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Abstract	

New drugs are needed to assure effective therapies for previously untreated diseases, emerging diseases, 

and personalized medicine, but the process of drug development is complex, costly, and time-consuming. 

This is especially problematic considering that 90% of drug candidates in clinical trials are discarded due to 

unexpected toxicity or other secondary effects. This inefficiency threatens our health care system and 

economy. Despite the advances in the cellular metabolism, our knowledge of the mechanisms governing 

enzymatic biotransformations in cells is far from complete, in particular regarding degradation pathways, 

mode of action, or side effects of drugs. Examining the mechanisms of enzymatic reactions at the cellular 

scale could improve our fundamental understanding of their catalytic capability, and facilitate identifying and 

filling the knowledge gaps. The scale and the complexity of metabolic data is ever-expanding, requiring 

scientists to apply more advanced computational methods to systematically store, explore, and interpret the 

enzymatic potential of cells. 

The first step toward simulating enzymes in silico is to learn from their biochemical reactions in nature. To 

do this, we use distilled knowledge of known biochemistry in the form of generalized enzymatic reaction 

rules. Enzymatic rules are mathematical representations of enzymatic action mimicking the catalytic function 

of enzymes. They are formulated in a less specific manner (more promiscuous) to act on a broad range of 

substrates. In addition to reconstructing known biochemistry, the application of these reaction rules paves 

the way toward the discovery of novel enzymatic interactions.  

In this thesis, I developed computational models, tools, and methodologies to facilitate the study of 

metabolism and catalytic action of enzymes. We analyzed different aspects of metabolism through five 

distinct studies: In a first study, in order to provide a holistic view of currently known biochemistry, we 

gathered biochemical data from 14 sources, covering the known metabolic networks of all species. We 

integrated all biological data into a high-performance database based on ontology, named LCSB DB. We 

further expanded the scope of LCSB DB to cover all bioactive and chemicals.  LCSB DB offers fast and efficient 

searching of biochemical data and serves as a platform for sharing, storing, and analyzing biochemical data. 

In a second study, we used enzymatic reaction rules to predict all theoretically possible metabolic reactions 

between biological and bioactive compounds in LCSB DB. In a third study, we developed a method to find 

enzymes are able to catalyze orphan and predicted reactions, called BridgIT. BridgIT uses the knowledge of 

reactive sites on substrates to find the most similar, known biochemical reactions. We then validated the 
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utility of BridgIT in enzyme discovery for the design of de novo synthetic pathways producing 

tetrahydropalmatine and adipic acid.  In the last study, we propose a workflow for rational drug design and 

systems-level analysis of drug metabolism, called NICEdrug.ch. NICEdrug.ch allows large-scale computational 

analysis of drug biochemistry (metabolic precursors or prodrugs and metabolic fate or degradation), 

enzymatic targets, and toxicity in the context of cellular metabolism. Finally, in the conclusion chapter, we 

discuss the contribution and the potential further applications of the computational tools that were 

developed in this thesis. 

Keywords	

Metabolism, biological data, systems biology, metabolic engineering, computational biology, de novo 

pathway design, enzyme promiscuity, enzyme annotation, drug discovery 
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Résumé	

De nouveaux médicaments sont nécessaires pour assurer des thérapies efficaces contre des maladies non 

traitées auparavant, des maladies émergentes et une médecine personnalisée, mais le processus de 

développement de nouveaux médicaments est complexe, coûteux et prend du temps. Ceci est 

particulièrement problématique étant donné qu'environ 90% des médicaments testés dans des essais 

cliniques sont rejetés en raison d'une toxicité inattendue ou d'autres effets secondaires. Cette inefficacité 

menace notre système de soins de santé et notre économie. Malgré les progrès dans le domaine de du 

métabolisme cellulaire, notre connaissance des mécanismes gouvernants les biotransformations 

enzymatiques dans les cellules est loin d'être complète, comme les voies de dégradation, les modes d'action 

ou les effets secondaires des médicaments. L'examen des mécanismes des réactions enzymatiques à l'échelle 

de la cellule entière pourrait améliorer notre compréhension fondamentale de la capacité catalytique des 

enzymes, et faciliter l'identification et le comblement de nos lacunes dans nos connaissances. L'échelle et la 

complexité des données métaboliques sont en constante expansion, obligeant les scientifiques à appliquer 

des méthodes de calcul plus avancées pour stocker, explorer et interpréter systématiquement le potentiel 

enzymatique des cellules. 

La première étape vers la simulation des enzymes in silico est d'apprendre des réactions biochimiques en 

nature. Dans ce travail, nous utilisons des connaissances distillées de la biochimie connue dans les règles de 

réaction enzymatiques dites généralisées. Les règles enzymatiques sont des modèles mathématiques imitant 

la fonction catalytique des enzymes et sont formulées de manière moins spécifique (et donc plus 

promiscuité) pour agir sur une plus large gamme de substrats. Ainsi, l'application de ces règles de réaction 

en plus de reconstruire la biochimie connue ouvre la voie à la découverte de nouvelles interactions 

enzymatiques. 

Dans cette thèse, nous avons développé des modèles informatiques, des outils et des méthodologies pour 

faciliter l'étude du métabolisme et de l'action catalytique des enzymes. Nous avons analysé différents aspects 

du métabolisme à travers cinq études distinctes. Dans la première étude, afin de fournir une vue holistique 

de la biochimie actuellement connue, nous avons rassemblé des données biochimiques de 14 sources, 

couvrant les réseaux métaboliques connus de toutes les espèces. Nous avons intégré toutes les données 

biologiques dans une base de données haute performance basée sur l'ontologie, nommée LCSB DB. En outre, 

nous avons élargi la portée de LCSB DB pour couvrir tous les produits bioactifs et chimiques. LCSB DB offre 
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une recherche rapide et efficace des données biochimiques et sert actuellement de plate-forme standard 

pour le partage, le stockage et l'analyse des données dans LCSB. Dans la deuxième étude, nous nous sommes 

appuyés sur les données biologiques de LCSB DB. En utilisant des règles de réaction enzymatique, nous avons 

prédit toutes les réactions métaboliques théoriquement possibles parmis les composés biologiques. Dans la 

troisième étude, nous avons répondu à la question de savoir quelles enzymes sont capables de catalyser les 

réactions prédites. Nous avons développé BridgIT, une méthode d'annotation enzymatique qui utilise la 

connaissance des sites réactifs des substrats. Dans l’étude suivante, nous avons validé l'utilité de BridgIT dans 

la découverte d'enzymes pour la conception de voies de synthèse de novo produisant de la 

tétrahydropalmatine et de l’acide adipique. Dans la dernière étude, nous proposons un flux de travaux pour 

la conception rationnelle des médicaments et l'analyse des systèmes du métabolisme des médicaments, 

appelé NICEdrug.ch. NICEdrug.ch permet une analyse informatique systématique et à grande échelle de la 

biochimie des médicaments (précurseurs ou promédicaments métaboliques et devenir ou dégradation 

métabolique), des cibles enzymatiques et de la toxicité dans le contexte du métabolisme cellulaire. En 

conclusion, nous discutons de la contribution et des applications potentielles de cette thèse pour l'analyse à 

grande échelle et systématique du métabolisme. 
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 Introduction	

 

“The first step in solving a problem is to recognize that it does exist” 

Zig Ziglar 

 

1.1 Motivation	

New diseases are still being discovered. SARS-CoV-2 is responsible for the on-going severe public health and 

economic crisis, and the death of almost one million people (as of today, September 15 [1]) and there is 

currently no confirmed treatment for it.   

 SARS-CoV-2, a new coronavirus, attacks cells in a novel way and causes the COVID-19 disease. Our knowledge 

about this new virus and its mechanisms is limited to a few months of research after its appearance in 

December 2019 and a reason to why no drug was available to block new evolving disease. Understanding 

weak spots of the virus and developing a drug to target them usually needs years of research and 

experimentation [2]. However, in the case of coronavirus and the impending global health crisis, there is a 

strong social and economical pressure to shorten this time span while “social distancing”, safety, sanitization 

and lockdowns, will only buy us the critical time to find an effective drug. As a result, the healthcare system 

is more than ever under the pressure to cope with the rise of new diseases and infections such as COVID-19 

as well as the ongoing struggle against drug resistance pathogens [3], [4]. The costs related to healthcare is 

large burden for individuals and societies [5]. Despite this, a growing percentage of people experience drugs 

that don’t benefit them. Most of the currently used drugs are approved in clinical trials which are tested on 

large cohorts of people based on population averages and “one-size-fits-all” mentality [3]. However, this 

approach neglects the fact that each person is genetically unique, lived in different environments and, as 

recently has been shown, has different “gut microbiome” which effects drug response [3]. Therefore, we 

need a major shift in the drug discovery process to reduce the time and cost of drug development, overcome 

drug resistance and develop personalized treatments. 

Application of cutting-edge measurement and identification technologies used in biological systems resulted 

in large volumes of data in different levels of biology (also known as “omics data”), that are aimed to 

revolutionize drug design and development [3]. Examples are (i) terabits of recorded high-resolution videos 
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showing how cells grow, interact and divide. (ii) New sequencing technologies that have revealed the genetic 

code of thousands of organisms. (iii) The transcriptomic data that has provided the opportunity to study gene 

variability under different circumstances. (vi) Large scale proteomics data catalogued in databases enables 

analyzing the structure and function of proteins [6]. (v) metabolomics, the newest category of omics data, 

that might be the one that best represents phenotypes [6].  Even though the transcription of DNA to RNA 

and translation to proteins are extremely crucial, metabolites are the end product of biological systems in 

response to genetic and environmental perturbations[7]. For example in the field of immunology, genetic 

information helps to identify the risk of diseases, while metabolism determines the result of combining 

genetic information and environmental factors, and eventually what is the cause and manifestation of a 

disease [6]. Therefore, metabolism can unlock the entire disease phenotypes, and drives progress toward 

precision medicine [8] by offering a blueprint of cellular biochemical activities.   

1.2 Metabolism	

Metabolism is broadly defined as the sum of all biochemical processes that occur in organisms to maintain 

life. Metabolism is dauntingly large and complex; hundreds of thousands of molecules participate in 

thousands of metabolic reactions and altogether form the great network of metabolism that is hierarchically 

organized. Metabolic networks consist of smaller modules, called metabolic pathways, linking metabolites 

from different parts of the network to one another. Each metabolic pathway is the sequence of several 

metabolic reactions working together to convert a set of metabolites to products that are used by other 

pathways. Almost all metabolic reactions are enzymatic reactions(Figure 1.1). 

 

Figure 1.1: Life processes are hierarchically organized and 

heavily interlinked. Metabolism is the biggest biological 

network that is generally modeled as metabolic networks. 

Metabolic networks are a collection of metabolic pathways 

that are made up  of sequential biochemical reactions. Each 

reaction comprised of a set of metabolites being catalyzed by 

an enzyme. In atomic resolution, enzymes bind to substrates 

and speed up the mechanism of bond-breakage-formation 

during metabolic reaction.  
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Enzymes make the transformation of metabolites occur in biologically relevant conditions in milliseconds [9]. 

The catalytic power of enzymes can be illustrated by evaluating how slowly metabolic reactions occur in the 

absence of enzymes. For example, in 2008, Lewis and Wolfenden reported that the half time - i.e., the time 

is needed to consume half of the substrate - for an essential reaction in the biosynthesis of hemoglobin, 

without an enzyme called uroporphyrinogen decarboxylase, it would take up to 2.3 billion years (the half of 

the estimated age of earth, 4.5 billion years [10]) to complete [11]! With enzymes this happens in 

milliseconds. Without enzymes there is no life!  

Today, more than 5k enzymes are discovered and cataloged in KEGG database (Kyoto Encyclopedia of Genes 

and Genomes [12]), enlisting more than 10k reactions involving over 7k compounds [12]. Enzymes depending 

on the reaction and the substrate that they catalyze have common names with the suffix -ase (e.g. glucose 

oxidase) or -in (e.g. trypsin). The common names of enzymes provide little information about the nature of 

reactions. In addition, sometimes a certain enzyme could become known with several different names or 

worst, even sometimes one name is used to refer to more than one enzyme [9]. Considering the growing 

number of enzymes being discovered and the complexity and inconsistency of their naming, the International 

Union of Biochemistry assigned the Enzyme Commission (EC) number to each enzyme. EC number consists 

of four digits (a.b.c.d) organizing enzymes in standard classes. The first digit of EC explains the type of 

reaction, the second digit represents the functional group enzyme acts on, the third part stands for involved 

cofactors and the last digit is specific to the substrate being catalyzed [9]. EC numbers provide a basis for 

systematic analysis of the enzymatic reactions by computational tools used in this thesis that will be discussed 

in the next chapters. 

1.3 Darker	side	of	enzyme	specificity		

An enzymatic reaction occurs when substrate(s) binds at enzyme’s active site to form the substrate-enzyme 

complex. The fact that the structure of the enzyme’s active site is complementary to the shape of the reactive 

site on the substrates, ensures proper binding holds in the enzyme-substrate complex. The lock and key 

theory is one of the models often used to explain this complementary binding, wherein the enzyme binding 

pocket is the “lock” and the substate is the “key”. Although enzymes are known to catalyse their specific 

substrates, many of them show promiscuous activity. The promiscuity of enzymes is referred to as the darker 

side of enzyme specificity and is defined as the secondary functions of enzymes which makes them able to 

catalyze side reactions [13], [14]. Enzymatic promiscuity can be classified into three groups based on their 

mechanism: (i) substrate promiscuity, (ii) catalytic promiscuity, and (iii) conditional promiscuity [15]. The 

substrate promiscuity refers to catalyzation of a set of diverse substrates by the same enzyme. An example 

of a substrate promiscuous enzyme is TP53-induced glycolysis and apoptosis regulator (TIGAR), which shows 

phosphatase activity on several substrates, such as 2,3-bisphosphoglycerate, 2-phosphoglycerate and 

fructose 2,6-bisphosphate [16]. If an enzyme catalyzes different metabolic reactions, it’s called catalytic 
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promiscuity. The cytosine-methyltransferases that catalyzes both cytosine-methylation and cytosine-

deamination is an example for this type of promiscuity. Conditional promiscuity is dependent on some 

environmental changes or stresses such as increasing concentration of native substrate’s analogs with lower 

affinity to the active site [15]. It has been speculated that bacteria and archaea developed promiscuous 

enzymes to cope with the environmental changes, allowing them to alter and reprogram their metabolic 

pathways and survive in extreme conditions [17]. The application of enzyme promiscuity has motivated 

researchers to enhance the activity of existing enzymes and suggest new biosynthesis pathways toward more 

sustainable approaches in chemical industries [18]. 

Understanding how enzymes catalyze complex biotransformations at the atomic levels, with high specificity 

and efficiency is a fundamental question in biochemistry. Large scale experimental data is required to explore 

the catalytic potential of all enzymes and understand the underlying mechanism of their action, however, 

this is not practical due to time, cost, and technological limits. Therefore, computational approaches are the 

key to propose hypotheses, to make strategy and interpret experimental results. In this thesis, we use 

computational tool “BNICE.ch”, and its enzymatic reaction rules to discover the mechanism of enzymatic 

reactions.  

1.4 Modeling	enzymes	in-silico		

Numerous computational methods have been developed to model enzymatic interactions in different levels 

of substrate-enzyme complex and protein-protein interactions, in different scopes ranging from single 

enzyme to network of enzymatic interactions of organisms for various applications. A group of methods distil 

the enzymatic promiscuity and formulate them in so-called generalized enzymatic reaction rules. The 

generalized enzymatic reaction rules simulate the activity of actual enzymes in-silico. Reaction rules are 

designed based on our knowledge about enzymatic reactions, functions and mechanisms in biochemical 

databases. The idea in developing enzymatic rules is to group similar metabolic reactions and formulate their 

substrates and biochemical activity using automatic or manual pipelines. Automatic approaches [19]–[22] 

are able to interpret the vast amounts of data in a short time, however, depending on the source of data and 

applied methods, the quality of reaction rules varies. On the other side, development of expert curated 

reaction rules  [23], [24]  (manual approach) is very time consuming but have high quality and explain precise 

biochemistry which is very difficult to capture correctly with automatic approaches.   

BNICE.ch (Biochemical Network Integrated Computational Explorer)[23], [25], [26] developed by 

Hatzimanikatis et.al. in 2005, introduced the concept of enzymatic reaction rules and their applications in 

predictive biochemistry and de novo pathway design. Later, several similar methods adopted the concepts 

of enzymatic reaction rule [20], [27]–[30].  The database of reaction rules is the heart of BNICE.ch, where the 

knowledge about biochemistry is collected, manually curated, digitalized, and stored in a few hundred 
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electron-bond-matrix representations. Each reaction rule consists of three parts, the first part describes the 

atoms of reactive site, the second part formulates the atom-bond configuration inside reactive sites, and the 

last part explains bond breakage-formation during biotransformation [31]. The BNICE.ch reaction rules follow 

the same logic of classification as the first three digit of EC numbers, the last digit which is specific to a 

substrate is relaxed, making reaction rules more general and promiscuous. Therefore, the same rule can 

recognize its reactive site on a broader range of compounds, and transform them according to the 

mechanism of the rule to products. The structure of generated products will be searched in compound 

databases integrated in BNICE.ch to be identified. As the source for compounds, BNICE.ch uses the LCSB 

database which is a union of all reported biological, bio-active and chemical molecules in more than 14 well-

known repositories. Therefore, BNICE.ch using generalized reaction rules is not only able to reconstruct 

known metabolic reactions but also to predict novel biotransformations. The novel reactions predicted by 

BNICE.ch demonstrates its predictive power to fill the knowledge gaps in metabolic networks and also its 

application in metabolic engineering where the discovery of de novo pathways is of great interest (Figure 

1.2). In chapter 3 of this thesis, we demonstrate how BNICE.ch systematically explores and expands the 

horizon of biochemistry. 

Figure 1.2: Schematic workflow of BNICE.ch illustrates the retro biosynthesis logic. This means that it backtracks the enzymic steps 

to find a sources compound in the organism that can generate the target molecule. Network generation starts by applying iteratively 

reaction rules on the target compound. In the first iteration, reaction rules scan structure of target molecule to find putative reactive 

sites. Then, reaction rules apply related bond-breakage-formation on the recognized reactive sites in order to generate all possible 

product molecules. The products of the first iteration are then used as substrates in a second iteration of reaction generation, and 

so on, until a complete biochemical network around the target compound is generated and a suitable precursor compound is hit. The 
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resulting network contains known and novel reactions. Each iteration can theoretically result in all possible chemical structures, based 

on the reaction rules. In order to avoid a network explosion, depending on the application, we only allow compounds to be produced 

that are part of the predefined search space (database membership (LCSB DB), constraints on molecular formula, molecular weight, 

etc.). 

1.5 Enzyme	annotation		

New advances in computational biology has resulted in an increasing number of novel metabolic reactions 

predicted by tools such as BNICE.ch. However mapping back these reactions to known biochemistry and 

finding candidate enzymes for their catalyzation is challenging [31]. The enzyme prediction tools compare 

the structural similarity of novel reaction with all the known enzymatic reactions. Inspired by the theory of 

lock and key, they assume if  the overall structure of two substrates are similar enough, most likely they can 

be catalyzed by the same enzyme. However in reality, only the substructure in and around reactive site is 

required to predict putative enzymes for novel reactions. The in-house developed computational tool, 

BridgIT, takes advantage of reactive site information encoded in reaction rules and instead of exploring 

blindly, it focuses on the reactive site and its neighborhoods in structural similarity calculations [31].  The 

development of BridgIT method and its applications are discussed in detail in chapters 4 and 5.  

1.6 In	this	Thesis	

In different chapters of this thesis, we use available bio-informatics and chem-informatics methods as well 

as novel computational tools, to learn from metabolism, predict missing pieces and develop strategies to 

tackle current challenges in metabolism ( 

Figure 1.3). In chapter 2, we review the accumulated biological data across different databases, we discuss 

what aspects of biochemistry they have covered, how they overlap, and how consistent they are. We also 

study the development of biological resources over time. In addition, we explain their differences in objects, 

scopes and applications, which resulted in arising of heterogeneous blocks of data. We borrow ontological 

database design from computer science to address this miscellany and offer a unified, curated resource for 

biochemical data (LCSB DB). In chapter 3, we show systematic mining of the mechanisms and function of 

enzymatic reactions helps to uncover their potential to catalyze other metabolites and even predict novel 

biochemical reactions. The novel reactions are stored in a database called ATLAS of biochemistry and offers 

scientists a unique resource to gather knowledge and hypotheses on the biochemistry around specific 

pathways. Application of novel ATLAS reactions pave the way for integrating chemicals into biochemical 

pathways. In chapter 4, we discuss the most important question about novel reactions:  “which enzymes are 

able to catalyse them?” (Commonly known as enzyme annotation). The interest for enzyme annotation 

however is not limited to novel bio-transformations. It also covers a group of characterized reactions without 
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information on their associated enzymes, i.e., orphan reactions. We addressed the enzyme discovery quest, 

by developing a computational tool named BridgIT. BridgIT is inspired by the theory of lock and key, assuming 

two similar reactions will be catalysed by the same enzyme. Its novelty lies in the fact that, BridgIT inserts the 

information about enzyme binding pocket into reaction similarity evaluations. In chapter 5, we use BridgIT 

to answer practical questions in metabolic engineering. We discuss the potentials, performance and 

efficiency as well as the limitations of using BridgIT via two case studies in collaboration with experimental 

groups.  

In chapter 6, we come back to our main motivation (novel methods for drug design) where we put all these 

pieces together to develop a workflow for drug discovery, named NICEdrug.ch. NICEdrug.ch is implemented 

in an open-access platform, which we aim to serve as the first resource that (1) enables a comprehensive 

systems-level and systematic analysis of drug metabolism, and (2) provides predictive insights to assist in 

rational drug design with unparalleled speed and precision, and at an unprecedented scale. As the proof-of-

principle demonstration, we applied NICEdrug.ch to discover and evaluate COVID-19 drug targets and 

repurpose drugs. In addition, we explored the metabolic fate and toxicity of a cancer drug. As another case 

study, we identified new drug targets against the malaria parasite. In all these proof-of-principle studies we 

suggest hundreds of approved and non-toxic candidate drugs. The final chapter (Chapter 7) summarizes the 

results and proposes an outlook to future developments. 

Figure 1.3: Overview on the different chapters discussed in this thesis. 
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 Nature	of	biological	data	

“We are drowning in information but starved for knowledge” 

 John Naisbitt 

2.1 Introduction	

In this chapter, first we focus on data integration methods and we introduce a new approach for 

metabolomics data organization (LCSB DB). Then we show how proposed methods can help to gain value 

from quantities and diversities of data. The application of the LCSB DB will help to fill knowledge gaps in 

metabolic networks, to study the origins of exotic secondary metabolites with unknown biosynthesis routes 

and to engineer biosynthetic pathways towards chemicals of pharmaceutical or industrial interest. 

The LCSB DB is the result of several years of collecting, unifying and curating biochemical data. LCSB DB 

integrates most of the metabolic databases with different scopes and provides a unique resource to access 

high quality biochemical data. Currently, LCSB DB is the backbone of many computational methods that are 

developed in LCSB, the same as all the methods and databases that are introduced in the next chapters of 

this thesis.  

Since all of the presented work has been done by the author, no contribution statement was added to this 

chapter. The database developed here, named LCSB DB, is currently hosted on the LCSB server located in 

EPFL data center. The bioDB and chemDB introduced in subsection 2.3 will be used as the basis of data to 

create bioATLAS and chemATLAS in chapter 3.4. 

2.1.1  Importance	of	using	ontology	in	biology 
These days by new advances in both computational and experimental technologies, a vast amount of 

biological data became available (Figure 2.1). Despite their usefulness, there are still several challenges 

working with them: 

• They remain fundamentally unconnected. While sometimes there are links between entries, they 

are only trackable by manual browsing or through specific workflows [1]. 

• They are heterogeneous regarding semantics, formats, and identifiers since they follow their own 

standards. Integrating data among several databases is challenging. 
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• They typically focus on a specific topic and on a specific scale. While biological data are heavily 

interlinked in metabolomics, proteomics and genomics levels. 

• Amounts of data are greater than to be analyzed by current infrastructures [2]. 

 

To handle this overload of heterogeneous data, high level of data organization and data integration, has 

become an indispensable task.  

 

 

 

 

 

 

Figure 2.1: A lot of public data are available while they are heterogeneous semantics, formats, and identifiers 

 

Ontology as a strategy for data classification was developed in computer science to facilitate data reuse and 

data sharing. It has been extensively used to model heterogeneous data and the reason for this success is 

due to its ability to keep “semantic” away from the type of data [3].  Ontological design of a database will 

help to organize data flexibly. Also, it will allow to abstract data and capture the relations between entries. 

In the chapter 2.2, we explain in details how to implement an ontology-based database. 

 

2.2 Architecting	LCSB	ontological	database		

We aimed to design an ontological database while LCSB  (Laboratory of Computational Systems 

Biotechnology) was using a relational database with a traditional structure (Old LCSB database). This 

database enclosed data in three levels of the compound, metabolic reaction, and metabolic pathway. The 

sources of imported data inside the database were from other external databases, or it has been generated 

by computational tools developed in LCSB, e.g., BNICE.ch. In the compound level, it included 16,000 

compounds from KEGG 2016 database and 33 million compounds from PubChem database. In reaction level, 

it contained 137,000 novel reactions (generated by BNICE.ch, this set of reactions are called ATLAS reactions 

[4]). In pathway level, it contains the information of 1 million pathways. These data were covered inside 28 

tables using MYSQL server.  
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In this old database structure, the number of tables will increase by bringing in new data. It is already difficult 

to store and analyze data in a traditional database with many tables and by considering the fast rate of data 

generation, the database will be drowning in data in the coming years with additional storage space and 

associated costs. 

The idea in an ontological database is that instead of having many tables, we break down tables to 

“concepts”. For example, in the old database we had six tables describing compounds and their properties. 

We abstract these tables to two concepts: “compound” and “property”.  

Also, we had seven tables regarding reactions. So, we defined a new concept “reaction” and interestingly, 

we do not need to define “property” again. But still we need to define a new concept, “relation”, to cover 

the relation between reaction and compounds (“ownership”: reaction owns compounds). In addition, to 

explain all the information about pathways from the old database, we just need to define “pathway” as a 

new concept.  

These concepts together with a set of instances of each concept create a knowledge base. Instances are an 

extension of concepts and they preserve concept description. We decided to keep the concepts as general 

as possible by considering specific things as instance. The more general we are at the beginning the more 

flexible we will be for integrating new data and updating the existing data in future. When changing 

something in the level of concept, the change will be applied to all the instances of that concept 

automatically. For example, some of the instances stated in the concept of “property” include: “name”, 

“chemical formula”, “SMILES1”, “energy”, “error”, “charge”, source”, “stoichiometry coefficient”, “Tanimoto 

score” (Figure 2.2, panel A). Instances of one concept can be related to other concepts. For instance, SMILES 

is defined for compounds and stoichiometry coefficient is related to reaction definition. On the other hand, 

the name is expressible for both of them. Depending on the properties we define for each concept, instances 

of concepts will inherit them. The list of instances for each concept is not something fixed. So, we can add 

new instances when we need to cover more or when we have more information about them; it is also true 

about concepts. Basically, without changing the structure of the database, we can add or remove concepts 

or instances. That is why this approach is fully flexible with all future changes. When adding new data to the 

database, we just need to check if it can be expressed as an instance of defined concepts or we need to define 

new concepts to cover it.  

When we defined the concept of “relation, we found out that as a concept, it has two levels and we could 

not come up with instance right after relation. For example (Figure 2.2, panel B), the relation between 

compound and reaction is different from reaction to compound. So, expressing ownership as an instance of 

relation is not enough, and we should differentiate the ownership and participation. To handle these cases, 

 
1 The simplified molecular-input line-entry system 
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we consider sub-concepts. In this case “ownership is the sub concept of relation and “owns” and “is part of” 

are two instances of it.  

 

 

Figure 2.2: Two views of database. A) Instances defined for “property” and B) sub concepts and instances assigned to “relation”. 

 

Finally, we store data for concepts and instances in three tables. The first table includes all the concepts 

(assigning concept ID to each concept). The second table, connects concepts to their instances (assigning 

concept ID to related instance ID), and the third table defines all the properties and relations. Basically, 

concepts and instance will be defined in the first two tables and the third table is linked to them. In the third 

table, we only need to describe how different entities are related to each other. As an example, Figure 2.3 

shows how we can extract data for pyruvate from the new database. First, pyruvate is an instance of 

compound. So, we search for all the instances of the compound, and we filter them based on their “names” 

(pyruvate) which is an instance of property. In this procedure we can also extract other properties that are 

defined for pyruvate (Figure 2.3 panel A).To avoid replication inside database, we defined unique keys for 

each concept. Unique key for compounds is their canonical SMILES. 

The power of ontology emerges as we look for the relations of one instance with other instances and 

concepts. In the example of pyruvate, we can write a simple query to find all the reactions that “own” 

pyruvate or pyruvate is part of them (Figure 2.3 panel B). Following the example, pyruvate participates in 191 

reactions from KEGG database and 472 reactions from ATLAS of biochemistry database. 

 

.

.

.

.

.

.
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Figure 2.3 A) Extracted properties for pyruvate as an instance of compounds from the database. B) Extracted reactions which have 

relation with pyruvate. 

 

To compare with what we had before as a traditional rational database, LCSB DB as an ontological database 

has many significant improvements. 

• The number of tables from 28 (increases by bringing new data inside) decreased to 3. 

• The search performance increased; due to the power of “relation” in ontology we can filter data 

fast and save time for collecting the same set of data from ontological database compare to a 

traditional, especially when dataset is large. 

• LCSB DB can straightforwardly communicate with both the users and the tools. 

• The new database can learn from imported data based on the relations between concepts 

(automated reasoning). 

• While LCSB DB has three tables with a fixed structure, it has dynamic behavior, and it is extremely 

flexible for future updates. 

• LCSB DB supports in-built methods as functions (For example: SMILES canonicalization or 

substructure search of compounds). 

.

.

.
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2.3 Integration	of	external	databases		

Past efforts have led to the organization of biochemical data in a range of available databases of different 

scopes (e.g., organism-specific vs global), curation level (e.g., manual vs automatic curation) and annotation 

detail. In order to reconcile the heterogenous data provided by publicly available biochemical knowledge into 

our database, we considered compound and reaction databases that match the biological and bioactive 

scope and we unified them in order to create a reference database of known biochemistry. This unified data 

set, named bioDB, will later be used as the starting point for the expansion of biochemical reactions. 

Starting with the unification of compounds, we collected 2,297,709 compound entries from biological and 

bioactive databases: KEGG[5], SEED[6], HMDB[7], MetaCyc[8], MetaNetX[9], DrugBank[10], ChEBI[11], 

ChEMBL[12] (Table 2.1). From the collected compounds, only entries associated with a molecular structure 

were imported to the database. Next, the imported compounds were unified, and annotations from different 

databases were merged into one compound entry in the database, resulting in 1,500,222 unique 2D 

structural entries in bioDB. As a result of the unification procedure, a unique compound entry in bioDB can 

contain different resonance forms, stereoisomers, as well as dissociated and charged states of a same 

compound. These unification criteria are based on atoms and their connectivity in a molecule in terms of a 

molecular graph captured by the canonical SMILES format.  

The contributions of single databases to the total of bioDB compounds varied significantly. The three 

biological databases KEGG compounds, SEED and MetaCyc exclusively contain biological compounds and 

contribute 22,447 (1.5%) compounds of bioDB. The remaining 1,477,775 (98.5%) compounds were 

contributed by bioactive databases which contain all compounds produced by, or known to interact with, 

biological systems. Remarkably, the lion’s share of these bioactive compounds (1,447,079, or 97%) came 

from ChEMBL, suggesting that this database has the most comprehensive definition of bioactive compounds. 

Not only the scope of compounds was found to vary across databases, but also the ratio of unique 

compounds within a given database, according to our unification criteria: With 15,064 (80%) unique 

compounds, KEGG (biological compounds) is leading the ranking, followed by MetaCyc (12,529 unique 

compounds, 79%) and ChEMBL (1,365,379 unique compounds, 79%). The lowest proportion of unique 

compounds was detected in molecules cataloged in HMDB (43%) and drugs in KEGG (40%). This comparison 

illustrates the heterogeneity of database and curation standards between different resources. 

We further imported all compounds from the chemical database PubChem[13] as a source of chemical 

identifiers (77,934,143 unique molecules). PubChem entries that could not be matched to any existing 

compound in bioDB were assigned to the chemical compound space (chemDB) in our database, regardless 

of their true origin (i.e., chemical synthesis, natural biosynthesis, or semisynthetic procedure). Some of the 

77,934,143 unique compounds from the chemical space might therefore be of biological origin, but not 
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labeled as such, or have the potential to be derived from biological compounds in a bioengineering setting. 

This artificial classification of bio and chemical compounds presents the opportunity to re-assign compounds 

of the chemical space to the biological compound space through reaction prediction. 

To create a unified reaction database, 235,698 reactions entries were collected from KEGG, BRENDA[14], 

Rhea[15], BiGG models[16], SEED[17], MetaNetX[9], MetaCyc[8], Reactome[18] and BKMS-react[19] (Table 

2.2) and merged into 56,602 unique bioDB entries. Surprisingly, many databases contained a high number of 

duplicate reactions: According to our unification criteria, we observed the highest ratio of unique reactions 

of 94% for KEGG, followed by Model SEED with 79% unique reactions. With 22% and 31%, respectively, 

BRENDA and BiGG had the lowest percentage of unique reactions, indicating that many of the reactions are 

duplicates from a structural point of view. This quantitative assessment of reaction uniqueness further 

exposes the heterogenous nature of biochemical databases, and it suggests that the number of entries 

provided by the database hosts should be handled with care when comparing databases.  

This overall unification procedure, resulted in a collection of over 1.5 million unique biological and bioactive 

compounds and over 56,000 unique biochemical reactions, and it provided the basis for the subsequent 

expansion toward hypothetical biochemistry. 

The heterogeneity of the collected and unified biochemical data highlights the importance of assessing the 

quality and the depth of description of the metabolic reactions. We therefore checked whether or not the 

reactions were elementally balanced and associated to an Enzyme Commission (EC) number. We first 

searched for reactions containing undefined or un-processable molecular structures (e.g., polymers, 

proteins, compounds describing two or more disconnected structures such as salts) and other reactions that 

were not elementally balanced (mostly missing reaction participants, or their reaction mechanism is not 

known), and we found that 45% (25,296 out of 56,602) of total reactions were well-balanced (Appendix, 

Table 8.1). We further found that 47% (27,107) of the reactions have an EC number assigned. The highest 

ratio of balanced reactions with annotated EC number was found in KEGG database (80%) while BiGG models 

had the lowest ratio (27%).  

The unification and the quality assessment of bioactive molecules and enzymatic reactions from different 

databases provides an overview on different resources and their curation standards, and it forms the basis 

for the subsequent expansion of biochemical knowledge through reaction prediction. 
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Table 2.1: Import and curation of compounds from different sources. 

 

   Database  Description Collected  Imported 
Unique in 
source DB 

Co
m

po
un

d 
DB

s 

bi
ol

og
ic

al
 

 MetaCyc Manual /Cpds of sequenced orgs 15,819 14,828 12,524 

Unique in 
LCSB DB 

 Model SEED Manual/KEGG and GSMs 33,995 20,665 17,132 

 KEGG Comp. Manual/cpds&biopolymers relevant to biology 18,625 17,397 15,064 

bi
oa

ct
iv

e  

 KEGG Drug Manual/approved drugs in Japan, USA & Europe 11,140 7,766 4,514 

 Drugbank* Approved drugs+discovery-phase drugs 8,350 6,279 3,850 

 ChEBI Chemical Entities of Biological Interest  56,530 32,691 29,080 

 HMDB Small cpds found in the human body 228,017 177,096 98,400 

 MetaNetX** The metabolites in the GSMs + other DBs 200,132 183,788 87,464 

 ChEMBL Manual /bioactive/drug-like cpds 1,727,112 1,595,615 1,365,379 

  Total  
 

2,297,709 2,056,125 1,633,407 1,500,222 

* Experimental drug ** not lipids cpd: compound 

 

 

 

Table 2.2: Import and curation of reactions from different sources. 

 

 Database  Description  Collected   Imported  Unique in 
source DB 

Unique in 
LCSB DB 

Re
ac

tio
n 

DB
s  

 HMR GSMs for human metabolic rxns 8,182 5,108 4,380 

 MetaCyc Manual /rxns in pathways of sequenced orgs 16,052 15,438 12,726 

 KEGG Manual/Rxns in KEGG enzyme or KEGG pathway  10,829 10,685 10,179 

 MetaNetX The rxns in the GSMs+ other DBs 42,182 40,767 25,647 

 Reactome Manual /reactions in human 1,872 1,568 814 

 Rhea Manual curation of biochemical rxns/cpds from ChEBI 20,770 19,325 13,114 

 Model SEED Manual/KEGG and GSMs 44,031 44,010 28,332 

 BKMS Rxns of BRENDA, KEGG, MetaCyc & SABIO-RK  31,740 18,139 18,139 

 BiGG models Manual/ Rxns from GSMs 28,299 16,581 8,681 

 Brenda Large set of enzyme functional data 31,741 9,214 7,044 

 Total  
 

235,698 180,835  129,056 61,308 

GSM: Genome scale models 
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2.4 Interactive	connection	to	computational	tools	

Today’s knowledge of biochemistry does not account for the biosynthesis of many compounds that have 

been observed in living organisms. One of the challenging objectives in LCSB is to explore the theoretical 

space of biochemistry beyond experimental results by using computational methods. The Biochemical 

Network Integrated Computational Explorer (BNICE.ch) is an object-oriented program for predicting 

biotransformations and biochemically possible molecular structures [4], [20]. BNICE.ch reconstructs known 

reactions and predicts novel compounds and biotransformations and by applying expert-curated, generalized 

reaction rules on chemical compounds in silico. The generated results of BNICE.ch are organized in metabolic 

networks. The resulting networks span millions of compounds (network nodes) and biochemical reactions 

(network edges) connecting the compounds. The ability of “automated reasoning” in the ontology which 

means it can drive implicit facts from the database automatically, make it appropriate for storing and 

organizing such a big network and subsequently analyzing it.  

On the other hand, the definition of ontology is closely related to object-oriented programming, and 

ontological database can constructively interact with object-oriented programs. Due to similar definition, 

BNICE.ch has a live connection to LCSB ontological database for getting information of compounds and 

reactions, discovering the link of new generated data with stored information and finally importing results 

to the database. Furthermore, the group contribution method used in LCSB to estimate the Gibbs free energy 

of reactions, is connected to LCSB DB to get the structural information of the compounds. Later, we expanded 

the scope of concepts in LCSB DB to integrate enzymes and their properties, which is used by BridgIT tool 

(chapter 4) for enzyme annotation.  

Finally, LCSB DB offers for the first time a biochemical repository integrating all different levels of information 

about compounds, reactions, enzymes, pathways and networks, which is able to communicate flexibly with 

both users and computational tools. 

 

2.5 References	

 [1] N. Swainston et al., “biochem4j: Integrated and extensible biochemical knowledge through graph 

databases,” PLOS ONE, vol. 12, no. 7, p. e0179130, Jul. 2017, doi: 10.1371/journal.pone.0179130. 

[2] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498, no. 7453, pp. 255–260, Jun. 2013, 

doi: 10.1038/498255a. 

