Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Solidity without inhomogeneity: perfectly homogeneous, weakly coupled, UV-complete solids
 
research article

Solidity without inhomogeneity: perfectly homogeneous, weakly coupled, UV-complete solids

Esposito, Angelo  
•
Krichevsky, Rafael
•
Nicolis, Alberto
November 9, 2020
Journal of High Energy Physics

Solid-like behavior at low energies and long distances is usually associated with the spontaneous breaking of spatial translations at microscopic scales, as in the case of a lattice of atoms. We exhibit three quantum field theories that are renormalizable, Poincare invariant, and weakly coupled, and that admit states that on the one hand are perfectly homogeneous down to arbitrarily short scales, and on the other hand have the same infrared dynamics as isotropic solids. All three examples presented here lead to the same peculiar solid at low energies, featuring very constrained interactions and transverse phonons that always propagate at the speed of light. In particular, they violate the well known cL2><mml:mfrac>43</mml:mfrac>cT2 bound, thus showing that it is possible to have a healthy renormalizable theory that at low energies exhibits a negative bulk modulus (we discuss how the associated instabilities are absent in the presence of suitable boundary conditions). We do not know whether such peculiarities are unavoidable features of large scale solid-like behavior in the absence of short scale inhomogeneities, or whether they simply reflect the limits of our imagination.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

JHEP11(2020)021.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

332.7 KB

Format

Adobe PDF

Checksum (MD5)

93e62e557e179b9abb60c525782416de

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés