL).
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Figure 5.3 —- PCC-seed co-activation patterns (CAPs). Eight co-activation maps obtained by
temporal decomposition of the top 15% significant frames related to the posterior cingulate
cortex (PCC), extracted from (1) the original BOLD volumes (GM CAPs) and (2) interpolated
volumes (in-CAPs). The in-CAPs are numbered according to their frequency of occurrence,
which is computed by counting the number of frame assignments corresponding to the CAP.
Visual inspection of the in-CAPs reveals strong GM similarity with the observed GM CAPs. We
found eight distinguishable structure-function networks related to the default mode network
(DMN), each of which varies in terms of the observed WM structures that conjoin distinct
PCC-coherent GM regions.

Structural mediation of dynamic functional connectivity

The axial, sagittal, and coronal slices shown in Figure 5.1(B) come from a volume correspond-
ing to a time point with significant activity in the PCC (green shade, Figure 5.1(C)). A particular
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limitation of the PCC-seed connectivity is the inherent static assumption of FC. It has been
suggested that the relevant information about RS FC can be condensed into events or short
periods of time (e.g., where fMRI timecourses exceed a chosen threshold) [Tagliazucchi et al.,
2012a]. In line with this idea, FC obtained from the conventional seed-correlation analysis
has been shown to be approximated by averaging all frames for which the seed has high
activity [Liu and Duyn, 2013]. This congregation of significantly active frames can then be
temporally decomposed into several distinct and meaningful co-activation patterns (CAPs).
We applied the CAPs analysis in all interpolated fMRI volumes on each subject. For each
session, we determined the significant frames corresponding to the top 15% of the PCC. We
then combined all significant volumes on each subject and decomposed them into eight
PCC-related CAPs. Then, a group-level matching procedure was performed to obtain the final
group-level CAPs.

Figure 5.3 presents the CAPs obtained from the interpolated volumes, termed interpolated
CAPs (in-CAPs), as well as the CAPs generated from the original BOLD signal, denoted GM
CAPs. The resulting spatial patterns reveal a set of WM structures unique to each in-CAP. In-
CAP 1 is the most frequently occurring and is characterized by many negative ventral regions,
in contrast to its highly positive occipital and frontoparietal regions. In-CAP 2 shows similar
characteristics, but with much less pronounced activation in the frontal region, as also seen in
its weaker Fminor and R/Lcing. In-CAP 3 exhibits very strong activation in the frontal lobe and
negative signals in motor and sensory areas. In-CAPs 4, 5, 6 and 7 all bear high resemblance
with the PCC-seed connectivity pattern, but vary in their strength of activity in the occipital
and frontoparietal regions; these variations are consequently also reflected in Fminor, Fmajor,
R/Lcing, R/Lslf, R/Lilf, as well as the bilateral fronto-occipital fasciculus (R/Lifo). In-CAPs 6
and 7 contain highly negative right and left frontoparietal signals, respectively, demonstrating
strong hemispherical asymmetry in their activation patterns. Finally, in-CAP 8 is characterized
by positive activation within the ventral brain, specifically in the MTL, but highly negative
frontoparietal and somatosensory signals—the implicated WM structures are less pronounced
in this in-CAP.

Spatial and temporal properties of in-CAPs

Whereas GM CAPs reveal instantaneous co-activation of multiple brain regions, in-CAPs com-
plete the structure-function picture through the addition of distinct and functionally relevant
WM structures that interpose spatially-distant GM co-activations. To assess the correspon-
dence of the in-CAPs with the DMN subsystems, we computed the average signal within major
WM tracts using the probabilistic WM atlas [Zhang and Arfanakis, 2018], and compared them
to the main components of the DMN within the GM, as classified by Andrews-Hannah and
colleagues [Andrews-Hanna et al., 2010]. The probabilistic WM atlas was thresholded to 0.3 to
generate the mask (see Figure C.4(D) for details of finding the optimal threshold). The signal
averaging within WM and GM atlases are computed in both the classical GM CAPs and the
inpainted CAPs to be able to compare the two. Figure 5.4 reveals good correspondence in the
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Figure 5.4 — Spatial characteristics of in-CAPs compared to classical GM CAPs. The overall
spatial patterns of the in-CAPs and GM CAPs are explored through spatial averaging of signals
within the (A & B) GM sub-components of the DMN [Andrews-Hanna et al., 2010] as well as
the (C & D) 17 major WM bundles. A similar spatial trend is observed in the subcomponents
of (B) DMN GM in-CAPs and (D) DMN WM in-CAPs, while there is almost no correspondence
between the signal averages within (A) DMN GM regions of GM CAPs and the (D) DMN WM
bundles of GM CAPs. The arrangement of WM structures and DMN sub-components based
on the polarity of the inpainted CAPs with respect to the baseline also shows a concordant
pattern of positive-to-negative transition from dorsal-to-ventral regions. Full labels of GM
regions and WM bundles are summarized in Tables. C.1 and C.1 of Appendix C.

spatial patterns of GM regions and WM tracts in the inpainted CAPs, especially in terms of
activation polarity (with respect to baseline) from the dorsal (positive-valued) to the ventral
(negative-valued) side. This is in stark contrast to the spatial patterns of WM tracts in classical
GM CAPs showing no accordance with their corresponding GM averages.

Moreover, we further validated the observed tracts in the in-CAPs and PCC seed connectivity
based on how much they follow tractography-based results [Greicius et al., 2009, van den
Heuvel et al., 2009, Figley et al., 2015]. Using predefined ROIs associated to the DMN as
seeds, tractography is performed to obtain the WM fiber bundles that connect these regions.
We computed the signal averages within the different WM tracts obtained from fMRI-based
probabilistic tractography corresponding to the DMN ROIs [Figley et al., 2015]. The plot of the
signal average is displayed in Figure C.5, side by side with the signal averages computed within
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the associated DMN ROIs. In general, the signal averages corresponding to the PCC-seed
connectivity display positive values in all DMN-related WM tracts, suggesting that the WM
interpolation successfully captured tractography-verified WM bundles. On the other hand,
the in-CAPs display varied signal averages (i.e., some tracts are positive, some are negative),
thereby reflecting the distinct structural-functional organization of the brain at different time
points when the PCC is active. These DMN-related WM tracts are all physically connected,
but are differentially wired at different time instances.

Next, we assessed the concurrence of the GM CAPs and the in-CAPs by computing the amount
of temporal overlap in each CAP. This is done by counting the number of times that a single
frame is assigned to a matching in-CAP and GM CAP pair. Figure 5.5(A) displays generally
matching frame assignments between the GM CAPs and the in-CAPs, reflecting a strong
temporal correspondence between the two CAP types. This finding demonstrates that the
addition of the interpolated signals does not interfere with the segregation during the cluster-
ing, thereby showcasing the ability of the proposed method in successfully capturing distinct
WM structures connecting temporally varying PCC-related networks without compromising
information from the original data.
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Figure 5.5 — Temporal characteristics of in-CAPs and their relevance to rest and tasks. (A)
Temporal overlap between the interpolated CAPs and the GM CAPs; disregarding the color-
code, the height of each bar represents the number of frames that were identified to belong
to either of the eight GM CAPs. The sub-bands within each bar show the distribution of the
frames linked to a particular GM CAP when classified based on in-CAPs. (B) The probability
of occurrence of in-CAPs in resting-state, working memory, and relational tasks. Each bar
in the plot corresponds to the probability of that particular in-CAP to appear in the top 15%
significant volumes of rest and task scans. The stack of colors denotes the proportion of frames
that occur during blocks of rest (R) when there is no stimulus presented, and during blocks of
task (T) in which subjects are expected to perform memory or relational tests. Results were
verified using two-factor ANOVA (main effects of CAP type and task, and interaction between
both), with all p-values less than 0.0001.
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Relevance of WM interpolated patterns during rest and task

Visual inspection of the spatial averages computed within the WM of all in-CAPs reveals
specific patterns that are unique for each in-CAP. In-CAP 8 for instance, displays positive
mean signal across all DMN sub-components, and in contrast to all other in-CAPs, also
shows a positive bilateral uncinate fasciculus (L/Runc). Previous works have found that
activations in both the hippocampus and ventral mPFC during retrieval-mediated learning
support novel inference [Zeithamova et al., 2012]. We hypothesize that the positive activity
of L/Runc in in-CAP 8 reflects its potential role in mediating the coherent activity between
the positive temporal poles, hippocampus, and ventral mPFC. To verify this association
and to further explore the functional meaning of the obtained in-CAPs, we computed their
occurrence probability upon working memory and relational tasks (Figure 5.5(B)). To do
so, we interpolated signals into the WM as before, extracted frames with high activation in
the PCC, and assigned them to their closest in-CAP. We found that although in-CAP 1 is the
most recruited at rest, it mostly occurs during task blocks (as opposed to rest intervals). In
contrast, in-CAP 8 occurs the least during resting-state, but it is vividly recruited during the
rest epochs of the task paradigms. These results are evaluated using a two-factor ANOVA on
the occurrences of the different interpolated CAPs during rest and tasks. Results showed highly
significant main effects of CAP type and task, as well as the interaction between both, with all
corresponding p-values less than 0.0001.

5.2.4 Discussion

General findings

We modeled the brain grid using local, voxel-to-voxel probabilistic connections based on DW-
MRI as a large graph onto which brain activity in GM is interpolated into WM. The interpolated
brain volumes revealed WM structures that mediate distributed patterns of activity in GM. We
explored the neuroscientific relevance of the interpolated volumes by applying conventional
static and dynamic FC tools, namely seed-correlation [Biswal et al., 1995] and CAP analysis [Liu
and Duyn, 2013], using the PCC as a seed. The resulting in-CAPs unraveled the complexity of
recruited WM patterns underlying typically observed GM co-activations (Figure 5.3). In-CAPs
also showed strong neurophysiological relevance, as they revealed the segregation of the DMN
into task-positive and task-negative sub-components (Figure 5.5B).

Structure-function relationships of PCC-related networks

Interpolating functional signals measured on GM into the WM has revealed new structural-
functional relationships that are akin to the DMN. Figure 5.4(D) shows the signal average
within WM bundles observed in our PCC seed-correlation map, consistent with the visually
observed tracts in Figure 5.2. Prominent tracts include the cingulum bundle (R/Lcing), the
superior longitudinal fasciculus (R/Lslf), and the forceps minor (Fminor), which are all in close
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agreement with previous findings of WM structures associated with the DMN [Greicius et al.,
2009, van den Heuvel et al., 2009]. In addition, the signal averages within DMN-ROI guided
tracts (Figure C.5) further reflect the success of the signal recovery approach in capturing WM
structures that mediate temporally coherent DMN regions. Although seed-correlation analysis
is a straightforward measure of FC, it is debased by its transitive nature. The connectivity
obtained from this static approach, therefore, summarizes all major WM connections linked
to the PCC. On the other hand, CAP analysis can account for time-dependent behavior; thus,
the in-CAPs reveal different sets of WM bundles that are characteristic of each of the observed
GM CAPs at different time-points.

While it has been established that the DMN anatomically consists of the anterior and poste-
rior midline, the bilateral parietal cortex, prefrontal cortex, and MTL [Buckner et al., 2008],
these regions have been found to functionally dissociate according to the ongoing internal
processes [Andrews-Hanna et al., 2010]. We surmise that this functional disintegration is
captured by in-CAPs, given that distinct in-CAPs occur in different phases of working and
relational memory tasks (Figure 5.5(B)). The MTL activates when internal decisions involve
constructing a mental scene based on memory [Andrews-Hanna et al., 2010]. However, de-
spite being dominantly positive in this region, in-CAP 8 appears to be more active during
blocks of rest, and instead, in-CAPs 1 and 2 dominate in periods of task blocks when the
stimulus is presented. These findings suggest that in-CAP 8 is a characteristic task-negative
structure-function network that activates during the maintenance phase (i.e., when sub-
jects are focused on consolidating an observed stimulus). Conversely, in-CAPs 1 and 2 are
task-positive structure-function networks that are engaged during the encoding and retrieval
periods when the external stimulus is presented. Altogether, our results provide new insights
into the well-established dichotomy of the human brain [Fox et al., 2005, Greicius et al., 2004],
and clearly demonstrate that the DMN and task-positive networks (e.g., attention network,
working memory network) are not exclusively expressing opposite activity [Piccoli et al.,
2015, Karahanoglu and Van De Ville, 2015].

Arranging the DMN sub-components according to the polarity of their activity in each of
the in-CAPs reveals a general trend of positive dorsal areas, such as those observed from
PCC to temporal-parietal junction in Figure 5.4(B). On the other hand, ventral components
(lateral temporal cortex to temporal pole) are more diverse, showing a subtle divide between
more negative (in-CAPs 1-4) versus more positive (in-CAPs 8) ventral default network. The
implicated dorsal and ventral WM bundles also show the same trend in Figure 5.4(D). In
addition, we observe the sagittal slices (Figure C.1) of in-CAP 8 to show strong activation
in the ventral PCC together with the R/Lcing2. This bundle runs from the caudal aspect of
the retrosplenial cortex to the ventrally located hippocampal formation (HF). The bilateral
HE PCC, R/Lcing2, and temporal poles also exhibit positive signals and, therefore, more
homogeneous averaged activity. Overall, the above observations highlight the distinctive role
of dorsal and ventral parts of the PCC in cognitive control [Leech et al., 2011, Karahanoglu
and Van De Ville, 2015]. Furthemore, in line with our hypothesis about the role of R/Lunc in
memory consolidation, we observe that in-CAP 8 displays positive signal in this particular
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tract, reflecting its role in mediating coherent activity between the hippocampus and the
prefrontal cortex [Squire et al., 2015]. Fittingly, it has been found that the deterioration of
R/Lunc lowers working-relational memory performance [Hanlon et al., 2012].

Methodological perspectives

The overall aim of the introduced signal recovery framework is to extract WM structures
that mediate the interaction of temporally coherent cortical regions. Several methods that
have attempted to achieve the same goal have been proposed over the past years. The most
straightforward approach is fMRI-guided tractography, where cortical regions corresponding
to well-known functional networks are used as seeds to estimate streamlines coming from
one ROI to another [Figley et al., 2015, Friman et al., 2006]. One obvious limitation of this
approach is the need for a two-step procedure, wherein as a first step, ROIs are extracted
from functional data, then tractography is launched to recover the streamlines that connect
pre-selected regions. In our approach, we go beyond a combined analysis [Zhu et al., 2014]
of functional and diffusion MRI, and instead jointly model the two modalities into a single
integrated framework that enables the recovery of structure-function patterns which are fully
data-driven and observer-independent. Previous works have also introduced a fusion of fMRI
and diffusion MRI in a data-driven manner by relying on blind-decomposition techniques (e.g.,
ICA) and the use of diffusion anisotropy measures to approximate SC [Sui et al., 2013, Sui et al.,
2015]. However, measures of diffusion anisotropy are unable to resolve crossing fibers as they
are extracted from low-order diffusion tensor models, making their interpretation misleading
and prone to erroneous conclusions [Wheeler-Kingshott and Cercignani, 2009]. Alternatively,
a more common approach in defining SC is to count the number of fibers obtained using
tractography algorithms [O’Muircheartaigh and Jbabdi, 2018]. SC and FC measures can
then be combined together into a huge data matrix that is decomposed into independent
hybrid structure-function components [Amico and Goiii, 2018]. Nevertheless, ICA’s principal
assumption of spatial independence leads to components that have low spatial similarity.
The high susceptibility of tractography algorithms in generating false positives [Maier-Hein
et al., 2017] also warrants caution in interpreting tractography-based results. In contrast,
our approach does not rely on tractography, thereby not only bypassing the complicated
task of parameter optimization for extracting WM tracts but also not requiring a parcellation
scheme to define ROIs. Our framework keeps the analysis close to the DW-MRI data by
working directly with local reconstructions of orientation distribution functions, which are
consequently encoded, both in direction and magnitude, to build the brain graph. Overall, we
believe that our method offers a more elegant solution to recover WM structures that mediate
FC regions, and at the same time, reduces the computational load compared to conventional
tractography approaches.

