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Abstract

A graph is a versatile data structure facilitating representation of interactions among objects

in various complex systems. Very often these objects have attributes whose measurements

change over time, reflecting the dynamics of the system. This general data framework can be

used in many fields to represent complex data structures: brain networks and neuronal spikes,

web networks and clickstreams, social networks and activity of the users, among others. In all

of these examples, the structural and dynamic components of the data are inseparable, which

significantly complicates the detection, analysis, and interpretation of patterns that emerge in

the networks. The increasing size and complexity of graph-structured data require scalable

and interpretable algorithms for dynamic pattern detection in such systems.

In this dissertation, we present an unsupervised approach for dynamic pattern detection in

large-scale graphs. In this approach, we combine intuitions derived from attention mecha-

nisms, Hopfield networks, and memory networks to build scalable, efficient, and interpretable

algorithms. We then demonstrate multiple applications of this approach in recommendation

systems, information recovery algorithms, and collective behavior studies. Additionally, we

use our algorithm to detect dynamic activity patterns in social and communication networks.

We conduct extensive experiments on Wikipedia data, detecting and analyzing patterns in

the viewership activity in its web network. To study the collective behavior of Wikipedia read-

ers, we develop an automated pattern interpretation model, which allows for comparison of

trending topics across multiple language editions of Wikipedia. The results of the experiments

reveal provocative insights into how people interact and search for information in online social

networking environments, opening new avenues for future research on collective behavior

analysis at a large scale.

Finally, we present a distributed data processing framework for Wikipedia server logs that

allows others to reproduce all pattern detection experiments presented in this thesis and to

conduct similar collective behavior studies on the latest data.

Key words: Graph, Network, Pattern Detection, Dynamic Network, Spatio-temporal Pattern,

Graph-structured Data, Time-series, Memory, Attention, Neural Network, Hopfield Network,

Social Network, Wikipedia, Collective Behavior
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Résumé

Les graphes sont des structures de données polyvalentes permettant de représenter des

interactions entre des objets dans des systèmes complexes. Souvent, ces objets possèdent des

attributs qui varient au cours du temps, reflétant la dynamique du système. Ce cadre général

peut servir à représenter des systèmes complexes dans de nombreux domaines : réseaux

cérébraux et activité neuronale, réseaux de pages web et flux de clics sur les hyperliens, ou

encore réseaux sociaux et activités des utilisateurs. Dans tous ces exemples, la structure

et la dynamique des données ne sont pas séparables, ce qui complique considérablement

la détection, l’analyse et l’interprétation des activités qui émergent de ces réseaux. Il est

nécessaire d’avoir des algorithmes évolutifs et interprétables pour détecter ces activités dans

des réseaux dont la taille et la complexité croissent.

Dans cette thèse, nous présentons une approche non supervisée pour la détection de motifs

dynamiques dans des graphes de grande taille. Dans notre approche, nous combinons des

intuitions dérivées des mécanismes d’attention, des réseaux de Hopfield et des réseaux à

mémoire pour construire un algorithme évolutif, efficace et interprétable. Nous proposons

ensuite de multiples applications de notre approche dans les systèmes de recommandation,

les algorithmes de récupération d’informations et les études de comportement collectif. Nous

utilisons notre algorithme pour détecter les motifs d’activité dynamiques dans les réseaux

sociaux et de communication. Nous menons des expériences approfondies sur les données

Wikipédia, détectant et analysant les tendances de l’activité d’audience sur son réseau Web.

Pour étudier le comportement collectif des lecteurs de Wikipédia, nous développons un

modèle automatisé d’interprétation permettant de comparer des tendances d’activité pour

plusieurs éditions linguistiques de Wikipédia. Les résultats de nos expériences révèlent des

informations intéressantes sur la manière dont les gens interagissent et recherchent des

informations dans les environnements de réseaux sociaux en ligne, ouvrant de nouvelles voies

pour de futures recherches sur l’analyse du comportement collectif à grande échelle.

Enfin, nous présentons les outils spécifiques de traitement distribué pour les données de

Wikipédia. Ceux-ci permettent de reproduire toutes les expériences de détection présentées

dans cette thèse et de mener des études de comportement collectif similaires sur les données

les plus récentes.
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1 Introduction

It is now evident that where one discipline ends and the

other begins no longer matters, for it is in the nature

of the case that the boundaries are ill-defined.

— Patricia Smith Churchland [1]

1.1 Motivation

The amount of available graph-structured data has dramatically increased in the past few

decades. Researchers working in different fields now have access to biological, social, trans-

portation, and information networks, among others. However, the full potential of graph-

structured data remains undiscovered because of the large quantity and high complexity of

the data [2–4].

In the traditional data analytic framework, it is assumed that all measurements are indepen-

dent. This assumption allows for the powerful machinery of statistical analysis to be applied

to a wide range of research questions. However, theories that incorporate the structural aspect

of the data argue that measurements are not always independent. The fundamental differ-

ence between the traditional and graph-based frameworks is the inclusion of information

on relationships among measurements in a study. This perspective introduces a different

range of constraints on data analysis and model building. Therefore, when working with

graph-structured data, it is necessary to consider the influence of the underlying structure of

the data on the performance of machine learning and data mining models.

Most of the theoretical tools for graph-structured data analysis originally come from graph

theory [5]. Graph theory is a branch of mathematics that provides an elegant framework

allowing us to formalize, describe, and study complex data structures. Its principal object is a

graph, where nodes represent data items and edges encode pairwise relationships between
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Chapter 1 Introduction

them. Due to such universal and intuitive definition, complex systems in various fields can

be represented as a graphI. Any graph can be represented as a matrix (the most widely used

are adjacency and Laplacian matrices). This aspect allows using a general mathematical

formalism to solve various problems of a diverse nature, which has influenced a wide adoption

of graph-based techniques in physical, social, and life sciences.

Since the first applications of graph theory to network analysis, traditional approaches have

been very successful in advancing our understanding of different processes in networks. Nev-

ertheless, the increasing complexity and scale of the graph-structured data require more

advanced methods in order for us to discover hidden patterns and develop a better under-

standing of the complex nature of real-world networks [6]. The emerging field of machine

learning on graphs has introduced approaches that have proven to be efficient in solving this

problem for various types of networks [7].

In recent years, many scientific fields have been transformed by the adoption of graph-based

machine learning and data mining techniques. Scientists working in different research areas

realized that the underlying structure of the data plays an essential role in the analysis of

complex systems. However, hardly any other field has benefited from studying structural

properties of the data as much as sociology and, in particular, social network analysis.

Researchers started studying structural aspects of social networks long before they developed

into what we call a social network today [8]. In 1853, developing sociology as a science, Auguste

Comte described society as a set of interconnections among social actors [9]. He defined two

main facets of the field, statics and dynamics. According to Comte, statics reflect "laws of social

interconnections," while dynamics describe "the laws of action and reaction of the different

parts of the social system."

Early collective behavior studies were largely influenced by Gustave LeBon [10]. In 1897, he

analyzed the phenomenon of crowd behavior and suggested that when individuals join crowds,

they imitate the behavior of other members and lose their personalities. He compared the

diffusion of ideas in a crowd to a process of contagion. Another fundamental idea of patterns in

human interactions was introduced by Georg Simmel in 1908. According to Simmel, "Society

exists where a number of individuals enter into interaction" [11].

These seminal contributions introduced principle concepts that anticipated the emergence of

social network analysis as a field. By contrast, quantitative research was infeasible because the

early works lacked mathematical formalism. This changed in 1934 when Moreno and Jennings

presented the notion sociometry [12]. The central object of sociometry is a sociogram – a

graph-based representation of social relations between people [13]. Later, to give sociograms

a more objective and formal representation, Forsyth and Katz proposed to use matrices to

study social networks, bringing the elegance of mathematical data analysis to the field [14].

IA graph is an abstract data structure that represents various real-world networks. Even though graph is a more
abstract while network is a more concrete concept, the terms graph and network will be used interchangeably in
this thesis.
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Throughout the second half of the twentieth century, researchers used these foundations

to create quantitative analytical approaches and models connecting mathematical social

network analysis with graph theory [15–21]. Graph theory introduced potent machinery to

social network analysis, providing an appropriate representation of the data and introducing

a set of clear definitions of social concepts that allowed researchers to formalize important

properties of social networks.

Since the creation of the first online social media services in 1995II, the size of analyzed social

networks has significantly increased. The availability of large-scale datasets with digital traces

of billions of people led to the emergence of computational social science that, contrary to

traditional quantitative social science that typically assumes independence of observations,

focuses on the combination of spatial data, social networks, online content, and human

interactions [22].

The fast growth of online social media platforms introduced new challenges to the analysis of

the data generated by these platforms. First, the size and complexity of the data made it more

difficult to build scalable and explainable models from the data mining perspective [23, 24].

Second, the data coming from online platforms may be incomplete and biased, which may

lead to erroneous conclusions of sociological experiments [25]. As a result, comprehensive

collective behavior analysis has also become more challenging.

These challenges raise interesting research questions both in data mining and in computa-

tional social science. Some of these questions were formulated at the very beginning of the

history of social network analysis. Others developed as a result of the effects caused by the

rapid expansion of social networking platforms. Is it possible to model the spread of ideas in

networks similar to contagion processes, as Gustav LeBon suggested? What are the patterns of

information propagation through the network? How can we detect patterns of misinformation

spread? What kind of biases are created by social media? What are the collective interests

of users based on their dynamic activity patterns? Looking at these problems from the data

mining perspective, we can summarize them in one general question: How can dynamic

patterns be reliably detected and interpreted in graph-structured data?

To address these problems and answer these questions we need new scalable and interpretable

data mining approaches in order to analyze patterns that arise in the large-scale dynamics of

graph-structured data. To do that, in this thesis we

• Develop a new spatio-temporal pattern detection algorithm for large-scale graph-

structured datasets

• Use the algorithm to gain key insights into the dynamics of social networks and to

interpret patterns of collective behavior in online networking environments

IIFirst online social networking services – The Globe and Classmates – were created in 1995.
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We present an unsupervised algorithm for dynamic pattern detection in large-scale graphs. In

this approach, we combine intuitions derived from attention mechanisms, Hopfield networks,

and memory networks to build a scalable, efficient, and interpretable algorithm. Briefly, the

algorithm processes a graph structure with dynamic node attributes and outputs a reduced

subgraph with detected patterns.

Interpretability is an essential, though largely ignored aspect of machine learning and data

mining algorithms. We design an interpretable pattern detection approach and demonstrate

its performance in multiple scenarios. We show how the interpretation of the detected patterns

transforms them into collective behavioral insights that unravel patterns of online interactions

and shed the light on cultural peculiarities of internet users.

To study collective behavior using the proposed approach, we use server logs of social networks.

Social media platforms collect various data logs that represent the activity of billions of users

on the internet. These logs constitute the dynamic component of the data. Depending on the

nature of a particular platform, this data can reflect various aspects of user activity, such as

evaluations of third-party content, hashtags, clicked links, watched videos, sent emails, etc.

This data can be used to analyze different patterns of user activity, to identify their interests, to

provide personalized recommendations, and to segment users based on their preferences.

Apart from these data logs, we also have access to the underlying structure of the data. For

instance, it can be represented as a network of users or a network of webpages that users click

on. This graph structure represents the static or structural component of the data. As we

learned from earlier studies in social network analysis, people influence each other when they

interact, so we use this information to improve the quality of pattern detection and to better

interpret the detected patterns. Therefore, we shall focus on the combination of structural

and dynamic components.

Most of the platforms keep their data private, which complicates the analysis. However, there

are a few small subsets of data that were made available for research purposes. One of the

most widely used datasets is the Enron email communication network. We use this dataset to

compare the performance of our algorithm to previous works.

Due to the scarcity of the available data, pattern detection approaches are usually tested on

relatively small and outdated datasets. To tackle this issue, we go further in our evaluation and

develop a new large-scale graph dataset with dynamic attributes and use it to demonstrate

the scalability and efficiency of our approach.

To create our dataset we use Wikipedia, the world’s most visited online encyclopedia and

collaborative knowledge sharing platform, where some server logs were made available for

research purposes. Wikipedia data represents an interesting test case for our pattern de-

tection approach. Along with viewership statistics and underlying web network structure,

we have access to rich semantic information about Wikipedia articles, which allows for a

detailed interpretation of the detected patterns. Though other studies also researched the
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collective behavior of Wikipedia readers [26–30], they mostly focused on preselected subsets

of Wikipedia articles. Contrary to the previous works, we develop a scalable approach and

run our experiments on the entire web network of Wikipedia. Furthermore, we present a

distributed framework allowing other researchers to reproduce all the experiments presented

in this thesis and to apply the proposed algorithm to the latest data.

In this thesis, we introduce a new approach for dynamic pattern detection in graph-structured

data. We apply it to multiple datasets of different scale and detect dynamic patterns of user

activity. Since very few datasets come with labeled data, we employ an unsupervised approach

for pattern detection. Then, we focus more closely on Wikipedia and use its web network

and viewership statistics to detect and interpret dynamic patterns that reflect the collective

interests of Wikipedia readers.

1.2 Thesis structure and contributions

The leading theme of this thesis is dynamic pattern detection in graph-structured data. We

propose an algorithm allowing us to detect such patterns at a large scale and describe multiple

applications where our approach can be used. Among other applications, we extensively

explore dynamic patterns in the collective behavior of Wikipedia readers, focusing on the

evolution of collective interests and the impact of real-world events on the dynamics of

trending topics.

The overall structure of this thesis is illustrated in Fig. 1.1. Chapter 3 is the core of this thesis,

where we propose a new algorithm for dynamic pattern detection in large-scale graphs. The

following chapters cover the detailed analysis of the proposed algorithm, its evaluation, and

its applications. In Chapter 4, we analyze our approach, focusing on the interpretability of the

detected patterns, scalability of the proposed algorithm, and potential applications. Next, in

Chapter 5, we extend the proposed approach with an automated pattern labeling module and

use the detected patterns to study the collective behavior of Wikipedia readers across multiple

language editions. Finally, in Chapter 6, we focus on the reproducibility of all the experiments

presented in this thesis and introduce a large-scale data processing framework for Wikipedia

data allowing to study the dynamics and evolution of its web network.

A more detailed summary of the contributions is presented in Sections 1.2.1-1.2.4.

1.2.1 Dynamic pattern detection in large-scale graphs (Chapter 3)

The main results presented in this chapter were published in [31] (The Web Conference 2019).

Chapter 3 introduces a new algorithm for spatio-temporal pattern detection in the dynamics

of graph-structured data. We use this algorithm for all experiments presented in this thesis.
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Dynamic pattern detection algorithm

Stage 1
Explicit attention

Stage 2
Weight learning

Stage 3
Detection

Examples on synthetic data

Analysis and interpretation of the detected patterns

Memory property and its 
applications

Experiments on Enron 
and Wikipedia datasets

Interpretation of the 
detected patterns

Reproducible research

Dynamic graph-based framework for Wikipedia research

Use cases and applications 
of the framework

Distributed implementation 
of algorithms

Chapter 3

Chapter 4

Chapter 6

Hyperlinks graph Pageview statistics

Scalability and constraints

Pattern labeling and classification: Wikipedia case study

Comparing collective 
interests across languages

NLP-based 
automated labeling

Large-scale 
pattern classification

Chapter 5

Interactive visualizations

Figure 1.1 – Outline of the thesis. In Chapter 3, we focus on the proposed algorithm. In Chap-
ter 4, we present the detailed analysis of detected patterns and describe potential applications.
Chapter 5 focuses on the interpretation of the patterns. We use Wikipedia server logs as a
case study to understand the dynamic patterns in the collective behavior of Wikipedia readers.
Finally, Chapter 6 describes our efforts towards reproducible research, including a large-scale
framework for Wikipedia data processing and interactive visualizations.
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In this chapter, we describe the general pattern detection framework and formalize our model.

We run experiments on synthetic datasets to provide a better understanding of its features.

In our approach, we demonstrate the intrinsic memory properties of graph-structured data

that enable us to use our algorithm in multiple applications. We formalize the connection

between attention mechanisms and associative memory models using the Hopfield network

model. Additionally, we implement the aggregation process in Hopfield networks similarly to

attention mechanisms that are used in graph neural networks. To learn the Hopfield network,

we use the Hebbian learning rule for feature aggregation, which enables us to learn localized

patterns.

Hebbian learning rule has multiple benefits. First, it is unsupervised, which allows us to

perform learning on the dataset without labeled patterns. Second, since we know that the edge

weight between nodes depends only on the one-hop neighborhood of these nodes, the rule

allows for an intuitive interpretation of the results. Third, due to the locality of computations,

we can implement learning using an efficient message-passing approach. Finally, Hebbian

rule is easy to adapt to different types of patterns by using application-specific similarity

functions.

In addition to pattern detection, we discuss applications of the proposed algorithm in rec-

ommendation systems. Dynamic recommendation systems that target data domains with

underlying graph structure can benefit from the memory properties of the detected patterns.

We show that the task of recommendation is very similar to the problem of incomplete pattern

recovery and use the recall mechanism of Hopfield networks to complete recommendation

profiles.

1.2.2 Analysis and evaluation of the detected patterns (Chapter 4)

The main results presented in this chapter were published in [31] (The Web Conference 2019)

and in [32] (presented at Wikimania 2019)III.

In this chapter, we proceed with a more detailed analysis of our approach. We focus on the

attention mechanism and show how it affects the main properties of the processed graph,

including degree distribution, modularity, and clustering coefficient. We also show how the

attention mechanism can effectively reduce the amount of processed data, while preserving

the desirable quality of pattern detection.

We evaluate our approach using the Enron email dataset, a classic benchmark for spatio-

temporal pattern detection algorithms, and compare our detection performance to the results

reported in other works. We show that our algorithm detects all the anomalies presented in

state-of-the-art works.

IIIhttps://wikimania.wikimedia.org/wiki/2019:Research/Wikipedia_graph_mining_dynamic_structure_of_
collective_memory
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Then, we continue the analysis of our approach and scale it to the entire Wikipedia web

network (>7M pages and >500M links), comparing the performance of pattern detection to

Google Trends. We demonstrate the scalability of our algorithm and run large-scale dynamic

pattern detection experiments on the Wikipedia web network. To represent the dynamics

of the data, we use server logs that contain information about viewership statistics of each

article.

Contrary to the Enron dataset, ground truth labels are not available in Wikipedia data. However,

in the experiment on the Wikipedia data, we verify the performance of our approach using an

alternative source of information that allows for a thorough qualitative analysis of the results.

Wikipedia dataset has a rich set of semantic attributes that carry additional information

about the network, such as article titles and their categories. We observe that viewership

patterns detected in Wikipedia activity correspond to clusters of densely connected articles

on similar topics that correlate with real-world events. This observation allows us to verify

the performance of our approach and interpret the detected patterns using Google Trends – a

service that tracks trending topics based on the most popular queries in the search engine.

Finally, we describe two applications beyond pattern detection. We show that the detected

patterns possess memory properties, similar to the ones observed in Hopfield networks. The

memory is represented as an adjacency matrix of a weighted graph that serves as a content

addressable memory system, which can be used to recover learned or "remembered" patterns

from incomplete inputs. We provide an example where these properties can be used in

recommendation systems as well as information recovery applications. Furthermore, we

demonstrate an application related to sociology and study the phenomenon of collective

memory – the way social groups remember the past. We interpret patterns as real-world

events and investigate which associations with past events they trigger.

1.2.3 Pattern labeling and classification (Chapter 5)

The main results presented in this chapter were published in [33] (The Web Conference 2020).

In this chapter, we extend our pattern detection algorithm with an automated interpretation

module that uses node attributes to generate a summary of detected patterns. Such a summary

can be used by an expert for further analysis of the results. In the applications, we focus on

textual attributes and develop a model that identifies topics of the detected patterns based on

these attributes. We focus on a large-scale application of our approach and run experiments

on Wikipedia data. We use textual attributes of Wikipedia articles to extract topics and train a

classification model to assign labels to the detected patterns. Then, we apply the developed

approach to study the collective behavior of Wikipedia readers and research the evolution of

trending topics across multiple language editions.

To assess our automated pattern interpretation module, we conduct a case study focusing on

the first months of the COVID-19 pandemic. We study the evolution of interests of Wikipedia
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readers and align them with the unfolding of the pandemic. We analyze changing trends

across seven languages, including English, French, Russian, Spanish, German, Chinese, and

Italian, highlighting the ways in which the global lockdown affected the interests of Wikipedia

readers during the pandemic.

Overall, our findings on collective behavior indicate four main reasons for differences in

readers’ interests across languages:

Media coverage. The majority of the patterns we have detected are triggered by real-world

events, which means that readers’ interests are mainly driven by media coverage of these

events in different languages.

Geographic proximity. Some patterns appear only in one language edition. That is especially

apparent when we consider natural disasters. Such events are most interesting to local (w.r.t.

disaster) Wikipedia readers. These patterns emerge only in locally spoken languages.

Cultural differences. Despite globalization, the geography of a spoken language also affects

the cultural interests of Wikipedia readers. The preferences of readers related to sports, music,

art, literature, movies, and other categories of interest that define culture, vary across different

regions of the world. We found that such cultural interests of the readers affect trends in every

language edition of Wikipedia.

Pandemic effect. Being a rather special case, the COVID-19 pandemic affected readers’ interests

globally. It influenced the readers to shift their focus from sports to topics related to healthcare

and more suitable forms of home entertainment that conform to social distancing measures.

1.2.4 Towards reproducible research (Chapter 6)

The main results presented in this chapter were published in [34] (The Web Conference 2019).

In this chapter, we focus on the reproducibility of the results presented in this thesis. We

start with a general overview of the reproducibility in computer science and engineering,

highlighting its importance and necessity.

Then, we describe our efforts towards the reproducibility of the results presented in this thesis.

We introduce a large-scale data processing framework for Wikipedia server logs that we used

in the majority of the experiments. We focus on two aspects of the spatio-temporal dataset –

space, represented as a graph of Wikipedia articles, and time, represented by the number of

views per article per hour.

We also provide multiple use cases where our Wikipedia data processing framework can be

useful. Aside from spatio-temporal datasets that we use to evaluate our dynamic pattern

detection approach, we can use the framework to generate datasets for GNN benchmarks, to

build knowledge graphs, and to select small subsets of Wikipedia that focus on selected topics.

9
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We conclude this chapter with a brief description of our dissemination efforts and present

several interactive visualization tools. These visualizations allow lay audiences to engage

with the results of our research. We also highlight the importance of nonacademic forms of

science communication, which helps researchers to reach more people by making the findings

accessible for a general audience.
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2 Related work and terminology

The main theme of this thesis is large-scale spatio-temporal pattern detection in graph-

structured data. Along with being related to the previous works on the main topic, the pro-

posed approach has diverse connections to the research on attention mechanisms, graph

neural networks (GNNs), and associative memory models.

In this chapter, we put our work into the context of prior research on these topics. To start

with, we review existing approaches for dynamic pattern detection in graph-structured data.

Then, we describe applications and evaluation strategies that are used to assess performance

of pattern detection algorithms. After that, we overview attention mechanisms in GNNs,

discussing their applications in graph data mining and pattern detection. Lastly, we describe

a link between associative memory models and attention mechanisms in GNNs, connecting

these topics to pattern detection in dynamic graphs, which brings us back to the main theme

of this thesis.

2.1 Dynamic pattern detection in networks

The increasing availability of graph-structured data sparked interest among data mining

researchers, leading to the development of graph mining algorithms [35]. Initially, researchers

mainly focused on static graphs and only in the past few years, growing volumes of spatio-

temporal data influenced new developments in the field. In particular, anomaly detection

in dynamic graphs gained popularity a short time ago [36–38]. A more recent survey of the

emerging field of spatio-temporal data mining emphasized the importance of specialized

data mining techniques for the dynamic networks domain [39]. The authors highlighted

the inevitable emergence of new complex applications that inherently deal with dynamic

graph-structured data. They provided an overview of the related research covering six major

problems, such as visualization, clustering, predictive learning, frequent pattern mining,

anomaly detection, change detection, and relationship mining.
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Since the field of spatio-temporal data mining emerged only recently, terminology and nota-

tion vary from one work to another. There were a few comprehensive attempts to unify the

field in multiple surveys, providing a thorough categorization of dynamic pattern detection

approaches. We will use these taxonomies to put our work into the context of the field.

Aggarwal and Subbian [36] categorized all dynamic graph-based algorithms into two broad

categories. First, slowly evolving networks, where significant changes in the graph structure or

in its attributes occur over the long-term periods of weeks or months, and second, streaming

networks, where the data is continuously updated and comes in the form of graph streams. The

slowly evolving networks category mainly covers snapshot-based approaches that compare

graph snapshots across different time steps. This category includes link prediction, community

detection, and tensor factorization methods. Streaming networks imply a continuous graph

data stream arriving at the input of the model for further processing. This category focuses on

dynamic clustering and dense pattern mining. According to this categorization, our approach

belongs to the streaming networks category since we process continuous streams of time-series

graph attributes.

Akoglu et al. [37] proposed a similar categorization, however, they focused on large-scale

algorithms for anomaly detection. The authors also organized graph-based anomaly detec-

tion methods into two big categories, static and dynamic, distinguishing approaches that

work with attributed and non-attributed graphs. Conceptually, these categories are simi-

lar to the ones that we discussed in the previous paragraph. Also, the authors highlighted

the importance of interpretable methods in a separate category and distinguished several

application-specific approaches. We attribute our approach to the dynamic category and also

focus on the interpretability of the detected patterns.

Another taxonomy of dynamic anomaly detection algorithms was proposed by Ranshous et

al. [38]. They identified five general categories of anomaly detection problems in temporal

networks, namely, (1) anomalous nodes, (2) anomalous edges, (3) anomalous subgraphs, (4)

event detection, and (5) change detection. Same as in [37, Def. 4], the category event detection

in [38, Type 4] covers the case where all nodes of a subgraph contribute to the creation of an

event at the same time. In our work, we focus on a similar problem, where given a graph G , the

task is to detect a pattern in the attributes that causes a significant structural transformation

in the graph.

These surveys cover a substantial body of research and propose convenient taxonomies of

pattern detection methods that allow us to position our work in the context of prior art. In

addition to that, we would like to mention another area of research that does not appear in

the aforementioned surveys despite being closely related to the work presented in this thesis.