[3] M. Agosti, F. Esposito, and C. Thanos, Eds., Digital libraries: 6th Italian Research Conference, IRCDL 

2010, Padua, Italy, January 28-29, 2010: revised selected papers. Berlin ; New York: Springer, 2010. 



 Nature of biological data 
 

50 

[4] N. Hadadi, J. Hafner, A. Shajkofci, A. Zisaki, and V. Hatzimanikatis, “ATLAS of Biochemistry: A 

Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies,” 

ACS Synth. Biol., vol. 5, no. 10, pp. 1155–1166, Oct. 2016, doi: 10.1021/acssynbio.6b00054. 

[5] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Res., vol. 

28, no. 1, pp. 27–30, Jan. 2000. 

[6] R. Overbeek et al., “The Subsystems Approach to Genome Annotation and its Use in the Project to 

Annotate 1000 Genomes,” Nucleic Acids Res., vol. 33, no. 17, pp. 5691–5702, Sep. 2005, doi: 

10.1093/nar/gki866. 

[7] D. S. Wishart et al., “HMDB: the Human Metabolome Database.,” Nucleic Acids Res., vol. 35, no. 

Database issue, pp. D521-6, Jan. 2007, doi: 10.1093/nar/gkl923. 

[8] R. Caspi et al., “The MetaCyc database of metabolic pathways and enzymes,” Nucleic Acids Res., vol. 

46, no. D1, pp. D633–D639, Jan. 2018, doi: 10.1093/nar/gkx935. 

[9] S. Moretti, O. Martin, T. Van Du Tran, A. Bridge, A. Morgat, and M. Pagni, “MetaNetX/MNXref – 

reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic 

networks,” Nucleic Acids Res., vol. 44, no. D1, pp. D523–D526, Jan. 2016, doi: 10.1093/nar/gkv1117. 

[10] D. S. Wishart et al., “DrugBank 5.0: A major update to the DrugBank database for 2018,” Nucleic Acids 

Res., vol. 46, no. D1, pp. D1074–D1082, Jan. 2018, doi: 10.1093/nar/gkx1037. 

[11] J. Hastings et al., “ChEBI in 2016: Improved services and an expanding collection of metabolites,” 

Nucleic Acids Res., vol. 44, no. Database issue, p. D1214, Jan. 2016, doi: 10.1093/NAR/GKV1031. 

[12] A. Gaulton et al., “The ChEMBL database in 2017,” Nucleic Acids Res., vol. 45, no. D1, pp. D945–D954, 

Jan. 2017, doi: 10.1093/nar/gkw1074. 

[13] S. Kim et al., “PubChem 2019 update: improved access to chemical data,” Nucleic Acids Res., vol. 47, 

no. D1, pp. D1102–D1109, Jan. 2019, doi: 10.1093/nar/gky1033. 

[14] I. Schomburg, A. Chang, O. Hofmann, C. Ebeling, F. Ehrentreich, and D. Schomburg, “BRENDA: a 

resource for enzyme data and metabolic information,” Trends Biochem. Sci., vol. 27, no. 1, pp. 54–56, Jan. 

2002, doi: 10.1016/S0968-0004(01)02027-8. 

[15] A. Morgat et al., “Updates in Rhea--a manually curated resource of biochemical reactions.,” Nucleic 

Acids Res., vol. 43, no. Database issue, pp. D459-64, Jan. 2015, doi: 10.1093/nar/gku961. 



 Nature of biological data 
 

51 

[16] J. Schellenberger, J. O. Park, T. M. Conrad, and B. Ø. Palsson, “BiGG: a Biochemical Genetic and 

Genomic knowledgebase of large scale metabolic reconstructions,” BMC Bioinformatics, vol. 11, no. 1, p. 213, 

Apr. 2010, doi: 10.1186/1471-2105-11-213. 

[17] R. K. Aziz et al., “SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and 

Metabolic Models,” PLoS ONE, vol. 7, no. 10, p. e48053, Oct. 2012, doi: 10.1371/journal.pone.0048053. 

[18] D. Croft et al., “Reactome: a database of reactions, pathways and biological processes,” Nucleic Acids 

Res., vol. 39, no. Database, pp. D691–D697, Jan. 2011, doi: 10.1093/nar/gkq1018. 

[19] L. Jeske, S. Placzek, I. Schomburg, A. Chang, and D. Schomburg, “BRENDA in 2019: a European ELIXIR 

core data resource,” Nucleic Acids Res., vol. 47, no. D1, pp. D542–D549, Jan. 2019, doi: 10.1093/nar/gky1048. 

[20] K. C. Soh and V. Hatzimanikatis, “DREAMS of metabolism,” Trends Biotechnol., vol. 28, no. 10, pp. 

501–508, Oct. 2010, doi: 10.1016/j.tibtech.2010.07.002. 



 

52 

 	ATLASx	 -	 Databases	 for	

predictive	biochemistry	

“Look deep into nature and you will understand everything better” 

Albert Einstein 

The first version of ATLAS of Biochemistry,  published in ACS Synthetic biology in 2016 [1], was developed by 

Dr. Noushin Hadadi (as the leading scientist), Dr. Jasmin Hafner and Adrian Shajkofci. Later, the interest of 

research community encouraged us to update ATLAS database. In 2019, the updated ATLAS of Biochemistry 

with more compounds and improved enzyme annotation published in ACS Synthetic Biology journal [2] as a 

technical note. This work has been performed in collaboration with Dr. Jasmin Hafner (reconstruction of KEGG 

reactions, manuscript), Anastasia Sveshnikova (enzyme prediction) and Alan Scheidegger (curation of 

reactions). The author of this thesis has been in charge of the completion of the manuscript, reaction 

prediction and enzyme annotation. Dr. Jasmin Hafner and the author of this thesis equally led the project 

(subchapter 3.3). Furthermore, the results presented in the extended version of ATLAS (bioATLAS and 

chemATLAS, subchapter 3.4) have been obtained in collaboration with Dr. Jasmin Hafner (pipeline and 

website development, manuscript), Anastasia Sveshnikova (reactive site analysis) and Victor Viterbo (curation 

of reaction databases). The author of this thesis has been in charge of the manuscript, as well as data curation, 

reaction generation, pipeline and database development. Dr. Jasmin Hafner and the author of this thesis 

equally led this project. Publication related to ATLASx is under preparation (subchapter 3.4). All the mentioned 

projects are supervised by Prof. Vassily Hatzimanikatis. 

 

3.1 Introduction	

The availability of different omics data from genomics, transcriptomics, and metabolomics provides better 

observation over cellular mechanisms. To analyse and interpret the big biological data, advanced 

computational tools developed. However, the observed metabolic reactions involve a small portion of  

measured metabolites, and the biochemical function and metabolism of many metabolites are remained 

unknown. Therefore, our understanding of metabolism is still far from complete. The “ATLAS of 

Biochemistry” is an ongoing effort to explore and expand our knowledge about metabolism. 

 

In this chapter, we first introduce the concept of biochemical knowledge gaps (Subchapter 3.1.1), then we 

review the current state of computational methods that are used to fill gaps in biochemical networks 

(Subchapter 3.1.2). Next, we discuss the ATLAS methodology (Subchapter 3.2), and we present the results of 
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the ATLAS update 2018 (Subchapter 3.3). Finally, we introduce extended versions of ATLAS, named ATLASx 

(Subchapter 3.4). 

3.1.1 Knowledge	gaps	or	dark	matter	in	metabolism	

Biological “dark matter” is an umbrella term for underground processes in biology that are difficult to 

measure and barely understood[3], such as weak molecular interactions, viscosity and crowding effects, post-

translational modifications, non-coding RNAs[4], non-culturable microbes[5]. In metabolism, “dark matter” 

designates biochemical processes where knowledge is still sparse, such as underground metabolism resulting 

from promiscuous enzymatic activity[6], [7], undetected plant natural products and their uncharacterized 

biosynthesis pathways, and chemical damage of metabolites[8]. These unknowns limit our general 

understanding of metabolism, which is key to discover mechanisms involved in cancer[9] or vector-borne 

diseases[10], or to find new medicines through drug discovery from plant natural products[11]. Furthermore, 

these knowledge gaps hamper the advancement of bioengineering applications like the creation of 

sustainable cell factories for the green production of commodity chemicals and pharmaceuticals.  

The ultimate approach to identify new enzymatic functions and to detect novel natural products are 

biochemical assays. However, given the vastness of unknown elements left to discover, it is essential to 

generate hypotheses on potential biochemical functions, and ultimately to guide experimental efforts. 

Remedy was hoped to come from genomic, transcriptomic, proteomic and metabolomic data, but linking 

these data to metabolic functions remains difficult[12], [13]. As an example, 25 % of proteins in E. coli, one 

of the best studied model organism, do not have a function assigned[14], and almost 10,000 metabolites are 

orphan in the Kyoto Encyclopedia of Genes and Genomes (KEGG)[1], meaning that they are not integrated in 

any biochemical reaction in KEGG. Hence, computational approaches are needed to systematically explore 

the metabolic dark matter arising from the elasticity of enzymatic catalysis in an unbiased and global 

approach. 

3.1.2 Toward	characterizing		knowledge	gaps	

The past decades have shown increasing interest in computational approaches to biological questions. 

Diverse tools have emerged that can bridge the knowledge gaps in metabolism through cheminformatic 

predictions of potential metabolic reactions, uncharacterized metabolites and novel enzyme functions. Most 

of these tools have been developed for metabolic engineering applications, where the objective is to find 

biosynthesis routes that produce a given target compound in a host organism[15]–[19]. This problem is 

solved by biochemically “walking back”, reaction step by reaction step, from the desired target to known 

precursor compounds that are produced by the host organism. This procedure is called retrobiosynthesis and 

implemented in a range of tools such as BNICE.ch[20], [21], GEM-Path[22], NovoPathFinder[23], 

NovoStoic[24], ReactPRED[25], RetroPath[26], [27], Transform-MinER[28]. These methods rely on the 
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concept of generalized enzymatic reaction rules. A reaction rule encodes the biochemistry of a substrate-

promiscuous enzyme by describing the pattern of the reactive site recognized by the enzyme, as well as the 

bond rearrangement performed by the enzyme on the substrate. By applying the rule on a substrate that is 

non-native to the represented enzyme, the rule can predict if (i) the substrate can be recognized by the 

enzyme, (ii) if the biotransformation can occur, and (iii) what will be the product molecule(s). The concept of 

reaction rules is also employed by enviPath[29], a platform for predicting biodegradation mechanisms, and 

by MINEs[30], a database predicting potential biological products for mass-spectrometry applications.  

3.2 ATLAS	of	Biochemistry	methodology	

However, all of the named tools for predictive biochemistry are specific to a given research or engineering 

question. During the endeavor to address the knowledge gap in metabolism, we employed the computational 

tool BNICE.ch[16], [31]–[35] (Biochemical Network Integrated Computational Explorer), to explore the 

“reaction space” within the compounds that are known to be present in biological systems.  

BNICE.ch tool consists of (i) a large set of expert-curated, generalized reaction rules and (ii) a network-

generating algorithm which apples reaction rules on each compound. Basically, reaction rules distill the 

knowledge of substrate reactive sites in biochemistry and digitalize them in a few hundred Bond-Electron 

Matrix (BEM) representations. Inside each reaction rule, a BEM is used to describe the reactive site of a 

molecule that will be recognized by an enzyme, and a second matrix (difference BEM) describes the bonds 

that need to be rearranged in a molecule in order to form the product. Based on the concept of generalized 

enzyme reaction rules, BNICE.ch asks how we can first reconstruct known biochemistry and on top of that 

discover and characterize new biochemical reactions.  

Traditionally, to generate ATLAS reactions using BNICE.ch, each reaction rule was applied to each compound 

and all the potential products were analyzed. Reactions only producing compounds that belong to the 

biological or biochemical compound space were imported to the database as ATLAS reactions. However, by 

expanding the scope of ATLAS to larger compound databases, for example PubChem which incorporate more 

than 70 M compounds, application of BNICE.ch on all the compounds was practically impossible. In order to 

handle the complexity arises due to the millions of compounds in bigger databases, we designed our pipeline 

into two phases. In the first phase, we scanned the compounds with the generalized reaction rules to identify 

those with at least one reactive site. Such pre-selected compounds have the potential to be the substrate of 

biochemical reactions. Moreover, with such analysis, we could identify all the targets of the known enzyme 

and therefore capture the potential space of enzyme promiscuity. In the second phase, employing BNICE.ch 

we applied the identified generalized reaction rules on the pre-selected compounds and we observed how 

many of the identified compounds can participate in a reaction. Then, if the product of the application of the 

generalized reaction rules on the substrate exist in the space of known compounds (chemicals and biological), 



ATLASx - Databases for predictive biochemistry 
 

55 

we imported reaction to ATLAS database. Each ATLAS reaction is annotated with an estimated value for the 

Gibbs free energy of reaction and an EC-number up to the third level. Also, to guide the further experimental 

implementation of the novel proposed reactions, we assigned to them the best candidate enzyme(s) using 

BridgIT tool.  

The origin of compounds analysed by ATLAS pipeline defines the scope of ATLAS project, abbreviated with 

ATLASx. For example, the original ATLAS integrates compounds catalogued in KEGG database. In the next 

versions of ATLASx we aim to be independent of a specific compound database and we expand the scope of 

ATLAS to all bio and bioactive molecules (bioATLAS), and even we take a step further to extrapolate the 

known metabolism towards the space of chemical compounds (chemATLAS). 

 

3.3 Update	-	ATLAS	of	biochemistry		

The following subchapter presents the updated version of ATLAS of biochemistry, which published in ACS 

synthetic biology as a technical note. The work has been achieved in collaboration with Dr. Jasmin Hafner 

(reconstruction of KEGG reactions, manuscript), Anastasia Sveshnikova (enzyme prediction) and Alan 

Scheidegger (compilation of reactions). The author of this thesis, has been in charge of the manuscript, 

reaction prediction and enzyme annotation. Prof. Vassily Hatzimanikatis supervised the project as well as the 

completion of the manuscript.   

Full list of authors: J. Hafner†, H. MohammadiPeyhani†, A. Sveshnikova, A. Scheidegger, and V. 

Hatzimanikatis*, “Up-dated ATLAS of Biochemistry with new metabolites and improved enzyme prediction 

power,” ACS Synth. Biol., May 2020, doi: 10.1021/acssynbio.0c00052 († contributed equally, * corresponding 

author). 

 

3.3.1 ATLAS	of	biochemistry	over	years		

The original and also updated ATLAS of Biochemistry[1] present the effort to map dark matter in biochemistry 

by predicting novel reactions between compounds known to the KEGG compound database[36]. ). The utility 

of original ATLAS has been recognized by several reviews as a source of novel metabolic reactions for enzyme 

and metabolic engineering[18], [37], [38]. More recently, Yang et al. experimentally validated hypothetical 

ATLAS reactions and used them to construct novel one-carbon assimilation pathways[39]. However, ATLAS 

was created based on the biochemical knowledge available in KEGG 2015[36]. Since then, KEGG has added 

802 new metabolites, 918 new reactions, and 633 enzymes to its collection. Here, we present an updated 

version of ATLAS created from KEGG 2018 using an increased set of generalized reaction rules following the 

same procedure as explained in section 3.2.  
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Updated ATLAS contains ~150,000 reactions, out of which ninety-six percent are novel. Interestingly, we 

found that the newly available data validated 107 novel reactions predicted in ATLAS 2015. Furthermore, we 

improved the accuracy of the enzymes that are predicted for catalyzing novel reactions. 

In the next sections, we present detailed statistics on the updated ATLAS and highlight the improvements 

with regard to the original version. The updated ATLAS is available at https://lcsb-databases.epfl.ch/atlas. 

3.3.2 Updated	tools	and	methods	

Since 2015, two main aspects of ATLAS workflow have been updated, which were applied to generate the 

updated version of ATLAS. First, the set of bidirectional reaction rules was increased from 360 to 400. Second, 

we applied the most recent version of BridgIT to predict putative enzymes for novel compounds, and we 

report the top three enzyme matches for each. The 40 new rules were created to reconstruct the exact 

reaction mechanism of an additional number of 510 KEGG reactions that were not considered previously 

(i.e., KEGG reaction R03223).  

3.3.3 Overall	statistics	

ATLAS 2018, based on KEGG 2018, now has 149,052 reactions, out of which 5,779 are known to KEGG. 

Compared to 2015, we added 510 known and 11,173 novel reactions. Thanks to the predicted reactions, 

ATLAS now integrates 4,587 out of 9,857 disconnected, or “orphan”, KEGG metabolites, which were not 

participating in any known biochemical reaction.  

3.3.4 Increased	coverage	of	KEGG	reactions	

The KEGG database contained 18,254 compounds as of February 2018 (Table 3.1). In a first preprocessing 

step, we removed 999 compounds without clearly defined molecular structures (e.g., polymers, proteins). 

The filtered dataset comprised 17,255 compounds, out of which 9,857 were not involved in any KEGG 

reaction. These orphan compounds did not participate in any known biotransformation in the KEGG 

metabolic space. 

Out of the 10,829 reactions in KEGG, 76 involved compounds with an undefined structure that were removed, 

resulting in a filtered set of 10,753 reactions. Out of these, 8,118 reactions were reconstructed with BNICE.ch 

reaction rules. We observed three different types of reaction reconstruction: 5,779 reactions were exactly 

reconstructed, meaning that the reactions generated by BNICE.ch use the same cofactors as in KEGG. 

Another 1,705 reactions were reconstructed using alternative cofactors, out which 123 reactions were poorly 

characterized in KEGG (i.e., reaction mechanism not known, incomplete reaction). The remaining 634 

reactions were reconstructed in two (408 reactions), three (145 reactions) or four (81 reactions) consecutive 

reaction steps.  
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Table 3.1: Overview of compound, reaction, and enzyme statistics in KEGG and ATLAS.  

	 	 ATLAS	2015	 ATLAS	2018	 Percent	change	

KEGG	compounds	 Total	number	of	compounds	 17,450	 18,254	 +5%	

Filtered	compounds	(fc)	 16,798	 17,255	 	

Orphan	KEGG	compounds	(okc)	 9,371	

(56%	of	fc)	

9,857	

(57%	of	fc)	

	

KEGG	

reactions	

Total	number	of	reactions	 9,135	 10,829	 +19%	

Filtered	reactions	 8,592	 10,753	 	

BNICE.ch	 Number	of	bidirectional	enzymatic	
reaction	rules	

360	 400	 +11%	

KEGG	reaction	
reconstruction	

Covered	reactions	total	 6,651	 8,118	 +22%	

Exact	coverage	 5,270	 5,779	 	

Alternative	cofactor	usage	 916	 1,705	 	

2-step	reconstruction	 387	 408	 	

3-step	reconstruction	 78	 145	 	

4-step	reconstruction	 -	 81	 	

ATLAS	

statistics	

	

Total	number	of	reactions	 137,877	 149,052	 +8%	

Novel	reactions	 132,607	 143,272	 	

Total	number	of	compounds	 10,362	 10,939	 	

Number	of	orphan	compounds	integrated	
in	ATLAS	

3,945	

(42%	of	okc)	

4,587	

(47%	of	okc)	

	

Consistency	of	EC	
numbers	*	

	

1st	level	EC	match	 79,058	 138,168	 +75%	

2nd	level	EC	match	 65,854	 126,689	 +92%	

3rd	level	EC	match	 47,918	 94,168	 +96%	

* Number of matches between the EC assignment from the reaction rules and the EC numbers assigned by BridgIT for novel reactions in ATLAS 

A total of 2,635 KEGG reactions were not reconstructed with BNICE.ch. First, 1,546 reactions did not fulfill 

the BNICE.ch requirements for reconstruction, such as reactions involving polymer structures, generic 

compounds, or compounds without a defined molecular structure, as well as elementally unbalanced 

reactions and stereoisomerase reactions. Additionally, the reaction rules are organized according to the 

Enzyme Classification (EC) system, so each reconstructed or predicted reaction is automatically assigned a 

third-level EC number corresponding to the non-substrate specific EC classification of the reconstructing 

reaction rule. Another 308 reactions had partial or missing EC number annotations, indicating that the 

reaction mechanisms are not known and therefore no rule has been created for these reactions. The 

remaining 862 reactions were not reconstructed because their reaction mechanisms are very specific and 

hence not readily generalizable.  
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3.3.5 Predicted	ATLAS	reactions	validated	in	KEGG	and	other	databases	

To validate the predicted reactions in ATLAS, we analyzed the novel reactions predicted in 2015 that became 

known in KEGG 2018. Out of the 958 reactions newly added to KEGG, only 239 reactions involved compounds 

that were already present in KEGG 2015, meaning that they could have been predicted in the original ATLAS. 

Out of these 239 reactions, 107 were already present in ATLAS. In other words, the existence of hypothetical 

reactions in ATLAS 2015 was confirmed in KEGG 2018, demonstrating the predictive power of BNICE.ch.  

Next, we examined the enzymes that BridgIT suggested in ATLAS 2015 for these 107 novel reactions, out of 

which 75 had an enzyme assigned. Interestingly, we found that the predicted EC numbers for 64 out of 75 

reactions match the EC number proposed in KEGG up to the third level. For example, the novel reaction 

rat104204 was predicted to have an EC number of 2.4.1.-. BridgIT suggested R08946 as the most similar 

reaction, which was known to be catalyzed by 2.4.1.245. In 2018, KEGG confirmed the promiscuous activity 

of 2.4.1.245 for this reaction and named it R11306.  

In ATLAS 2018, we additionally mapped the novel reactions to reaction databases other than KEGG. 

Interestingly, we found that 1118 predicted reactions in ATLAS were not actually novel, but known to at least 

one of the repositories Brenda, Reactome, HMR, MetaCyc, MetaNetX, BIGG or Rhea, which shows that the 

predictive power of ATLAS goes beyond KEGG. ATLAS reactions that can be found in any of these databases 

are linked accordingly in the updated version. 

3.3.6 Improvements	in	the	prediction	of	enzymes	for	ATLAS	reactions	

To find putative enzymes for the reactions in ATLAS, we applied the enzyme prediction tool BridgIT. With the 

latest version of the tool, the new predictions were significantly better in the updated ATLAS: BridgIT 

correctly matched 92% of ATLAS reactions to the same EC class as BNICE.ch rules, whereas the previous 

version only matched around 60% (Table 3.1). For each ATLAS reaction, we provide the top three candidate 

enzymes, and we also include BridgIT results for known KEGG reactions to provide alternative enzymes for a 

known reaction.  

As a qualitative example of an improved prediction, we analyzed the ATLAS reaction rat109456, whose 

closest BridgIT candidate had a low matching score of 0.67. In ATLAS 2018, the reaction is now known and 

BridgIT found three very similar reactions, the first of which having a higher score than in the previous version 

(Figure 3.1). 
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Figure 3.1: The reaction with ATLAS identifier rat109456 is an example of a reaction that was novel in ATLAS 2015 and that is now 

cataloged in KEGG. (left) In ATLAS 2015, the earlier version of BridgIT provided the most similar known reaction, and associated 

enzyme, for the ATLAS reaction with the ID. (right) In ATLAS 2018, the same reaction is now cataloged in KEGG as R11332 with EC 

5.3.1.33. Other than the native enzyme with EC 5.3.1.33, BridgIT provides three alternative enzyme candidates that might also 

catalyze the reaction. 

3.3.7 Conclusion	

This study demonstrates the dynamic nature of biochemical knowledge and highlights the need for 

continuous updates of database-dependent applications. The updated ATLAS database contributes to fill the 

gaps in our current knowledge of metabolism by expanding the boundaries to novel predicted metabolic 

reactions. The updated ATLAS database is freely available online for academia upon request.  

 

 

 

 

 

 

   



ATLASx - Databases for predictive biochemistry 
 

60 

3.4 bioATLAS	and	chemATLAS	-	reactions	emerging	from	biological	and	

bioactive	compounds	

The following subchapter is the result of a collaborative project together with Dr. Jasmin Hafner, Anastasia 

Sveshnikova and Victor Viterbo. Dr. Jasmin Hafner investigated the properties of bioATLAS and chemATLAS 

networks (section 3.4.4) and also she implemented the online LCSB web platform for pathway search in ATLAS 

network, further she showed the application of pathway search in section 3.4.6. Anastasia Sveshnikova 

analysed the results of reaction rule assignment to the compounds in bioATLAS (section 3.4.2), also she 

compared pathway prediction results of ATLAS with pathways cataloged in MetaCYC database (section 3.4.5). 

Victor Viterbo, helped in the organization and curation of reaction databases under supervision of the author. 

The author of this thesis was in charge of database management and application of ATLAS pipeline in both 

steps of reactive site identification and reaction generation (section 3.4.1, 3.4.2 and 3.4.3). Further, she 

provided enzyme prediction results for gap filling application in section 3.4.6.  The manuscript corresponding 

to this project is under preparation. Prof. Vassily Hatzimanikatis supervised the project as well as the 

completion of the manuscript.   

Full list of authors: H. MohammadiPeyhani†, J. Hafner†, A. Sveshnikova, V. Viterbo, and V. Hatzimanikatis*, 

“ATLASx - known and predicted reactions to navigate biochemical space” (in preparation, † contributed 

equally, * corresponding author) 

3.4.1 ATLASx	-Networks	for	predictive	biochemistry	

One major drawback of ATLAS is its limitation to KEGG compounds. Many drugs and plant natural products 

with undefined or putative biological function are not part of KEGG, and therefore not included in ATLAS. 

Predicting enzymatic reactions from biochemical compounds retrieved from databases other than KEGG will 

help to integrate information from different sources, and to expand the scope of our predictions, and finally 

enhance the application range and the predictive power of the database.  

In the following, we present ATLASx, an online biochemical resource providing reliable predictions of 

biochemical reactions and pathways for synthetic biologists and metabolic engineers. ATLASx unifies 

biochemical reactions and compounds from 14 different sources into one curated dataset, called bioDB. 

bioDB holds 1.5 million unique biological or bioactive compounds and 56 thousand unique biochemical 

reactions, forming the basis for the second achievement, the prediction of a hypothetical biochemical space 

(Please see subchapter 2.3 for details of data collection and curation in bioDB). Following ATLAS procedure 

explained in section 3.2, and by applying 490 bidirectional, generalized reaction rules from BNICE.ch on the 

collected biological and bioactive compound, we predicted 1.6 million potential biotransformations between 

bioDB compounds. Another 3.6 million reactions were found to connect bioDB compounds with molecules 

only found in chemical databases, adding up to a total of 5.2 million predicted reactions. From this new 

wealth of generated information, we characterized the connectivity and reactivity of biologically important 

molecules, and we showed that ATLASx pathway predictions could recover 97.5% of known biological 

pathways from MetaCyc. Finally, we provide access to ATLASx through an online web interface that features 

tools for pathway design and network exploration, which can be readily used for the design of novel 

metabolic pathways. The database can be accessed at https://lcsb-databases.epfl.ch/Atlas2. 
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3.4.2 Unification	and	expansion	of	biochemical	knowledge	

Biochemical knowledge is dispersed in biochemical databases of different biological scopes, varying level of 

information detail and diverse target applications. This situation makes it difficult to reliably detect 

knowledge gaps, since the missing piece of information in one database could be present in another resource. 

This circumstance requires the prior unification of known biochemical resources to provide a basis for the 

ultimate objective, the extension of known to hypothetical metabolism.  

To achieve this objective, we established the following workflow (Figure 3.2): The first step (Unification) 

consisted of collecting metabolic reactions and biochemical compounds from different publicly available 

databases, and to merge them into a consistent and duplicate-free database, called bioDB (for more 

information please see subchapter 2.3). In step two (Curation), compounds were annotated with molecular 

identifiers and reactions were annotated with reaction mechanisms. In step three (Expansion), we applied 

the generalized reaction rules from BNICE.ch to the collected compounds in bioDB to generate all possible 

reactions producing known biological or chemical products. In the process, we reconstructed known 

reactions and we discovered novel, hypothetical reactions, which we stored in the ATLASx database. In step 

four (Analysis), we analyzed the connectivity of the biochemical reaction networks before and after reaction 

prediction, and we assessed the integration of compounds not previously connected in known biochemical 

networks. The results were finally made available on our website (https://lcsb-databases.epfl.ch/Atlas2) 

(Distribution).  
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Figure 3.2: ATLAS workflow applied on the space of known biological and bioactive compounds 

 

3.4.3 Reactive	sites	detected	in	all	biological	and	almost	all	bioactive	compounds		

Functional groups, or reactive sites, are important features of biochemically active compounds as they 

designate the parts of a molecule that are recognized by enzymes and further transformed. To determine 

the biochemical reactivity of the collected biological and bioactive compounds, we applied the reactive site 

recognition encoded in the 490 BNICE.ch reaction rules to the compounds in bioDB, excluding those with 

more than one disjoint molecular structure (e.g. salts). The number of molecules screened for reactive sites 

summed up to 1,500,222 biological and bioactive compounds. 

As a result of the screening for reactive sites, each compound was assigned a list of reaction rules that can 

recognize one or more reactive sites on the molecular structure. We found that 1,498,307 out of 1,500,222, 

or 99.8%, of collected biological and biochemical compounds had at least one reactive site. We found that 
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most of the compounds (87%) had between 50 and 200 reaction rules assigned, and contained between five 

to twenty carbon atoms (Figure 3.3 panel A). From the remaining 1,915 compounds without any reactive site, 

958 had unclear molecular structures containing R groups (e.g., R-Cl). Another 752 compounds did not 

contain any carbon (e.g., inorganic ions), and 184 were found to be big molecules, many of them with closed 

aromatic ring structures that were not accessible for the reaction rules (e.g., fullerene). Sixteen compounds 

contained only one carbon atom that was not accessible to enzymes (e.g., CFe8S9). The remaining four 

compounds were found to be chemically synthesized molecules with medical or research applications (Figure 

3.3 panel B). Even though these compounds do not seem to have the biochemical capacity to participate in 

any enzyme-catalyzed reaction, their presence in biological databases can still be justified through their 

interaction with living organisms.  

 

Figure 3.3: Reactive site analysis on bioATLAS compounds (A) Heatmap showing the distribution of compounds as a function of their 

number of carbon atoms versus the number of reaction rules assigned to them. The color indicates the number of compounds on a 

logarithmic scale. (B) Four bioactive compounds for which BNICE.ch could not find any reactive site. a) 

Bis(trifluoromethyl)peroxide(BTP), b) cucurbit[8]uril, c) Bis(trifluoromethyl)germane, d) bis[tricarbonyl(η5-

cyclopentadienyl)molybdenum](Mo—Mo). 

 

The number and types of reaction rules assigned to a compound is as an indicator for the diversity of 

functional groups, or the biochemical versatility, of the molecule. By screening the biological and bioactive 

molecules for reactive sites, we could show that almost all molecules in bioDB have the potential to undergo 

biochemical transformations. Using our reactive site screening approach, we can now evaluate their 

biological reactivity by providing a bioactivity index, which can be calculated as the amount of different 

reaction rules that can be assigned to a molecule divided by the total number of carbons in the molecule. 



ATLASx - Databases for predictive biochemistry 
 

64 

Such a bioactivity index could be used in the future to screen big data sets of molecules for potential 

bioactivity (Appendix, Figure 8.1). 

 

3.4.4 ATLASx	predicts	5.3	million	novel,	hypothetical	reactions		

In our attempt to map dark matter in metabolism, we used the unified and characterized known biochemical 

space in bioDB to explore the hypothetical biochemical space by predicting novel, hypothetical reactions 

from biological and bioactive compounds.  

To achieve this, we applied the 490 bidirectional reaction rules from BNICE.ch to the 1,498,307 compounds 

in bioDB that had at least one reaction rule assigned in the previous step of the workflow. The application of 

reaction rules produced known and novel, hypothetical reactions leading towards known and novel product 

molecules. Reactions whose products were part of the biological and bioactive compounds space were stored 

in the bioATLAS data collection, and reactions whose products that were only part of the chemical compound 

space were stored in chemATLAS. In total, we reconstructed 11,759 of the metabolic reactions in bioDB and 

we predicted 5,195,062 novel reactions from biological and bioactive compounds (chemATLAS). Out of these 

reactions, 1,622,447 (31%) occurred exclusively between biological and bioactive compounds (bioATLAS), 

and the remaining 3,572,615 reactions involved at least one compound from the chemical space (Table 3.2). 

81% of predicted reactions have an estimated Gibbs free energy assigned, and all predicted reactions have a 

third-level EC number assigned. In terms of compounds, bioATLAS integrates almost two third (844,316 out 

of 1,500,222) of the compounds fed initially to the workflow. From the remaining 655,906 bioDB compounds, 

an additional 163,460 were integrated in at least one chemATLAS reaction.  

One of the objectives of the ATLAS workflow is to integrate orphan biological and bioactive compounds into 

the biochemical reaction space. The bioDB counts 1,485,324 orphan compounds that are not involved in any 

known reaction, even though they are labeled as biological or bioactive molecules. Interestingly, 67% 

(992,878) out of these orphan compounds could be integrated into at least one novel reaction. We further 

found that 863,000 compounds, originally only present in PubChem, could be integrated into at least one 

biochemical reaction, meaning that they are situated only one reaction step away from a known biological 

or biochemical compound. These compounds are potential candidates for secondary metabolites (e.g., plant 

natural products), unwanted products of side reactions (i.e., damaged metabolites[40]), or bioactive 

compounds (e.g., drugs, pesticides) with the capacity to be transformed by enzyme catalysis.  
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Table 3.2: Compound and reaction statistics for bioDB, bioATLAS and chemATLAS. 

 Property bioDB bioATLAS chemATLAS 

Compounds 

Integrated in reaction 14,902 915,372 1,987,019 

Total number of compounds 1,500,222 

 

1,500,222 

 

77,934,143 

Reactions 

Known reactions  56,602 56,602 56,602 

             Out of which BNICE.ch curated 11,759 11,759 11,759 

Novel reactions 0 1,561,139 5,138,460 

Total number of reactions 56,602 1,610,688 5,195,062 

 

3.4.5 Network	analysis	of	the	biotransformation	network	reveals	disjoint	components		

The connectivity of a biochemical reaction network can provide insights into the comprehensiveness our 

knowledge, and help us to identify missing biochemical links. According to the chemical law of mass 

conservation, the network representing perfect biochemical knowledge would be fully connected, meaning 

that every compound (node) is connected to every other compound through a suite of biotransformations 

(edges).  

To create a graph-representation of our reaction database, we employed the concept of atom conservation 

between substrates and products. This approach that has previously been shown to be relevant in the 

analysis and search of metabolic networks [41]. We calculated the number of conserved atoms between each 

possible substrate-product pair in each reaction based on the reaction mechanism encoded in the BNICE.ch 

reaction rules. For known biological reactions without BNICE.ch reaction mechanism, the number of 

conserved atoms was estimated by assuming the maximal possible atoms to be conserved. The number of 

conserved atoms between each substrate-product pair was then used to assign a weight to each edge in the 

network. The weight, termed Conserved Atom Ratio (CAR), ranges from 0 to 1 and represents the atom 

conservation between substrate and product. To assess the connectivity of the different networks generated 

in this study, we excluded edges with a CAR below 0.34, a threshold previously shown to best predict 

manually curated substrate-product pairs in KEGG[41]. The procedure of network construction is based on 

the NICEpath methodology [41]. 

To characterize the different networks scopes in ATLASx, we extracted the network for each of the reaction 

scopes bioDB, bioATLAS, and chemATLAS (Table 3.3). For each scope, we counted the number of connected 

components (i.e., disjoint graphs, or islands) in the unweighted networks (Figure 3.4 panel A). We found that 
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the total number of components increased with the network expansion from bioDB to bioATLAS to 

chemATLAS. However, the number of components relative to the size of the network, represented by the 

average number nodes per component, decreased from 23.7 in bioDB to 10.3 in bioATLAS, and increased 

again to 12.6 in chemATLAS, suggesting that the integration of bioactive compounds created many 

disconnected islands in the network, which becomes more connected after including chemical compounds. 

By looking at the size distribution of the components, we found that all three networks were dominated by 

one big component, followed by a big number of secondary components of maximal 33 compounds involved 

(Figure 3.4 panel B). While the biggest component in bioDB connected 88% of compounds in the network, 

this number decreased to 53% in bioATLAS and increased again to 67% in chemATLAS. This result is consistent 

with the average number of nodes per component, which indicates that integrating bioactives creates a high 

number of disconnected compound islands, and integrating chemical compounds makes the biochemical 

network denser by bridging the disconnected islands in bioATLAS. This statement is further confirmed by the 

diameter metrics: To calculate the diameter of a network, one needs to find all the shortest paths between 

all the possible combination of nodes in the network. The longest shortest path is called diameter of the 

network, and the average length of shortest paths between any two nodes is called effective diameter. Here, 

we found that the effective diameter is increased in chemATLAS (34 step diameter) compared to bioDB (27 

steps) and bioATLAS (27 steps), suggesting expansion of the network towards novel chemistry and integration 

of previously disconnected components.  

Graph theory was used before to analyze the properties of biochemical networks, but these analyses were 

restricted to either single databases, or performed on specific organisms. Here, we estimated the network 

properties of known and expanded biochemistry employing state-of-the-art graph-theoretical metrics as well 

as a robust definition of edges as substrate-product pairs weighted by atom conservation.  

 

Table 3.3: Network statistics of bioDB, bioATLAS and chemATLAS networks. 

Network Property bioDB bioATLAS chemATLAS 

Weighted network Number of nodes 14,902 915,372 1,987,019 

Number of edges (CAR > 0) 62,255 2,624,726 

 

5,849,013 

Unweighted network 

(Only edges with    CAR 

> 0.34) 

Number of nodes 14,071 716,924 1,964,445 

Number of edges (CAR > 0.34) 25,597 1,096,283 2,942,679 

Number of components (disjoint graphs)   627 88,487 157,541 
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Biggest component Number of nodes 3,359 381,400 1,323,168 

Number of edges  4,405 819,512 2,403,922 

Percent of total number of nodes  88.22% 53.20 % 67.36 % 

Percent of total number of edges  95.82 % 74.75 % 81.69 % 

Diameter (longest shortest path) 27 27 34 

Effective diameter (average shortest path) 7 10 11 

 

 

 

 

 

 

 

Figure 3.4: Graph-theoretical analysis of biotransformation networks (A) Schematic overview on different statistics and network 

properties calculated for bioDB, bioATLAS and chemATLAS. Reactions involving one or more chemical compound are assigned to the 

chemATLAS reaction space (B) Size distribution of disconnected components in the network of each of the three database scopes. 

3.4.6 Searching	for	biological	pathways	within	ATLASx		

The quest for novel biosynthesis pathways is crucial for the bioproduction of natural and chemical 

compounds in chassis organisms, the elucidation of complex natural product biosynthesis, and the study of 

chemical biodegradation. To search for biological pathways, we used the atom-weighted biochemical 

transformation networks as established in the previous section for bioDB, bioATLAS, and chemATLAS. 

Depending on the network scope chosen by the user, the pathways will contain only known reactions (bioDB), 

include novel reactions between known biological and bioactive compounds (bioATLAS), or even include 

chemical compounds (chemATLAS).   

To benchmark our pathway search, we determined whether ATLASx could recover known pathways from the 

metabolic pathway database MetaCyc. To do this, 3,149 pathways were collected from MetaCyc, out of which 

1,518 matched our curation standards:  

Main components
bioDB: 14,782 compounds
bioATLAS: 859,285 compounds 
chemATLAS: 1,902,286 compounds

2nd largest components
bioDB: 19 compounds
bioATLAS: 23 compounds
chemATLAS: 33 compounds
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• Pathway contains 2 and more reactions (single reaction pathways excluded) 

• Pathway does not contain transport reactions and electron-transfer reactions 

• Pathway does not contain reactions not indicated in MetaCyc download reactions table (data quality) 

• Pathway does not contain the following compound-types as intermediates: compounds with undefined 

structure, non-carbon compounds, proteins and peptide polymers, RNA molecules, unknown 

compounds 

• Not a circular pathway (excluded as we use loop-less pathway search algorithm and therefore do not 

target this group) 

• Not a polymerization pathway (e.g. bacterial peptidoglycan polymerization) 

• Not a light-dependent pathway 

• Not a superpathway (pathways consisting of other pathways with no individual unique reaction 

sequence). 