Furthermore, it is worth noting that despite the superficial similarity, there are fundamental
differences between our approach and that of the TW-dFC [Calamante et al., 2017]. Specifically,
both approaches attempt to give a measure of FC into the WM using GM as a constraint.
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Although TW-dFC jointly fuses fMRI and diffusion MRI, the approach still relies on two
successive uses of classical methods (i.e., tractography and sliding-window FC), while our
work introduces an entirely new concept where recovery of mediation by SC is incorporating
the FC itself in a consolidated framework; i.e., the complete pattern of brain activity in GM is
constraining the recovery of WM patterns. In addition, our method works at the single-frame
level and does not require to choose a temporal window to render the approach dynamic. It
is therefore noteworthy to reiterate that the frame-wise analysis using the CAPs was made
possible by the fact that the mediation of GM activation is done for each frame. As such, we
make use of the maximal temporal resolution of the functional data, which is a characteristic
strength of the introduced method that is not yet overcome by tractography-based methods for
jointly integrating FC and SC [Amico and Goiii, 2018, Calamante et al., 2017, O’Muircheartaigh
and Jbabdi, 2018]. This advantage also translates to easier standardization of results across
groups, as classical methods of spatial normalization can be applied in the interpolated
volumes in the same manner that is done in original fMRI.

New research avenues for structure-function studies

GSP approaches as applied to functional neuroimaging rely on a graph shift operator (typically
the Laplacian or the adjacency matrix) that encodes the brain’s anatomical information.
Its eigendecomposition produces an orthogonal set of eigenvectors, termed eigenmodes,
some of which are reminiscent of well-established functional networks [Atasoy et al., 2016,
Abdelnour et al., 2018] and are useful in effectively estimating the strength of inter-hemispheric
interactions in the brain [Robinson et al., 2016]. Moreover, efficient anatomically-informed
decompositions of fMRI data using a tractography-based structural connectome [Atasoy et al.,
2016], as well as topology encoding GM graphs [Behjat et al., 2015] have been proposed. Brain
eigenmodes can be viewed as basic building blocks of increasing spatial variation along the
structural brain graph, akin to sinusoids in classical Fourier analysis. Here, we extend the
traditionally region-level eigenmodes (defined on a limited subset of GM nodes) to a whole-
brain (GM and WM), voxel resolution setting (see Figure C.2), thus enabling to reconstruct
structure-function networks at an unparalleled spatial resolution. As an increasing number of
operations are generalized from classical signal processing to the graph setting [Shuman et al.,
2013, Wang et al., 2017, Huang et al., 2018a, Becker et al., 2018], promising avenues arise to
explore the many facets of brain structure and function.

We therefore foresee two direct avenues for future research. The first avenue aims on leveraging
the proposed interpolated fMRI data. The interpolated volumes entail additional informative
voxels that extend beyond the GM, which is in particular interesting in light of the limitations
and skepticisms in interpreting WM BOLD data [Logothetis and Wandell, 2004, Gawryluk
etal., 2014]. Previous works have demonstrated the possibility to capture functionally relevant
information from the WM BOLD [Peer et al., 2017, Ding et al., 2018, Huang et al., 2018b],
despite the well-established findings on the differences of hemodynamic responses in GM and
WM [Fraser et al., 2012, Li et al., 2019]. At its current form, we interpolate functional signals
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into the WM as solely constrained by the functional signals from the GM. Alternatively, one
may rather consider combining signal interpolation with signal recovery of weak signals in the
WM. In our current application, the goal is to observe WM pathways that support distributed
patterns of FC in GM, and not on the functional organization of WM itself. The interpolated
volumes can then be readily explored using existing tools for dynamic FC analyses [Preti
et al., 2017], such as sliding-window correlation, ICA [Beckmann et al., 2005] and principal
component analysis [Leonardi et al., 2013], to probe functional brain dynamics at a much
larger scale.

The second foreseen research direction is to exploit the proposed anatomically-informed brain
grid to implement novel GSP operations on fMRI data. High-resolution eigenmodes enable a
spectral graph-based analysis of task-based and resting-state fMRI data at an unprecedented
level of detail, and across the whole brain, in contrast to the conventional region-wise analysis,
which is typically also limited to the cortical layer. Anatomically-informed spectral graph
decomposition of fMRI data using these high-resolution brain eigenmodes is anticipated to
open up new perspectives on the brain’s functional organization not only within GM but also
WM. As a case in point, FC has often been associated to Euclidean distance [Ercsey-Ravasz
et al., 2013, Alexander-Bloch et al., 2013]; thanks to our framework, the notion of distance
becomes more meaningfully defined in terms of the spectral representation of functional
signals [Medaglia et al., 2018, Preti and Van De Ville, 2019], enabling a deepened understanding
of the roles of short- and long-range connectivity in improving the efficiency of inter-areal
brain communication [Betzel and Bassett, 2018].

Technical limitations

While it is true that our approach bypasses the use of tractography algorithms in visualizing
WM tracts that support coherent GM activations, our framework is still heavily reliant on
the estimation of the orientation density functions. Consequently, our approach is highly
dependent on the quality of the diffusion data, as in any other case of DW-MRI studies. We
also point out that because we interpolate signals into the WM based on the signals from
GM, any discrepancy that is associated with the GM BOLD will likely influence the results of
the interpolation. Furthermore, we believe that although jointly integrating functional and
diffusion MRI offers several benefits, a potential disadvantage can arise when there is a need
to disentangle the effect of the two. This is particularly true when the approach is applied to
clinical populations that are hindered by complex mixes of structural and functional alter-
ations, such as in Multiple Sclerosis patients [Giorgio et al., 2017]. In such cases, depending
on the hypothesis that can be drawn from the initial results of the inpainting, a detailed case
to case analysis is advised. For instance, one may perform a null comparison test, such as
contrasting the WM interpolation of a healthy control data to a functionally impaired patient,
both of which are interpolated over a structurally deficient brain grid.
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5.2.5 Conclusion

This study presents a new framework for studying structure-function relationship that has
several key advantages. The interpolation of fMRI activity into the white matter enables
observing key WM structures that link interacting GM regions at the single-frame resolution.
We believe that the introduction of highly-resolved human brain eigenmodes can (i) shift the
existing trend of constructing region-wise connectomes to that of voxel-vise connectomes
and (ii) expand the use of the GSP repertoire in the context of functional brain imaging. More
importantly, we anticipate the proposed joint structure-function characterization to offer
unprecedented benefits for the study of clinical populations, particularly those born with
structural deficits but preserved functional efficiency, such as in patients with agenesis of the
corpus callosum [Tovar-Moll et al., 2014, Owen et al., 2013].
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Graph signal processing applications
on functional brain imaging: a voxel
level perspective

6.1 General Motivation

The construction and development of voxel-level structural brain graphs in Chapter 4 was
largely motivated by its huge potential to integrate brain structure and function through graph
signal processing (GSP) analyses of functional data. Meanwhile, the interpolation of GM
signals onto the WM in Chapter 5 enabled the observation of key WM structures that mediate
short- and long-distance functional interactions in the brain. In the perspective of brain
network topology, the distinction between short- and long-distance, remains loosely defined,
and often times do not consider the actual length of white matter structural connectivity.

In this last chapter of the thesis, we develop a novel framework that redefines short- and long-
ranged functional connectivity in terms of a quantitative measure that collectively describes
the overall structural mediation of temporally coherent GM areas. We propose to give a more
meaningful definition for cortical distance using a canonical model of graph diffusion. Using
methods borrowed from spectral graph theory, we implement a voxel-wise graph diffusion
of GM signals onto the WM based on the structure encoded in the brain graph. Noting
that the diffusion of gray matter signals follows the structure encoded in the brain grid, we
postulate that different regions should have different optimal diffusion time lengths that is
proportional to the overall range of its anatomical connectivity to all other brain areas which
display temporally coherent activity. To confirm this hypothesis, we first demonstrate that
the graph signal recovery framework (GSR), which we used to interpolate GM signals onto
the WM in Chapter 5, gives a stable solution to the graph diffusion. Next, we define different
regions of a functional atlas as ROI in a seed-connectivity analysis that is applied to all diffused
4D fMRI volumes of varying diffusion time lengths. In each ROI, we survey the optimal seed-
connectivity map associated to different diffusion time lengths that conforms best to the one
obtained using the interpolated volumes from the GSR. The optimal diffusion time length of
each ROl is then converted to spatial distance in millimeters, finally obtaining the anatomical
range of each ROI with respect to temporally coherent brain areas.
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Abstract

Functionally coupled brain regions recruit different combinations of white matter structures
to accommodate local and distant inter-areal communications. Here, we introduce a new
[framework that quantifies the range of structural mediation between temporally coherent gray
matter areas. We use graph signal diffusion as a tool to provide a canonical example of the spread
of gray matter activity along a structurally-informed high-resolution voxel-level brain grid. The
diffused volumes are evaluated using a seed-connectivity analysis which enables the observation
of key white matter structures that are associated to each region of a functional brain atlas. We
observed that each region displays different optimal diffusion time length that is proportional
to its overall structural connectivity with all other brain areas that display temporally coherent
activity i.e., regions that are dominated by local, unimodal patterns of functional connectivity
require shorter time for their signals to be completely diffused. As such, the optimal diffusion
time length provides a proxy of the anatomical range of functional network interactions. Our
results reveal that the observed structure-function range meaningfully organizes the cortex
according to a behaviorally-relevant macroscale gradient that differentiates regions associated
to low-level primary sensorimotor from high-order cognitive functions.
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6.2.1 Introduction

The measure of cortical distance between communicating brain areas remains loosely defined
in neuroimaging. One of the most widely sought questions to answer in this field is the
understanding of the architectural principles that support brain function. Connectomics has
made it well-known that across scales and species, the brain follows a small-world property,
similar to various social, economic, and biological processes [Bassett and Bullmore, 2006].
This description simply means that the brain is composed of highly connected short-distance
connections, with a few long-distance links that serve as a short-cut for efficient information
transfer, therefore reducing the overall network path length [Sporns and Zwi, 2004, Bassett
etal., 2010, Bassett et al., 2009]. As such, the brain follows an optimized spatial embedding
that balances wiring cost and topological value which paves the emergence of global neuronal
coordination [Bassett and Bullmore, 2017, Bullmore and Sporns, 2012].

Euclidean distance between regional nodes is typically interpreted as the currency when
talking about the cost of inter-areal communication [Bullmore and Sporns, 2012, Bassett
and Bullmore, 2017]. It is the most straightforward measure of cortical functional distance,
and it has been shown to delineate regions that are mostly functionally coupled with their
local neighborhood to those that show preferential connections to distant areas [Achard et al.,
2006,Sepulcre et al., 2010]. This is typically performed by correlating mean brain activity within
aregion of interests (ROIs) to all other brain areas (a.ka. functional connectivity (FC) [Friston,
2011]), and obtaining the most significant connections following a thresholding step. Then, the
Euclidean distance between the centroid coordinates of regions that survived the thresholding
are calculated with respect to the ROI. Such analyses demonstrate the tendency of primary
sensory and motor areas to display high local connectivity, consistent with the brain’s modular
organization. Moreover, connection lengths between brain regions have also been successfully
used as biomarkers for clinical studies comparing brain network properties of healthy controls
to patients suffering from schizophrenia [Alexander-Bloch et al., 2013].

The use of Euclidean distance in the studies above effectively removes the contribution of
the brain’s anatomical configuration and is therefore reliant only in its geometrical shape.
First, cortical foldings are ignored, and second, the physical wirings of the white matter
(WM) fiber bundles are not taken into account. To overcome the first constraint, geodesic
distance, which measures connection length along the cortical sheet, has been proposed
as an alternative to the widely used euclidean distance [Wagstyl et al., 2015]. It has been
applied to delineate short- and long-range connectivity in humans [Oligschléger et al., 2017]
and macaque [Oligschlédger et al., 2019], and has also been demonstrated to show higher
accuracy in participant fingerprinting [Venkatesh et al., 2020] compared to conventional FC
measures [Finn et al., 2015, Amico and Goiii, 2018].

Due to the direct computation of Euclidean distance, there is currently a very limited number
of studies that take into account the contribution of the WM fiber connectivity itself in the
currency of physical wiring cost for inter-areal communication. One of the earliest studies
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that incorporated structural features within the WM has shown that WM connectivity between
brain regions derived using diffusion tensor imaging (DTI) decays as a function of the Eu-
clidean distance [Lewis et al., 2009], in a similar manner that the FC strength computed using
functional magnetic resonance imaging (fMRI) also decays with distance [Salvador et al., 2005].
This relationship has been observed to persist even after controlling for the strong association
between structural connectivity (SC) and FC [Honey et al., 2009]. Recently, WM fiber lengths
were projected on each region of the cortical surface to characterize how structural brain
organization relates to functional resting-state networks [Padula et al., 2017, Bajada et al.,
2019]. They used the distribution of track lengths to differentiate closely connected local
modules to those of functionally more distant brain areas.

In this work, we propose a new definition of functional distance based on a sophisticated
integration of both WM anatomical connectivity from diffusion-weighted MRI (DW-MRI) and
gray matter (GM) BOLD activity from fMRI. Leveraging on the emerging field of graph signal
processing (GSP) applied to functional brain imaging [Huang et al., 2018a] that was recently
extended to voxel-level perspective [Tarun et al., 2020b, Tarun et al., 2019], we derive the
anatomical range of functional network interactions. In particular, we utilize a graph diffusion
model to obtain a canonical measure of the time it takes for a signal to be diffused from one
region of the brain to another. Each region in the cortex reveals a distinct optimal diffusion
time that is proportional to the length of its physical separation from other brain areas that
display temporally coherent activity.