Pattern detection in dynamic networks has also been extensively studied in the area of tempo-

ral network mining, where researchers focus on collective dynamics, synchronization, and

self-organisation phenomena in complex networks [40, Ch. 5], [41–43]. Kovanen et al. studied

temporal motifs that define frequently occurring contact patterns in dynamic networks. In
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addition to the topological structure of the motifs, they also incorporated the temporal order

of similar events occurring in node attributes [44]. Mirtello et al. introduced a measure of

dynamical strength of social ties and proposed a variety of metrics that take into account both

temporal and structural components of human interactions in mobile networks to detect

communication patterns [45]. Mitra, Tabourier, and Roth defined patterns as dynamic net-

work communities that emerge as a result of interactions among a set of nodes over time [46].

Inspired by these works, Pfitzner et al. introduced a notion of betweenness preference in time-

aggregated networks that highlighted a spatio-temporal dimension of dynamic networks and

its influence on the dynamical processes evolving in temporal networks [47]. Later, Weng et al.

demonstrated a connection between memory and betweenness preference, constructing net-

works from temporal data observations [48]. Several works developed approaches for network

inference from co-occurrence observations capturing Markovian [49] and non-Markovian [50,

51] characteristics of temporal networks.

The formalism we propose in this thesis shares some features with these temporal network

mining approaches, such as the combination of temporal and structural information about

the data, burstiness of the dynamic attributes, and co-occurrence patterns. However, we only

rely on the given network structure and do not attempt to infer connections between nodes.

Many modern applications require detecting patterns in data streams. One of the major prob-

lems of algorithms for spatio-temporal data streams is their high computational complexity.

To cope with this issue, a few works treated the spatial and temporal components of the data

independently [52–54]. Nonetheless, a few recent works focused on developing scalable and

parallelized approaches for large-scale anomaly detection in temporal networks. Gao et al.

[55] followed the reductionist approach and proposed a sampling-based method. Similar to

our algorithm, their model first reduces the amount of data by sampling only task-relevant

nodes, and then embeds every pattern into a separate community. Another effective solution

is to use a parallel message-passing approach in the implementation. Chaudhry et al. [56]

created a distributed framework, FlowGraph, which detects anomalies in spatio-temporal

data streams using a distributed message-passing approach. In our algorithm, we also adopt a

similar strategy to scale and parallelize computations.

In this thesis, we propose a graph-based dynamic pattern detection algorithm that contributes

to the collection of spatio-temporal approaches in graph mining. As we can see in the literature,

patterns in dynamic networks are often called different names causing confusion. They are

referred to as events, drifts, outliers, change points, dissimilarities, anomalies, or dynamic

concepts. A common feature is a causal effect that results in a change of the network structure

or its attributes, which represents a spatio-temporal pattern. In further, to avoid confusion,

here and in the following chapters, we will refer to all the aforementioned types of spatio-

temporal dynamic transformations as patterns.
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2.2 Applications and evaluation of pattern detection algorithms

Enron email dataset. Email exchange pattern detection. In our evaluation, we use Enron

email dataset [57]. The main reason why we chose the Enron email dataset is that it is often

used as a benchmark for pattern detection in dynamic graphs. We use Enron dataset for

evaluation of our algorithm and demonstrate its performance using the detected anomalies

presented in other works as ground truth.

Multiple studies used the dataset to detect various events and anomalies in communication

patterns [58–63]. Two features are common among these works. First, in all studies, the

authors created an email communication graph, connecting employees who exchanged emails.

Second, it is common to create time slices of the dynamic graphs and to compute the proposed

measures for each time slice. Nonetheless, we can distinguish two different families of anomaly

detection approaches that were applied to the Enron email dataset – structure-based and

feature-based.

Structure-based approaches measure the connectivity of the graph and focus on significant

changes in the structure of the network. Priebe et al. [59] proposed a structure-based anomaly

detection approach that uses a moving window to calculate statistics over time-sliced graphs.

As a parameter defining an anomaly, the authors used unusually high local connectivity of

the graph in a k-hop neighborhood. To detect spikes of the connectivity-based measure, they

used running mean and standard deviation as a threshold for each time window. A similar

structure-based approach was proposed by Wang et al. [58]. The authors performed a rigorous

theoretical analysis of various locality-based measures proposed in [59, 64, 65], providing

insights into the behavior of the model in cases when the time series of graphs are stationary

before the anomaly. Moriano et al. [62] also used structural properties of the graphs, however,

in contrast to the previous works, they focused on community-based patterns. First, they

defined an initial community partition. Then, they made an assumption that anomalies occur

when the number of cross-community communications increases.

Feature-based approaches focus on node attributes and track feature dissimilarities over time.

Wan et al. [61] developed a hybrid anomaly detection approach by tracking two types of

deviations of node features derived from the communication behavior of users (e.g., in and

out degrees, number of sent/received/replied emails, etc.). Individual deviation compares

the current feature vector of a node at time t to its historical mean, while cluster deviation

compares the same vector to the historical median of the features of all nodes in the cluster.

Then, those nodes whose deviations exceed predefined thresholds of normal behavior are

considered anomalous. Koutra et al. [60] proposed another approach based on the feature

similarity between connected nodes. They compute pairwise affinity scores using a random-

walk-based measure and compare consecutive time snapshots of the graph using a variant

of Euclidean distance. Then, the similarities are merged into a series and anomalies are

detected when the similarity values exceed a median-based threshold. Rayana and Akoglu [63]

proposed an ensemble of multiple anomaly detection approaches with different scoring

14



Related work and terminology Chapter 2

functions to extract anomalies in graph snapshots. Each detector in the ensemble uses graph-

based features of the nodes (e.g. degree) over time to detect events in multivariate time series.

Once the detection is done by each detector in the ensemble, the algorithm performs score-

and rank-based aggregation to find a consensus among all detectors and to verify the accuracy

of the detection.

Wikipedia graph dataset. User activity pattern detection. As a part of our evaluation, we

also apply the developed pattern detection approach to Wikipedia data. We detect viewer-

ship patterns of the readers that allow us to study their collective interests across multiple

languages.

Early studies on the interests of Wikipedia readers [66, 67] used page view counts to identify

the most popular articles. They found that entertainment (movies, music, sports, etc.) and

people’s biographies are the most popular topics among Wikipedia readers. The analysis of the

results of the experiments, described in Section 4.2, confirms this general tendency. Moreover,

we can draw previously unseen relationships between events that appear in the news and the

popularity of clusters of connected Wikipedia articles.

Another topic of recent investigations is the motivation of Wikipedia readers [68]. The authors

reported that the fact that a topic was referenced in the media (30%), in a conversation (22%),

or it is a current event (13%) is among the main motivations for reading about a particular

topic. This indicates a strong influence of trends and news on the readers’ consumption of

articles. Trends are an essential part of the search for information and that is what we want to

extract and analyse. Trends are highly influenced by the readers’ environment and, therefore,

they should reflect similarities and differences across languages and cultures. However, the

previously cited works mainly focused on the English version of Wikipedia.

Concerning language biases and differences across versions of Wikipedia, there are two distinct

groups of studies related to them. The first group studies editorial activity and page content,

while the second focuses on the viewership and readers’ behavior.

Editorial activity and content across languages. Editorial differences across languages have

been investigated for particular topics such as medicine-related articles [69], aircraft crashes [70],

or edit wars on popular pages [71]. All these works point out differences due to political and

cultural influences associated with a particular language. Depending on the language, some

parts within an article are more detailed, biased, or more debated. As a consequence of this

editorial behavior, page contents in different languages contain noticeable variations when

comparing articles about famous people[72], food-related pages [73], or history of states [74].

All that results in discrepancies in the textual content and in the hyperlink structure [75].

Viewership. In a large-scale poll, Lemmerich et al. [76] analyzed visitors’ motivations across 14

languages. The authors demonstrated that Wikipedia viewership patterns and use cases vary in

different language editions and connected their findings to the socio-economic characteristics

in certain countries, such as the Human Development Index.
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We focus on the automatic detection of viewership trends and biases in multiple language

editions of Wikipedia. In our experiments, the topics are not predefined but extracted au-

tomatically according to their trend score. The topics are defined based on the summaries

of Wikipedia articles involved in the detected spatio-temporal patterns. We also present the

results based on the model with predefined topics trained on Wikidata properties. We illustrate

the dynamical evolution of the most popular topics among the readers of English, French,

and Russian language editions of Wikipedia and reveal differences and commonalities across

them.

2.3 Attention in graph mining

Being effective at edge prediction tasks, Graph Convolutional Neural Networks (GCN) [77, 78]

and their variants have recently gained popularity in anomalous edge detection. Since GCNs

are not suitable for temporal pattern detection, it is generally extended with an attention-

based Gated Recurrent Unit (GRU) to capture long- and short-term dynamic patterns. In [79],

Zheng et al. created AddGraph, a semisupervised model capturing anomalous edges. To detect

anomalous edges, they learn a joint representation for each node, combining the structural

properties of a node with its attributes. Then, they use the representations of two neighboring

nodes to compute the anomaly score based on short- and long-term patterns captured by the

GRU. A model with a similar architecture, SrtGNN [80], allows detecting anomalous edges in

more complex settings where the set of nodes is changing over time. Zhang et al. [81] solved

change-point detection problem in multivariate time-series data, which can also be seen as

anomalous edge detection problem. The architecture also contains GCN and GRU modules.

They build a network based on correlations between time-series data points and use GCN to

detect changes in the network structure. As a result, their model detects anomalous deletion

and creation of edges between time-series, which is interpreted as change points. In our

method, we use aggregation, message passing, and attention approaches to learn dynamic

patterns in a similar way as it is done in graph neural networks.

Over the past few years, attention-based models demonstrated outstanding performance

solving various machine learning problems, such as automated translation [82], object recog-

nition [83, 84], and image captioning [85]. The abstract idea behind the attention mechanism

is to focus on the specific parts of the signal to learn the model only on the task-related or

de-noised signal and reduce the amount of processed data. Adding an attention layer to

machine learning models has been shown to decrease the computational cost of training and

to improve the interpretability of the results.

More recently, the success of the attention mechanism in computer vision and natural lan-

guage processing influenced its adoption in models that work with graph-structured data [86].

In the pursuit of computational efficiency and scalability of graph neural networks, graph

attention networks (GAT) were introduced [87, 88]I.

IDue to the conceptual similarity across the models, let us refer to all graph attention models as GAT
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GATs extend graph convolutional networks (GCN) [77, 78] with an attention layer, which

essentially computes weights between nodes in an input graph. To learn node embeddings,

GCNs aggregate information by sending "messages" between the nodes in the graph. Typically,

when we learn an embedding of a node, we compute a weighted sum of the attributes of

its neighbours, which is normalized by their degrees. While GCNs treat all messages from

all neighbors equally, attention weights in GATs prioritize these messages based on their

relevance to solving the task at hand. Attention weights determine how much influence we

want to give to a neighboring node when we propagate the information over an input graph

structure. In other words, attention weights define the importance of neighbors of a given

node based on their attributes.

Attention weights can be learned using either a trainable function with softmax [87] or a

similarity-based approach [88], where the priority is given to neighbors with similar attributes.

A similar approach was used in inductive graph representation learning [3], were the priority

during aggregation was given to the nearby nodes (however, regardless of the similarity of the

attributes).

GATs demonstrated several advantages compared to other graph-based models without the

attention mechanism. Incorporating attention improves the predictive performance of the

models by learning dynamic and adaptive representations of the neighborhood [88]. The com-

putational cost of training has also decreased due to the ability of the attention-based models

to focus only on the task-relevant parts of the input graphs avoiding their noisy parts [87,

89]. Lastly, in healthcare applications, where explainability of machine learning models is of

utmost importance, GATs have been shown to make the predictions more interpretable [90].

The ability of GATs to benefit from the underlying graph data structure to improve the per-

formance of machine learning algorithms inspired the use of GATs in multiple graph-based

data mining applications, where the data is naturally structured as a graph. Multiple recom-

mendation systems adopted the approach by modelling the context-depending preferences of

the users using an attributed graph [91, 92]. The authors used graph-based attention to learn

representations of the user and recommended item graphs and generated recommendations

as a dot product between the learned representations. Xiao et al. [93] used GATs to model

the behavior of individuals in content-production web-based environments. Based on the

history of the users’ activity and their social interactions, the authors modelled the content

production strategies of authors in academic social networks. Another interesting application

is emotion classification in collections of documents. In topic modelling [94, 95], the attention

mechanism was used to learn topics and dependencies between words and documents. The

context-based semantics of documents was computed as a dot product between the learned

attention weights and the weighted adjacency matrix between words and documents. Finally,

GATs were used to forecast demand in bike-sharing networks [96]. The authors represented

bike stations as nodes and interstation commutes as edges and used attention to incorporate

correlations in the demand on neighboring stations into the forecasting model.

17



Chapter 2 Related work and terminology

In this thesis, we develop an unsupervised similarity-based attention module for pattern

detection in dynamic graphs. This module is inspired by the attention mechanisms in graph

neural networks, which we described in this section. We build our attention mechanism

upon the existing works. It inherits similar beneficial characteristics of the existing models

such as computational efficiency, scalability, and interpretability. Furthermore, we extend

our attention mechanism with memory properties that can be used for various applications,

including recommendation systems and information recovery. To benefit from the memory

properties of our attention module, we use the intuition gained from memory networks [97,

98], another graph-based approach similar to GATs. We are going to discuss the connection

between GATs and memory networks in the following section.

2.4 Relationship between memory and attention models

Another effective graph-based approach, which is similar to GATs with their attention mech-

anism, is memory networks [97, 98]. We can see a conceptual similarity if we interpret the

neighborhood of a node as the associative memory. Similar to the graph attention mechanism,

memory networks compute features of a node based on the attributes of the neighbors and

store the updated features in the same position. Once the full memory representation is com-

puted, the memory model uses either an argmax [97] or softmax [98] attention to map patterns

and labels into space or to memorise. Finally, the memory model retrieves these patterns

based on the score computed as a dot product between the memorized representation and

the input sample.

Recently, Ramsauer et al. [99] formalized the relatedness between the attention mechanism

and the memory-based models using a variation of Hopfield networks[100]. They showed that

attention mechanism can be effectively replaced by a new type of Hopfield network, achieving

superior performance on multiple-instance learning tasks [101].

The learning part of the proposed approach is based on a Hopfield network with the Hebbian

update rule. In the proposed pattern detection algorithm, we use the discussed relatedness of

memory networks and attention-based models for the interpretation of the detected patterns.

Also, in Section 4.3, we show how the memory properties of our model can be used in vari-

ous applications, including recommendation systems, information retrieval, and collective

behavior analysis.
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scale graphs

Dynamic networks change over time. The rate at which the nodes and edges are added or

removed defines the spatial dynamics. The situation complicates when nodes in the network

have attributes that also change dynamically, adding temporal dynamics to the problem.

This combination of spatial and temporal dynamics creates a new complex data domain,

introducing new challenges and creating the need for new pattern detection techniques.

There are numerous use cases where we need these algorithms. Web-pages (nodes) and

hyperlinks (edges) connecting them form web networks that change over time. Every page

has a click-stream or viewership activity (dynamic attribute). Sensor networks are composed

of interconnected sensors producing time-series of measurements. Social networks, where

friends are connected and each user generates a massive amount of data over time, such

as likes, views, and messages. Those are just a few well-known examples. We can also find

examples of spatio-temporal data in other fields, such as finance (transaction networks),

medicine and neuroscience (brain networks), and transportation (road networks). In all those

examples, networks are large and growing extremely fast.

Increasing complexity of the data requires scalable and interpretable algorithms for dynamic

or spatio-temporal pattern detection in graph-structured data. In this chapter, we introduce

our pattern detection algorithm that is inspired by several approaches, including attention

mechanisms, associative memory networks, and graph neural networks. Due to the combina-

tion of multiple properties derived from these approaches, our method tackles the problem of

spatio-temporal pattern detection from a different angle, providing an efficient solution that

can be scaled to large-scale graphs with time-series attributes. Finally, we test our algorithm

on a synthetic dataset, discussing its limitations and constraints.

3.1 Proposed pattern detection framework

In this section, we focus on the proposed approach. The main goal of the approach is to detect

spatio-temporal patterns in graphs with dynamic (time-series) node attributes.
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Figure 3.1 – Spatio-temporal data structure combining a graph topology and time series. a)
Graph topology. Edges highlighted in red depict the spatial component of a spatio-temporal
pattern. Dashed nodes have uniform activity. Colored nodes undergo a spike of the dynamic
activity. b) Time-series signals residing on the vertices of the graph. Signals associated to
nodes A, B, and C are correlated: a pattern propagates from node A to C through B. This is an
abstract illustration of a dynamic pattern detected by our method.

Our method is unsupervised. There are two main concepts behind the proposed approach.

First, it is inspired by an idea reminiscent of similarity-based attention graph neural net-

works [88]. We developed an attention mechanism that focuses on task-specific graph at-

tributes to reduce the computational cost. Second, we implemented an unsupervised learning

process inspired by the update rules used in Hopfield memory networks and the message-

passing approach used in graph neural networks. To the best of our knowledge, these concepts

were not used in the spatio-temporal pattern detection literature. We describe each step in

more detail in Subsections 3.1.2 and 3.1.3. Now, let us focus on the overall aspects of the

approach.

The general graph-based data domain can be described as follows. We are given a weighted

graph G with a set of vertices V and a set of edges E , connecting the vertices. Each node in the

network has a time-series attribute x(t), which governs the dynamics of the network. Each

edge between vertices vi and v j has a weight wi j that changes over time. The edge weight

update depends on the attributes of the nodes it connects and the function applied to those

attributes. All in all, the developed pattern detection algorithm can be applied to the data

that has a structure depicted in Fig. 3.1. It consists of an attributed graph with time-series

attributes on the nodes.
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t1 t2 t3 t4 t5

Initial state Single-node anomalies Emergence of an anomalous cluster

Figure 3.2 – Illustration of the emergence of a spatial pattern. The algorithm ignores single-
node anomalies during t1 and t2. The detection of the anomalous cluster occurs only when
multiple nodes in close neighborhood exhibit anomalous behavior in temporal domain, which
happens between t3 and t5.

Compared to the definitions given in the pattern detection literature (see Section 2.1), our

definition of a pattern is more general since we track a heterogeneous spatio-temporal pattern

that can emerge in situations when patterns in nodes’ attributes spread or propagate over the

network, as it is illustrated in Fig. 3.2. As we can see, a spatio-temporal pattern can not be

captured by a single sub-graph or a static snapshot.

Within our framework, a pattern is characterized by two components. First, a graph pattern

that involves multiple nodes, possibly anomalous at different time steps. Second, a temporal

pattern, a correlated change in time-series attributes of nodes in the same neighborhood.

Tracking these types of patterns has a number of applications in spatio-temporal data min-

ing [39, 102, 103]. Our approach introduces the following novelties that distinguish it from the

related works described in Section 2.1:

1) For each pattern detected using our method, the model produces a comprehensive set of

spatio-temporal indicators that facilitate the interpretation of the patterns and reasons for

their emergence. In that sense, it is closer to the spatio-temporal data mining [39], where

the purpose is to extract the anomalous events and keep as much information about them

as possible for the sake of interpretability. Describing detected patterns to domain experts

is a powerful feature of our data mining process. We will illustrate that in more detail using

real-world examples in Section 4.2.2. We will see how our approach can be used to provide

insights into the collective behavior of users on the web and social networks. We will also

demonstrate real-world examples of how the visitor activity evolves and propagates over the

network.
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Explicit attention

Application-specific function

Weight update

Hopfield network learning

Pattern detection

Clustering

Recommendation

Stage 1: Reduce Stage 2: Learn Stage 3: Apply

Figure 3.3 – General framework of the proposed pattern detection algorithm. Stage 1 selects
nodes that are potentially related to an emerging pattern. The selection is done using an
application-specific function applied to attributes of the nodes. Stage 2 is responsible for
learning weights between selected nodes. The dashed nodes and edges do not take part
in learning. The weight update function is also application-specific. Once Stages 1 and 2
are completed, the learned representation can be used for pattern detection, clustering, or
recommendation.

2) We define the concept of potential anomaly that introduces a prior on the presence of

a pattern, implementing an attention mechanism that enhances the scalability and inter-

pretability of the method. Indeed, in many pattern detection applications, domain experts

can separate the data into two parts: one part contains potential anomalies, while the other

contains non-anomalous samples. Our concept rigorously defines the separation and allows

discarding non-anomalous samples. This step significantly reduces the amount of data to

process. The concept of potential anomaly is general and can be used for other methods and

applications.

3.1.1 General framework

Pattern detection in such temporal networks generally contains two stages [38]. The first stage

is usually responsible for pattern-related feature extraction from domain-specific data. The

second stage applies the pattern detection algorithm to the extracted features and reports the

detected patterns.

We build our method upon this scheme in the following way (see an illustration of the general

framework in Fig. 3.3). First, we add to the Stage 1 an explicit attention step that keeps only

potentially relevant signals and focuses attention of the model on those parts of the network

that are most likely to have an anomaly. It reduces the amount of data that is processed in Stage

2 by discarding task-irrelevant nodes. Second, in Stage 2, our model contains an unsupervised

learning step that computes dynamic associative attention weights. This step enables us to
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interpret the detected patterns providing their detailed spatio-temporal descriptions. Such

descriptions represent a group of interconnected nodes (spatial information), where every

node has a time-series attribute (temporal information) that indicates the time when the

pattern occurred.

The learning step, Stage 2, is inspired by the model of a memory neural network, the Hopfield

network with the Hebbian learning rule. In our model, we adapt the learning rule to fit our

spatio-temporal data structure in the following way. Edge weight is reinforced when two

neighbors have a correlated pattern of activity during the same time slice. This particular

network design shares similarities with the hotspot anomaly detection for graph streams [104],

however, the authors use it for feature engineering, while in our approach, this update is a

part of learning.

The Hopfield network approach learns an associative memory network, where the nodes

correspond to the ones of the initial graph. During the learning process, edges between

the nodes are either strengthened or removed depending on the temporal behavior of each

node. As a result of learning, nodes with similar behavior are connected by stronger links

and clustered together in the memory network. These clusters contain groups of nodes with

similar temporal features.

Finally, in Stage 3, we use the learned representation to solve the task at hand. It could

be pattern interpretation, clustering, or recommendation. We will demonstrate multiple

applications in Sections 4.3, 4.4, and 5.3.

Now, let us discuss each step in more detail in the following sections.

3.1.2 Stage 1: Explicit attention and potential anomalies

The goal of this stage is to focus attention of the model on the nodes that are most likely

to be a part of an emerging spatio-temporal pattern and reduce the amount of data to be

processed, while preserving task-related information. At this stage, for each node in the

original graph, we extract features from the raw time-series attributes. We design an explicit

attention mechanism and introduce a notion of potential anomaly. The mechanism aims to

keep only those nodes that are most likely to be anomalous. Let V be the set of nodes of graph

G and xi [t ] ∈R be the value associated to node vi ∈V at the time t ∈ [T −1,0]. The historical

time-series have a length of T samples.

Definition 1 (Single node potential anomaly). Given a score function fi :R→R for each node

vi and a threshold value c0 ≥ 0, a node vi ∈ V is said to have a potential anomaly at time t

when its time-series value is such that | fi (xi [t ])| > c0.

Note that the potential anomaly is local on the graph, i.e., it depends only on the time-series

attribute of a given node. If the score function is such that fi = f − f̂ (vi ), for some function

f and f̂ (vi ) a summary statistics of the scores f (vi [t ]), our definition corresponds to the
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definition of the anomaly in [38]. A basic example of a potential anomaly is the time-series

values exceeding a fixed threshold c0. In that case, fi is the identity.

Applying the score function fi to the time-series gives us 1) features reflecting a pattern and

2) an initial indication of anomalous behavior. In practice, removing nodes that do not have

pattern-defining features reduces the amount of data by an order of magnitude without losing

relevant information that is required for pattern detection.

The general definition of the potential anomaly allows for various attention score functions,

such as a moving average or ARMA filter prior to the thresholding, a short-time Fourier

transform, a wavelet transform, or a user-defined function. The choice of the scoring function

should be based on the dataset and the prior knowledge on the nature of the time-series data

to make an effective compromise between efficiency and scalability.

To extract potential anomalies in the attributes, we use a user-defined scoring function f b
i ,

which is applied to time-series attributes xi of all nodes in the graph. We select values that are

above the activity rate parameter cb
0 . The burstiness bi of a signal xi of a node i is

bi =
T−1∑
t=0

ki [t ], ki [t ] =

1, if | f b
i (xi [t ])| > cb

0 ,

0, otherwise.
(3.1)

Potential anomalies have to satisfy the following requirement. A potentially anomalous

node must have a sufficient number of bursts bi in their time-series attribute. Unless this

requirement holds, we discard the node. The minimal number of bursts (potential anomalies)

per node depends on the dataset and should be chosen accordingly. Empirically, high values

lead to more aggressive thresholding. Hence, when dealing with sufficiently large graphs with

a high level of noise, it is recommended to start with higher values and decrease it gradually

until the desired result is achieved. Smaller graphs require lower thresholds. The time window

for which the statistics is computed affects the accuracy of the detection. The larger the

historical data, the more accurate the results of the anomaly detection algorithm.

To identify spikes ki in the time-series attributes, we use an algorithm that detects bursts based

on the recent history of time-series attributes. Here, we use an approach based on Z-score

or standard score. Z-score was first introduced in 1968 in financial literature to predict the

bankruptcy of a business [105]. Now, it is being widely used in statistics. The main advantage

of Z-score is that it needs very little historical data. The algorithm gives feasible results when

we have the same amount of historical data as the period for which the anomaly is being

detected.

In our pattern detection approach, we adapt an implementation of a robust peak detection

algorithm based on z-score [106] and use it as our score function f b
i to detect bursts in time-

series attributes. For a node vi with time-series signal xi , Z-score zi is the number of standard

deviations σi by which xi [t ] (current value at time t) is above or below of the mean µi of
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historical observations xi [t −∆t , t −1], where ∆t is the size of the historical time-window:

zi =
xi [t ]−µi

σi
(3.2)

Prior knowledge about the nature of the time-series data is important when using Z-score as

a scoring function. We should take into account the nature of the time-series attributes to

define the size of the time-window. The size of the time window ∆t defines the sensitivity of

the algorithm to the new streaming data. Higher values of ∆t lead to a larger time-window

and therefore make it less adaptive to changes in streaming time-series data. When choosing

∆t we should take into account prior knowledge about the stationary periods of the data.