 

For each pair of precursor-target compounds, we extracted the 100 shortest pathways from ATLASx, and 

compared them to the original MetaCyc pathway. We were able to both find pathways for 1508 (99%) of 

precursor-target pairs (Figure 3.5 A) and exactly reconstruct the original MetaCyc pathway for 700 reaction 

pairs (46%). For another 780 precursor-target pairs (51%), all the required biotransformations were present 

in the ATLASx network, but the original MetaCyc pathway was not found within the top 100 shortest 

pathways predicted by ATLASx. The remaining 28 precursor-target pairs (<1%) could only be reconstructed 

using alternative pathways.  

About 80% of reactions in bioDB do not have their reaction mechanism described in BNICE.ch, which could 

occur for two reasons: (i) the reaction mechanism is unknown or (ii) the reaction mechanism has not yet 

been added to the BNICE.ch reaction rule collection. Many reactions missing a mechanism are generally also 

missing further annotation, such as protein sequence and cofactor usage. Depending on our research 

question, reactions without a confirmed BNICE.ch reaction mechanism can be excluded from pathway 

searches. By excluding reactions without known BNICE.ch mechanisms from the pathway search, we could 

find pathways that guarantee a biochemical reaction mechanism in each step. By repeating the pathway 

search for the MetaCyc benchmark set using only bioDB compounds with known BNICE.ch mechanisms, we 

found connections between precursor and target compounds for 1318 out of 1518 pathways (87%). For 524 

MetaCyc pathways (35%), the correct sequence of intermediates were found in the 100 top-ranked 

pathways. Another 236 pathways (16%) were present in the network as a sequence of biotransformations, 

but were not found within the top 100 pathways. Finally, for 558 MetaCyc pathways (37%), we only found 

alternative sequences of intermediates (Figure 3.5 A). We discovered that by excluding reactions without 

known mechanisms from the network when all required biotransformations were present in the network, 

we increased the chance of finding the correct pathway within the top 100 pathways. Here, the pathway 
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search exactly reconstructed 524 out of 760 pathways (69%) for which all the necessary biotransformations 

were present. In the original network that included all bioDB reactions (with incomplete reaction 

mechanisms), we only found 700 out of 1480 pathways (47%) that had all biotransformations present. This 

analysis shows that known biochemical pathways can be diligently reproduced using ATLASx, particularly 

when reactions without a known mechanism are excluded. 

We also investigated how the length of the reference pathway from MetaCyc affects the proportion of 

reconstructed pathways. We found that even pathways as long as 16 reaction steps could be exactly 

reconstructed from the original MetaCyc pathway, and that alternative pathways for MetaCyc pathways 

could be up to 26 reaction steps in length. (Figure 3.5 B). These results show that the performance of the 

pathway search is not significantly compromised when searching for longer pathways. The pathway search 

tool is available online at https://lcsb-databases.epfl.ch/Search2. Users can adjust the network scope as 

discussed above, as well as perform database-specific search scopes for all of the imported reaction 

databases. 

 

Figure 3.5: Pathway search comparison to dataset of pathways extracted from MetaCyc. (A) Overall statistics for the collected 

MetaCyc pathways dataset (1518 pathways) coverage with ATLAS pathway search tool (B) Distribution MetaCyc covered pathway 

depending on the pathway length (only reconstructed with BNICE.ch left side of the bar and all bioDB + reconstructed with BNICE.ch 

in the right side of the bar as in the overall statistics). 

 

3.4.7 ATLASx	fills	metabolic	gaps	and	proposes	new	biosynthesis	pathways		

ATLASx is a resource with wide-ranging practical applications that include compound classification, metabolic 

pathway searches, and gap-filling for metabolic models. The following case study presents an example of a 

practical application that can be performed using the ATLASx web tools. 
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To illustrate how the unification and expansion of knowledge in ATLASx can inform hypotheses around a 

given biochemical pathway, we used ATLASx to explore and expand an example of a biosynthetic pathway of 

interest. We chose the biosynthesis pathway of the anti-fungal and anti-hypertensive compound 

staurosporine, a secondary metabolite with a complex molecular structure. According to KEGG, the 

biosynthesis of staurosporine from tryptophan involves 7 reaction steps, however, this biosynthetic pathway 

is poorly characterized (Figure 3.6 panel B). To explore the biochemical vicinity of this pathway, we retrieved 

all compounds that were one step away from the original pathway. Out of 861 potential pathway derivatives, 

60 were found exclusively through bioDB, 407 compounds were contributed by bioATLAS, and the remaining 

394 compounds were only integrated when chemATLAS reactions and compounds were considered (Figure 

3.6 panel A). According to our analysis, most derivatives (93%, or 799) were detected around tryptophan. 

Secondary hubs were found around the precursor K-252c and staurosporine, with each hub contributing 3% 

(24 compounds) and 3% (22 compounds) to the total number of pathway derivatives, respectively. Intrigued 

by the high number of potential staurosporine derivatives, we explored four generations of biosynthesis 

around this molecule (Figure 3.6 panel C) and found 58 derivatives within a distance of four reaction steps. 

We found 6 staurosporine derivatives within bioDB (4 of them part of the original pathway), 18 derivatives 

only within bioATLAS, and an additional 34 compounds from chemATLAS. Interestingly, the network 

exploration converged, and the only derivatives found four steps away from staurosporine were located 

upstream of the original pathway.  

To characterize the potential staurosporine derivatives we identified, we retrieved the number of patents 

and citations associated with these compounds, which are metrics that have been previously used to assess 

the “popularity” of compounds. Within the five top-ranked derivatives, we found staurosporine garnered the 

most attention (29,819 patents and 15,439 citations), followed by 7-hydroxystaurosporine and then K-252c, 

which is part of the staurosporine synthesis pathway. Midostaurin, a cancer therapeutic and protein kinase 

inhibitor commercially known as Rydapt, ranked fourth with 158 patents and 570 citations, and was one step 

away from staurosporine. This analysis illustrates how ATLASx can be used to explore the biochemical vicinity 

of a compound or pathway and to retrieve relevant information (e.g., citations and patents) from external 

sources to filter and rank the generated network. 

Next, we investigated the capability of ATLASx to detect and bridge knowledge gaps. Out of the 7 reaction 

steps in the pathway obtained from KEGG, only one reaction is linked to an enzyme. The other 6 reactions 

are orphan (i.e., no enzyme assigned), out of which 3 reactions are unclear (i.e., no knowledge about reaction 

mechanism or cofactors involved) (Table 3.4). To show how one can find plausible enzymes(s) for orphan 

reactions, we examined each orphan reaction within this pathway. First, for reactions with assigned BNICE.ch 

reaction rules, we applied the computational tool BridgIT to find known reactions with a similar reaction 

mechanism and structurally similar reactants (see chapter 4). For reaction steps without an assigned 
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BNICE.ch rule, we searched for pathways that connected reaction intermediates to sequences of known, 

well-annotated bioDB reactions, or BNICE.ch-reconstructed reactions that provide the basis for robust 

enzyme prediction with BridgIT. 

The first step of the pathway, the conversion of L-tryptophan to IPA imine, is identified with the partial EC 

number 1.4.3.- by KEGG. The computational tool BridgIT proposed the enzyme 7-chloro-L-tryptophan oxidase 

(EC 1.4.3.23) as the best candidate to catalyze this first step. This predication was bolstered by a high BridgIT 

score of 0.95, which indicates that both substrates have a similar reactive site and surrounding structure. 

While the native function of this proposed enzyme is to convert 7-chloro-L-tryptophan to 2-imino-3-(7-

chloroindol-3-yl) propanoate, the activity of this candidate enzyme on L-tryptophan has been proven in a 

study by Nishizawa et al., suggesting a potential role in this orphan reaction[42]. Another orphan reaction in 

the staurosporine pathway that was reconstructed by BNICE.ch is the conversion of 3'-

demethylstaurosporine to O-demethyl-N-demethyl-staurosporine (step 6). For this reaction, BridgIT 

suggested that an N-formiminotransferase serves as a catalyzing enzyme (EC 2.1.2.5), although this 

prediction is accompanied by a relatively low BridgIT score of 0.34. Finally, the last step of the pathway is 

known to be catalyzed by an O-methyltransferase with EC number 2.1.1.139. In this case, BridgIT successfully 

mapped this reaction to itself and finds the original EC number. This showcase exemplifies how BridgIT can 

be used on top of the ATLASx reaction prediction to find enzymes for novel or orphan reactions and to fill 

gaps in metabolic pathways and networks.  

Finally, all of the presented analyses can be performed using the computational tools available online. We 

provide public access to our database through an online search interface, which includes a powerful pathway 

search algorithm that can be used for the design of novel metabolic pathways. The web access to ATLASx 

(https://lcsb-databases.epfl.ch/Atlas2) provides further query tools, such as the ability to identify all 

reactions associated to a query compound or the ability to extract reactions surrounding a reaction 

mechanism of interest (i.e., third-level EC number). 
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Figure 3.6: Showcase of a pathway expansion for the biosynthesis of the natural product staurosporine. (A) The biosynthesis pathway 

from tryptophan to staurosporine (obtained from KEGG, steps numbered in bold black) has been expanded for one generation around 

the native intermediates. (B) The molecular structure of staurosporine. (C) To zoom in specifically on the potential staurosporine 

biochemistry, the network has been expanded for four generations around the target compound. The size of the nodes representing 

compounds decreases with each generation.  

Table 3.4: Pathway reconstruction and gap-filling within ATLASx for the staurosporine biosynthesis pathway 

Step KEGG ID EC number BNICE.ch rule Top BridgIT hit 

EC (KEGG ID, score) 

Reconstruction within ATLASx 

1 R11119  1.4.3.- 1.4.3.- 1.4.3.23 (R09560, 0.95) Biotransformation with LCSB ID 2600177067 

2 R11120      2-step reaction (spontaneous + 1.21.98.2) in 

bioDBa 

3 R11121 1.13.12.-   Not reconstructed within ATLASx 

4 R11122 2.4.-.-   3-step reaction in chemATLASb 

5 R11123    2-step reaction in bioATLASc 

6 R11129  2.1.1.- 2.1.2.5 (R03189, 0.34) Biotransformation with LCSB ID 2600423725 

7 R05757 2.1.1.139[43] 2.1.1.- 2.1.1.139 (R05757, 1.00) Biotransformation with LCSB ID 2600261843 

a https://lcsb-databases.epfl.ch/Graph2/loadPathway/1/1468050408,1469435049,1468050416/2806125367,2806150968/0  
b https://lcsb-databases.epfl.ch/Graph2/loadPathway/1/1468050425,1469288899,277921848,1468050433/2603459454,2603467379,2682146339/0 
c https://lcsb-databases.epfl.ch/Graph2/loadPathway/1/1468050433,1469288674,1468050440/2603455158,2682148818/0 
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3.5 Conclusion	

This work attempts to use biochemical knowledge and biochemical reaction principles to map the 

hypothetical vicinity of known biochemical databases to address the vast amount of metabolic “dark matter”. 

Based on 1.5 million known biological and bioactive compounds unified in bioDB, we predicted 1.6 million 

biochemically possible biotransformations between biological and bioactive compounds using 490 

generalized reaction rules (bioATLAS). We then predicted more than 3.6 million reactions that involved 

compounds from the chemical compound space, resulting in a total of almost 5.2 million in chemATLAS. From 

this new wealth of information, we extracted insightful numbers on the reactivity and connectivity of 

biologically relevant molecules.   

Assessing the composition of metabolic “dark matter” is by definition difficult, since we lack a way to quantify 

the unknowns a priori. Fortunately, biochemical data collected and generated from our database allows us 

to answer a broad range of questions regarding the biochemical reactivity of compounds, the expansion of 

biochemical space from a graph-theoretical perspective, and the characteristics of our hypothetical reaction 

network. Potential applications of ATLASx include the prediction of bioproduction or biodegradation 

pathways involved in the transformation of commodity and specialty chemicals, pharmaceuticals, and 

plastics. ATLASx can also be used to discover the biosynthesis routes of poorly characterized secondary 

metabolites, and systematically fill in knowledge gaps surrounding metabolic models. Using ATLASx, one can 

expand the network around all compounds within a given metabolic model, remove dead-end metabolites, 

and then examine the new, expanded model for potential shortcuts, enhanced predictions, and enzymatic 

promiscuity.  

Since we successfully integrated tens of thousands of chemical compounds into a biochemical network, we 

hypothesize that many compounds are not yet part of any database, even though they potentially exist in 

nature or could be created by metabolic engineering. While the integration and accurate prediction of 

hypothetical compound structures remains an open challenge, ATLASx provides the necessary tools and 

conceptual framework to predict hypothetical compounds reliably in the future. In order to properly meet 

that future, ATLASx is designed as a dynamic database, and can be continuously expanded around 

biochemical pathways or compound classes of interest. We believe that predictive biochemistry is crucial for 

the advancement of synthetic biology and metabolic engineering, and hope that ATLASx can provide reliable 

reaction and pathway predictions for the scientific community. 
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4.1 Introduction	

Recent advances in synthetic biochemistry have resulted in a wealth of novel hypothetical enzymatic 

reactions that are not matched to protein-encoding genes, deeming them “orphan”. A large number of 

known metabolic reactions are also orphan, leaving important gaps in metabolic network maps. Proposing 

genes for the catalysis of orphan reactions is critical for applications ranging from biotechnology to medicine. 

This chapter starts with an introduction on the enzymatic gaps in biochemistry, followed by short review on 

recent advances in the field of enzyme prediction. Next, we introduce a novel computational method, BridgIT, 

to identify potential enzymes of orphan reactions and nearly all theoretically possible biochemical 

transformations, and we validate predications of BridgIT within several large-scale analyses. 

4.1.1 Catalytic	dark	matter	

Genome-scale reconstructions of metabolic networks can be used to correlate the genome with the observed 

physiology, though this hinges on the completeness and accuracy of the sequenced genome annotations. 
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Orphan reactions, which are enzymatic reactions without protein sequences or genes associated with their 

functionality, are common and can be found in the genome-scale reconstructions of even well-characterized 

organisms, such as Escherichia coli [1]. Recent publications reported that 40-50% of the enzymatic reactions 

cataloged in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2] lack an associated protein sequence 

[3][4]. 

Problems with orphan-like reactions can also arise in areas such as bioremediation, synthetic biology, and 

drug discovery, where exploring the potential of biological organisms beyond their natural capabilities has 

prompted the development of tools that can generate de novo hypothetical enzymatic reactions and 

pathways [5]–[11], [12, p. 4], [13]–[15]. These de novo reactions are behind many success stories in 

biotechnology, and they can also be used in the gap-filling of metabolic networks [6], [12], [13], [15]–[18]. 

While these enzymatic reactions have well-explained biochemistry that can conceivably occur in metabolism, 

they are essentially orphan reactions because they have no assigned enzyme or corresponding gene 

sequence. The lack of protein-encoding genes associated with the functionality of these de novo reactions 

limits their applicability for metabolic engineering, synthetic biology applications, and the gap-filling of 

genome scale models [19]. A method for associating de novo reactions to similarly occurring natural 

enzymatic reactions would allow for the direct experimental implementation of the discovered novel 

reactions or assist in designing new proteins capable of catalyzing the proposed biotransformation. 

4.1.2 Computational	approaches	

Computational methods for identifying candidate genes of orphan reactions have mostly been developed 

based on protein sequence similarity [3], [20]–[22]. The two predominant classes of these sequence-based 

methods revolve around gene/genome analysis [22]–[25] and metabolic information [26], [27]. Several 

bioinformatics methods combine different aspects of these two classes, such as gene clustering, gene co-

expression, phylogenetic profiles, protein interaction data, and gene proximity, for assigning genes and 

protein sequences to orphan reactions [28]–[31]. All of these methods use the concept of sequence similarity. 

Within this concept, homology between two sequences, one orphan and one well-characterized, is inferred 

when the two share more similarity than it would be expected by chance [32]. Then, the biochemical function 

is assigned to the orphan protein sequence assuming that homologous sequences have similar functions. 

This can be problematic because many known enzymatic activities are still missing an associated gene due to 

annotation errors, the incompleteness of gene sequences [33], and the fact that homology-based methods 

cannot annotate orphan protein sequences with no or little sequence similarity to known enzymes [3], [34]. 

Moreover, sequence similarity methods can provide inaccurate results, as small changes in key residues 

might greatly alter enzyme functionality [35], and also it is a common observation that vastly different protein 

sequences can exhibit the same fold and, therefore, have similar catalytic activity even though they look very 

different [36], [37]. In addition, these methods are not suitable for the annotation of de novo reactions since 
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current pathway prediction tools only provide information about enzyme catalytic biotransformations and 

not about their sequences. 

These shortcomings motivated the development of alternative computational methods based on the 

structural similarity of reactants and products for identifying candidate protein sequences for orphan 

enzymatic reactions [31], [35], [38]–[42]. The idea behind these approaches was to assess the similarity of 

two enzymatic reactions via the similarity of their reaction fingerprints, i.e., the mathematical descriptors of 

the structural and topological properties of the participating metabolites [43], which could eliminate the 

problems associated with non-matching or unassigned protein sequences. In such methods, the reaction 

fingerprint of an orphan reaction is compared with a set of non-orphan reference-reaction fingerprints, and 

the genes of the most similar reference reactions are then assigned as promising candidate genes for the 

orphan reaction. Reaction fingerprints can be generated based on different similarity metrics, such as the 

bond change, reaction center, or structural similarity [42]. 

One class of reaction-fingerprint computational methods compares all of the compounds participating in 

reactions [42], which includes both reactants and cofactors. The application of this group of methods is 

restricted to specific enzymatic reactions that do not involve large cofactors [31], [35], [38]–[42]. This is 

because the structural information of the large cofactors overwhelmingly contributes to the corresponding 

reconstructed reaction-fingerprint, and consequently, reactions with similar cofactors will inaccurately be 

classified as similar (35–38).  

Another class of reaction-fingerprint methods uses the chemical structures of reactant pairs for comparison 

[40]. While these methods can be applied to all classes of enzymatic reactions, they neglect the crucial role 

of cofactors in the reaction mechanism. Moreover, neither of these two classes of methods have been 

employed for assigning protein sequences to de novo reactions [40]. 

4.1.3 BridgIT		

In this chapter, we introduce a novel computational method, BridgIT, that links orphan reactions and de novo 

reactions, predicted by pathway design tools such as BNICE.ch [16], Retropath2 [15], DESHARKY [10], and 

SimPheny [12], with well-characterized enzymatic reactions and their associated genes. BridgIT uses reaction 

fingerprints to compare enzymatic reactions and is inspired by the “lock and key” principle that is used in 

protein docking methods [44] wherein the enzyme binding pocket is the “lock” and the ligand is a “key”. If a 

molecule has the same reactive sites and a similar surrounding structure as the native substrate of a given 

enzyme, it is then rational to expect that the enzyme will catalyze the same biotransformation on this 

molecule. Following this reasoning, BridgIT uses the structural similarity of the reactive sites of participating 

substrates together with their surrounding structure as a metric for assessing the similarity of enzymatic 

reactions. It is substrate-reactive-site centric, and its reaction fingerprints reflect the specificities of 
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biochemical reaction mechanisms that arise from the type of enzymes catalyzing those reactions. BridgIT 

introduces an additional level of specificity into reaction fingerprints by capturing critical information about 

the enzyme binding pocket. More precisely, BridgIT allows us to capture approximately the 2D structure of 

the enzyme binding pocket by incorporating the information about sequences of atoms and bonds around 

the substrate reactive site. 

Through several studies, we demonstrated the effectiveness of utilizing the BridgIT fingerprints for mapping 

novel and orphan reactions to the known biochemistry. These reactions are mapped according to the enzyme 

commission (EC) [45] number, which is an existing numerical classification scheme for enzyme-based 

reactions. The EC number can classify enzymes at up to four levels, with a one-level classification being the 

most general and a four-level classification being the most specific, and these enzyme-based reactions are 

then represented by four numbers, one for each level, separated by periods (e.g. 1.1.1.1). We show that 

BridgIT is capable of correctly predicting enzymes with an identical third-level EC number, indicating a nearly 

identical type of enzymatic reaction, for 94% of orphan reactions from KEGG 2011 that became non-orphan 

in KEGG 2016. This result validates the consistency of the sequences predicted by BridgIT with the 

experimental observations, and it further suggests that BridgIT can provide enzyme sequences for catalyzing 

nearly all orphan reactions. We also studied how the size of the BridgIT fingerprint impacts the BridgIT 

predictions. We show that BridgIT correctly identifies protein sequences using fingerprints that describe the 

neighborhood up to six bonds away from the atoms of the reactive site. Strikingly, we also find that it is 

sufficient to use the information of only three bonds around the atoms of the reactive sites of substrates to 

accurately identify protein sequences for 93% of the analyzed reactions.  

Finally, to indicate the power of this computational technique, we applied BridgIT to the study of all of the 

137,000 novel reactions from the ATLAS of biochemistry, a database of all theoretically possible biochemical 

reactions [46], most of which have no current route to their synthesis or development. Using our technology, 

we provide candidate enzymes that can potentially catalyze the biotransformation of these reactions to the 

research community, which should provide a basis for the engineering and development of novel enzyme-

catalyzed biotransformations. 

4.2 Materials	and	Methods	

4.2.1 BridgIT	workflow	

The BridgIT workflow together with an example of its application on an orphan reaction is demonstrated in 

Figure 4.1. BridgIT is organized into four main steps:  

1. reactive site identification, 
2. reaction fingerprint construction, 
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3. reaction similarity evaluation,  
4. scoring, ranking, and gene assignment. 

 
 The inputs of the workflow are (i) an orphan or a novel reaction and (ii) the collection of BNICE.ch generalized 

enzyme reaction rules. As explained in chapter 2, these reaction rules assemble biochemical knowledge 

distilled from the biochemical reaction databases, and they are used to discover de novo enzymatic reactions 

as well as predict all possible pathways from known compounds to target molecules [16], [46], [47]. Here, we 

used the generalized enzyme reaction rules to extract information about the reactive sites of substrates 

participating in an orphan or a novel reaction, and we integrated it into the BridgIT reaction fingerprints 

(Figure 4.1, panels 1 and 2). We then compared the obtained BridgIT reaction fingerprints to the ones from 

the reference reaction database based on the Tanimoto similarity scores (Figure 4.1, panel 3). A Tanimoto 

score near 0 designates reactions with no or low similarity, whereas a score near 1 designates reactions with 

high similarity. We used these scores to rank the assigned reactions from the reference reaction database, 

and we identified the enzymes associated with the highest-ranked reference reactions as candidates for 

catalyzing the analyzed orphan or novel reaction (Figure 4.1, panel 4). In the next sections, we discuss the 

reconstructions and testing of the various components of BridgIT as well as the results of our main analyses. 

A web-tool of BridgIT can be consulted at http://lcsb-databases.epfl.ch/pathways/Bridgit. 
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Figure 4.1: Main steps of the BridgIT workflow: (1) reactive site recognition for an input reaction (de novo or orphan); (2) reaction 

fingerprint construction; (3) reaction similarity evaluation; and (4) sorting, ranking and gene assignment. Panels 1.a to 1.c illustrate 

the procedure of the identification of reactive sites for the orphan reaction R02763. Panel 1.a: Two candidate reactive sites of 3-

Carboxy-2-hydroxymuconate semialdehyde (substrate A) that were recognized by the rules 4.1.1. (green) and 1.13.11 (red). Panel 

1.b: Both rules recognized the connectivity of atoms within two candidate reactive sites. Panel 1.c: Only reaction rule 4.1.1. can 

explain the transformation of substrate A to products. Panel 2.a shows the fragmentation of reaction compounds, whereas panel 2.b 

illustrates the mathematical representations of the corresponding BridgIT reaction fingerprints. 

 

4.2.1.1 Reactive site identification 

An enzymatic reaction occurs when its substrate(s) fits into the binding site of an enzyme. Since the structure 

and geometry of the binding sites of enzymes are complex and most of the time not fully characterized, we 

proposed focusing on the similarity of the reactive sites of their substrates. Following this, we used the 

expert-curated, generalized reaction rules of BNICE.ch to identify the reactive sites of substrates. These 

reaction rules have third-level EC identifiers, e.g., EC 1.1.1, and they encompass the following biochemical 

knowledge of enzymatic reactions: (i) the information about atoms of the substrate’s reactive site; (ii) their 

connectivity (atom-bond-atom); and (iii) the exact information of bond breakage and formation during the 

reaction. 

Given a novel or orphan reaction, the reactive sites of its substrate(s) are identified in three steps. In the first 

step, the BNICE.ch generalized reaction rules that can be applied to groups of atoms from the analyzed 

substrates are identified. Then, the information about the identified rules and the corresponding groups of 

atoms is stored. Subsequently, these groups of atoms are then referred to as the candidate substrate reactive 

sites. In the second step, among the identified rules, only the ones that can recognize the connectivity 

between the atoms of the candidate substrate reactive sites are kept. In the third step, whether the 

biotransformation of a substrate(s) to a product(s) can be explained by the rules retained after the second 

step is tested. The candidate reactive sites corresponding to the rules that have passed the three-step test 

are validated and used for the construction of reaction fingerprints.  

We illustrate this procedure on an orphan reaction R02763, which catalyzes the conversion of 3-Carboxy-2-

hydroxymuconate semialdehyde (substrate A) to 2-Hydroxymuconate semialdehyde and carbon dioxide 

(Figure 4.1). In the first step, 210 rules were identified that could be applied to groups of atoms of substrate 

A (Figure 4.1, panel 1a). Out of the 210 rules, 168 matched the connectivity (Figure 4.1, panel 1b). Finally, the 

168 reaction rules were applied to substrate A for bond breaking and formation comparisons, and one rule 

could explain the transformation of substrate A to the products (Figure 4.1, panel 1c).  
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4.2.1.2 Reaction fingerprint construction 

After recognition of the reactive site, the information of atom-bond configuration inside and also in 

neighbourhood of the reactive site are stored in a mathematical description, called fingerprint.   

Molecular fingerprints, which are the linear representations of the structures of molecules, have been used 

in many methods and for different applications, especially for structural comparison of compounds [48], [49]. 

One of the most commonly used molecular fingerprints is the Daylight fingerprint [48], and it decomposes a 

molecule into eight layers starting from layer zero that accounts only for atoms. Layer 1 expands one bond 

away from all of the atoms and accounts for atom-bond-atom connections. This procedure is continued until 

layer 7, which includes seven connected bonds from each atom. There are two types of Daylight reaction 

fingerprints: (i) structural reaction fingerprints, which are simple combinations of reactant and product 

fingerprints, and (ii) reaction difference fingerprints, which are the algebraic summation of reactant and 

product fingerprints multiplied by their stoichiometry coefficients in the reaction. In this study, we propose 

a modified version of the reaction difference fingerprint. The procedure for formulating BridgIT reaction 

fingerprints is demonstrated through an example reaction (Figure 4.1, panel 2).  

Starting from the atoms of the identified substrate reactive site, eight description layers of the molecule were 

formed, where different layers consisted of fragments with different lengths. Fragments were composed of 

atoms connected through unbranched sequences of bonds. Depending on the number of bonds included in 

the fragments, different description layers of a molecule were formed as follows: 

Layer 0: Describes the type of each atom of the reactive site together with its count. For example, the 

substrate of the example reaction at layer 0 was described as 3 oxygens and 5 carbon atoms (Figure 4.1, 

panel 2a). 

Layer 1: Describes the type and count of each bond between pairs of atoms in the reactive site. In the 

example, the substrate at layer 1 was described with six fragments of length 1: 1 C-O, 3 C-C, 2 C=O and 1 C=C 

bond (Figure 4.1, panel 2a). Fragments are shown by their SMILES molecular representation [50]. In order to 

convert SMILES to canonical SMILES we used Open Babel C++ library [49]. 

Layer 2: Describes the type and count of fragments with three connected atoms. While layers 0 and 1 

described the atoms of reactive sites, starting from layer 2, atoms that were outside of the reactive site were 

also described. In the illustrated example, there were six different fragments of this type (Figure 4.1, panel 

2a). 

The same procedure was used to describe the molecules up to layer 7. Interestingly, and consistent with the 

previously reported result [43], we found that the 7-layer description was good enough to capture the 

structure of most of the metabolites in biochemical reactions, therefore providing a precise reaction 



BridgIT: Enzyme annotation for orphan and novel reactions using knowledge of substrate reactive sites 
 

85 

fingerprint (discussed in section 4.3.3) . Note that not all description layers are needed to describe less 

complex molecules. For example, product C (carbon dioxide) was fully described using only layer 0 and layer 

1 (Figure 4.1, panel 2a). For very large molecules, the description layers that contain fragments with more 

than 8 connected atoms can be used. 

For each layer, the substrate set was formed by merging all of the fragments, their type, and their count in 

the substrate molecules of the reaction, and the product set was formed by merging all of the fragments 

(type and count) in the product molecules of the reaction. In both sets, the count of each fragment was 

multiplied by the stoichiometric coefficients of the corresponding compound in the reaction. Finally, the 

reaction fingerprints were created by summing the fragments of the substrate and product sets for each 

layer (Figure 4.1, panel 2b).  

Introducing the specificity of reactive sites into the reaction fingerprint allows BridgIT to capitalize on the 

information about enzyme binding pockets [16]. To keep this valuable information throughout the 

generation of reaction fingerprints, BridgIT does not consider the atoms of the reactive site(s) when 

performing the algebraic summation of the substrate and product set fragments. Consequently, the BridgIT 

algorithm enables retaining, tracking, and emphasizing the information of the reactive site(s) in all of the 

layers of the reaction fingerprint, which distinguishes it from the existing methods.   

4.2.1.3 Reaction similarity evaluation 

The similarity of two reactions was quantified using the similarity score between their fingerprints, 

subsequently referred to as reaction fingerprints A and B. In this study, the Tanimoto score, which is an 

extended version of the Jaccard coefficient and cosine similarity, was used [51]. Values of the Tanimoto 

scores near 0 indicate reactions with no or negligible similarity, whereas values near 1 indicate reactions with 

high similarity.  

The Tanimoto score for each descriptive layer, TLk, together with the global Tanimoto score, TG, was 

calculated. The Tanimoto score for the k-th descriptive layer was defined as: 

Equation 4.1: The Tanimoto score for the k-th layer !!" = #!
$!%&!'#!

 

where ak was the count of the fragments in the k-th layer of reaction fingerprint A; bk was the count of the 

fragments in the k-th layer of reaction fingerprint B; and ck was the number of common k-th layer fragments 

of reaction fingerprints A and B. Two fragments were equal if their canonical SMILES and their stoichiometric 

coefficients were identical. The global Tanimoto similarity score, TG, was defined as follows: 
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Equation 4.2: The global Tanimoto similarity score !! = 	∑ $!"
!#$

∑ %!&∑ '!"
!#$ (∑ $!"

!#$
"
!#$

 

For each reaction fingerprint, its Tanimoto similarity score was calculated against the reaction fingerprints 

from the BridgIT reference database, which contained reaction fingerprints of all known, well-characterized 

enzymatic reactions (Figure 4.1, panel 3). 

4.2.1.4 Sorting, ranking and gene assignment 

For a given input reaction, the reference reactions (Explained in the section 4.2.2) were ranked using the 

computed TG scores. The algorithm distinguished between the identified reference reactions with the same 

TG score based on the TL score of layers 0 and 1, and it also allows the user to assign ranking weights to 

specified layers. The protein sequences associated with the highest ranked, i.e., the most similar, reference 

reactions were then assigned to the input reaction (Figure 4.1, panel 4).  

4.2.2 Reference	reaction	database	

The BridgIT reference reaction database is an essential component of the BridgIT workflow (Figure 4.1). It 

consists of well-characterized reactions with associated genes and protein sequences, and it was built based 

on the KEGG 2016 reaction database. The KEGG database is the most comprehensive database of enzymatic 

reactions, and it provides information about biochemical reactions together with their corresponding 

enzymes and genes. However, half of KEGG reactions lack associated genes and protein sequences, and they 

are hence considered to be orphan reactions. The BridgIT reference database was built using the KEGG 

reactions that (i) can be reconstructed by the existing BNICE.ch generalized reaction rules and are elementally 

balanced (5,270 reactions) and (ii) are non-orphan (5,049 reactions). This restriction removes reactions that 

lack characterized substrate reactive sites, meaning that they cannot be used in our comparisons. As a result, 

the reference reaction database contains information for 5,049 out of 9,556 KEGG reactions. 

4.3 Results	and	Discussion		

4.3.1 Sensitivity	analysis	of	the	BridgIT	fingerprint	size	

The defining characteristic of the BridgIT reaction fingerprint is that it is centered around the reactive site of 

the reaction substrate(s). The number of description layers in the BridgIT fingerprint, i.e., the fingerprint size, 

defines how large of a chemical structure around the reactive site we consider when evaluating the similarity 

(See section 4.2.1.2). To investigate to what extent the fingerprint size affects the similarity results, we 

performed a sensitivity analysis where we varied the fingerprint size between 0 to 10. 

For this analysis, we considered the 5,049 non-orphan KEGG reactions that existed in the BridgIT reference 

reaction database. We started by forming reaction fingerprints that contained only the description layer 0 

(fingerprint size 0) and evaluated how many of 5,049 non-orphan reactions BridgIT could correctly identify. 
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We next formed the reaction fingerprints using only the description layers 0 and 1 (fingerprint size 1), and 

we performed the evaluation again. We repeated this procedure until the final step, where we formed the 

reaction fingerprints with ten description layers (fingerprint size 10).  

As expected, the increase in the fingerprint size, i.e., specificity, led to a decrease in the average number of 

similar reactions assigned to the studied reactions. Moreover, the more description layers that were 

incorporated into the BridgIT fingerprint, the more accurately BridgIT matched the analyzed reactions (Table 

4.1). Already for a fingerprint size 7, BridgIT correctly mapped 100% of the analyzed reactions, i.e., each of 

the 5,049 non-orphan reactions was matched to itself in the reference reaction database. This indicated that 

the information about chains of eight atoms along with their connecting bonds around the reactive sites was 

sufficient for BridgIT to correctly match all non-orphan KEGG reactions, and we chose the fingerprint size 7 

for our further studies.  

Table 4.1: Percent of correctly mapped reactions as a function of the size of the BridgIT and the standard fingerprint. 

 Fingerprint size 

 0 1 2 3 4 5 6 7 8 9 10 

BridgIT fingerprint 

% correctly mapped reactions 
4.3 35.2 60.5 72.1 92.7 97.8 98.6 100 100 100 100 

 

4.3.2 BridgIT	reaction	fingerprints	offer	improved	predictions	

To evaluate BridgIT performances against existing approaches in this field [40], [42, p.], [52], we performed 

two comparative studies. In the first study, we repeated the analysis from the previous section using the 

standard reaction difference fingerprint (Section 4.2.1.2), which is used in structure similarity methods such 

as RxnSim [38] and RxnFinder [39], to assess the benefits of introducing the information about the reactive 

site of substrates into the reaction fingerprints. A comparison of the two sets of predictions on 5,049 non-

orphan reactions showed that the predictions obtained with BridgIT-modified fingerprints were significantly 

better than the standard ones. BridgIT identified 100% of non-orphan reactions correctly versus the 71% 

success rate for the standard fingerprint method. Furthermore, BridgIT correctly matched 93% of the 

analyzed enzymatic reactions using the information about only four connecting bonds around the atoms of 

the reactive sites (fingerprint size 4) (Table 4.1), which exceeds the 71% of matched reactions when using the 

standard reaction fingerprints (fingerprint size 7). 

The inferior performance of the standard reaction fingerprint method arose from three main sources. First, 

fragments from the substrate and product sets were cancelled out upon algebraic summation inside the 
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fingerprint description layers (Section 4.2.1.2), in which description layers 0 and 1 define the single atoms 

and the connected pairs of atoms of the reactive site, and layers 2 to 7 include information about the 

chemical structure around the reactive site that contains up to eight atoms and seven bonds (Figure 4.1). 

This cancellation occurred in all description layers (fingerprint size 7) for 246 non-orphan reactions, i.e., their 

standard fingerprints were empty. As an example, Figure 4.2 shows the standard reaction fingerprint of KEGG 

reaction R00722 that was empty for the standard fingerprint method. The information about reactive sites 

introduced in the BridgIT reaction fingerprints prevents such cancellations, since BridgIT does not include the 

atoms of the reactive site(s) in the process of the algebraic summation of the substrate and product set 

fragments (Section 4.2.1.2). As a result, BridgIT mapped R00722 to itself and identified R00330 as the most 

similar reaction to R00722 (Figure 4.2, panel A). Indeed, according to the KEGG database, the enzyme 2.7.4.6 

catalyzes both reactions. 

Second, the performance of the standard reaction fingerprint suffered because the first description layer of 

the standard fingerprint was empty for an additional 1,129 reactions, which indicated that these fingerprints 

did not represent the bond changes during the reaction. 

Third, the remaining 89 mismatched non-orphan reactions had partial cancellations in the fingerprint 

description layers. For example, the standard fingerprint method incorrectly identified R03132 as the most 

similar to R00691, whereas BridgIT identified R00691 and R01373 as the most similar to R00691 (Figure 4.2, 

panel B), which matches the KEGG reports indicating that both R00691 and R01373 can be catalyzed by either 

EC 4.2.1.51 or EC 4.2.1.91. 

 

Figure 4.2: Comparison of the results obtained with the BridgIT and standard fingerprint on two example KEGG reactions. (A) The 

input reaction R00722 (left) and the most similar reactions (right) identified with the BridgIT and standard fingerprints. Note that the 
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standard fingerprinting method failed to find a similar reaction to R00722 due to cancellations inside all fingerprint description layers.  

(B) The input reaction R00691 (left) and the most similar reactions (right) identified with the BridgIT and standard fingerprints. 

In the second study, we compared the performance of BridgIT method against three state-of-art methods 

EC-BLAST (42), Selenzyme (48), and E-zyme2 (40) on two benchmark problems. The benchmark problems 

consisted of identifying the most similar reactions to two example reactions each representing a class of 

reactions that appear ubiquitously in biochemical networks. We choose R00722 (Figure 4.2, panel A) to 

exemplify the first class of reactions characterized by a very similar structure of substrates and products, and 

R07500 to represent the class of multi-substrate multi-product reactions (Appendix, Table 8.2 and Table 8.3). 

For the two benchmark reactions, we ranked the similar reactions proposed by each of methods according 

to the corresponding similarity scores, and top 100 similar reactions proposed by each method were used 

for comparisons. 

The most similar reaction proposed by BridgIT correctly matched the 4th level EC number (2.7.4.6) of the first 

benchmark reaction R00722 (Appendix, Table 8.2). Three out of four EC-BLAST variants [42] proposed a set 

of the reactions with the maximal similarity score (Appendix, Table 8.2). This set contained reactions that 

correctly matched the 4th level EC number of R00722, but also reactions with EC numbers not even matching 

the 1st level EC number of the benchmark reaction (Appendix, Table 8.2). The three variants of Selenzyme 

[52] proposed reactions that could match only the 3rd level EC number of R00722, whereas E-zyme2 was 

unable to find a matching reaction due to very similar structures in the substrate-product pairs (Appendix, 

Table 8.2). 