To do this, GM BOLD signals are first interpolated into the WM using a graph signal recovery
(GSR) framework introduced in a previous work [Tarun et al., 2020b]. The interpolation is
guided by a voxel-level brain graph that encodes the structural information from diffusion-
weighted MRI (DW-MRI) [Tarun et al., 2019]. The result is a 4D interpolated fMRI volume,
which can be analyzed using classical FC methods (e.g., seed-correlation map) to obtain a set
of entire-brain structure-function networks. These spatial maps are taken as the ground truth
or the final solution to the graph diffusion which we used to model the anatomical range of
functional interactions. Using methods from spectral graph theory, we diffuse signals from
the original GM BOLD data onto the WM using different lengths of time. As before, seed-
connectivity maps are extracted for each of the 4D diffused frames, one set for each diffusion
time that we evaluate. We then assess which among these seed-connectivity maps conform
best with the seed-connectivity maps extracted using GSR. These values are converted to
an approximate measure of distance in millimeters through empirical investigations of their
one-to-one correspondence. We observe that, depending on the seed, different brain areas
exhibit different optimal diffusion times. Our results demonstrate, that the anatomical range
of functional interactions follows a functional differentiation that divides the cortex into low-
level primary sensorimotor areas and more complex and integrative higher-order association
and limbic networks.
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6.2.2 Methods
Data

We used a total of 50 subjects obtained from the publicly available Human Connectome
Project dataset (HCP 1200 release), WU-Minn Consortium. Preprocessed diffusion MRI, origi-
nal functional MRI, and anatomical data are downloaded following a random subject selection
scheme while maintaining a uniform demographic distribution (male and female, ages 22-50).
MRI acquisition protocols of the HCP and preprocessing guidelines for diffusion MRI are
fully described and discussed elsewhere [Glasser et al., 2013]. No further preprocessing was
applied to the diffusion data. On the other hand, original and unprocessed functional MRI
data underwent preprocessing following standard protocol [Van Dijk et al., 2010]. We used
four sessions of resting-state fMRI scans (1200 volumes each session, giving a total of 4800
volumes per subject). Functional images of each subject were realigned to their mean images.
These were then registered and resampled onto the diffusion data using rigid-body registration
(SPM12, https://www.fil.ion.ucl.ac.uk). After which, the registered images were detrended
and smoothed using a Gaussian kernel (FWHM = 6mm). We discarded the first 10 frames to
achieve steady-state magnetization of the fMRI data. Finally, we z-scored the functional data
in the temporal domain by demeaning each voxel time-course and dividing it to its standard
deviation.

White matter interpolation of fMRI via graph signal recovery

We built upon a recently introduced framework based on GSR for interpolating GM signals
into the WM using a voxel-wise connectome to guide the process. The voxel-wise brain graph
is defined as ¢ := (¥/,A), where 7 = {1,2,3, ..., N} is the set of N nodes representing the brain
voxels (i.e., N = 700 —900 thousand), and A € N x N is an adjacency matrix that encodes
the probability of alignment between two neighboring voxels. We then used orientation
distribution functions (ODF) as a weighting-scheme for embedding DW-MRI data into a three-
dimensional 26-neighborhood mesh. For more details about the brain graph construction, we
refer to [Tarun et al.,, 2019] and Chapter 4 of the thesis. After the brain graph was constructed,
we interpolated GM signals into the WM by minimizing a cost function that includes a least-
squares data-fitting term equal to the residual sum of squares (RSS), and an L2 regularization
term that takes into account smoothness with respect to the brain grid. The graph structure is
represented by the graph Laplacian matrix in its symmetric normalized form (L = I-D zAD"2).
The interpolated signal is then given by the solution to:

% = argmin |y - Bx|* + Ax" L, (6.1)
X

where y is a vector of length N containing initial BOLD values within GM nodes and zero
elsewhere, B is an indicator matrix that selects the GM nodes, and A is the regularization
parameter. The cost function balances between (1) minimizing the RSS and retaining the
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original GM signals, and (2) imposing smoothness with respect to the structure of the graph.
The norm in the first term therefore focuses on keeping the GM signals unchanged, while the
second term ensures smoothness with respect to the Laplacian which encodes the structure.
The balance is dictated by the optimal A and the interpolation is done repeatedly for each
volume in the functional data. For more details about the white matter interpolation. in
particular how the regularization parameter A is chosen, we refer to our paper [Tarun et al.,
2020b] or to Figure C.3 in the appendix.

White matter interpolation of fMRI via graph diffusion

Suppose we initialise a source signal at time ¢ = 0 in a particular locality defined by the vector
x(0) = {xo[il,i € ¥}, i.e., GM BOLD signals defined on GM nodes, then from spectral graph
theory [Kondor and Lafferty, 2002], we expect the diffused signal at a later time t to be governed
by a first-order linear network heat equation given by:

ox(1)

— =-1Ix, 6.2
a7 (6.2)

which is equivalent to the classical and continuous diffusion equation % = V2x(t) that is
applied in many areas of physics in engineering. The discrete counterpart of the second-order
derivative in this case is the graph Laplacian L. If we approximate the solution to the diffential
equation in Eq.6.2 through numerical methods, a finite-difference approach can be employed,
wherein in this case, the Laplacian matrix acts as a difference operator. One can therefore
iteratively apply the Laplacian operator to the signal at each timepoint ¢ until we reach a stable
solution X(ff;nar). The tfinq is equivalent to the characteristic time of spread required to
reach the steady-state solution. Finding the optimal value of ¢¢;;,; will be the primary goal of
this work, but will be implemented using a more straightforward and computationally easier
method discussed below.

From the perspective of matrix algebra, the approach discussed above can be implemented
faster by introducing discrete diffusion operators and exploiting spectral kernels [Kondor and
Lafferty, 2002, Shuman et al., 2013]. The solution to Eq. 6.2 is an exponential given by:

x = exp(—7L)x, (6.3)
where x represents the amount of heat at each vertex of the graph after time 7. Exponentiating
the Laplacian matrix with time 7, we have

T, T3
exp(—7L)=1-7L+ EL - §L +... (6.4)

Exploiting the orthogonality of L and diagonalizing, we obtain L = VAV, where V = [v}, V2, Vs, ..., V]
and A is a diagonal matrix whose diagonal elements are the corresponding eigenvalues, de-
noted {A; := Ak,k}Jk\’:l. Substituting this to Eq. 6.4, Eq. 6.3 can then be expressed in terms of
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Figure 6.1 — Overview of the pipeline. The original GM BOLD from one fMRI volume is first
masked using a probabilistic GM mask from the segmented T1 image. Meanwhile, the ODFs
are extracted from DW-MRI and local voxel-to-voxel structural connectivity is encoded in a
whole-brain graph. GM BOLD signals are imposed on the brain graph, i.e., each GM voxel
signal is defined on GM node, and zero elsewhere. Then, two succeeding methods of WM
signal interpolation are implemented, (1) one based on graph signal recovery (GSR) and (2)
one based on a graph diffusion model. The GSR is implemented by minimizing a cost function
that balances between keeping the GM signal fixed and obtaining a whole-brain signal that is
smooth with respect to the underlying structure. For graph diffusion model, GM BOLD signals
are diffused at different amounts of time. Both methods provide different 4D WM interpolated
fMRI volumes. We evaluated different time of spread for each region in the brain, and use the
GSR approach as ground truth to identify which among the evaluated diffusion time-scales
gives a seed-average connectivity map that conforms best with the seed-average connectivity
derived from GSR interpolation. The seed-average map is obtained by averaging frames whose
chosen ROI has a mean signal above 85 percentile. PCC - posterior cingulate cortex
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matrix exponential:
x=Vexp(-TA)V'xy. (6.5)

The exponential term is called the diffusion kernel and acts as a spatial blurring on the initial
heat source xg. Intuitively, different values of 7 give different descriptions of the flow of heat
over the graph, recalling that the rate of flow is dependent on the weights of the edges encoded
in L. When 7 is small, Eq.6.4 is governed primarily by the first terms and as such, the solution
depends on the local connectivity structure or topology of the graph. Meanwhile, for large
values of 7, Eq.6.4 is dominated by higher order terms, and the heat kernel becomes dependent
on the values of vertices that are farther away, thus, giving a solution that follows the global
structure of the graph.

The solution to the graph diffusion equation discussed above is equivalent to the action of
a low-pass filter into the initial signal source xy, where the diffusion kernel, which decays
exponentially with the edge weights, is the filter. In this work, we define each GM BOLD signal
as the source signal and interpolate them into the WM following the graph diffusion model
discussed above. It is also important to establish that the graph diffusion model is only taken
as a tool to model the anatomical range of FC, and is used as a canonical example of the spread
of GM signals along WM fiber bundles. It is not meant to model the inter-areal interactions at
the neuronal level.

General Workflow

Figure 6.1 gives a visual summary of the working pipeline used in this study. First, original GM
BOLD data extracted from a 4D set of fMRI volume is masked, one frame per time-instance,
using the probabilistic GM mask from the segmented T1 image. Meanwhile, the voxel-level
brain graph is constructed by encoding local, voxel-to-voxel SC from DW-MRI in each edge of
the brain graph. Then, each signal in the masked GM BOLD is defined on the GM nodes of the
graph. The rest of the nodes are set to zero. Then, two succeeding WM interpolation methods
are performed: (i) GSR and (ii) graph diffusion. For method (i), the solution is straightforward,
which is given by the minimization of the cost function in Eq. 6.1. The final output is a series of
4D fMRI volumes which contains, in addition to GM BOLD signals, the inpainted WM signals.
Meanwhile, method (ii) requires the need to identify the proper value of the diffusion time 7
in order to obtain the final solution. We evaluated a range of 7 —values within [0,10,20,...,200].
The output is also a series of 4D fMRI volumes, one for each of the 7—value assessed. To
identify which among the diffusion times gives the steady-state solution to the graph diffusion,
we assessed the similarity of their resulting seed-connectivity map to the seed-connectivity
generated using the WM interpolated fMRI volumes using GSR.

We applied a seed-connectivity analysis to the 4D WM interpolated and diffused volumes. We
used regions of the 17-network Yeo functional atlas [Thomas Yeo et al., 2011], which has a total
of 97 regions. Regions that belong to the same network and consists of less than 50 voxels at
Imm atlas resolution are merged. We identified the top 15% significant frames corresponding
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Figure 6.2 —- Whole brain structure-function networks. 17 functional networks extracted by
averaging the top 15% significant frames corresponding to each ROI of the Yeo functional
network atlas.

to the mean BOLD signal in each ROI. Only the frames that survived this thresholding are
concatenated and are averaged across subjects forming a seed-averaged connectivity map
for each ROL. This is done for all 97 ROIs and each of the 4D interpolated/diffused volumes
generated: (i) 97 sets for the GSR [97 x 1], one for each ROI, and (ii) 2037 sets for the graph
diffusion [97 x 21], one for each ROI and each of the evaluated t—value.

The pipeline is mostly done in the diffusion subject space, except at the last part of the
workflow in which the seed-connectivity maps of each subject are normalized to the Montreal
Neurological Institute (MNI) template in order to perform a group-level averaging of the
connectivity maps.
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Figure 6.3 — Cosine similarity of seed-averaged diffused volumes using different diffusion
time 1 with respect to the seed-averaged maps obtained using GSR. Similarity matrices are
derived separately for the GM voxels and the WM voxels. The black arrow indicates the starting
point when a phase-transition can be observed, i.e., structures start to form in the WM, finally
showing similarities to seed-averaged maps extracted using GSR.

6.2.3 Results
Graph signal recovery gives the optimal solution to graph diffusion

GSR and graph diffusion can be interpreted as two different approaches of white matter
signal inpainting. The GSR minimizes a cost function that is dependent on two constraints
— retaining the GM BOLD signal fixed and smoothness with the structure encoded in the
Laplacian. This optimization relies on the regularization parameter that balances these
constraints. Meanwhile, graph diffusion relies on a parameter that dictates the amount of
time required for the signals to be diffused. Figure 6.1 gives a visual aid of the overall pipeline,
and also demonstrates for an illustrative frame the resulting interpolation using GSR and the
evolution of the graph diffusion at different times. Both the GSR and the graph diffusion rely
on the structural brain grid which encodes the structure from DW-MRI. As such it can be
observed in the insets of Figure 6.1 that the solution to the GSR follows a similar pattern with
the brain grid. The same is observed in the insets of the sagittal slices representing diffused
GM signals at different times., i.e., a signal is more likely to diffused in regions where there is
a strong structural link. In particular, for these two approaches, we find that a specific WM
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structure connects the posterior region of the brain and the frontal region. This structure
corresponds to the cingulum bundle, which anatomically connects the posterior cingulate
cortex (PCC) and the medial prefrontal cortex [Greicius et al., 2009, Tarun et al., 2020b].

Structural mediation of functionally coupled regions revealed using seed-connectivity map

Seed-correlation analysis is a classical method for extracting functional connectivity networks
in the brain, wherein the mean BOLD signal within a specified ROI is correlated to all brain
voxels in the GM. This analysis results to a spatial map that displays which regions in the brain
are temporally coherent with the chosen seed. It has been shown through a point-process
analysis [Tagliazucchi et al., 2012a] approach that only time-points that show significant
activation in the chosen ROI contribute to the observed correlation, and as such, one can also
take the average of the significantly active frames [Liu and Duyn, 2013] and be able to re-create
the seed-correlation map.

As a proof of concept, we first derived the seed-connectivity map for all 17 networks of the Yeo
functional atlas, taking the union of all frames that survived the threshold (top 15%) in each of
the seed belonging to each network. Figure 6.2 displays all 17 networks corresponding to the
solution of the GSR. In addition to the well-known patterns that reveal functionally coupled
regions during rest, as displayed in Figure 2.2 in Chapter 2, we can also observe the different
WM tracts that are implicated in the formation of these networks.

Finding the optimal diffusion time

Following the observed correspondence between the results of GSR and the graph diffusion,
we implemented the voxel-wise graph diffusion in all fMRI volumes from all subjects using
different 7 values. The goal is to find the optimal value of the diffusion time which gives a
solution that conforms best with the solution of the GSR formulation. A higher value of ©
corresponds to a longer amount of time that the GM signals are diffused, which can also be
interpreted as signals being given more time to reach farther distances. In contrast, a lower
value of 7 results to less dispersed signals, and thus reaching only shorter distances. Using all
the 4D sets of interpolated volumes corresponding to different 7 —values, we obtained different
sets of seed-connectivity maps. We expect that for low 7, signals are not readily diffused and
only reaches the local neighborhood. If we, therefore, assess the similarity of the resulting
seed-connectivity maps, within the GM and within the WM, with respect to the ground truth
(i.e., the ones derived using GSR), GM signals should show high similarity in low-values of 7. In
contrast, there is an optimal value of 7 for which the structural mediation of GM interactions
starts to emerge within the WM.

Figure 6.3 displays separately, the similarity matrices within the GM and the WM, between the
seed-connectivity maps obtained using the diffused signals and the GSR. The results verify
the hypotheses laid out above. In particular, a phase transition behavior can be observed in
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Figure 6.4 — Seed-average connectivity maps for representative ROIs. Comparison of the ex-
tracted seed-connectivity map in different ROIs using (1) original BOLD data, (2) interpolated
BOLD using GSR and (3) diffused BOLD at the optimal diffusion time (Visual Central — 49 ;
Somatomotor A — 58 ; Control C — 67; Salience — 74). Seed regions are indicated with a black
circle. The associated networks where the ROI belongs to are also displayed in the label on the
left.

T—values between 40 to 90. This regime is indicated by the black arrow in the figure. We then
define the optimal diffusion time for each region as the point where correlation starts to be
greater than 0.5.

Seed-connectivity map of the original, interpolated, and diffused BOLD data

Now that we have obtained the optimal diffusion time lengths for each ROI, we can now com-
pute the seed-connectivity of the diffused BOLD data and compare it to the seed-connectivity
obtained using GSR. Figure 6.4 displays the resulting seed-connectivity maps for represen-
tative ROIs extracted using the (1) original BOLD data, (2) interpolated BOLD data using
GSR, and (3) diffused BOLD data of different optimal diffusion time lengths. The associated
networks where the chosen ROI belongs to are also indicated. The resulting seed-connectivity
map of the original BOLD resembles well-known associated networks from the Yeo functional
atlas (see also Figure 2.2 in Chapter 2 for comparison). Meanwhile, visual inspection of the
connectivity maps obtained using interpolated BOLD and using diffused BOLDs also reveals
a high resemblance between the two. It can also be observed that the connectivity maps of
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the interpolated BOLD generally display stronger signals in the WM and the GM. In contrast,
the GM in the connectivity map of the diffused BOLD is more smooth. This outcome is a
consequence of the implementation of the diffusion kernel which acts as a spatial blurring or
a low-pass filter. High-frequency components are attenuated, and as such, local details in the
GM are also reduced.