If we know that there are weekly trends that are stationary, we should set ∆t to the value

that corresponds to stationary periods in our time-series. If ∆t is lower than that stationary

period, it will lead to a false-positive detection of a pattern. Although, if we set ∆t too high,

the sensitivity of the algorithm will drop and the false-negative rate will increase.

3.1.3 Stage 2: Hopfield network. Learning dynamic associative attention weights

Once we focused the attention of the model on potentially anomalous nodes and partially

solved the temporal part of the problem, we can proceed with solving its spatial remainder. To

do that, we learn dynamic connections between the nodes based on the prior connectivity

and the correlation among time-series attributes of the nodes. Our approach is based on the

Hopfield model of artificial memory [100]. It is an unsupervised learning method.

The presented pattern detection approach is aimed at detecting groups of vertices that have

correlated abnormal behavior. The learning stage is intended to make this coherent behavior

apparent in the memory network by learning weights between connected nodes in the graph.

To implement it, we use a synaptic-plasticity-inspired computational model, the Hebbian

learning rule [107]. The main idea of this model of brain memory is that a co-activation of

two neurons results in the reinforcement of a connection (synapse) between them. Although,

contrary to the original learning rule, in our model, we do not take causality of activations into

account.

In our case, the Hopfield network has N nodes. These nodes correspond to the ones given

in the dataset. However, we do not consider all the nodes. Instead, we learn the weights only

between those nodes that remain after the attention-based reduction performed at Stage 1

(only the nodes containing pattern-related features).

The learning process is as follows. We use the initial structure of the given network. For two

initially connected nodes i and j of the Hopfield network, at time t , we update the weight

of an edge ei j between them according to the similarity measure Sim{i , j , t }. This process

is illustrated in Fig. 3.4. Note that we only perform this step for the nodes that are initially
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connected and do not compare every possible pair of nodes. That is crucial for the tractability

of the method in cases when we deal with large and dense networks.

For each time step t , the edge weight wi j between i and j is updated as follows:

∆wi j =

+Sim{i , j }, if Sim{i , j } > λ,

−αSim{i , j }, otherwise,
(3.3)

where λ≥ 0 is the sparsity parameter and corresponds to the edge weight threshold. Similarly

to firing neurons, nodes expressing similar behavior have their connection weight increased.

When α> 0, the weight decreases allowing older patterns to be "forgotten" to keep only the

latest patterns. If we compute patterns over longer time windows and set α = 0, our approach

detects patterns that represent densely connected components that are hard to interpret.

Therefore, if we compute patterns over longer periods, we advise to increase α, and decrease it

otherwise. The value of λ influences the sparsity of the final network. Increasing λ reduces the

number of edges in the resulting Hopfield memory network. One should increase the value of

λ, when looking for the most outstanding patterns and decrease it when higher sensitivity is

required.

Before describing the similarity function, let us introduce the activity function yi at node vi :

yi [t ] = xi [t ]×ki [t ]. (3.4)

Note that the activity function can also be defined from the features calculated at Stage 1,

yi [t ] = fi (xi [t ])×ki [t ], where ki (Eq. (3.1)) is a binary vector that encodes bursts of activity

in the attributes (non-zero values indicate bursts). Here, we use the definition formalized

in Eq.(3.4).

Alternatively, we could define various similarity measures. For example, we could do the

following:

Sim{i , j , t } = yi [t ]y j [t ]. (3.5)

When yi and y j are normalized, this measure gives the Pearson correlation between the nodes

(if λ = 0 and α = 1). The L2 distance with a Gaussian kernel Sim{i , j , t } = exp(−|yi [t ]− y j [t ]|2) is

also a plausible candidate.

During the learning process, the connections between nodes with similar activity are rein-

forced (see Fig. 3.4). To prune low weight edges, we introduce a threshold wmi n and remove

edges whose weight is below the threshold.

After removing low-weight edges, each Hopfield network transforms into a modular graph

structure with strongly connected clusters of nodes having similar activity. These groups

can be either isolated connected components or communities within the largest connected

component.

26



Dynamic pattern detection in large-scale graphs Chapter 3

Ac
tiv

ity
 le

ve
l

0

2

4

6

8

2019-09-01 2019-09-28 2019-10-25 2019-11-21 2019-12-18 2020-01-14 2020-02-10 2020-03-08

node i
node j
threshold i
threshold j

W
ei

gh
t s

tre
ng

th

0

1

2

3

4

Time
2019-09-01 2019-09-28 2019-10-25 2019-11-21 2019-12-18 2020-01-14 2020-02-10 2020-03-08

edge weight between nodes i and j  

Figure 3.4 – Illustration of learning of edge weight wi j between two connected nodes i and j
when α> 0. The dynamic attributes of the nodes are represented as two arbitrary time series.
Correlation of the activity spikes leads to strengthening of the edge weight between two nodes
(red line) as described in (3.3). The spikes (top plot, highlighted in red) are registered when the
activity surpasses a threshold, which is computed separately for every node (see Eq. 3.1). The
bursts are encoded in the binary vector ki . Once the activity becomes decorrelated and α> 0,
the edge weight between the nodes gradually fades out. If α = 0, the weight continuously
increases.

3.1.4 Stage 3: Application. Pattern detection, information recovery, recommen-
dation.

Once we learn the Hopfield networks, we can use the resulting data structures for multiple

applications. Let us consider a few examples.

Pattern detection. The main application of our approach is pattern detection. In this ap-

plication, clusters in Hopfield networks correspond to spatio-temporal patterns that reflect

dynamic changes in the network over time. The analysis of the Hopfield networks and their

communities provides a good way to detect, analyze, and interpret the dynamic patterns in

graphs with time-series attributes.

To detect communities, we can use modularity-based methods [108, 109]. The structure of the

communities allows for the detailed interpretation of the detected patterns. We will further

focus on this application in the following chapters of this thesis. In particular, in Chapter 4,

we will see how the learned data structure can be used to detect dynamic patterns of user

activity in Wikipedia web network. The pattern interpretation can also be extended with

27



Chapter 3 Dynamic pattern detection in large-scale graphs

application-specific modules. In Section 5.2, we will see an example of such module. In that

application, we will use a natural language processing module for topic detection to get further

insights into the detected patterns and their interpretation.

Information recovery. Another possible application is the data recovery from incomplete

samples. This can be useful when we want to infer some node attributes in cases where

they were not initially available or got destroyed as a result of an attack on the network. This

application is illustrated in Section 3.2 using a synthetic dataset.

The recovery can be done using the memory properties of our approach that are reminiscent

of the memory properties observed in Hopfield networks. Once the pattern is detected as a

by-product, we have a memory matrix at our disposal, which can be used for pattern retrieval

from partial samples. Starting from an initial partial memory pattern P0 ∈RN×T , the recall of a

learned pattern is done by the following iterative computation:

P j+1 = hθ(W P j ), (3.6)

where W ∈RN×N is the weight matrix of the Hopfield network. The function hθ :RN×T →RN×T

is a nonlinear thresholding function (step function giving values {−1,1}) that binarize the

vector entries. The value θ is the threshold (same for all entries). For each j ≥ 0, P j is a matrix

of binarized time series attributes of the network, where each row is associated to a node of

the network and each column corresponds to a time step of the time series attribute. We stop

the iteration when the iterative process has converged to a stable solution (‖P j+1 −P j‖ ≤ ε,

where ε is small, the norm is the Frobenius norm). The initial pattern P0 is a binary matrix,

where the rows have all values set to −1 (inactivity) except the ones associated to the partial

memory pattern obtained from the time-series using the expression of ki defined in Eq. (3.1).

The computation of the iterative process is efficient as the matrices are sparse and in practice,

it converges after a feasible number of steps.

The pattern recovery or "recall" equation of Hopfield networks (Eq. 3.6) is central to our

method and its applications related to information recovery and recommendation systems.

We used the same intuition as in Hopfield networks, where the model is trained to reconstruct

data from incomplete inputs. In our case, each pattern is a Hopfield network with a weight

matrix W and a set of binary activations P that encode time series attributes. Each network is

a set of nodes connected by weighted edges. Weights represent the strength of the connection

between nodes. Same as in classical Hopfield networks, we used binarized activations. Each

node can have one state at a time, and these states can be -1 or +1. In the original paper, J. J.

Hopfield used binary units to compute the Hamming distance between two binary states of

the network, which is defined as the number of entries, where the binary values are different.

However, binarization is not a required prerequisite, and the recovery can also be done with

nonbinary states, as it was shown in [110].

Recommendation. Dynamic recommendation systems based on the explicit attention mech-

anism became popular in the past few years [91, 92]. Such recommendation systems target
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dynamic data domains with underlying graph structure. A common feature of dynamic recom-

mendation systems is the way they learn representations of items. All recommended items are

connected in a graph. The weights in the graph are learned based on the dynamic attributes of

the nodes. Then, the recommendations are inferred using a dot product between the learned

attention weight matrix and the incomplete set of attributes (e.g., users with incomplete

profiles of their interests). Similarly to these works, the weighted network, which we learn with

our approach, can also be used as a basis of a dynamic recommendation system. Moreover,

the recommendation task is similar to the previously described task of information recovery.

This task can be formulated as follows. Given a weighted network of connected entities W and

partial information about their dynamic attributes P0 ∈ RN×T infer missing attributes. The

recommendation is defined as a dot product between the weight matrix W and the matrix

of the dynamic attributes P0. Therefore, the inference step is the same as in the information

recovery problem and can be solved using Eq. (3.6).

For instance, the network W could represent web-pages that have viewership activity as a

dynamic attribute. When readers click on a certain web-page, the task would be to recom-

mend another web-page to visit based on the partial historical activity of the previous users,

represented as P0. The practical demonstration of this feature will be presented in Section 4.3

of the following chapter. We will illustrate it on the dynamics of Wikipedia web network, where

given multiple articles on the topic, we will infer other articles on the same topic based on the

learned Hopfield memory network.

3.2 Example on synthetic data

In the previous section, we formalized the connection between the attention mechanism

and the associative memory model based on the Hopfield network. We showed that graph-

structured data inherently possesses memory properties that enable us to use our approach

for multiple applications. To make this connection more intuitive, in this section, we provide

a visual example using simplified synthetic data, which is illustrated in Fig. 3.5 a).

Let us consider a sparse random Erdős–Rényi graph with 500 vertices and 12171 edges (5% of

a fully connected graph). Each node in the graph has a time-series attribute of length T = 5000,

which is stored in matrix P . We simulate an anomalous activity pattern on a random subset of

nodes between 500 and 600 time steps generating a consistent spike of activity. The goal of

our approach is to detect a subgraph, where this anomaly has occurred. Using Eq. 3.1, Stage 1

of the algorithm focuses attention of the model on potentially anomalous nodes that are

highlighted in red in Fig. 3.5 (b). Once we have selected those nodes, we are not considering

the rest, which are colored in green. Then, in Stage 2, we use Eq. 3.3 to learn the connections

between the nodes in red, which we can see on the same figure. Once the learning is done, we

can proceed to the final stage of the algorithm and use the representation in an application.
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Initial random Erdős–Rényi graph

a) b)

Detected anomalous subgraph

Figure 3.5 – Attention focus and anomaly detection example. Synthetic data. a) Initially, we
have a sparse random Erdős–Rényi graph (top) with 500 nodes, each of which has a time-series
attribute (bottom) of length T = 5000. We simulate anomalies in a random subset of time-
series attributes between 500 and 600 time steps and apply our algorithm. b) Results of the
anomaly detection algorithm. During Step 1, the algorithm focuses attention on a subset of
potentially anomalous nodes (in red). Computing the Step 2, the algorithm does not consider
the rest of the network (in green) and learns weights only among the nodes whose features are
potentially related to the anomalous pattern. The resulting anomalous cluster is highlighted
in red.

Let us demonstrate an application of information recovery. We illustrate the recovery process

in Fig. 3.6 and zoom in to highlight the anomalous part of the time-series between 500 and 600

time steps. First, we create our partial memory pattern P0 erasing time-series attributes from

50% of the nodes. As we can see on Fig. 3.5 b, computing a dot-product adjacency matrix W of

the learned graph and the partial memory pattern, as shown in Eq. 3.6, we can successfully

recall or recover missing time-series data.

Besides, this experiment also demonstrates the effect of the explicit attention mechanism.

When the model recalls the memorised pattern, it focuses only on the important parts of

the signal that contribute to the detection of the pattern, ignoring the uniform activity of the

nodes. Fig. 3.6 (panel 3) illustrates the explicit attention effect.
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Figure 3.6 – Recall experiment on the synthetic data. The recall process is done by computing
a dot product between the partial pattern P0(panel 1) and the learned weight matrix W as
shown in Eq. 3.6. We create a partial activity pattern removing time-series attributes for 50%
of the nodes in the graph (panel 1) and use the pattern detection algorithm to recover the
missing part. The restored pattern is shown on the panel 3. The error (panel 4) is computed
by subtracting original and recalled patterns. We can see that the pattern (horizontal lines) is
recovered and the uniform activity is ignored by the attention mechanism (appears as noise in
the panel 4).

We tested the recall mechanism in settings with different fractions of missing data. Since the

random graph is well-connected and the random signal is relatively uniform, the recovery

of the missing fraction of the pattern shows good results even with only 10% of available

information. However, when we ran experiments on real data with a sparser nonrandom

network, we have observed that the recovery performance gradually deteriorates when we

remove more data from incomplete patterns. All in all, the sparser the network, the harder it is

to reconstruct the missing fractions of incomplete patterns. We will discuss this observation

in more detail in the experiments described in Section 4.3.

3.3 Scalability and constraints

The proposed algorithm can be scaled to large dynamic graphs. In Chapter 4 and Chapter 5,

we scale it to tens of millions of nodes and billions of edges. The computations are tractable

because:

• they are local on the graph, i.e., weight updates depend on a node and its one-hop

neighbors and can be implemented using parallel message-passing approaches
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• weight updates are iterative

• a weight update occurs only between initially connected nodes and not between all

possible combinations of nodes

These three facts enable us to build a distributed implementation based on a message-passing

approach to speed up computations. For this purpose, we use a graph-parallel Pregel-like

abstraction, implemented in the Apache Spark GraphX framework [111, 112].

Ranshous et al. [38] provided a detailed analysis of complexity of dynamic pattern detection

algorithms using Big O notation. The most scalable algorithms presented in the survey have

complexity O (N T ), O (ET ), or O ((N +E )T ), where N is the number of nodes, T is the number

of time steps, and E is the number of edgesI. We use their survey to compare our algorithm to

other works.

Let us analyze the complexity of every stage of our algorithm. Stage 1 (Sec. 3.1.2) of our

algorithm has complexity O (N T ). Stage 2 (Sec. 3.1.3) has complexity O (ET ). The recall process

involves multiplication by a sparse matrix with 2E nonzero entries, hence the complexity is

O (ET ). We can see that, in terms of complexity, our algorithm is among the most scalable

algorithms presented in the survey.

Additionally, it is important to point out that the number of nodes and edges considered

in the computations is not necessarily the number found in the input graph. The attention

mechanism, which we implemented in Stage 1, discards a large number of nodes N that are

unrelated to patterns. Moreover, Stage 2 sparsifies time series attributes as Eq. (3.4) sets a

large number of values to zero reducing the number of time steps T that are considered in

computations. All that allows us to reduce the amount of the processed information by an

order of magnitude, which positively affects performance of our algorithm.

One of the constraints of our algorithm is that the number of patterns that can be memorized

by a single network is limited [113]. Indeed, without the forgetting parameter α in Eq. 3.3, the

clusters of nodes will accumulate inside the graph, eventually overlapping and forming larger

clusters of unrelated anomalies. To address this issue and to keep track of older events, we

create snapshots of memory by slicing the time series into time windows of finite duration and

by creating multiple networks for each slice. The time window size depends on the application.

3.4 Discussion

The algorithm presented in this chapter should be regarded as a system with two main com-

ponents that can be changed based on the application and the data domain. First component

is based on the attention score function that can also be seen as feature extraction module,

IHere, we modify the notation used in the survey. To denote the number of edges in the graph, we use E instead
of m.
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which we have defined as a burst detection function (Eq. 3.1). Instead, practitioners can use

ARMA filter prior to thresholding, short-time Fourier transform, a wavelet transform, or any

other user-defined function. Second component is responsible for weight update (Eq. 3.3)

that is controlled by a similarity function (Eq. 3.5). These functions can also be changed in

case one needs to take into account, for instance, negative co-activations or other patterns of

temporal dynamics.

In this chapter, we also demonstrated the performance of the proposed algorithm on syn-

thetic and real datasets, highlighting its advantages in terms of interpretability and scalability.

However, before we go on with other experiments and applications, we would like to point out

a few important nuances that should be taken into account when applying it. These nuances

are related to the Hebbian learning rule and its constraints.

In Stage 2 (Sec. 3.1.3), to learn the memory network, we adapted the Hebbian Learning rule,

as shown in Eq. 3.3. We chose this rule because of multiple reasons. First, it is unsupervised.

Second, it is intuitive and computationally efficient. Finally, the rule is easy to implement and

to adapt for different purposes. As we are going to see in the following chapter, due to these

properties, the proposed anomaly detection algorithm shows good performance on datasets

of different sizes and complexities.

However, we would like to discuss some aspects of the rule that can affect the performance

and effectiveness of our algorithm. These aspects were first described by Miller and MacKay

in [114]. They pointed out that correlation-based rules without constraints are unstable

and result in either exploding or vanishing connection weights. To mitigate this effect, they

considered two types of weight decay, subtractive and multiplicative. Multiplicative decay

takes into account the current strength of the connection between two neurons and adapts

the weight proportionally. Subtractive decay updates the weights at a fixed rate and does

not consider the current strength of the connection. Both types of constraints represent

fundamentally different ways to control the weight update. Under a subtractive constraint,

the structure of the model converges to a set of the most correlated neurons. The weights of

the connections between these neurons reach the maximum allowed strength, while the rest

of the connections die out. Under a multiplicative constraint, we can represent a wider range

of connection weights and avoid tuning the minimal and maximal allowed weight limits.

In the algorithm presented here, we adapt the subtractive constraint, adjusting the weight

at a fixed rate (Eq. 3.3). Then, we introduce a limit wmi n , which is a minimum strength of a

connection between two neurons. Connections that have lower weights are discarded. The

drawback of such solution is that we need to take care of the time window for which we

compute the anomalies. This time window depends on the data and requires prior knowledge

about it. For instance, as we will see in the applications, knowing the periodicity of the data

gives us a feasible starting point in choosing that time window. This works well in most cases,

however, it would be useful to introduce a multiplicative constraint option to the model to

cover more potential use cases and to make our approach more flexible and versatile. A
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multiplicative constraint can be useful when the periodicity of the data and the duration of

potential anomalies are unknown. Moreover, a multiplicative constraint would allow us to

avoid getting disconnected components in the resulting graph. Disconnected components

are common when we use subtractive constraints.

Lastly, in some applications, large hubs may introduce a bias into the data. For instance, when

attributes of the hubs are irrelevant to solving the problem or when the attributes are noisy,

such nodes propagate their attributes to the neighbors during the aggregation and learning

stage, significantly affecting attributes of the rest of the network. To solve the problem of large

hubs that are highly connected with the rest of the network, we can introduce a structural

constraint, which was not described by Miller and MacKay. A similar constraint is widely used

in GNNs during the feature aggregation stage. When changing weights, such constraint takes

into account the structural properties of the network and adapts weights with respect to the

connectivity patterns, such as a node’s degree and centrality measures. This allows mitigating

the influence of the attributes located in the hubs.
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tected patterns

In the previous chapter, we have introduced our pattern detection algorithm for dynamic

graphs. We demonstrated an example of pattern detection on a synthetic dataset. Also, we

briefly discussed the main aspects and potential applications of our approach.

In this chapter, we continue exploring different aspects of the proposed algorithm in more

detail. We conduct large-scale experiments and perform an in-depth analysis and evaluation

of the results. We focus on the effect of the attention mechanism on the scalability, discuss

applications of the memory properties, and provide a detailed interpretation of detected

patterns.

In Section 4.1, we compare the performance of our approach with other works using the Enron

email dataset that is commonly used for the evaluation of such algorithms.

In Section 4.2, we scale the algorithm up to the size of the entire English Wikipedia web

network, detecting anomalous patterns of viewership activity on webpages. In Section 4.2.1,

we provide a detailed analysis of the algorithm giving concrete examples on real-world data,

illustrating the explicit attention effects and memory features of our model.

To give a better understanding of why the model detects certain patterns, we demonstrate one

of the most important features of the proposed algorithm – its interpretability. We illustrate

and interpret multiple concrete examples in Section 4.2.2. Also, based on the interpretation

of the detected patterns, we uncover insights about the collective behavior and interests of

billions of Wikipedia readers.

After the detailed analysis and interpretation of the detected patterns, we focus on the memory

properties of our algorithm and related applications. In Section 4.3, we show how we can

use the memory properties in other applications, such as recommendation systems and

information recovery. Finally, in Section 4.4 we present another memory-based application in

the digital humanities. We study the sociological phenomenon of collective memory, the way

social groups remember the past, at a much larger scale than it had been done before.
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4.1 Detecting patterns in the activity of Enron email network

In this section, we compare the quality of our pattern detection approach to the results

produced by other methods. To do that, we use the Enron email dataset [57]. This dataset is a

widespread test case for a diverse set of algorithms, including anomalous pattern detection in

dynamic graphs.

To test the performance of the proposed algorithm, we compare our results with the body of

work presented in the related works (see Sec. 2.1) and use the events presented in these works

as ground truth to validate the accuracy of our pattern detection. We follow the same data

preparation approach as in the related works. We create an email communication graph and

use time slices of the dynamic graph to detect dynamic patterns. Contrary to the methods

presented in the related works, we use a hybrid approach, combining node features and

graph structure to detect patterns in the dynamic graph of Enron email communications. We

define a pattern as a sudden anomalous increase in email communication among a group of

employees of the corporation.

Let us focus on the dynamic data structure in more detail. To apply our pattern detection

algorithm to the Enron dataset, we represent the data as a dynamic graph data structure,

which is depicted in Fig. 3.1. The underlying graph is the network of email communications.

Nodes in the graph correspond to the email addresses of employees. Two nodes are connected

if they have exchanged at least one email over 5 years. It is an undirected, unweighted graph.

Time series associated to the nodes are captured from the email activity; each temporal value

is the number of emails sent from the associated address during one day.

First, we use Stage 1 (Sec. 3.1.2) to select employees that have spikes in their communications.

Then, we use feature similarity to compute strongly connected employees. Here, during

learning performed at Stage 2 of our approach (Sec. 3.1.3), the connection between email

addresses is reinforced if a similar number of emails was sent by both of them over the same

hour, indicating an active email exchange.

After learning a Hopfield network for every monthly snapshot, we investigate the structural

component. To do that, we take four monthly time slices corresponding to the periods that

were discussed in the literature. In the previously discussed related works, the authors observe

four anomalous periods and relate them to the specific news reports involving Enron. We use

these events as a ground truth. These are the following periods:

• December 1999. A sham deal between an Enron entity and Merrill Lynch, an investment

department of Bank of America, to boost the stock price.

• April 2001. A public scandal, involving Wall Street analyst R. Grubman and Enron’s CEO

J. Skilling. Mr. Slilling insulted Mr. Grubman during an interview after a question on the

refusal of releasing the balance sheet of Enron.
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Figure 4.1 – Anomaly detection in Enron email network. Red areas highlight the month periods
previously reported as anomalies (ground truth supported by real world events). Blue lines
reflect the normalized (scale 0-100) overall activity level in the network computed by the
proposed algorithm. We can see that the algorithm detects anomalies in all reported cases.

• May 2001. Closure of Enron’s largest foreign investment, the Dabhol Power Company in

India, due to another scandal leading to Enron’s bankruptcy.

• August 2001. Resignation of Enron’s CEO J. Skilling, followed by the bankruptcy of the

company in November 2001.

For each month, we select the largest connected component of the learned graph. We sum up

the activity of its nodes to get a single time-series representative of the group activity, which

is illustrated in Fig. 4.1. We define a pattern as a spike of overall activity in a cluster of email

addresses that we detect after learning. The spike is detected using a standard-deviation-based

threshold. As we can see, all four curves have a larger activity during the chosen month than

in the rest of the period. For April and May 2001, when two major scandals happened, it

is more than twice the maximal activity for the rest of the month, showing the evidence of

an anomalous pattern in the email communication network. The increases in activity that

happened in December 1999 and August 2001 have a longer trace after the main anomalous

pattern was detected. However, we can see that the high activity does not spread for more

than one year.

Concerning the monthly components of active nodes for the 4 chosen months, it involves 29,

25, 126, 28 nodes, respectively, for December 1999, April, May, and August 2001. Almost all

of them correspond to the addresses of Enron employees (some emails in the dataset have

external domains). Except for the event that happened in May, the activity involves less than

30 employees. The closure of the largest foreign investment led to the creation of a large
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connected component in the graph. It contains 100 employees out of 158, indicating that the

major pre-bankruptcy event had severely impacted the whole company.

To conclude, our method detected all anomalous patterns presented in the state-of-the-art

literature. Our approach reveals the days of the peak activities, the duration of the events, and

the involved employees, facilitating investigation of the patterns and interpretation of our

method. Along with interpretability, scalability of the proposed pattern detection model is one

of its main advantages. We are going to focus on that in more detail in the following section,

where we scale up our algorithm to the entire Wikipedia web network.

4.2 Large-scale pattern detection in Wikipedia web network

Over recent years, the Web has significantly affected the way people learn, interact in social

groups, and store and share information. Apart from being an essential part of modern

life, social networks, online services, and knowledge bases generate a massive amount of

logs containing traces of global online activity on the Web. Most of this data is related to

the standard activity of the users. However, the larger these logs become, the harder it is

to detect deviations from normal behavior in the network. Localization of these anomalies

becomes even more difficult because of the continuous expansion and dynamic nature of

these networks. All in all, web and social networks represent an interesting, complex, and

continuously evolving data domain, which requires new pattern detection techniques.

