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Abstract: The phase sensitivity limit of Differential Phase Contrast (DPC) with partially
coherent light is analyzed in details. The parameters to tune phase sensitivity, such as the diameter
of illumination, the numerical aperture of the objective, and the noise of the camera are taken
into account to determine the minimum phase contrast that can be detected. We found that a
priori information about the sample can be used to fine-tune these parameters to increase phase
contrast. Based on this information, we propose a simple algorithm to predict phase sensitivity
of a DPC setup, which can be performed before the setup is built. Experiments confirm the
theoretical findings.
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1. Introduction

Differential phase contrast refers to a group of phase imaging methods that employ an asymmetry,
either on the illumination or on the detection side, or by introducing offset apertures, such that
the resulting intensity on the detector bears information regarding the phase gradient of the
sample [1]. In this paper we focus on Partially Coherent DPC (PC-DPC), which employs multiple
asymmetric sources of illumination (such as LEDs) to reconstruct a quantitative map of the
sample’s phase distribution. This approach to DPC is of interest for microscopic imaging of
transparent samples, with the advantage, compared to interferometry-based techniques, of not
showing artifacts such as ringing and speckles. Numerous ex-vivo biological applications have
been demonstrated over the years [2–10]. Moreover, its use has been proven in cases such as
in-vivo imaging of human retina [11], where interferometric techniques have limited capabilities
in detecting structures with low reflectivity [12].
While several previous publications have explored the spatial resolution of this technique

[13,14], not much attention has been given to the phase sensitivity performance that can be
achieved, as well as the parameters affecting it and the fundamental limit. A few experimental,
setup-specific phase sensitivity values can be found in the literature [15–17], but a complete study
of the parameters that dictate the limit of phase sensitivity is still missing. Ideally, any phase
structure in the object generates a pattern of a certain intensity, whose minimum value could be a
single photon. On the other hand, any source of noise limits detection only to the intensity values
greater than the overall noise. The sensitivity limit of the DPC technique is thus given by the
phase value that generates an intensity pattern whose amplitude equals that of the noise.
In this paper, we analyze the main factors that determine phase sensitivity in DPC detection.

First, contrast trends are shown and discussed for different types of samples. Simulations of
several DPC configurations are used to give a guideline as to how the contrast can be optimized
for specific sample features. A simple approach is then described to evaluate the sensitivity
performance of a DPC setup. The information required for this estimation are simply the
illumination profile, the sample shape and an experimental model of Poissonian-Gaussian noise
[18,19]. This simulation can be performed before the DPC setup is actually built, so it represents
a powerful tool to explore the possible DPC configurations and choose the most suited to the
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specific user needs in terms of sensitivity and resolution. Experimental verification complements
the simulations.

Finally, the sensitivity limit for common PC-DPC configurations is discussed and compared to
other phase imaging techniques.

2. Theory

A thin, partially transparent object can be described by its two-dimensional transmission function
o(®r) = e−µ(®r)+iφ(®r), where ®r represents the transverse spatial coordinate and µ, φ respectively the
absorption and the phase of the sample. In a typical DPC setup, this object is illuminated by a
set of plane waves that propagate with a certain angle ®us with respect to the optical axis, whose
amplitude is described by the function S(®us). The light exiting the sample is then collected by the
objective and low-pass filtered by its pupil P. If the object has weak phase and absorption, i.e. its
transmission can be approximated as o(®r) ≈ 1− µ(®r)+ iφ(®r), it is possible to demonstrate that the
Fourier transform of the image created on the detector is of the form [14]:

Ĩ(®uc) = Bδ(®uc) + Habs(®uc)µ̃(®uc) + Hph(®uc)φ̃(®uc) (1)

where ®uc represents the spatial frequency coordinate at the detector, δ is a Dirac delta, B is the
DC component, Habs and Hph are the absorption and phase transfer function, respectively, and µ̃,
φ̃ are the Fourier transforms of the absorption and phase, respectively. For the scope of this paper
we will consider samples with no absorption, as the theory can be easily extended to samples
with weak absorption. The phase transfer function is proportional to [14,20]:

Hph(®uc) ∝ i
[∫∫

S(®us)P∗(®us)P(−®uc + ®us)d2®us −
∫∫

S(®us)P(®us)P∗(®uc + ®us)d2®us
]

(2)

where i is the complex unit and * denotes a complex conjugate operation. Therefore, the two
critical parameters are the source profile S(®us) and the pupil function P. For a non aberrated
setup, the pupil P(®u) is a circular function of radius NAobj/(nλ) in frequency space, where NAobj
is the objective’s numerical aperture, λ is the illumination wavelength and n is the refractive
index of the medium in which the objective is immersed. The source profile can vary as long as it
is asymmetric, in order to correctly perform DPC [14]. It has been shown that optimal results are
obtained with a half ring illumination [13], whose external radius matches αouterNAobj/(nλ) and
the internal radius is αinnerNAobj/(nλ), with αouter=1 and αinner<1. Throughout this manuscript,
we will employ the half ring illumination. An example of source, pupil, and resulting phase
transfer function are shown in Fig. 1.