In the second benchmark, none of the investigated methods could propose reactions that match the EC 

number of R07500 (2.5.1.115) up to the 4th level, and all methods could match the 3rd level EC number for 

this reaction (Appendix, Table 8.3). BridgIT proposed 39 similar reactions matching the 3rd level EC numbers 

of R07500, whereas the EC-BLAST variant with structural similarity proposed 45, Selenzyme 10, E-zyme2 9, 

and the three other EC-BLAST variants proposed 5-7 such reactions (Appendix, Table 8.3). Additionally, we 

performed receiver operating characteristic (ROC) analysis on the sets of proposed similar reactions, and out 

of all compared methods BridgIT had the highest area under the curve (AUC) index of 0.95, meaning that it 

had the best performance among the compared methods for this class of reactions (Appendix, Table 8.3). 

The results of these two studies demonstrate the potential of BridgIT to outperform the currently available 

methods for enzyme annotation.  

4.3.3 From	reaction	chemistry	to	detailed	enzyme	mechanisms	

Approximately 15% of KEGG reactions (1,532 reactions) are assigned to more than one enzyme and EC 

number, i.e., multiple enzymes can catalyze a specific biotransformation through different enzymatic 

mechanisms. For example, KEGG reaction R00217 is assigned to three different EC numbers, 4.1.1.3 
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(oxaloacetate carboxy-lyase), 1.1.1.40, and 1.1.1.38 (both malate dehydrogenases), and the corresponding 

reactions involve different mechanisms (Figure 4.3). The reaction mechanism of the 4.1.1.3 enzyme is well 

understood, as it belongs to the carboxy-lyases, where a carbon-carbon bond is broken and a molecule of 

CO2 is released. This enzyme can decarboxylate three different compounds: glutaconyl-CoA, methylmalonyl-

CoA, and oxaloacetate (from this example). The overlapping reactive site of these three compounds is 

captured in the 4.1.1B rule of BNICE.ch (Figure 4.3, panel C). In contrast, the 1.1.1.38 enzyme found in 

bacteria and insects and 1.1.1.40 found in fungi, animals, and plants are rather specific enzymes that 

decarboxylate oxaloacetate and malate with two different mechanisms. The decarboxylation is performed in 

the case of oxaloacetate without and in the case of malate with the incorporation of NAD+ as a cofactor. The 

difference in the structure of these two molecules is only in having either a ketone or an alcohol group on 

the second carbon. Consequently, the structure of the reactive site that these enzymes recognize has to 

reflect the difference between malate and oxaloacetate, and this is well captured in the 1.1.1A rule of 

BNICE.ch. The 4.1.1B rule requires a less specific reactive site compared to the 1.1.1A rule, and these two 

rules have two different reaction fingerprints for catalyzing the same reaction R00217 because they describe 

different mechanisms for the same reaction. 

Moreover, for 42% of the KEGG reactions that have a single enzyme assigned to them, BNICE.ch identified 

multiple alternative reactive sites and created multiple reaction fingerprints that describe the 

biotransformation of these reactions. Therefore, a single reaction from KEGG was translated into more than 

one fingerprint in the BridgIT reference database. This way, by preserving the information about enzyme 

binding pockets, the reconstructed BridgIT reference reaction database expands from 5,049 reactions to 

17,657 reaction fingerprints corresponding to 17,657 detailed reaction mechanisms. 

Currently, BridgIT is the only method that can distinguish different reaction mechanisms for the reactions 

catalyzed by different enzymes. As a consequence, BridgIT can propose distinct sets of protein sequences 

corresponding to distinct mechanisms and rank them according to the BridgIT score. The protein sequences 

can then be prioritized based on the BridgIT ranking, enzyme specificity, and the host organism.  
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Figure 4.3: A multi-enzyme reaction such as R00217 can be catalyzed by more than one enzyme. BridgIT identified two distinct 

fingerprints for this reaction that correspond to two reactive sites of oxaloacetate. The reactive site recognized by the 1.1.1.- rule is 

more specific (blue substructure) than the one recognized by the 4.1.1.- rule (green substructure). 

 

4.3.4 Comparison	of	BridgIT	and	BLAST	predictions	

As a means to relate reaction structural similarity obtained using BridgIT with reaction sequence similarity 

obtained using BLAST [53], we applied these two techniques in parallel on a subset of reactions and their 

corresponding protein sequences from the reference reaction database. We compared the similarity results 

of BridgIT with those of BLAST, and we statistically assessed BridgIT performance using receiver operating 

characteristic (ROC) curve analysis.   

We chose E. coli BW29521 (EBW) as our benchmark organism for this analysis. There were 531 non-orphan 

reactions in EBW associated with 413 protein sequences. In total, there were 731 reaction-gene associations, 

as there were reactions with more than one associated gene, and genes associated with more than one 

reaction. We removed all of the non-orphan reactions of EBW from the BridgIT reference database and we 

removed their associated protein sequences from the KEGG protein sequence database. We then used 

BridgIT to assess the structural similarity of the 531 EBW reactions to the BridgIT reference reactions using 

the Tanimoto score, and we also applied BLAST to quantify the similarity of the 413 EBW protein sequences 

to the KEGG protein sequence database using e-values. The concept of the validation procedure is illustrated 

in Figure 4.4. We provided a list of BridgIT reaction-reaction comparisons together with BLAST sequence-

sequence comparisons.  
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Comparing reaction (BridgIT) and sequence (BLAST) similarity scores. We considered two sequences to be 

similar if BLAST reported an e-value of less than 10-10 for their alignment. For a chosen discrimination 

threshold (DT) of the global Tanimoto score (TG) we considered the BridgIT prediction of similarity between 

an EBW reaction and a BridgIT reference reaction with a Tanimoto score of TG as: 

I. True Positive (TP) if TG > DT and their associated sequence(s) were similar (e-value < 10-10); 

II. True Negative (TN) if not similar for both BridgIT (TG < DT) and BLAST+ (e-value > 10-10); 

III. False Positive (FP) if similar for BridgIT (TG > DT) but not similar for BLAST+ (e-value > 10-10); 

IV. False Negative (FN) if not similar for BridgIT (TG < DT) but similar for BLAST+ (e-value < 10-10). 

 

We then counted the number of TPs, TNs, FPs, and FNs for all 531 reactions, and we summed these quantities 

to obtain the total number of TPs, TNs, FPs, and FNs per chosen DT. We repeated this procedure for a set of 

DT values varying across the interval between 0 and 1. Finally, we used the total number of TPs, TNs, FPs, 

and FNs to compute the true positive and false positive rates for the ROC curve analysis (Figure 4.5, panel A). 

The ROC curve indicated that the reaction comparison based on reaction structural similarity (BridgIT) was 

comparable to the one based on reaction sequence similarity (BLAST). Indeed, the obtained area under the 

ROC curve (AUC) score for the BridgIT classifier was 0.91, indicating that the similarities between the two 

methods were very high (Figure 4.5, panel A). We next studied if the type of compared reactions affected the 

accuracy of BridgIT predictions by categorizing reactions according to their first-level EC class, which indicates 

the broadest category of enzyme functionality, and then performing the ROC analysis for each class 

separately (Figure 4.5, panel A). The analysis revealed that BridgIT performed well with all major enzyme 

classes, as represented by the high AUC scores, ranging from 0.88 (EC 1) to 0.96 (EC 5).  

We next analyzed the accuracy of BridgIT classification as a function of the DT of the Tanimoto score (Figure 

4.5, panel B). The accuracy ranged from 43% for DT = 0.01 to 85% for DT = 0.30. For values of DT > 0.30, the 

accuracy monotonically decreased toward a value of 62% for DT = 1. The classifier was overly conservative 

for values of DT > 0.30, and it was rejecting true positives (Figure 4.5, panel B). More specifically, for 

DT = 0.30, the TP percentage was 38%, whereas, for DT = 1, it was reduced to 3%. In contrast, the TN 

percentage increased very slightly for the values of DT > 0.30, where for DT = 0.30, it was 46%, and for DT = 1, 

it was 57% (Figure 4.5, panel A). Based on this analysis, we have chosen a DT of 0.30 as an optimal threshold 

value for further studies. 
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Figure 4.5: Panel A: ROC curve for the BridgIT classifier among all EC classes and inside each class. Panel B: Accuracy characteristics 

and the percentages of TP, TN, FP and FN as a function of the discrimination threshold DT. The percentages are computed as 

X %=100*X/(TP+TN+FN+FP) where X can be TP, TN, FP or FN. 

4.3.5 BridgIT	analysis	of	known	reactions	with	common	enzymes	

The 5,049 reactions in the reference database were catalyzed by only 2,983 enzymes, i.e., there were 

promiscuous enzymes that catalyzed more than one reaction. Out of the 2,983 enzymes, 844 of them were 

promiscuous, catalyzing 2,432 of the reactions. Interestingly, BridgIT correctly assigned more than 80% of 

these 2,432 reactions to their corresponding promiscuous enzyme. An example of such a group is given in  

Table 4.2. This table shows the same enzymes listed across the top and down the size of the grid, with the 

corresponding Tanimoto scores indicating the accuracy of BridgIT’s classifications. The overall high scores in 

this grid indicate the accuracy of the enzyme assignments. 

We investigated the remaining 20% of reactions in depth, and we observed that the Tanimoto scores of the 

first two description layers (Section 4.3.1.2) indicated a very low similarity between the reactions catalyzed 

by the same enzyme. This result suggested that such enzymes were either multi-functional, i.e., they had 

more than one reactive site (Figure 4.6), or were incorrectly classified in the EC classification system. 

Table 4.2: A group of five reactions catalyzed by enzyme 1.1.1.219, wherein the Tanimoto score is given for the comparison between 

the reaction listed across the top and the reaction listed down the side. 

 

Catalyzed reactions R03123 R03636 R05038 R07999 R07998 

R03123 1 0.96 0.93 0.93 0.98 

R03636 0.96 1 0.96 0.94 0.95 
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R05038 0.93 0.96 1 0.97 0.91 

R07999 0.93 0.94 0.97 1 0.91 

R07998 0.98 0.95 0.91 0.91 1 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Multi-functional enzymes can catalyze reactions with two different reactive sites. (A) R03539 and (B) R03208 are catalyzed 

by the same enzyme, 1.11.1.8. However, the reactive sites of these substrates are completely different 

 

4.3.6 BridgIT	validation	against	biochemical	assays	

To assess BridgIT’s performance using biochemically confirmed reactions, we performed two validation 

studies on sets of (I) orphan and (II) novel reactions. Since the known reactions in KEGG are all experimentally 

confirmed using biochemical assays, we could use this pooled experimental data from hundreds of 

laboratories to demonstrate BridgIT’s ability to identify potential enzymes for catalyzing the biologically 

relevant orphan reactions on a large scale. 

Study I: We compared the number of orphan reactions in the two versions of the KEGG reaction database, 

KEGG 2011 and KEGG 2018. We found that 234 orphan reactions from KEGG 2011 were later associated with 

enzymes in KEGG 2018, meaning they became non-orphan reactions. Since these newly classified reactions 

have been experimentally confirmed, we used these 234 reactions as a benchmark to evaluate BridgIT 

performance.  
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We formed the reference reaction database using the reactions from KEGG 2011 (Section 4.2.2), and we 

compared the BridgIT results with the KEGG 2018 enzyme assignments up to the third EC level. Remarkably, 

BridgIT and KEGG 2018 assigned enzymes matched to the third EC level for 211 out of 234 (90%) reactions. 

This means that BridgIT accurately predicted the enzyme mechanism for enzymes that have been 

biochemically confirmed to catalyze a large majority of the orphan reactions in 2011. In addition, the set of 

protein sequences proposed by BridgIT comprised highly related protein sequences to the ones assigned to 

these enzymes in KEGG 2018. 

The 234 reactions are catalyzed by 168 enzymes with specified fourth-level EC numbers in KEGG 2018. 

However, only 29 out of these 168 enzymes were cataloged in KEGG 2011, and the remaining 139 enzymes 

had new fourth-level EC classes assigned in KEGG 2018 – meaning BridgIT only had access to the 29 enzymes 

that were classified in KEGG 2011 from which the reference reaction database was built. The 29 enzymes 

catalyzed 35 out of the 234 studied reactions. For 29 out of these 35 (83%) orphan reactions, the BridgIT 

algorithm predicted the same sequences that KEGG 2018 assigned to these reactions. A higher matching 

score when comparing up to the third EC level rather than the fourth EC level is likely because BridgIT uses 

BNICE.ch generalized reaction rules, which describe the biotransformations of reactions with specificities up 

to the third EC level. 

Study II: The ATLAS of biochemistry [46] provides a comprehensive catalog of theoretically possible bio-

transformations between KEGG compounds, and it can be mined for novel biosynthetic routes for a wide 

range of applications in metabolic engineering, synthetic biology, drug target identification, and 

bioremediation (40). We studied the 379 reactions from the ATLAS of Biochemistry that were novel in KEGG 

2014 and were later experimentally identified and catalogued in KEGG 2018.  

We formed the reference reaction database using the reactions from KEGG 2014 and applied BridgIT to these 

379 reactions. For 334 out of these 379 reactions, BridgIT proposed similar known reactions with a Tanimoto 

score higher than 0.3, thus providing promising protein sequences for enzymes catalyzing these reactions. 

For 14 of these novel reactions, BridgIT assigned the same sequences that were assigned in KEGG 2018. An 

example of such a reaction is rat132341, which was a novel reaction in 2014 and later was catalogued as 

R10392 in KEGG 2018 (Figure 4.7, panel A). The BridgIT analysis of this reaction revealed that R03444, which 

is catalyzed by enzyme 4.2.1.114, is the structurally closest reaction to this novel one, suggesting that protein 

sequences from EC 4.2.1.114 can catalyze this novel reaction. This was later confirmed by experimental 

biochemical evidence, as R10392 is associated with the same EC 4.2.1.114 enzyme in KEGG 2018. There are 

243 available protein sequences for enzyme 4.2.1.114, and one sequence already has a confirmed protein 

structure (Figure 4.7, panel C). This represents the first computational method for predicting protein 

sequences for orphan and novel reactions whose results were validated using experimental biochemical 

evidence on a large scale.  
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Figure 4.7: Details of the BridgIT verification procedure that was performed on ATLAS reaction rat132341, which was novel in KEGG 

2014 and later experimentally identified and catalogued in KEGG 2018 — i.e., it became a non-orphan reaction (R10392). (A) 

rat132341 catalyzes the conversion of (R)-(Homo)2-citrate to cis-(Homo)2-aconitate. (B) Using the biochemical knowledge of KEGG 

2014, BridgIT predicts the KEGG reaction R03444, which is catalyzed by a 4.2.1.114-class enzyme, as the most similar known reaction 

to rat132341. Remarkably, the same enzyme is later assigned to R10392 in KEGG 2018 with the corresponding biochemical 

confirmation. (C) The identified EC number (4.2.1.114) can be used to extract the corresponding protein sequences along with their 

crystal structures.   

 

4.3.7 BridgIT	predictions	for	KEGG	2018	orphan	reactions	

We applied BridgIT to the 810 orphan KEGG 2018 reactions that could be reconstructed using the BNICE.ch 

generalized reaction rules. The remaining 1646 orphan reactions could not be reconstructed because they 

are either not balanced or lack the structure for at least one of their substrates. Remarkably, BridgIT identified 

corresponding reference reactions with Tanimoto scores higher than the optimal threshold value of 0.30 for 

97% of the orphan reactions. The remaining 3% of orphan reactions had a low similarity with the reference 

reactions. A large number of the orphan reactions originate from the pathways toward plant and microbial 

natural products that frequently involve complex and less-investigated classes of enzymes such as polyketide 
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synthases (PKS), non-ribosomal peptide synthetases (NRPSs), Terpene Cyclases (TCs) and Cytochromes 

P450s. Interestingly, BridgIT mapped 112 out of 810 orphan reactions back to these families, i.e., it predicted 

that 72 orphan reactions can be catalyzed by P450s, 33 by PKSs, 6 by NRPSs and 1 by TC.  

This result and the fact that BridgIT correctly mapped 100% of non-orphan KEGG reactions suggested that, 

as our knowledge of biochemistry expands, the annotation of novel and orphan reactions using tools such as 

BridgIT will also improve.  

4.3.8 BridgIT	predictions	for	ATLAS	novel	reactions	

We further utilized BridgIT to identify candidate enzymes for all the 137,000 de novo, orphan-like, ATLAS 

reactions. These candidate enzymes can either be used directly in systems biology designs if the matched 

enzymes perform the desired catalysis, or their amino acid sequences can be optimized through protein 

engineering to achieve the desired results. We found that 7% of novel ATLAS reactions were matched to 

known KEGG reactions with a Tanimoto score of 1 (perfect match), while 88% were similar to KEGG reactions 

with a Tanimoto score higher than the optimal threshold value of 0.3. Therefore, BridgIT could identify 

promising enzyme sequences for catalyzing 95% of novel ATLAS reactions. The remaining 5% of these 

reactions were not similar to any of the well-characterized, known enzymatic reactions.  

Finding well-characterized reactions that are similar to novel ones is crucial for evolutionary protein 

engineering as well as computational protein design, and methods like BridgIT can be instrumental in moving 

from a concept to the experimental implementation of de novo reactions. Additionally, to facilitate the 

experimental implementation of novel ATLAS reactions in metabolic engineering, systems and synthetic 

biology, and bioremediation studies, we can use the BridgIT similarity scores as confidence measures for 

evaluating the feasibility. 

The results of the BridgIT analysis of the KEGG 2018 orphan and novel ATLAS reactions are available on the 

website http://lcsb-databases.epfl.ch/atlas/. 

4.4 Access	to	online	version	of	BridgIT	

The online version of BridgIT is available on the homepage of LCSB website (http://lcsb-databases.epfl.ch). 

Users can access BridgIT after registration and creating account.  

In the analyse tab of BridgIT page, users can upload a zip file including: a text file of reaction equations (one 

reaction per line) and one folder containing the molfiles of reaction participants. For more details about the 

format of the input file, please check the user manual of BridgIT available on LCSB website.  

After the successful uploading of input the latest version of BridgIT will be running in the background and 

users will receive a link corresponding to the submitted input. Depending on the complexity and also number 
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of reactions in the input file results will be ready in some minutes to some hours. The results can be directly 

accessed from download link and are available for one week, after that they will be automatically deleted. 

In the result file, the most similar metabolic reactions to input reaction are ranked based on their BridgIT 

score.  Also, each similar metabolic reaction is annotated with it’s EC number and this EC number is used to 

get gene information from protein sequence databases.   

4.5 Conclusion	and	Outlook	

We developed the computational tool, BridgIT, to evaluate and quantify the structural similarity of 

biochemical reactions by exploiting the biochemical knowledge of BNICE.ch generalized reaction rules. 

Because the generalized reaction rules can identify reactive sites of substrates, BridgIT can translate the 

structural definition of biochemical reactions into a novel type of reaction fingerprint that explicitly describes 

the atoms of the substrates’ reactive sites and their surrounding structure. Through the analysis of 5,049 

known and well-defined biochemical reactions, we found that knowledge of the neighborhood up to three 

bonds away from the atoms of the reactive site can predict biochemistry and match catalytic protein 

sequences. The reaction fingerprints proposed in this work can be used to compare all novel and orphan 

reactions to well-characterized reference reactions and, consequently, to link them with genes, genomes, 

and organisms. We demonstrated through several examples the improvements that the BridgIT fingerprint 

brings to the field compared to the fingerprints currently existing in the literature. 

A drawback of traditional sequence similarity methods is that they cannot identify protein sequence 

candidates for de novo reactions, which we have shown BridgIT can do.  

We tested BridgIT predictions against experimental biochemical evidence, within two large-scale validations 

studies on sets of (i) 234 orphan and (ii) 379 de novo reactions. The reactions from these two sets were 

unknown in the previous versions of the KEGG database but were later experimentally confirmed and 

catalogued in KEGG 2018. BridgIT predicted the exact or a highly related enzyme for 89% of these reactions. 

We further applied BridgIT to the entire catalog of de novo reactions of the ATLAS of Biochemistry database 

and proposed several candidate enzymes for each of them. The candidate enzymes for these de novo 

reactions are either immediately capable of catalyzing these reactions or can serve as initial sequences for 

enzyme engineering. The obtained BridgIT similarity scores can also be used as a confidence score to assess 

the feasibility of the implementation of novel ATLAS reactions in metabolic engineering and systems biology 

studies.  

The applications of BridgIT go beyond merely bridging gaps in metabolic reconstructions, as this method can 

be used to identify the potential utility of existing enzymes for bioremediation as well as for various 

applications in synthetic biology and metabolic engineering. As the field of metabolic engineering grows and 
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metabolic engineering applications increasingly turn towards the production of valuable industrial chemicals 

such as 1,4-butanediol [54], [55], we expect that methods for the design of de novo synthetic pathways, such 

as BNICE.ch [16], and methods for identifying candidate enzymes for de novo reactions, such as BridgIT, will 

grow in importance. 
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 	Enzyme	prediction	in	practice:	

lessons	learned,	challenges	and	

opportunities	

 “We cannot solve our problems with the same level of thinking that created them” 
Albert Einstein 

 

5.1 Introduction	

A part of section 5.1 is submitted as a chapter for metabolic engineering series books (pathway design).  Dr. 

Jasmin Hafner and the author both were in charge of preparation and writing. 

As the field of biotechnology, and in particular metabolic engineering and synthetic biology grows, 

applications increasingly turn toward the production of valuable industrial chemicals and new methods for 

designing de novo synthetic pathways. The biosynthesis of added value compounds offers several key 

advantages over chemical synthesis. First, various enzymes are required to catalyse different steps of a 

complex biosynthesis pathway, can operate simultaneously under the same biological relevant conditions, 

such as: ambient temperature and pressure, neutral pH and aqueous solution. In addition, the renewable 

and cheap materials can be used as the input of process and finally higher amount of product can be achieved 

by consumption of less amount of energy [1] .  

In the biosynthesis, the compound to be produced is called “target compound”. The target compound is 

synthesized from one (or several) starting metabolites, called the “precursor compound”. The biosynthetic 

pathway is therefore defined as a sequence of reactions that convert the precursor compound into the final 

target compound. Metabolic pathways can be designed manually by relying on the intuition of the scientist 

or be generated by computational predictive tools. It is up to the scientist to decide which part of the design 

step can be done manually, and which one needs a computational approach. In general, if the pathway 

leading to the target compound has been characterized previously in another organisms, the easiest solution 

might be to rely on existing knowledge and to express the enzymes catalyzing each step in the host 

(heterologous pathway expression). For this, the scientist can consult biochemical databases to retrieve 

information on the pathway to be implemented. The main drawback of manual pathway design is that the 
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pathway chosen by intuition might be suboptimal compared to other unexplored biochemical possibilities. 

Also, this approach is limited to known biochemistry from scientific articles and databases, and not 

considering novel predicted reactions. The success of manual pathway design relies on the biochemical 

knowledge of the researcher. In the beginning of metabolic engineering, intuitive pathway design has been 

the only possible approach, and since then this method is behind many success stories of metabolic 

engineering. Later, advanced computational tools and methods accelerated the development of bioproducer 

strains and stimulated the exploration of the biochemical space.  

Whether a pathway comes from a known database or has been generated by computational tools, each 

enzymatic reaction steps in the pathway needs to be catalyzed by an enzyme. For known, well-described 

reactions, appropriate enzymes can be found by literature search or database lookup. If the list of pathways 

obtained from the previous step is long, automated querying of enzyme databases can be used to assign 

enzymes to reactions. However, the enzyme information cannot be found if the pathway incorporates orphan 

reactions (i.e, enzyme catalyzing the reaction is not discovered yet, see chapter 4) or novel reactions 

(reactions predicted by predictive computational tools, see chapter 3). 

Despite the increasing progress in enzyme discovery, still about one fourth of the enzymatic reactions 

catalogued in biochemical databases are orphan, meaning these observed enzymatic activities are not 

associated with gene information in any organism [2]. This type of orphan reactions is defined as global 

orphan. From taxonomic point of view, a second type of orphan activity, known as local orphan is defined 

[2]. Local orphan reactions are observed enzymatic activities in at least one organism of a clade although the 

corresponding gene information only exist in other clades [2]. An example is the aspartate 4-decarboxylase 

(EC 4.1.1.12) which catalyses the conversion of L-aspartate to L-alanine by releasing carbon dioxide. 

According to uniport, EC 4.1.1.12 is linked to hundreds of gene sequence in bacteria. However, there is not 

any sequence annotated with this function in eukaryote or archaea kingdom. Nevertheless, the activity of 

aspartate 4-decarboxylase is observed and characterized in several mammalians. Therefore, EC 4.1.1.12 is a 

local orphan activity in eukaryotes. In case of archaea, there is no literature evidence or characterization for 

activity of this enzyme reported so far, consequently this enzymatic activity is considered absent in this 

kingdom [2]. In conclusion, in addition to one fourth of global orphan activities, the portion of local orphan 

reactions in each kingdom is significant and changes from 24 percent in archaea to 20 percent in eukaryote 

and 14 percent in bacteria [2] and leaves important gaps in metabolic pathways. 

 Furthermore, producing new-to-nature compounds (e.g., biosynthesis of chemicals) necessarily entails the 

engagement of novel reactions in the pathway and therefore use of novel enzymatic activities. But the 

question is, “which enzymes can generate such metabolic novelties?”. Most if not all the enzymes are 

promiscuous, meaning they can catalyze side reactions other than their main function. In nature, the 

presence of promiscuity activities has led to evolution of new enzymes [3]. However, the promiscuity and 
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basically desired non-native function of an enzyme will not be known a priori. Given the wealth of enzymatic 

knowledge that has been accumulated, a computational method to predict enzymes that may catalyze a 

desired transformation will greatly expedite the development of biosynthetic pathways engineered to 

produce new-to-nature products.  Understanding the relation between structure and promiscuity remains a 

challenging feature to be understood. Enzyme prediction tools such as BridgIT[4], EC-BLAST[5], E-zyme[6] 

and Selenzyme[7] determine the structural similarity of a novel reaction to all well-characterized reactions in 

biochemical databases, and propose a list of enzyme candidates ranked by their likelihood to catalyze the 

desired transformation. The novelty of BridgIT tool relies on using reactive site-centric similarity, meaning 

instead of considering the overall structure of molecules in similarity calculations, BridgIT calculates similarity 

in reactive site and the neighborhood around the reactive site (Please see chapter 4). In contrast, the overall 

structure can be much larger than the reactive site and skew the comparison by indicating high similarities 

when the reactivity is actually quite different [8].  

In this chapter, we demonstrate capability of  BridgIT in annotation of orphan reactions via two case studies. 

In the first case study (section 5.2), we aim to predict a homologous pathway for adipic acid biosynthesis in 

yeasts and specifically in Saccharomyces cerevisiae and Yarrowia lipolytica. Adipic acid is a chemical building 

block for the production of nylon and polyurethane. Adipic acid is currently produced by catalytic oxidation 

of benzene derivatives with concurrent production of nitrous oxide, which contributes to the greenhouse 

effect and ozone layer depletion. A more environmentally friendly bio-based production process is desirable. 

To design a route towards adipic acid, a conventional literature and database search was performed. Finally, 

an existing pathway with 10 steps of KEGG reactions for the production of adipic acid proposed.  However, 4 

steps (of 10) were the bottlenecks for the production, since 2 were global orphan reactions and the other 

two reactions were local orphan. Using BridgIT, we discovered 4 enzymes (native to Yarrowia lipolytica) for 

catalyzing each orphan step and we demonstrated its functionality in the yeasts Saccharomyces cerevisiae 

and Yarrowia lipolytica. Y.lipolytica was engineered by over-expression of homocitrate synthase 

YALI0F31075g (E.C.2.3.3.14), homoaconitate hydratase YALI0E02728g (E.C.4.2.1.36), di- and tri-carboxylic 

acids mitochondrial transporters YALI0D02629g and YALI0F26323g, and by expression of codon-optimized 

adipate-semialdehyde dehydrogenases from Acinetobacter sp. and Pseudomonas sp. The engineered strain 

produced 0.2 mg/L of adipic acid in mineral medium with glucose as the sole carbon source and 30 mg/L 

adipic acid in municipal solid waste hydrolyzate. The work demonstrates the utility of BridgIT for pathway 

discovery and describes the first biosynthetic route towards adipic acid that functions in eukaryotes.  

In the second case study, the plant specialized metabolism as an important source of pharmaceutical 

molecules is studied. Despite their significant value only a fraction of plant natural products (PNPs) and their 

derivatives have been explored. To access this untapped potential, the reconstitution of heterologous PNP 

biosynthesis pathways in engineered microbes provides a valuable starting point to explore and produce 
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novel PNP derivatives. We introduce a computational workflow to systematically screen the biochemical 

vicinity of a biosynthetic pathway for pharmaceutical compounds that could be produced by derivatizing 

intermediates in the original pathway. As a case study, we explored the neighborhood of noscapine pathway, 

a benzylisoquinoline alkaloid with a long history of medicinal use. We found (S)-tetrahydropalmatine, a 

known analgesic and anxiolytic, is one reaction step away from intermediates of noscapine pathway. 

However, the last step is a global orphan reaction. We used BridgIT to find candidate enzymes for its 

catalyzation. The two-top proposed candidates exhibited the desired activity, resulting in a yeast platform 

for (S)-tetrahydropalmatine production. Our novel approach provides a valuable resource for researchers 

who aim to study and engineer the bioproduction of natural product derivatives. 

These case studies demonstrate the value of cheminformatic tools to predict reactions, pathways, and 

enzymes in synthetic biology and metabolic engineering. Furthermore, studying these specific situations offer 

great opportunities to investigate the variety of challenges that the biosynthesis and pathway design could 

face in practice. The focus is not so much on the specific compounds to be produced but on the type of 

problems, how they are understood and approached, and what action ensues. In conclusion, the findings 

from these two case studies offer guidance toward (i) manual or computational design of pathways,  (ii) 

homologues or heterologous pathway expression and their implementation, (iii)  local or global orphan 

enzymatic activities and their  annotation (Table 5.1).  

Table 5.1: Overview on the pathways discussed in section 5.2 and 5.3. 

Target Compound Organism Pathway design 
Orphan reactions 

 Pathway type* Highest titer Carbon source 
Global Local 

Adipic acid Y. lipolytica 
S. cerevisiae Manual 2

**
 2

**
 Homologous 30 mg/L Food waste 

hydrolysate 

Tetrahydropalmatine 
(THP) S. cerevisiae Computational 1

**
 - Heterologous 3.45 µg/L Sugar 

* Homologous or heterologous. Homologous pathways are catalyzed by native enzymes of the organisms. In case of heterologous pathways, 
additional enzymes are integrated into microorganism.                 
** BridgIT is used as the enzyme annotation tool.   

Due to the high applicability of BridgIT for any metabolic or protein engineering application, the proposed 

candidate enzymes will be an important resource for all academic and industry researchers actively involved 

in protein evolution and engineering technologies for nearly any biotechnology application. It is reasonable 

to expect that BridgIT method, with its wide – reaching multidisciplinary aspect, will serve as a tool for 

categorizing future enzymatic reactions and as a reference database for all researchers for the next 

generations of enzymatic technology development. 
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5.2 A	novel	pathway	for	adipic	acid	biosynthesis	in	yeasts		

This subchapter is the result of collaboration with the experimental lab of Prof. Irina Borodina at University of 

Denmark (DTU), which started in the context of two weeks exchange student part of PAcMEN EU project 

(Predictive and Accelerated Metabolic Engineering Network) 2. The results of this collaboration led to 

discovery of a new biosynthetic pathway for production of adipic acid in yeast.  This subchapter represents 

the manuscript corresponding to this study which is recently submitted. In this project, the experimental 

results and BLAST analysis have been obtained by Ksenia Chekina, Dmitriy Abashkin, Jonathan Dahlin, Mette 

Kristensen, Nicholas Milne and Maria Sanchis. BridgIT analysis and pathway feasibility study have been 

provided by the author of this thesis. Prof. Vassily Hatzimanikatis and Prof. Irina Borodina supervised the 

project as well as the completion of the manuscript.   

 Full list of authors of this paper: K. Chekina†, H. MohammadiPeyhani†, D. Abashkin, J. Dahlin, M. Kristensen, 

N. Milne, M. Sanchis, V. Hatzimanikatis*, and Irina Borodina*,” A novel pathway for adipic acid biosynthesis 

in yeasts” († Contributed equally, * corresponding authors). 

5.2.1 Introduction	

Adipic acid (hexane-1,6-dioic acid) is a dicarboxylic acid with a $5.6 billion market in 2016 [9]. Adipic acid is 

primarily used for the production of nylon-6,6 in a polycondensation reaction with hexamethylenediamine. 

Other uses include production of other plastics and application as an acidity regulator in foods.  

Adipic acid is made through oxidation of cyclohexanone and cyclohexanol with nitric acid, where a by-product 

nitrous oxide (N2O) is produced in a one-to-one molar ratio to adipic acid [10]. Nitrous oxide is a potent 

greenhouse gas with a 265–298 times higher global warming potential than CO2[11]. It is also currently the 

main ozone-depleting chemical[12]. Recently, catalytic methods have been developed to reduce the 

emissions of N2O in the tail gasses from adipic acid production by up to 98%[13]. However, the remaining 2% 

still released is equal to 4 million tons of CO2 per year and remains to be the second-largest source of 

industrial N2O pollution[14]. The feedstocks for adipic acid production are crude oil and naphtha. There are 

hence ongoing efforts to develop novel processes for adipic acid production from renewable feedstocks. 

The first attempt to produce adipic acid from biomass was reported in the 1980s. A two-step process was 

demonstrated, where 1,6-hexanediol was generated by dehydration and hydrogenation of lignocellulosic 

biomass, and, consequently, 1,6-hexanediol was oxidized into adipic acid biologically using Gluconobac 

teroxydans subsp. oxydans[15].  The process was, however, very energy-intensive and was not realized at 

scale.  

Another possible route is a two-stage process, where in the first step, cis,cis-muconic acid (CCM) is produced 

from lignin or sugars, and in the second step, CCM is hydrogenated into adipic acid via chemical catalysis[16]. 

The whole process from lignin to nylon was demonstrated at laboratory scale, where hydrothermally 

depolymerized softwood lignin was used as the substrate for CCM production by an engineered strain of P. 

 
2
 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie 

Sklodowska-Curie grant agreement No 722287. 
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putida, resulting in 13 g/L CCM titer. CCM was purified from the fermentation broth, hydrogenated into adipic 

acid, which in turn was polymerized into nylon-6,6.[17]  

Several studies reported the production of CCM from glucose, with the highest titer for E. coli being 16 

g/L[18], and for the yeast S. cerevisiae being 20.8 g/L CCM in controlled fed-batch fermentation, with a yield 

of 8.4% (molCCM/molglucose) [19].  

Direct production of adipic acid through bioconversion of fatty acids by engineered oleaginous yeast Candida 

tropicalis was developed by the company Verdezyne. The strain expressed heterologous ɷ-oxidases and had 

some peroxisomal oxidases deleted to ensure that fatty acyl-CoAs were preferentially truncated down to six 

carbons to give adipic acid[20]. The disadvantages of the process were a relatively high cost of the fatty acid 

feedstocks and low yields due to carbon loss in the b-oxidation.   

The only organism so far reported to naturally produce adipic acid is a thermophilic bacterium Thermobifida 

fusca of the order Actinomycetales [21]. The pathway was elucidated to be comprised of five steps, (i) ligation 

of succinyl-CoA and acetyl-CoA into 3-oxoadipyl-CoA, (ii) reduction into 3-hydroxyadipyl-CoA, (iii) 

dehydration to obtain a double-bond, and (iv) hydrogenation into adipyl-CoA, which is (v) lyased to give adipic 

acid. Overexpression of 5-carboxy-2-pentenoyl-CoA reductase (Tfu_1647) in T. fusca B6 resulted in 2.23 g/L 

adipic acid produced from glucose as the sole carbon source with 5.6% yield (moladipate/molglucose).  

The pathway from T. fusca was expressed in E. coli, giving 2.5 g/L of adipic acid in bioreactors using glycerol 

as a carbon source, with 4.4% yield (moladipate/molglycerol)[22]. To our knowledge, this pathway has not yet 

been successfully expressed in eukaryotic hosts, likely due to the problems with the expression of a functional 

iron-sulfur cluster-dependent dehydratase.  

Here we investigate the possibility to produce adipic acid from sugars using yeasts. Several yeast species are 

particularly well suited for large-scale industrial processes, due to their resistance to the stresses in large 

tanks, low pH tolerance, and long history of safe use, among them the oleaginous yeast Yarrowia lipolytica 

and baker’s yeast S. cerevisiae.  

5.2.2 Materials	and	methods	

5.2.2.1 Computational pathway design 

To design a route towards adipic acid, a conventional literature and database search was performed. Then, 

the possible targets were analyzed by BLAST[23] and BridgIT[24] algorithms and finally were imbedded into 

a Yarrowia genome-scale model, iYali4[25], for feasibility analysis. The updated model was used for flux 

balance analysis (FBA)[26] and thermodynamic based flux analysis (TFA)[27] to interrogate the mass balance 

and energy balances of the pathways respectively.  
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The BLASTp algorithm with the default parameters was used to find endogenous alternatives in Y. lipolytica 

to thermophilic enzymes. CLC Main Workbench 8 (https://digitalinsights.qiagen.com/) was used to align 

Lys21p of S. cerevisiae to the YALI0F31075p of Y. lipolytica.  

We used the BridgIT algorithm, to find the potential promiscuous enzymes able to catalyze orphan reactions 

inside pathway. In this study, we used  the online version of BridgIT (https://lcsb-databases.epfl.ch/Bridgit) 

with default parameters as suggested by the original method [24]. We considered a BridgIT score of 0.3 as 

the minimum standard threshold in similarity evaluations. 

Furthermore, the genome scale model of Y. lipolytica, iYali4, which has 1942 reactions and 1691 metabolites 

was used for flux balance analysis (FBA)[26] and thermodynamic based flux analysis (TFA)[27] to interrogate 

the mass balance and energy balances of the pathways respectively. In FBA feasibility is analysed using 

stoichiometric mass balance constraints and default reaction directionalities in the model [26]. In TFA, 

thermodynamic constraints are used to assign reaction directionalities that are thermodynamically favorable. 

These constraints take into account Gibbs free energy of reactions and metabolite concentrations[27]. 

5.2.2.2 Microorganisms 

Chemically competent Escherichia coli DHα was used for the cloning and plasmid propagation. Transformed 

with plasmids, E. coli cultures were grown in Lysogeny Broth (LB) supplemented with 100 mg/L ampicillin and 

when needed with 15 g/L agar.  

Two strains of Yarrowia lipolytica and one strain of Saccharomyces cerevisiae were subject to genome editing. 

Y. lipolytica Y-63746 (MatA, Y. lipolytica W29) was a kind gift from ARS Culture Collection, NCAUR, USA. Y. 

lipolytica GB20 with genotype MATb, ku70Δ, nugm-Htg2, ndh2i, lys11−, leu2−, ura3− was a kind gift of Volker 

Zickermann (Goethe-Universität, Germany). S. cerevisiae CEN.PK113-7D, a prototrophic haploid strain 

(MATa URA3 HIS3 LEU2 TRP1 MAL2-8c SUC2) was a gift from Dr. Peter Kötter (Goethe-Universität, Germany).  

Y. lipolytica strains were edited according to EasyCloneYALI protocol[28].  S. cerevisiae strains were modified 

according to EasyClone-MarkerFree protocol[29]. 