Being one of the most visited websites in the world, Wikipedia is an excellent example of a

large-scale and constantly expanding dynamic network. The scale of the web network and the

openness of its viewership logs make it a perfect test dataset, which enables us to demonstrate

all aspects of dynamic pattern detection algorithms. In this section, we use Wikipedia server

logs to analyze and to give a better understanding of multiple aspects of our approach, which

we have presented in the previous chapter (Sec. 3.1).

To demonstrate the efficiency and scalability of the proposed pattern detection algorithm, we

test our approach on the entire English Wikipedia web network and its viewership dynamics.

We build a network of Wikipedia articles and use the visitor activity of each article, i.e., the

number of visits of an article per hour, as a node attribute. The static underlying network is

the Wikipedia hyperlink network. Two pages are connected if there is at least one hyperlink

reference between them.

The results of our experiments demonstrate that we can use our algorithm to detect anoma-

lous patterns in the activity of Wikipedia web network and interpret them to analyze the

collective behavior of Wikipedia readers. Each pattern is a densely connected subgraph of

Wikipedia articles whose behavior deviates from the norm. The emergence of each pattern is

triggered by a sudden increase in viewership activity in a small, local part of the web network

of Wikipedia articles. We observe that for the Wikipedia data, the subgraphs contain linked

pages closely related to an event that triggered a sudden increase of visits during a short
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period. These clusters of anomalous nodes can then be used for more detailed investigation

and interpretation as it is shown in Section 4.2.2.

Interpretability of the results is one of the main advantages of our approach. It provides a

comprehensive description of the detected patterns. As a result, we are able to perform a

thorough qualitative evaluation of our results. On the other hand, the quantitative analysis of

the results of the experiments on Wikipedia data is complicated. In the experiments on the

Enron email dataset (Sec. 4.1), we had the ground truth and we used it to validate the detected

anomalies quantitatively. However, in the case of Wikipedia, a quantitative evaluation of the

results turns into a challenge because we do not have ground truth labels in the Wikipedia

dataset.

Nonetheless, in the experiments on Wikipedia data, we use alternative methods to validate

the results of pattern detection. We evaluate the quality of detected anomalous patterns

using trending events extracted from Google Trends. During the experiments, we noticed

that detected anomalous patterns in Wikipedia’s viewership dynamics can be associated to

real-world events. This observation inspired us to validate our results using Google Trends

and to use it as a reference that indicates anomalous search activity of internet users.

To give a more detailed qualitative analysis of the detected patterns, we also interpret them

from the collective behavior point of view. There are several studies on mining patterns in

visitor or editor activities on Wikipedia that are aimed at getting better insights on collective

behavior and social interactions [26, 27, 115, 116]. To mitigate the high computational cost

inflicted by the large amounts of data, most of the studies focused on particular topics of

interest and subsets of selected Wikipedia articles. For instance, only traumatic events, such as

attacks and bombings, have been investigated in [28], [29] based on the Wikipedia edit activity

data. Tinati et al. [115, 116] proposed a Transcendental Information Cascade model and

applied it to Wikipedia editorial activities to extract patterns of information propagation over

the article network. Analyzing Wikipedia daily page views, Kanhabua et al. [27] investigated

5500 events from 11 categories such as aviation accidents, earthquakes, hurricanes, or terrorist

attacks. Wikipedia hourly visits on the pages of celebrities were used to investigate the fame

levels of tennis players [30]. Agarwal et al. [117] analyzed spatio-temporal patterns during

the election period in the UK. The study focused on editors’ and readers’ engagement with

Wikipedia’s political content related to UK Members of Parliament. These studies point out the

high interest in Wikipedia data and the increasing need for more systematic spatio-temporal

pattern detection methods.

The first investigation from an anomalous pattern detection point of view was presented by

Mongiovi et al. [118, 119], where Wikipedia pagecounts data are combined with the graph of

hyperlinks. However, they applied their method to a preselected subset of Wikipedia. Due to

the introduced concept of explicit attention and potential anomaly, our distributed algorithm

(Sec. 3.1) allows us to handle the full Wikipedia network and long-term visitor activity records.
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Figure 4.2 – Left. Weighted degree distribution in log-log scale for the Wikipedia graph and
Hopfield network learned over the entire 7 months time span. Linearity in log-log scale corre-
sponds to power-law behavior P (k) ∼ k−γ. The learned graph preserves a similar scale-free
behavior, but is less connected and has fewer hubs than the initial graph. Right. Community
size distribution of the initial Wikipedia graph of hyperlinks (blue) and the learned Hopfield
network (red). The total number of communities: 32 for the initial graph, 172 for the learned
one.

4.2.1 Analysis of the pattern detection stages

We start by analyzing the initial graph of Wikipedia webpages connected with hyperlinks.

In this experiment, the time-series attributes of the nodes correspond to the viewership

statistics of the associated web pages. To analyze the reductionist effect of the explicit attention

mechanism of Stage 1 of our algorithm (Sec. 3.1.2), we detect potential anomalous patterns

that emerged as a result of the long-term dynamics of the Wikipedia web network. Finally, to

extract fine-grained patterns, we learn the Hopfield network (Sec. 3.1.3) using the viewership

statistics from October 2014 to April 2015.

This experiment highlights the effectiveness of the explicit attention mechanism, which allows

reducing the amount of processed data by an order of magnitude. After the learning stage,

only 275’498 edges have strictly positive weights (4.2% of the initial graph). We remove the

disconnected nodes and preserve only the largest connected component of the graph. The

number of remaining nodes is 35’839 (31% of the initial number).

The analysis of the static underlying graphs shows that both Wikipedia graphs, initial and

learned, have statistically heterogeneous connectivity and similar structure (Fig. 4.2). This

highlights the effectiveness of the explicit attention mechanism and shows that we preserve

the essential structural information after significant data reduction performed at Stage 1 of

the algorithm.
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(a) Initial (0.1M nodes and 5M edges) (b) Learned (0.02M nodes and 0.1M edges)

Figure 4.3 – Illustration of the data reduction effect achieved due to the explicit attention
mechanism. Wikipedia graph of hyperlinks (left) and learned Hopfield network (right). The
attention mechanism allowed us to reduce the number of nodes and edges by an order of
magnitude. Colors correspond to the detected communities. We can see that the learned
graph is much more modular than the initial one, with a larger number of smaller communities
that potentially correspond to spatio-temporal patterns.

However, the initial Wikipedia graph is dominated by large hubs that attract most of the

connections to numerous low-degree neighbors. These hubs correspond to general topics in

the Wikipedia network that often link broad topics. For instance, the article “International

Standard Book Number” that has a large number of hyperlinks pointing to it from pages

covering very diverse subjects. If we look at the viewership statistics, the activity of the visitors

in these large clusters is uniform and does not expose any patterns over time. We aim at

extracting smaller communities that correspond to localized patterns in the dynamics of the

network. This is the reason why we need Stage 2 of our approach (Sec. 3.1.3) to get the learned

graph.

Visualizations of the initial and learned graphs using a force layout algorithm show striking

differences. Looking at Fig. 4.3, we can visually assess the reduction effect of the explicit atten-

tion mechanism. The initial Wikipedia graph is dense and cluttered with a significant number

of unused references, while the learned graph reveals smaller, refined, and more separated

communities. This is also confirmed by the numerical measures such as the community size

and degree distributions of the graphs (Fig. 4.2, right). The number of communities and their

size change after learning. Initially, a small number of large communities dominate the graph

(blue), while after the learning (red) we see a five times increase in the number of communities.

Moreover, as a result of the learning, the size of the communities decreases by one order of

magnitude. The modularity of the learned graph is 25% higher, strengthening the evidence of

the creation of associative densely-connected structures.
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Figure 4.4 – Evolution of the National Football League 2014-2015 championship cluster and
visits on its articles. We show 30 NFL teams from the main cluster. Top: the 7 monthly learned
graphs in gray, with an explicit attention focus on the NFL cluster highlighted in red. This
sequence illustrates the attention flow of the model. Middle table: visitor activity per hour on
the NFL teams’ Wikipedia pages in grey scale (the more visits, the darker). Bottom: the total
number of visits (normalized) of the articles of the cluster over time (red), the Google Trends
curve for the keyword "Super Bowl" (dashed blue), and the activity of the central node of the
pattern-related cluster (dashed green).

These measurements indicate that, as a result of learning performed at Stage 2, we obtain a

graph structure with refined strongly connected clusters that correspond to an interpretable

summary of patterns in the network dynamics. We provide more concrete examples of the

detected patterns and their interpretation in Section 4.2.2. We show that the analysis of each

cluster of nodes in the learned graph gives us an overview of the events that occurred during

the 7-month period and caused the anomalous behavior of Wikipedia readers during that

period. Each cluster is a group of pages related to a common topic such as a championship, a

tournament, an awards ceremony, a world-level contest, an attack, an incident, or popular

festive events such as Halloween or Christmas.

4.2.2 Interpretation of the detected patterns

Interpretation is one of the most important features of the proposed algorithm. Due to a rich

set of attributes, Wikipedia dataset is a perfect demonstration example for this feature. In

this section, we focus on the interpretability of the detected patterns in more detail. We pick

multiple patterns with different properties and explain the reasoning behind the detection.
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In this experiment, we detect short-term patterns. To do that, we split the dataset into monthly

snapshots. An average event attracting the attention of Wikipedia users usually lasts no longer

than two weeks. Therefore, we are going to detect multiple anomalous patterns at once.

Monthly graph snapshots are smaller compared to the 7-months snapshot and contain 10’000

nodes on average after learning. However, the properties and distributions of monthly graph

snapshots are similar to the 7-months one, described in the previous section.

Before going deeper into the analysis and interpretation of the anomalous patterns in the

network dynamics, we investigate the evolution of the graph structure with an emblematic

example of the Super Bowl, the finals of the National Football League 2014-2015 championship.

We track this pattern for several months between 2014 and 2015 and use it to illustrate the

effect of the explicit attention mechanism (Fig. 4.4).

NFL is one of the most popular sports leagues in the USA and it triggers a lot of interest in the

related articles on Wikipedia. Due to the high popularity of Wikipedia articles on this topic, we

localized a cluster related to the NFL in multiple graph snapshots. Fig. 4.4 shows the detailed

information about the NFL clusters. The top part of the figure illustrates the learned attention

graphs for each monthly snapshot, where the attention cluster related to NFL is highlighted in

red.

The same figure shows the evolution of the final stages of the championship. The final game

of the 2014 season, Super Bowl XLIX, had been played on February 1, 2015. This explains

the continuous expansion of the attention cluster until February where its size reaches the

maximum. The activity drops right after this event, the cluster disappears, and the attention

vanishes.

For the sake of readability of the figure, we extracted 30 NFL team pages from the original

attention cluster (485 pages) to show the details of the evolution in time as a table in Fig. 4.4.

This fraction of nodes reflects the overall dynamics of the entire cluster. Each row describes

the hourly activity of a page, while the columns split the plot into months. The sum of visits

for the selected pages is plotted as a red line at the bottom.

The dynamics of the detected cluster reflects the real timeline of the NFL championship. The

spiking nature of the overall activity corresponds to weekends when most of the games were

played. Closer to the end of the championship, the peaks become stronger, following the

increasing interest of fans and expanding the attention area of the model. We see the highest

splash of activity on 1 February, when the final game was played.

Note that this and other detected clusters were obtained in an unsupervised manner. The

football team pages were automatically connected in a cluster having “Super Bowl” as a

common topic. Moreover, the cluster is not formed by one Wikipedia page and its direct

neighbors. It involves many related articles in the network that are several hops away from

each other.
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The NFL championship case is an example of a periodic (yearly) event. The interest to the

championship increases over the months until the expected final event, which causes the

emergence of the anomalous pattern in the network dynamics.

Accidents and incidents are events of a different nature as they appear suddenly, without prior

activity. Despite this fundamental difference in the dynamics, the proposed method allows

detecting such events and related patterns as well. We provide examples of three accidents to

demonstrate the ability of our method to detect patterns that emerge due to the dynamics

influenced by unexpected events.

We pick three events among the 172 detected and interpret them to show the details of our

anomaly detection approach. Fig. 4.5 shows the extracted clusters from the learned graph

(left) and the overall timeline of the clusters’ activity (right). Same as in the NFL example, we

evaluate the quality of the pattern detection using Google Trends as a reference.

Ferguson unrest. Second wave. November 24, 2014 – December 2, 2014. The second wave

of the Ferguson unrest is characterized by dynamics that has beginning and end dates. A

sharp increase in the activity at the beginning of protests highlights the start of the main event,

which caused a spike of activity on the related Wikipedia pages. The start of the unrest triggers

the emergence of the core attention cluster. We also see that the cluster becomes active once

again at the end of the unrest, allowing us to record the two related anomalous patterns in the

visitor activity.

Charlie Hebdo shooting. 7 January 2015. The terrorist attack on the headquarters of the

French satire magazine is another example of an unexpected event. The attention cluster

emerged over a period of 72 hours following the attack. All pages in the cluster are related to

the core event and experienced a considerable increase in activity during the 72-hours period.

We can see that just by looking at the title of the pages one can get an overall summary of

what the event is about. There is a sharp peak of activity on the first day of the attack, slowly

decaying over the following week.

Germanwings flight 9525 crash. 24 March 2015. This cluster not only involves pages describ-

ing the crash or providing more information about it but also captures pages of similar events

that happened in the past. It includes, for example, a page with a list of airplane crashes and

an article about another accident that happened in December 2014, the Indonesia AirAsia

Flight 8501 crash. As a result, the attention cluster related to one event is connected to the

attention cluster of the other event, causing a residual memory flashback and an attention

spike in December. This is an example in which our approach captures two relevant events

and groups them together in one cluster, allowing us to detect a secondary pattern that is only

implicitly related to the main one.
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Figure 4.5 – Graphs and activity timelines of the 3 events that triggered the emergence of
anomalous patterns in the network dynamics. Left: clusters of pages grouped after learning
in the Hopfield network. Right: A normalized sum of all visits of the articles of each cluster
over time (in red). The Google Trends curves for the keywords "Germanwings 9525 crash" (a),
"Ferguson unrest" (b) and "Charlie Hebdo attack" (c) are displayed in blue. Activity of the
central page in the pattern is shown in green.
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Table 4.1 – Examples of Wikipedia article titles found in the clusters associated to the presented
events

Charlie Hebdo attack Germanwings 9525 crash Ferguson unrest

Porte de Vincennes hostage Inex-Adria Flgt. 1308 Shooting of Tamir Rice
Al-Qaeda Pacific S-W Flgt. 1771 Shooting of Amadou Diallo
Islamic terrorism SilkAir Flight 185 Sean Bell Shooting Incident
Hezbollah Suicide by pilot Shooting of Oscar Grant
2005 London bombings Aviation safety 1992 Los Angeles riots
Anders Behring Breivik Air France Flgt. 296 O.J. Simpson murder case
Jihadism Air France Flgt. 447 Shooting of Trayvon Martin
2015 Baga massacre Airbus Attack on Reginald Denny

Finally, in Table 4.1, we summarize our exploration of the clusters of learned graphs by

providing a list of handpicked page titles that appear inside each cluster. These Wikipedia

articles refer to previous events and related subjects, covering events that occurred outside of

the analyzed 7-months period.

These examples illustrate the associative properties of the patterns that are detected by our

algorithm. An anomalous pattern is characterized by a group of connected nodes with similar

features. Nodes are grouped by the attention mechanism based on the attributes at Stage 1

and the learning processes at Stage 2. These stages also connect related patterns based on the

shared cross-pattern attributes. All in all, these properties of the dynamic patterns allow us to

interpret the cause of the detection and make the algorithm more intuitive.

4.2.3 Evaluation

To evaluate the quality of the detected patterns, for each of the events presented before,

we compare the total number of visits in the clusters with Google Trends curves reflecting

anomalous search activity of internet users. Here, we use Google Trends as a reference for

qualitative evaluation. There is a nearly identical correspondence between the detected

anomalous patterns and Google Trends, as we can see in Fig. 4.4 and 4.5. In all 4 examples, the

anomalous activity and Google Trends curves reach their maximum at the same time and have

a very similar shape. The differences that appear during the months prior to the Super Bowl

date are explained by the fact that our "Super Bowl" cluster contains articles about football

teams and other topics related to the Super Bowl. Due to the associative nature of the detected

anomalies, this example has a better quality of detection than Google Trends.

As discussed previously, periodic spikes in visitor activity occur during the weekends when

football matches are played. We observe the same phenomenon in the case of the German-

wings crash, where we observe a small peak of activity in December. This peak is the result of

the prior activity on the page related to another airplane crash that happened in December
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2014. This example demonstrates the richness of the detected patterns. They describe a group

of events that influenced anomalous dynamics in visitor activity, as confirmed by Google

Trends.

In addition, contrary to Google Trends, our patterns represent more than a single keyword

since they emerge as a result of the anomalous dynamics on multiple pages describing different

interrelated concepts.

4.3 Using detected patterns for information recovery and recom-

mendations

As we saw in Section 2.4, there is a relationship between memory models and the attention

mechanism. Inspired by this insight, we design another experiment to confirm this hypothesis.

In this experiment, we analyze the memory properties of patterns detected by our method.

We test our hypothesis that the proposed method, as a memory, allows recalling or recovering

events from partial information. Note that we do not design a complete experiment to compare

to other recommendation systems. The goal of this experiment is to present an example of the

recall mechanism, demonstrating the recommendation ability of the network and to illustrate

its complexity.

Let us consider a potential application of the memory property in recommendation systems.

In recommendation systems, given partial information about a user’s activity on a set of

Wikipedia pages, the goal is to recommend new related articles based on the activity history

and preferences of other users. In other words, the goal is to complete a partial pattern of a

user’s viewership activity that would reflect articles related to a potential topic of interest for

that user.

The recommendation can be formalized as a recall process of Hopfield networks. We perform

the recall using the Stage 2 (Sec. 3.1.3) and recover the pattern using a dot product between the

the learned weight matrix and the incomplete pattern, similarly to the way it is done in other

attention-based recommendation systems [91, 92] (see Sec. 2.3 for a more detailed overview

of the related works). We show that the learned graph structure can recover a full pattern of

anomalous user activity from an incomplete input, represented as a cluster of pages and its

activations.

To emulate incomplete viewership patterns, we remove the activity information from a few

pages in one of the detected patterns. We build the input matrix P0 setting to (−1) (inactive

state) all the time series except for the selected pages. Then, we iteratively compute a dot

product as shown in Eq. (3.6).
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Figure 4.6 – Recall of an event from a partial pattern (Charlie Hebdo attack). The red vertical
lines define the start of the event and its most active part, ending 72 hours from the start. Left:
full activity over time of the pages in the cluster. Middle: pattern with 20% of nodes set inactive
(top lines). Right: the result of the recall using the Hopfield network model. In light red are
shown the difference with the original pattern (the forgotten activity).

In the cluster associated to the Charlie Hebdo Attack, we preserve the viewership data for a

subset of articles (here, 80%) and remove that data for the rest of the articles (see Fig. 4.6). We

apply the learned graph for the January snapshot when the anomalous pattern that emerged

as a result of the attack was detected. As a result of the recall, for instance, if a user read the

article about Charlie Hebdo Shooting, she will be recommended to read Everybody Draw

Mohammed Day article, which was not present in the incomplete pattern.

After the recall, we can remark on a few important facts. First, if we focus on the short

period when the event occurs (within the red vertical lines in Fig. 4.6), most of the time-series

attributes are recovered. Second, the model forgets a part of the activity, plotted in light red,

outside of the event bounds. This missing part comprises pages that are active outside of the

timeline of the event, giving evidence that they are not directly related (or weakly related)

to the pattern. This also demonstrates the effect of the attention mechanism. The model

focuses only on those parts of the time-series attributes that correspond to the anomalous

pattern while ignoring the rest. Third, the sparsity of the network also affects performance.

The sparser the pattern-related cluster, the harder it is to reconstruct the missing parts of the

activity pattern. Finally, we noticed that it is harder to reconstruct the activity from weakly

connected pages or from pages that are further away from the core nodes in the graph. We also

tested the reconstruction feature on incomplete patterns with different fractions of missing

data and observed a linear correlation between the fraction of missing information and the

reconstruction error.

The result of this experiment shows that our method can be used to recover the signals related

to the detected anomalous patterns given a noisy or incomplete input. This feature can

be used for recommendation systems, where we need to complete a user’s interest profile

based on incomplete information about her activity and the historical activity of other users.

On the other hand, this feature can be helpful when investigating attacks on web networks.

Our approach can be used when the data required for anomalous pattern interpretation is

destroyed by some intruders that are interested in hiding traces after an attack on the network.
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4.4 From Hopfield to Collective memory

The Wikipedia graph is very rich in terms of node-related attributes. In addition to the

viewership statistics of millions of readers, we have access to the content and summaries of

articles and the categories they belong to. This collection of additional sources opens new

avenues to applications in domains outside of computer science. Incorporating additional

data into our model led us to another interesting application in the field of digital humanities

– collective memory of Wikipedia readers.

In 1925, Maurice Halbwachs introduced the term Collective memory [120]. He defined it as

a set of memories that exists beyond the memory of an individual and affects a common

understanding of the past by social groups.

Collective memory is an interesting social phenomenon of human behavior. Studying this

concept deepens our understanding of a common vision of events in communities. It shows

how present events influence remembering of the past. Halbwachs’s hypothesis initiated a

range of studies in sociology [121], [122], psychology [123], [124], cognitive sciences [29], and

only recently in computer science [115], [26], [27].

The experiments we have discussed in the previous sections show how we can use the Hebbian

rule and Hopfield’s associative memory model to identify dynamic patterns in the collective

activity of internet users based on Wikipedia web network structure and its viewership at-

tributes. We saw that the structures, which we extracted from the Wikipedia Web network,

comprise clusters of pages related to certain events. When we look at the structures of the

learned graphs, we can see that they also inherit the associative nature of Wikipedia and

comply with the definition of collective memory.

This observation leads to an interesting question. Can these structures be similar to artificial

models of human memory?

If we think of webpages as neurons, web networks resemble biological neural networks. Indeed,

interconnections have a complicated structure, while nodes produce time-series of activations

represented as visits of webpages and action potentials or "spikes" of neurons. In biological

neural networks, neurons self-organize during learning and form strongly connected groups

called neural assemblies [125]. These groups express similar activation patterns in response to

specific stimuli. When learning is completed, and the stimuli are applied once again, reactions

of the assemblies correspond to consistent dynamic activity patterns or memories. Synaptic

plasticity mechanisms, formalized by Donald O. Hebb and then applied in the associative

memory model by John Hopfield, govern this self-organization process.

This resemblance leads us to another question. Can we use the same mechanism to model

individual memory and collective memory described by Halbwachs?
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Figure 4.7 – Collective memories extracted using the proposed pattern detection model. Top:
Hurricane Florence (September 10-19, 2018). Bottom: death of George H.W. Bush (November
30, 2018). The nodes highlighted in red correspond to the core pages of the events. The 1-hop
neighborhood of the core pages (articles that are directly linked on Wikipedia) is colored in
blue. Collective memories related to the core events comprise all pages in the clusters.
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When we apply our dynamic pattern detection algorithm to Wikipedia data, we can see that

the web network self-organizes similar to a Hopfield network. Our approach learns collective

attention memory patterns under the influence of visitors’ activity similar to neurons in the

brain. We can see the patterns that were detected during the experiments on Wikipedia data

resemble collective memory, containing clusters of linked pages that have a semantically

related meaning. The topic of a cluster corresponds to a real-world trending event that triggers

the interest of Wikipedia visitors during a finite period.

These similarities enable us to interpret the detected patterns as clusters of collective memory

concepts. Let us take a closer look at a few examples. Collective memories are usually triggered

by traumatic events that involve human death. Multiple studies investigated the connection

of collective attention to aviation accidents [26], natural disasters [27], terrorist attacks [28],

[29], and armed conflicts [126]. In these studies, the authors researched various aspects of the

online social media ecosystem that result in an increased interest in traumatic events among

internet users.

Previously, we saw examples of such collective memories in Fig. 4.5 and Table 4.1. These

memories were extracted by the proposed pattern detection approach. Charlie Hebdo attack

reminded people about terrorism and other attacks involving mass shootings. The German-

wings crash triggered memories about similar airplane accidents caused by suicide by the

pilot. Collective memories related to the Ferguson unrest were focused on previous victims of

discrimination by the police.

Fig. 4.7 illustrates two more recent examples of collective memory. First, a natural disaster,

Hurricane Florence, occurred in September 2018. It triggered memories about the previous

hurricanes and their consequences. Another set of collective memories was triggered by the

death of George H. W. Bush. The detected cluster mostly contains Wikipedia articles describing

the history of his political career and biographies of the related political figures.

In both cases, we observe a core page that starts a pattern and its multihop neighborhood

that specifies the pattern’s context. The availability of this information opens interesting

opportunities for interpretation of the detected collective memories. We can analyze the

collective associations of the readers and get a better understanding of their perception of

occurring events. These insights could be used to improve the quality of controversial content

and to avoid polarization of the readers. We could use the results to suggest editors what links

should be added and where to reduce polarization by giving a more balanced overview of the

topic and by presenting a topic matter from different points of view.

These and many other similar examplesI demonstrate an interesting connection of our ex-

periments on Wikipedia data to humanities. Using the proposed anomaly detection model,

sociologists and historians could study the perception of web content by a large and diverse

population of readers. The model can be used to study the collective behavior of readers,

IInteractive version of the results is available on https://wiki-insights.epfl.ch/wikitrends/
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including their motivation, historical references associated to current events, and other factors

affecting the attention and opinion of the public.

4.5 Discussion

Results of the experiments discussed in this section demonstrate the effectiveness and scala-

bility of our pattern detection model. Particularly, experiments on Wikipedia web network

show that we can scale our model to tens of millions of nodes and an order of a billion edges

on a fairly small server with 32GB of RAM and a 12-core CPU. We will provide a distributed

implementation and technical details of the model in Chapter 6.

We verified the quality of detection using Google Trends as a reference for qualitative analysis.

In the case of the Germanwings 9525 airplane crash, our model provided additional infor-

mation detecting another airplane crash that happened earlier. We extracted that additional

information from the attention flow of the model, which was illustrated in more detail in the

Super Bowl example (Fig. 4.4). The dynamics of the network attributes forms an attention

cluster, which reflects the increasing anomalous dynamics in a localized part of the network.