Fig. 1. (a) Pupil function: circle of radius NAobj/(nλ); (b) Source function: half ring with
external radius αouterNAobj/(nλ) and internal radius is αinnerNAobj /(nλ), with αouter=1 and
αinner<1; (c) Normalized phase transfer function obtained with the pupil of Fig. 1(a) and
the source of Fig. 1(b).

It is important to note that Eq. (1) and Eq. (2) are results obtained as a consequence of the
Born approximation or, equivalently, of the Rytov approximation if the sample also has low phase
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gradient [21]. If the sample does not satisfy these assumptions, the contrast of the images will
be reduced [16, 21–23]. In this paper, the samples used for experiments and simulations are all
well within the regime in which the linear equations can be used. In particular, when testing
the sensitivity limit, the samples are so weakly scattering that the modulation they introduce
is only a small fraction of the background intensity. As a consequence, it is correct to use the
linear approximation to investigate the sensitivity, as the non-linear terms would only kick in
significantly for samples well above the sensitivity limit.

2.1. Real samples: matching the frequency spectrum of the transfer function

As seen in Eq. (1), the phase profile of the sample is carried to the final image through a
multiplication in Fourier space with a frequency-dependent transfer function. The spatial
resolution will be mostly limited by the frequency cutoff of this transfer function, while the
contrast depends on the total overlap between the spatial spectrum of the sample and the shape
of the transfer function [24]: to obtain the real space image, it is necessary to inverse Fourier
transform Eq. (1), obtaining a modulated integral of the product between Hph(®uc) and φ(®uc).
Indeed, for a phase-only object (assuming for now unitary magnification):

I(®rc) = B + =−1{Hph(®uc)φ̃(®uc)} = B +
∫∫

Hph(®uc)φ̃(®uc)ei2π®uc ·®rcd2®uc (3)

where =−1 denotes an inverse Fourier transform. The contrast is then given by the difference
between the maximum and minimum pixel values in the region of interest:

c = max[=−1{Hph(®uc)φ̃(®uc)}] −min[=−1{Hph(®uc)φ̃(®uc)}] (4)

while the normalized contrast is obtained as:

Normalized Contrast =
max[=−1{Hph(®uc)φ̃(®uc)}] −min[=−1{Hph(®uc)φ̃(®uc)}]
max[=−1{Hph(®uc)φ̃(®uc)}] +min[=−1{Hph(®uc)φ̃(®uc)}]

(5)

for this reason, an analysis of the sensitivity requires careful consideration of the sample’s shape.
The main characteristic that dictates the sample’s spectrum is its sharpness, i.e. the magnitude

of its derivative. For example, a sharp object like a rectangle has a broad frequency spectrum,
while a smoother object has a spectrum more localized around low frequencies. When evaluating
the performance of a microscope system, it is common to use standard targets such as the USAF
target, which is only made up of sharp rectangular shapes. In contrast, biological samples have
much more variety in terms of shape. This difference is critical and should be accounted for,
especially if the specific application aims at greater phase sensitivity. To show the effect of the
smoothness of the sample on the contrast, one can use two exemplary shapes in the simulations.
In this manuscript, we will use a sharp circle and a truncated sinusoid, as shown in Fig. 2(a, d).
A cross section of their normalized spectra is shown in Fig. 2(c) and (f); the sharp object has
higher amplitude in the high frequency tails, compared to the smooth object. This fact influences
contrast via the transfer function, as shown in Eq. (4).

As depicted in Fig. 1(a), the two main parameters that change the shape of the transfer function
are NAobj and the αinner. The false color maps of Fig. 3(a) and (b) show how the normalized
contrast changes for the two classes of objects. The contrast is normalized to 1 for the maximum
contrast obtained with each object. To better understand the effect of the two parameters NAobj
and αinner, one can look at the plots of Fig. 3(c,d). In Fig. 3(c) the normalized contrast is plotted
against NAobj varying between 0.1 and 0.9 for αinner=0.6; in the maps of Fig. 3(a) and (b) this is
shown as a blue line with circular markers for the sharp object and cross markers for the smooth
object. Comparing the trend of contrast for the sharp and smooth objects as a function of NAobj,
one can notice that for the sharp object, the contrast is nearly unchanged, while with the smooth
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Fig. 2. (a) Sharp circular object, (b) a cross-section along the blue line, and (c) a cross
section of its spectrum in log scale; (d) smooth circular object, (e) a cross-section along the
blue line, and (f) a cross section of its spectrum in log scale.

object, increasing the NA reduces contrast by almost 40%. Figure 3(d) shows the contrast trends
for NAobj=0.6 and αinner varying between 0 and 0.9. In this case, while the absolute values of
contrast change, the trend is the same for both objects.