The strains are described in appendix Table 8.4, plasmids in Table 8.5, biobricks in Table 8.6, and primers in 

appendix Table 8.7. Heterologous genes were codon-optimized for Y. lipolytica and ordered as synthetic gene 

strings from GeneArt, Thermofisher (appendix Table 8.8).  

5.2.2.3 Media and cultivation conditions 

All strains were stored as cryostocks, at -80°C in medium with 30% v/v glycerol. The composition of mineral 

medium for S. cerevisiae was as described previously[30], with major components being 7.5 g/L (NH4)2SO4, 

14.4 g/L KH2PO4, 0.5 g/L MgSO47H2O, 20 g/L glucose, 1 mL of trace metals solution, and 1 mL vitamins. In 

some experiments, the medium was supplemented with 0.2 g/L of 2-oxoglutarate. For Y. lipolytica, the 
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medium was the same, except that the trace metal mix was as specified by Kamzolova et al.[31]. For growing 

auxotrophic strains, the medium was supplemented with 76 mg/L lysine, 380 mg/L leucine, and 20 mg/L 

uracil. All the media was adjusted to pH 4.5 and filter-sterilized through bottle top filters with 0.2 μm pore 

size.  

The food waste hydrolysate was prepared from a batch of canteen leftovers.  It was freeze-dried and milled 

using Polymix PX-MFC mill, Kinematica (WH1, WH2, WH3-1, WH3-3) or just wet-milled (WH4-2, WH4-3) 

followed by total solids adjustment to 25%. Then WH4-3 sample were treated with commercial proteases 

TRIO 15 g/100 g glucane at 50°C for 8 hours with inactivation of proteases at 80°C for 2 hours. Then all 

samples were adjusted to pH 5.2, and commercial cellulases Cellic Ctec3, 15 g/100 g glucane, were applied 

for 72 hours at 50°C. Then WH1, WH2, and WH3-3 samples were directly frozen, WH3-1 was supplemented 

with 4 mg/L of ampicillin and then frozen, and WH4-2, and WH4-3 samples were autoclaved at 121°C for 1 

hour before freezing.   

The samples of the pre-treated hydrolysate were thawed and centrifuged in 50 mL Falcon tubes at the 15,000 

g for 10 minutes. After removing the insoluble fraction with a cotton cloth, the supernatant was filter-

sterilized through syringe filters with 0.2 μm pores, and directly used for further experiments. 200 μL of each 

sample was submitted for HPLC analysis for the sugar concentration measurements (UltiMate 3000, Dionex) 

using Aminex HPX-87H ion exclusion column with a 5 mM H2SO4 flow of 0.6 ml/min for 45 min per sample 

and the temperature of column 50°C.  Sugars were detected using RI-101 Refractive Index Detector (Dionex). 

The data were acquired and analyzed with Chromeleon software using the correlation curve of the standards 

with known concentrations.  

For cultivation test, 2 ml of yeast peptone dextrose medium (YPD, Sigma–Aldrich) in 13 ml-round bottom 

tubes were inoculated directly from the cryostocks and incubated overnight at 30°C with 250 rpm agitation. 

The cells were harvested by centrifugation in 2 ml sterile Eppendorf tubes at 3,000 x g for 5 min, washed 

twice with sterile water, and diluted in water until OD 10, controlled by a spectrophotometer 

(NanoPhotometer Perl, Implen Gmbh, Munich, Germany).   

The 24-well clear-bottom plates (Porvair Sciences, Leatherhead, UK) containing 1 ml of medium (2% glucose 

mineral medium or food waste hydrolysate) were inoculated with pre-washed culture with starting OD 0.05 

and incubated at 30°C for 70h with 250 rpm at 100% humidity in the Growth Profiler 960 (Enzyscreen, 

Haarlem, The Netherlands).  

The endpoint samples were diluted with water with ration 1/3, filter sterilized and submitted for LS-MS 

analysis.  
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The growth data was collected by processing the phase-contrast images acquired with 809 magnification 

every 15 minutes, converting the G-value into OD  using the OD600 equivalent = 0,01 × (GV-GB)^1,5807, 

where GV is a G-value of the well, and GB is a G value of the plain media. The correlation was found by 

measuring several growth points at the photometer and refereeing them to G-value of the taken pictures.   

5.2.2.4 Metabolite measurement by LS-MS 

The concentration of adipic acid and the pathway intermediates in the broth was measured on LC-MS system, 

Dionex UltiMate 3000 UHPLC (Fisher Scientific, San Jose, CA) connected to an Orbitrap Fusion Mass 

Spectrometer (Thermo Fisher Scientific, San Jose, CA). The system used a Waters ACQUITY HSS T3 C18 UHPLC 

column, with a 1.8 um particle size, 2.1 mm i.d. and 100 mm long kept at 30°C. The flow rate was 0.400 

mL/min with 0.1% formic acid (A) and 0.1% formic acid in acetonitrile (B) as the mobile phase. The gradient 

started at 5% B for 1.5 min and then followed a linear gradient to 60% B over 5 min. This solvent composition 

was held to 5.5 min after which it was changed immediately to 90% B until 6.0 min. Finally, the gradient was 

changed to 5% B until 8 min. The sample (2 uL) was passed on to the MS equipped with a heated electrospray 

ionization source (HESI) with sheath gas set to 45 (a.u.), aux gas to 13 (a.u.) and sweep gas to 1 (a.u.). The 

cone and probe temperatures were 342°C and 358°C, respectively. Spray voltage was 2500 V in negative 

ionnization mode and 3500 V in positive mode. Scan range was 100 to 600 Da. Detection of adipic acid 

(145.0506 ion),2-oxoadipate (159.0299 ion), 2-aminoadipate (160.0615 ion),2-semialdehyde (129.0557 ion) 

and 2-oxopimelate (173.0444 ion) was conducted in full scan. Quantification of 2-oxoadipate, 2-

aminoadipate, and adipate was based on calculations from calibration standards analyzed before and after 

sets of 32 samples. The concentrations of 2-oxopimelate and adipate-semialdehyde in the broth of different 

strains were compared by using relative area units of ions with masses matching the  theoretical m/z of the 

specific compounds.  

All reagents used were of analytical grade and purchased from Sigma-Aldrich, except adipic acid, which was 

purchased from TCI Europe N.V.     

5.2.3 Results	

5.2.3.1 Pathway design 

The adipic acid pathway previously reported in the bacterium T. fusca has not yet successfully been 

implemented in yeast. The focus of the current study was to find an alternative route for de novo synthesis 

of adipic acid in yeast that does not require Fe-S cluster-dependent enzymes.  

Adipic acid is a dicarboxylic acid with 6 carbons. Among native compounds in yeast, the closest compound is 

2-oxoadipic acid, which is an intermediate of lysine biosynthesis. During lysine biosynthesis, homocitrate 

synthase combines the central carbon metabolites 2-oxoglutarate and acetyl-CoA to make homocitrate. 

Homocitrate is transported into mitochondria, where it is isomerized into homoisocitrate via homoaconitate. 
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Homoisocitrate, in turn, is converted into 2-oxoadipate by homoisocitrate dehydrogenase. 2-oxoadipate is 

exported into the cytosol and transaminated to give the lysine precursor 2-aminoadipate. We hypothesized 

that if homocitrate synthase could accept 2-oxoadipate as the substrate instead of 2-oxoglutarate and the 

resulting one-carbon longer compound would go through the same steps, then 2-oxopimelate would be 

produced. The 2-oxopimelate could be decarboxylated to give adipate semi-aldehyde, which could be further 

oxidized into adipic acid. 

The majority of decarboxylation and oxidation enzymes in nature are known to be active on a wide range of 

substrates[32],[33],[34].  The promiscuity of lysine biosynthetic enzymes has been described in methanogenic 

bacteria. Methanogen homoaconitase (E.C.4.2.1.114) participates in the chain extension in methanogenic 

bacteria in the order: 2-oxoglutarate – 2-oxoadipate – 2-oxopimelate – 2-oxosuberate. The extension of 2-

oxoglutarate to 2-oxoadipate in methanogens proceeds via the same intermediates as in yeast and the 

reaction mechanisms of every next loop are similar to those from the first extension. Homoaconitase of 

methanogens, such as Methanocaldococcus vulcanius, Methanothermobacter thermautotrophicus, and 

many others, consists of two subunits aksD and aksE, which require Fe-S cluster[35]. We therefore decided 

to find alternatives.  

The BLASTp algorithm with default settings was used to align the amino-acid sequence of the large and small 

subunits of all 121 annotated in KEGG metanogen homoaconitases to Y. lypolytica genome (CLIB122) to 

investigate if Y. lipolytica carries similar enzymes (appendix Table 8.9). The homoaconitase YALI0E02778p 

came up as the closest homologue with identity of 29-38% for the large subunit and 29-52% for the small 

subunit. YALI0E02778p homoaconitase is responsible for the isomerisation of homocitrate into 

homoisocitrate via dehydratation-hydratation steps (Figure 5.1).  
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Figure 5.1: Proposed adipic acid biosynthetic pathway. Steps 1 to 10 indicate the pathway towards adipic acid, which brunches from 

lysine biosynthesis with is steps 1 to 4 and V to X combined. Yali genes ID indicate described (in bold) and suggested (normal) genes 

in Y. lipolytica genome, and ↑ stands for overexpression of the genes in the current study. 

 

Next, we applied BridgIT algorithm to predict whether the enzyme would be able to isomerize (homo)2-citrate 

into iso(homo)2-citrate as well. BridgIT is a computational tool that identifies candidate enzymes for an input 

reaction based on the promiscuity of enzymes and introduces the information of the enzyme binding pocket 
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into reaction similarity comparisons [24]. It ascertains the similarity of two reactions by comparing the 

reactive sites of their substrates and neighborhood of reactive sites, along with the structures of the 

generated products. BridgIT compares orphan and novel reactions to enzymatic reactions with known 

protein sequences, and then, it proposes protein sequences and genes of the most similar non-orphan 

reactions as candidates for catalyzing the novel or orphan reactions. BridgIT suggests a list of top-ranked 

candidate EC numbers for every orphan/novel reaction, which allows us to evaluate other possible EC 

numbers even if the first candidate is not associated with any gene in the target organism. In this study, we 

used BridgIT tool to find (1) candidate protein sequence for orphan reactions (R08214, and R08331) and (2) 

alternative native candidate enzymes for non-native reactions in Y. lipolytica (R10392 and R10393, native to 

Methanocaldococcus jannaschii). Figure 5.2 demonstrates BridgIT procedure for an orphan reaction 

“R08214” (Figure 5.2). We followed the same procedure for the remaining 3 reactions, the result of the most 

similar reactions along with their EC numbers are shown in Table 5.2. 

 

Figure 5.2: BrigIT workflow proposes promiscuous enzymes for an orphan reaction. (I) Input to the workflow is an orphan reaction, 

R08214, which decarboxylates threo-(Homo)2-isocitrate. (II) BridgIT scans the substrates with enzymatic reaction rules and identifies 

the reactive site (green shade). The information about reactive site and its neighborhood (until seven atoms away from reactive site) 

along with corresponding atoms on the products are used for similarity evaluation. (III) The result report, ranks the most similar non-

orphan reactions based on their similarity to input. Here, R01934 catalyzed by EC 1.1.1.87 or EC1.1.1286 is the top ranked with BridgIT 

score 0.94. EC 1.1.1.87 is annotated as YALI0D10593g in Y. lipolytica genome. 
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Table 5.2: BridgIT results specific to Yarrowia lipolytica for R08331, R10392, and R10393 (only top results are shown). 

 

The pathway (10 reactions, Figure 5.1) was embedded in the curated Y. lipolytica genome-scale model 

(iYali4[25]), and then FBA and TFA feasibility were checked. Conversion of cis-(homo)2-aconitate to 

(homo)2-isocitrate (R10393) is thermodynamically not feasible on its own. In methanogens, this reaction is 

coupled with the previous reaction (R10392) under the control of one enzyme channeling the two reactions 

in one two-step reaction (R10391)[35]. When considered as such, the whole pathway is mass-balanced and 

energetically feasible in the context of the Y. lipolytica metabolic network with a maximum theoretical yield 

of 0.567 g adipid acid  per g glucose consumed.  

5.2.3.2 Production of adipic acid via the lysine pathway in Yarrowia lipolytica 

The computational analysis suggested that adipic acid can be produced in Y. lipolytica with the native 

enzymes. Indeed, a commonly used laboratory Y. lipolytica strain W29 produced 75±42 µg/L of extracellular 

adipic acid when cultivated in the mineral medium with glucose as the sole carbon source. The titer was very 

low, but detectable by LC-MS. (Appendix, Figure 8.2). 

To validate that adipic acid was produced as a side product of lysine biosynthesis, we cultivated another non-

engineered laboratory strain of Y. lipolytica GB20, which had a defective homocitrate synthase gene 

(YALI0F31075g)[36]. The strain was cultivated on the same medium, but with supplementation of lysine, 

leucine, and uracil to compensate for auxotrophy. No adipic acid was detected in the broth. We detected 

96±1.5 µg/L 2-oxoadipate in the broth, but this can likely be attributed to lysine degradation. Next, we tested 

whether restoration of homocitrate synthase activity would enable adipic acid production. Expression 

cassettes for YALI0F31075g (homocitrate synthase) and YALI0E02728g (homoaconitate hydratase) were 

integrated into a GB20 strain, and the resulting strain produced 125±69 µg/L of adipic acid. 2-oxoadipate in 

concentration 412 µg/L on average with high variation (standard deviation was±332 µg/L) and some 2-

oxopimelate was potentially detected, though the latter seven-carbon intermediate was not found in the 

parental strain. The exact concentration of 2-oxopimalate was not possible to calculate due to the lack of 

Input reaction 
EC Associated 

Enzyme 

Similar KEGG 

reaction 

EC Associated Enzyme to 

similar reaction 
Gene BridgIt score 

R08331 orphan R08640 EC 2.3.3.14 YALI0F31075g 0.77 

R10392 EC 4.2.1.114 R04371 EC 4.2.1.36 YALI0E02728g 0.74 

R10393 EC 4.2.1.114 R04371 EC 4.2.1.36 YALI0E02728g 0.72 
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standard, but the ion-peak matching the accurate mass of 2-oxopimelate was detected (Appendix, Figure 

8.2). 

The overexpression of the same genes in W29 background increased 2-oxoadipate up to 144±22.5 μg/L 

compared to 90±11 μg/L in the parental strain but did not significantly change the concentrations of 2-

aminoadipate, 2-oxopimelate, adipate semi-aldehyde, or adipate. 

As the engineered GB20 strain had a slightly higher titer of adipic acid (125±69 μg/L) than the engineered 

W29 strain (58±46 μg/L), we carried out further metabolic engineering work on the GB20 strain.   
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Figure 5.3: Production of adipic acid and lysine pathway intermediates by Y. lipolytica in mineral medium. ST6512 is a W29 strain with 

integrated cas9 and deletion of ku70D. ST7806 is GB20 engineered in the same way as ST6512. ST8070 and ST8071 strains were made 

from correspondingly ST6512 and ST7806 by overexpressing homocitrate synthase YALI0F31075p (E.C.2.3.3.14) and homoaconitate 

hydratase YALI0E02728p (E.C.4.2.1.36). ST8071_mut is analogous to strain ST8071, but it oveexpresses homocitrate synthase with 

Q377R mutation. ST8067 was made from ST8071 by expressing two heterologous codon-optimized semi-aldehyde dehydrogenases 

(E.C.1.2.1.63) from Acinetobacter (ChnE), and Pseudomonas (RK21_02870). ST8485 further overexpresses mitochondrial transporters 
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for di- and tri-carboxylic acids YALI0D02629p and YALI0F26323p.  Data are presented as mean with SD, 4≤N≤14. * stands for p<0.05 

in the t-test.   

 

The regulation of lysine biosynthesis in Y. lipolytica is not well studied, but in S. cerevisiae the lysine pathway 

is feedback regulated by lysine. The expression of six enzymes of the pathway is 2-4-fold lower in the 

presence of lysine[37], which represses transcriptional activators[38, p. 14] and activates suppressors[39, p. 

80]. In the current study, the homocitrate synthase YALI0F31075g (E.C.2.3.3.14), and homoaconitate 

hydratase YALI0E02728g (E.C.4.2.1.36) were overexpressed under the control of strong constitutive 

promoters, pEXP, and pGPD respectively, and therefore were assumed to not be a subject to a 

transcriptional/translational regulation by lysine and its precursors.  

However, the native homolog of homocitrate synthase in S. cerevisiae has a lysine-sensing mechanism, which 

can be blocked by Q366R mutation in LYS21[39]. After aligning Lys21p of S. cerevisiae to the Y. lipolytica 

homolog (YALI0F31075p), the analogous mutation Q377R in Y. lipolytica’s gene was introduced in an 

engineered GB20 strain resulting in a strain, which carried overexpressed mutated YALI0F31075g 

(homocitrate synthase) and YALI0E02728g (homoaconitate hydratase).  However, no statistically significant 

effects on 2-aminoadipate, 2-oxopimelate, adipate semi-aldehyde, and adipate production were observed, 

hence the native form of homocitrate synthase was used in the further strain design.  

As the next step, two heterologous NAD-dependent adipate-semialdehyde dehydrogenases from 

Pseudomonas plecoglossicida (PPJ- RK21_02870)[40] and Acinetobacter sp (ChnE)[41]  were codon-optimized 

and introduced into the engineered GB20 strain, generating a strain which carries overexpressed 

YALI0F31075g (homocitrate synthase) and YALI0E02728g (homoaconitate hydratase) and the two 

heterologous adipate-semialdehyde dehydrogenases. No statistically significant changes in concentrations 

of adipic acid or its precursors were observed.  

Nevertheless, the mean adipate semi-aldehyde, 2-oxopimelate, and 2-oxoadipate peak areas and 

concentrations were slightly higher in this strain (3.9·106 AU vs 0.13·106 AU; 5.6·106 AU vs 4.2·106  AU; and 

571 μg/L vs 413 μg/L respectively). Therefore, the strain carrying both overexpressed native enzymes and 

heterologous aldehyde dehydrogenases was used for further study.  

To increase the exchange of compounds between mitochondria and cytosol, we selected two native 

mitochondrial transporters: citrate transporter (YALI0F26323g), the homolog of which has been recently 

reported to be involved in lysine biosynthesis in yeast[42], and transporter of 2-oxoglutarate/2-oxoadipate 

(YALI0D02629g), the homolog of which has been reported to be active on 2-oxopimelate as well[43].  The 

transporters were overexpressed generating a strain which carried overexpressed homocitrate synthase, 

homoaconitate hydratase, two heterologous adipate-semialdehyde dehydrogenases, and the two 
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overexpressed transporters. The final strain accumulated 177±67 μg/L of adipic acid, 1.6±0.3 mg/L of 2-

oxoadipate. It had a significantly higher amount of adipate semialdehyde than the parental strain, but no 

longer secreted any 2-oxopimelate (Figure 5.3).  

5.2.3.3 Production of adipic acid via the lysine pathway in Saccharomyces cerevisiae 

Overexpressing the native mitochondrial transporters for di- and tricarboxylic acids in Y. lipolytica boosted 

the accumulation of adipic acid and the key metabolites of the adipic acid pathway in the broth indicating 

that the availability of the substrates for reactions in the right compartment was important. Therefore, the 

idea to relocate the enzymatic machinery of the pathway into one compartment (mitochondria or cytosol) 

was tested in the model organism S. cerevisiae, where the signaling peptides for relocating enzymes are 

known and well-studied[44].   

In S. cerevisiae, the lysine biosynthesis employs two paralogs of homocitrate synthase Lys20p and Lys21p, 

homoisocitrate dehydrogenase Lys12p, and homoaconitase Lys4p. The latter is annotated as an enzyme 

responsible for both reactions: dehydrogenation and hydratation. However, Aco2p was shown to be active 

in the lysine pathway and controlling the dehydration step[45], and therefore was also included in the list of 

overexpressed enzymes. Thus, three strains were derived from CEN.PK113-7D parent strain: i)  with natively 

localized overexpressed Lys21p, Aco2p, Lys4p, , and Lys12p; ii)  with all 4 enzymes overexpressed in the 

cytoplasm, where Aco2p, Lys4p, and Lys12p are truncated, lacking their N-terminal mitochondrial signal; and 

iii) with all 4 enzymes overexpressed in the mitochondria, where Lys21p is fused with a mitochondrial signal 

from Hsp60p.   

No adipic acid, adipate semi-aldehyde, or 2-oxopimelate were detected in any of the strains grown on 

glucose. We then cultivated the same strains in medium supplemented with 0.2% of 2-oxoglutarate, a 

precursor of lysine biosynthesis pathway. In this medium, the overexpression of natively localized enzymes 

Lys21p, Aco2p, Lys4p, and Lys12p decreased the 2-aminoadipate accumulation down to 0.05 mg/L compared 

to 1.8 mg/L in the control strain CEN.PK113-7D  and led to the detection of 25 μg/L of adipic acid, illustrating 

that the adipic pathway is active not only in Y. lipolytica, but in S. cerevisiae as well (Figure 5.4). Introducing 

the feedback resistance point mutation Q366R in overexpressed Lys21p in the strain with natively localized 

overexpressed enzymes doubled the adipic acid titer.   

Targeting overexpressed Aco2p, Lys4p, and Lys12p into the cytosol by truncation of their N-terminal 

mitochondrial signals did not change the production of 2-aminoadipate or adipic acid, whilst overexpressing 

all 4 enzymes in mitochondria reduced the 2-aminoadipate accumulation in the broth and no adipic acid was 

detected. 2-oxoadipate remained at a constant level of 56±0.3 μg/L for all strains.  
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Figure 5.4: Expression of lysine biosynthetic pathway enzymes in different compartments in S. cerevisiae. Parent strain is CEN.PK113-

7D; ST8174 is a strain carrying overexpressed natively localized Lys21p, Aco2p, Lys4p, and Lys12p. ST8174_mut is its derivative 

carrying a point mutation (Q366R) in Lys21p; ST8172 carries all four enzymes overexpressed in the cytoplasm; and ST8176 carries all 

4 enzymes overexpressed in mitochondria. Data are presented for individual measurements.   

 

The experimental data for S. cerevisiae suggests that the native localization of overexpressed enzymes 

involved in lysine biosynthesis is optimal, therefore, we did not attempt engineering of enzyme localization 

in Y. lipolytica.   

5.2.3.4 Production of adipic acid on  food waste hydrolyzate by Y. lipolytica 

The engineered Y. lipolytica strain was tested in food waste hydrolysates (Table 5.3). Food waste hydrolysate 

on average contained 48.8±6.5 g/L of glucose and 7.2±3.2 g/L of xylose as the two major carbon sources, 

supported by undefined combinations of nutrients, vitamins, and minerals. After 72 hours, glucose was 

consumed in all samples and adipic acid was produced in amounts from 8.6 mg/L and up to 30.4 mg/L 

depending on the batch of food waste hydrolysate, with average being 16±5 mg/L compared to 177±67 μg/L 

in mineral medium with 20 g/L glucose. This corresponds to 90-fold increase of adipic acid titer in the food 

waste hydrolysate compared to mineral medium.  
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Table 5.3: Adipic acid from food waste hydrolysate produced by engineered Y. lipolytica strain ST8485.  WH1, WH2, WH3.1, WH4.2, 

and WH4.3 are samples of waste hydrolysate prepared according to the scheme described in material and methods. Data are 

presented as an average of duplicates.  

Concentrations WH1 WH2 WH3.1 WH3.3 WH4.2 WH4.3 Average 

Glucose*, g/L 57.7 41.8 52.4 48.4 51.92 40.87 48.85 

Xylose*, g/L 9.5 11.3 8.2 7.6 3.4 3.3 7.22 

Arabinose*, g/L 0.9 0.5 0.6 0.6 0.1 0.1 0.47 

Galactose*, g/L 0 0.5 0.3 0.4 0 0.1 0.22 

Maltose*, g/L 5.4 5.7 10.8 10.4 0.4 0.3 5.50 

Lactic acid*, g/L 15.9 12.7 5.8 7.3 0.4 1 7.18 

Adipic acid**, mg/L 26.71 12.75 13.60 12.43 15.12 15.83 16.07 

* Initial concentrations 

** End time-point concentration 

5.2.4 Discussion	

The current work provides evidence that adipic acid can be produced natively by yeasts via the lysine 

biosynthesis pathway due to the promiscuity of enzymes. The maximum theoretical yield of this pathway is 

0.567 g adipate per g glucose. This number is lower than the yield of de novo biosynthetic pathway as in 

Thermobifida fusca (0.74 g/g[46]), but the bacterial pathway relies on enzymes from the reverse adipate 

degradation pathway. Those enzymes are Fe/S cluster dependent, and therefore difficult to transfer into 

eukaryotic cells. To the best of our knowledge, this bacterial pathway has not yet been successfully expressed 

in yeast.  

The ability of Y. lipolytica to produce adipic acid was suggested after the conventional literature and 

databases search and supported by BLASTp and BrigIT analysis. The latter is a computational tool for finding 

the most promising candidates for orphan reactions, based on substrate and product chemistry, reactive 

centers of molecules, and enzyme structures[24]. Its outcome is a score that reflects the probability that a 

suggested enzyme can perform the orphan reaction. The higher the score (max 1), the more promising the 

suggested enzyme.  

In the current analysis, it was shown that the elongation from 2-oxoadipate to 2-oxopimelate (which was not 

described previously in yeast) is similar to elongation from 2-oxoglutarate to 2-oxoadipate (which is a part of 

lysine biosynthesis) and probably can be performed by native enzymes with the BrigIT score between 0.72 

to 0.77.  
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Experimentally, it was proven by comparing two Y. lipolytica strains – one with functioning, the other with 

malfunctioning lysine biosynthesis. Unlike the lysine-auxotrophic strain, the prototrophic strain could 

produce a trace amount of adipic acid from glucose as the sole carbon source as detected by LC-MS.   

In contrast to Y. lipolytica, a prototrophic S. cerevisiae could not produce adipic acid without supplementing 

media with 2-oxoglutarate and overexpressing the lysine biosynthesis enzymes Lys21p, Aco2p, Lys4p, and 

Lys12p under the strong constitutive promoters, which are not sensitive to translation/transcriptional 

feedback regulation by lysine. Further removal of lysine feedback inhibition by introducing a Q366R mutation 

in Lys21p[39] increased the concentration of adipic acid in the broth, indicating the importance of lysine 

regulation for adipic acid accumulation. However, the highest concentration of adipic acid in broth we could 

achieve in S. cerevisiae was below 60 μg/L in media supplemented with 2-oxoglutarate as a pathway 

precursor, compared to 600 μg/L of adipic acid in non-engineered Y. lipolytica strain in mineral media with 

glucose as a sole carbon source. It may be due to a higher production of 2-oxoglutarate in Y. lipolytica [31], 

[47]–[49].  

In Y. lipolytica, the lysine feedback inhibition is not as well studied as in S. cerevisiae. The analogous mutation 

Q377 to R377 in Y. lipolytica’s YALI0F31075 (LYS21 analog) found by simple alignment did not give any 

significant effect on the production of adipic acid or its intermediates.  Thus, other mechanisms of lysine 

feedback inhibition removal should be studied in detail in Y. lipolytica for further engineering of strains.  

Further engineering of Y. lipolytica included introducing heterologous adipate semi-aldehyde 

dehydrogenases and overexpressing the mitochondrial transporters for di- and tricarboxylic acids. We 

achieved 177±67 μg/L of adipic acid in mineral medium with glucose as the sole carbon source. The same 

strain produced up to 30 mg/L adipic acid in food waste hydrolysate.   

While the presented pathway allows direct production of adipic acid from sugars and is operational in yeasts, 

it would require extensive further engineering to increase the titer, rate, and yield.  

5.2.5 Conclusion	

In the current study, we discovered a novel pathway to adipic acid, which is a subject for further optimization, 

but was shown to be active in both Y. lipolytica and S. cerevisiae. The highest titer, about 30 mg/L, was 

achieved on food waste hydrolysate by a strain carrying overexpressed homocitrate synthase, 

homoaconitate hydratase, citric and keto-dicarboxylic acids mitochondrial transporters together with 

adipate semi-aldehyde dehydrogenases from Acinetobacter and Pseudomonas sp. 
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5.3 A	 computational	 workflow	 for	 the	 expansion	 of	 noscapine	

heterologous	biosynthetic	pathways	to	natural	product	derivatives.		

This subchapter is the result of a collaboration with the experimental lab of Prof. Christina Smolke at the 

University of Stanford. The results of this collaboration led to development of a computational workflow to 

identify potential derivatives of intermediates of a given biosynthetic pathway and subsequently predict 

enzyme candidates that may carry out the desired transformation(s). We confirmed the performance of 

workflow by predicting pathway and enzyme candidates capable of producing (S)-tetrahydropalmatine. This 

subchapter has been recently submitted as a manuscript for publication. This project was led by Dr. Jasmin 

Hafner and Dr. James Payne. Dr. Jasmin Hafner used BNICE.ch to analyze the metabolic neighborhood of 

Noscapine biosynthesis pathway. Experimental results have been obtained by Dr. James Payne, and enzyme 

prediction using BridgIT tool have been provided by the author of this thesis. Prof. Vassily Hatzimanikatis and 

Prof. Christina Smolke supervised the project as well as the completion of the manuscript.   

Full list of authors in this paper: J. Hafner†, J. Payne†, H. MohammadiPeyhani, V. Hatzimanikatis*, and C. 

Smolke*,” A computational workflow for the expansion of heterologous biosynthetic pathways to natural 

product derivatives” († contributed equally,* corresponding author ). 

 

5.3.1 Introduction	

Plants synthesize a remarkable range of complex and valuable molecules, known as plant natural products 

(PNPs), commonly used as flavors, fragrances, and medicines[50]. However, production of these molecules 

via extraction from plant biomass is often limited by slow growth, low yield, laborious extraction and 

purification procedures, and variability due to weather and climate change. Furthermore, while many 

modern medicines are natural products, a higher fraction are derivatives of natural products[51]. The range 

of PNP derivatives accessible to researchers is typically limited to those that can be readily produced via 

chemical synthesis from PNPs extracted from plants, while many more derivatives could potentially be made 

via regioselective enzymatic modification of PNPs and their intermediates. Microbial production of PNPs can 

potentially address these concerns, and additionally facilitates production of novel PNP derivatives by 

leveraging the genetic tractability of well-established microbial hosts to alter the heterologous biosynthetic 

pathway. 

Since the landmark production of the antimalarial drug precursor artemisinic acid in Saccharomyces 

cerevisiae in 2006[52], there has been an increase in the size and complexity of pathways reconstructed in 

heterologous hosts.[53] This progress is highlighted by the recent de novo biosynthesis in S. cerevisiae of 

noscapine[54], an antitussive benzylisoquinoline alkaloid and potential chemotherapeutic[55]–[57] from 

Papaver somniferum separated by 16 enzymatic steps from tyrosine. In that study, halogenated derivatives 

of tyrosine were fed to the engineered yeast strains to produce halogenated derivatives of noscapine 

intermediates. However, the non-native halogenated substrates were not tolerated as well as the native 

substrates of the pathway enzymes, and derivatives of only early intermediates in the pathway were 
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detected. In such cases, an alternative strategy would be required to produce derivatives of more chemically 

complex downstream pathway intermediates or of noscapine itself. 

An alternative approach to produce derivatives of PNPs and their intermediates is to integrate additional 

enzymes into microorganisms expressing heterologous PNP biosynthetic pathways. Enzymes that are able to 

accept and functionalize intermediates or products along a PNP pathway would thus produce novel products 

in vivo from the natural precursors. However, producing new-to-nature compounds necessarily entails the 

use of enzymes outside their natural functions (promiscuous activity). Developing computational tools able 

to learn from the wealth of enzymatic knowledge and predict new catalytic promiscuity will be of great value.  

Computational methods have been employed to guide the discovery of enzymatic functions and the design 

of biosynthetic pathways for the production of molecules with interesting pharmaceutical or industrial 

properties[58]. These methods generate hypothetical pathways to compounds of interest by assuming that 

enzymes that perform similar, but not identical, reactions to those desired might be promiscuous or 

sufficiently evolvable to perform the desired reaction after engineering and/or optimization. The concept of 

substrate promiscuity is translated into generalized enzymatic reaction rules that mathematically describe 

the reactive site recognized by an enzyme as well as the molecular rearrangement performed during the 

biotransformation. Popular cheminformatic tools[58]–[60] for predictive biochemistry include BNICE.ch 

(Biochemical Network Integrated Computational Explorer)[61], enviPath[62], GEM-Path[63], 

NovoPathFinder[64], NovoStoic[65], ReactPRED[66], RetroPath2.0[67], and Transform-MinER[68]. These 

tools have typically been used in retrobiosynthesis studies, where the aim is to determine potential 

bioproduction pathways by biochemically walking back from a target compound to the native metabolism of 

a chassis organism[69]–[71] via predicted enzymatic reaction steps. The prediction of novel reactions is 

subsequently followed by the search for suitable enzymes that can catalyze the predicted step. Enzyme 

prediction tools such as BridgIT[4], EC-BLAST[5], E-zyme[6] and Selenzyme[7] determine the structural 

similarity of a novel reaction to all well-characterized reactions in biochemical databases, and propose a list 

of enzyme candidates ranked by their likelihood to catalyze the desired transformation.  

Here, we develop a computational workflow to identify potential derivatives of intermediates of a given 

biosynthetic pathway and subsequently predict enzyme candidates that may carry out the desired 

transformation(s) (Figure 5.5). In contrast to previously reported retrobiosynthesis studies, in which a 

predicted pathway to a given target is generated, our workflow begins with a set of starting compounds (i.e., 

the intermediates of a heterologous biosynthetic pathway) and determines a suite of novel target 

compounds and associated pathways that can be generated. The method expands the chemical space around 

a pathway of interest using BNICE.ch to create a map of all compounds accessible with known biochemical 

reactions and then identifies enzymes capable of carrying out the desired transformations on the prioritized 

set of compounds using the enzyme prediction tool BridgIT. We applied this workflow to the reconstructed 
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noscapine biosynthetic pathway in yeast. We narrowed our search to enzyme candidates capable of 

producing (S)-tetrahydropalmatine, a PNP found in plants of the genus Corydalis that has been shown to 

possess analgesic and anxiolytic effects and has shown promise as a potential treatment for opiate 

addiction[72]–[74]. After experimental evaluation of seven of the top enzyme candidates in yeast strains 

engineered to produce the noscapine biosynthetic intermediate (S)-tetrahydrocolumbamine de novo, two 

enzymes were identified that enabled production of (S)-tetrahydropalmatine. To our knowledge, our work 

describes the first use of a computational workflow to expand a heterologous biosynthetic pathway to 

produce additional compounds. As the number of reconstructed heterologous pathways for PNPs continues 

to increase, we anticipate that the described workflow can be used to produce many chemically complex 

compounds spanning diverse therapeutic activities. 

 

Figure 5.5: Overall workflow integrating computational prediction of target compounds, pathways, and enzymes with experimental 

validation. a) Applied design-build-test cycle. b) Computational workflow. Circles represent compounds, edges represent 

biotransformations. Green is used to designate known biological reactions and compounds, blue circles are compounds from the 

chemical space without specific biological annotation, and red circles show compounds selected for their popularity in scientific 

literature and in the patent landscape. 
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5.3.2 Materials	and	Methods	

5.3.2.1 Computational exploration of the biochemistry surrounding the noscapine pathway 

The computational workflow consists of three steps: (i) expansion of a biochemical reaction network around 

the original pathway, (ii) popularity assessment of compounds via annotation and ranking, and (iii) feasibility 

assessment via reaction annotation, pathway assembly, and pathway evaluation. The output of the 

computational analysis was directly used for the design of engineered yeast strains. 

5.3.2.2 Expansion of a biochemical network  

A hypothetical biochemical network using BNICE.ch[75] was expanded around the input pathway, consisting 

of 17 metabolites connected by 17 reactions and catalyzed by a total of 11 generalized reaction rules, using 

a collection of 442 bidirectional generalized enzymatic reaction rules. In a first iteration, the integrated 

network generation algorithm applies the reaction rules on the input molecular structures (MDL molfiles), 

which generates all biochemically possible reactions according to the reaction mechanisms represented in 

BNICE.ch. The products of these reactions are stored, and used as input compounds for the next iterations 

of reaction generation. This iterative process generates hypothetical biochemical networks around any given 

set of input molecules.  

BNICE.ch distinguishes between known and novel compounds by looking up the generated molecular 

structures in different databases: if the compound is part of any biological, bioactive, or chemical database 

it is considered as known and annotated with the corresponding database identifiers. The following 

databases are used: the Kyoto Encyclopedia of Genes and Genomes (KEGG)[76], SEED[77], HMDB[78], 

MetaCyc[79], Brenda[80], MetaNetX[81], Rhea[82], BiGG[83], PMN[84], KNApSAcK[85] for biological 

compounds, ChEBI[86] and ChEMBL[87] for bioactive compounds, and PubChem[88] for chemical 

compounds. In this workflow, only known molecular structures are allowed in the network generation. 

Reactions are classified as known if they are part of the KEGG reaction database or the noscapine pathway, 

and as novel if they are not. 

5.3.2.3 Compound annotation and ranking  

We assessed the “popularity” of the generated compounds in the second step of the workflow by 

determining how many times each compound appears in scientific publications, and how many patents are 

associated with the molecule. The number of publications was derived from PubChem and PubMed, while 

the number of patent annotations was extracted from PubChem. We used the PUG-REST service to retrieve 

information on compounds from the PubChem website (https://pubchem.ncbi.nlm.nih.gov/)[89] on the 

number of associated patents and citations. We also used the Entrez Programming Utilities (E-utilities) API 

service to search the PubMed database for citations by compound name[90]. We only kept compounds with 

at least one annotation as potential targets for biosynthesis.  
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5.3.2.4 Reaction annotation and pathway ranking  

To determine if the potential targets for biosynthesis have valid bioproduction pathways, we listed all 

possible pathways connecting any noscapine pathway intermediate to the potential target within a maximum 

of four reaction steps. A path search algorithm was employed to extract linear pathways from the network 

of reactant-product pairs. Reaction directionalities producing molecular oxygen and reverse 

decarboxylations were excluded from the pathway search because of their high energy demand. Also, 

demethylation reactions producing S-adenosylmethionine from S-adenosylhomocysteine were not allowed 

(other demethylation transformations were allowed). 

To find enzymes for the predicted reactions in each pathway, we used the enzyme prediction tool BridgIT[4]. 

BridgIT calculates a similarity score between the novel reaction and reactions from a reference database of 

known, enzyme-annotated reactions (KEGG reaction database, downloaded in February 2018) by comparing 

the molecular fingerprints on and around the reactive sites of the participating reactants. The similarity 

between fingerprints is expressed as a score ranging from zero (no similarity) to one (the two reactions are 

identical up to seven atoms around the reactive site). A BridgIT score above 0.3 is considered as significant. 

For each reaction in the pathways, we performed BridgIT and we collected all the reactions from the 

reference database that had a score of 0.3 or higher. From the top score of each reaction in the pathway, we 

calculated the average to provide an overall metric for the enzymatic feasibility of the pathway. The pathways 

are available online including the top five enzymes predicted by BridgIT and associated similarity scores. 