Mapping of spectral diffusion rate to vertex diffusion time and its equivalence to spatial
distance

We observed the optimal diffusion time lengths to be different for each region. This measure
can be interpreted as reflecting the disparate but indirect measure of the anatomical range
between different ROIs. The next goal is to obtain the equivalent measure of the diffusion time
in terms of physical distance in millimeters.

As discussed in the methods, graph diffusion can be implemented in two ways: (i) vertex
domain diffusion and (i) spectral-domain diffusion. The former utilizes the Laplacian matrix
as the difference operator in the implementation of the finite difference method when approx-
imating the numerical solution of Eq. 6.2. Meanwhile, the latter approach is equivalent to the
low-pass filtering of the signals in the spectral domain. The implementation of approach (i)
involves an iterative action of the Laplacian matrix to the signal until the steady-state solution
is achieved. Since the voxel-level brain grid uses a 3 x 3 x 3 neighborhood scheme, the differ-
ence operator only affects its nearest neighbor at each iteration, and as such, it follows that for
every time-point (or iteration), a source signal from one voxel diffuses only to its neighboring
voxel. As such, 1 iteration in vertex domain diffusion is equivalent to the voxel resolution of
the DW-MRI data - in this case, 1 time-point = 1.25 mm.

The next challenge is to determine the mapping between the vertex domain diffusion iteration
and the spectral diffusion time associated with approaches (i) and (ii), respectively. To do this,
we performed the signal diffusion taking each of the 17 networks ROI of the Yeo functional
atlas [Thomas Yeo et al., 2011] as source signals and implemented the two approaches of
graph diffusion. We compared the resulting interpolated maps using cosine similarity as
a metric. Shown in Figure D.1 are the similarity matrices for example networks averaged
across all subjects. We observe that there is a one-to-one correspondence between ¢ and 7,
starting from specific points, for instance, indicated by the white arrow in the similarity matrix
corresponding to the Salience network.

Anatomical range of functional network interactions organizes the cortex according to
behaviorally-relevant organization

Using the mapping discussed above, we converted the optimal diffusion time lengths observed
in each region (Figure 6.3) to their equivalent spatial distance in millimeters. These values
are projected to each ROI of a cortical surface which is displayed in Figure 6.5. We observe
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Figure 6.5 — Anatomical range of functional interactions and its similarity to the Euclidean
distance map. Cortical surface projections of the (A) anatomical range derived using
graph diffusion and using (B) Euclidean distance following the general approach proposed
by [Oligschléger et al., 2017]. (C) Mean Euclidean distance measures within the 97 regions
of Yeo functional network atlas plotted with respect to anatomical range. Colors are ordered
according to increasing mean anatomical range per network.

a macroscale organization that divides the cortex into short- and long-distance functional
connectivity patterns. Regions belonging to the primary visual and sensorimotor areas consis-
tently display the shortest distances whereas heteromodal areas responsible for high-order
cognitive functions such as the control networks, temporal/parietal, and the limbic regions
have a more distant anatomical range of connectivity.

To compare with other metrics derived using physical distance measures, we also derived
the cortical functional maps for each subject following the approach used by Oligschlager
and colleagues [Oligschlédger et al., 2017] using Euclidean distance as a metric. Figure 6.5(B)
displays projected distances averaged in each region of the Yeo functional atlas. At first glance,
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Figure 6.6 — Anatomical range of functional network interactions reveals behaviorally
meaningful organization. (A) Neurosynth meta-analysis of the ROIs arranged in increasing
order according to their anatomical range. (B) Reproduced figure from the analysis conducted
by [Margulies et al., 2016].

the Euclidean distance map shows consistent organization with the structure-function range
map derived from characteristic diffusion time lengths, especially the low values in primary
and sensorimotor regions. A key distinction, however, is the overall pattern around the midline.
It can be observed that regions belonging to the default networks do not show substantial
differences from primary and sensorimotor areas. Moreover, the overall distance measures
are also smaller (i.e., 15 to 45mm) than the values we observed in the structure-function range
map (i.e., 60 to 120mm). This range observed using Euclidean distance is also smaller than the
range of values observed using geodesic distance as a measure [Oligschlédger et al., 2017].

Figure 6.5(C) shows the scatter plot of the Euclidean distance measures in each Yeo functional
ROI with respect to the anatomical range derived using graph diffusion. A gradient can be
hinted revealing the tendency of regions belonging to the visual, somatomotor, and attention
networks to be at the far left of the plot (red); meanwhile, regions from control networks,
temporal/parietal, salience, and the limbic networks can be observed in the far right (yellow
circles). Midrange values comprise of regions from the default mode networks.

Finally, to verify the link to behavior, we performed a Neurosynth meta-analysis of the 24
topical terms used by [Margulies et al., 2016] and [Preti and Van De Ville, 2019]. Figure 6.6
shows the outcome side-by-side with the result reproduced from [Margulies et al., 2016]. Using
very different inputs on the meta-analyses — one based on principal gradients derived from
functional data alone [Margulies et al., 2016], one based on structural-function decoupling
index [Preti and Van De Ville, 2019], and in our case, one based on the anatomical range
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of functionally coordinated brain areas — we observe very consistent patterns of functional
differentiation. In particular, regions related to auditory processing, motor control, visual
perception, and eye movements are associated with low values of the anatomical range. In con-
trast, at the higher end of the anatomical range spectrum are areas related to the more complex
cognitive manifestations, such as declarative memory, cognitive control, autobiographical
memory, and reward-based decision making.

6.2.4 Discussion
General Findings

Here, we utilized a canonical model of signal diffusion borrowed from spectral graph theory
to derive the range of anatomical connectivity between functionally coupled brain regions.
We first demonstrated that the previously proposed WM interpolation of GM BOLD activity
based on GSR [Tarun et al., 2020b] gives a stable solution to the graph diffusion model. We
applied a seed-connectivity analysis to the resulting interpolated volumes and extracted 17
whole-brain structure-function networks that reveal the structural mediation of well-known
RSNs. Different WM tracts were observed to be recruited in the formation of these networks.
Then, we diffused GM signals into the WM at different lengths of diffusion times. We extracted
their corresponding seed-connectivity maps and compared them to the seed-connectivity
maps obtained using the GSR approach. In doing so, we found region-specific optimal values
of diffusion time for when the structural mediation of GM signals begins to appear. These
values are then converted to their equivalent spatial distance and are projected to a cortical
surface. The overall cortical pattern shows a macroscale organization that is consistent with
previously observed cortical connectivity gradient [Sepulcre et al., 2010, Oligschlédger et al.,
2017, Margulies et al., 2016, Preti and Van De Ville, 2019], which differentiates brain regions
according to the complexity of their functional roles — from low-level primary sensorimotor
networks to higher-order association networks.

Characteristic time of spread divides the cortex into short- and long-range connectivity

The anatomical range was shortest in primary sensorimotor regions, while it is much longer
in higher-order association areas. Notably, regions of the default networks were observed
to implicate medium-length anatomical connectivity. These findings are well in-line with
the observed cortical pattern obtained using geodesic distance [Oligschlédger et al., 2017],
the spatial embedding of functional connectivity [Margulies et al., 2016], and the degree of
structural and functional coupling [Preti and Van De Ville, 2019]. Unimodal primary and
sensorimotor cortices are known to be the first layer in information processing, as they are
mainly responsible for the initial synthesis of sensory input. As it gets further away from
the primary cortex, associative functions become more general and the associated networks
increase in functional complexity [Oligschldger et al., 2017]. Situated in the middle are regions
comprising the DMN, and in particular, the posterior cingulate, which reveals a mid-range
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value of optimal diffusion time. In has been found that the DMN subregions show a hybrid
tendency to prefer both local and distant connectivity [Sepulcre et al., 2010]. In this work,
we have specifically observed that the posterior region of the DMN has a preferentially lower
anatomical range compared to the medial prefrontal cortex. This aligns well with previous
findings concerning the posterior cingulate acting as a connectional hub [Buckner et al.,
2008, Fransson and Marrelec, 2008], but consists of both short- and long-ranged connections.
Interestingly, regions of the DMN are also observed to be maximally equidistant along the
cortical surface from unimodal regions [Margulies et al., 2016].

More than in higher-order association areas, the structure-function range peaked in the limbic
networks (95 mm), which consists of the orbitofrontal cortex and the temporal pole. Consis-
tently, these regions have been observed to be the least connected nodes in previous studies
using graph theory [Achard et al., 2006], and as such, are considered to be topologically more
peripheral. Moreover, these regions have also been found to exhibit the greatest levels of diver-
sity when investigating their connection length distributions [Betzel and Bassett, 2018]. These
findings, in particular, the observed behavioral hierarchy associated to the anatomical range
of FC, are very consistent with Mesulam’s well-regarded theory of functional differentiation,
which orders different brain areas according to the complexity of their functional roles, from
the most highly differentiated primary sensorimotor areas to the least differentiated limbic
structures [Mesulam, 1998].

Furthermore, the cortical brain organization derived from the anatomical range of FC is also
observed to be consistent with the measured peak of fiber densities [Bajada et al., 2019], for
example, fiber lengths in the motor cortex and in Broca’s area are about 50 mm and 80 mm,
respectively. Meanwhile, the primary visual cortex has been shown to recruit only a narrow
band of short-range fibers, from up to 40 mm. Meanwhile, the range of distance observed
using the euclidean distance is much lower than the values we observed.

Lastly, our results are also consistent with the observed patterns of variability across individuals
in FC [Mueller et al., 2013] and SC [Chamberland et al., 2017]. When we computed the standard
deviation of characteristic time of spread across all subjects and projected them in a cortical
surface (see Figure D.2). We also found that the variability of the anatomical range of FC across
individuals also scales proportionally with the patter of the structure-function range map.

Methodological Perspective

The overall aim of the introduced graph diffusion framework is to extract the optimal char-
acteristic time of spread for each region of the brain and use it as a proxy to delineate areas
that are dominated by local connectivity from those governed by longer and more distant
inter-areal connections. Several methods that attempted to establish the anatomical range of
different brain regions have already been proposed before. Early studies used Euclidean dis-
tance as a proxy to define the metabolic cost of maintaining short- and long-ranged inter-areal
connectivity. This is interpreted as one of the graph measures in studies of network theory
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that are applied to either functional or anatomical brain connectivity [Bassett and Bullmore,
2017,Bullmore and Sporns, 2012,Achard et al., 2006]. Euclidean distance and geodesic distance
are also used outside the context of network theory by relating regions of well-known RSNs
and directly observing their overall spatial organization projected in the cortex [Sepulcre et al.,
2010, Oligschldger et al., 2017, Oligschlédger et al., 2019]. Moreover, tract-tracing studies have
also been performed in macaque monkeys to quantify cortico-cortical connections [Markov
etal.,, 2011]. Another family of method that is used in profiling cortical organization is surface-
based projections of WM fiber connectivity [Huang et al., 2011, Tozer et al., 2012, Padula et al.,
2017], which are used to assess changes in brain development [Ouyang et al., 2016].

A similar theme in these studies is the use of either only functional data from fMRI or anatom-
ical data from DW-MRI to describe the spatial organization of the cortex, and very rarely
on integrating the two modalities. Recently, more and more studies have emphasized the
strong link between brain structure and function, suggesting that jointly incorporating these
two measures together can provide richer and more accurate information about the brain’s
topological organization. Region-wise GSP approaches have also started to elucidate the
importance of structure-function link in supporting coordinated cognition and behavior [Preti
and Van De Ville, 2019, Medaglia et al., 2018].

In this work, we proposed a novel framework that takes into account, not only the functional
information, but also the contribution of SC in determining the anatomical range of function-
ally coupled brain areas. We incorporate all measures of GM activity at the voxel level and
used region-wise parcellations to identify regions we want to investigate. A clear advantage of
the proposed technique is the direct integration of GM BOLD activity and its diffusion onto
the WM which is constrained by the SC that is explicitly encoded in the brain grid. Moreover,
the use of diffusion kernels gives a two-fold interpretation of cortical organization, one based
on the canonical idea of signal propagation, and one based on graph filtering. The former
gives a proxy for distance through measures of characteristic length of time that are required
for signals to traverse WM fiber bundles from one region of the cortex to another. Meanwhile,
interpreting the diffusion kernel as a graph filter translates to directly depicting physical dis-
tances that arise from the physical topology of the voxel-level brain grid. It has been shown
that the Laplacian eigenvectors or eigenmodes provide a basis or building blocks for represent-
ing cortical acitvity [Atasoy et al., 2016]. Recent findings also demonstrate that high-frequency
eigenmodes in region-wise graphs capture higher-level cognitive processes, while primary
sensory areas are expressed using mostly low-frequency components [Medaglia et al., 2018].
Similarly, low-values of 7 allows the use of higher-frequency components which outlines
local- and short-distance WM connectivity while high values of T express only low-frequency
components that are made up of the more global, long-distance tracts.

The use of graph diffusion models in neuroimaging have mostly been applied to clinical
studies. The first study utilized a random-walk graph diffusion model to demonstrate the use
of graph Laplacian eigenmodes in the context of activity propagation [Raj et al., 2012]. Their
model was able to predict distinct and persistent modes that recapitulate known patterns
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of dementia. This was later refined to obtain FC estimates based on SC [Abdelnour et al.,
2014], and to investigate the spread of hyperactivity in epilepsy [Abdelnour et al., 2015]. In
2017, the same group extended its application to quantifying the impact of various localized
white matter pathologies on cognition and behavior [Wang et al., 2017]. They observed that
the eigenmodes obtained from the anatomical connections of healthy subjects are strongly
conserved in contrast to the significant deviations observed for improperly developed brains.
Recently, the same model was leveraged to analytically demonstrate how functional brain
activity can be derived from SC Laplacian eigenspectra [Abdelnour et al., 2018]. All of these
works were implemented in region-wise graphs and were motivated by different research
questions. Nevertheless, these studies provide a strong foundation for incorporating graph
spectral approaches not only in bridging FC and SC, but also in its potential to understand the
progression of neurological and cognitive disorders. It is therefore a very promising avenue
for a more global approach in probing brain dynamics across different species and modalities.

Technical limitations and future perspectives

An obvious limitation of the study is the reliance on region-wise parcellations to investigate the
characteristic lengths of diffusion time in different areas of the brain. The use of parcellations
does not fully take advantage of the highly-resolved nature of the proposed voxel-level inter-
polated volumes. For future studies, it will be useful to evaluate more refined parcellations
consisting of up to 1000 regions, or an even better approach would be to extend the analysis to
voxel-level resolution. Lastly, an important aspect of this work that was not discussed further
is the structural mediation in different RSNs. Case by case investigation of the different WM
tracts that are implicated in their formation could be of interest. This could be especially
useful in identifying potential neuroplastic responses occurring in populations with brain
malformations [Owen et al., 2013].

6.2.5 Conclusion

We proposed a new framework that characterizes the anatomical range of functional network
interactions. Our findings demonstrate that the spatial ordering of large-scale functional
brain networks are not random, and follows an overarching organization that is constrained
by the anatomical substrate. This work is one of the first studies that leveraged recently
introduced voxel-wise connectomes, which expand the use of the GSP repertoire in the context
of functional brain imaging.
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In this PhD work, we have introduced three methodological developments that are useful for
combining diffusion and functional MRI data into a single integrated framework to analyze
the interplay between brain structure and function. Our main contributions are as follows:

1. We developed a novel design to construct voxel-wise brain graphs that encode local
structural connectivity from diffusion-weighted MRI. Using this approach, we provided
a direct and quantitative measure of how much information in functional MRI can be
captured by the global brain structure obtained using diffusion MRI.