As suggested previously in this section, the differences in contrast for smooth and sharp objects
are easily explained in Fourier space. This is best illustrated in Fig. 4, where cross-sections of the
spatial frequency spectra of the sharp and smooth object, ÕSharp and ÕSmooth, are compared to
several phase transfer function cross-sections, normalized to their respective background values.
In Fig. 4(a), the phase transfer functions are computed for two values of NAobj (0.1 and 0.6) at a
fixed value of αinner=0.6. One can observe that, as expected, for the larger NAobj, the transfer
function has a higher cutoff frequency, which would increase resolution. On the other hand,
the amplitude of the transfer function at low frequencies is reduced. For the sharp object, the
lower amount of information collected at low frequencies for larger NAobj is compensated by
the integration of the information at higher frequencies. For the smooth object instead, the high
frequencies have such small amplitude that the loss of information at low frequencies results in a
lower contrast.

In Fig. 4(b), the case of varying αinner (0.1 and 0.9) for fixed NAobj = 0.6 is shown instead. At
the increase of αinner, the cutoff frequency does not change, while the transfer for low frequencies
increases. This is beneficial both for the sharp and smooth object, which indeed have an increasing
contrast as shown in Fig. 3(d) [14].

2.2. Simulation and estimation of the sensitivity limit

In this section, the goal is to define a framework to simulate image formation for a given sample
and microscopy DPC setup, and to estimate the minimum phase variation in the sample that
can be detected. The standard definition for the sensitivity is the magnitude of the quantity of
interest for which the Signal-to-Noise Ratio (SNR) equals one. Typical DPC images present a
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Fig. 3. (a) Normalized contrast vs. NAobj and αinner for the object of Fig. 2(a) (shown in
the inset). (b) Normalized contrast vs. NAobj and αinner for the object of Fig. 2(d) (shown in
the inset). (c) Normalized contrast for αinner=0.6. The line with circle markers refers to the
sharp object, while the cross markers refer to the smooth object. (c) Normalized contrast for
NAobj = 0.6. The line with circle markers refers to the sharp object, while the cross markers
refer to the smooth object. The lines in (a) and (b) show where the plots of (c) and (d) have
been obtained.

strong background, so it is rather more appropriate to use the Contrast-to-Noise Ratio (CNR),
which measures the ratio between the difference in intensity of two reference points in the image
and the noise [25,26]. In DPC, an object appears with its edges highlighted in opposite grey
level polarity with respect to the background, so the maximum and minimum grey levels are
considered to compute the CNR.

The first step is to simulate the DPC image. The phase transfer function Hph is computed using
the complete forms of Eq. (1) and Eq. (2). Details on the method of simulation are provided in
Appendix A. Given an a-priori knowledge of the general shape of the phase object of interest, or
in other words of its spatial spectrum, we can then calculate the contrast as in Eq. (4):

c = max[=−1{Hph · p · φ̃01}] −min[=−1{Hph · p · φ̃01}] (6)

where p is the phase magnitude and φ̃01 is the phase spectrum of the object previously normalized
between 0 and 1.

Regarding the noise, we assume that the main contributions arise from the camera, in particular
in the form of shot-noise [27] and a signal independent component. We model the Poissonian-
Gaussian noise of the specific camera in use following the MATLAB algorithm developed by
Foi et al. [18, 19]. The overall standard deviation of the noise is defined as σ(I) =

√
aI(x) + b,

where a and b are the parameters that define the Poissonian and the Gaussian noise, respectively.
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Fig. 4. (a) Cross-section of the normalized modulus of the phase transfer function Hph
for two values of NAobj at fixed αinner, compared with the cross-section spatial frequency
spectrum of the sharp and smooth object, ÕSharp and ÕSmooth respectively; assuming that
the axis of asymmetry of illumination is in direction (0, uy), the cross-section is taken in the
perpendicular direction (ux, 0). (b) Cross-section of the normalized modulus of the phase
transfer function Hph for two values of αinner at fixed NAobj, compared with the spatial
frequency spectrum of the sharp and smooth object.

The algorithm is capable of characterizing the noise profile of the camera from an image, by
segmenting it in areas of uniform intensity. The noise model is then fitted to the data points of
intensity and standard deviation of each area, giving back the parameters a, b.