5.3.2.5 Yeast strain construction 

Strains used in this work are listed in Supplementary Table 8.10. All strains used are derived from the 

previously reported strain CSY1171[91]. Strains were grown non-selectively in yeast-peptone media 

supplemented with 2% w/v dextrose (YPD media), yeast nitrogen base (YNB) defined media (Becton, 

Dickinson and Company, BD) supplemented with synthetic complete amino acid mixture (YNB-SC; Clontech) 

and 2% w/v dextrose, or on agar plates made using the aforementioned media. Strains transformed with 

plasmids bearing the URA3 auxotrophic selection marker were grown selectively in YNB media supplemented 

with 2% w/v dextrose and uracil (YNB-Ura; Clontech) or on YNB-Ura agar plates.  

Yeast genomic modifications were performed using the CRISPRm method[92]. Oligonucleotides used in this 

work (Appendix, Table 8.11) were synthesized by the Stanford Protein and Nucleic Acid Facility (Stanford, 

CA). Biosynthetic genes used in this study (Appendix, Table 8.12) were codon-optimized using GeneArt Gene 

Optimizer software (Thermo Fisher Scientific) either for expression in S. cerevisiae or E. coli (Appendix, Table 

8.15) and then synthesized as either gBlock DNA fragments (Integrated DNA Technologies, IDT) or gene 

fragments (Twist Bioscience). All biosynthetic genes were synthesized with overhangs on both the 5’ end (5’ 

– TCGACGGATTCTAGAACTAGTGGATCCTATACA – gene – 3’) and 3’ end (5’ – gene – 

TAGCCATAAGAATTCAGACACTCGAGAACTCA – 3’) for ease of cloning. CRISPRm plasmids expressing 
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Streptococcus pyogenes Cas9 (SpCas9) and a single guide RNA (sgRNA) targeting a locus of interest in the 

yeast genome were constructed by assembly PCR and Gibson assembly of DNA fragments encoding SpCas9 

(pCS3410), tRNA promoter and HDV ribozyme (pCS3411), a 20-nt guide RNA sequence (synthesized by the 

Stanford Protein and Nucleic Acid Facility), and tracrRNA and terminator (pCS3414)[93]. For gene insertions, 

integration fragments containing the gene(s) of interest flanked by a promoter and terminator were 

constructed by PCR amplification such that they possessed 40 bp overhangs on either end with homology to 

the yeast genome surrounding the site targeted by the guide RNA sequence. Approximately 300 ng of each 

integration fragment was co-transformed with 300 ng of the CRISPRm plasmid expressing the sgRNA 

targeting the desired genomic site. Positive integrants were identified by yeast colony PCR, DNA sequencing 

(Quintara Biosciences; South San Francisco, CA), and/or functional screening by LC-MS. 

5.3.2.6 Plasmid construction 

Plasmids used in this study (Appendix, Table 8.13) were constructed through Gibson assembly. Gibson 

assembly was performed by amplifying both the gene of interest and the destination plasmid (pCS952[94] or 

pET28) with 40 bp homologous overhangs. PCR amplifications were performed using Q5 DNA polymerase 

(NEB) and linear DNA fragments were purified using the DNA Clean and Concentrator-5 kit (Zymo Research). 

Assembled plasmids were propagated in chemically competent E. coli (TOP10; Thermo Fisher Scientific) using 

heat-shock transformation and selection on Luria-Bertani (LB)-agar plates with carbenicillin (100 μg/mL; for 

pCS952 derived plasmids) or kanamycin (50 μg/mL; for pET28 derived plasmids). Plasmid DNA was isolated 

by alkaline lysis from overnight E. coli cultures grown at 37 °C and 250 rpm in selective LB media using 

Econospin columns (Epoch Life Science) according to the manufacturer’s protocol. 

5.3.2.7 Yeast transformations 

Yeast strains were chemically transformed using the Frozen-EZ Yeast Transformation II Kit (Zymo Research). 

Individual colonies were inoculated into YPD media and grown overnight at 30 °C and 250 rpm. Saturated 

cultures were back-diluted into three new cultures at 1:5, 1:10, and 1:20 dilutions in YPD media and grown 

for an additional 5–7 hours to reach exponential phase. For each transformation, 1 mL aliquots from each 

back-diluted culture were pelleted by centrifugation at 500 g for 4 minutes (successively pelleting aliquots 

from each different dilution into a single pellet in a 1.5 mL microcentrifuge tube) and then washed twice by 

resuspending the pellet in 1 mL of 50 mM Tris-HCl buffer, pH 8.5. Washed pellets were resuspended in 50 μL 

of EZ2 solution per transformation and mixed with 100–600 ng of total DNA and 500 μL of the EZ3 solution. 

The yeast suspensions were incubated at 30 °C with gentle inversion for one hour. For plasmid 

transformations, the transformed yeast were directly plated onto YNB-Ura agar plates. For Cas9-mediated 

gene integrations, the yeast suspensions in the EZ3 solution were first mixed with 1 mL YPD media, pelleted 

by centrifugation at 500 g for 4 minutes, and then resuspended in 250 μL of fresh YPD media. The suspensions 

were incubated at 30 °C with gentle inversion for an additional 90 minutes to allow production of G418 
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resistance proteins and then spread onto YPD plates containing 400 mg/L G418 sulfate. For all 

transformations, plates were incubated at 30 °C for 72 hours before being used to inoculate cultures for 

metabolite assays. 

5.3.2.8 Growth conditions for metabolite assays 

Metabolite production tests were performed in YNB-SC or YNB-Ura media with at least three replicates. Yeast 

colonies were inoculated into 300 μL of media and grown in 2 mL deep-well 96-well plates covered with 

AeraSeal gas-permeable film (Excel Scientific). Cultures were then grown for 72-120 hours (exact duration is 

specified in each figure) at 30 °C, 460 rpm, and 80% relative humidity in a Lab-Therm LX-T shaker (Adolf 

Kuhner). 

5.3.2.9 Analysis of metabolite production 

Cultures were pelleted by centrifugation at 3500 g for 5 minutes at 4 °C and 100 μL aliquots of the 

supernatant were removed for direct analysis. Metabolite production was analyzed by LC-MS/MS using an 

Agilent 1260 Infinity Binary HPLC and an Agilent 6420 Triple Quadrupole mass spectrometer. 

Chromatography was performed using a Zorbax EclipsePlus C18 column (2.1 × 50 mm, 1.8 μm; Agilent 

Technologies) with water with 0.1% v/v formic acid as solvent A and acetonitrile with 0.1% v/v formic acid as 

solvent B. The column was operated with a constant flow rate of 0.4 mL/minute at 40 °C and a sample 

injection volume of 5 μL. Compound separation was performed using the following gradient: 0.00–0.10 

minutes, 10% B; 0.10–5.00 minutes, 10-40% B; 5.00–5.50 minutes, 40% B; 5.50–6.00 minutes, 40–98% B; 

6.00–10.00 minutes, 98% B; 10.00–10.01 minutes, 98-10% B; 10.01–13.00 minutes, equilibration with 10% 

B. The LC eluent was directed to the MS from 1–10 minutes operating with electrospray ionization (ESI) in 

positive mode, source gas temperature 350 °C, gas flow rate 11 L/minute and nebulizer pressure 40 psi. 

Metabolites were quantified by integrated peak area in MassHunter Workstation software (Agilent) based 

on the multiple reaction monitoring (MRM) parameters in Appenddix Table 8.14. Integrated peak areas were 

converted to titers by comparison to standard curves prepared using a commercial standard of (S)-

tetrahydropalmatine (Toronto Research Chemicals). Primary MRM transitions for (S)-tetrahydropalmatine 

were identified by analysis of a 0.1 mM standard in methanol using the MassHunter Optimizer software 

package (Agilent); all other MRM transitions used were previously reported[94]. 

 

5.3.2.10 Enzyme expression and purification 

Plasmids containing the gene of interest in a pET28 expression vector (see Appenddix, Table 8.13 for a full 

list of plasmids used in this study) were used to transform E. coli BL21(DE3) (Invitrogen) competent cells 

containing the pGro7 chaperone expression plasmid (Takara) via heat shock. Briefly, 1 ng of plasmid DNA was 

added to a 50 µL aliquot of competent cells, the tube was chilled on ice for 15 minutes, placed in a 42 °C 
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water bath for 35 seconds, then returned to ice for 2 minutes. Seven hundred fifty µL of SOC media were 

then added and the tube was rotated at 37 °C for 45 minutes before being plated on an LB agar plate 

containing 50 µg/mL kanamycin and 20 µg/mL chloramphenicol. A single colony was then picked and used 

to inoculate a primary culture of 5 mL of LB media containing 50 µg/mL kanamycin and 20 µg/mL 

chloramphenicol which was then grown for 24 hours. Five hundred µL of this primary culture were then used 

to inoculate a secondary or expression culture of 50 mL of TB medium containing 50 µg/mL kanamycin and 

20 µg/mL chloramphenicol (for all proteins except PsS9OMT) or 500 mL of LB medium containing 50 µg/mL 

kanamycin (for PsS9OMT). This expression culture was grown to an OD600 of 0.6-1.0 and then induced with 

IPTG (for O-methyltransferase induction, GoldBio) and L-arabinose (for groES/groEL induction, Fischer 

Scientific) at final concentrations of 0.1 mM and 2 mg/mL, respectively, for all proteins except PsS9OMT, 

which was induced with only IPTG to a final concentration of 1 mM. The expression culture was then grown 

at 30 °C (for all proteins except PsS9OMT) or 16 °C (for PsS9OMT) for 20 hours at 250 rpm, after which, the 

culture was harvested by centrifugation (10 minutes at 3,500 rpm in a 50 mL Falcon tube) and stored at -

20 °C until lysis and purification. 

Frozen pellets were then thawed and resuspended in 25 mL of Ni-nitrilotriacetic (Ni-NTA) equilibration buffer 

(50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 7.4) and lysed by sonication while kept on 

ice (Branson Sonifier 450, 0.5” horn, 50% duty cycle, 4 x 1 minute with 2 minute rests). Lysed cultures were 

then clarified by centrifugation (45 min at 35,000 g at 4 °C) and the clarified lysate was purified by Ni-NTA 

affinity chromatography. Briefly, 1 mL of Ni-NTA resin (Fisher Scientific) was equilibrated with at least 5 

volumes of Ni-NTA equilibration buffer (described above) and then loaded with the clarified lysate. The 

loaded resin was then washed with at least 5 volumes of Ni-NTA wash buffer (50 mM sodium phosphate, 300 

mM NaCl, 50 mM imidazole, pH 7.4) and then the bound protein was eluted with 5 volumes of Ni-NTA elution 

buffer (50 mM sodium phosphate, 300 mM NaCl, 250 mM imidazole, pH 7.4). The eluted fractions were then 

combined and concentrated using an Amicon® 30 kDa cutoff spin filter (EMD Millipore) at 5,000 g at 4 °C. 

Concentrated protein fractions were then exchanged into storage buffer (50 mM potassium phosphate, 100 

mM NaCl, 10% glycerol, pH 7.5), split into separate aliquots, and stored at -20 °C until use. 

5.3.2.11 In vitro bioconversions 

Analytical reactions were carried out at the 50 µL scale in triplicate. To a 1.5 mL Eppendorf tube were added 

5 nmol substrate (final concentration of 100 µM; (S)-norcoclaurine and (S)-scoulerine purchased from 

Toronto Research Chemicals; norlaudanosoline purchased from Santa Cruz Biotechnology), 1 µmol sodium 

ascorbate (final concentration of 25 mM), 5 nmol S-adenosylmethionine (SAM, final concentration of 100 

µM; purchased from Sigma-Aldrich), and 150 pmol purified methyltransferase enzyme (3 µM final 

concentration) in 50 mM potassium phosphate, pH 8.0. The reactions were shaken at 600 rpm at 37 °C for 2 

hours before being quenched with an equal volume of methanol, spun down at 20,000 g for 10 minutes, and 
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filtered prior to LC-MS analysis (see “Analysis of metabolite production” section above for details on LC-MS 

analysis conditions). 

5.3.2.12 Metabolite purification 

The large scale in vitro (S)-scoulerine conversion reaction was carried out on the 20 mg scale at a final reaction 

volume of 610 mL in a 2 L Erlenmeyer flask. To this flask were added 20 mg (61 µM) of (S)-scoulerine (final 

concentration of 100 µM), 15 mmol sodium ascorbate (final concentration of 25 mM), 61 µM SAM (final 

concentration of 100 µM), and 73 nmol of purified TfS9OMT DS M111A[91] (final concentration of 0.12 µM) 

in 50 mM potassium phosphate, pH 8.0. The reaction was incubated at 37 °C at 250 rpm. The reaction was 

ultimately run for 15 hours, but was monitored to ensure conversion had stopped by analytical LC-MS. To do 

so, 50 µL aliquots were pulled periodically, quenched with an equal volume of MeOH, spun down at 20,000 

g for 10 minutes, and filtered prior to LC-MS analysis (see “Analysis of metabolite production” section above 

for details on LC-MS analysis conditions). 

Once the reaction was complete, 30 g of Amberlite XAD4 resin were added and the flask was shaken 

overnight at 30 °C at 250 rpm. The Amberlite XAD4 resin was transferred to 50 mL Falcon tubes, the 

supernatant was decanted off, and 50 mL total MeOH were then added to the 4 tubes containing resin. The 

resin in MeOH was then vortexed for 10 minutes, after which it had turned yellow. The MeOH was then 

pipetted into a 500 mL round-bottomed flask and was concentrated by rotary evaporation to ~2 mL, which 

was then pipetted into 4 tared 1.5 mL Eppendorf tubes and concentrated to dryness overnight on a speedvac. 

Approximately 400 mg of crude material were obtained from this process, which were then resuspended in 

H2O to a final concentration of 100 mg crude material/mL. This material was then purified by preparative LC 

(Agilent 1200 Series LC) with a Varian Pursuit XRs C18 250 x 10 mm column, 5 µm particle size (solvent A = 

H2O with 0.1% FA, solvent B = ACN with 0.1% FA). The following LC method was used: 0-4.0 minutes, 20% B, 

2.0 mL/minute; 4.0-12.0 minutes, 20-100% B, 2.0 mL/minute; 12-20 minutes, 100% B, 2.0 mL/minute; 4 

minute postrun. Fractions were analyzed by LC-MS to determine which contained the desired products (see 

“Analysis of metabolite production” section above for details on LC-MS analysis conditions). Fractions 

containing the desired product were concentrated and re-purified by preparative LC until the desired purity 

was obtained. 

5.3.3 Results	

5.3.3.1 Computational expansion of the noscapine pathway reveals thousands of potential target molecules 

Each biosynthetic pathway presents an opportunity to produce numerous derivative compounds by 

chemically modifying functional groups of the pathway product and its intermediates. Computational 

reaction prediction tools, such as BNICE.ch, allow rapid exploration of the hypothetical chemical space of 

potential pathway derivatives. Their generalized enzymatic reaction rules mimic known enzymatic activities 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

133 

in silico by recognizing and transforming a specific functional group on a substrate to generate a product. 

Iterative application of these rules to biosynthetic pathway intermediates creates a reaction network to 

hypothetical derivatives of all pathway intermediates, offering new targets for bioproduction.  

We applied this computational expansion process on the noscapine pathway, which starts from (S)-

norcoclaurine and involves 17 metabolites connected by 17 reactions (Figure 5.6). BNICE.ch expanded the 

network around the 17 metabolites for four generations, generating both known and novel reactions to 

produce compounds known to any biological[76]–[79], [81], [82], [84], [85], [95], [96], bioactive[86],[87], or 

chemical[88] database. This expansion yielded a network spanning 4,838 compounds and 17,597 reactions 

(Tables 8.16, 8.17). As our analysis focused on BIAs, we required the substrate and product to contain the 

minimal elemental composition of the 1-benzylisoquinoline scaffold (i.e., at least 16 carbon atoms, 13 

hydrogen atoms, and 1 nitrogen atom). The resultant trimmed BIA network spanned 1,518 compounds, of 

which 99 were classified as biological or bioactive, and the remaining 1,419 as chemical compounds 

(appendix, Table 8.18). The compounds in the network were connected by 7,527 reactions, of which 49 were 

known to be catalyzed by well-characterized enzymes linked to a genetic sequence from at least one 

organism in our reference database, the Kyoto Encyclopedia of Genes and Genomes (KEGG)[76].  

Our network expansion was non-uniform across the noscapine biosynthetic pathway (Figure 5.6). The 

upstream portion of the network is highly connected, whereas the downstream portion near noscapine is 

less populated. This likely results from the downstream intermediates and their derivatives increasing in size 

and complexity, complicating their experimental detection and structural characterization. Consequently, 

these compounds are less represented in biological or chemical databases, and therefore are not part of the 

predicted network despite their increased diversity of functional groups. 
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Figure 5.6: Visualization of the expanded biosynthesis network of the noscapine pathway. The nodes and edges drawn in red show 

the original noscapine pathway. Around the original pathway, the predicted network of compounds (nodes) and reactions (edges) is 

visualized. The top 10 compounds in terms of popularity (total number of patents plus citations) are named and localized on the map. 

The color of the nodes shows in which iteration the compound was generated in the network reconstruction process, which is also 

the number of reaction steps between the original pathway and the compound. The size of the nodes is proportional to the 

popularity. The molecular structure of the pathway precursor, norcoclaurine, and the final product, noscapine, are shown. 

5.3.3.2 A ranking algorithm for candidate molecules highlights well-studied compounds 

To guide experimental efforts toward interesting targets for bioproduction, the numerous candidate 

compounds were ranked and filtered. To focus on compounds with broader interest to biomedical 

researchers, we ranked the candidates by “popularity”, defined here as the sum of the number of citations 

and patents reported. We screened the 1,501 potential target compounds (1,518 satisfying the BIA 

requirement minus the 17 in the noscapine pathway) and found that 204 returned at least one citation, while 

467 had at least one associated patent. In total, at least one annotation (citation or patent) was obtained for 

545 distinct compounds (appendix, Table 8.19). 

Sorting the compounds by popularity, we found that papaverine was ranked highest, with 22,918 

annotations, followed by bicuculline and berberine with 16,118 and 12,154 total annotations, respectively. 

While the citation count reflects scientific interest in a compound, the number of patents indicates its 
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commercial applications. As an example, the compound bicuculline, which ranked first in citations but fourth 

in patents, is widely employed in medical research to mimic epilepsy in mammals[97], but has a relative lack 

of clinical applications. 

5.3.3.3 Computational pathway construction identifies tetrahydropalmatine as a high-priority target 

 While the application of a ranking algorithm to the potential compounds generated by BNICE.ch 

identifies top candidates, it does not prioritize those which can be feasibly produced experimentally. To 

maximize the probability of successful in vivo production of a target molecule, we applied additional filters 

to determine the best candidates for bioproduction. Four criteria were considered: (i) one or more 

production pathways toward the target compound are thermodynamically feasible; (ii) enzymes are available 

which natively perform similar transformations; (iii) the target compound is only one chemical 

transformation from an intermediate in the original pathway to focus experimental efforts on a single 

enzymatic step; and (iv) the target molecule is a potential or confirmed pharmaceutical. 

We first examined the biological feasibility of the potential pathways to our target compounds. For the top 

50 ranked candidates, we enumerated all possible pathways connecting a noscapine pathway intermediate 

to each target within a maximum of four reaction steps. Reactions with a high standard Gibbs free energy of 

reaction (i.e., reactions producing molecular oxygen, binding carbon dioxide to the substrate, or 

demethylating the substrate via S-adenosylhomocysteine) were excluded to avoid thermodynamic and 

catalytic bottlenecks. We identified feasible pathways for 42 of 50 targets, furnishing a total of 1,338 

pathways (appendix Table 8.20). Providing validation of our approach, the known biosynthetic pathway for 

protopine is included in this set. All of the proposed pathways are listed and visualized online (https://lcsb-

databases.epfl.ch/pathways/GraphList). 

To assess the availability of enzymes to catalyze the proposed reactions, we predicted enzymes for each 

novel reaction step using BridgIT[4]. BridgIT calculates a reactive-site centric similarity score (BridgIT score) 

between the novel reaction and a reference database of known, well-characterized reactions (KEGG). The 

output is a ranked list of candidate enzyme classes and associated similarity scores that indicate the 

probability that members of the candidate enzyme class will catalyze the novel reaction. As an overall metric 

for compound feasibility, we used the mean of the top BridgIT scores of each reaction in the pathway 

(available as part of the pathway visualization online). 

We next examined the distance (i.e., number of reaction steps) of the target compounds from the original 

pathway. We restricted our search to candidates that are only one reaction from an intermediate, resulting 

in 15 candidates, each produced by a feasible reaction and associated with a ranked list of predicted, putative 

enzymes (Table 5.4, appendix Table 8.21). The highest ranked candidate was berberine, for which a 

heterologous biosynthetic pathway has already been established[98]. We therefore selected the second 
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highest ranked candidate, (S)-tetrahydropalmatine, for experimental validation. (S)-Tetrahydropalmatine 

naturally occurs in a number of plants, especially those in the genus Corydalis and Stephania rotunda, which 

are traditionally used in Chinese herbal medicine[99]. (S)-Tetrahydropalmatine (i.e., levo-

tetrahydropalmatine) has been used for its analgesic, anxiolytic, and sedative effects as an alternative to 

opiates and benzodiazepines, and has shown promise in treating opiate, cocaine, and methamphetamine 

addiction [74]. 

Table 5.4: List of compounds ordered by descending popularity that are one reaction step away from intermediates in the noscapine 

pathway.  

 
Popularity 

Rank Name Best BridgIT 
score Predicted EC Number of 

Citations 
Number of 

Patents 
Citations + 

Patents 

 

1 Berberine 1.00 1.3.3.8 5430 6751 12154 

 

2 Tetrahydropalmatine 1.00 2.1.1.89 530 355 885 

 

3 Columbamine 0.99 1.3.3.8 131 235 366 

 

4 Salutaridine 1.00 1.14.19.67 85 264 349 

 

5 Norlaudanosoline 0.99 1.14.14.102 144 177 321 

 

6 Stepholidine 0.78 1.14.13.31 157 140 297 

 

7 Allocryptopine 0.32 1.14.13.239 111 159 270 

 

8 Laudanidine 1.00 2.1.1.291 23 112 135 

 

9 Codamine 0.79 2.1.1.121 13 61 74 

 

10 Norreticuline 0.09 1.5.3.10 33 40 73 

 

11 Corytuberine 0.56 1.14.19.67 18 39 57 

 

12 Lambertine 0.45 1.3.1.29 30 23 53 

 

13 Armepavine 1.00 2.1.1.291 28 15 43 

 

14 1,2-Dehydroreticuline 1.00 1.5.1.27 3 40 43 

 

15 Nandinine 1.00 1.14.19.73 1 39 40 

 

5.3.3.4 BridgIT analysis indicates top enzyme candidates for tetrahydropalmatine bioproduction 

Once a compound of interest is chosen, enzyme(s) catalyzing the desired transformation must be identified. 

BridgIT identifies known enzymes whose native reactions most closely resemble our desired reaction, and 

the BridgIT similarity score can be used to rank the candidates by their likelihood to catalyze the desired 

transformation. 

(S)-Tetrahydropalmatine can be produced in one step via methylation of the 2-hydroxyl of the noscapine 

pathway intermediate (S)-tetrahydrocolumbamine with concomitant conversion of S-adenosylmethionine to 

S-adenosylhomocysteine (Figure 5.7 panel a). Because of the lack of sequence annotation for this reaction in 

KEGG, we used the BridgIT data described above to identify candidate enzymes. The BridgIT analysis 

produced a list of enzyme classes ranked by their BridgIT scores, measuring the structural similarity of the 
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(S)-tetrahydrocolumbamine methylation to the native reactions of those enzymes (Table 5.5). Enzymes 

without protein sequence annotation were removed. 

 

Figure 5.7: In vivo and in vitro activity of predicted enzymes. a) Biosynthetic pathway from (S)-norcoclaurine, the first dedicated 

intermediate in the pathway, to (S)-tetrahydropalmatine. The specific enzyme(s) used in our strains are indicated above each reaction 

arrow, while below each arrow is the enzyme class and, for methyltransferases, the BridgIT score (in red) obtained for the likelihood 

of members of that class to perform our proposed reaction. Our proposed reaction, the methylation of (S)-tetrahydrocolumbamine 
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to afford (S)-tetrahydropalmatine, is shown in the box at the bottom left. Shown in dotted lines is the native reaction of CjColOMT, 

the enzyme which was predicted and demonstrated to perform our proposed reaction. The site of methylation of each 

methyltransferase is highlighted on its product in pink. b) De novo production of (S)-tetrahydropalmatine in yeast strains engineered 

to express members of the two most downstream O-methyltransferase classes (S9OMT & ColOMT) predicted by BNICE.ch & BridgIT 

to accept (S)-tetrahydrocolumbamine as a substrate. PsS9OMT is integrated into the yeast genome, while CjColOMT, AtCafOMT, 

LjFlaOMT, and SaPurOMT were expressed from a high-copy plasmid; the first two strains shown contain an empty version of this 

plasmid. Strains were cultured in selective media (YNB-Ura) with 2% dextrose, 2 mM L-DOPA, and 10 mM ascorbic acid at 30 °C for 

120 hours before LC-MS/MS analysis of the growth media. Asterisks represent Student’s two-tailed t-test: *P < 0.05,**P < 0.01, ***P 

< 0.001. c) In vitro reactions of purified methyltransferases on (S)-tetrahydrocolumbamine to produce (S)-tetrahydropalmatine 

(shown in pink) or the putative N-methyl-(S)-tetrahydrocolumbamine product (shown in gray). BridgIT score denotes the score 

obtained by BridgIT for the enzyme class to which each enzyme belongs. d) De novo production of (S)-tetrahydropalmatine in yeast 

strains engineered to express alternative 4’OMTs. Strains were cultured in selective media (YNB-Ura) with 2% dextrose, 2 mM L-

DOPA, and 10 mM ascorbic acid at 30 °C for 72 hours before LC-MS/MS analysis. Asterisks represent Student’s two-tailed t-test: *P < 

0.05,**P < 0.01, ***P < 0.001. 

 

Table 5.5: Reaction similarities between the predicted tetrahydropalmatine-producing reaction and its top 18 most similar, gene-

annotated reactions from the BridgIT reference database. 

 Rank BridgIT 
score 

Predicted 
EC Native substrate Type of substrate Native organism Enzymes tested Activity on THCB 

 1 0.98 2.1.1.291 (S)-Reticuline BIA P. somniferum  Not tested 

 2 0.76 2.1.1.118 Columbamine BIA Coptis japonica CjColOMT Active 

 3 0.75 2.1.1.128 (S)-Norcoclaurine BIA P. somniferum Ps6OMT 
Already in 
pathway, no 
activity 

 4 0.75 2.1.1.116 3’-Hydroxy-N-methyl-
(S)-coclaurine BIA 

P. somniferum 
C. japonica 
E. californica 
T. flavum 

Ps4'OMT 
Cj4'OMT 
Ec4'OMT 
Tf4'OMT 

Already in 
pathway, no 
activity 

 5 0.72 2.1.1.146 Isoeugenol  Phenylpropanoid Ocimum basilicum 
(basil) 

 Not tested 

 6 0.69 2.1.1.38 O-Demethylpuromycin Antibiotic Streptomyces 
alboniger SaPurOMT  No activity 

 7 0.68 2.1.1.6 Catechol Phenol Diverse  Not tested 

 8 0.66 2.1.1.212 2,4’,7-Trihydroxy-
isoflavanone Flavanonoid Lotus japonica LjFlaOMT No activity 

 9 0.64 2.1.1.4 N-Acetylserotonin Neurotransmitter Homo sapiens 
(human) 

 Not tested 

 10 0.64 2.1.1.117 (S)-Scoulerine BIA P. somniferum yPsS9OMT Already in 
pathway, active 

 11 0.63 2.1.1.231 4’-Hydroxyflavone Flavonoid Glycine max 
(soybean) 

 Not tested 

 12 0.63 2.1.1.68 (E)-Caffeate Phenylpropanoid Diverse  Not tested 

 13 0.62 2.1.1.104 Caffeoyl-CoA Phenylpropanoid Arabidopsis 
thaliana AtCafOMT  No activity 
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 14 0.61 2.1.1.150 (E)-Caffeate Phenylpropanoid Medicago sativa 
(alfalfa) 

 Not tested 

 15 0.61 2.1.1.222 3-Demethylubiquinol Quinone Diverse bacteria  Not tested 

 16 0.60 2.1.1.279 trans-Anol Phenol Pimpinella anisum 
(anise) 

 Not tested 

 17 0.60 2.1.1.94 16-Hydroxytabersonine Terpene indole 
alkaloid 

Catharanthus 
roseus 

 Not tested 

 18 0.59 2.1.1.114 3,4-Dihydroxy-5-all-
trans-polyprenylbenzoate Quinone Diverse, 

incl. S. cerevisiae 
 Natively present 

in yeast 

 

The top enzyme classes yielded promising candidates for in vivo testing. The first candidate, reticuline 7-O-

methyltransferase (EC 2.1.1.291), has a BridgIT score of 0.98, making it a good candidate for in vivo testing; 

one variant occurs in Papaver somniferum. Ranked second (BridgIT score of 0.76) is the enzyme columbamine 

O-methyltransferase (EC 2.1.1.118; variant from Coptis japonica referred to here as CjColOMT), which 

converts (S)-columbamine to (S)-palmatine, a similar reaction to our target reaction. A literature search 

showed that CjColOMT has previously been found to exhibit promiscuous activity in vitro on (S)-

tetrahydrocolumbamine[100]. However, while KEGG catalogues the methylation of (S)-

tetrahydrocolumbamine to produce (S)-tetrahydropalmatine, it does not link it to CjColOMT or any other 

known gene sequence.  

The analysis further showed that the O-methyltransferases (OMTs) in the noscapine pathway are among the 

top-ranked candidates for catalyzing the predicted reaction. It has been shown that the majority of metabolic 

reactions are catalyzed by promiscuous enzymes[101], and enzymes that participate in specialized 

metabolism are even more likely to be promiscuous[102]–[104]. The potential promiscuity of the noscapine 

biosynthetic enzymes is thus unsurprising, especially if promiscuous activity is seen on other pathway 

intermediates that necessarily resemble their native substrates structurally. The enzymes 6OMT (EC 

2.1.1.128) and 4’OMT (EC 2.1.1.116), which O-methylate the noscapine pathway intermediates (S)-

norcoclaurine and (S)-3'-hydroxy-N-methylcoclaurine, respectively, are ranked third and fourth, with BridgIT 

scores of 0.75. The enzyme S9OMT (EC 2.1.1.117), is ranked tenth with a BridgIT score of 0.64. The high 

BridgIT scores associated with these three enzymes indicate their potential for promiscuous activity on (S)-

tetrahydrocolumbamine. As variants of these three enzymes are already present in the noscapine pathway 

prior to (S)-tetrahydrocolumbamine, their potential to produce (S)-tetrahydropalmatine will necessarily be 

evaluated in vivo.  

5.3.3.5 Two predicted enzymes enable tetrahydropalmatine production in vitro and in vivo 

The preceding workflow generates a ranked list of candidate enzymes predicted to produce the target 

product. Validation of candidate enzymes can be performed in vitro and/or in vivo in the context of a 

heterologous pathway. The ranking of potential enzymes enables a smaller set of enzymes to be tested 

experimentally, thereby maximizing the success of the project. 
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We selected seven of the top 18 hits from BridgIT for experimental validation. As described above, three of 

these enzymes – Ps6OMT, Ps4’OMT, and PsS9OMT – are already present in the biosynthetic pathway 

upstream of (S)-tetrahydrocolumbamine. The other four enzymes were selected based on the diversity of 

their native substrates, which span a range of less than 300 Da (2,4’,7-trihydroxyisoflavanone) to greater than 

900 Da (caffeoyl-CoA) (Table 5.5). These four candidate enzymes – columbamine OMT from Coptis japonica 

(CjColOMT, ranked second), O-demethylpuromycin OMT from Streptomyces alboniger (SaPurOMT, ranked 

9th), 2,4’,7-Trihydroxyisoflavanone OMT from Lotus japonica (LjFlaOMT, ranked 11th), and caffeoyl-coenzyme 

A OMT from Arabidopsis thaliana (AtCafOMT, ranked 17th) – were codon-optimized for expression in S. 

cerevisiae, cloned into high-copy plasmids, and transformed into a de novo (S)-tetrahydrocolumbamine 

producing S. cerevisiae strain. (S)-Tetrahydropalmatine was produced in every strain tested (Figure 5.7 panel 

b). However, the strain expressing the highest ranked candidate of those tested, CjColOMT, produced eight-

fold more (S)-tetrahydropalmatine relative to an empty plasmid control. We hypothesized that the 

background (S)-tetrahydropalmatine in all strains was due to one or more of the other methyltransferases 

present in the heterologous (S)-tetrahydrocolumbamine-producing strain. As these enzymes’ native 

substrates are precursors of, and structurally similar to, (S)-tetrahydrocolumbamine, they may possess 

promiscuous activity on (S)-tetrahydrocolumbamine itself. In fact, the other four pathway 

methyltransferases – S9OMT (acts natively on (S)-scoulerine), CNMT (acts natively on coclaurine), 6OMT (acts 

natively on norcoclaurine), and 4’OMT (acts natively on 6-methyl-(S)-laudanosoline) – were assigned high 

scores by BridgIT for their potential activity on (S)-tetrahydrocolumbamine, further supporting this 

hypothesis. 

We next tested each pathway methyltransferase in vitro to determine their contribution to the background 

(S)-tetrahydropalmatine production. In the originally constructed heterologous (S)-tetrahydrocolumbamine 

pathway, the four methyltransferases were derived from Papaver somniferum, and thus were named 

Ps6OMT, PsCNMT, Ps4’OMT, and yPsS9OMT (the y prefix on the lattermost denotes that it has been codon-

optimized for expression in the yeast S. cerevisiae). Ps6OMT, PsCNMT, yPsS9OMT, and CjColOMT expressed 

well in E. coli, but no conditions tested afforded soluble Ps4’OMT. Accordingly, we examined 4’OMT variants 

from other species and codon-optimized three for expression in E. coli – Cj4’OMT from Coptis japonica, 

Ec4’OMT from Eschscholzia californica, and Tf4’OMT from Thalictrum flavum. These variants expressed well 

in E. coli and were purified for in vitro analysis. As these 4’OMT variants might not possess the same substrate 

promiscuity as the variant originally tested (Ps4’OMT), we created strains with Ps4’OMT replaced with each 

alternative 4’OMT codon-optimized for expression in S. cerevisiae. We verified that, in each of these strains, 

(S)-tetrahydropalmatine was still observed and that expression of CjColOMT resulted in 3- to 7-fold increased 

production of (S)-tetrahydropalmatine (Figure 5.7 panel c).  
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 We tested each pathway methyltransferase and CjColOMT in vitro to determine which convert (S)-

tetrahydrocolumbamine to (S)-tetrahydropalmatine. In vitro reactions were performed with Ps6OMT, 

PsCNMT, Cj4’OMT, Ec4’OMT, Tf4’OMT, yPsS9OMT, and CjColOMT. Ps6OMT, PsCNMT, and the 4’OMT 

variants produced no (S)-tetrahydropalmatine in vitro (Figure 5.7 panel d). While PsCNMT does accept (S)-

tetrahydrocolumbamine as a substrate, the product is presumably the N-methylated derivative, as the mass 

is consistent with a second methylation event, no (S)-tetrahydropalmatine production was observed, and the 

N-position is the only other available site likely to be methylated by a methyltransferase. Of the pathway 

enzymes, only PsS9OMT produced (S)-tetrahydropalmatine in vitro and thus is likely the sole source of the 

background (S)-tetrahydropalmatine observed in vivo. To further support this hypothesis, a strain lacking 

both yPsS9OMT and CjColOMT produced no (S)-tetrahydropalmatine (Figure 5.7 panel b). When tested in 

vitro, CjColOMT afforded over 11-fold higher conversion of (S)-tetrahydrocolumbamine to (S)-

tetrahydropalmatine than yPsS9OMT (Figure 5.7 panel d), which is consistent with the significantly higher 

production of (S)-tetrahydropalmatine in vivo upon expression of CjColOMT (Figure 5.7 panel b). 

5.3.4 Discussion	

 In silico tools for novel biosynthetic pathway design can guide and accelerate metabolic engineering 

to produce molecules of interest. In this work, we employed the biochemical reaction prediction tool 

BNICE.ch[61] to explore potential biosynthesis targets that can be produced from the noscapine pathway. 

While multiple pathway prediction tools have been reported, most extract  reaction rules automatically from 

biochemical databases[64], [66], [67], [105], risking the propagation of errors (e.g., unbalanced, orphan or 

hypothetical multistep reactions) from database entries to the rules. In contrast, BNICE.ch rules are created 

manually to ensure that the predicted reactions follow biochemical logic. Furthermore, typical 

retrobiosynthetic approaches focus on a single predetermined compound, whereas our workflow quickly 

identifies a large number of candidate molecules without requiring prior knowledge of their identities. The 

high number of available tools stands in contrast to the small number of reported experimental validations 

of novel, predicted reactions. The first successfully predicted novel bioproduction pathway was established 

for 1,4-butanediol[106] using the commercial tool SimPheny which, like BNICE.ch, relies on expert-curated 

generalized reaction rules. Furthermore, novel reactions predicted by BNICE.ch in the ATLAS of 

Biochemistry[107], [108], a repository of hypothetical biochemical reactions, have only recently been 

experimentally tested and validated[109]. Both of the examples of successful implementation of predicted 

novel reactions to date have utilized expert-curated reaction rules. 

Once a pathway has been designed, enzymes need to be found to catalyze the predicted biotransformations. 

Available tools for enzyme function prediction determine the structural similarity of the desired reaction’s 

reactants and products to substrate and products of known enzymes[4]–[7]. In contrast to other tools, BridgIT 

incorporates information encoded in the BNICE.ch reaction rules to identify the reactive site and then 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

142 

examines the atom connectivity around the reactive sites of the known and desired substrates. While all 

mentioned tools benchmarked their predictive capacity on datasets of known enzyme-reaction pairings, no 

direct experimental validation of an enzyme prediction tool has been reported to our knowledge.  

In this study, BNICE.ch identified 15 potential compounds that are one reaction step from an intermediate of 

the noscapine biosynthetic pathway. We chose to rank these compounds by the sum of their reports in the 

scientific literature and patents, in order to identify compounds of known biological interest. Our workflow 

can utilize other ranking algorithms; for example, if searching for new drug candidates, Lipinski’s rule of 

five[110] could be employed, prioritizing compounds over a given molecular mass, calculated partition 

coefficient, and/or number of hydrogen bond donors and acceptors. One could also prioritize the potential 

compounds’ chemical novelty in order to most effectively leverage the biosynthesis platform to manufacture 

molecules that cannot be synthesized chemically. 

The top two compounds in our ranking that are one biosynthetic step from a noscapine pathway 

intermediate were berberine and (S)-tetrahydropalmatine. The heterologous biosynthesis of berberine has 

been previously reported[111]; however, the final reaction in its biosynthesis in this strain occurs 

spontaneously, as the enzyme thought to carry out its biosynthesis in plants appears to be inactive in S. 

cerevisiae, as does a related enzyme[112]. We therefore chose to focus our efforts on (S)-

tetrahydropalmatine, as numerous methyltransferases have been reported to be active in S. cerevisiae, thus 

decreasing the likelihood that we would encounter false negatives due to lack of expression or proper folding. 