2. We proposed a new framework that enables observing key white matter structures
that link temporally coherent gray matter regions. This allowed us to extract structure-
function networks that reveal the collective mediation of white matter pathways across
short and long-distance functional connections.

3. We advanced the state-of-the-art graph signal processing (GSP) methods for functional
brain imaging by extending region-wise analyses to voxel-level perspective, thereby
offering new research avenues for the joint analysis of brain structure and function. As a
first major application, we demonstrated how the anatomical range of functional net-
work interactions follow a behaviorally relevant macroscale gradient that differentiates
brain regions according to the complexity of their functional roles.

In addition to the above’s methodological contributions, we also characterized brain dynamics
through network-level representations of brain function during rest and across non-rapid eye
movement (NREM) sleep.

In what follows, we summarize our main findings and discuss potential future research direc-
tions.
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7.1 Summary of findings

Network-level representations of brain function during rest and sleep. We applied an ad-
vanced method that relies on transient brain activity (or moments of activity changes in the
BOLD activity) to uncover spatially and temporally overlapping large-scale functional brain
networks that occur during wakefulness and across NREM sleep. Our network-level repre-
sentations of brain function revealed new spatial patterns covering regions that support the
physiological organization of sleep and arousal. In particular, we observed visual-sensory areas
together with negative activations in the basal forebrain to predominate during wakefulness
and NREM stage 1. We also found evidence for changes in neocortical-cerebellar interactions
as a function of sleep depth. More generally, the persistence in time of individual brain maps
across different sleep stages was significantly altered. Finally, and most importantly, contrary
to previously observed strong functional dissociations that accompany the deepening sleep,
we instead observed a surge of network activity and cross-network interactions during NREM
stage 2, followed by an abrupt decrease of global network communication in NREM stage 3.
Thus, by providing a spatiotemporal yet parsimonious description of brain organization, we
were able to capture new features of information integration of consciousness during sleep,
and provide concrete evidence for the presence of unstable yet distributed global synchroniza-
tion in NREM stage 2. These results are in-line with previous literature on brain function in
different brain states, but also significantly advance current understanding of brain dynamics
across NREM sleep. We also explored how changes in brain dynamics can be reflected in terms
of their similarity to structural connectivity (SC) from DW-MRI. We observed that, as measures
of FC break down in NREM stage 3, its similarity with SC increases. This finding reproduces
previous work of [Tagliazucchi et al., 2016], demonstrating the persistence of primary and
sensorimotor regions to dominate NREM stage 3.

Dynamics of functional network organization revealed using methods from graph learn-
ing. Graphs are versatile representations of data. Typically, relationships between brain
regions are described with a graph structure that is predefined to be either structural or func-
tional connectivity. In this section, we applied, for the first time, a recently introduced Graph
Laplacian Mixture Model [Petric Maretic and Frossard, 2020] to extract meaningful repeating
network patterns in functional brain data. We observed that the probability of each network
to occur is consistent with the timings of the task paradigm, and the spatial patterns associ-
ated to each epoch are compatible with previously known implicated brain areas obtained
using classical regression analyses. We also observed that the extracted graph matrices show
high similarity with structure and that this FC-SC link gives a hint of behaviorally relevant
macroscale gradient that is consistent with previously observed cortical organization.

Voxel-wise structural brain graphs: design, construction, and application to fMRI. We have
extended the spatial resolution of our current analysis into a voxel-level perspective by in-
troducing a new method for jointly integrating brain structure and function. We proposed
two designs for constructing high-resolution voxel-level brain graphs based on diffusion ten-
sor imaging and diffusion orientation distribution functions. The graph edge weights are
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designed to encode the interplay between the orientation of diffusivity at each voxel and
its corresponding magnitude. Spectral analysis of the brain graphs’ Laplacian eigenspectra
reveals two important findings. First, we observed that despite the huge dimensionality of
the proposed brain graphs (e.g., 750,000 voxels), the majority of the structural information is
already captured by the Laplacian’s lowest frequency eigenmodes. Second, by computing the
energy spectral density of functional MRI during rest and task, we observed that about 85% of
the information content can also be well approximated by a small subset of low-frequency
components of the graph Laplacian spectra. This latter finding gives, for the first time, a direct
quantitative measure of the extent to which brain function is captured by the underlying
structure. Finally, we discussed the huge potential of the proposed technique not only in
characterizing brain structure at a high spatial resolution but more importantly in integrating
brain structure and function.

Structural mediation of gray matter activity. We bridged the gap between brain structure
and function by proposing a more integrated approach for observing the structural patterns
that are implicated in the formation of large-scale functional brain networks. Leveraging on the
proposed voxel-wise brain graph in the previous Chapter to guide the process, we interpolated
functional signals from the gray matter onto the white matter to obtain the structural links
that connect temporally coherent cortical areas. To do this, we utilized a graph signal recovery
(GSR) framework that minimizes a cost function which balances the solution between two
constraints: (1) retaining the gray matter signals fixed (i.e., ideally unchanged by the process)
and (2) making sure that the resulting signals are smoothed over the graph structure. We
found that the proposed framework successfully enabled the observation of key white matter
structures that link co-activating gray matter areas at a single-frame resolution. The result of
the interpolation is therefore a set of 4D fMRI volumes that also include interpolated white
matter activity. We performed a co-activation pattern (CAPs) analysis on the interpolated
data using the posterior cingulate cortex (PCC) as a seed, a key region of the default mode
network (DMN), to obtain time-varying functional connectivity maps. These patterns were
enriched through our approach by refining its field of view to include the WM structural
mediation of GM networks. The observed CAPs have distinct structure-function patterns,
each of which are differentially observed during tasks, demonstrating plausible structural
mechanisms that govern the functional switching of the brain between task-positive and
-negative DMN subsystems.

The anatomical range underneath cortical functional organization. We proposed a novel
framework that utilized a canonical model of graph signal diffusion to define the anatomical
range of functional network interactions. We investigated different diffusion time lengths
necessary for signals from the gray matter to be diffused entirely onto the white matter. This
diffusion time is taken to be proportional to the range of collective structural mediation of
temporally coherent gray matter areas. We observed that each region of the brain is character-
ized by different values of the anatomical range that is consistent with previously observed
white matter fiber lengths. Moreover, the meta-analysis conducted on the anatomical range of
functional network interactions reveals a behaviorally-relevant macroscale organization in
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the cortex that meaningfully differentiates brain regions associated to low-level and high-level
cognitive functions.

7.2 Outlook

7.2.1 Further applications to neuroscience

On the persistence of primary and sensorimotor networks to occur during NREM stage 3
and their relation to anatomy. It has previously been observed that the similarity between
FC and SC in primary sensory cortices increases during deep sleep, more than in wakeful-
ness [Tagliazucchi et al., 2016]. Meanwhile, higher-order associative cortices display the
opposite trend. These findings are well-in line with what observed. In particular, we have
shown in Section 3.2 through the normalized relative cumulated durations (RCD) of iCAPs,
that the primary and sensorimotor networks dominate activity during NREM stage 3, while
higher-order executive control and limbic networks displayed the least RCD. This order is
observed to completely opposite of the trend observed during wakefulness. Moreover, we
have also observed in Section 3.2.5 that FC is generally decreased while its correlation to SC
is increased in NREM stage 3. Taken together, these findings suggest that the brain retains
low-level information processing during the deep sleep and that functional connectivity in
regions essential for conscious processing breaks down.

An interesting next step would be to investigate whether we can observe these alterations in
SC-FC link by studying the structural mediation and the anatomical range of functional inter-
actions across the different NREM sleep stages. We already know from previous literature [Boly
etal., 2012] and from our own findings that long-ranged connectivity generally breaks down
with increasing sleep depth, e.g., decoupling of the DMN into posterior and anterior regions. It
would be interesting to confirm, following these prior findings, whether the overall anatomical
range of FC in the cortex should also decrease.

Dynamic FC analyses on interpolated volumes to reveal the structural mediation of well-
known resting-state networks. The interpolated white matter volumes entail additional
informative voxels that extend beyond the gray matter. It is therefore particularly interesting
to apply classical dynamic FC analyses [Preti et al., 2017] on these volumes, such as sliding-
window correlation, and independent component analysis [Beckmann et al., 2005], to be
able to probe functional brain dynamics at a much larger scale. For example, we presented
in Chapter 6 the 17 structure-function networks corresponding to the Yeo functional atlas,
each of which reveals key white matter structures that mediate the interactions of the regions
comprising these networks. Although it was presented, the characterization of different white
matter structures that are implicated in the formation of each network was not discussed
in detail. Just as how we have explored the mean signals of the interpolated co-activation
patterns (in-CAPs) within major white matter fiber bundles in Section 5.2.3, it would also
be interesting to identify which white matter tracks are largely recruited whenever a specific
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resting-state network is activated.

Applications of the developed methods to clinical populations. The proposed methodolo-
gies in this thesis altogether provide new research avenues for a deeper understanding of brain
structure and function, extending state-of-the-art graph harmonic approaches from region-
wise analysis [Atasoy et al., 2016] to a finer-grained voxel-level perspective. These methods
particularly open a promising perspective for investigations in patients with structural brain
deficits, as the need for cortical parcellation and tissue segmentation are eliminated. This
is also in light of the recent evidence that region-wise brain eigenmodes provide a compact
and robust representation of structure in health and disease [Wang et al., 2017]. A first step
towards this analysis is to characterize their brain graph’s Laplacian eigenspectra and use
scalar GSP measures (e.g. total variation) to delineate structural differences between the two
groups. More interestingly, applying the proposed white matter interpolation to subjects
born with brain malformations (e.g., callosal agenesis) but nevertheless display intact brain
function could be very beneficial in identifying neuroplastic responses occurring in the clinical
population.

Use of voxel-level brain graphs for individual fingerprinting and observing neuroplasticity
inlongitudinal data. The amount of structural variability observed in the lower-end spectra of
voxel-wise connectomes, as demonstrated in Chapter 4, suggests their potential in identifying
groups and individuals. Eigenvalues of voxel-wise graphs that encode cortical morphology
have been shown to provide distinguishable features that delineate gender and hemispherical
asymmetry [Maghsadhagh et al., 2019]. Identifying individuals through functional connec-
tomes [Finn et al., 2015, Amico and Goiii, 2018] has also recently been introduced to structural
connectomes [Mars et al., 2018]. Moreover, as voxel-wise brain graphs can be used to charac-
terize local voxel-to-voxel brain structure, it can also be used as a more targeted approach to
study neuroplasticity in longitudinal data.

Relationship of SC-FC link to behavior We have presented a new set of methodologies that
could be useful in integrating brain structure and function, and in our latest work on GSP
application discussed in Chapter 6, we have demonstrated that the anatomical range of FC
follows a behaviorally-relevant macroscale gradient. An important advance would be to
investigate whether various voxel-level GSP measures, such as the total variation and energy
content extracted from task and rest-state data, can be used as bio-markers for identifying not
only the individual task performance, but also their general behavioral profiles.

7.2.2 Methodological Extensions

Use of population-averaged group-level eigenmodes to define the graph Fourier basis for
future GSP analyses. The biggest limitation in our work was the lack of diffusion data that
could complement our analyses of brain dynamics during sleep. It would be interesting to
explore the structural mediation of human brain activity also in different brain states. Without
diffusion data, however, this can not be done. The next advance would be to determine
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whether high-resolution population-averaged eigenmodes extracted in Chapter 4 from the
HCP data retain enough local structural information to be able to perform GSP operations on
available fMRI data that lack complementary diffusion data.

Improving white matter BOLD activity via graph signal recovery. Recently, more and more
studies have started to demonstrate the possibility of capturing functionally relevant infor-
mation from the white matter BOLD [Peer et al., 2017, Ding et al., 2018]. This is particularly
interesting in light of the controversy surrounding white matter BOLD activity [Logothetis and
Wandell, 2004, Gawryluk et al., 2014], which is in part, due to the well-established differences
in hemodynamic responses of gray matter and white matter [Fraser et al., 2012]. An interest-
ing extension of our proposed white matter interpolation of fMRI would be to recover weak
signals in the white matter. At its current form, the proposed graph signal recovery framework
removes all white matter BOLD contributions and retains only the gray matter signals fixed.
We can therefore redefine the cost function to include also the original white matter signals.

On the interpretation of graph diffusion as graph filter. The interpretation of the use of
graph diffusion to delineate short- and long-ranged functional connections is two-fold. First,
as a canonical model of signal diffusion, distance can be interpreted as proportional to the
time it takes for implicated white matter structures to link temporally coherent gray matter
areas. Second, in the context of GSP, the graph diffusion essentially acts as a low-pass filter,
where the filter is equivalent to a decaying exponential parameterized by the diffusion time.
Recall that in Chapter 4, we demonstrated that the low-frequency eigenmodes of the Laplacian
matrix capture global structural connectivity, whereas high-frequency components capture
local, and finer-grained connectivity. Therefore, high-values of diffusion time translates to
attenuating high-frequency components and consequently capturing only long-distance
white matter structures that link more distant functional connections. Therefore, a potential
extension of the work would be to interpret the diffusion kernel and identify the optimal
diffusion parameter (equivalent to the average of the ones we observed in Chapter 6) as a
low-pass filter. Accordingly, we can then also obtain its complementary high-pass filter to be
able to assess not only the spatial patterns that are composed of low-frequency components,
but also those that are mostly retaining local and more fine-grained information.
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A.1 Supplementary Materials for Section 3.1
A.1.1 Materials and Methods

Dataset number 1: Sustained sleep experiment

The experimental protocol involved three main phases that were recorded on different days.
The first phase was the recording of the structural volumes. The second phase was done in a
different session (about 5-7 days later), where subjects were asked to play a face recognition
and maze recognition games. After the recording, subjects were taken outside the scanner,
were allowed to rest, walk, and eat. At 10 p.m, the subjects were asked to go back to the scanner
and were instructed to fall asleep. All participants except for two people were able to sleep.
Thirteen participants were able to reach deep sleep (stage N3). The third phase is the memory
test phase, wherein participants were asked to perform two days later a memory test assessing
their memory for elements of the face and maze games. For the purpose of this work, we limit
our study to the sleep session, taking only the recordings when subjects were asked to sleep
inside the scanner. The maze and face recordings, as well as the memory tests results will not
be included in the analysis.

EEG was recorded in the scanner room simultaneously with fMRI acquisition. The EEG setup
included a 64 channels MRI-compatible EEG cap (BrainCapMR ; EASYCAP GmbH, Ammersee,
Germany, with 64 ring-type electrodes), two pairs of ECG, horizontal and vertical EOG, and 1
pair of chin EMG (BrainAmp MR plus; Brain Products GmbH, Gilching, Germany). The EEG
signal was referenced online to FCz. Electrode-skin impedance was kept under 10 kohms,
in addition to the 5-kohm built-in electrode resistance. The EEG signal was digitized at a
5000 Hz sampling rate with 500 nV resolution. Data were analog-filtered by a band-limiting
low-pass filter at 250 Hz (30 dB per octave) and a high-pass filter with a 10 s time constant
corresponding to a high-pass frequency of 0.0159 Hz.
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Dataset number 2: Sleep onset experiment

Ten healthy subjects (4 female) aged 18-30 underwent simultaneous EEG-fMRI recording. All
subjects have no history of neurological or psychiatric disease, have declared no previous or
current use of psychoactive drugs, and are non-smokers. All participants were allowed to sleep
up to 20 minutes inside the MRI scanner. Once Stage 1 sleep was established, participants
were awoken and were asked to report what they could remember prior to awakening. Verbal
responses were digitally recorded for later transcription.