The sensitivity limit can be estimated as the phase magnitude p such that the CNR is equal to 1:

CNR =
max[=−1{Hph · p · φ̃01}] −min[=−1{Hph · p · φ̃01}]

σ(Ib)
= 1 (7)

psensitivity =
σ(Ib)

max[=−1{Hph · φ̃01}] −min[=−1{Hph · φ̃01}]
(8)

where σ(Ib) is the noise standard deviation calculated at the background intensity. Other sources
of noise may be included as a more sophisticated upgrade of this simulation, without changing
the main steps here described. Indeed, it is only necessary to find and apply the correct model for
the noise to compute σ(Ib).

2.3. Reconstructing samples below the sensitivity limit

The sensitivity limit obtained with the calculations of Section 2.2 related to the single DPC
image. According to this definition, if the sample under observation were below the sensitivity
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limit, it would not be visible. On the other hand, DPC reconstructions can use multiple images
to improve the fidelity of the retrieved phase. Normally, at least two images are recorded, with
mirrored illumination profiles; the pixel-wise difference of the two images is then calculated, and
this resulting image is used to reconstruct the phase. This digital subtraction process increases
the modulation given by the sample by a factor of 2, while the noise standard deviation is also
increased by a factor of

√
2. Overall, the image used for inversion will have a CNR that is

√
2

times that of the single image. Using more axis of illumination, the coverage of the spatial
frequency spectrum is improved [9,14], and if a sufficient number of images is used, the sample
may be reconstructed even if the CNR of a single image is below one.
Nevertheless, it is important to be aware of the sensitivity limit of a single image in a given

setup, since a set of higher quality single images will provide a better reconstruction. Moreover,
if the reconstruction is performed offline, the user of the microscope will only be able to see a
stream of single DPC images.

The choice of reconstruction algorithm and parameters is also influenced by the quality of the
DPC images. Both iterative [28] and direct [14] inversion methods have been demonstrated for
DPC data, with Tikhonov inversion being the most common. In this method, a regularization
parameter is used to balance the effect of fitting noise in the data: if the regularization parameter
is too small, the inversion process will fit the noise and the reconstruction will suffer from
excessive oscillations; if the regularization parameter is too big, the data will be under-fitted
and errors will arise. It is a good approach to look for the smallest parameter that suppresses
oscillations [29], but the optimal value depends on the quality of the data. Several approaches
to automatically select the best parameter have been proposed [29–31], but often a manual
approach is employed. In this case, the regularization parameter is chosen to be proportional to
the reciprocal of the CNR. As a result, images with low CNR are to be inverted with rather big
regularization parameters, resulting in partially distorted reconstructions.

In this paper, we show experimentally in Section 4.2 that, by performing a phase reconstruction
with four images, the ground truth phase can be recovered and confirmed by the theoretical
contrast values. For the phase reconstruction, we followed the manual approach, starting from
the inverse of the CNR and then testing several values until we obtained a satisfactory trade-off
between accuracy of the reconstructed shape and management of noise amplification. Our results
are applied to single images for which there is a detectable phase contrast (CNR > 1). As noted
earlier, it may still be possible to reconstruct the phase from single images which are below the
phase contrast limit.

3. DPC setup

The DPC setup used in the experiments is shown in Fig. 5. Illumination from red LEDs (660 nm)
is focused onto the sample with a 4f system. The light exiting the sample is collected by an
objective (20x magnification, 0.5 NA) whose Back Focal Plane (BFP) is relayed with a 4f system.
A variable aperture is located at the relayed BFP, and by changing its radius, the effective NA
of the setup can be controlled. A beam splitter separates the light in two paths. On the sample
arm, a tube lens forms an image onto a CMOS camera. On the Fourier arm, a second 4f system
creates an image of the angular profile of the illumination onto a second CMOS camera. This
image contains at once information regarding the source profile S(®us) and the pupil function P,
which can be used for the calculation of the phase transfer function, ensuring that the simulations
represent the actual configuration of the setup.

The illumination setup is shown in detail in Fig. 6. In order to obtain a uniform illumination of
the sample plane, with a half ring angular profile, a glass diffuser is located in the Fourier plane
of the 4f system. The glass is partly covered with black tape, such that the profile is shaped as a
half ring, where the outer radius corresponds to the radius of the glass diffuser. This partially
obstructed diffuser serves both goals of uniform intensity and asymmetric illumination. By
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Fig. 5. The microscope setup. Yellow dashed planes are conjugated with the sample plane,
while grey dashed planes are conjugated with the Fourier plane.

having the sample plane exactly at the image plane of the illumination 4f system, we obtain an
illumination profile whose Fourier transform looks like the half ring diffuser. To change the
size of the half ring profile, it is sufficient to change the second lens of the 4f system with one
with a different focal length, as shown in Fig. 6. In the case on the left, the two lenses are equal,
so the Fourier transform of the illumination at the sample plane would give the same shape of
the half ring diffuser. In the case on the right, a lens with a longer focal length is used, so the
Fourier transform of the illumination at the sample plane would be a shrunk version of the half
ring diffuser. By switching between different lenses, we can obtain several ring sizes, while
maintaining the ratio of the inner radius to the outer radius.