We recently reported the de novo heterologous biosynthesis of (S)-tetrahydropalmatine in S. cerevisiae via 

an engineered variant of TfS9OMT, a homologue of PsS9OMT from Thalictrum flavum[91]. In particular, the 

biosynthesis of (S)-tetrahydropalmatine was observed with one of two native isoforms of TfS9OMT tested at 

a level of 0.7 µg/L, and was then increased over fivefold via structure-guided engineering, ultimately yielding 

a titer of 3.60 µg/L. In contrast, using BridgIT we identified a scoulerine 9-O-methyltransferase (PsS9OMT) 

and a columbamine O-methyltransferase (CjColOMT) that both perform this transformation, and their 

expression together in Saccharomyces cerevisiae led to a titer of 3.45 µg/L using only native, non-engineered 

enzymes, nearly matching the titer reported with the best engineered TfS9OMT variant. Replacement or 

supplementation of PsS9OMT with the engineered TfS9OMT variant could increase our titer of (S)-

tetrahydropalmatine, or active-site mutagenesis, as was performed for TfS9OMT, could enhance the activity 

of PsS9OMT or CjColOMT. 

The ability of CjColOMT and PsS9OMT to methylate (S)-tetrahydrocolumbamine may seem unsurprising, as 

the native substrates of both enzymes are chemically similar to (S)-tetrahydrocolumbamine (Figure 5.7 panel 

a). In fact, both of these enzymes have been reported to have promiscuous activity toward (S)-

tetrahydrocolumbamine in vitro[113]; however, these non-native activities were not available in our 

reference database (KEGG). While KEGG includes an entry on the conversion of (S)-tetrahydrocolumbamine 
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to (S)-tetrahydropalmatine, this is an “orphan” reaction with no gene or protein sequence associated with it. 

Recent studies have indicated that 40-50% of all reactions catalogued in KEGG are orphan reactions[114], 

[115]. In some of these cases, non-native activity data may be available, but is buried in literature and not 

readily accessible via existing databases, and thus might be overlooked by or unavailable to researchers. In 

such cases, our computational workflow can provide predictions to guide researchers to enzyme candidates 

to investigate further, both experimentally and in the existing literature. Furthermore, in cases where the 

desired non-native enzyme activities have not been reported, our workflow has demonstrated the capability 

to infer likely off-target activity from only native enzyme data. 

This work serves as a proof-of-concept that our computational workflow can use a heterologous biosynthetic 

pathway to identify a series of potential products and the enzymes required to make those products, thus 

generating a starting point for subsequent optimization. Protein engineering can then be employed to 

substantially increase the activity of the integrated enzyme, as has been demonstrated for many classes of 

enzymes in the past[116]–[118]. Recent years have seen a dramatic increase in the complexity of biosynthetic 

pathways expressed in heterologous hosts[53], as well as in the efficiency with which these pathways have 

been reconstructed, spurred by advances in DNA synthesis, sequencing, analytical techniques, and methods 

for genetic engineering. As increasing numbers of heterologous biosynthetic pathways become available to 

the research community, as they have for such diverse compound classes as noscapinoids[54], opioids[119], 

flavonoids[120], [121], cannabinoids[122], and carotenoids[123], computational tools to leverage these 

pathways for the production of additional products of interest will become increasingly useful. As the number 

of reported enzymes and compounds also increases, reflected by the continuous growth of biochemical 

databases like KEGG, we anticipate that computational tools will play a vital role in leveraging this vast 

amount of data to drive engineering efforts towards the bioproduction of valuable chemicals and 

pharmaceuticals. 

5.4 References	

 [1] D. R. Nielsen and T. S. Moon, “From promise to practice,” EMBO Rep., vol. 14, no. 12, pp. 1034–1038, 

Dec. 2013, doi: 10.1038/embor.2013.178. 

[2] M. Sorokina, M. Stam, C. Medigue, O. Lespinet, and D. Vallenet, “Profiling the orphan enzymes,” Biol. 

Direct, p. 9, 2014. 

[3] S. D. Copley, “Shining a light on enzyme promiscuity,” Curr. Opin. Struct. Biol., vol. 47, pp. 167–175, 

Dec. 2017, doi: 10.1016/j.sbi.2017.11.001. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

144 

[4] N. Hadadi, H. MohammadiPeyhani, L. Miskovic, M. Seijo, and V. Hatzimanikatis, “Enzyme annotation 

for orphan and novel reactions using knowledge of substrate reactive sites.,” Proc. Natl. Acad. Sci. U. S. A., 

vol. 116, no. 15, p. 201818877, Mar. 2019, doi: 10.1073/pnas.1818877116. 

[5] S. A. Rahman, S. M. Cuesta, N. Furnham, G. L. Holliday, and J. M. Thornton, “EC-BLAST: a tool to 

automatically search and compare enzyme reactions,” Nat. Methods, vol. 11, no. 2, pp. 171–174, Feb. 2014, 

doi: 10.1038/nmeth.2803. 

[6] Y. Yamanishi, M. Hattori, M. Kotera, S. Goto, and M. Kanehisa, “E-zyme: predicting potential EC 

numbers from the chemical transformation pattern of substrate-product pairs,” Bioinformatics, vol. 25, no. 

12, pp. i179–i186, Jun. 2009, doi: 10.1093/bioinformatics/btp223. 

[7] P. Carbonell et al., “Selenzyme: enzyme selection tool for pathway design,” Bioinformatics, vol. 34, 

no. 12, pp. 2153–2154, Jun. 2018, doi: 10.1093/bioinformatics/bty065. 

[8] N. Hadadi, H. MohammadiPeyhani, L. Miskovic, M. Seijo, and V. Hatzimanikatis, “Enzyme annotation 

for orphan and novel reactions using knowledge of substrate reactive sites,” Proc. Natl. Acad. Sci., p. 

201818877, Mar. 2019, doi: 10.1073/pnas.1818877116. 

[9] “Adipic Acid Market Size Price | Global Industry Trends Report, 2020.” 

https://www.grandviewresearch.com/industry-analysis/adipic-acid-market (accessed Feb. 19, 2018). 

[10] A. Shimizu, K. Tanaka, and M. Fujimori, “Abatement technologies for N2O emissions in the adipic acid 

industry,” Chemosphere - Glob. Change Sci., vol. 2, no. 3, pp. 425–434, Jul. 2000, doi: 10.1016/S1465-

9972(00)00024-6. 

[11] O. US EPA, “Overview of Greenhouse Gases,” US EPA, Dec. 23, 2015. 

https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed Nov. 01, 2019). 

[12] A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, “Nitrous Oxide (N2O): The Dominant Ozone-

Depleting Substance Emitted in the 21st Century,” Science, vol. 326, no. 5949, pp. 123–125, Oct. 2009, doi: 

10.1126/science.1176985. 

[13] “Tertiary N₂O Abatement | Shell Catalysts & Technologies | Shell Global.” 

https://www.shell.com/business-customers/catalysts-technologies/catalysts/environmental-catalysts/n20-

abatement.html.html#iframe=L24yby1hYmF0ZW1lbnQ (accessed Nov. 01, 2019). 

[14] “IPCC - Task Force on National Greenhouse Gas Inventories.” https://www.ipcc-

nggip.iges.or.jp/public/gp/english/ (accessed Feb. 04, 2020). 

[15] M. Faber, “Process for producing adipic acid from biomass,” US4400468A, Aug. 23, 1983. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

145 

[16] K. M. Draths and J. W. Frost, “Environmentally compatible synthesis of adipic acid from D-glucose,” 

J. Am. Chem. Soc., vol. 116, no. 1, pp. 399–400, Jan. 1994, doi: 10.1021/ja00080a057. 

[17] M. Kohlstedt et al., “From lignin to nylon: Cascaded chemical and biochemical conversion using 

metabolically engineered Pseudomonas putida,” Metab. Eng., vol. 47, pp. 279–293, May 2018, doi: 

10.1016/j.ymben.2018.03.003. 

[18] R. R. Yocum, W. Gong, S. Dole, R. Sillers, M. Gandhi, and J. G. Pero, “Production of muconic acid from 

genetically engineered microorganisms,” US20150044755A1, Feb. 12, 2015. 

[19] G. Wang et al., “Improvement of cis,cis-Muconic Acid Production in Saccharomyces cerevisiae 

through Biosensor-Aided Genome Engineering,” ACS Synth. Biol., vol. 9, no. 3, pp. 634–646, Mar. 2020, doi: 

10.1021/acssynbio.9b00477. 

[20] S. Picataggio and T. Beardslee, “Biological methods for preparing adipic acid,” US8343752B2, Jan. 01, 

2013. 

[21] Y. Deng and Y. Mao, “Production of adipic acid by the native-occurring pathway in Thermobifida fusca 

B6,” J. Appl. Microbiol., vol. 119, no. 4, pp. 1057–1063, Oct. 2015, doi: 10.1111/jam.12905. 

[22] S. Cheong, J. M. Clomburg, and R. Gonzalez, “Energy- and carbon-efficient synthesis of functionalized 

small molecules in bacteria using non-decarboxylative Claisen condensation reactions,” Nat. Biotechnol., vol. 

34, no. 5, pp. 556–561, May 2016, doi: 10.1038/nbt.3505. 

[23] S. F. Altschul et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search 

programs,” Nucleic Acids Res., vol. 25, no. 17, pp. 3389–3402, Sep. 1997, doi: 10.1093/nar/25.17.3389. 

[24] N. Hadadi, H. MohammadiPeyhani, L. Miskovic, M. Seijo, and V. Hatzimanikatis, “Enzyme annotation 

for orphan and novel reactions using knowledge of substrate reactive sites,” Proc. Natl. Acad. Sci., vol. 116, 

no. 15, pp. 7298–7307, Apr. 2019, doi: 10.1073/pnas.1818877116. 

[25] E. J. Kerkhoven, K. R. Pomraning, S. E. Baker, and J. Nielsen, “Regulation of amino-acid metabolism 

controls flux to lipid accumulation in Yarrowia lipolytica,” Npj Syst. Biol. Appl., vol. 2, p. 16005, Mar. 2016, 

doi: 10.1038/npjsba.2016.5. 

[26] A. Varma and B. O. Palsson, “Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use,” 

Bio/Technology, vol. 12, no. 10, Art. no. 10, Oct. 1994, doi: 10.1038/nbt1094-994. 

[27] C. S. Henry, L. J. Broadbelt, and V. Hatzimanikatis, “Thermodynamics-Based Metabolic Flux Analysis,” 

Biophys. J., vol. 92, no. 5, pp. 1792–1805, Mar. 2007, doi: 10.1529/biophysj.106.093138. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

146 

[28] C. Holkenbrink et al., “EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the 

Yeast Yarrowia lipolytica,” Biotechnol. J., vol. 0, no. 0, p. 1700543, doi: 10.1002/biot.201700543. 

[29] M. M. Jessop-Fabre et al., “EasyClone-MarkerFree: A vector toolkit for marker-less integration of 

genes into Saccharomyces cerevisiae via CRISPR-Cas9,” Biotechnol. J., vol. 11, no. 8, pp. 1110–1117, doi: 

10.1002/biot.201600147. 

[30] N. B. Jensen et al., “EasyClone: method for iterative chromosomal integration of multiple genes in 

Saccharomyces cerevisiae,” FEMS Yeast Res., vol. 14, no. 2, pp. 238–248, 2014, doi: 10.1111/1567-

1364.12118. 

[31] S. V. Kamzolova and I. G. Morgunov, “α-Ketoglutaric acid production from rapeseed oil by <Emphasis 

Type="Italic">Yarrowia lipolytica</Emphasis> yeast,” Appl. Microbiol. Biotechnol., vol. 97, no. 12, pp. 5517–

5525, Jun. 2013, doi: 10.1007/s00253-013-4772-6. 

[32] M. Tokunaga, Y. Nakano, and S. Kitaoka, “Separation and properties of the NAD-linked and NADP-

linked isozymes of succinic semialdehyde dehydrogenase in Euglena gracilis,” Biochim. Biophys. Acta BBA - 

Enzymol., vol. 429, no. 1, pp. 55–62, Mar. 1976, doi: 10.1016/0005-2744(76)90029-2. 

[33] P. Siegert et al., “Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas 

mobilis and benzoylformate decarboxylase from Pseudomonas putida,” Protein Eng. Des. Sel., vol. 18, no. 7, 

pp. 345–357, Jul. 2005, doi: 10.1093/protein/gzi035. 

[34] D. Esser et al., “Unraveling the function of paralogs of the aldehyde dehydrogenase super family from 

<Emphasis Type="Italic">Sulfolobus solfataricus</Emphasis>,” Extremophiles, vol. 17, no. 2, pp. 205–216, 

Mar. 2013, doi: 10.1007/s00792-012-0507-3. 

[35] R. M. Drevland, Y. Jia, D. R. J. Palmer, and D. E. Graham, “Methanogen Homoaconitase Catalyzes Both 

Hydrolyase Reactions in Coenzyme B Biosynthesis,” J. Biol. Chem., vol. 283, no. 43, pp. 28888–28896, Oct. 

2008, doi: 10.1074/jbc.M802159200. 

[36] J. Dahlin et al., “Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts 

Saccharomyces cerevisiae and Yarrowia lipolytica,” Front. Genet., vol. 10, 2019, doi: 

10.3389/fgene.2019.00747. 

[37] L. A. Urrestarazu, C. W. Borell, and J. K. Bhattacharjee, “General and specific controls of lysine 

biosynthesis in Saccharomyces cerevisiae,” Curr. Genet., vol. 9, no. 5, pp. 341–344, May 1985, doi: 

10.1007/BF00421603. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

147 

[38] B. Becker, A. Feller, M. E. Alami, E. Dubois, and A. Piérard, “A nonameric core sequence is required 

upstream of the LYS genes of Saccharomyces cerevisiae for Lys14p-mediated activation and apparent 

repression by lysine,” Mol. Microbiol., vol. 29, no. 1, pp. 151–163, Jul. 1998, doi: 10.1046/j.1365-

2958.1998.00916.x. 

[39] A. Feller, F. Ramos, A. Piérard, and E. Dubois, “In Saccharomyces cerevisae, feedback inhibition of 

homocitrate synthase isoenzymes by lysine modulates the activation of LYS gene expression by Lys14p,” Eur. 

J. Biochem., vol. 261, no. 1, pp. 163–170, doi: 10.1046/j.1432-1327.1999.00262.x. 

[40] T. Esikova, O. Ponamoreva, B. Baskunov, S. Taran, and A. Boronin, “Transformation of low-molecular 

linear caprolactam oligomers by caprolactam-degrading bacteria,” J. Chem. Technol. Biotechnol., vol. 87, no. 

9, pp. 1284–1290, 2012, doi: 10.1002/jctb.3789. 

[41] H. Iwaki, Y. Hasegawa, M. Teraoka, T. Tokuyama, H. Bergeron, and P. C. K. Lau, “Identification of a 

Transcriptional Activator (ChnR) and a 6-Oxohexanoate Dehydrogenase (ChnE) in the Cyclohexanol Catabolic 

Pathway in Acinetobacter sp. Strain NCIMB 9871 and Localization of the Genes That Encode Them,” Appl. 

Environ. Microbiol., vol. 65, no. 11, pp. 5158–5162, Nov. 1999. 

[42] P. Scarcia, L. Palmieri, G. Agrimi, F. Palmieri, and H. Rottensteiner, “Three mitochondrial transporters 

of Saccharomyces cerevisiae are essential for ammonium fixation and lysine biosynthesis in synthetic minimal 

medium,” Mol. Genet. Metab., vol. 122, no. 3, pp. 54–60, Nov. 2017, doi: 10.1016/j.ymgme.2017.07.004. 

[43] L. Palmieri, G. Agrimi, M. J. Runswick, I. M. Fearnley, F. Palmieri, and J. E. Walker, “Identification in 

Saccharomyces cerevisiae of Two Isoforms of a Novel Mitochondrial Transporter for 2-Oxoadipate and 2-

Oxoglutarate,” J. Biol. Chem., vol. 276, no. 3, pp. 1916–1922, Jan. 2001, doi: 10.1074/jbc.M004332200. 

[44] M. Kiebler, K. Becker, N. Pfanner, and W. Neupert, “Mitochondrial protein import: Specific 

recognition and membrane translocation of preproteins,” J. Membr. Biol., vol. 135, no. 3, pp. 191–207, Sep. 

1993, doi: 10.1007/BF00211091. 

[45] R. T. Baker et al., “Organic acids from homocitrate and homocitrate derivatives,” US20170113993A1, 

Apr. 27, 2017. 

[46] N. S. Kruyer and P. Peralta-Yahya, “Metabolic engineering strategies to bio-adipic acid production,” 

Curr. Opin. Biotechnol., vol. 45, pp. 136–143, Jun. 2017, doi: 10.1016/j.copbio.2017.03.006. 

[47] O. G. Chernyavskaya, N. V. Shishkanova, A. P. Il’chenko, and T. V. Finogenova, “Synthesis of α-

ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol,” Appl. Microbiol. Biotechnol., vol. 53, no. 2, 

pp. 152–158, Feb. 2000, doi: 10.1007/s002530050002. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

148 

[48] X. Yin, C. Madzak, G. Du, J. Zhou, and J. Chen, “Enhanced alpha-ketoglutaric acid production in 

Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway,” Appl. Microbiol. 

Biotechnol., vol. 96, no. 6, pp. 1527–1537, Dec. 2012, doi: 10.1007/s00253-012-4192-z. 

[49] J. Zhou, X. Yin, C. Madzak, G. Du, and J. Chen, “Enhanced α-ketoglutarate production in Yarrowia 

lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism,” J. Biotechnol., vol. 161, no. 3, pp. 257–264, 

Oct. 2012, doi: 10.1016/j.jbiotec.2012.05.025. 

[50] G. M. Cragg and D. J. Newman, “Natural products: A continuing source of novel drug leads,” 

Biochimica et Biophysica Acta - General Subjects, vol. 1830, no. 6. Elsevier, pp. 3670–3695, Jun. 01, 2013, doi: 

10.1016/j.bbagen.2013.02.008. 

[51] D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the 30 years from 

1981 to 2010,” J. Nat. Prod., vol. 75, no. 3, pp. 311–335, Mar. 2012, doi: 10.1021/np200906s. 

[52] D.-K. Ro et al., “Production of the antimalarial drug precursor artemisinic acid in engineered yeast,” 

Nature, vol. 440, no. 7086, pp. 940–943, Apr. 2006, doi: 10.1038/nature04640. 

[53] A. Cravens, J. Payne, and C. D. Smolke, “Synthetic biology strategies for microbial biosynthesis of 

plant natural products,” Nat. Commun., vol. 10, no. 1, p. 2142, Dec. 2019, doi: 10.1038/s41467-019-09848-

w. 

[54] Y. Li, S. Li, K. Thodey, I. Trenchard, A. Cravens, and C. D. Smolke, “Complete biosynthesis of noscapine 

and halogenated alkaloids in yeast,” Proc. Natl. Acad. Sci., vol. 115, no. 17, pp. E3922–E3931, Apr. 2018, doi: 

10.1073/PNAS.1721469115. 

[55] K. Ye et al., “Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces 

apoptosis in dividing cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 95, no. 4, pp. 1601–1606, Feb. 1998, doi: 

10.1073/pnas.95.4.1601. 

[56] B. Israel, J. Geller, and M. Rogosnitzky, “Noscapine Inhibits Human Prostate Cancer Progression and 

Metastasis in a Mouse Model,” Anticancer Res., vol. 28, pp. 3701–3704, 2008. 

[57] N. P. Joshi HC, Salil A, Bughani U, “Noscapinoids: a new class of anticancer drugs demand bio-

technological intervention,” in Medicinal Plant Biotechnology, R. Arora, Ed. CAB e-Books. 

[58] N. Hadadi and V. Hatzimanikatis, “Design of computational retrobiosynthesis tools for the design of 

de novo synthetic pathways,” Curr. Opin. Chem. Biol., vol. 28, pp. 99–104, Oct. 2015, doi: 

10.1016/J.CBPA.2015.06.025. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

149 

[59] J. G. Jeffryes, S. M. D. Seaver, J. P. Faria, and C. S. Henry, “A pathway for every product? Tools to 

discover and design plant metabolism,” Plant Sci., Mar. 2018, doi: 10.1016/J.PLANTSCI.2018.03.025. 

[60] G.-M. M. Lin, R. Warden-Rothman, and C. A. Voigt, “Retrosynthetic design of metabolic pathways to 

chemicals not found in nature,” Curr. Opin. Syst. Biol., vol. 14, pp. 82–107, Apr. 2019, doi: 

10.1016/J.COISB.2019.04.004. 

[61] V. Hatzimanikatis, C. Li, J. A. Ionita, C. S. Henry, M. D. Jankowski, and L. J. Broadbelt, “Exploring the 

diversity of complex metabolic networks,” Bioinformatics, vol. 21, no. 8, pp. 1603–1609, Apr. 2005, doi: 

10.1093/bioinformatics/bti213. 

[62] J. Wicker et al., “enviPath – The environmental contaminant biotransformation pathway resource,” 

Nucleic Acids Res., p. gkv1229, Nov. 2015, doi: 10.1093/nar/gkv1229. 

[63] M. A. Campodonico, B. A. Andrews, J. A. Asenjo, B. O. Palsson, and A. M. Feist, “Generation of an 

atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-

Path,” Metab. Eng., vol. 25, pp. 140–158, Sep. 2014, doi: 10.1016/J.YMBEN.2014.07.009. 

[64] S. Ding et al., “novoPathFinder: a webserver of designing novel-pathway with integrating GEM-

model,” Nucleic Acids Res., no. 1, 2020, doi: 10.1093/nar/gkaa230. 

[65] A. Kumar, L. Wang, C. Y. Ng, and C. D. Maranas, “Pathway design using de novo steps through 

uncharted biochemical spaces,” Nat. Commun., vol. 9, no. 1, p. 184, Jan. 2018, doi: 10.1038/s41467-017-

02362-x. 

[66] T. V. Sivakumar, V. Giri, J. H. Park, T. Y. Kim, and A. Bhaduri, “ReactPRED: A tool to predict and analyze 

biochemical reactions,” Bioinformatics, p. btw491, Aug. 2016, doi: 10.1093/bioinformatics/btw491. 

[67] B. Delépine, T. Duigou, P. Carbonell, and J.-L. Faulon, “RetroPath2.0: A retrosynthesis workflow for 

metabolic engineers,” Metab. Eng., vol. 45, pp. 158–170, Jan. 2018, doi: 10.1016/j.ymben.2017.12.002. 

[68] J. D. Tyzack, A. J. M. Ribeiro, N. Borkakoti, and J. M. Thornton, “Exploring Chemical Biosynthetic 

Design Space with Transform-MinER,” ACS Synth. Biol., vol. 8, no. 11, pp. 2494–2506, Nov. 2019, doi: 

10.1021/acssynbio.9b00105. 

[69] M. Tokić et al., “Discovery and evaluation of biosynthetic pathways for the production of five methyl 

ethyl ketone precursors,” ACS Synth. Biol., p. acssynbio.8b00049, Jul. 2018, doi: 10.1021/acssynbio.8b00049. 

[70] M. Moura, J. Finkle, S. Stainbrook, J. Greene, L. J. Broadbelt, and K. E. J. Tyo, “Evaluating enzymatic 

synthesis of small molecule drugs,” Metab. Eng., vol. 33, pp. 138–147, Jan. 2016, doi: 

10.1016/J.YMBEN.2015.11.006. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

150 

[71] L. Wang, C. Y. Ng, S. Dash, and C. D. Maranas, “Exploring the combinatorial space of complete 

pathways to chemicals.,” Biochem. Soc. Trans., vol. 46, no. 3, pp. 513–522, Jun. 2018, doi: 

10.1042/BST20170272. 

[72] M. Lin, F. Chueh, M. Hsieh, and C. Chen, “ANTIHYPERTENSIVE EFFECTS OF dl- 

TETRAHYDROPALMATINE: AN ACTIVE PRINCIPLE ISOLATED FROM CORYDALIS,” Clin. Exp. Pharmacol. Physiol., 

vol. 23, no. 8, pp. 738–745, Aug. 1996, doi: 10.1111/j.1440-1681.1996.tb01769.x. 

[73] W. Chung Leung, H. Zheng, M. Huen, S. Lun Law, and H. Xue, “Anxiolytic-like action of orally 

administered dl-tetrahydropalmatine in elevated plus-maze,” Prog. Neuropsychopharmacol. Biol. Psychiatry, 

vol. 27, no. 5, pp. 775–779, Aug. 2003, doi: 10.1016/S0278-5846(03)00108-8. 

[74] J. R. Mantsch et al., “Levo-tetrahydropalmatine attenuates cocaine self-administration and cocaine-

induced reinstatement in rats,” Psychopharmacology (Berl.), vol. 192, no. 4, pp. 581–591, May 2007, doi: 

10.1007/s00213-007-0754-7. 

[75] V. Hatzimanikatis, C. Li, J. A. Ionita, C. S. Henry, M. D. Jankowski, and L. J. Broadbelt, “Exploring the 

diversity of complex metabolic networks,” Bioinformatics, vol. 21, no. 8, pp. 1603–1609, Apr. 2005, doi: 

10.1093/bioinformatics/bti213. 

[76] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Res., vol. 

28, no. 1, pp. 27–30, Jan. 2000. 

[77] R. Overbeek et al., “The Subsystems Approach to Genome Annotation and its Use in the Project to 

Annotate 1000 Genomes,” Nucleic Acids Res., vol. 33, no. 17, pp. 5691–5702, Sep. 2005, doi: 

10.1093/nar/gki866. 

[78] D. S. Wishart et al., “HMDB: the Human Metabolome Database.,” Nucleic Acids Res., vol. 35, no. 

Database issue, pp. D521-6, Jan. 2007, doi: 10.1093/nar/gkl923. 

[79] R. Caspi et al., “The MetaCyc database of metabolic pathways and enzymes,” Nucleic Acids Res., vol. 

46, no. D1, pp. D633–D639, Jan. 2018, doi: 10.1093/nar/gkx935. 

[80] L. Jeske, S. Placzek, I. Schomburg, A. Chang, and D. Schomburg, “BRENDA in 2019: a European ELIXIR 

core data resource,” Nucleic Acids Res., vol. 47, no. D1, pp. D542–D549, Jan. 2019, doi: 10.1093/nar/gky1048. 

[81] S. Moretti, O. Martin, T. Van Du Tran, A. Bridge, A. Morgat, and M. Pagni, “MetaNetX/MNXref – 

reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic 

networks,” Nucleic Acids Res., vol. 44, no. D1, pp. D523–D526, Jan. 2016, doi: 10.1093/nar/gkv1117. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

151 

[82] A. Morgat et al., “Updates in Rhea--a manually curated resource of biochemical reactions.,” Nucleic 

Acids Res., vol. 43, no. Database issue, pp. D459-64, Jan. 2015, doi: 10.1093/nar/gku961. 

[83] J. Schellenberger, J. O. Park, T. M. Conrad, and B. Ø. Palsson, “BiGG: a Biochemical Genetic and 

Genomic knowledgebase of large scale metabolic reconstructions,” BMC Bioinformatics, vol. 11, no. 1, p. 213, 

Apr. 2010, doi: 10.1186/1471-2105-11-213. 

[84] P. Schläpfer et al., “Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in 

Plants,” Plant Physiol., vol. 173, no. 4, pp. 2041–2059, Apr. 2017, doi: 10.1104/PP.16.01942. 

[85] F. M. Afendi et al., “KNApSAcK Family Databases: Integrated Metabolite–Plant Species Databases for 

Multifaceted Plant Research,” Plant Cell Physiol., vol. 53, no. 2, pp. e1–e1, Feb. 2012, doi: 

10.1093/pcp/pcr165. 

[86] J. Hastings et al., “ChEBI in 2016: Improved services and an expanding collection of metabolites,” 

Nucleic Acids Res., vol. 44, no. Database issue, p. D1214, Jan. 2016, doi: 10.1093/NAR/GKV1031. 

[87] A. Gaulton et al., “The ChEMBL database in 2017,” Nucleic Acids Res., vol. 45, no. D1, pp. D945–D954, 

Jan. 2017, doi: 10.1093/nar/gkw1074. 

[88] S. Kim et al., “PubChem 2019 update: improved access to chemical data,” Nucleic Acids Res., vol. 47, 

no. D1, pp. D1102–D1109, Jan. 2019, doi: 10.1093/nar/gky1033. 

[89] S. Kim, P. A. Thiessen, T. Cheng, B. Yu, and E. E. Bolton, “An update on PUG-REST: RESTful interface 

for programmatic access to PubChem.,” Nucleic Acids Res., vol. 46, no. W1, pp. W563–W570, Jul. 2018, doi: 

10.1093/nar/gky294. 

[90] E. Sayers, “A General Introduction to the E-utilities,” 2010. 

[91] T. R. Valentic, J. T. Payne, and C. D. Smolke, “Structure-Guided Engineering of a Scoulerine 9- O -

Methyltransferase Enables the Biosynthesis of Tetrahydropalmatrubine and Tetrahydropalmatine in Yeast,” 

ACS Catal., pp. 4497–4509, Mar. 2020, doi: 10.1021/acscatal.9b05417. 

[92] O. W. Ryan et al., “Selection of chromosomal DNA libraries using a multiplex CRISPR system,” eLife, 

vol. 3, no. August2014, pp. 1–15, Aug. 2014, doi: 10.7554/eLife.03703. 

[93] P. Srinivasan and C. D. Smolke, “Engineering a microbial biosynthesis platform for de novo production 

of tropane alkaloids,” Nat. Commun., vol. 10, no. 1, Dec. 2019, doi: 10.1038/s41467-019-11588-w. 

[94] S. Galanie, K. Thodey, I. J. Trenchard, M. F. Interrante, and C. D. Smolke, “Complete biosynthesis of 

opioids in yeast,” Science, vol. 349, no. 6252, pp. 1095–1100, Sep. 2015, doi: 10.1126/science.aac9373. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

152 

[95] I. Schomburg, A. Chang, O. Hofmann, C. Ebeling, F. Ehrentreich, and D. Schomburg, “BRENDA: a 

resource for enzyme data and metabolic information,” Trends Biochem. Sci., vol. 27, no. 1, pp. 54–56, Jan. 

2002, doi: 10.1016/S0968-0004(01)02027-8. 

[96] Z. A. King et al., “BiGG Models: A platform for integrating, standardizing and sharing genome-scale 

models,” Nucleic Acids Res., vol. 44, no. D1, pp. D515–D522, Jan. 2016, doi: 10.1093/nar/gkv1049. 

[97] G. A. Johnston, “Advantages of an antagonist: bicuculline and other GABA antagonists,” Br. J. 

Pharmacol., vol. 169, no. 2, pp. 328–336, May 2013, doi: 10.1111/bph.12127. 

[98] K. M. Hawkins and C. D. Smolke, “Production of benzylisoquinoline alkaloids in Saccharomyces 

cerevisiae,” Nat. Chem. Biol., vol. 4, no. 9, pp. 564–573, Sep. 2008, doi: 10.1038/nchembio.105. 

[99] C. Desgrouas et al., “Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour,” 

Journal of Ethnopharmacology, vol. 154, no. 3. Elsevier Ireland Ltd, pp. 537–563, Jul. 03, 2014, doi: 

10.1016/j.jep.2014.04.024. 

[100] T. Morishige, E. Dubouzet, K.-B. Choi, K. Yazaki, and F. Sato, “Molecular cloning of columbamine O-

methyltransferase from cultured Coptis japonica cells,” Eur. J. Biochem., vol. 269, no. 22, pp. 5659–5667, 

Nov. 2002, doi: 10.1046/j.1432-1033.2002.03275.x. 

[101] H. Nam et al., “Network context and selection in the evolution to enzyme specificity.,” Science, vol. 

337, no. 6098, pp. 1101–4, Aug. 2012, doi: 10.1126/science.1216861. 

[102] A. Babtie, N. Tokuriki, and F. Hollfelder, “What makes an enzyme promiscuous?,” Current Opinion in 

Chemical Biology, vol. 14, no. 2. Elsevier Current Trends, pp. 200–207, Apr. 01, 2010, doi: 

10.1016/j.cbpa.2009.11.028. 

[103] A. Bar-Even et al., “The moderately efficient enzyme: Evolutionary and physicochemical trends 

shaping enzyme parameters,” Biochemistry, vol. 50, no. 21, pp. 4402–4410, May 2011, doi: 

10.1021/bi2002289. 

[104] A. Bar-Even, R. Milo, E. Noor, and D. S. Tawfik, “The Moderately Efficient Enzyme: Futile Encounters 

and Enzyme Floppiness,” Biochemistry, vol. 54, no. 32, pp. 4969–4977, Jul. 2015, doi: 

10.1021/acs.biochem.5b00621. 

[105] A. Kumar, L. Wang, C. Y. Ng, and C. D. Maranas, “Pathway design using de novo steps through 

uncharted biochemical spaces,” Nat. Commun., vol. 9, no. 1, p. 184, Jan. 2018, doi: 10.1038/s41467-017-

02362-x. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

153 

[106] H. Yim et al., “Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol,” Nat. 

Chem. Biol., vol. 7, no. 7, pp. 445–452, Jul. 2011, doi: 10.1038/nchembio.580. 

[107] N. Hadadi, J. Hafner, A. Shajkofci, A. Zisaki, and V. Hatzimanikatis, “ATLAS of Biochemistry: A 

repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies,” ACS 

Synth. Biol., Jul. 2016, doi: 10.1021/acssynbio.6b00054. 

[108] J. Hafner, H. MohammadiPeyhani, A. Sveshnikova, A. Scheidegger, and V. Hatzimanikatis, “Updated 

ATLAS of Biochemistry with New Metabolites and Improved Enzyme Prediction Power,” ACS Synth. Biol., vol. 

9, no. 6, pp. 1479–1482, May 2020, doi: 10.1021/acssynbio.0c00052. 

[109] X. Yang et al., “Systematic design and in vitro validation of novel one-carbon assimilation pathways,” 

Metab. Eng., vol. 56, pp. 142–153, Dec. 2019, doi: 10.1016/J.YMBEN.2019.09.001. 

[110] C. A. Lipinski, “Lead- and drug-like compounds: the rule-of-five revolution,” Drug Discov. Today 

Technol., vol. 1, no. 4, pp. 337–341, Dec. 2004, doi: 10.1016/J.DDTEC.2004.11.007. 

[111] S. Galanie and C. D. Smolke, “Optimization of yeast-based production of medicinal protoberberine 

alkaloids,” Microb. Cell Factories, vol. 14, no. 1, p. 144, Sep. 2015, doi: 10.1186/s12934-015-0332-3. 

[112] J. M. Hagel, G. A. W. Beaudoin, E. Fossati, A. Ekins, V. J. J. Martin, and P. J. Facchini, “Characterization 

of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine 

biosynthesis,” J. Biol. Chem., vol. 287, no. 51, pp. 42972–42983, Dec. 2012, doi: 10.1074/jbc.M112.420414. 

[113] T.-T. T. Dang and P. J. Facchini, “Characterization of three O-methyltransferases involved in noscapine 

biosynthesis in opium poppy.,” Plant Physiol., vol. 159, no. 2, pp. 618–31, Jun. 2012, doi: 

10.1104/pp.112.194886. 

[114] M. Sorokina, M. Stam, C. Médigue, O. Lespinet, and D. Vallenet, “Profiling the orphan enzymes,” 

Biology Direct, vol. 9, no. 1. BioMed Central Ltd., p. 10, Jun. 06, 2014, doi: 10.1186/1745-6150-9-10. 

[115] A. G. Shearer, T. Altman, and C. D. Rhee, “Finding sequences for over 270 orphan enzymes,” PLoS 

ONE, vol. 9, no. 5, May 2014, doi: 10.1371/journal.pone.0097250. 

[116] R. Fasan, M. M. Chen, N. C. Crook, and F. H. Arnold, “Engineered alkane-hydroxylating cytochrome 

P450BM3 exhibiting nativelike catalytic properties,” Angew. Chem. - Int. Ed., vol. 46, no. 44, pp. 8414–8418, 

Nov. 2007, doi: 10.1002/anie.200702616. 

[117] J. T. Payne, C. B. Poor, and J. C. Lewis, “Directed Evolution of RebH for Site-Selective Halogenation of 

Large Biologically Active Molecules,” Angew. Chem. Int. Ed., vol. 54, no. 14, pp. 4226–4230, Mar. 2015, doi: 

10.1002/anie.201411901. 



Enzyme prediction in practice: lessons learned, challenges and opportunities 

154 

[118] C. K. Savile et al., “Biocatalytic asymmetric synthesis of chiral amines from ketones applied to 

sitagliptin manufacture,” Science, vol. 329, no. 5989, pp. 305–309, Jul. 2010, doi: 10.1126/science.1188934. 

[119] S. Galanie, K. Thodey, I. J. Trenchard, M. F. Interrante, and C. D. Smolke, “Complete biosynthesis of 

opioids in yeast,” Science, vol. 349, no. 6252, pp. 1095–1100, Sep. 2015, doi: 10.1126/science.aac9373. 

[120] J. Li, C. Tian, Y. Xia, I. Mutanda, K. Wang, and Y. Wang, “Production of plant-specific flavones baicalein 

and scutellarein in an engineered E. coli from available phenylalanine and tyrosine,” Metab. Eng., vol. 52, pp. 

124–133, Mar. 2019, doi: 10.1016/J.YMBEN.2018.11.008. 

[121] J. A. Jones et al., “Experimental and computational optimization of an Escherichia coli co-culture for 

the efficient production of flavonoids,” Metab. Eng., vol. 35, pp. 55–63, May 2016, doi: 

10.1016/J.YMBEN.2016.01.006. 

[122] X. Luo et al., “Complete biosynthesis of cannabinoids and their unnatural analogues in yeast,” Nature, 

p. 1, Feb. 2019, doi: 10.1038/s41586-019-0978-9. 

[123] C. Zhang, X. Chen, N. D. Lindley, and H.-P. Too, “A ‘plug-n-play’ modular metabolic system for the 

production of apocarotenoids,” Biotechnol. Bioeng., vol. 115, no. 1, pp. 174–183, Jan. 2018, doi: 

10.1002/bit.26462. 



 

155 

 	NICEdrug.ch:	 a	 workflow	 for	

rational	 drug	 design	 and	 systems-level	

analysis	of	drug	metabolism	

 

”Medicine heals doubts as well as diseases“ 

Karl Marx D  

The results presented in this chapter have been obtained in collaboration with several people with the author 
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molecules from different databases, predicting metabolic reactions using BNICE.ch, and similarity evaluating 

of drug molecules under the supervision of the author. Dr. Anush Chiapino-Pepe presented essential human 
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6.1 Introduction	

Discovering new non-toxic drugs is required to treat diseases and infections, target drug resistance, and 

develop personalized treatments. However, identifying, testing, and approving a single small molecule can 

take decades and billions of dollars—and there is still a high risk that the proposed drug candidate fails. There 

is an urgent need to define strategies that accelerate the discovery of new, safe, and effective drugs, and the 

computational screening of all possible targets and molecules can help toward this aim. All computational 

approaches to date have focused on molecular structures without considering the reactivity of the molecules 

in a cell. However, reactivity information and drug metabolism determine which enzymes the drugs will 

target, the drug’s metabolic fate or degradation, and the potential source of its toxicity and side effects. 

Understanding drug effects in the context of cellular metabolism also offers great promise in evaluating the 
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reactivity of a new small molecule, the druggability of an enzyme, and the possibility of drug repurposing. 

Yet, the in silico mechanistic analysis of drug biochemistry is relatively unexplored, and no large-scale studies 

of drug biochemistry in cells have ever been performed. 

To systematically illuminate the metabolism and all enzymatic targets of known drugs and hypothetical 

prodrugs, we have herein performed the first large-scale computational analysis of drug biochemistry and 

toxicity in the context of human metabolism. To do this, we employed proven tools for analyzing the 

neighboring atoms around enzyme reactive sites (BridgIT and BNICE.ch). The analysis involved over 250,000 

small molecules, and was a huge technical effort spanning the curation and computation of bio- and physico-

chemical drug properties. We assembled this in an open-source workflow, NICEdrug.ch, that can generate 

drug metabolic reports and can be easily accessed and used by researchers, clinicians, and industry partners. 