The preprocessing of the fMRI volumes follow the same standard pre-processing protocol used
in the sustained sleep dataset. Functional volumes underwent realignment and co-registration,
followed by the regression of 11 parameters (white matter, cerebrospinal fluid, 6 motion
parameters, constant, linear, and quadratic drifts). The first 10 volumes were also discarded to
achieve steady-state magnetization of the fMRI data. After which, the co-registered T1 images
were segmented to obtain probabilistic gray matter mask, thresholded at 0.3.

Deconvolution of fMRI signal via Total Activation

The total activation (TA) framework is the process of deconvolving fMRI time series to detect
time points where there are significant changes in brain activity. Fig. SI 1 illustrates the
TA framework. At each voxel i, fMRI signals y(i, f) are modelled as a block-like activation
activity-inducing signal u(i, t) convolved with the hemodynamic response function k(t), and
corrupted by a Gaussian noise (i, £):

Yy, 1) =h(t) = u(i,t) +e(, 1) (A.1)

The denoised fMRI signal, also called herewith as activity-related signal x(i, f) (or in matrix
form X), is obtained by running a combined spatial and temporal regularization that aims to
minimize the following cost function:

- 1
X:argminéllY—XII%+RT(X)+R5(X). (A.2)

The temporal and spatial regularization are given by the following terms:

(N;) (Ny)
RrX)= Y Ar(i) ) IAX(,)|
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where A = ApAp, combines the deconvolution and the differentiation operation, and Az
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defines the 3D second-order difference operator. The spatial and temporal regularization
parameters are given by the Ag and A7, respectively. N; and N; denote the total number of
voxels and timepoints, while S(i) denote all voxels in the neighborhood of voxel i. For more
details about the implementation of the TA paradigm, we refer to [Karahanoglu et al., 2013]
and [Farouj et al., 2017], respectively.

A. Total Activation (TA) applied to fMRI data

i) | i) At utit) uit)
spatio-tempora L
regu\amzat\on : derivative

noisy fMRI data denoised fMRI data hrf activity -inducing signal innovations signals

B. Innovation-driven co-activation patterns (iCAPs) extracted from innovation signals

1. Temporal thresho\dmg 2. Spatial thresholding Temporal clustering
' cut-off threshold
sparse innovation signals cut-off obtained using frames with at least 5% GM all remaining frames are
undergo two-step thresholding phase-randomized data neighboring voxels are kept clustered using k-means

Figure A.1 — Methodological pipeline of TA-iCAPs.(A) Noisy fMRI time-courses are denoised
using a combined spatio-temporal regularization, followed by a deconvolution from the
HREF to obtain block-type activity inducing signals, which is then differentiated to get sparse
innovation signals. (B) The resulting innovation signals undergo a two-step thresholding
(spatial and temporal), and the remaining frames undergo temporal clustering to extract the
iCAPs.

Extraction of innovation-driven co-activation patterns (iCAPs)

After running TA, we extract the sparse innovation signals, us(i, t) by computing the temporal
derivative of the activity-inducing signals u(i,t), taking only a fraction across brain volumes
following a two-step thresholding procedure described in Fig. A.1. The same dataset under-
goes phase-randomization, from which we extract the cut-off threshold using the lowest 5th
and highest 95th percentile of its corresponding innovation signal. Following the temporal
thresholding, we take frames with at least 5% of the total number of gray matter voxels to
undergo temporal clustering using k-means. The resulting maps, termed innovation-driven
co-activation patterns (iCAPs) are shown in Fig. 2. For the details of the iCAPs extraction, we
refer to [Karahanoglu and Van De Ville, 2015].
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Temporal Characteristics of iCAPs

Finally, iCAP time-courses for each subject are computed using transient-informed spatio-
temporal back-projection of the iCAP maps onto the activity-inducing signals [Zoller et al.,
2019]. The clustering of the innovation signals or the transient points for which we observe
changes in neural activity allows for extraction of spatially and temporally overlapping spatial
maps. This characteristic gives rise to dynamically rich repertoire of functional states, each of
which can be explored to observe iCAP-specific temporal characteristics.

The relative total duration pertains to the number of active timepoints in the iCAPs time-
courses divided by the length of time that the subject lingered in a particular sleep stage. This
measure pertains to how long an iCAP appears in each sleep stage.

Figure A.2 — Consensus clustering matrices for different cluster values K = {10,11,12, ...,25}.
Values in the matrix range from 0 to 1, which indicate the reproducibility of the sampling
across multiple runs, with 1 being perfectly re-sampled at all times. We chose K= 17 based on
visual inspection and the consensus quality measures displayed in Fig. A.3.
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Finding the optimal number of clusters

We used consensus clustering [Monti et al., 2003] to obtain the optimal number of clusters in
the concatenated significant innovation frames. The method involved subsampling of the data
and multiple runs of the clustering algorithm. The consistency of each frame to be grouped
in a similar cluster is monitored through a consensus metric. Fig. SI 2 shows the consensus
clustering matrices for all K values evaluated. The cumulative distribution of this metric is
displayed in Fig. A.3. We chose K = 17 to be the optimal number of clusters by visual inspection
of the clustering matrices, in addition to the shape of the cumulative distributions, and the
trend of their corresponding area under the curve (AUC).

Table A.1 —iCAPs functional networks corresponding to the Greicius atlas [Shirer et al., 2012]
and regions in the automated anatomical labeling atlas [Tzourio-Mazoyer et al., 2002]. Per-
centiles indicate the fraction of voxels belonging to a network or region that has a z-score > 1.5.
Only networks and regions that have at least 20% surviving percentile are included in the list.
iCAP 6 is not included due to the excluded cerebellum in Greicius atlas. Specific regions that
are not part of the cerebellum but are co-activated with iCAP 10 (anterior cerebellum) are
included

iCAP | Greicius network ( %) AAL Lobe AAL Region (%) z-score | voxels
1 Primary Visual (93.12 %) Occipital Cuneus L (83.29 %) 2.35 289
Higher Visual (41.53 %) Occipital Calcarine L (72.69 %) 241 386
Ventral DMN (41.06 %) Occipital Cuneus R (70.96 %) 2.28 259
Precuneus (38.27 %) Occipital Calcarine R (70.33 %) 2.48 294
Occipital Occipital Mid R (53.62 %) 1.99 252
Occipital Lingual R (50.94 %) 2.17 271
Occipital Occipital Inf L (49.77 %) 2.07 110
Occipital Occipital Sup L (48.02 %) 2.03 121
Occipital Occipital Mid L (47.02 %) 2.1 363
Occipital Lingual L (46.35 %) 2.15 254
Occipital Occipital Inf R (44.66 %) 2.03 113
Parietal Precuneus R (42.88 %) 2.04 304
Parietal Precuneus L (39.09 %) 2.02 310
Occipital Occipital Sup R (38.25 %) 1.92 109
Parietal Paracentral Lobule R (25.95 %) 1.8 34
Temporal Temporal Sup L (21.65 %) 1.78 118
Occipital Fusiform R (20.11 %) 2 142
2 Auditory (77.31 %) Temporal Heschl R (98.41 %) 2.15 62
Basal Ganglia (52.46 %) Limbic Insula R (96.03 %) 3.12 435
Anterior Salience (41.40 %) Limbic Insula L (93.74 %) 2.89 464
Posterior Salience (23.94 %) | Temporal Heschl L (89.86 %) 1.98 62
Central Rolandic Oper L (86.75 %) 2.23 216
Central Rolandic Oper R (86.52 %) 2.23 276
Subcortical | Putamen R (86.42 %) 2.29 210
Frontal Frontal Inf Tri R (81.98 %) 2.17 314
Subcortical | Putamen L (77.69 %) 2.18 188
Frontal Frontal Inf Oper R (77.27 %) 2.51 238
Frontal Frontal Inf Oper L (75.69 %) 2.19 165
Subcortical | Pallidum R (75.00 %) 2.01 9
Frontal Frontal Inf Tri L (49.48 %) 2.04 239
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Temporal Temporal Sup L (47.71 %) 1.93 260
Limbic Cingulum Ant R (44.21 %) 1.74 149
Subcortical | Pallidum L (43.48 %) 1.96 10
Frontal Frontal Inf Orb R (40.23 %) 2.09 138
Temporal Temporal Pole Sup R (38.46 %) 2.1 95
Limbic Cingulum Ant L (37.53 %) 1.68 137
Temporal Temporal Sup R (32.11 %) 1.94 228
Subcortical | Thalamus R (27.50 %) 1.63 44
Temporal Temporal Pole Sup L (27.27 %) 2.03 63
Frontal Frontal Inf Orb L (23.97 %) 2.09 93
Parietal SupraMarginal R (23.13 %) 1.69 102
Limbic Cingulum Mid R (22.46 %) 1.82 117
Limbic Amygdala R (21.88 %) 1.69 14
3 Dorsal DMN (76.38 %) Frontal Frontal Sup Orb Medial L (96.39 %) | 3.51 160
Anterior Salience (35.23 %) | Frontal Frontal Sup Medial L (91.98 %) 3.27 436
Frontal Frontal Sup Orb Medial R (91.20 %) | 3.46 197
Frontal Frontal Sup Medial R (91.08 %) 3.14 398
Limbic Cingulum Ant R (90.21 %) 3.57 304
Limbic Cingulum Ant L (89.86 %) 3.61 328
Limbic Cingulum Post L (59.30 %) 1.9 51
Frontal Frontal Sup L (57.89 %) 2.3 356
Frontal Frontal Sup R (49.35 %) 2.25 344
Limbic Cingulum Post R (39.39 %) 1.94 13
Frontal Rectus L (35.62 %) 2.37 78
Frontal Frontal Mid L (29.92 %) 1.92 289
Frontal Rectus R (28.80 %) 241 55
Frontal Frontal Sup Orb R (24.48 %) 1.85 59
Frontal Frontal Sup Orb L (24.44 %) 1.9 55
Parietal Angular L (23.59 %) 1.7 67
Limbic Cingulum Mid R (20.73 %) 2.05 108
4 Left ECN (85.35 %) Frontal Frontal Inf Tri L (94.62 %) 3.5 457
Language (51.24 %) Parietal Angular L (93.31 %) 2.79 265
Visuospatial (31.20 %) Frontal Frontal Inf Oper L (89.91 %) 3.32 196
Anterior Salience (24.77 %) | Frontal Frontal Mid L (81.37 %) 2.6 786
Parietal Parietal Inf L (66.50 %) 2.69 397
Frontal Frontal Sup L (59.84 %) 2.12 368
Frontal Frontal Inf Orb L (47.16 %) 2.61 183
Frontal Precentral L (43.59 %) 3.2 245
Frontal Frontal Sup Medial L (41.98 %) 2.25 199
Temporal Temporal Mid L (39.00 %) 2.05 454
Frontal Frontal Mid Orb L (33.85 %) 2.67 66
Frontal Supp Motor Area L (33.03 %) 2.4 143
Parietal Parietal Sup L (20.24 %) 2.29 86
5 Higher Visual (100.00 %) Occipital Occipital Inf R (100.00 %) 3.56 253
Occipital Occipital Inf L (93.21 %) 3.19 206
Occipital Occipital Sup R (84.56 %) 2.83 241
Occipital Occipital Mid R (81.49 %) 3.63 383
Occipital Occipital Mid L (77.46 %) 3.49 598
Occipital Occipital Sup L (76.19 %) 2.69 192
Occipital Lingual R (46.62 %) 2.48 248
Occipital Calcarine L (46.14 %) 2.5 245
Occipital Cuneus R (44.93 %) 2.19 164
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Occipital Lingual L (39.60 %) 2.58 217
Occipital Cuneus L (38.90 %) 2.12 135
Occipital Calcarine R (34.21 %) 2.69 143
Occipital Fusiform R (30.31 %) 2.4 214
Occipital Fusiform L (22.10 %) 2.48 143
Right ECN (67.49 %) Frontal Frontal Mid R (89.34 %) 3.05 964
Precuneus (25.98 %) Parietal Angular R (81.94 %) 2.96 295
Posterior Salience (23.67 %) | Parietal Parietal Inf R (79.42 %) 3.7 274
Left ECN (23.12 %) Frontal Frontal Mid Orb R (71.09 %) 2.66 150
Anterior Salience (21.15 %) Frontal Frontal Inf Tri R (69.19 %) 2.37 265
Frontal Frontal Sup R (64.56 %) 2.41 450
Frontal Frontal Inf Oper R (62.01 %) 2.28 191
Frontal Frontal Sup Medial R (43.02 %) 2.19 188
Parietal SupraMarginal R (36.05 %) 2.76 159
Frontal Frontal Inf Orb R (34.69 %) 2.38 119
Frontal Frontal Sup Orb R (29.05 %) 2.55 70
Parietal Parietal Inf L (28.48 %) 1.99 170
Limbic Cingulum Ant R (27.30 %) 1.91 92
Limbic Cingulum Mid R (25.53 %) 2 133
Frontal Frontal Mid Orb L (23.59 %) 1.95 46
Parietal Angular L (23.24 %) 1.84 66
Auditory (94.91 %) Temporal Heschl L (100.00 %) 3.13 69
Posterior Salience (45.88 %) | Temporal Heschl R (100.00 %) 3.48 63
Sensorimotor (28.50 %) Central Rolandic Oper R (96.87 %) 3.35 309
Central Rolandic Oper L (94.78 %) 2.8 236
Parietal SupraMarginal L (74.56 %) 2.6 214
Temporal Temporal Sup L (72.48 %) 2.69 395
Parietal Postcentral L (59.46 %) 3.38 396
Temporal Temporal Sup R (57.61 %) 2.74 409
Parietal SupraMarginal R (57.60 %) 2,97 254
Parietal Postcentral R (51.89 %) 3.38 343
Frontal Precentral R (47.22 %) 2.58 246
Limbic Insula R (46.36 %) 2.39 210
Limbic Insula L (33.33 %) 2.29 165
Frontal Precentral L (22.60 %) 2.44 127
Frontal Rectus L (100.00 %) 3.13 219
Frontal Rectus R (100.00 %) 3.05 191
Frontal Olfactory R (97.30 %) 2.7 72
Frontal Olfactory L (96.00 %) 2.81 72
Temporal Temporal Pole Mid L (94.84 %) 2.33 147
Frontal Frontal Sup Orb L (94.22 %) 2.47 212
Frontal Frontal Sup Orb R (94.19 %) 2.5 227
Temporal Temporal Pole Mid R (90.87 %) 2.04 189
Limbic Amygdala L (89.66 %) 2.07 52
Frontal Frontal Sup Orb Medial L (87.35 %) | 2.12 145
Frontal Frontal Mid Orb R (86.73 %) 2.54 183
Frontal Frontal Inf Orb L (86.34 %) 2.44 335
Limbic Amygdala R (85.94 %) 1.94 55
Frontal Frontal Mid Orb L (84.62 %) 2.49 165
Temporal Temporal Pole Sup L (82.68 %) 2.17 191
Frontal Frontal Sup Orb Medial R (81.48 %) | 2.13 176
Frontal Frontal Inf Orb R (76.68 %) 2.3 263