Fig. 6. The illumination configuration. The output of an LED is imaged onto the sample
plane using a 4f system. A diffusing glass is located at the Fourier plane of this system. The
glass is partially obstructed with black tape to form a half ring illumination. Thanks to the
diffusing properties of the glass, the illumination at the sample plane is uniform. By using
lenses with different focal length, it is possible to achieve several scaled versions of the same
angular profile.
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4. Experiments and results

4.1. Contrast trend for increasing NAobj

The setup described in the previous section was used to collect measurements of different samples
under varying conditions of illumination and collection. The lenses in the illumination setup
were used to create several illumination profiles of different angular aperture. The first lens and
the diffusing glass were kept in fixed relative position, while lenses of increasingly long focal
length were used to focus the illumination on the sample. The illumination system was shifted
vertically so that its focal plane would always correspond to the sample plane. At the same time,
the aperture located in the relayed BFP of the objective was decreased to match the microscope
NA to the maximum angle of the illumination. In this way, a set of measurements was obtained
in which all the illumination and collection parameters would be maintained, except for the NA.

For each configuration, two images were taken: one image of the sample on the sample camera
and, after having removed the sample, one image of the illumination profile on the Fourier
camera. In particular, two samples are considered here: a USAF target etched in glass, and
glass microbeads in a layer of immersion oil (IMMOIL-F30CC, by Olympus). These samples
are shown in Fig. 7. The USAF target falls in the category of sharp objects, while the glass
microbeads are representative of the smooth object category. In all cases, for each illumination
configuration the normalized contrast was computed, according to Eq. (5). These contrast values
were further normalized to the maximum of each series, so that changes in contrast can be read
in relative terms. The results are shown in Fig. 8 and Fig. 9.

Fig. 7. (a) USAF target etched in glass. (b) Glass microbeads immersed in index-matching
oil. The blue dashed squares represent the regions of interest of each sample.

The data in Fig. 8 shows that the contrast varies between approximately 85% and 100% of the
maximum value. From the simulations of Fig. 3(c), it is expected to observe an almost constant
contrast, which is not the case in the experiment. This can be explained by the non-uniform
thickness of the illumination half ring, which has a strong impact on the contrast as shown in
Fig. 3(d). To verify the validity of this measurement, a corresponding simulation was performed.
In order to reproduce faithfully the configuration of the experiment, we reconstructed the USAF
target using an inversion algorithm with Tikhonov regularization [14], and we processed this
image to obtain a thresholded mask in which we assigned the value of 0 mrad to the background
and the nominal phase value of 685 mrad to the USAF structure. This nominal object was
smoothed with a Gaussian filter of standard deviation σ=2 to suppress overshoot caused by the
Gibbs effect, without excessive distortion of the nominal rectangular shape. Moreover, an image
of the illumination profile obtained on the Fourier plane camera was used to calculate the phase
transfer function, according to Eq. (2). The result of this simulation is also displayed in Fig. 8,
and shows a good agreement with the measurements: similar variations of contrast are present
in both simulation and experiment. The use of a measured illumination profile for simulations
allowed to correctly account for shape deviations from the half-ring. The differences in exact
values might be due to the estimation of the NA for each case: indeed, due to the polygonal
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Fig. 8. Normalized contrast for varying NAobj for the USAF sample of Fig. 7(a). The blue
line represents the simulated contrast, while the orange line represents the experimental
contrast. Error bars for the experiment indicate the standard deviation of the contrast over
several measurement. The ROI considered is shown in the inset.