The attention clusters can be further used for a better and more detailed interpretation of the

model.

It should be noted that despite being very popular, Google Trends is not an exact reference

in terms of trend detection quality. It has recently been shown that, in some cases, Google

Trends may have inconsistencies in the results [127]. In this qualitative study, the authors

demonstrate that the same queries may return different results when submitted at different

times, especially for short-term trends (less than 8 months). However, the same study shows

that queries requesting trends over longer periods of time (5 years with monthly resolution)

provide qualitatively accurate and consistent results. Nonetheless, possible inconsistencies

should be taken into account when evaluating the results of our approach and Google Trends

should not be considered as an exact standard for evaluation despite being a good overall

reference.

In Section 4.4, the memory properties of the model allowed us to see one more application

of the proposed anomaly detection approach. We saw how it can be used in the digital

humanities to study the phenomenon of collective memory at a larger scale. Furthermore, the

memory properties of the model are useful when we need to recover missing information or

provide recommendations based on incomplete viewership patterns. This property can be

used in various applications related to information retrieval and recommendation systems.

Nonetheless, the interpretability of the model can be improved. Depending on the type of

node attributes, we can introduce automated interpretation modules tailored to specific tasks,

such as natural language processing (NLP) or image processing. For instance, there are a

lot of applications in which nodes, apart from time-series, also have textual attributes. Such

applications require an NLP-powered interpretation model in order to identify topics in the
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pattern-related subnetworks. If nodes contain images (e.g., Instagram network of followers),

the classification of image attributes of the nodes would give us additional insights about the

types of detected patterns.

In the examples we have presented in this section, Wikipedia articles also contain article

text and summaries. Looking back at the previous section, the Enron dataset has a corpus

of emails sent from each email address. Considering this additional textual attributes, to

automate the interpretability of our method, we need a topic detection module that would

give a summary or a topic describing the detected pattern. We develop such a module and

apply it to the Wikipedia dataset to study the viewership interests of the encyclopedia’s readers

across multiple languages. We will focus on this topic detection module in the next chapter.
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As we saw in the previous chapter, dynamic patterns emerge as a result of the characteristic

dynamics in the attributes of the graph, which is defined by the explicit attention function.

In Section 4.2, even though we managed to detect viewership patterns, we did not have a

fully automated way to interpret and explain them. Moreover, we noticed that the subjective

aspect of pattern interpretation may lead to biases introduced by a practitioner performing

interpretation. In this chapter, to make sure that the interpretation of the results is objective

and unbiased, we develop an extension module for automated interpretation of the detected

patterns.

Here, by an interpretation module, we understand a machine learning model that allows us to

generate a short summary describing the detected patterns based on the node attributes. Such

a model can be used by experts and practitioners for further analysis of detected patterns. The

interpretation module is an abstract concept and can be designed based on the available types

of attributes. In the applications presented in this chapter, we focus on the textual attributes

of the nodes and develop our interpretation module accordingly. This extension module uses

textual data extracted from the patterns for topic modeling, labeling, and classification, which

allows us to assign topics to detected patterns and classify them into general categories.

In the experiments on Wikipedia data that we saw in the previous chapter, the patterns

reflected the increased interest of Wikipedia readers in particular topics. In combination

with our pattern detection algorithm, the model presented in this chapter allows identifying

trending topics on Wikipedia and obtaining a global overview of the detected trends.

As of September 2020, Wikipedia is available in 313 languages. This feature of the encyclopedia

makes this experiment more insightful and to demonstrate an application of our algorithm in

social sciences. The combination of our pattern detection approach and the interpretation

module presented in this chapter allows us to study collective behavior of Wikipedia readers

at a large scale.
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The experiments presented in this chapter are not only demonstrative from the dynamic

pattern detection side. Running experiments on Wikipedia data is also insightful from the

sociological point of view because of its scale and the diversity of its readers. It covers a large

multicultural population of readers with diverse interests. What makes this dataset even more

interesting is that Wikipedia readers have different motivations [68]. Some readers look for an

up-to-date source of information related to an event that appeared in the news, while others

are interested in solving work or school-related tasks. Some readers are satisfied with a quick

overview of the topic, while others strive for an in-depth understanding of all related facts.

Wikipedia gathered a lot of different people in a global and unified information medium.

Along with different motivations, Wikipedia readers also have various backgrounds, hobbies,

religious affiliations, political views, and speak different, often multiple, languages. Such

diversity makes Wikipedia an open window to cultural differences across different languages

and populations. Analysing Wikipedia’s viewership statistics could help identify the collective

interests of socially diverse communities of people speaking different languages and study

them over chosen periods of time. In this section, we use the proposed pattern interpretation

approach to accomplish this task.

One of the challenges with Wikipedia is that the structure and content of the online encyclo-

pedia differ across languages. Some editions are more developed than others. Regarding the

coverage of certain topics, the level of detail and content vary largely from one language to

another. This difference is especially apparent when we read controversial articles related to

culture, politics, or history, as it is shown in [128] for the web in general and in [129, 130] for

Wikipedia in particular. For instance, the Italian version of the article about Leonardo da Vinci

is much more detailed than its English counterpart. The content difference is also noticeable

in fairly noncontroversial topics. For example, the article Cat in Spanish focuses on the ani-

mal’s diseases and covers this aspect in greater detail than the same article written in English.

In addition to content discrepancies, the hyperlink structure of the same article also varies

across languages [129]. Such differences may trigger diverging associations depending on the

language in which one reads the very same article. Since our pattern detection approach takes

into account both the temporal and structural aspects of Wikipedia, it is effective in capturing

such differences despite the structural discrepancy in the organization of the encyclopedia

across languages.

We use our algorithms to detect viewership patterns in multiple language editions of Wikipedia

and transform them into trending topics using the pattern labeling model presented in this

chapter. Furthermore, the model allows us to analyze and compare trends across different

language editions of Wikipedia. We run the labeling experiments on the patterns detected

in the web network of Wikipedia and the viewership activity of the readers across English,

Russian, and French editions.

This chapter is structured as follows. In Section 5.1, we present the architecture of the au-

tomated pattern classification model that defines topics based on textual attributes of the
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nodes in the detected patterns. To develop the model, we use multiple approaches for topic

modeling and classification. Then, we run experiments on Wikipedia data and evaluate our

approach. To extract patterns from each language edition, we perform an experiment similar

to the one described in Section 4.2, but this time, we focus on a different period. We use our

pattern detection algorithm to extract patterns from Wikipedia viewership over the period

from September to December 2018. After that, we label the detected viewership patterns

with topics and compare the trending topics distribution across English, Russian, and French

language editions. Finally, we use the developed interpretation model in another case study

presented in Section 5.3. We analyze changes in the interests of Wikipedia readers during

the COVID-19 pandemic, extending the study to seven language editions, including English,

French, Russian, Spanish, German, Chinese, and Italian. We conclude this chapter with a

discussion, analyzing the performance of the topic detection and classification model and

comparing our results to the collective behavior insights reported in other related studies.

5.1 Proposed pattern labeling and classification approach

To automate the interpretation of the detected dynamic patterns in networks with textual

attributes, we develop a topic detection and classification model that extends our pattern

detection approach. Our extension model consists of the following steps:

1. Dynamic pattern detection (using the algorithm presented in Chapter 3).

2. Topic modeling based on the textual node attributes.

3. Training classification model and automated labeling.

Step (1): Dynamic pattern detection. Before building a topic model and training a classifier,

we need to extract dynamic patterns from a given graph. To extract patterns represented as

subnetworks of nodes with textual attributes, we use the pattern detection algorithm presented

in Chapter 3. The algorithm keeps only the nodes whose dynamic attributes conform to the

explicit attention function. Besides, the algorithm sets a weight on each edge, reflecting the

dynamic correlation of dynamic attributes of linked nodes. The weight of the edge between

two nodes increases when both attributes encounter a correlated anomalous activity spike,

reflecting the strength of the correlation. As described in the previous chapter (Sec. 4.2.2), this

way, the algorithm creates attention clusters in an unsupervised way. Once the subnetwork

of patterns is detected, we extract clusters of densely connected nodes using a community

detection algorithm [108].

Step (2): Topic modeling. In our case, topic modeling is nontrivial since we may have a set of

semantically incoherent textual attributes in one pattern. For example, in the experiments on

Wikipedia data (Chapter 4), a cluster related to a terrorist attack can comprise pages related

to geographic landmarks, politicians, ideology, religion, or other attacks that people read to

complement information. To mitigate this issue, in addition to the text, we incorporate graph
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attributes into the topic model to improve its performance. Then, we use topic modeling and

semisupervised learning approaches to define and assign high-level topics to every node in

the extracted pattern.

We tested 2 methods for topic modeling and keyword extraction, Latent Dirichlet Allocation

(LDA) [131] and Term Frequency – Inverse Document Frequency (TF-IDF) [132]. We compared

both methods qualitatively using multiple test cases and found that they yield similar results.

For both methods, to improve the performance of the topic model and to solve the problem of

semantically incoherent textual attributes, we propose a graph-based alternative where we

incorporate features extracted from the graph structure into the model. Since we deal with

semantically incoherent textual attributes, multiple experiments showed that plain LDA and

TF-IDF models demonstrate poorer performance and worse quality of topics compared to our

graph-based alternative.

To train the graph-based LDA model, we preprocess a group of textual node attributes and

create a document term matrix. Then we feed it into the LDA model; one document is a

concatenation of all textual attributes in a given pattern. After that, we perform the training

in three steps. First, with the entire text, second, with nouns only, and third, with nouns and

adjectives. To look at the terms that belong to one part of speech (nouns or adjectives), we use

part-of-speech tags from the Penn Treebank Project [133].

Concerning the graph-based TF-IDF model, we extract the top k descriptive words from each

pattern using their TF-IDF scores. Then, we modify the original TF-IDF method as follows.

When computing TF-IDF coefficients, we use the graph structure of each pattern to extract the

degrees of the nodes. This gives us more context about the pattern. Since the degree of a node

is the number of edges connected to it, high degree nodes are more important in the semantic

sense and give more context related to the topic of the pattern. We compute the degree n of

every node within the subnetwork and multiply the counts of every word in this document by

n. That way, we give more importance to the words in the textual attributes of those nodes

that have a higher degree by increasing the TF value while keeping the same IDF value.

Step (3): Labeling and training. The goal of this step is to label patterns using the textual

attributes of the nodes. To do that, we represent every pattern as a concatenation of textual

attributes of the nodes that belong to the pattern. Hence, every data item is a text document

that represents detected patterns. Unless we have labels to train the classification model,

we select a small set of keywords, that we have extracted from each pattern in Step 2, for

labeling. From the keywords, we select the most general and descriptive ones and based on

these keywords, we define the number of labels for classes. The number of classes should be

chosen based on the dataset. We then proceed in a semisupervised fashion. First, we manually

label a small subset (50 samples per class) of patterns based on the extracted keywords from

each pattern. We use these labels as the ground truth. Once this is done, we train a model to

classify the documents that represent our patterns and use this model to label the rest of the
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unlabeled documents. We use a transformer model, although in this case, other classifiers

also perform well (for instance, we also tried SVM, which demonstrated good performance).

Note that pattern labeling process is language dependent. When we need to classify patterns

that have textual attributes written in multiple languages, the process described in the previous

paragraph should be performed for all languages independently. However, to do this efficiently,

we use regular expressions constructed for multiple languages, similarly to the unsupervised

labeling approach presented in [126].

To classify unlabeled nodes, we use a pretrained uncased BERT model [134], with 12 hidden

layers and a hidden size of 768 (i.e., the last hidden layer generates a 768-dimensional vector

for every word). BERT also stacks multiple attention layers. Attention heads enable the model

to capture the relationships between words, giving more weight to some words compared to

others. This model is trained on two main tasks. First, Masked Language Modeling (MLM),

where 15% of the word tokens are masked, and BERT is trained to predict the correct word.

Second, Next Sentence Prediction (NSP), where the model is fed two sequences A and B and

is asked to predict whether B is the next sentence after A. We use the pretrained model as a

feature extractor for the textual attributes of the nodes. To complete the model, on top of it,

we add a classifier that consists of five fully connected layers, taking the features extracted by

BERT as input. We performed this process for multiple languages independently.

5.2 Wikipedia viewership pattern labeling and classification

In this section, we use our automated pattern labeling and classification model to:

• extract the most popular topics during a chosen period (trends)

• label each trend according to the summary of Wikipedia pages related to it.

To extract the clusters of the most trending pages, we rely on the method described in Section

3.1. Using this method, we obtain well-separated clusters of Wikipedia pages and their view-

ership activity over time. The developed pattern labeling model presented in the previous

section is language-independent and relies solely on Wikipedia pageview statistics and the

graph of hyperlinks. To test the model, we identify and compare the most popular topics

among readers of three Wikipedia language editions, English, French, and Russian, over the

last 4 months of 2018. We provide the analysis of the detected trends, reporting similarities

and differences across three language editions of Wikipedia.

5.2.1 Experimental setup

To extract patterns represented as subnetworks of trending Wikipedia articles, we use the same

pipeline as in Chapter 4 and apply our pattern detection approach. The algorithm keeps only
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the pages that encounter surges of user interest over time and their connections. A viewership

pattern corresponds to a spike in the activity of a page. The desired magnitude of a spike is

controlled by a sensitivity parameter in the explicit attention function.

Wikipedia categories are not sufficient to define a high-level topic for every cluster because

they are too specific. We use the summaries of Wikipedia articles as textual attributes of the

patterns to build a topic model and to train our classification model. We collect summaries of

every article using the Wikipedia API. We also compare our results to an alternative approach,

where instead of summaries, the model is trained on Wikidata items associated to Wikipedia

pages.

To compare multiple language editions, we select a small set of keywords and their translations

for labeling. In the beginning, we started with 27 specific topic labels. However, the distribution

of the number of samples per class was skewed, which made the classification problem more

complicated. As a workaround, we define more general topics and limit the number of high-

level topics to eight. The labels are football, sports (other than football), politics, movies, music,

conflicts, religion, science, and videogames. Note that the label "conflicts" is more general

than military conflicts. We use it to describe a broad range of traumatic events that result in

numerous fatalities. Therefore, we also included natural disasters, mass shootings, terrorist

attacks, and airplane crashes into this category.

We then proceed in a semisupervised manner. Some of the pages are easier to label and we

design a few rules to label them automatically. We take advantage of the fact that some articles

are homonyms and, to prevent ambiguity, their title contains some useful information in

parentheses such as "album", "actor", or "footballer". For example, all articles that have a title

with this pattern "xxx (album)" will be classified as "music". For the remaining unlabeled arti-

cles, we use the keywords that we have extracted during the previous step. We define multiple

sets of words, where each set corresponds to a label. As an example, the keywords "political",

"party", and "republican", represent the topic "politics". The labeling loops through all the

summaries of Wikipedia articles and checks if all these keywords are present in an article’s

extract. If the condition holds, it labels the article as "politics". It does the same for all other

sets of keywords that represent different labels.

We have also tested Wikidata as an alternative data source for automated labeling instead of

Wikipedia article summaries. Wikidata is a structured knowledge base focused on items that

represent high-level topics, concepts, and categories. It demonstrated comparable perfor-

mance and produced relevant keywords allowing us to infer high-level topics for the clusters

by collecting properties for each page and extracting the topic from the resulting high-level

summary with LDA. Due to the structure of the knowledge base, there is a major positive

aspect of using Wikidata for labeling and topic detection purposes. Wikidata properties and

concepts are identified by a unique code, with direct relationships to their equivalents in

all Wikipedia languages. Therefore, there is no need to deal with different languages when

running the topic detection pipeline. In addition, this reduces the need for experts in every
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studied language to assess the quality of the topic detection, hence scaling the study to more

languages would become much easier. The only drawback is that querying the Wikidata

API is relatively slow, and when it comes to collecting data for thousands of pages, this step

quickly becomes a bottleneck.I Wikidata word extraction gave promising results with relevant

keywords for the clusters.

Recently, scientists from Wikimedia Research released a Wikidata-based model for topic

classification II. The authors trained the FastText document classification model [135] using

Wikidata items as labels. The advantage of using Wikidata items is that there is no need for

feature extraction and language-specific variants of the classification model. This eliminates

the LDA stage from the topic detection pipeline. Each Wikidata item has properties, which

are used to create a bag-of-words representation of each Wikidata item. The model predicts

topics for Wikidata items, not for Wikipedia articles as in our BERT-based model, which we

trained on summaries of Wikipedia articles. Most of the Wikipedia articles in the subnetwork

of the extracted patterns have a Wikidata Qid, which enables us to match Wikidata items with

corresponding Wikipedia articles. Therefore, the two models are compatible and can be used

interchangeably. We use the FastText model for evaluation and to compare the performance

of both approaches.

In the following subsections, we use both models, BERT-based and FastText-based, to identify

the topics of articles in the extracted clusters of trending pages. First, in Section 5.2.2, we

analyze the results of the BERT-based model, trained on Wikipedia article summaries using

the proposed pattern interpretation approach. And second, in Section 5.2.3, we compare these

results to the FastText-based model trained on Wikidata items.

5.2.2 BERT-based pattern labeling. Trend distribution analysis

The BERT-based approach allows labeling entire clusters of Wikipedia articles with a sin-

gle topic. It uses the structure of pattern-clusters and topological properties of the graph,

such as degree, betweenness centrality, and PageRank of nodes in the clusters. To train the

classification model, we use summaries of Wikipedia articles that appear in the detected

patterns.

To illustrate all aspects of the method, we detect viewership patterns on Wikipedia over a

4 month period (16 August to 31 December 2018). We first review multiple examples of

trends and analyse the structure of the patterns. Then, we present general trending topic

distributions that highlight similarities and differences across English, French, and Russian

language editions of Wikipedia.

ITo test this data source, we deployed the entire Wikidata inside a local MongoDB instance. As of January 2020,
the size of the deployed Wikidata knowledge base is around 220 GB.

IIhttps://meta.wikimedia.org/wiki/Research:Language-Agnostic_Topic_Classification
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Figure 5.1 – Trends over time and across languages. Each colored curve, together with a
short description, is associated to a trend. They represent the number of visits on the pages
belonging to the trend over time. The associated keyword is the title of the most central page
of the trend. Red dashed lines highlight the moments when readers’ interests in multiple
language editions coincide.

Overview of the detected trends. In Fig. 5.1, we show the most popular trends for the three

languages over the last four months of 2018. Note that we extracted more trends during

step (1), but we limited them to the most popular ones to get an uncluttered picture. Each

colored curve represents the evolution of the popularity of a trend over time. We annotate

each popularity peak with the title of the most central page of the trend. More precisely, for

each cluster (obtained at step (1) of the processing), we select a page having the largest page

rank [136]. Vertical red dashed lines highlight particular dates when some trends emerge

synchronously across languages, for example, the 09/11 commemoration or the death of Stan

Lee in November.

We can see some trends in 2 of the 3 languages, such as Formula 1 in French and Russian or

the death of George H. W. Bush, in November, in Russia and the US. Some trends are only

seen in one of the languages and are related to cultural or local events such as the death of a

popular Russian singer Joseph Kobzon in September, French activist and politician Nicolas

Hulot publishing a book, the death of the former presenter of a popular TV show in France

"Nulle Part Ailleurs" or the Miss France contest.

The structure of the detected patterns provides insights into users’ curiosity and their eager

willingness to explore topics. For Hurricane Michael, for example, readers did not only visit

the page of the hurricane that was written and edited live, they also followed hyperlinks to

the pages of the affected cities, previous hurricanes, or similar natural disasters. Readers

were also interested in pages defining a cyclone or providing a scientific explanation of this

phenomenon. More than a hundred different pages underwent a burst of visits during this

event. We have discussed and illustrated this feature in the previous chapter in Sections 4.2.2

and 4.4, where we showed similar effects in the clusters related to Hurricane Florence, George

H. W. Bush, Charlie Hebdo shooting, Ferguson unrest, and Germanwings airplain crash.
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Figure 5.2 – Distribution of attention to the most popular topics across languages based on
the model trained on Wikipedia summaries (16 August – 31 December 2018)

In addition to the structure, the size of the pattern-clusters can also reveal cultural particulari-

ties that characterize different language editions. For instance, the spike of activity on the page

dedicated to Stan Lee was very high in the three languages shortly after his death. However, the

cluster size was much smaller in the French and Russian editions. English speakers extensively

explored his work through hyperlinks referring to pages about comics, movies based on them,

and starring movie actors. Most of the francophone readers focused only on his biography,

despite the existence of many hyperlinks pointing towards the most popular heroes of his

comics or adapted movies mentioned on his French Wikipedia page. On the French Wikipedia

cluster, apart from Stan Lee, only the pages of Magneto, Jack Kirby, Steve Ditko, Larry Lieber,

POW! entertainment, CNN, and the expression "Excelsior" are present in the cluster.

Lastly, all trending topics have been covered by the media, showing their massive influence on

Wikipedia readers. Most of the viewership anomalies have a similar duration of a few days,

with a similar peak shape across all languages. This observation indicates that the lifespan of a

trend is independent of the culture or language.

Global statistics over 4 months. Figure 5.2 shows the distribution of the most popular topics

across the different editions of Wikipedia over the period of the last four months of 2018. We

can see that while English-speaking readers prefer topics related to football and general sports,

the most popular content among French and Russian-speaking visitors is mostly related to the

movie and TV industry. The other topics related to entertainment, music, and video games,

get almost equal attention in all languages.
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Figure 5.3 – Clusters of trending Wikipedia articles with topics assigned by the classification
model trained on Wikidata items (16-31 August 2018). Node colors correspond to different
topics. Each cluster contains pages belonging to various topics. Left: a graph with clusters
of pages related to trending subjects. Right: the same graph with articles grouped by topic in
each trending cluster.

Politics is equally popular in the three editions of Wikipedia, while the content about geopo-

litical issues (natural disasters, foreign affairs, or conflicts) appears to draw more interest

in French and even more in Russian editions. Science is among the most popular topics

among Russian-speaking readers while being equally low in French and English. French-

speaking readers have the lowest interest in religion, in contrast to English and Russian ones.

English-speaking readers appear to be more interested in religion than in science.

We focus on a more general overview of the trending topics and compare our findings to the

results reported by Lemmerich et al. [76] in the Discussion section (Sec. 5.4).

5.2.3 FastText-based pattern labeling. Trend distribution analysis

Contrary to the experiments described in the previous section where we trained a BERT-based

classifier on the summaries of Wikipedia articles, in this section, we use the FastText model

that was trained on Wikidata items. Another difference is that we predict the topics for each

page separately and not for the entire clusters as we did it in the previous section. As a result,

after labeling, we obtain multitopic patterns (see Fig. 5.3), which provide a more detailed

picture of the events. The benefit of this approach is that we do not need to handpick topics.
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We can use all topics extracted from taxonomies that are available for all Wikipedia projects.

The full list of topics with precision and recall indicators is available on the project’s website III.

Another advantage of the Wikidata-based model is that it works with all languages available

on Wikipedia, which makes the model almost fully automated. We do not need to predefine

classes and to fine-tune keyword extraction models for multiple languages.

Comparing the results to the summary-based model. Since we run the experiments on the

same subset of Wikipedia data, the events are the same as in the summary-based model.

Therefore, we further focus only on the general statistics of the topic distribution over four

months. Figure 5.4 illustrates the 11 most popular topics: STEM, Sports, Politics and Govern-

ment, Media, Music, History, Military and Warfare, Films, Visual Arts, Philosophy and Religion,

and Society. As we can see, the set of topics is slightly different from the one we had in the

summary-based model. However, most of the topics are semantically similar, which enables

us to compare the results.

To start with, let us focus on the similarities of the detection between two models. The

results of the topic detection by the two classification models are very similar. We can see

that the result of the topic detection is the same for the following topics: Sports, Conflicts

(Military and Warfare), and Science (STEM). Nonetheless, there are a few topics where the

trend distributions are different. Religion (Philosophy and Religion) is almost the same with

only one disparity. We did not detect this topic in the French language edition using the

BERT-based model. Furthermore, note that the results of topic detection are divergent for

Movies (Films), Music, Politics (Politics and Government). We can explain it by the presence of

more general categories such as Media, which can be related to both Music and Movies, and

Society, which is often involved in clusters created by political events. If we take into account

these general topics, the results of both models are nearly the same.

As we can see in Fig. 5.3, when we use the Wikidata-based approach for topic classification, we

obtain heterogeneous clusters. Hence, each cluster corresponds to one trend, which covers

multiple topics. These topics are implicitly related to the trending events that triggered the

creation of each cluster.

Let us look at several examples in more detail. The majority of pages in Sports-related clusters

(highlighted in blue) are labeled as Sports. However, depending on the nature of sports, we

can also see smaller subclusters of pages related to other topics, such as Media, Education,

Healthcare, and Engineering inside of the main cluster. Needless to say that media and

education are inalienable parts of many popular sports these days. We can also see that

trends related to politics (highlighted in red) are also very diverse. If we look at the cluster

that emerged after the death of John McCain, we can see that the majority of the pages,

indeed, belong to politics. What is interesting is that we can also see fairly big subclusters

that comprise articles on topics such as Society, Military and Warfare, History, and Business.

IIIhttps://meta.wikimedia.org/wiki/Research:Language-Agnostic_Topic_Classification/Wikidata_model_
performance
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Figure 5.4 – Distribution of attention to the most popular topics across languages based on
the classification model trained on Wikidata items (16 August – 31 December 2018)

All these areas are inevitably involved in political careers and processes. Clusters created

as a result of the readers’ interest in natural disasters (yellow) are also heterogeneous. In

the cluster that emerged after Hurricane Florence, we can see that it is composed of pages

that cover a wide range of topics including STEM (mostly articles on Earth&Environment),

Politics (articles about politicians involved in solving the crisis), and History (articles related

to previous disasters and their causalities). Finally, art-related topics (green) are also diverse.

We can see that the cluster that emerged due to the anniversary of Aretha Franklin’s death

includes articles on different topics associated with various artistries, such as Media, Music,

and Visual Arts.