145




Appendix A. Supplementary Material for Chapter 3

146

Temporal Temporal Pole Sup R (75.71 %) 2.03 187
Limbic ParaHippocampal R (69.61 %) 1.98 197
Limbic ParaHippocampal L (69.39 %) 2.03 170
Temporal Temporal Inf L (55.67 %) 1.86 447
Limbic Hippocampus L (53.60 %) 2.03 119
Limbic Hippocampus R (48.23 %) 1.88 109
Temporal Temporal Inf R (46.24 %) 1.81 406
Subcortical | Caudate L (37.43 %) 2.17 70
Subcortical | Caudate R (36.04 %) 2.13 71
Occipital Fusiform L (31.22 %) 1.84 202
Occipital Fusiform R (29.18 %) 1.75 206
Temporal Temporal Mid L (25.26 %) 1.85 294
10 Sensorimotor (50.65 %) Occipital Fusiform R (59.07 %) 2.55 417
Occipital Fusiform L (54.71 %) 2.34 354
Occipital Lingual R (41.92 %) 2.22 223
Occipital Lingual L (39.42 %) 2.19 216
Limbic ParaHippocampal R (27.56 %) 2.13 78
Limbic ParaHippocampal L (24.90 %) 1.91 61
11 Precuneus (84.88 %) Parietal Angular L (97.89 %) 2.86 278
Ventral DMN (50.52 %) Limbic Cingulum Post L (97.67 %) 4.71 84
Left ECN (30.98 %) Limbic Cingulum Post R (93.94 %) 4.28 31
Dorsal DMN (26.26 %) Parietal Angular R (88.61 %) 2.82 319
Language (23.04 %) Parietal Precuneus R (72.78 %) 3.84 516
Parietal Precuneus L (64.82 %) 4.13 514
Parietal Parietal Inf R (33.62 %) 2.32 116
Occipital Cuneus L (32.85 %) 2.83 114
Limbic Cingulum Mid L (30.71 %) 3.1 156
Limbic Cingulum Mid R (24.95 %) 3.51 130
Occipital Cuneus R (24.38 %) 2.29 89
Parietal Parietal InfL (21.44 %) 2.18 128
12 Language (74.17 %) Parietal Angular L (86.97 %) 2.68 247
Auditory (51.16 %) Temporal Temporal Sup R (82.68 %) 3.14 587
Posterior Salience (24.87 %) | Temporal Temporal Mid R (82.56 %) 3.11 876
Temporal Temporal Mid L (77.23 %) 3.05 899
Temporal Temporal Sup L (66.06 %) 2.35 360
Parietal Angular R (62.22 %) 2.8 224
Parietal SupraMarginal L (37.98 %) 2.44 109
Parietal SupraMarginal R (31.29 %) 2.51 138
Parietal Parietal Inf R (21.45 %) 2.11 74
13 Primary Visual (100.00 %) Occipital Cuneus L (97.69 %) 3.82 339
Precuneus (60.79 %) Occipital Cuneus R (89.32 %) 3.63 326
Ventral DMN (24.59 %) Occipital Calcarine R (81.10 %) 4.06 339
Occipital Calcarine L (68.55 %) 4.05 364
Occipital Lingual R (56.95 %) 3.06 303
Occipital Lingual L (49.82 %) 2.88 273
Parietal Precuneus R (48.94 %) 2.88 347
Parietal Precuneus L (36.19 %) 2.68 287
Occipital Occipital Sup L (34.13 %) 2.31 86
Limbic Cingulum Post L (31.40 %) 1.74 27
Occipital Occipital Sup R (22.46 %) 1.93 64
Limbic Cingulum Post R (21.21 %) 1.64 7
14 Primary Visual (100.00 %) Occipital Calcarine L (90.96 %) 3.83 483
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Higher Visual (48.91 %) Occipital Calcarine R (88.52 %) 3.98 370
Occipital Cuneus R (85.75 %) 3.28 313
Occipital Cuneus L (83.57 %) 3.58 290
Occipital Lingual R (81.39 %) 2.96 433
Occipital Occipital Sup L (71.83 %) 2.73 181
Occipital Lingual L (67.15 %) 3.04 368
Occipital Occipital Sup R (61.75 %) 2.88 176
Occipital Occipital Mid R (37.66 %) 1.91 177
Occipital Occipital Mid L (29.27 %) 1.95 226
15 Precuneus (59.84 %) Parietal Parietal Sup L (87.76 %) 3.88 373
Visuospatial (47.29 %) Parietel Parietal Sup R (86.87 %) 3.58 311
Ventral DMN (43.44 %) Parietal Parietal Inf R (82.61 %) 2.85 285
Left ECN (27.89 %) Parietal Parietal InfL (71.86 %) 3 429
Parietal Angular R (53.61 %) 3.21 193
Occipital Occipital Sup R (48.07 %) 3.67 137
Occipital Occipital Sup L (47.22 %) 2.8 119
Parietal Precuneus L (46.53 %) 2.75 369
Occipital Occipital Mid R (44.68 %) 2.6 210
Parietal Precuneus R (41.75 %) 2.61 296
Occipital Occipital Mid L (32.38 %) 2.56 250
Parietal Angular L (30.99 %) 2.1 88
16 Sensorimotor (34.46 %) Parietal Paracentral Lobule L (100.00 %) 4.42 166
Anterior Salience (32.92 %) Parietal Paracentral Lobule R (100.00 %) 4.37 131
Frontal Supp Motor Area R (86.04 %) 3.59 413
Limbic Cingulum Mid L (78.74 %) 2.87 400
Frontal Supp Motor Area L (75.98 %) 3.25 329
Limbic Cingulum Mid R (67.37 %) 2.99 351
Frontal Precentral R (36.08 %) 2.37 188
Parietal Postcentral R (33.13 %) 2.73 219
Parietal Postcentral L (29.58 %) 2.32 197
Parietal Precuneus L (27.99 %) 3.02 222
Frontal Precentral L (25.98 %) 2.39 146
Frontal Frontal Sup R (25.68 %) 2.33 179
Parietal Precuneus R (23.55 %) 2.61 167
Parietel Parietal Sup R (20.11 %) 2.21 72
17 Visuospatial (58.76 %) Parietel Parietal Sup R (76.26 %) 3.01 273
Posterior Salience (51.33 %) | Parietal Postcentral R (68.68 %) 3.83 454
Sensorimotor (34.46 %) Parietal SupraMarginal R (64.85 %) 2.79 286
Parietal Parietal Sup L (64.00 %) 2.96 272
Parietal Parietal Inf L (60.80 %) 3.39 363
Parietal Postcentral L (59.46 %) 3.28 396
Parietal Parietal Inf R (55.36 %) 3.43 191
Parietal SupraMarginal L (47.39 %) 2.75 136
Frontal Precentral R (45.87 %) 2.26 239
Frontal Precentral L (40.21 %) 2.23 226
Frontal Frontal Sup R (20.66 %) 2.28 144
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A. Cummulative Distribution Function (CDF) B. Area under the curve (AUC)
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Figure A.3 — Consensus quality metrics. The (A) cumulative distribution function (CDF)
indicates the extent to which the consensus matrix distribution is skewed toward 0 and 1, with
aflat line being the ideal shape (i.e., 0 means two frames are never clustered together while 1
means frames are always clustered together). The (B) area under the curve (AUC) of the CDF
and the change in AUC displays the optimal number of cluster K to which there is minimal
increase in the AUC. Finally, the (C) clustering consensus gives a measure of the stability of
the observed iCAPs with respect to different K over multiple runs of the clustering; K = 17
shows the highest cluster consensus. Using all these three consensus quality metrics, we chose
K =17 as the optimal number of clusters.

Table A.2 — Test statistics corresponding to Figure 3 (A) and (C) of the main manuscript. Results
from two-sample paired t-tests and 1000 rounds of permutation testing. We compared iCAPs
RCD and average durations across different sleep stages. Effect size corresponds to Cohen’s d
statistic.
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iCAP Wake-N1 | Wake-N2 | Wake-N3 | N1-N2 | N1-N3 | N2-N3

1. visual-sensory

RCD t-statistic | -3.92 -6.22 1.69 -2.3 5.61 7.91
p-value 0.357 0.154 0.715 0.511 0.122 0.025
Effect-size | -0.34 -0.57 0.15 -0.25 0.6 0.88

average durations t-statistic -3.92 -6.22 1.69 -2.3 5.61 7.91
p-value 0.357 0.154 0.715 0.511 0.122 0.025
Effect-size | -0.34 -0.57 0.15 -0.25 0.6 0.88

2. insula/thalamus

RCD t-statistic | -0.01 -7.8 7.99 -7.79 8 15.79
p-value 0.999 0.011 0.031 0.031 0.042 0.002
Effect-size | 0 -1.01 0.92 -0.87 0.8 1.71

average durations t-statistic -0.01 -7.8 7.99 -7.79 8 15.79
p-value 0.999 0.011 0.031 0.031 0.042 0.002
Effect-size | 0 -1.01 0.92 -0.87 0.8 1.71

3. anterior DMN

RCD t-statistic | 6.97 1.79 15.63 -5.17 8.66 13.83
p-value 0.07 0.581 0.001 0.063 0.009 0.001
Effect-size | 0.74 0.23 1.81 -0.73 1.1 2.21

average durations t-statistic 6.97 1.79 15.63 -5.17 8.66 13.83
p-value 0.07 0.581 0.001 0.063 0.009 0.001
Effect-size | 0.74 0.23 1.81 -0.73 1.1 2.21

4. left ECN

RCD t-statistic | 4.4 3.68 15.34 -0.73 10.94 11.66
p-value 0.16 0.119 0.001 0.761 0.002 0.001
Effect-size | 0.51 0.66 1.91 -0.12 1.31 2.25

average durations t-statistic 4.4 3.68 15.34 -0.73 10.94 11.66
p-value 0.16 0.119 0.001 0.761 0.002 0.001
Effect-size | 0.51 0.66 1.91 -0.12 1.31 2.25

5. secondary visual

RCD t-statistic | -5.79 -6.72 -2.34 -0.93 3.44 4.38
p-value 0.103 0.005 0.364 0.797 0.354 0.139
Effect-size | -0.74 -1.23 -0.36 -0.11 0.35 0.59

average durations t-statistic -5.79 -6.72 -2.34 -0.93 3.44 4.38
p-value 0.103 0.005 0.364 0.797 0.354 0.139
Effect-size | -0.74 -1.23 -0.36 -0.11 0.35 0.59

6. posterior CEB

RCD t-statistic | -0.21 2.76 7.88 2.97 8.09 5.12
p-value 0.951 0.356 0.002 0.344 0.008 0.016
Effect-size | -0.02 0.4 1.15 0.41 1.12 1.02

average durations t-statistic -0.21 2.76 7.88 2,97 8.09 5.12
p-value 0.951 0.356 0.002 0.344 0.008 0.016
Effect-size | -0.02 0.4 1.15 0.41 1.12 1.02

7. right ECN

RCD t-statistic | 5.45 3.64 18.2 -1.81 12.75 14.56
p-value 0.082 0.22 0.001 0.316 0.001 0.001
Effect-size | 0.71 0.55 2.03 -0.39 1.84 2.47

average durations t-statistic 5.45 3.64 18.2 -1.81 12.75 14.56
p-value 0.082 0.22 0.001 0.316 0.001 0.001
Effect-size | 0.71 0.55 2.03 -0.39 1.84 2.47

8. auditory/motor
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RCD t-statistic | -2.07 -7.61 -2.68 -5.54 -0.61 4.93
p-value 0.308 0.003 0.22 0.034 0.804 0.069
Effect-size | -0.39 -1.31 -0.48 -0.86 -0.1 0.73

average durations t-statistic -2.07 -7.61 -2.68 -5.54 -0.61 4.93
p-value 0.308 0.003 0.22 0.034 0.804 0.069
Effect-size | -0.39 -1.31 -0.48 -0.86 -0.1 0.73

9. amygdala/OFC

RCD t-statistic | 0.48 -2.06 7.45 -2.54 6.97 9.51
p-value 0.885 0.552 0.022 0.481 0.03 0.001
Effect-size | 0.05 -0.23 0.89 -0.29 0.86 1.25

average durations t-statistic | 0.48 -2.06 7.45 -2.54 6.97 9.51
p-value 0.885 0.552 0.022 0.481 0.03 0.001
Effect-size | 0.05 -0.23 0.89 -0.29 0.86 1.25

10. anterior CEB

RCD t-statistic 1.09 -2.28 7.46 -3.38 6.36 9.74
p-value 0.784 0.501 0.024 0.38 0.089 0.004
Effect-size | 0.11 -0.26 0.93 -0.34 0.7 1.18

average durations t-statistic 1.09 -2.28 7.46 -3.38 6.36 9.74
p-value 0.784 0.501 0.024 0.38 0.089 0.004
Effect-size | 0.11 -0.26 0.93 -0.34 0.7 1.18

11. posterior DMN

RCD t-statistic 0.62 -5.07 -2.82 -5.69 -3.44 2.25
p-value 0.769 0.012 0.151 0.006 0.108 0.284
Effect-size | 0.12 -1.01 -0.56 -1.06 -0.63 0.43

average durations t-statistic 0.62 -5.07 -2.82 -5.69 -3.44 2.25
p-value 0.769 0.012 0.151 0.006 0.108 0.284
Effect-size | 0.12 -1.01 -0.56 -1.06 -0.63 0.43

12. language

RCD t-statistic | -1.89 -11.53 -4.09 -9.65 -2.2 7.44
p-value 0.532 0.002 0.217 0.009 0.581 0.05
Effect-size | -0.25 -1.49 -0.49 -1.09 -0.24 0.79

average durations t-statistic -1.89 -11.53 -4.09 -9.65 -2.2 7.44
p-value 0.532 0.002 0.217 0.009 0.581 0.05
Effect-size | -0.25 -1.49 -0.49 -1.09 -0.24 0.79

13. precuneus

RCD t-statistic | -4.84 -7.15 -4.1 -2.31 0.74 3.05
p-value 0.13 0.036 0.14 0.516 0.79 0.356
Effect-size | -0.58 -0.83 -0.59 -0.25 0.1 0.38

average durations t-statistic -4.84 -7.15 -4.1 -2.31 0.74 3.05
p-value 0.13 0.036 0.14 0.516 0.79 0.356
Effect-size | -0.58 -0.83 -0.59 -0.25 0.1 0.38

14. primary visual

RCD t-statistic | -5.75 -8.57 -6.23 -2.82 -0.48 2.34
p-value 0.025 0.002 0.008 0.313 0.839 0.343
Effect-size | -0.89 -1.69 -1.11 -0.41 -0.06 0.39

average durations t-statistic -5.75 -8.57 -6.23 -2.82 -0.48 2.34
p-value 0.025 0.002 0.008 0.313 0.839 0.343
Effect-size | -0.89 -1.69 -1.11 -0.41 -0.06 0.39

15. visuospatial

RCD t-statistic | 0.75 -4.59 -0.04 -5.34 -0.79 4.55
p-value 0.834 0.059 0.986 0.049 0.833 0.032
Effect-size | 0.09 -0.79 -0.01 -0.8 -0.11 0.87
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average durations t-statistic 0.75 -4.59 -0.04 -5.34 -0.79 4.55
p-value 0.834 0.059 0.986 0.049 0.833 0.032
Effect-size | 0.09 -0.79 -0.01 -0.8 -0.11 0.87

16. sensorimotor

RCD t-statistic -0.74 -14.78 -9.18 -14.04 | -8.44 5.6
p-value 0.743 0.001 0.001 0.002 0.002 0.163
Effect-size | -0.14 -1.71 -1.43 -1.62 -1.32 0.57

average durations t-statistic -0.74 -14.78 -9.18 -14.04 | -8.44 5.6
p-value 0.743 0.001 0.001 0.002 0.002 0.163
Effect-size | -0.14 -1.71 -1.43 -1.62 -1.32 0.57

17. somatosensory

RCD t-statistic -0.37 -7.53 -3.03 -7.15 -2.66 4.49
p-value 0.854 0.004 0.228 0.014 0.355 0.107
Effect-size | -0.06 -1.24 -0.47 -1.03 -0.36 0.62

average durations t-statistic -0.37 -7.53 -3.03 -7.15 -2.66 4.49
p-value 0.854 0.004 0.228 0.014 0.355 0.107
Effect-size | -0.06 -1.24 -0.47 -1.03 -0.36 0.62

Table A.3 — Test statistics corresponding to Figure 4(A) of the main manuscript in Chapter
3.2. Results from ANOVA and the corrected p-values after multiple comparison test. Asterisks
mark p-values less than 0.05.