Fig. 9. Normalized contrast for varying NAobj for the glass microbead sample of Fig. 7(b).
The blue line represents the simulated contrast, while the orange line represents the
experimental contrast. Error bars for the experiment indicate the standard deviation of the
contrast over several measurement. The ROI considered is shown in the inset.

shape of the variable aperture placed in the relayed BFP, it was necessary to calculate an average
aperture radius.
Similarly, the experimental and simulation data for the glass microbead sample of Fig. 7(b)

are shown in Fig. 9. In order to generate accurate simulations, it is necessary to have a nominal
sample structure. The diameter of the bead was measured directly from the image, thanks to the
known scale of magnification, to be 39 µm. The exact refractive index of these beads is unknown,
so it was estimated by taking several DPC images of the bead immersed in oil mixes with varying
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refractive indices. The refractive index of these oils is very sensitive to temperature changes, so
all measurements were performed in a temperature controlled room, and repeated several times.
From each image, we measured the contrast, and we interpolated the results to find the refractive
index at which the contrast fell to 0. With this approach, the refractive index of the beads was
estimated to be 1.5197.
In this experiment, we reduced the phase difference introduced by this bead, by immersing it

in microscopy oil (IMMOIL-F30CC, by Olympus) whose refractive index at our wavelength of
interest was estimated to be 1.5163. Thus, for the simulations, a spherical object with a nominal
phase of 1.33 rad was used. The results of both simulation and experiment are shown in Fig. 9.
The expected decreasing trend of contrast versus numerical aperture of Fig. 3(c) is clearly visible,
and the experimental values match the corresponding simulation.

4.2. CNR simulation and sensitivity estimation

Given the agreement between simulations and experiment for the contrast in DPC images, it is
left to verify whether the simulation algorithm is accurate enough also at very low phase values,
and if the noise model can provide the correct CNR values, for both types of samples. For this
experiment, we used the same approach described in the previous section to record several DPC
images for varying NA.

First we used a glass USAF target, which has a height of 12 nm as measured with AFM; given
the refractive index of glass and air, at the wavelength of our LEDs, this sample introduces a
phase difference of 55.34 mrad. An example of a single DPC image of this sample is shown in
Fig. 10(a). The contrast of this image is stretched for better visualization, which makes the grainy
noise pattern apparent. Nevertheless, with four images obtained with illumination shifted at 90°
intervals (the remaining three are not shown here) it is still possible to reconstruct the phase
object. The reconstructed phase was again used to draw a theoretical phase object, as described
in Section 4.1, to use in the following simulations, shown in Fig. 10(c). The resulting simulated
image, with added noise, is shown in Fig. 10(d). Due to the highly noisy nature of these images,
in order to compute the grey levels of the maximum and minimum, we first averaged in the
vertical direction to obtain a single low-noise cross section from which to extract the contrast.
The noise was instead calculated as the standard deviation over a 100× 100 pixel area where no
features are present, highlighted in white in Fig. 10(a) [15, 16]. The area is chosen close to the
region of interest, such that the background intensity is uniform. The resulting CNR values for
several NAs are shown in the plot of Fig. 10(f), for both simulation and experiment. The results
are in good agreement, and show that this sample is very close to the sensitivity limit, since it
gives a CNR between 3.5 and 4 over the NAobj range.

Similarly, we prepared a low-CNR smooth sample using glass beads. In this case, we immersed
the bead in an oil with a refractive index of 1.519, to obtain a much lower phase. Given the
bead diameter of approximately 30.29 µm and the refractive index difference, this sample should
introduce a maximum phase difference of approximately 463.4 mrad. As for the previous sample,
we measured the CNR as the ratio between the amplitude of the phase object and the standard
deviation of an empty area, shown in Fig. 11(a). We tested that it was indeed possible to invert
this object, and obtained a sphere of approximately 0.45 rad, shown in Fig. 11(b). Following
the same steps of the previous experiment, we generated a noisy image of this nominal sample;
the nominal object, simulated image and simulated reconstruction are shown in Fig. 11(c-d-e),
respectively. The CNR computed for both simulation and experiment is displayed in Fig. 11(f):
the trend is correctly predicted by the simulation. The slight mismatch is due to an incorrect
assumption of the refractive index of the immersion medium. Indeed, it is well known that the
refractive index of oils is temperature dependent: as an example, the refractive index liquid
#1809 by Cargille, used to make the medium for this experiment, has a temperature coefficient of
-0.000418dnD/dt.
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Fig. 10. (a) Single DPC image of a USAF target with phase difference of 55.34 mrad,
imaged in the setup with NAobj=0.19. (b) Corresponding phase reconstruction performed
with 4-axis illumination. (c) Phase object used for simulation, representing the same portion
of USAF target from the experiment. (d) Simulated image for the same illumination and
collection conditions as in (a). Noise is added using the algorithm proposed by Foi et al.
[18, 19]. (e) Phase reconstruction from 4-axis simulated DPC images. (f) CNR calculated
for both simulation and experiment at several NAobj values. In order to calculate the CNR, a
low noise cross-section was obtained by averaging the DPC image in the vertical direction,
as shown in (a): the yellow square shows the ROI, and the dotted yellow line shows the
direction of the cross section. The maximum and minimum of the cross section are used
to compute the contrast. For the noise, the standard deviation of a featureless area was
computed, shown in white in (a). The CNR is then calculated using Eq. (4). This process is
repeated to obtain the data points in (f).
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Fig. 11. (a) Single DPC image of a glass microbead immersed in oil, giving a maximum
phase difference of 463.4 mrad, imaged in the setup with NAobj=0.375. (b) Corresponding
phase reconstruction performedwith 4-axis illumination. (c) Phase object used for simulation,
representing the same bead size and refractive index mismatch from the experiment. (d)
Simulated image for the same illumination and collection conditions as in (a). Noise is
added using the algorithm proposed by Foi et al. [18, 19]. (e) Phase reconstruction from
4-axis simulated DPC images. (f) CNR calculated for both simulation and experiment at
several NAobj values. In order to calculate the CNR, a low noise cross-section was obtained
by averaging the DPC image as shown in (a): the yellow square shows the ROI, and the
dotted yellow line shows the direction of the cross section. The maximum and minimum of
the cross section are used to compute the contrast. For the noise, the standard deviation of a
featureless area was computed, shown in white in (a). The CNR is then calculated using
Eq. (4). This process is repeated to obtain the data points in (f).
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Given the refractive index difference between beads and medium in this experiment, a
temperature drift of 1° would already cause a 90 mrad change in phase, which would account for
a change in contrast. Moreover, as explained in Section 4.1, the refractive index of the beads has
been estimated using similar oil mixes, thus the overall error on the nominal phase may equally
come from an error on the beads refractive index.