To understand better the heterogeneity of the clusters classified with the Wikidata-based

approach, let us look at Fig. 5.5, which illustrates more concrete examples. We can see that

clusters related to sports, such as NCAA (American football), US Open (Tennis), and Belgian

Grand Prix (Auto racing, Formula 1), have the least diverse set of topics among others. Natu-

rally, most of the pages are classified as Sports. Media, Business, and Politics are also among

the common topics in the sports-related clusters. However, it is interesting to see that the

secondary topics in these clusters reflect specific features of different sports. Engineering

advancements in the automotive industry play a significant role in Formula 1, which is re-

flected by the presence of topics Transportation and Engineering in its cluster. NCAA is an

organization that regulates student athletes from North American institutions, so we can see

Education among the most represented secondary topics in that cluster. We can also notice a

similar effect in the clusters related to politics and show business where secondary topics give

us a wider perspective on the specific nature of the occurred events.
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Figure 5.5 – Distribution of topics in the most popular trends of August 2018 (English
Wikipedia). The topics were classified using the Wikidata-based model. All trends com-
prise a heterogeneous set of topics, providing a diverse perspective on the specific nature of
the emerged trends.

5.3 Changing interests of Wikipedia readers. COVID-19 case study

In this section, we apply the developed topic classification pipeline to analyze the evolution of

the changing interests of Wikipedia readers during an outstanding global event, the COVID-19

pandemic.

A few months before I started writing this thesis, the COVID-19 pandemic had unfolded. The

pandemic started in China at the end of 2019 and very rapidly spread around the world. As of 24

November 2020, more than 59 million cases of COVID-19 have been reported in more than 188

countriesIV. At the beginning of the pandemic, strict confinement measures were introduced,

first in China, then in several other countries in Asia, and finally, across Europe and in other

countries around the world. These measures globally affected the world, leading to dramatic

changes in mobility patterns among many others. Following these restrictions, the interests of

Wikipedia readers have also changed [137]. That change inspired us to run another experiment

to investigate the evolution of trending topics throughout the pandemics in different language

editions of Wikipedia. We focus on the data over the period from December 2019 until May

2020.

IVhttps://en.wikipedia.org/wiki/COVID-19_pandemic
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Figure 5.6 – Distribution of attention to the most popular topics across languages during the
first 4 months of the COVID-19 pandemic (17 December 2019 – 30 April 2020).

Wikidata-based topic classification model facilitates extension of our study to more languages.

We study 7 language editions of Wikipedia, English, German, French, Italian, ChineseV, Rus-

sian, and Spanish. We use the same approach as in the previous experiments using the

FastText-based model trained on Wikidata topics.

To start with, let us focus on the general trends over the period (see Fig. 5.6). We can see that

the distribution of trending topics looks similar to what we saw in the previous experiments.

Sports and Media are the leading trends, followed by Music, Films, and Politics&Government.

We also noticed the emergence of two new clusters that were not captured before, namely,

Medicine&Health, and Biology, which was triggered by the increased interest of the readers in

the articles related to viruses, influenza, and the COVID-19 pandemic itself. The popularity

of Society is 20-25% higher in Chinese and Russian editions compared to other languages

that we analyzed. After a qualitative analysis of the classification results, we have discovered

that there is a significant overlap between the topics Politics and Society in the Chinese and

Russian editions. We found that Wikidata items, related to local political figures and elections

in regions where the majority of people speak Russian and Chinese, often belong to the topic

Society. All in all, analyzing the Wikidata-based classifier, we came to the conclusion that the

training data should be refined for items related to Russian and Chinese History and Society

to avoid confusion in the classification resultsVI.

VNote that Wikipedia has been banned in China since 23 April 2019
VICommunicated with one of the authors of the model, Isaac Johnson
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Figure 5.7 – Evolution of trends across languages during the first 4 months of the COVID-19
pandemic (17 December 2019 – 30 April 2020). Each data point is an aggregation of trends
over a two-week period. Trends are normalized between 0 and 1 for each language. Thicker
lines correspond to a rising popularity of the topic, while thinner lines reflect diminishing
trends. The vertical lines indicate the beginning of lockdowns in different countries; right to
left: China (grey), Italy(red), Russia(green), France(pink).

Fig. 5.7 provides a dynamic picture of changing trends. To capture the dynamics, we aggregated

trending topics bi-weekly; each data point represents the popularity of a topic during a selected

two-week period. In this study, we focus on the short-term dynamics, which reflects change

points in the trends in a moving time window. This allows us to get a live picture of how users

shift their attention from one topic to another. In the stacked chart below, you can see a

dynamic view of the changing popularity of some of the most popular topics. We normalized

the popularity of each topic in each language between 0 and 1. The more drastic the attention

shift, the thicker the line on the plot. Four vertical lines correspond to the beginning of

lockdowns in different countries.

We can see that the COVID-19-related topics, such as Biology and Medicine&Health, have

an attention spike in January. Then, after a short-term drop, these topics develop a steady

momentum starting from February. In Chinese Wikipedia, we observe the most significant

increase in attention to these topics in January. The interest in the topics remains consistent

throughout the entire period and only slightly diminishes in April. Looking at other language

editions, we observe that at the beginning of February, the interest of the readers to Biology and

Medicine&Health drops. However, soon after that, the topic Biology regains popularity among

Italian-speaking readers, followed by English- and German-speaking audiences. Attention to

Medicine&Health also bounces back, first in Italian and French editions, and then in German

and English. Russian-speaking readers develop an interest in both topics closer to the end
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of March. All in all, most of these observations reflect the COVID-19 development timeline

in the locations where these languages are spoken primarily, however, it is still hard to align

geographically the results for English, French, and Spanish language editions because of their

global adoption in different regions of the world.

Sports is the most popular topic in all languages at the beginning of the pandemic. However,

we can notice an abrupt change of attention levels across all languages. The readers become

indifferent to this topic starting from March. One of the possible explanations is that the

pandemic resulted in the cancellation of the majority of sports events around the world.

Attention to Media, Films, and Music is mostly uniform across all languages during the pan-

demic. The spike in the topic Films can be explained by the worldwide popularity 92nd

Academy Awards ceremony, which occurred on February 9. When we look at the topic of

Music, we can see slight shifts towards indifference among Italian-speaking readers, which

happens in the second half of February. This can be attributed to the strict lock-down measures

that were introduced on March 9, however, this is just an observational hypothesis.

Finally, let us compare our results to the ones reported in [137]. The main difference between

the two approaches is the comparison strategy. In our approach, we focused on live short-term

attention shifts or change points, while the authors of the study compared attention levels to

the previous year, reporting long-term changes. Even though we used a different approach,

we can see that our findings confirm some of the observations reported in [137]. During the

first months of the pandemic, articles on Biology and Medicine&Health gained a lot of interest

from readers across all language editions, while Sports-related articles lost a significant share

of their audience. Nonetheless, there are a few discrepancies that can be attributed to the

differences of the comparison strategies. For instance, we did not notice similar short-term

changes in the attention to the topics Media, Films, and Music. These topics retain the same

level of short-term attention throughout the pandemic period.

5.4 Discussion

Why do we need a complex pattern detection algorithm to detect trends? The simplest trend

detection approach that first comes to mind would be to label Wikipedia articles with topics

and then count articles that have spikes of viewership activity. Such an approach would give

us a global overview of the topics of all pages that have spikes of activity. However, it would not

necessarily detect trending topics. This simple approach would give us a lot of disconnected

pages that may have had a spike due to various reasons unrelated to trending topics. For

instance, it could be articles that describe days of the year or cataloging articles, such as ISBN

or DOI. To avoid such one-page false trends, we use the underlying graph structure of the

Wikipedia web network. Our approach allows us to detect clusters (dynamic patterns) of

densely connected pages undergoing a similar increase in readership activity. The algorithm

ensures that trends are represented by multiple pages on the same topic and that Wikipedia
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readers are actively exploring the extracted subnetwork of those pages. This way, our approach

allows detecting global trends and provides a higher quality of trend detection.

Why are some topics different across languages? The difference could be attributed to mul-

tiple reasons. First, media coverage and Wikipedia’s featured articles that appear on the main

page of Wikipedia. The trends are a mass phenomenon that is related to important topics and,

as such, are well covered by the media. The question is whether the media increases or inflates

the interest of people in the trends. The authors of [68, 76] give a positive answer: on average

around 25% of readers are motivated by media coverage, it even reaches 30% for the English

and Russian versions. Some of the trends we captured also confirm this observation (Fig. 5.2,

Fig. 5.4). For example, when a famous person dies, particularly in the show business, the

media often broadcasts some of her works, be it movies (death of Stan Lee), TV shows (death

of P. Gildas, "Nulle part Ailleurs" event on the French Wikipedia in October) or music (death of

J. Kobzon event on the Russian Wikipedia in September). This would, in turn, increase the

curiosity of people about the person and her work. Besides events getting more attention

from their media coverage, we may assume some trends to appear exclusively due to media

providers that produce and advertise their TV shows, such as Miss Universe, Miss France, or

even Emmy awards that are presented in Fig. 5.1.

Some trends may be less influenced by the media than others. For example, sports events do

not mainly rely on the media to attract the interest of fans. In this case, the reader’s motivation

could fall into the category of "conversation" or "event" as described in [68, 76]. In that study,

these types of motivation have also high scores on average: 24% for "conversation" and 17%

for "event" (motivation triggered by the event itself) and similar values for the English and

Russian editions. In our results (Fig. 5.2, Fig. 5.4), sports (including football) is the second

most popular topic after movies and even the first one in the English Wikipedia.

It is important to remark that if the media alone were the only driving force of the readers’

interest to some Wikipedia topics, the trends would have had a different shape. The clusters of

articles related to trending topics would have been made of a single or a few pages, as people

would go to the page covering the event and left Wikipedia after the first read. Indeed, this

phenomenon is common and can be observed on Wikipedia pages that are highlighted by

some popular websites such as Wikipedia’s or Google’s front pages. Although, in our study,

we exclude pages that have a single spike and only select clusters of connected pages with

a correlated increase of visits. Again, referring to [68, 76], the main source of motivation

of Wikipedia readers is "intrinsic learning" (except for the English version where it comes

second) with 37% on average. Readers motivated by the media may visit a page, but they stay

and follow hyperlinks on Wikipedia because they are motivated by intrinsic learning. This is

demonstrated by the existence of the clusters of pages that we capture in our study. Moreover,

many pages in each cluster bring complementary information that is not covered by the media

or is not directly related to the event itself. For example, in the Hurricane Florence cluster, we

can see some pages that list past hurricanes and pages related to meteorology, showing the

importance of hyperlinks for intrinsic learning.
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Figure 5.8 – Confusion matrix of BERT classification model. All topics, except Science and
Religion, are classified correctly with a high accuracy. Most of the classification errors are
caused by the similarity of the keywords and the cross-topic mix of pages in the clusters.
Politics is often confused with Conflicts, Religion, and Science. Movies are often misclassified
as Video Games or Music.

Wikipedia’s structure plays a significant role in intrinsic learning since readers rely on cross-

article links that lead to related content. Indeed, readers follow hyperlinks and are in search

of more information than just basic facts about the trends. This behavior is equally shared

across languages, although, for instance, clusters are smaller in the French, Russian, German,

Chinese, Italian, and Spanish versions than in the English one. We assume this is due to the

smaller size of the Wikipedia network and the smaller number of people reading Wikipedia in

other languages. The English version of Wikipedia contains around 6 million pages, while the

French and German ones contain around 2 million; the Russian, Italian, Spanish, and Chinese

editions have around 1.5 million articles each.

Second, geographic proximity. This is especially apparent when we consider natural disasters.

For example, the hurricane in North Carolina did not spark interest among French- and

Russian-speaking readers and appeared only in the English edition of Wikipedia. Although,

we can see that some outrageous traumatic events trigger memories among the readers in all

languages. We can see the topic related to the 9/11 attacks as a supporting example. Besides,

the COVID-19 case study supports the hypothesis of the influence of geographic proximity.

Changes in the trends across languages are highly correlated with the development of the

pandemic in the regions of the world where these languages are spoken by the majority of the

population.
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Finally, cultural differences. This difference is especially vivid when we look at sports. Readers

of the English Wikipedia (mostly dominated by readers from the USA) tend to be interested in

NFL championships, while the French or Russian-speaking readers do not express as much

excitement about this topic and prefer European football championships (soccer) (Fig. 5.2).

However, some sports such as golf or tennis are equally interesting to all groups of readers.

This cultural influence can also be seen in music- and movie-related trends that are different

across languages. Moreover, [76] also reports cultural differences in the motivation of the

reader. For example, the "intrinsic learning" motivation between western and eastern cultures

is different, with higher values for eastern people such as Chinese- and Russian-speaking

readers. This is confirmed in our study where topics related to science have a higher number

of clusters in the Russian and Chinese editions of Wikipedia (Fig. 5.2, Fig. 5.6). An example

can be seen in Fig. 5.1 with the "Soyuz spacecraft" peak in the Russian version in October. It is

the only science-related trend among the top trends in this timeline.

BERT vs FastText for classification. BERT model was trained on Wikipedia summaries, while

the FastText one was trained on Wikidata items. If we compare Fig. 5.2 and Fig. 5.4, we can

see that, semantically, the results of topic detection are similar in both models. The main

difference between the two approaches is that the approach based on Wikipedia summaries

labels entire clusters with one topic, while the approach using Wikidata items labels single

pages. The first approach involves more manual intervention, requires time-consuming fine-

tuning of the parameters, and basic knowledge of the language of a Wikipedia edition in which

we detect trends. The main advantage of the model is that we use graph-based attributes for

topic modeling, which makes the topic model more precise than the Wikidata-based one (see

Fig. 5.8).

The second approach, Wikidata-based, is much less manual than the one described previously.

There is no need for building a topic model, which significantly reduces the amount of prepro-

cessing work. This approach gives more detailed results, providing a fine-grained overview

of topics per cluster. However, we noticed that due to the imbalanced nature of the data and

the higher number of topics in the classification model, when unsure, the Wikidata-based

model tends to choose topics that have a high number of training samples (e.g. STEM or Biog-

raphy). Nonetheless, both models serve well for topic labeling and the overall statistics of the

distribution of attention to topics across languages is not affected by the models’ inaccuracies.

Limitations of automated labeling. Automated labeling is not 100% accurate. For the BERT-

based model (trained on Wikipedia summaries), we analyze the errors made by the classifi-

cation model and show the results in Fig. 5.8 and in Table 5.1. FastText (trained on Wikidata

items) classification metrics for selected topics are shown in Table 5.2. The detailed perfor-

mance overview of the FastText model is available on the project’s website VII.

VIIhttps://meta.wikimedia.org/wiki/Research:Language-Agnostic_Topic_Classification/Wikidata_model_
performance
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Table 5.1 – Classification metrics. BERT-based model trained on Wikipedia article summaries

Topic Precision Recall F1 Support

Football 0.93 0.95 0.94 1359
Conflicts 0.75 0.69 0.72 112
Movies 0.86 0.89 0.88 646
Music 0.84 0.85 0.84 288
Politics 0.82 0.81 0.82 520
Religion 0.75 0.56 0.64 90
Science 0.79 0.60 0.68 70
Sports 0.84 0.85 0.85 751
Videogames 0.79 0.70 0.74 47

Accuracy 0.87 3883
Macro AVG 0.82 0.77 0.79 3883
Weighted AVG 0.87 0.87 0.87 3883

First, let us focus on the BERT-based classification model and look at the category "Football".

In most erroneous cases, the model confuses "Football" with "Sports". Similar behavior is

noticed for the label "Sports". Indeed, "Football" as "Sports" classes have similar meaning, so

it is natural even for humans to misclassify the two. Similarly, Music and Movies are mixed as

well as Politics&conflicts or Religion as they may involve the same figures. This indicates that

the classification would improve if we chose more detailed topics that are more specific and

had a more balanced dataset rather than training with more data.

However, if we look at the performance of the FastText model, which provides a more detailed

classification and has more labels (64 in FastText vs 27 in BERT) and much more training

samples than the BERT-based one (4M in FastText vs 10K in BERT), we can see that the

performance also fluctuates across topics. Indeed, we can see that the model performs well

when classifying articles related to Sports, Music, and Films. However, when it comes to more

difficult topics, such as Politics, Religion, Science, and Conflicts (Military&Warfare), we can

see that the performance of both models degrades. We also noticed that the training data for

the FastText model needs to be refined because of the overlap in History, Society, and Politics

in Russian and Chinese editions.

Qualitatively, the main difference between the two models is the type of topic labels that

are used to train the classification models. As shown in Table 5.2, the FastText classification

model was trained on a mix of general and specific topics, while in the BERT-based model,

we have only general topics. For instance, we have pages labelled as Culture.Media.Films

and Culture.Media.Music that are semantically very similar to a more general topic Cul-

ture.Media.Media*. Another example is STEM. We can see a general topic STEM.STEM*, which

has many training samples resulting in higher accuracy and therefore stronger prediction

confidence, and more specific topics, such as STEM.Medicine&Health and STEM.Biology.
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Table 5.2 – Classification metrics. FastText model trained on Wikidata items

Topic Precision Recall F1 Support

Culture.Sports 0.941 0.924 0.932 39322
History and Society.Military and warfare 0.858 0.607 0.711 6068
Culture.Media.Films 0.949 0.908 0.928 7409
Culture.Media.Music 0.890 0.842 0.865 11143
History and Society.Politics and government 0.844 0.552 0.668 6158
Culture.Philosophy and religion 0.729 0.438 0.547 3128
STEM.STEM* 0.948 0.799 0.867 33119
Culture.Media.Media* 0.903 0.833 0.866 29419
History and Society.History 0.736 0.427 0.541 3247
Culture.Visual arts.Visual arts* 0.824 0.665 0.736 8219
History and Society.Society 0.833 0.514 0.636 4801
History and Society.Business&economics 0.671 0.424 0.520 2908
STEM.Medicine&Health 0.838 0.486 0.615 1745
STEM.Biology 0.985 0.919 0.951 21686

Accuracy 0.746
Macro AVG 0.837 0.629 0.712

Overall, qualitative analysis of the errors shows that they are not significant in terms of seman-

tics or meaning of the misclassified topics. However, when interpreting the results and making

conclusions, the accuracy of the classifiers should be carefully considered.

75





6 Towards reproducible research

Reproducibility of experiments is an important component of the scientific method. Even

though designing a reproducible experiment is harder and more time-consuming, it comes

with a number of benefits. Along with establishing the trustworthiness and credibility of the

research results, it enables faster evaluation and potential improvement of a proposed hypoth-

esis. Scientific papers that have data, code, and comprehensive documentation available, give

reviewers and readers a clearer picture of the ideas behind the text and formulas written in the

paper. All that results in wider adoption of the proposed methods and ensures high quality of

the presented results.

Despite the obvious benefits, the culture of reproducible research started developing fairly

recently. According to a survey of 1576 researchers on reproducibility crisis [138], which was

conducted in 2016, about 70% of respondents working in the field of physics and engineering

failed to reproduce results from someone else’s work. Chemists and biologists reported

even higher failure rates. The respondents reported that replicating results often turns into a

challenge because of multiple reasons. One of the most common obstacles is the unavailability

of the code and the raw data that were used to run the original experiments. However, the

problem cannot be solved by simply opening the data and the code because it covers only one

aspect of the problem [139]. Once we get everything we need to replicate an experiment, we

still need to deploy an appropriate environment, preprocess the raw data, and solve numerous

compatibility issues, especially when we have to deal with the code that is three or more years

old. All in all, there is a need for tools and frameworks that make the reproducibility process

simpler and more accessible not only to professional researchers working in a specific field

but also to non-experts. These tools should minimize the time spent replicating experimental

setups and motivate more people to verify, reuse, and improve upon existing methods.

Dissemination of research results is as important as their reproducibility. Conveying complex

ideas to lay audiences simply and entertainingly is a crucial part of research projects. One

way to implement that is to encourage researchers to create interactive visualizations and

informal blog posts that illustrate research results in a less formal and potentially more creative

manner than research papers. Not only it allows reviewers and other researchers to get a better

77



Chapter 6 Towards reproducible research

understanding of the results, but also it allows lay audiences to get a feeling of being a part of

the research process, which ensures trust and a wider adoption of scientific findings in real

life.

While designing the experiments presented in this thesis, we were motivated by the benefits

and inspired by the potential impact of reproducible research. As a result, one of the most

important features of the experiments in this thesis is that anyone can reproduce them and run

the experiments on the latest available data. In this chapter, we provide thorough instructions

on how to do that.

As we saw in the previous chapters, the datasets provided by Wikimedia Foundation have be-

come the core benchmark for our pattern detection algorithm due to their scale and openness.

Since Wikipedia is the most visited encyclopedia in the world, these datasets are massive and

require considerable effort to load, clean, and transform into the desired data structure. To

facilitate the process of working with Wikipedia, the graph of articles, and viewership statistics,

we created a toolbox for practitioners and researchers interested in various aspects of the

spatio-temporal dynamics of Wikipedia.

In this chapter, we describe our efforts towards reproducibility of the research presented in

this thesis. We start with the graph-based processing framework for Wikipedia data (Sec. 6.1).

After that, in Section 6.2, we discuss the dataset’s use cases and show how to use it beyond the

applications that we have already discussed in the previous chapters. Then, in Section 6.3, we

give a brief overview of the distributed implementation of the anomaly detection algorithm

presented in Chapter 3. This implementation uses the presented graph-based data frame-

work as a back-end. Finally, we introduce our initiative Wikipedia InsightsI, a local hub for

research blog posts and interactive visualizations. The main goal of this hub is to inspire other

researchers and undergraduate students to work on Wikipedia data and to share the results of

Wikipedia-related projects with a wider audience. We conclude this chapter with a discussion

of potential extensions and improvements of the proposed data processing framework.

6.1 Graph-structured dataset for Wikipedia research

In this section, we present a convenient and versatile graph-based toolbox for researchers and

practitioners. This toolbox is the core milestone in the roadmap towards reproducibility of the

experiments presented in this thesis. The main goal of this toolbox is to simplify the access

to Wikipedia data and its further analysis. All experiments on Wikipedia data that we have

discussed rely on this distributed graph-based framework for data processing, which greatly

facilitates the reproducibility process.

Like any other website on the Web, Wikipedia stores weblogs that contain viewership statistics

of every page. Wikimedia Foundation, Wikipedia’s parent non-profit organization, makes the

web activity records and the hyperlink structure of Wikipedia publicly available, so anyone

Ihttps://wiki-insights.epfl.ch
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can access the records either through an API or through the database dump files. Even though

the data is well structured, efficient preprocessing and wrangling requires professional data

engineering skills. First, the dumps are very large and it takes a long time for researchers to

load and filter them to get what they need to study a particular question. Second, although

the API is well documented and easy to use, the number of queries and the response size are

very limited.

Even though the API is quite convenient, it can cause reproducibility issues. The network of

hyperlinks evolves with time, so the API can only provide the latest network configuration.

To solve this problem, as a workaround, researchers use static preprocessed datasets. Two of

the most popular datasets for Wikipedia network research are available on the SNAP archive,

Wikipedia Network of Hyperlinks [140] and Wikipedia Network of Top Categories [141–143].

The initial publications referring to these datasets have been cited more than 1000 times,

showing a high interest in these datasets among researchers. These archives were created

from Wikipedia dumps in 2011 and 2013, respectively. However, Wikipedia has evolved since

then and the research community would benefit from being able to access more recent data.

The popularity of Wikipedia data among researchers continues to rise, leading to the develop-

ment of new datasets. To facilitate studies focusing on Wikipedia revision history, Mitrevski,

Piccardi, and West [144] developed a parser that produces Wikipedia revision history in HTML

format based on wikitext, Wikipedia’s markup language. They provided a more complete and

accurate data source for a range of applications related to link prediction, popularity, and navi-

gational importance. The increasing popularity of GNNs inspired Mernyei and Cangea [145] to

create a benchmark based on Wikipedia web network and textual features of Wikipedia articles

on computer science. The goal of the dataset is to provide a benchmark for semisupervised

node classification and single-relation link prediction models. Consonni, Laniado, and Mon-

tresor [146] proposed a graph-based dataset of Wikipedia hyperlinks, covering the 9 largest

language editions. They proposed a few potential use cases, including link recommendation

and prediction, anomaly detection, and controversy studies.

The need for graph-based datasets is highlighted in numerous research works. Multiple studies

analyzed Wikipedia from a network science perspective and used its network structure to

improve Wikipedia itself or to gain insights into the collective behavior of its users. In [147],

Zesch and Gurevych used Wikipedia category graph as a natural language processing resource.

Buriol et al. [148] studied the temporal evolution of the hyperlink graph of Wikipedia. Bellomi

and Bonato conducted a study [149] of the macrostructure of the English Wikipedia network

and cultural biases related to specific topics. West et al. proposed an approach enabling the

identification of missing hyperlinks in Wikipedia to improve the navigation experience [150].

Multiple applications of Wikipedia citation network dataset were proposed by Singh et al. [151],

including citation recommendation and knowledge graph construction.
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Figure 6.1 – An illustration of a subset of Wikipedia web pages with viewership activity (page-
counts). Left: Wikipedia hyperlinks network, where nodes correspond to Wikipedia articles
and edges represent hyperlinks between the articles. Right: hourly page-view statistics of
Wikipedia articles.

Another direction of Wikipedia research focuses on the pagecounts analysis. Moat et al. [152]

used Wikipedia viewership statistics to gain insights into stock markets. Yasseri et al. [153]

studied editorial wars in Wikipedia, analyzing activity patterns in the viewership dynamics of

articles that describe controversial topics. Mestyán et al. [154] demonstrated that Wikipedia

pagecounts can be used to predict the popularity of a movie. As we saw in Section 4.4, the

collective memory phenomenon was studied in [26], where the authors analyzed visitor

activity to evaluate the reaction of Wikipedia users on aircraft incidents.

The hyperlink network structure, on the one hand, and the viewership statistics (pagecounts)

of Wikipedia articles, on the other hand, have attracted significant attention from the research

community. Recent studies open new directions where these two datasets are combined. The

emerging field of spatio-temporal data mining [39] highlights an increasing interest and a

need for reproducible network datasets that contain dynamically changing components.

Following the recent advances of scientific research on Wikipedia, our framework focuses on

two components: the spatial component (Wikipedia hyperlinks network) and the temporal

component (pagecounts). We design a database that allows querying this hybrid data structure

conveniently (see Fig. 6.1). Since Wikipedia weblogs are continuously updating, we designed

this database in a way that will make its maintenance as easy and fast as possible. Finally, the

framework enables us to work with any language edition of Wikipedia, opening new avenues

for multilingual studies.