N | F-statistic | Prob >F | Wake - N1 | Wake - N2 | WAKE-N3 | N1-N2 | N1-N3 | N2-N3
0 | 236 0.08 0.18 0.97 0.79 0.09 0.81 0.58
1 |3.24 0.03 0.69 0.02* 0.98 0.29 0.93 0.14
2 | 465 0.01 0.98 0.01* 0.99 0.05* 0.93 0.02*
3 | 474 0.01 1 0.04* 0.81 0.03* 0.91 0.01*
4 | 433 0.01 0.59 0.23 0.49 0.02* 0.99 0.02*
5 |6.17 0 0.4 0.18 0.19 0.01* 0.93 0*

6 | 1.08 0.37 1 0.81 0.72 0.75 0.81 0.3

7 | 1.26 0.3 0.83 1 0.34 0.83 0.8 0.34
8 |09 0.45 0.63 1 0.61 0.71 1 0.68
9 1.07 0.37 0.62 1 0.51 0.68 0.99 0.56
10 | 1.53 0.217 0.55 1 0.32 0.58 0.98 0.35

Table A.4 — Test statistics corresponding to Figure 4 (B) and (C) of the main manuscript. Results
from ANOVA and the corrected p-values after multiple comparison test.

F-statistic| Prob >F |Wake - N1 |Wake - N2/ WAKE-N3|N1-N2 |[N1-N3 |N2-N3
same-signed 22.71 3.90E-10(4.50E-07 [0.0091 3.00E-04 |1.30E-09|0.009 4.60E-07
opposite-signed 12.92 1.00E-06(2.30E-06 |0.0051 0.0012 7.10E-08|8.80E-04 |1.20E-04
Pearson correlation|33.13 4.70E-13(0.2571 1.80E-07 |3.30E-09 [1.46-7 |6.30E-09|0.115
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Figure A.4 — Spatial similarity between iCAPs obtained by averaging the frame indices coming
from the sustained sleep data (yellow) versus iCAPs obtained by averaging the frame indices
coming from the sleep onset data (red). The percent number of frames that contributed to the
recovery of each iCAP coming from each dataset is written in red and yellow fonts. The iCAP
maps are spatially z-scored and thresholded at | z| > 1.5. The Dice-Sorrensen Coefficient (DSC)
is computed as a quantitative measure for the similarity of the two sets of iCAPs and is written
in green font.

A. Functional Connectivity (FC) B. Normalized Mutual Information (NMI)
2 x10
3019, . . . 1 : ; ; ;
0.9+
25y 08}
20 0.7
8 8 oot
c
= ©
.g 15 -% 05}
= = o4t
10r 03}
0.2t
5L
0.1F
0 1 1 " N O 1 1 1 1
Wake N1 N2 N3 Wake N1 N2 N3
— visual-sensory right ECN precuneus
— insula/thalamus auditory/motor early visual
—— anterior DMN amygdala/OFC visuospatial
— left ECN ant CEB sensorimotor
— secondary visual posterior DMN somatosensory
posterior CEB language

Figure A.5 — Variance of Network Interactions Measures (A) functional connectivity (FC) and
(B) normalized mutual information (NMI) between iCAP time-courses across the different
NREM sleep stages.
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Relative Cumulated Durations (RCD) in Study 2
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Figure A.6 — Relative Cumulated Durations (RCD) obtained using the data from Study 2.
Overall, we generally observe a peak in RCD value during NREM stage 2, consistent with the
RCD obtained using the data from Study 1. Data are represented as mean +/- SEM. Horizontal
lines with 3 stars and 2 stars in the insets represent significant differences with p-values less
than 0.001 and 0.01, respectively (corrected using Tukey’s range test). Data in the insets are
represented as mean +/- SD.
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Figure A.7 — Interactions between iCAPs across NREM sleep in Study 2. (A) Number of over-
lapping iCAPs and (B) co-occurrences between iCAPs. Moreover, iCAPs are more likely to
overlap and co-occur during NREM stage 2 compared to wakefulness.
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Figure A.8 — Spatial and temporal characteristics of iCAPs. Side by side comparison between
the results of K= 17 (left) and K = 20 (right). Spatial characteristics of iCAPs generally show
similar patterns and their percent distributions (pie chart) across NREM sleep retain similar
proportions for K= 17 and K = 20. The 18th, 19th, and the 20th iCAPs for K = 20 repeat patterns
that is already present for K = 17, in particular, the OFC2, secondary visual 2, and the left
language.
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The extraction of group-level eigenmodes was done through a series of Procrustes transfor-
mation, cf. Algorithm 1 in Chapter 4. The transformation, however, is done multiple times to
remove bias towards the initial reference value. The optimal number of transformation was
based on the off-diagonal errors (cf, Eq. 4.11) observed after several iterations of Procrustes
transformation.
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Figure B.1 — Off-diagonal errors of the cosine similarity matrices after several iterations of
Procrustes transformation. Three iterations of the Procrustes transform significantly reduce
the similarity matrices of inter-subject eigenspace.
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All data used in the study were downloaded from the Human Connectome Project 1200
release, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;
1U54MH091657).

Motivation of different parameter choices for the extraction and analysis of in- CAPs.

The 15% threshold applied to the PCC was primarily motivated by the choice of the original
proponents of co-activation pattern (CAP) analysis [Liu and Duyn, 2013]. To verify this chosen
parameter, we scanned cut-off thresholds from 0 to 100% and evaluated the spatial similarity
between the averaged frames corresponding to each of the threshold and the seed-correlation
map (PCC-seed connectivity) for all subjects. In Fig. C.4(A), the similarity of the averaged
frames with the seed correlation map reaches a plateau from 15% onwards and decreases
again from 85% onwards. This implies that the overall mean of the 15% fMRI time frames
having the highest values at the PCC seed region generates a DMN pattern very similar to
that from the PCC-seed correlation map. Next, the optimal number of clusters (K = 8) was
also based on the original CAPs analysis corresponding to the DMN [Liu and Duyn, 2013]. We
verified the choice of optimal K using a consensus clustering procedure [Monti et al., 2003],
which is a resampling-based procedure for optimal class discovery. We ran 100 folds of k-
means clustering on randomly resampled data within each subject. The stability of the cluster
assignments across several K-values ({2,3,4,...,12}) was evaluated by computing a “consensus”
value derived for each pair of data points (i.e.,how often they were clustered together). Fig.
C.4(B1) shows the cumulative distribution (CDF) of the consensus matrices across different
K-values for an example subject (in case of perfect consensus, consensus matrix contains 0s
and 1s only, and the CDF is flat). We identify the optimal number of clusters (K=8) based on the
maximally observed change in area under the curve (AUC) of the averaged CDF across subjects
(Fig. C.4(B3)). We also determined the stability of the in-CAPs across multiple sessions of
fMRI. We divided the four sessions into two batches (sessions 1-2 and sessions 3-4 separately).
Then, the temporal decomposition was done separately for the two batches in all subjects.
Fig. C.4(C) displays the cosine similarity measure of the 8 in-CAPs from the two batches.
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The results show a strong diagonal matrix reflecting the stability of in-CAPs across multiple
sessions.

Finally, the probabilistic WM atlas [Zhang and Arfanakis, 2018] that was used in computing the
signal average of the in-CAPs was thresholded to 0.3 to indicate which voxels are considered
part of a WM tract. The optimal threshold was chosen based on the robustness of the results
when compared to other threshold values. We therefore performed the signal averaging of the
in-CAPs using multiple thresholds (0,0.1,0.2,...,1) for the WM atlas. Fig. C.4(D) reveals that
when taking the cosine similarity between the vectorized signal-averaged values (Fig. 4(D)
in manuscript) using the different thresholds, there is a particular threshold (thresh = 0.3)
for which the outcome does not change with increasing threshold values. Higher thresholds
greater than 0.9 were found to be too extreme.

CAPs back-projection to task data.

The signal recovery is implemented for all functional volumes of the working memory and
relational task data. Subject-level CAPs are back-projected to the top 15% significant frames
corresponding to the PCC. The frames that survived the thresholding are then labeled based
on their extent of spatial similarity to the derived in-CAPs, using cosine similarity as a metric.

C.1 Supplementary Figures

158



C.1. Supplementary Figures

E i /1 i .«1(.

e . eeee®
R TIR LYY
e ceee®:
ARAOS | ARROP
e 00 :

OOeM®d  a0ed®
RLLY IR,

el
-50

CAP Number — (0]
-15 s.D +1.5

Figure C.1 - Sagittal view of in-CAP and GM CAP pairs. The CAPs are arranged according to
their frequency of occurrence. To ease visual inspection of the CAPs, overlays of major white
matter bundles are illustrated for each of the five sagittal slices. Abbreviations of WM tracts
are presented in Table C.2.
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Figure C.2 — Eigenfunctions of the Laplace operator corresponding to the voxel-level brain
graph. (A) We present examples of the first 11 highly resolved human brain eigenmodes corre-
sponding to the 11 lowest eigenvalues. The top panel is the first eigenmode (corresponding
to A = 0), showing distinct major white matter structures. The numbers on the left show
increasing eigenvalues, pertaining to spatial frequencies, thereby increasing spatial variations
across the whole brain. In particular, the second and third lowest spatially varying eigenmodes
describe geometrical information of the head shape, dividing the brain into posterior and
anterior, and left and right, respectively. (B) Spatial correlation (corrected, p<0.005) of the
eigenmodes evaluated with respect to known fiber bundles [Zhang and Arfanakis, 2018]. The
correlation is presented for increasing eigenvalues displayed from top to bottom. Abbrevia-
tions used in naming the fiber bundles are presented in Table C.2.
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Figure C.3 — Regularization parameter for the signal recovery framework. For each subject,
we evaluate the cost of the regularization term in the set A = {1,2,3, ... M}, where A = 60. The
knee point of the plot is taken as the optimal A. The range of optimal parameters used in the
dataset analyzed are 1* ={9,10,11}.
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A. Threshold for PCC B. Consensus clustering to determine optimal K
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Figure C.4 — Parameter optimisation for the extraction and analysis of in-CAPs. Spatial sim-
ilarity between the PCC-seed correlation and the averaged inpainted frames that survived
different thresholds applied to the PCC. The similarity increases as we include more frames
and reaches a plateau upon reaching 15%, which falls down again at about 85%. (B) Con-
sensus clustering metrics for determining the optimal number of clusters in-CAPs. The (B1)
cumulative distribution function (CDF) indicates the extent to which the consensus matrix
distribution is skewed toward 0 and 1, with a flat line being the ideal shape (i.e., 0 means two
frames are never clustered together while 1 means frames are always clustered together). The
(B2) area under the curve (AUC) of the CDF and the (B3) change in AUC displays the optimal
number of cluster K to which there is a minimal increase in the AUC (K = 8). (C) Stability of
in-CAPs when running the clustering in 2 sessions, instead of 4 sessions together. Cosine
similarity of the in-CAPs reveals strong diagonal relationship, and weaker off-diagonal values.
(D) When doing the signal averaging within the probabilistic WM atlas, a threshold is used to
determine voxels that are absolutely part of a tract. We used a threshold of 0.3 based on spatial
similarity of the resulting WM averages. At this threshold, the observed signal averages show
no particular difference with increasing threshold. At threshold greater than 0.9, we encounter
tracts that are too small to take average on.
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Figure C.5 — Comparison with fMRI-guided tractography. Average signal of the inpainted
CAPs and inpainted PCC-seed connectivity within (A) the different tracts obtained from
running DMN- guided probabilistic tractography [Figley et al., 2015]. (B) Average of the
in-CAPs and PCC-seed connectivity within the corresponding DMN ROlIs.
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C.2 Supplementary Tables

Table C.1 - DMN sub-component MNI coordinates adapted from Andrews-Hannah [Andrews-
Hanna et al., 2010] classification

Sub-component (left region) Abbreviation | X |Y Z
1. Anterior medial prefrontal cortex | amPFC -6 |52 | -2
2. Posterior cingulate cortex PCC -8 | -56 | 26
3. Dorsal medial prefrontal cortex dmPFC 0 52 | 26
4. Temporal parietal junction TPJ -54 | -54 | 28
5. Lateral temporal cortex LTC -60 | -24 | -18
6. Temporal pole TempP -50 | 14 | -40
7. Ventral medial prefrontal cortex | vmPFC 0 26 | -18
8. Posterior inferior parietal lobule | pIPL -44 | -74 | 32
9. Retrosplenial cortex Rsp -14 | -52 | 8
10. Parahippocampal cortex PHC -28 | -40 | -12
11. Hippocampal formation HF -22 | -20 | -26

Table C.2 — Major white matter bundles evaluated in the study.

WM structure Abbreviation
1. Forceps major Fmajor
2. Forceps minor Fminor
3. Left / right cingulum L/Rcing
4. Left / right superior longitudinal fasciculus L/Rslf

5. Left / right inferior longitudinal fasciculus L/Rilf

6. Left / right cortico-spinal tract L/Rcst

7. Left / right inferior fronto-occipital fasciculus | L/Rifo

8. Fornix Fornix

9. Left / right hippocampal cingulum L/Rcing2
10. Left / right uncinate fasciculus L/Runc
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D.0.1 Supplementary Methods

Computation of the Euclidean distance map

Briefly, we downsampled the preprocessed functional data, originally from 1.25 mm, diffusion-
spaced, to 3mm voxel resolution. Then voxel-to-voxel FC map for all GM voxels was calculated.
For each voxel, we obtained their highest 2% FC values. The mean Euclidean distance of all
remaining voxels that survived the thresholding are then computed with respect to the voxel
of interest. This was done in 4 resting-state sessions and the resulting euclidean distance map
is averaged across 50 subjects.
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Figure D.1 - One-to-one mapping of diffusion rate and diffusion time-steps. Cosine similar-
ity between diffused signals using different spectral graph diffusion rate 7 and vertex diffusion
time-steps corresponding to nine representative networks. The white arrow indicates the
point when the inpainted volumes associated to diffusion rate 7 and steady state time-step
trina Matches. Different starting points can be observed in each network.
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Standard deviation of structure-function range maps across subjects

Figure D.2 — Variability across subjects of structure-function range map. Standard deviation
of characteristic time of spread projected in terms of distance across 50 subjects evaluated.
The topological variability across individuals scales with the structure-function range map.
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