The noisy image simulation can now be used to extrapolate the sensitivity limit, according to
the procedure described in Section 2.2. The sensitivity limit is computed for several NAs and for
both samples, based on the CNR simulations. The results are displayed in Fig. 12. It is expected
that the result should be different for different types of samples, based on their spatial spectrum.
According to the simulations, USAF targets with phase differences lower than 20 mrad can be
measured in this DPC setup, and the sensitivity remains somewhat constant over the whole range.
For the microbeads, the sensitivity is 85 mrad for the smallest NAobj, and up to 140 mrad for the
higher NAobj value. In this case, the sensitivity for the smooth object is up to seven times worse
than for the sharp object. This can be explained with how the frequency spectrum of these two
objects overlap with the phase transfer function, as detailed in Section 2.1.

Fig. 12. Sensitivity simulation at several NAobj values, for the USAF target and the glass
microbead.

5. Conclusion

The first part of this manuscript focused on the parameters that influence the phase contrast in
PC-DPC. Assuming a half ring illumination, it was observed that the NA of the system and the
inner radius of the ring have an impact on the resulting phase contrast. With simulations and
experiments, it was noted that this effect can be strikingly different based on the sample under
observation: in particular, decreasing the NA can help increasing the contrast for samples whose
spatial frequency spectrum is mostly low-frequency, as observed in Fig. 3. This is an important
factor to keep in mind when planning the parameters for a DPC setup. If the goal is to obtain
highly sensitive measurements, it might be necessary to trade off contrast and resolution. A
system with variable NA can provide the flexibility to adapt to the needs of each measurement.

The second goal of this study was to develop an approach to provide preliminary prediction of
sensitivity for a given setup and sample. It was demonstrated that it is sufficient to know the
main optical parameters of the setup, and to model the main source of noise [18, 19] to test
the sensitivity performance of a system. Since no actual DPC images are necessary for this
calculation of sensitivity, this algorithm can be used in the design stage of a DPC microscope, to
help choose the best illumination profile and camera for the goal. A synthetic sample of choice
can be used in the simulation to precisely evaluate the sensitivity in the specific use-case scenario,
and the user can verify whether their expectations are realistic.
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Our simulations showed that with a simple, 8-bit CMOS camera, it is possible to reach a
sensitivity above 1 nm of Optical Path Length (OPL).
Other phase microscopy techniques, especially those based on interferometry, demonstrated

spatial phase sensitivity, from 0.7 nm down to 0.14 nm [32–34]. On the other hand, these
techniques require more sophisticated hardware and software, or are slower due to components
like liquid crystal modulators [33].
Still, it is possible to increase sensitivity in PC-DPC, for example by employing higher end

cameras with a bigger well capacity or with more bits for encoding, thus decreasing the impact of
shot noise. This is because a background intensity close to the dynamic range limit of the camera
optimizes the ratio I/

√
I of the SNR due to shot noise. Indeed, the LEDs that we employed in our

experiments had to be used well under their maximum rated driving current, as the camera pixels
were otherwise saturating even at short exposure time. With a bigger well capacity, more of this
available power can be used, without incurring in saturation. For two cameras with different
saturation levels Isaturation,2>Isaturation,1, where the subscripts 1,2 refer to the two cameras, if we
illuminate both detectors close to saturation, we would gain a factor of

√
Isaturation,2/Isaturation,1.