There are multiple ways to access Wikipedia data, but none of them provide native support of

a graph data structure. Therefore, normally, if researchers want to study Wikipedia from the

network science perspective, they have to create the graph themselves, which is usually very
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time-consuming. To do that, they need to preprocess large dumps of data or to use the limited

API.

In spatio-temporal data mining [39], researchers are most interested in the dynamics of the

networks. Hence, when it comes to Wikipedia analysis, one needs to merge the hyperlink

network with page-view statistics of the web pages. This is another large chunk of data, which

requires another round of time-consuming preprocessing.

After the preprocessing and merge are completed, researchers usually realize that they do

not need the full network and the entire history of visitor activity. However, there is no easy

workaround: to get a certain subset of pages for a specified period, everyone has to perform

the aforementioned steps.

Here, we will present a graph-based solution that eliminates the preprocessing steps described

above, a graph database that simplifies access to the hyperlink structure and its viewership

statistics of Wikipedia. With a set of intuitive queries, we provide the following features:

• Process and load web networks and viewership activity(pagecounts) for any language

edition of Wikipedia.

• Process and load links connecting multiple language editions (langlinks).II

• Query relatively large subgraphs of Wikipedia pages (1K–100K nodes) without redirects.

• Use filters by the number of page views, category/sub-category, graph measures (n-hop

neighborhood of a node, node degree, page rank, centrality measures, and others).

• Query viewership statistics for a subset/subgraph of Wikipedia pages.

• Query a subgraph of pages with a number of visits higher than a threshold, in a prede-

fined range of dates.

The database enables its users to query subgraphs with millions of links. However, requesting

a large subgraph from the database may take several hours. Besides, it may require a large

amount of memory on the hosting server. Such queries may cause an overload of the database

server that has to process queries from multiple users at the same time. Therefore, instead of

setting up a remote database server, we have decided to provide the code to deploy a local or a

cloud-based one from Wikipedia dumps. This should allow researchers to explore the dataset

on their server, design new queries, and possibly contribute to the project.

Lastly, our framework allows working with any version and language edition of Wikipedia

dumps. This gives researchers the ability to reproduce previous studies on Wikipedia data and

to conduct new experiments on the latest data.

IIThe feature was contributed by Carlos Badillo
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Figure 6.2 – Wikipedia graph structure. In blue: articles and hyperlinks referring to them. In
red: category pages and hyperlinks connecting the pages or subcategories to parent categories.
In green: a redirected article, i.e., Article 1 refers to Article 2 via the redirected page. In black: a
redirection link. The blue dashed line is the new link created from the redirection.

Furthermore, Wikipedia graph and pagecounts can be used separately, which creates more

use cases and applications of the dataset. The latest deployment instructions are available

online [155].

In the following sections, we present the spatial and temporal components of the dataset

(Sec. 6.1.1 and 6.1.2), describe the data processing stages (Sec. 6.1.3), and provide performance

analysis of the queries (Sec. 6.1.4).

6.1.1 Network of Wikipedia articles

We represent the Wikipedia graph as a multigraph with different kinds of nodes and links.

The objects are described in Table 6.1; the relationships between the objects are illustrated

in Fig. 6.2. We store Wikipedia network of articles in a property graph database Neo4J and

connect it to the rest of the data framework using Scala connectors. The overall architecture of

the data processing framework is depicted in Fig. 6.3).

Nodes in the graph represent Wikipedia webpages of two types, articles and categories. Hyper-

links between webpages are stored as directed edges between the nodes. Both articles and

their categories are stored in the same graph. In Wikipedia, categories refer to their elements

(articles or subcategories) with hyperlinks. Each article has hyperlinks that point to the cate-

gories they belong to. Inside the graph database, articles and category pages differentiate into

nodes of distinct types with different labels.
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Table 6.1 – Entities in the graph-based dataset of Wikipedia pages

Name Nature Description

article node Wikipedia article
category node Wikipedia category article
links_to link hyperlink between 2 articles

belongs_to link hyperlink between an article or subcategory and a category page

To provide a convenient interface to access articles and categories, we introduce two types of

links. The ”links_to“ relations are hyperlinks between articles (excluding categories), and the

”belongs_to“ relations are linking articles to their categories or subcategories to their parent

categories. Edges of the latter type represent hyperlinks inside articles, which point to category

pages.

Graph structure. The internal structure of Wikipedia web network justifies our choice in favor

of graph databases. The category structure in Wikipedia is shaped as a tree. The advantage of

such structure is that it is easy to handle it when a user creates articles and wants to classify

them into subcategories. However, it complicates the retrieval of a set of all articles belonging

to a given category (or subcategory). One has to explore the entire hierarchy of subcategories

inside that category and collect all encountered articles. The inherent features of graph

databases allow simplifying this task. Traversing and performing the breadth-first search in

the graph is one of the basic functions of graph databases, which makes this solution a more

efficient alternative to relational databases.

Redirects. To handle renamed or merged pages, Wikipedia relies on redirecting pages. When

renaming a page, moderators create a new page with a new title. However, they do not remove

the initial page because it would break hyperlinks from articles that point to the renamed

page. To avoid broken links, the initial page becomes a "redirect", a page that automatically

redirects a visitor to a new page. Redirect pages are invisible to users. We remove these pages

from our dataset and create a skip-connection to the correct article (the blue dashed arrow

of Fig. 6.2). First, it simplifies the queries when exploring the graph. Second, it makes the

structure cleaner and easier to understand. Lastly, it halves the number of nodes in the graph;

at the time of writing, the number of articles in the English Wikipedia is close to 6 million,

while the number of redirects is around 8 million.

Langlinks. Wikipedia is available in multiple languages (309 as of January 2020). Pretty much

every article on Wikipedia has a counterpart in another language. Each multilingual article

has a link, referring to its twin in another language. The toolbox facilitates preprocessing,

storing, and querying multilingual articles and links connecting them.

83



Chapter 6 Towards reproducible research

SQL dumps

Page counts

PAGE_ID Application

Figure 6.3 – Schematic structure of the framework. SQL dumps with Wikipedia’s hyperlink
structure are preprocessed and stored in a Neo4J database instance. There are two options to
use preprocessed page view statistics (pagecounts). First, directly from Parquet files. Second,
from a Cassandra database instance. The two databases can be used separately. If needed,
the two data sources can be connected by PAGE_I D field as a key and used together as a
spatio-temporal data structure. Both databases have connectors to Apache Spark allowing for
distributed processing of the data and seamless integration with other distributed frameworks.

6.1.2 Wikipedia viewership data

Viewership statistics is an independent data source. It does not depend on the graph dataset

described previously, however, both data sources can be used together in one application

(see Fig. 6.3). The time series of visits are stored separately in Parquet files in the form of a

collection of indexed key:value pairs. Each key is a triplet (language code, page id, time-stamp)

and the value is the number of visits during the hour given by the time-stamp for the page

associated to the page id in a particular language edition of Wikipedia. Note that different

language editions may have the same page id for different pages, therefore it is important to

keep the language code as a part of the key.

There are two ways to use the preprocessed pagecounts. They can be used as raw Parquet

filesIII or stored in a Cassandra database (see Fig. 6.3). Parquet is a convenient format to

work with when we need to deal with distributed frameworks and environments. This option

gives practitioners the freedom to choose frameworks and tools. The other option is storing

preprocessed entries in a Cassandra database. Cassandra is well integrated with open-source

frameworks for distributed data processing, which motivated our decision to use this database

as a default option. Its structure provides a flexible way of recording new entries following

the evolution of time, page creation and deletion that occur in the encyclopedia. Querying a

IIIThe feature was contributed by Anthony Miyaguchi
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specific period is very convenient and efficient as well. It is done by submitting a request with

a specific range of key values (a range applied to the time-stamp key of the key couple).

To reduce the amount of data to be stored, we introduce a threshold for the number of visits

per page per day. We store the number of hourly visits for an article if the daily total of its

visits is above this threshold (100 by default). This reduces the number of entries by an order

of magnitude without losing relevant information. The framework handles missing records

automatically, which is also very convenient.

6.1.3 Data extraction and preprocessing

Before creating the graph database, we perform the following preprocessing steps. After having

downloaded Wikipedia dumps [156], we parse the SQL files to extract the titles of articles

and categories, page and category ids, and hyperlinks. Before storing the data in the graph

database, we remove the redirects and modify the hyperlinks pointing to them to link to the

correct articles. After these steps are completed, we load the data into the graph database.

If we decide to work with the time series data representing pageviews, we download the

pagecounts dumps [157] (number of visits per page per hour), and extract the hourly visits. As

described previously, we remove entries with a low number of visits. If a page has less than 100

daily visits, we do not store visit records for that page and that day. The data has a resolution of

1-hour. We store the values above this daily threshold in Parquet files that can be transferred

into a NoSQL database. As an option, we deploy the data in an instance of Cassandra database.

Wikipedia dumps and pagecount statistics have different release lifecycles. The separation of

the two data sources, the graph and time-series data, simplifies the update process and the

maintenance. Wikipedia dumps are released monthly. Every month, we can compare the new

and previous version dumps of pages and links and update only a part of the graph database.

We can add new nodes and links to the database and delete the removed ones. Pagecount

statistics is released daily. We can perform daily updates of the time series database. To do

that, every day, we add 24 new entries (one per hour) for each article.

6.1.4 Performance of graph queries

To test the performance of the graph database and compare it with the relational counterpart,

we constructed the graph of English Wikipedia pages based on the August 1st 2018 SQL dumps.

After resolving the redirects, the graph consists of about ca. 7.4 million articles, comprising

both regular pages (ca. 5.7 million) and category pages (ca. 1.7 million), and ca. 511 million

edges. Once the data was imported into the graph database, we ran queries to extract various

subgraphs, e.g., retrieve all pages and subcategories belonging to a given category and all the

links between these pages. Table 6.2 demonstrates the query results and the time required to

process them.
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Table 6.2 – Size and performance for different subgraph requests

Category Articles Hyperlinks Subcategories Search depth Proc. time

571 5’165 202 2 0.4 s
Philosophy 5’370 177’754 1’144 3 29.7 s

26’480 1’094’550 4’084 4 574 s
2’263 27’911 207 2 3.3 s

Physics 10’128 223’870 971 3 55 s
33’917 972’206 3’712 4 501 s

Science
1’762 19’189 455 2 3 s

18’751 260’043 2’842 3 292 s

Actors
1’107 3’313 654 2 1.6 s

10’805 47’196 2’922 3 90 s
859 6’598 223 2 1 s

Global conflicts 6’179 152’517 1’208 3 48.5 s
22’663 706’357 3’905 4 541 s

Exoplanets 989 18’926 69 unlimited 0.8 s

The presented results have been computed on a 24-core Intel Xeon E5 system, equipped with

SSD drives and using the Neo4j open-source database. Given the highly connected structure

of Wikipedia, we had to restrict the depth of certain queries as the returned set expands

dramatically.

While it is possible to use relational databases to store pages and link information, retrieving a

subgraph using a tabular structure would require an increasing number of subqueries or table

joins when increasing the depth of the queried subgraph. This results in longer processing

times and complex query syntax. Extracting a subgraph requires complex queries to find all

the nodes belonging to the subgraph. Then we need to perform an additional search to find

all edges connecting nodes in the set.

To compare the performance, we conducted an experiment where we query the same data

from raw files, a relational database, and a graph database. We used Neo4J as a graph database

and PostgreSQL as a relational database. To query the raw files, we used Apache Spark. We

used a truncated version of the Wikipedia SQL dumps to perform the comparison. Before

running the experiment, to simplify the queries and create more efficient indexes, we have

done basic preprocessing of the data. We replaced the textual ids of each page, represented as

a combination of a page title and its namespace, by unique page ids. Additionally, we removed

redirects.

Queries performed on the graph database are often at least an order of magnitude faster than

on the raw files. For instance, querying the subcategory graph of the ”Physics“ category with

depth 2 requires approximately 5 minutes to retrieve all the nodes belonging to the subgraph.

Moreover, it takes several additional minutes to retrieve its edges, whereas the same data is

completely extracted in less than 5 seconds from the graph database.
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Table 6.3 – Size and performance for article neighbor subgraph requests

Page Articles Hyperlinks Subcategories Search depth Proc. time

Switzerland 1’400 144’911 24 1 4.5 s
United States 2’215 258’939 28 1 17.5 s

Charlie Chaplin 1’289 147’203 23 1 4 s
Albert Einstein 1’025 114’518 30 1 2.3 s

Computer science
684 47’067 13 1 1 s

68’756 7’883’471 1’450 2 3’600 s

Using a relational database improves the situation, as the nodes of the subgraph are returned in

less than a second. Returning the edges from the subgraph remains, however, time-consuming

(ca. 10 to 40 seconds in our experiments), in addition to requiring multiple nested queries

whose complexity increases with the search depth. In that particular example, given a relatively

small size of the result, the timing can be heavily impacted by the cache of each application.

In addition, the type of storage they run on also affects the performance, hence we advise

using SSD storage for better performance. For instance, using a query (on both databases) to

retrieve a subgraph of depth 3, then retrieving the same subgraph of depth 2 will most likely

only use the cache and yield much faster results. When the search depth increases sufficiently,

the relational database can lead to faster processing than the graph database, at the expense

of query complexity.

Similarly, we queried subgraphs consisting of page neighbors (i.e., connected via a ”links_to“

relation), up to a certain depth. We also restricted the queries by the number of outgoing links

from the top page since some of them have a substantial number of direct connections. We

provide the results of these queries in Table 6.3. Increasing the depth of such queries (e.g., for

a depth greater than one) leads to large responses, resulting in a longer processing time (cf.

the ”Computer science“ entry in Table 6.3).

6.2 Dataset applications and use cases

6.2.1 Spatio-temporal datasets

To test the performance of spatio-temporal algorithms, we need to use both the web network

and its pageview statistics. A combination of the two data sources transforms the dataset into

a spatio-temporal data structure, which can be used to test algorithms created for dynamic

graphs. We saw such examples in Chapter 4 and Chapter 5, where we used our spatio-temporal

anomaly detection algorithm to detect dynamic patterns in Wikipedia user activity and tracked

the development and evolution of real-world events.

The problem of suggesting missing hyperlinks between related pages has been investigated

in multiple studies. Some of them are based on the text of articles, some of them on the visit
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patterns. For the latter, the possibility to query a group of articles and their visits over time

from the database could facilitate the search for missing links.

6.2.2 Generating datasets for graph neural networks

Research on graph neural networks (GNNs) has become very popular in recent years. This

drives the need for graph datasets of different sizes and properties. Due to a reach set of

additional attributes, a Wikipedia-based dataset can provide interesting test cases for GNNs.

We can use our framework to generate different graph-based datasets with various attributes,

such as the text of articles, viewership statistics, and categories or general topics of Wikipedia

articles. Moreover, the availability of multiple language editions opens new avenues for

research on transfer learning using GNNs, where a network trained on one language learns to

classify graphs from another language edition.

6.2.3 Knowledge graphs and graph embeddings

Apart from the examples that we have already discussed, there are a few other research projects

that have already used the dataset for knowledge graphs and graph embeddings. The proposed

data processing framework can be used to build knowledge graphs. London et al. constructed

a Wikipedia-based knowledge graph using a taxonomy generator [158]. Another use case is

time-series forecasting using graph embeddings. Miyaguchi et al. used this toolkit to forecast

Wikipedia page views using embeddings of its web network [159]. In this example, the authors

used both the graph and pagecounts databases.

6.2.4 Working with selected subgraphs of Wikipedia

In some cases, we need to work with a selection of pages. Even though we provide convenient

tools to select subgraphs of Wikipedia, the structure of the encyclopedia is rather chaotic,

which makes this task more difficult. Wikipedia articles are classified according to the category

hierarchy established by the editors of Wikipedia. Wikipedia categories are cumbersome. The

absence of strict guidelines or strong authority on category labeling resulted in a complex

category schema. Gathering all pages belonging to a category is a difficult task at the moment.

It requires visiting all subcategories belonging to the initial category and collecting the articles

they refer to. Furthermore, we often notice that there are collections of several subcategories

(and hence articles) that are only remotely related to the original category or subcategory.

Those subcategories can be very generic and encompass a large number of articles, e.g.,

one of the subcategories of ”Physics“ is ”Writing systems“ (linked via ”Physical systems“).

Indeed, a deep category hierarchy, its complexity, and the lack of tools for accessing the

network of categories makes it impossible to have a global view on the structure and efficient

maintenance.
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Table 6.4 – Number of nodes in the subgraph of the ”Physics“ category

Depth Articles Subcategories

1 69 27
2 2’263 206
3 10’128 970
4 33’917 3’711
5 80’349 16’917
6 232’818 74’004
7 2’041’232 251’551

To illustrate the complexity of the category structure, we run multiple different queries. Each

query defines a category and asks for all the articles belonging to this category and its sub-

categories. The results are shown in Table 6.2. In the case of broad categories, the number of

articles grows rapidly as we go deeper in the subcategory hierarchy. Each subcategory may

have subcategories of its own. We define the depth to be the distance in hops from the initial

category to the furthest subcategory in the subcategory tree. For instance, the category Physics

already contains 33’917 articles and 972’206 hyperlinks at depth 4. This number grows to

more than 2 million pages when articles are collected up to subcategory depth 7 as shown in

Table 6.4. In fact, this is one-third of all articles in the English Wikipedia. This result is surpris-

ingly large and additional investigation is required to understand the structure and check its

correctness. The web network of Wikipedia articles and categories is highly connected, so the

number of links and the time to retrieve the data grows very quickly. For general categories,

after 4 hops in the category tree, the result of the query reaches tens of thousands of pages and

more than a million links.

This complexity in the category hierarchy makes it memory-expensive to query subgraphs

of articles in the same category. Even though the performance of the database queries drops

when the network expands, it is possible to query these subgraphs. Hence, our proposed

database opens new avenues to the popularization of research on large subnetworks of cate-

gories. This may give a better understanding of the category and article structures. The results

may lead to a better organization of categories and a more efficient process of verification of

their consistency.

6.3 Reproducibility of the experiments presented in this thesis

We provide two implementations of the algorithm presented in Chapter 3. The Python ver-

sionIV is a demo version of the algorithm, which allows testing it on toy and random datasets.

The distributed version is written in ScalaV and can be used to detect anomalies in large-

IVhttps://github.com/mizvol/anomaly-detection
Vhttps://github.com/epfl-lts2/sparkwiki/blob/master/src/main/scala/ch/epfl/lts2/wikipedia/PeakFinder.

scala
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scale dynamic graphs. In our main test case, we use Wikipedia data to demonstrate the

performance of the algorithm and its scalability. The Scala implementation is fully integrated

with the graph-based data framework, presented in Section 6.1.1. It allows reproducing the

experiments presented in this thesis and running experiments on the new data. Detailed

documentation and instructions are available in the corresponding repositories.

To reproduce the experiments presented in Chapter 5, we recommend using the distributed

version of the algorithm implemented in Scala, which is fully integrated with the data pro-

cessing framework presented in this chapter. When working with Wikipedia data, we suggest

starting with a high threshold for daily pageview counts and decreasing it gradually to avoid

overly long processing times. Another practical suggestion is to start with a short time window

of 3 days maximum because of the same reason. It is important to point out that one needs

the same amount of historical pageview data stored in the database as the size of the analyzed

time window. Therefore, if we need to detect patterns over 3-day period, we need to have 3

previous days of historical pageview data available in the database. For more details and a

complete step-by-step roadmap to the reproducibility of the experiments, we ask the reader

to consult the documentation available in the code repository.

The implementations of the algorithm and the graph-based data processing framework

sparked interest in Wikipedia research among students pursuing their master’s and bach-

elor’s degrees. Not only they reproduced the experiments presented in this thesis using the

provided tools and implementations, but they also developed their ideas bringing insights into

Wikipedia ecosystem. During their internships in the lab, they created various projects ranging

from natural language processing to interactive visualizations with applications in collective

behavior analysis, topic detection, and graph-based document classification. All that led to

the creation of a local hub, Wikipedia Insights, where we showcase their projectsVI. There,

among informal blog posts, you can find interactive visualizations and graph exploration tools

that represent another dimension of the results presented in this thesis.

We can see two examples of such visualizations in Fig. 6.4. First (Fig. 6.4, left), a web-based dy-

namic graph exploration toolVII. It provides users with multiple features that allow for filtering,

changing the layout of the graph in real time, and animating the spatio-temporal dimension

of the network. The tool is extendable and it is possible to build custom spatio-temporal

visualizations upon it. Second (Fig. 6.4, right), an interactive version of the results that we have

presented in Section 5.2VIII. It allows exploring the detected patterns and visualizing activity

of the network over time to get a better understanding of how our pattern detection approach

actually works.

VIhttps://wiki-insights.epfl.ch/
VIIhttps://wiki-insights.epfl.ch/dynamic-graphs/

VIIIhttps://wiki-insights.epfl.ch/wikitrends/
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(a) Dynamic network exploration toolbox

(b) Interactive demonstration of Wikitrends project

Figure 6.4 – Top: web-based dynamic graph exploration tool providing a range of features for
filtering, changing the layout of temporal graphs, and animating spatio-temporal changes.
Bottom: evolution of Wikipedia trends over time. Interactive version of the results presented
in Section 5.2).
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Even though we provided a thorough analysis of the results in the original papers, sometimes,

proactive readers, who decide to dive into the results with the help of the visualizations, find

new interesting insights that we did not notice initially. This makes us confident about the

high value of reproducible research to the general public and the importance of dissemination

of the results of scientific findings to different audiences.

6.4 Discussion

In this chapter, we have presented a toolbox allowing researchers to preprocess, store, and

access Wikipedia web network and viewership activity of the pages. The main goal of this

toolbox is to provide a convenient tool for researchers working on Wikipedia and analyzing the

dynamic properties of this network. We designed the database with the idea of reproducible

research in mind. We would like this project to become an important building block in

Wikipedia research community that should speed up the research process and facilitate its

reproducibility.

Reproducible research. In science, it should be mandatory for any published results to be

reproducible. This implies unlimited access to the data used for the experiments. However,

when the dataset evolves with time, as it is in the case with Wikipedia articles and viewership

statistics, it may be difficult to recover the exact data used in a given study. Some articles

may have been removed or some links may have appeared after the publication of scientific

work. A workflow designed for scientists must include a simple mechanism that facilitates

the reproduction of the experiments. The goal of the toolbox described in this section is to

provide such solution.

Potential benefits for Wikipedia. A better understanding of Wikipedia structure, both from

an article and a category point of view, is an important matter for the encyclopedia and the

organization of its knowledge. Finding missing hyperlinks, suggesting links during the creation

of pages, monitoring Wikipedia visitor activity, or structuring the category tree, are among the

numerous possible applications of the proposed toolbox.

Toolbox development and future steps. Wikimedia’s archives are a treasure for open science

and open research. There are multiple ways for improving and enlarging the toolbox. For

instance, we can add the information about Wikipedia edits and editors to the nodes in the

graph database. They could be structured as a graph of articles or a graph of users with time

series of edit activity, opening new avenues for various applications and studies.
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There can be no explanation which is not in need

of a further explanation.

— Karl Popper [160]

We can observe graph-structured data with dynamic attributes in many fields. The main

goal of this thesis was to develop a scalable and interpretable algorithm for dynamic pattern

detection in such datasets. To demonstrate the efficiency and core features of the proposed

approach, we focused on the applications to web and social networks. In these applications,

we strove to deepen our understanding of collective behavior patterns in the online activity of

internet users, detecting trends, collective interests, and common navigation patterns.

In the proposed pattern detection approach, we used properties derived from the connection

between GNNs with attention mechanism (GAT) and memory networks (Chapter 3). Rather

than learning the attention function, we have defined it based on prior knowledge about the

data. That allowed us to combine the structure of the data and the domain knowledge to solve

the problem of dynamic pattern detection at a large scale. One of the main benefits of our

approach is that it is fully unsupervised, which allowed us to detect patterns in unlabelled data.

Moreover, we demonstrated that we could use the learned patterns in applications related to

recommendation systems and information recovery (Sec. 4.3).

A core feature of our pattern detection method is the interpretability of the results. In Chapter 4,

we analyzed the detected patterns and showed multiple applications where this feature could

be useful. In particular, the interpretation of the patterns detected in Wikipedia viewership

activity allowed us to gain insights into the collective behavior of Wikipedia readers. We

have observed that some patterns of readers’ activity have associative properties, i.e., current

events trigger related memories of the past. To understand the associative nature of users’

preferences, we studied the collective memories of Wikipedia readers (Sec. 4.4). The detected
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collective memories reflect the way people perceive real-world events and what associations

those events trigger when people read related Wikipedia articles. In Chapter 5, we extended

our approach with an automated pattern interpretation module, which allowed us to compare

the global interests of Wikipedia readers across multiple languages.

Even though our approach can be used to find dynamic patterns in any online social network-

ing platform, we used Wikipedia server logs in the majority of our experiments (Chapters 4, 5).

Openness, scale, and the diverse audience of readers are among the driving forces that led us

to choose Wikipedia for our case studies. There are also other positive aspects, which define

Wikipedia as an unique social networking environment. First, due to its non-profit nature,

contrary to other social platforms, it prioritizes user privacy over profit and does not create

profiles of users to increase engagement. Second, Wikipedia does not use user information

to train personalized recommendation models that are prone to create online filter bubbles,

enforce polarization, and distort readers’ view of reality. As a result, the navigation patterns in

Wikipedia appear more natural, revealing truly spontaneous intentions of the readers that are

not biased by personalized recommendation algorithms.

Collective behavior analysis of users’ activity data collected from for-profit social networks is a

completely different story. Business incentives push major online social networks toward using

personalized recommendation algorithms to increase users’ engagement with the content,

which results in higher exposure of users to personalized ads. Such algorithms are designed to

direct the content towards specific audiences based on the interests derived from their prior

activity history. As a result, the user activity data is often prone to algorithmic bias, which is

inflicted by personalized recommendation systems.

Personalized content targeting influences and drives the interests of the users, thereby strength-

ening the online filter bubble effect. The algorithmic bias makes the patterns of collective

behavior less natural since the data logs stop reflecting the spontaneous interests of the users.