Using a thinner ring of illumination increases contrast thus allowing to reach better sensitivities,
and for smooth samples, decreasing the NA can be a solution if within the resolution need. As
pointed out in Section 2.3, using multiple images at different illumination conditions also allows
to reconstruct samples with single-image CNR<1. The conditions and number of images needed
should be investigated with a similar approach as shown here for the forward problem.
Finally, the sensitivity simulation approach demonstrated here, can be easily translated to

other imaging techniques. Imaging systems that can be linearized, for example according to the
Born approximation, can be analyzed in a similar manner, but also other types of models can be
adapted, since only the forward model is used here [5]. Moreover, extensions to absorptive and
3D samples are interesting future applications [23].

Appendix A: quantitative DPC simulation

To perform the DPC simulations shown throughout this paper, a MATLAB algorithm was used.
More details on this are given here for the interested reader.
It is first necessary to establish the equations that describe the forward problem of image

formation in DPC. We report here the complete equation of image formation in DPC, including
scaling due to the magnification of the system, assuming that the setup is as in Fig. 5:

Ĩ(®uc) = δ(®uc)B + µ̃(−M®uc)Habs(®uc) + φ̃(−M®uc)Hph(®uc) (9)

where ®uc is the transverse spatial frequency coordinate at the camera, µ̃(−M®uc) and φ̃(−M®uc) are
the scaled Fourier transforms of the absorption and phase profile of the object, respectively, and
M is the magnification of the microscope. The background term and the transfer functions are,
respectively:

B =
(

1
λfcM

)2∫∫ ����P (
fo
fc
®rs

)����2S(®rs)d®rs = |Habs(0, 0)|
2M2 (10)

Habs(®uc) = −2M2=−1®rc→®uc {Re[=®uc→−®rc {P(λft®uc)}
∗
=®uc→−®rc {S(λMfc®uc)P(λft®uc)}]} (11)

Hph(®uc) = 2M2=−1®rc→®uc {Im[=®uc→−®rc {P(λft®uc)}
∗
=®uc→−®rc {S(λMfc®uc)P(λft®uc)}]} (12)

where ®rc is the transverse coordinate at the camera, ®rs is the transverse coordinate at the source
plane, fo is the focal length of the objective, ft is the focal length of the tube lens, and fc is the
focal length of the condenser lens.

The operations to calculate the background, transfer functions, and image, are straightforward
and can be easily implemented in Matlab using matrix multiplications and discrete Fourier
transforms. Nevertheless, some care must be taken, as the transforms are performed in Matlab
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over a generic system of coordinates, so appropriate factors must be used to retain the quantitative
nature of the simulation [35]. As a consequence, the previous equations can be implemented in
Matlab as follows:

I = B + IFFT{dxo2FFT{ ¯̄µ} · Habs} + IFFT{dxo2FFT{ ¯̄φ} · Hph}

B = max |Habs |
2M2

Habs = −
2

dxo2
IFFT{Re[FFT{P}

∗

· FFT{P · S}]}

Hph =
2

dxo2
IFFT{Im[FFT{P}

∗

· FFT{P · S}]}

(13)

where indicates a 2D matrix, FFT and IFFT are the 2D discrete Fourier transform and inverse
discrete Fourier transform operators, dxo is the pixel size (assuming a square pixel) and · indicates
an element-wise matrix multiplication. Further care should be taken when using the FFT and
IFFT operators to make sure whether the frequency coordinates are centered. In our simulations,
the absorption profile of the sample µ̃ is assumed to be null.
To obtain the quantitative simulated images, we used the measured illumination profile and

the measured NA for P and S to calculate Habs and Hph. For the simulation to yield the same
result as the experiment, the background term B should be the same as the average background
intensity in the experiment. Thus, we assign to B the value of the background intensity (in our
experiments this value was usually between 170 and 190, on a 8-bit camera), and we use the
relation between B and Habs in Eq. (1)3 to renormalize the transfer functions as follows:

Habs,normalized =
2M2B

max |Habs |
Habs

Hph,normalized =
2M2B

max |Habs |
Hph

(14)

In this way, the simulated image corresponds to the real pixel values of the experiments, including
the background. This is very important for the last step: using the algorithm for noise modeling
[18, 19], we map the intensity-dependent noise σ(I). Since the simulated image is consistent
with the range of gray levels of the camera, the contrast in the simulated image can be directly
compared with the standard deviation of the noise at the background intensity, σ(B).

This simulation allows to obtain quantitative CNR and sensitivity values, given the knowledge of
some basic optical parameters of the setup, namely the magnification, pixel size, NA, wavelength
and source profile (measured or analytical).
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