First, that raises ethical concerns, approaching the point where we cannot distinguish whether

users made a conscious decision or blindly followed a recommendation produced by the

algorithm. Second, we face problems with pattern detection algorithms because they end

up capturing patterns that mostly reflect the interests imposed by the recommendation algo-

rithms. In other words, we cannot guarantee the full consciousness of users’ decision-making

process when we perform collective behavior studies. At some stage, we cannot identify

whether a user read what she read because she was genuinely curious to read an article or

because she was influenced by a personalized recommendation system. All in all, contrary to

Wikipedia data, it is hard to guarantee the naturalness of the collective behavior patterns in

for-profit social networks.

Another important aspect of Wikipedia is its decentralized content curation, which is done by

a diverse group of editors who ensure that the shared point of view is neutral. Neutral point
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of view (NPOV) is one of the fundamental concepts of Wikipedia content creationI. NPOV

minimizes the polarization of content and ensures that the opinions that appear in the articles

are not affected by editorial bias, represented fairly, and supported by reliable sources.

Nonetheless, when we compared different language editions of Wikipedia, we noticed that

some aspects affect readers’ perception of particular topics. We found that some interests

are driven by the media, readers’ geographical proximity to real-world events, and cultural

differences. In addition, we can see that the web network structure of Wikipedia influences

people to read only the content that was explicitly linked by the editors, forming a particular

image of the topic of interest. As we have discussed in Chapter 5, the same pages written in

different languages can reflect diverging points of view, affecting the perception of the facts by

the readers and causing the emergence of different opinions on the topic. This phenomenon is

especially apparent in subnetworks related to controversial subjects that cover politics, history,

and culture.

To provide different perspectives on the topic, we can use collective memories from multiple

languages that we have extracted with our approach. Comparing collective memory patterns

across languages could help to describe discrepancies in perception of various events by

readers that read Wikipedia in different languages. Explaining these differences explicitly to

the readers could enhance their understanding of controversial topics and reduce polarization.

For instance, we could do that by using visual illustrations of collective memory patterns, as

we have shown in Chapter 4 (Sec. 4.4).

Lastly, we have presented a distributed graph-based framework for Wikipedia data processing.

The framework allows for reproduction of all the experiments that were discussed in this thesis

as well as running similar studies on the latest Wikipedia data (Chapter 6). In addition, the

general purpose of the framework is to facilitate studies that use Wikipedia data, particularly its

web network and viewership statistics. Recent applications of our framework and numerous

contributions to the code showed that other researchers can use in their research projects

related to knowledge graphs, graph embeddings, and time series forecasting (Sec. 6.2).

7.1 Future work

Limitations of the proposed approach. In this thesis, we have presented multiple applica-

tions and demonstrated various capabilities of the proposed pattern detection approach.

Nonetheless, there are limitations that should be taken into account when working with the

approach. These limitations can also serve as a basis for future work that could be build upon

the research presented in this thesis.

Ihttps://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
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First, the initial structure of the graph is crucial for our pattern detection approach. Our ap-

proach can only detect communities (dynamic patterns) in the graph that is explicitly defined

by the existing edges. However, co-activation patterns can also occur across parts of the graph

that are not connected via existing edges. Such patterns would indicate shortcomings of the

existing link infrastructure and might suggest new links that should be added to the network.

This could potentially improve the quality of the pattern detection. A viable solution would

be to add a link prediction layer on top of our pattern detection algorithm to infer edges

between communities that have similar co-activation signatures. Another solution would be

to use temporal network mining approaches that allow inferring networks from time-series

observations (see Section 2.1 for a more detailed overview).

Second, in all the experiments presented in this thesis, we used Pearson correlation to compute

the edge weights between the nodes (Sec. 3.1.3, Eq. 3.5). These weights represent the similarity

of time-series attributes. This similarity measure does not take into account the causality

of time series attributes of the nodes in the graph. Also, it does not consider negative co-

activation of the attributes, which might be desirable in some applications. One can overcome

this limitation by using a different similarity function (Eq. 3.5), which should be chosen based

on the desired type and nature of the detected patterns.

Other applications of the proposed pattern detection approach. Going beyond collective

behavior analysis in web and social networks, we can think of other types of dynamic patterns

in different graph-structured datasets. Weather patterns can be detected in the measurements

collected by a network of meteorological stations. Sensor networks exhibit patterns of activity

in the Internet of Things that can be related to an anomalous event or an accident in the

network. Detection of patterns that appear in transportation networks can be used to improve

navigation systems. These are just a few examples of applications where our graph-based

pattern detection algorithm can be potentially useful.

In this thesis, we focused on a similarity-based attention mechanism (Sec. 3.1.2). However,

we can use other types of attention function based on application requirements, domain

expertise, and prior knowledge of the data. Though our approach has not yet been applied

to these scenarios, the universality of the system makes it an excellent candidate for future

applications.

Graph-based forecasting of activity patterns. In Section 4.3, we have demonstrated how

activity patterns propagate from one node to another in the network. It would be interesting to

see how accurately we can predict the emergence of the pattern based on the activity attributes

from just a few nodes. For instance, such a forecasting model would be useful for automated

web application scaling, when there is a need to seamlessly scale up resources in response to

an increase in user activity. Aside from web applications, such a forecasting model could also

be used in memory controllers and storage devices that are normally partitioned into storage

areas or bins. We can represent these partitions as a graph structure. Each data partition is

accessed with a certain frequency, which represents the dynamic attributes of each node in
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the graph. Detecting partition access patterns with further forecasting of access frequency

could help to speed up memory operations in such devices.

Other applications of the data processing framework. Initially, the creation of the frame-

work was influenced by the absence of a large-scale dataset that would allow us to compare

the performance of dynamic pattern detection algorithms. Eventually, we developed the

framework into a more versatile set of tools, speeding up the research pipeline when working

on Wikipedia data (Sec. 6.1). In addition to the use cases presented in this thesis (Chapters 4

and 5), the framework can also be used in other applications.

We can extend the dataset with other attributes that characterize Wikipedia articles. For

example, we could add Wikidata properties to the nodes, providing more categorical and

structured information about Wikipedia articles. That would allow us to query more fine-

grained subgraphs of Wikipedia articles, opening new avenues for research in other areas such

as sociology and digital humanities.

Another application is to use our framework to create GNN benchmarks for graph or node

classification tasks. In Chapter 5, we have extracted subgraphs of Wikipedia articles that

describe particular events. Every node in the subgraphs has a topic label, such as sports,

movies, music, STEM, politics, and so on. These labels can be used in node classification

tasks to predict missing node topics based on the structure of their neighborhood. This also

allows us to assign general topics to each subgraph based on the topics of the articles it is

composed of. Then, we collect these subgraphs into a labeled dataset and use them for graph

classification tasks.

Cross-lingual trending topic detection on Wikipedia. In Chapter 5, we used our approach to

detect and compare general trends across multiple language editions of Wikipedia. In that

study, we identified trending topics in each language edition separately. In addition to giving

access to separate language editions, our data processing framework (Sec. 6.1) allows working

with the web network of Wikipedia composed of pages that are connected by langlinks, the

links that connect articles with their counterparts in other languages. Studying the patterns in

the langlinks network allows focusing on general multilingual trends and specifically on the

topics that Wikipedia readers intentionally explore and compare across multiple languages.

Detection of filter bubbles created by personalized recommendation systems. Even though

social networks were created to connect us, when used maliciously, they can provide a set

of powerful instruments that divide, radicalize, and polarize society [161–163]. Personalized

recommendation algorithms play a crucial role as they are responsible for the creation of filter

bubbles that often create the illusion of a single correct point of view. There is an increasing

need for algorithms that uncover and visually demonstrate opinion biases created by social

networks. We can use our approach to study how personalized recommendation systems

affect dynamic patterns of user activity in social networks. To do that, we need to compare the

detected activity patterns before and after the deployment of a recommendation system. Such
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studies would help to quantify the filter bubble effect and to emphasize the need for more

responsible applications of personalized recommendation algorithms to make the internet a

more neutral and inclusive communication environment.

Even though the principal goal of this thesis was to advance the field of graph machine

learning, we crossed several scientific boundaries towards the end of our journey. To create

our pattern detection approach, we borrowed intuitions about learning and memory from

neuroscience. We were inspired by social science when applying our methods to digital traces

of humans and analyzing dynamic patterns of their collective behavior. Combinations of

intuitions and methodologies derived from these sciences allowed us to look at graph machine

learning problems from an unconventional perspective with unique insights. This helped

us to develop original approaches for graph-structured data analysis, bringing us back to

Patricia Churchland’s statement: "It is now evident that where one discipline ends and the

other begins no longer matters" [1].
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8 Science communication, outreach,
and contributions

8.1 Conference papers and journal publications

• MDPI Algorithms (30 October 2020). Spikyball sampling: exploring large networks via an

inhomogeneous filtered diffusion [164].

• TheWebConf’20. What is trending on Wikipedia? capturing trends and language biases

across Wikipedia editions [33].

• TheWebConf’19. Anomaly detection in the dynamics of web and social networks [31].

• TheWebConf’19. A graph-based dataset for Wikipedia research [34].

• ArXiV’17. Wikipedia graph mining: dynamic structure of collective memory [32].

8.2 Datasets

• Wikipedia graph dataset and pagecounts preprocessing toolkit [165].

• Enron email time-series network [166].

• Wikipedia. Events and collective memory detection dataset [167].

8.3 Posters and exhibitions

• SPARS 2017. Graph-based echo-state networks.

• Applied Machine Learning Days (AMLD) 2017. Graph-based echo-state networks with

applications to NLP and image classification.

• AMLD 2018. Wikipedia graph mining: dynamic structure of collective memory.

• EPFL Workshop on Graph ML 2019. Anomaly detection in the dynamics of web and social

networks.

• EPFL Digital Humanities Center inauguration. Interactive data visualisation of Wikipedia

user activity trendsI.

IWikipedia user activity visualization: https://wiki-insights.epfl.ch/wikitrends/
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8.4 Talks

• AMLD. January 2018 (Lightning talks session). Wikipedia graph mining: dynamic structure

of collective memory.

• Priberam. May 2018 (Invited Talk). Collective memory and anomaly detection.

• ENS Lyon. November 2018 (Invited Talk). Anomaly detection in the dynamics of web and

social networks.

• Wikimania. August 2019 (Research Track). Wikipedia graph mining: dynamic structure of

collective memory.

• L3S Research Seminar. November 2020 (Invited talk). Dynamic pattern recognition in

large-scale graphs.

8.5 Media coverage

• HackerNews. Top 10. Wikipedia graph mining: dynamic structure of collective memory.

• EPFL MediaCom. What can Wikipedia tell us about human interaction?II.

IIEPFL MediaCom interview: https://actu.epfl.ch/news/what-can-wikipedia-tell-us-about-human-interacti-3/

100

https://actu.epfl.ch/news/what-can-wikipedia-tell-us-about-human-interacti-3/


Bibliography

[1] P. S. Churchland, Neurophilosophy: Toward a unified science of the mind-brain. MIT

press, 1989.

[2] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric deep

learning: going beyond euclidean data”, IEEE Signal Processing Magazine, vol. 34, no. 4,

pp. 18–42, 2017.

[3] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large

graphs”, in Advances in neural information processing systems, 2017, pp. 1024–1034.

[4] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Mali-

nowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational inductive

biases, deep learning, and graph networks”, arXiv preprint arXiv:1806.01261, 2018.

[5] M. Newman, Networks. Oxford university press, 2018.

[6] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Machine learning on

graphs: a model and comprehensive taxonomy”, arXiv preprint arXiv:2005.03675,

2020.

[7] W. L. Hamilton, Graph Representation Learning. Morgan & Claypool, 2020.

[8] L. Freeman, “The development of social network analysis”, A Study in the Sociology of

Science, vol. 1, p. 687, 2004.

[9] A. Comte, The positive philosophy of Auguste Comte. Calvin Blanchard, 1855.

[10] G. LeBon, The crowd. new brunswick, 1995.

[11] G. Simmel, On individuality and social forms: Selected writings. University of Chicago

Press, 1971.

[12] S. Wasserman, K. Faust, et al., Social network analysis: Methods and applications.

Cambridge university press, 1994, vol. 8.

[13] J. L. Moreno, “Who shall survive? foundations of sociometry, group psychotherapy and

socio-drama”, 1953.

[14] E. Forsyth and L. Katz, “A matrix approach to the analysis of sociometric data: prelimi-

nary report”, Sociometry, vol. 9, no. 4, pp. 340–347, 1946.

101



Chapter 8 BIBLIOGRAPHY

[15] F. Harary and R. Z. Norman, Graph theory as a mathematical model in social science, 2.

University of Michigan, Institute for Social Research Ann Arbor, 1953.

[16] S. Milgram, “The small world problem”, Psychology today, vol. 2, no. 1, pp. 60–67, 1967.

[17] W. W. Zachary, “An information flow model for conflict and fission in small groups”,

Journal of anthropological research, vol. 33, no. 4, pp. 452–473, 1977.

[18] J. A. Davis, “The davis/holland/leinhardt studies: an overview”, in Perspectives on social

network research, Elsevier, 1979, pp. 51–62.

[19] J. P. Boyd, Social semigroups. a unified theory of scaling and blockmodelling as applied

to social networks. fairfax, 1991.

[20] P. Pattison and P. Philippa, Algebraic models for social networks. Cambridge University

Press, 1993, vol. 7.

[21] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks”, nature,

vol. 393, no. 6684, pp. 440–442, 1998.

[22] D. M. Lazer, A. Pentland, D. J. Watts, S. Aral, S. Athey, N. Contractor, D. Freelon, S.

Gonzalez-Bailon, G. King, H. Margetts, et al., “Computational social science: obstacles

and opportunities”, Science, vol. 369, no. 6507, pp. 1060–1062, 2020.

[23] L. Manovich, “Trending: the promises and the challenges of big social data”, Debates

in the digital humanities, vol. 2, no. 1, pp. 460–475, 2011.

[24] R. Tinati, S. Halford, L. Carr, and C. Pope, “Big data: methodological challenges and

approaches for sociological analysis”, Sociology, vol. 48, no. 4, pp. 663–681, 2014.

[25] I. Sen, F. Floeck, K. Weller, B. Weiss, and C. Wagner, “A total error framework for digital

traces of humans”, arXiv preprint arXiv:1907.08228, 2019.

[26] R. Garcıéa-Gavilanes, A. Mollgaard, M. Tsvetkova, and T. Yasseri, “The memory remains:

understanding collective memory in the digital age”, Science Advances, vol. 3, no. 4,

e1602368, 2017.

[27] N. Kanhabua, T. N. Nguyen, and C. Niederée, “What triggers human remembering

of events? a large-scale analysis of catalysts for collective memory in wikipedia”, in

Digital Libraries (JCDL), 2014 IEEE/ACM Joint Conference on, IEEE, 2014, pp. 341–350.

[28] M. Ferron and P. Massa, “Studying collective memories in wikipedia”, Journal of Social

Theory, vol. 3, no. 4, pp. 449–466, 2011.

[29] M. Ferron, “Collective memories in wikipedia”, PhD thesis, University of Trento, 2012.

[30] B. Yucesoy and A.-L. Barabási, “Untangling performance from success”, EPJ Data

Science, vol. 5, no. 1, p. 17, 2016.

[31] V. Miz, B. Ricaud, K. Benzi, and P. Vandergheynst, “Anomaly detection in the dynam-

ics of web and social networks using associative memory”, in The World Wide Web

Conference, 2019, pp. 1290–1299.

[32] V. Miz, K. Benzi, B. Ricaud, and P. Vandergheynst, “Wikipedia graph mining: dynamic

structure of collective memory”, arXiv preprint arXiv:1710.00398, 2017.

102



BIBLIOGRAPHY Chapter 8

[33] V. Miz, J. Hanna, N. Aspert, B. Ricaud, and P. Vandergheynst, “What is trending on

wikipedia? capturing trends and language biases across wikipedia editions”, in Com-

panion Proceedings of the Web Conference 2020, 2020, pp. 794–801.

[34] N. Aspert, V. Miz, B. Ricaud, and P. Vandergheynst, “A graph-structured dataset for

wikipedia research”, in Companion Proceedings of The 2019 World Wide Web Confer-

ence, 2019, pp. 1188–1193.

[35] D. Chakrabarti and C. Faloutsos, “Graph mining: laws, generators, and algorithms”,

ACM computing surveys (CSUR), vol. 38, no. 1, 2–es, 2006.

[36] C. Aggarwal and K. Subbian, “Evolutionary network analysis: a survey”, ACM Comput-

ing Surveys (CSUR), vol. 47, no. 1, p. 10, 2014.

[37] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: a

survey”, Data mining and knowledge discovery, vol. 29, no. 3, pp. 626–688, 2015.

[38] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Samatova,

“Anomaly detection in dynamic networks: a survey”, Wiley Interdisciplinary Reviews:

Computational Statistics, vol. 7, no. 3, pp. 223–247, 2015.

[39] G. Atluri, A. Karpatne, and V. Kumar, “Spatio-temporal data mining: a survey of prob-

lems and methods”, ACM Computing Surveys (CSUR), vol. 51, no. 4, p. 83, 2018.

[40] I. Scholtes, “Harnessing complex structures and collective dynamics in large networked

computing systems”, 2012.

[41] I. Scholtes and M. Esch, “Complex structures and collective dynamics in networked

systems: foundations for self-adaptation and self-organization”, in 2014 IEEE Eighth

International Conference on Self-Adaptive and Self-Organizing Systems Workshops,

IEEE, 2014, pp. 1–2.

[42] R. Lambiotte and N. Masuda, A guide to temporal networks. World Scientific, 2016,

vol. 4.

[43] R. Lambiotte, M. Rosvall, M. Schaub, I. Scholtes, and J. Xu, “Beyond graph mining:

higher-order data analytics for temporal network data”, in Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery &, vol. 38.

[44] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, “Temporal motifs in

time-dependent networks”, Journal of Statistical Mechanics: Theory and Experiment,

vol. 2011, no. 11, P11005, 2011.

[45] G. Miritello, E. Moro, and R. Lara, “Dynamical strength of social ties in information

spreading”, Physical Review E, vol. 83, no. 4, p. 045 102, 2011.

[46] B. Mitra, L. Tabourier, and C. Roth, “Intrinsically dynamic network communities”,

Computer Networks, vol. 56, no. 3, pp. 1041–1053, 2012.

[47] R. Pfitzner, I. Scholtes, A. Garas, C. J. Tessone, and F. Schweitzer, “Betweenness pref-

erence: quantifying correlations in the topological dynamics of temporal networks”,

Physical review letters, vol. 110, no. 19, p. 198 701, 2013.

103



Chapter 8 BIBLIOGRAPHY

[48] T. Weng, J. Zhang, M. Small, R. Zheng, and P. Hui, “Memory and betweenness prefer-

ence in temporal networks induced from time series”, Scientific reports, vol. 7, p. 41 951,

2017.

[49] M. G. Rabbat, M. A. Figueiredo, and R. D. Nowak, “Network inference from co-occurrences”,

IEEE Transactions on Information Theory, vol. 54, no. 9, pp. 4053–4068, 2008.

[50] I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone, and F. Schweitzer, “Causality-

driven slow-down and speed-up of diffusion in non-markovian temporal networks”,

Nature communications, vol. 5, no. 1, pp. 1–9, 2014.

[51] I. Scholtes, N. Wider, and A. Garas, “Higher-order aggregate networks in the analysis of

temporal networks: path structures and centralities”, The European Physical Journal B,

vol. 89, no. 3, pp. 1–15, 2016.

[52] E. Wu, W. Liu, and S. Chawla, “Spatio-temporal outlier detection in precipitation data”,

in Knowledge discovery from sensor data, Springer, 2010, pp. 115–133.

[53] C.-T. Lu, Y. Kou, J. Zhao, and L. Chen, “Detecting and tracking regional outliers in

meteorological data”, Information Sciences, vol. 177, no. 7, pp. 1609–1632, 2007.

[54] J. H. Faghmous, M. Uluyol, L. Styles, M. Le, V. Mithal, S. Boriah, and V. Kumar, “Multiple

hypothesis object tracking for unsupervised self-learning: an ocean eddy tracking

application.”, in AAAI, 2013.

[55] X. Gao, Q. Zheng, D. A. Vega-Oliveros, L. Anghinoni, and L. Zhao, “Temporal network

pattern identification by community modelling”, Scientific Reports, vol. 10, no. 1, pp. 1–

12, 2020.

[56] H. N. Chaudhry, A. Margara, and M. Rossi, “Temporal pattern recognition in large

scale graphs”, in Proceedings of the 13th ACM International Conference on Distributed

and Event-based Systems, 2019, pp. 250–251.

[57] B. Klimt and Y. Yang, “The enron corpus: a new dataset for email classification research”,

in European Conference on Machine Learning, Springer, 2004, pp. 217–226.

[58] H. Wang, M. Tang, Y. Park, and C. E. Priebe, “Locality statistics for anomaly detection

in time series of graphs”, IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 703–

717, 2014.

[59] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics on enron graphs”,

Computational & Mathematical Organization Theory, vol. 11, no. 3, pp. 229–247, 2005.

[60] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “Deltacon: a principled massive-graph

similarity function”, in Proceedings of the 2013 SIAM International Conference on Data

Mining, SIAM, 2013, pp. 162–170.

[61] X. Wan, E. Milios, N. Kalyaniwalla, and J. Janssen, “Link-based event detection in email

communication networks”, in Proceedings of the 2009 ACM symposium on Applied

Computing, 2009, pp. 1506–1510.

[62] P. Moriano, J. Finke, and Y.-Y. Ahn, “Community-based event detection in temporal

networks”, Scientific reports, vol. 9, no. 1, pp. 1–9, 2019.

104



BIBLIOGRAPHY Chapter 8

[63] S. Rayana and L. Akoglu, “Less is more: building selective anomaly ensembles”, Acm

transactions on knowledge discovery from data (tkdd), vol. 10, no. 4, pp. 1–33, 2016.

[64] Y. Park, C. E. Priebe, and A. Youssef, “Anomaly detection in time series of graphs using

fusion of graph invariants”, IEEE journal of selected topics in signal processing, vol. 7,

no. 1, pp. 67–75, 2012.

[65] C. E. Priebe, Y. Park, D. J. Marchette, J. M. Conroy, J. Grothendieck, and A. L. Gorin,

“Statistical inference on attributed random graphs: fusion of graph features and con-

tent: an experiment on time series of enron graphs”, Computational statistics & data

analysis, vol. 54, no. 7, pp. 1766–1776, 2010.

[66] A. Spoerri, “What is popular on wikipedia and why?”, First Monday, vol. 12, no. 4, 2007.

[67] J. Lehmann, C. Müller-Birn, D. Laniado, M. Lalmas, and A. Kaltenbrunner, “Reader

preferences and behavior on wikipedia”, in Proceedings of the 25th ACM conference on

Hypertext and social media, ACM, 2014, pp. 88–97.

[68] P. Singer, F. Lemmerich, R. West, L. Zia, E. Wulczyn, M. Strohmaier, and J. Leskovec,

“Why we read wikipedia”, in Proceedings of the 26th International Conference on World

Wide Web, International World Wide Web Conferences Steering Committee, 2017,

pp. 1591–1600.

[69] G. Domingues and C. Teixeira Lopes, “Characterizing and comparing portuguese and

english wikipedia medicine-related articles”, in Companion Proceedings of The 2019

World Wide Web Conference, ACM, 2019, pp. 1203–1207.

[70] R. Garcıéa-Gavilanes, M. Tsvetkova, and T. Yasseri, “Dynamics and biases of online at-

tention: the case of aircraft crashes”, Royal Society open science, vol. 3, no. 10, p. 160 460,

2016.

[71] T. Yasseri, A. Spoerri, M. Graham, and J. Kertész, “The most controversial topics in

wikipedia”, Global Wikipedia: International and cross-cultural issues in online collabo-

ration, vol. 25, 2014.

[72] E. S. Callahan and S. C. Herring, “Cultural bias in wikipedia content on famous per-

sons”, Journal of the American society for information science and technology, vol. 62,

no. 10, pp. 1899–1915, 2011.

[73] P. Laufer, C. Wagner, F. Flöck, and M. Strohmaier, “Mining cross-cultural relations

from wikipedia: a study of 31 european food cultures”, in Proceedings of the ACM Web

Science Conference, ACM, 2015, p. 3.

[74] A. Samoilenko, F. Lemmerich, K. Weller, M. Zens, and M. Strohmaier, “Analysing

timelines of national histories across wikipedia editions: a comparative computational

approach”, in Eleventh International AAAI Conference on Web and Social Media, 2017.

[75] M. Gabella, “Cultural structures of knowledge from wikipedia networks of first links”,

IEEE Transactions on Network Science and Engineering, 2018.

105



Chapter 8 BIBLIOGRAPHY

[76] F. Lemmerich, D. Sáez-Trumper, R. West, and L. Zia, “Why the world reads wikipedia:

beyond english speakers”, in Proceedings of the Twelfth ACM International Conference

on Web Search and Data Mining, ACM, 2019, pp. 618–626.

[77] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering”, in Advances in neural information

processing systems, 2016, pp. 3844–3852.

[78] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks”, arXiv preprint arXiv:1609.02907, 2016.

[79] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: anomaly detection in dynamic graph

using attention-based temporal gcn.”, in IJCAI, 2019, pp. 4419–4425.

[80] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen, “Structural temporal graph neu-

ral networks for anomaly detection in dynamic graphs”, arXiv preprint arXiv:2005.07427,

2020.

[81] R. Zhang, Y. Hao, D. Yu, W.-C. Chang, G. Lai, and Y. Yang, “Explainable unsupervised

change-point detection via graph neural networks”, arXiv preprint arXiv:2004.11934,

2020.

[82] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate”, arXiv preprint arXiv:1409.0473, 2014.

[83] V. Mnih, N. Heess, A. Graves, et al., “Recurrent models of visual attention”, in Advances

in neural information processing systems, 2014, pp. 2204–2212.

[84] J. Ba, V. Mnih, and K. Kavukcuoglu, “Multiple object recognition with visual attention”,

arXiv preprint arXiv:1412.7755, 2014.

[85] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,

“Show, attend and tell: neural image caption generation with visual attention”, in

International conference on machine learning, 2015, pp. 2048–2057.

[86] J. B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh, “Attention models in graphs: a

survey”, ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 13, no. 6,

pp. 1–25, 2019.
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