6.1.1 Drug	discovery	:	An	ongoing	challenge	

To assure effective therapies for previously untreated illness, emerging diseases, and personalized medicine, 

new small molecules are always needed. However, the process to develop new drugs is complex, costly, and 

time consuming. This is especially problematic considering about 90% of drug candidates in clinical trials are 

discarded due to unexpected toxicity or other secondary effects. This inefficiency threatens our health care 

system and economy [1]. Improving how we discover and design new drugs could reduce the time and costs 

involved in the developmental pipeline and hence is of primary importance to define efficient medical 

therapies. 

6.1.2 How	drugs	are	designed	and	developed		

Current drug discovery techniques often involve high-throughput screens with candidates and a set of target 

enzymes presumably involved in a disease, which leads to the selection for those candidates with the 

preferred activity. However, the biochemical space of small molecules and possible targets in the cell is huge, 

which limits the possible experimental testing. Computational methods for drug pre-screening and discovery 

are therefore promising. In silico, one can systematically search the maximum biochemical space for targets 

and molecules with desired structures and functions to narrow down the molecules to test experimentally. 

There are two main in silico strategies for drug discovery: a data-driven approach based on machine learning, 

or a mechanistic approach based on the available biochemical knowledge. Machine learning (ML) has been 

successfully used in all stages of drug discovery, from the prediction of targets to the discovery of drug 

candidates, as shown in some recent studies [2]–[4]. However, ML approaches require big, high-quality data 

sets of drug activity and associated physiology [4], which might be challenging to obtain when studying drug 

action mechanisms and side effects in humans. ML also uses trained neural networks, which can lack 
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interpretability and repeatability. This can make it difficult to explain why the neural networks has chosen a 

specific result, why it unexpectedly failed for an unseen dataset, and the final results may vary [4].  

 

Mechanistic-based approaches can also rationally identify small molecules in a desired system and do not 

require such large amounts of data. Such methods commonly screen based on structural similarity to a native 

enzyme substrate (antimetabolite) or to a known drug (for drug repurposing), considering the complete 

structure of a molecule to extract information about protein-ligand fitness [5], [6]. However, respecting 

enzymatic catalysis, the reactive sites and neighboring atoms play a more important role than the rest of the 

molecule when assessing molecular reactivity [7]. Indeed, reactive site-centric information might allow to 

identify: (1) the metabolic fate and neighbors of a small molecule [8], including metabolic precursors or 

prodrugs and products of metabolic degradation, (2) small molecules sharing reactivity [9], and (3) 

competitively inhibited enzymes [10]. Furthermore, neither ML nor mechanistic-based approaches consider 

the metabolism of the patient, even though the metabolic fate of the drug and the existence of additional 

targets in the cell might give rise to toxicity. To our knowledge, no available method accounts for human 

biochemistry when refining the search for drugs. 

6.1.3 NICEdrug.ch			

Here, we present the development of the NICEdrug.ch database using a more holistic and updated approach 

to a traditional mechanistic-based screen by (1) adding a more detailed analysis of drug molecular structures 

and target enzymes based on structural aspects of enzymatic catalysis and (2) accounting for drug 

metabolism in the context of human biochemistry. NICEdrug.ch assesses the similarity of the reactivity 

between a drug candidate and a native substrate of an enzyme based on their common reactive sites and 

neighboring atoms (i.e., the NICEdrug score) in an analogous fashion as the computational tool BridgIT [7]. It 

also identifies all biochemical transformations in the cellular metabolism that can modify and degrade a drug 

candidate using a previously developed reaction prediction tool, termed BIochemical Network Integrated 

Computational Explorer (BNICE.ch) [11], [12] and the ATLAS of Biochemistry [13], [14]. With NICEdrug.ch, we 

automatically analyzed the functional, reactive, and physicochemical properties of around 250,000 small 

molecules to suggest the action mechanism, metabolic fate, toxicity, and possibility of drug repurposing for 

each compound. We apply NICEdrug.ch to study drug action mechanisms and identify drugs for repurposing 

related to four diseases: cancer, high cholesterol, malaria, and COVID-19. We also sought for molecules in 

food, as available in fooDB the largest database of food constituents [15], with putative anti SARS-CoV-2 

activity. Finally, we provide NICEdrug.ch as an online resource (https://lcsb-databases.epfl.ch/pathways/

Nicedrug/). Overall, NICEdrug.ch combines knowledge of molecular structures, enzymatic reaction 

mechanisms (as included in BNICE.ch [11], [12], [16]–[19]), and cellular biochemistry (currently human, 
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Plasmodium, and Escherichia coli metabolism) to provide a promising and innovative resource to accelerate 

the discovery and design of novel drugs. 

6.2 Materials	and	Method	

6.2.1 NICEdrug	pipeline	

Here we briefly explain the pipeline to construct and use the NICEdrug ( 

Figure 6.1: NICEdrug.ch (1) curates available information and calculates the properties of an input 

compound; (2) identifies the reactive sites of that compound; (3) explores the hypothetical 

metabolism of the compound in a cell; (4) stores all functional, reactive, bio-, and physico-chemical 

properties in open-source database; and (5) allows generation of reports to evaluate (5a) reactivity 

of a small molecule, (5b) drug repurposing, and (5c) druggability of an enzymatic target.  

). The details for each step of pipeline are explained after in a separate section.  

To build the initial NICEdrug.ch database, we gathered over 70,000 existing small molecules presumed 

suitable for treating human diseases from three source databases: KEGG, ChEMBL, and DrugBank (Appendix, 

Figure 8.3). We eliminated duplicate molecules, curated available information, computed thermodynamic 

properties, and applied the Lipinski rules [20] to keep only the molecules that have drug-like properties in 

NICEdrug.ch (Figure 6.1, section 6.2.2). NICEdrug.ch currently includes 48,544 unique small molecules from 

the source databases. 

To evaluate the reactivity of the 48,544 drugs, we searched for all possible reactive sites on each drug with 

BNICE.ch [12] (Figure 6.1, section 6.2.3). All of the 48,544 drugs contain at least one reactive site and hence 

might be reactive in a cell. In total, we identified more than 5 million potential reactive sites (183k unique) 

on the 48,544 molecules and matched them to a corresponding enzyme by assigning them to an Enzyme 

Commission (E.C.) number. All of these enzymes belong to the human metabolic network. Interestingly, 

10.4% of identified reactive sites correspond to the p450 class of enzymes, which are responsible for 

breaking down compounds in the human body by introducing reactive groups on those compounds, also 

known as phase I of drug metabolism (Appendix, Figure 8.4 pannel A). The sites that were identified varied 

greatly from simple and small (i.e., comprising a minimum number of one atom) to more complex sites 

that covered a large part of the molecule. The biggest reactive site includes 30 atoms (Appendix, Figure 

8.4 pannel B). 
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Figure 6.1: NICEdrug.ch (1) curates available information and calculates the properties of an input compound; (2) identifies the 

reactive sites of that compound; (3) explores the hypothetical metabolism of the compound in a cell; (4) stores all functional, reactive, 

1

OH

O OH

F
NI

N
O

H2N

1.1.1.-

1.1.3.-

3.2.2.-

Assembly and curation
Fiacitabine
D04180
CHEMBL272557
(16 more IDs)
MW: 371.107
CF: C9H11FIN3O4
∆!"°′: -93.04

OH

O OH

F
NI

N
O

H2N

Identify unique 
compound 2D structure

Calculate molecular properties 
and find descriptors 

Screen based on 
Lipinski rules

Identification of reactive sites

Scan with generalized 
enzymatic reaction rules

Identify atoms 
in reactive sites

Find atom-bond configuration
inside reactive site  

OH

O OH

F
NI

N
O

H2N

OH

OOH

F N
I

N
O

H2N

Drug candidate

2.8.2.-

1.97.1.-

First set of input molecules: 2D structure

Reactivity report

Storage in open-access DB: 

2

4

∿70,000 molecules

Study of drug metabolism in a cell

3 H2O

3.2.2.-
I

ONN

N

H

H

H

H

(B)

(C)

OH

O
OH

F

N
I

N OH
2N

NADH
H+

NAD+

1.3.1.-2 H+

HI

1.97.1.-

OH

O OH

FN
I

N
O

H2N

(G)(H)

∿50,000 molecules

∿50,000 molecules

∿250,000 molecules

Use BNICE.ch and 
the ATLAS of Biochemistry to:

• Identify all drug biochemistry
• Evaluate the drug’s metabolic fate or 

degradation
• Identify prodrugs

For a desired cell or unicellular organism, 
here a human cell

Store bio- and physico-chemical properties of 250,000 molecules
Store metabolic information (enzymes and metabolites) of different organisms 

Repurposing report

Drugs for 
repurposing and 

inhibited enzymes

1. Small molecule
2. Cell / organism

Identify all# alternative small 
molecules that share reactive 
sites with an input drug and 
inhibit the same enzymes in a cell

OH

O OH

FN
I

N
O

H2N

H3C

O

N
H

N

O

NO

HO
OH

OH

Druggability report

OH

O OH

FN
I

N
O

H2N

Drug
metabolism

1. Small molecule
2. Cell / organism
3. Steps away

Identify reactive sites, target 
enzymes, prodrugs, and 
metabolism of any small 
molecule in a cell

OH

O OH

FN
I

N
O

H2N

Candidate
drugs

1. Target enzyme
Identify all# small molecules
that can competitively inhibit 
an input enzyme (input E.C.)

a

b

5

c

#among all small molecules in NICEdrug.ch, which will be continuously updated



NICEdrug.ch: a workflow for rational drug design and systems-level analysis of drug metabolism 
 

160 

bio-, and physico-chemical properties in open-source database; and (5) allows generation of reports to evaluate (5a) reactivity of a 

small molecule, (5b) drug repurposing, and (5c) druggability of an enzymatic target.  

 

Given the important role of metabolism in the biochemical transformations and toxicity of drugs, we 

investigated the metabolism of the 48,544 input molecules in human cells. We predicted the hypothetical 

biochemical neighborhoods of all NICEdrug.ch small molecules in a human cell (i.e., reacting with known 

human metabolites and cofactors) using a retro-biosynthetic analysis with BNICE.ch (Figure 6.1, section 

6.2.4). With this approach, we discovered 197,246 unique compounds connected to the input drugs via one 

step or reaction (products of the first generation), and the associated hypothetical biochemical neighborhood 

consists of 630,449 reactions (Appendix, Figure 8.4). The 197,246 unique compounds are part of a new set 

of bioactive molecules in NICEdrug.ch that might act as drugs or prodrugs in a human cell. We stored the 

total number of 245,790 small molecules (including the curated set of 48,544 drugs and the new set of 

197,246 bioactive compounds), their calculated properties, and biochemistry in our open-access database of 

drug metabolism, NICEdrug.ch. 

To use NICEdrug.ch to identify drug-drug or drug-metabolite pairs that have shared reactivity and target 

enzymes, we developed a new metric called the NICEdrug score. The NICEdrug score uses information about 

the structure of the reactive site and its surroundings (as computed using the BridgIT methodology) and is 

stored in the form of a fingerprint (section 6.2.6). The fingerprint of a molecule’s reactive site and the 

neighborhood around this reactive site—termed the reactive site-centric fingerprint—serves to compare this 

site-specific similarity with other molecules. We recently showed that the reactive site-centric fingerprint of 

a reaction provides a better predictive measure of similar reactivity than the overall molecular structure, as 

the overall structure can be much larger than the reactive site and skew the results by indicating high 

similarities when the reactivity is actually quite different [7]. Here, we generated reactive site-centric 

fingerprints for all 20 million reactive sites identified in the 48,544 drugs and 197,246 one-step-away 

molecules included in NICEdrug.ch. The 20 million reactive site-centric fingerprints for the total 245,790 small 

molecules are available in NICEdrug.ch to be used in similarity comparisons and classifying molecules (section 

6.2.7). 

We propose the usage of NICEdrug.ch to generate reports that define the hypothetical reactivity of a 

molecule, the molecule’s reactive sites as identified by target enzymes, and the NICEdrug score between 

drug-drug and drug-metabolite pairs. The NICEdrug.ch reports can be used for three main applications: (1) 

to identify the metabolism of small molecules; (2) to suggest drug repurposing; and (3) to evaluate the 

druggability of an enzyme in a desired cell or organism (Figure 6.1), as we show in the next sections. Currently, 

NICEdrug.ch includes metabolic information for human cells, a malaria parasite, and Escherichia coli, and it 

is easily extendible to other organisms in the future. 
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6.2.2 Curation	of	input	molecules	used	in	the	construction	of	NICEdrug.ch	

We constructed the NICEdrug.ch database to gather small molecules suitable for treatment of human 

diseases. We collected the SMILES structure, synonyms, and any available bio- and physico-chemical property 

included from three source databases: KEGG, ChEMBL, and DrugBank, which added up to 70,976 molecules 

by January 2018 (Appenddix, Figure 8.3, panel A). Only molecules that were fully structured were imported 

to our database. We further curated the imported molecules by removing duplicate structures and merging 

annotations from different databases into one molecule entry in the database. For removing duplicate 

structures we used canonical SMIELS [21] generated  by openbabel [22] version 2.4.0. This unification method 

is based on atoms and their connectivity in a molecule in terms of a molecular graph that is captured by the 

canonical SMILES. Therefore, different resonance forms, stereoisomers, as well as dissociated and charged 

states of the same compound are mapped to one entry in database. Furthermore, we filtered molecules 

based on Lipinski rules [20]: (1) the molecular weight should be less than 500 Dalton, (2) the number of 

hydrogen bond donors should be less than five, (3) the number of hydrogen bond acceptors should be less 

than ten, and (4) an octanol-water partition coefficient (log P) should be less than five. According to Lipinski 

rules an active orally drug does not violate more than one of the above criteria. We calculated criteria one, 

two and three based on the structural information from SMILES of molecules. To assess criterion four, we 

relied on reported data in the source database. We kept in the NICEdrug.ch database those compounds for 

which the partition coefficient was not available. 

We performed a separate analysis to account for non-unique graph representations of aromatic rings, also 

called kekulé structures. The existence of aromatic rings and the fact that bond-electrons are shared within 

the ring make several single-double bond assignments possible, which results in multiple kekulé 

representations for a single molecule (Appendix, Figure 8.3, panel B). We included all such kekulé structures 

to account for alternative atom-bond connectivity and associated reactivity. We call “effective forms” to the 

kekulé representations that show different reactive sites than their canonical structures. For example, there 

can be two effective forms plus the canonical structure (Appendix, Figure 8.3 panel B). In total, we found 

42,092 effective forms for 29,994 aromatic compounds in NICEdrug.ch database and we kept them for 

further analysis. 

We also computed the thermodynamic properties of all drugs in NICEdruch.ch. Specifically, we computed the 

Gibbs free energy of formation (∆!"′°) using the group contribution method of Mavrovouniotis [23]. 

The NICEdrug.ch database includes a total number of 48,544 unique and curated small molecules (appendix, 

Figure 8.3, panel A). 
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6.2.3 Identification	of	reactive	sites	in	drugs	

The 3D structures of enzyme pockets are complex and mostly unknown. Therefore, evaluating and comparing 

docking of two small molecules in the pocket of a specific target is impossible most of the times. Using 

BNICE.ch, we focused on the complementary structure of active sites on substrates, also called reactive site. 

To recognize the potential reactive sites on molecules, we scanned molecules using expert-curated 

generalized reaction rules of BNCIE.ch [13], which mimic the identification of substrates by the enzyme 

pocket and account for the promiscuous activity of enzymes. Theses reaction rules incorporate the 

information of biochemical reactions and have third-level Enzyme Commission (EC) identifiers. Each BNICE.ch 

reaction rule accounts for three levels of information: (1) atoms in reactive sites of compounds, (2) 

connectivity and configuration of atom bonds in the reactive site, and (3) mechanism of bond breakage and 

formation during the reaction. As of May 2020, BNICE.ch contains 450 bidirectional generalized reaction rules 

that can reconstruct 8118 KEGG reactions [13]. Here, we include all BNICE.ch rules to identify all possible 

reactive sites on a given drug in two steps. First, a BNICE.ch rule identifies all atoms in a compound that 

belong to the rule’s reactive site. Second, the rule evaluates the connectivity of the atoms previously 

identified. The candidate compounds for which a BNICE.ch rule identified a reactive site were validated as 

metabolically reactive and considered for analysis in NICEdrug.ch. 

It is important to note that thanks to the generalized reaction rules, which abstract the knowledge of 

thousands of biochemical reactions, BNICE.ch is able to reconstruct known biotransformations and also 

propose novel metabolic reactions. This was demonstrated in the reconstruction of the ATLAS of 

Biochemistry [13], which involves up to 130,000 reactions between known compounds. 

6.2.4 Analysis	of	drug	metabolism	in	human	cells.	

To mimic biochemistry of human cells and simulate human drug metabolism, we collected all available 

information (metabolites and metabolic activities or EC numbers of enzymes) on human metabolism from 

three available databases: the human metabolic models Recon3D [24] and HMR [25], and the Reactome 

database [26]. These three databases include a total of 2,266 unique human metabolites and 2,066 unique 

EC numbers of enzymes (appendix, Table 8.22). 

To explore the biochemical space beyond the known human metabolic reactions and compounds, we used 

(1) the generalized enzymatic reaction rules of BNICE.ch that match up to the third EC level the collected 

human enzymes, and (2) all of the collected human metabolome. We evaluated the reactivity of each drug 

in a human cell using the retro-biosynthesis algorithm of BNICE.ch, which predicts hypothetical biochemical 

transformations or metabolic neighborhood around the drug of study.  We generated with BNICE.ch 

metabolic reactions in which each drug and all known human metabolites could participate as substrate or 
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products.  We also allowed a set of 53 known cofactors to react with the human metabolites (appendix, Table 

8.22). 

We define the boundaries of the metabolic neighborhood of a molecule with a maximum number of reactions 

or steps away that separate the input molecule (drug of study) from the furthest compound. In BNICE.ch, a 

generation n of compounds involves all metabolites that appear for the first time in the metabolic 

neighborhood of a drug after n reactions or steps happened. For example, in the case study of 5-FU we find 

the compound 5-Fluorouridine in generation 2 or 2 steps away, which means there are two metabolic 

reactions that separate 5-FU and 5-Fluorouridine (section 6.3.1). 

In NICEdrug.ch, there exist 197,246 compounds in generation 1 (1 step away) from all input drugs. The 

197,246 compounds are part of the potential drug metabolic neighborhood in human cells. Out of all 

generation 1 molecules, 13,408 metabolites can be found in human metabolic models and HMDB database 

[27], 16,563 metabolites exist in other biological databases, and the remaining 167,245 metabolites are 

catalogued as known compounds in chemical databases (i.e., PubChem). Note that HMDB includes native 

human metabolites and non-native human compounds, like food ingredients. 

The 197,246 products that are one-step away of all NICEdrug.ch molecules are part of a hypothetical 

biochemical neighborhood of 630,449 drug metabolic reactions. Of all drug metabolic reactions, 5,306 

reactions are cataloged in biological databases, and the remaining 625,143 reactions are novel. A majority of 

the reactions involved oxidoreductases (42.54%), broken down into 27.45% of lyases, 7.15% of hydrolases, 

6.28% of transferases, 1% of isomerases, and 15.58% of ligases. Interestingly based on the previously 

identified reactive sites, out of the 265,935 (42.54% of 625,143) oxidoreductase reactions, 49.92% are 

catalyzed by the p450 family of enzymes, which are known to be responsible for the metabolism of drug 

(Appendix, Figure 8.4 panel C). 

 

6.2.5 Using	NICEdrug.ch	database	for	analysis	of	the	metabolic	neighborhood	of	a	drug	

In NICEdrug.ch webserver, users can look up for a drug using the drugs’ name and other identifiers like 

ChEMBL, DrugBank and KEGG. NICEdrug.ch will report a unique identifier for the compound that will be input 

for upcoming analysis modules. The reactivity report allows to study the metabolic network around an input 

molecule. The input to this module is: (1) the unique identifier of the drug of interest, (2) a maximum number 

of reactions or steps away that shall separate the input drug to the furthest compound in the metabolic 

neighborhood. 
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The output of this analysis is a report in the form of a tsv file that includes all compounds and  metabolic 

reactions in the metabolic neighborhood of the input drug. One can also export the neighborhood in the 

form of a visual graph, in which nodes are molecules and edges are reactions. 

6.2.6 Definition	of	the	NICEdrug	score 
Based on the theory of lock and key, two metabolites that can be catalyzed by the same enzyme may have 

similar reactive sites and also neighboring atoms. In order to quantify the similarity inside and around reactive 

sites of two molecules, we developed a metric called NICEdrug score (Figure 6.2), which is inspired on BridgIT 

[7]. BridgIT assesses the similarity of two reactions, considering the reactive site of the participating 

substrates and their surrounding structure until the seventh atom out of the reactive site. 

The NICEdrug score is an average of two similarity evaluations: (1) the atom-bond configuration inside 

reactive site (a parameter), and (2) the 7 atom-bond chain molecular structure around the reactive site (b 

parameter). The NICEdrug score, and its parameters a and b, range between 0 and 1 when they indicate no 

similarity and identical structure, respectively. Different constraints on the a and b parameters determine 

the identification of different types of inhibition like para-metabolites and anti-metabolites (see section 6.2.8 

and 6.2.9). 

We show the evaluation of NICEdrug scores for three example compounds (Figure 6.2). In this example, 

Digoxin, Labriformidin and Lanatoside C all share the reactive site corresponding to EC number 5.3.3.- (a=1).  

Starting from the atoms of the identified reactive site, eight description layers of the molecule were formed, 

where each layer contains a set of connected atom-bond chains. Layer zero includes types of atoms of 

reactive site and their count. Layer 1 expands one bond away from all of the atoms of reactive site and 

accounts for atom-bond-atom connections. This procedure is continued until layer 7, which includes the 

sequence of 8 atoms connected by 7 bonds. Then, we compare the fingerprint of each molecule to the other 

participants of the class based on the Tanimoto similarity scores. A Tanimoto score near 0 designates no or 

low similarity, whereas a score near 1 designates high similarity in and around reactive site. Lanatoside C and 

Digoxin share the same substructure till 8 layers out of reactive site which is presented in the NICEdrug score 

by preserving score 1 in all layers, so the overall Tanimoto score for these two compounds in the context of 

EC number 5.3.3.- is 1 (a=1 and b=1). However, the structure of two compounds are not exactly the same 

and actually Lanatoside C has 8 more carbon atoms and 6 more oxygen atoms, shaped as an extra 

benzenehexol ring and an ester group. Although this part is far from the reactive site, based on the NICEdrug 

score they both can perfectly fit inside the binding pocket of a common protein related to this reactive site. 

This hypothesis is proved by experiments reported in KEGG and DrugBank. According to DrugBank and KEGG, 

Lanatoside C has actions similar to Dioxin and both of them have the same target pathways: Cardiac muscle 
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contraction and Adrenergic signaling in cardiomyocytes. Furthermore, target protein for both of them is 

ATP1A. 

Also, the NICEdrug score effectively captures and quantifies differences around the reactive site. The 

substructure around the reactive site in Labriformidin is slightly different (a=1 and b <1). The difference is 

calculated trough different layers of the NICEdrug score. 

In the case study of 5-FU (see section 6.3.1), in order to predict competitive inhibition, we analyzed all the 

metabolites that share reactive site with 5-FU or its downstream products (a=1) and then we ranked the 

most similar metabolites based on their similarity in neighborhood of reactive site to 5-FU or its downstream 

products (b). To assess the structural differences in the reactive sites themselves (a), we implemented the 

Levenshtein edit distance algorithm [28] to determine how many deletions, insertions, or substitutions of 

atom/bonds are required to transform one pattern of reactive site into the other one. Here, the edit distance 

explains the difference between the reactive sites of the intermediate and the human metabolite. However, 

even slight changes in the reactive site affect its interaction with the binding site. To ensure that the 

divergence retained the appropriate topology, we compared the required edit on reactive site with 

interchangeable groups, termed bioisosteric groups [29]. These bioisosteric groups contain similar physical 

or chemical properties to the original group and largely maintain the biological activity of the original 

molecule. An example of this is the replacement of a hydrogen atom with fluorine, which is a similar size that 

does not affect the overall topology of the molecule. For this analysis, we used 12 bioisosteric groups adapted 

from the study by Papadatos et.al. [29]. 

To predict irreversible Inhibitors in metabolism of 5-FU, we kept only molecules with a similarity score greater 

than 0.9 to metabolites (b>0.9), to preserve a high similarity in the neighborhood of the reactive sites. Then, 

we checked which ones contained reactive sites that differed only in the replacement of bioisosteric groups 

(a~1). 



NICEdrug.ch: a workflow for rational drug design and systems-level analysis of drug metabolism 
 

166 

 

Figure 6.2: Example of NICEdrug score calculation. The NICEdrug score takes into account the structure of a molecule’s reactive site 

and its seven-atom-away neighborhood for similarity evaluation, analogous to BridgIT. 

 

6.2.7 Classification	of	drugs	based	on	the	NICEdrug	score	

Classification of compounds with similar structure is normally used to assign unknown properties to new 

compounds. For instance, one can infer ligand-protein binding for a drug when its action mechanism or the 

structure of the target proteins are not known. In this study, we have considered four strategies to classify 

drugs, which are from less to more stringent: classifying (1) molecules that participate in reactions with the 

same EC up to the 3th level, (2) molecules that in addition share a BNICE.ch reaction rule, (3) molecules that 

in addition to both previous points share reactive site, (4) molecules that show high similarity of reactive site 

and neighborhood based on the NICEdrug score. 

The EC number guarantees that molecules are catalyzed with similar overall reaction mechanism. 

Generalized reaction rules from BNICE.ch further capture different submechanisms inside an EC number [13]. 

A BNICE.ch reaction rule might involve more than one reactive site. Hence, information of reactive sites 
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provides further insights into the molecule’s reactivity. Furthermore, similarity of reactive sites and their 

neighborhoods based on the NICEdrug score increase the comparison resolution and this is the basis of the 

classification in NICEdrug.ch. 

In NICEdrug.ch database there exist 95,342 classes that comprise all drugs and human compounds sharing 

EC, BNICE.ch rule, and reactive site (classification based on our strategy 3). We computed the NICEdrug score 

between all pairs of molecules in a class and this information is available in NICEdrug.ch. 

 

6.2.8 Identification	of	drugs	acting	as	para-metabolites	based	on	NICEdrug	score	

Small molecules that share reactive site and are structurally similar to native human metabolites enter and 

bind the pocket of native enzymes and competitively inhibiting catalysis acting as para-metabolites [30]. In 

this study, we define as para-metabolite any drug or any of its metabolic neighbors that (1) shares reactive 

site with native metabolites (a=1), and (2) preserves a high NICEdrug score with respect to the reactive site 

neighborhood (b>0.9). 

6.2.9 Identification	of	drugs	acting	as	anti-metabolites	based	on	NICEdrug	score	

Small molecules that do not share reactive site but are structurally similar to native human metabolites might 

enter the binding pocket of native enzymes and inhibiting catalysis acting as anti-metabolites [30]. In this 

study, we define as anti-metabolite any drug or any of its metabolic neighbors that (1) differs slightly in 

reactive site from a native metabolite (a~1), and (2) preserves high similarity in the reactive site 

neighborhood (b>0.9). We hypothesize that a low divergence in the reactive site, still allows a non-native 

compound to enter and bind the enzyme pocket since it is structurally similar enough to the native substrate. 

6.2.10 Identification	of	NICEdrug	toxic	alerts	

We obtained all NICEdrug toxic alters from ToxAlert database [31]. ToxAlert database includes about 1,200 

structural toxic alerts associated with particular types of toxicity. Toxic alerts are provided in the form of 

SMART patterns that are searchable in SMILES structure of molecules. NICEdrug.ch uses openbable tool [22] 

to search for these structural alerts on SMILES of compounds. 

6.2.11 Collection	of	reference	toxic	molecules	in	NICEdrug.ch	

Studying the adverse effects of chemicals on biological systems has led to development of databases 

cataloging toxic molecules. The Liver Toxicity Knowledge Base (LTKB) integrates 1,036 molecules annotated 

with human Drug-induced liver injury risk (severity). Super toxic DB include about 60k toxic molecules, that 
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are annotated with their toxicity estimate, LC50/LD50 i.e., lethal dose or concentration at which 50% of a 

population dies. 

As a resource of approved toxic molecules, we collected all of the molecules cataloged as toxic in LTKB and 

super toxic databases. We used this collection as a reference to compare the similarity of drugs or and 

products of drug metabolism with approved toxic molecules.  

6.2.12 Definition	of	a	toxicity	score	in	NICEdrug.ch	

The number of molecules labeled as toxic in databases is disproportionally low compared to the space of 

compounds. On the other hand, toxic alerts are defined for a big number of compounds and are linked to 

redundant molecular structures. 

We measured the similarity of drugs and their metabolic neighbors with the collection of reference toxic 

molecules using the NICEdrug score. We assigned toxic alerts to molecules in NICEdrug.ch if a molecule and 

toxic molecule shared a molecular substructure linked to the toxic alert. 

Finally, NICEdrug.ch provides a toxicity report in the form of a csv file for each molecule in the metabolic 

neighborhood including six values linked to the most similar toxic molecules in both toxic reference databases 

(LTKB and supertoxic databases): (1) the NICEdrug score between the drug and those most similar toxic 

molecules, (2) the severity degree of the hepatotoxic compound, and log(LC50) of the supertoxic compound, 

and (3) the number of common toxic alerts between the drug and the most similar toxic molecules. The list 

of toxic alerts is also provided.   

We combined the six values of the toxicity report into a toxicity score defined as follows: 

 

$NICEdrug	score		 × (log(LC#$)	or	severity	degree) 	×
%

	number	of	common	NICEdrug	toxic	alerts			 

i	 ∈ {the	most	similar	approved	toxic	molecules	in	LTKB	and	supertoxic	databases	} 

The toxicity score in NICEdrug.ch served to quantify the toxicity of each molecule in the metabolic 

neighborhood of a drug, recapitulate known toxic molecules, and suggest new toxic compounds. 

6.2.13 Analysis	of	essential	enzymes	and	linked	metabolites	in	Plasmodium	and	human	
cells	

We extracted information of essential genes and enzymes for liver-stage malaria development from our 

recent study [32]. In this study, we developed the genome-scale metabolic model of Plasmodium berghei, 

which shows high consistency (approximately 80%) with the largest gene knockout datasets in Plasmodium 
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blood [33] and liver stages [32]. There are 178 essential genes for P. berghei’s growth simulating liver-stage 

conditions [32]. Here, we identified the substrates of those essential metabolic enzymes, which comprise a 

set of 328 metabolites (appendix, Table 8.26). To further minimize on the host cell, we filtered out those 

Plasmodium enzymes that share 4th level E.C. with human essential enzymes. We used available CRISPR gene 

essentiality data in various human cell lines [34] to identify essential genes and enzymes in human cells 

(appendix, Table 8.26). We further identified essential metabolites in human cells (appendix, Table 8.26) 

using the latest human genome-scale metabolic model [35] and the metabolic information associated to the 

essential human genes. Subtracting essential parasite and human enzymes resulted in the analysis of 32 

essential Plasmodium enzymes catalyzing 68 metabolites and 157 unique metabolite-enzyme pairs in the 

parasite (appendix, Table 8.27). 

6.2.14 Identification	of	drugs	to	target	malaria	and	minimize	side	effects	on	human	cells	

Those molecules that themselves and their downstream products cannot act as inhibitors of essential 

metabolic enzymes in the human host cell while they can target essential Plasmodium enzymes are attractive 

antimalarial candidates. 

We first used NICEdrug.ch to look for small molecules that share reactive site with the 32 essential 

Plasmodium enzymes and they have good similarity score in reactive site neighborhood to native substrates 

of essential enzymes of parasite, i.e. NICEdrug score above 0.5 (appendix, Table 8.27). We also identified 

prodrugs that might lead to downstream products with similar reactive site and neighborhood (NICEdrug 

above 0.5) to any of the essential Plasmodium metabolites (appendix, Table 8.27). We suggest those drugs 

and downstream products act as antimetabolites and competitively inhibit the essential enzymes in the 

parasite. Overall, we identified 516 drugs that directly compete with essential metabolites and 1,164 

prodrugs that need to be biochemically modified between one to three times in human cell to render 

inhibition of essential enzymes. 

We next combined information of essential Plasmodium and human metabolites to screen further the drug 

search using NICEdrug.ch. Out of the hypothetical 516 antimalarial candidates, we identified 64 drugs that 

share reactive site with parasite metabolites (NICEdrug score above 0.5) and not with human metabolites 

(NICEdrug score below 0.5), making them good candidates for drug design (appendix, Table 8.27). 

6.2.15 Prediction	of	inhibitors	among	food	based	molecules	

We used the reactive site-centric fingerprint available in NICEdrug.ch to identify molecules in food that share 

reactive site with native substrates of human enzymes and hence might inhibit those enzymes. We retrieved 

the total set of 80,000 compounds from FooDB [15], and treated them as input molecules into the NICEdrug 
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pipeline (Figure 6.1) to identify reactive sites and evaluate their biochemistry, as done for all molecules in 

NICEdrug.ch. 

6.2.16 Identification	of	small	molecules	to	target	COVID-19	

A recent study reported 332 host factors of SARS-CoV-2 [36]. Out of the 332 proteins, 97 have catalytic 

function and EC number assigned, and are potential targets of small molecules. We evaluated the druggability 

of these 97 enzymes using NICEdrug.ch.  

To generate a druggability report, NICEdrug.ch first gathers the metabolic reactions associated with the 

protein EC numbers. NICEdrug.ch uses 11 databases (including HMR, MetaCyc, KEGG, MetaNetX, Reactome, 

Rhea, Model SEED, BKMS, BiGG models and Brenda) as source of metabolic reactions. All these databases 

involve a total of 60k unique metabolic reactions.  

Out of the 97 host factor enzymes, we identified 22 enzymes that are linked to fully-defined metabolic 

reactions. Fully-defined metabolic reactions fulfill three criteria. (1) There is a secondary structure available 

for all the reaction participants, which means there are available mol files. (2) There is a fully defined 

molecular structure for all the reaction participants, which means molecules with unspecified R chains are 

discarded. (3) There is a BNICE.ch enzymatic reaction rule assigned to the reaction (appendix, Table 8.28). 

NICEdrug.ch identified 22 host factor enzymes with 24 unique linked EC numbers and 145 unique fully 

defined reactions. NICEdrug.ch extracts the metabolites participating in these reactions and identifies their 

reactive site for a reactive-site centric similarity evaluation against a list of molecules. To this end, 

NICEdrug.ch reports the list of molecules ranked based on the NICEdrug score. The molecule with the highest 

NICEdrug score shares the highest reactive site-centric similarity with the native substrate of the target 

enzyme (appendix, Table 8.28). 

We found 1,301 molecules that show NICEdrug score above 0.5 with respect to substrates of the 22 SARS-

CoV-2 hijacked enzymes (appendix, Table 8.28). Out of 1,301 molecules, 465 are drugs cataloged in DrugBank, 

KEGG drugs or ChEMBL databases, 712 are active molecules one step away of 1,419 prodrugs, and 402 are 

food molecules (appendix, Table 8.28).  

To better understand the classes of drugs or food molecules, we classified drugs based on their KEGG drug 

groups (Dgroups) and food molecules based on their food source. Out of 465 drugs identified, 43 drugs are 

assigned to 55 different Dgroups and 402 food molecules belong to 74 different food sources (appendix, 

Table 8.28). 
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6.3 Results	and	Discussion		

6.3.1 	NICEdrug.ch	 suggests	 inhibitory	mechanisms	 of	 the	 anticancer	 drug	 5-FU	 and	
avenues	to	alleviate	its	toxicity.	

As a case study, we used NICEdrug.ch to investigate the mode of action and metabolic fate of one of the most 

commonly used drugs to treat cancer, 5-fluorouracil (5-FU), by exploring its reactivity and the downstream 

products or intermediates that are formed during the cascade of biochemical transformations. 5-FU 

interferes with DNA synthesis as an antimetabolite [37], meaning that its various intermediates like 5-

fluorodeoxyuridine monophosphate (FdUMP) are similar enough to naturally occurring substrates and they 

can act as competitive inhibitors in the cell. 

We therefore used NICEdrug.ch to study the intermediates of 5-FU that occurred between one to four 

reaction steps away from 5-FU (appendix, Table 8.23), which is a reasonable range to occur in the body after 

5-FU treatment [38]. This analysis identified 407 compounds (90 biochemical and 317 chemical molecules) 

that have the biochemical potential to inhibit certain enzymes. Because the NICEdrug score that analyses 

reactive site and neighborhood similarities can serve as a better predictor of metabolite similarity, we 

assessed the NICEdrug score of the intermediates compared to human metabolites. This resulted in a wide 

range of NICEdrug scores between the different 5-FU intermediates and human metabolites, ranging from 

no similarity at a NICEdrug score of 0 to the equivalent substructure on a compound at a NICEdrug score of 

1. More importantly, some of the 407 metabolite inhibitors (as explained next) were known compounds that 

have been investigated for their effects on 5-FU toxicity, but most of these compounds were newly identified 

by NICEdrug.ch and could therefore serve as avenues for future research into alleviating the side effects of 

this drug. 

We investigated these 407 compounds in more detail, looking first at the set of already validated metabolite 

inhibitors. 5-Fluorouridine (two steps away from 5-FU) and UDP-L-arabinofuranose (four steps away from 5-

FU) are very similar to uridine, with NICEdrug scores of 0.95 and 1, respectively. Uridine is recognized as a 

substrate by two human enzymes, cytidine deaminase (EC: 3.5.4.5) and 5'-nucleotidase (EC: 3.1.3.5) (Figure 

6.3). Therefore, NICEdrug.ch predictions show that the degradation metabolism of 5-FU generates 

downstream molecules similar to uridine, which likely leads to the inhibition of these two enzymes. This 

effect has already been investigated as a potential method for reducing the toxicity of 5-FU, wherein it was 

proposed that high concentrations of uridine could compete with the toxic 5-FU metabolites [39]. 

NICEdrug.ch also identified a few potential metabolites that have not been previously studied for their 

effects. These metabolites share a reactive site with native human metabolites and differ in the reactive site 

neighborhood, and we refer to them as para-metabolites [40]. 6-Methyl-2'-deoxyadenosine, purine-

deoxyribonucleoside, and 2'-deoxyisoguanosine structurally resemble the reactive site neighborhood of 
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deoxyadenosine, with respective NICEdrug scores of 1, 1, and 0.91. Similarly, 2-aminoadenosine, 2-

chloroadenosine, and 2-methylaminoadenosine (four steps from 5-FU) have the same reactive site 

neighborhood as adenosine, with NICEdrug scores of 1, 1, and 0.96, respectively. Adenosine and 

deoxyadenosine are both native substrates of the adenosine kinase (EC: 2.7.1.20) and 5'-nucleotidase (EC: 

3.1.3.5) (Figure 6.3). Therefore, we suggest that the 5-FU derivatives 2-aminoadenosine and 2-

chloroadenosine are competitive inhibitors for the two enzymes adenosine kinase and 5'-nucleotidase. With 

these new insights from NICEdrug.ch, we hypothesize that co-administering adenosine or deoxyadenosine 

and uridine (Figure 6.3) with 5-FU might be required to reduce its toxic effects and hopefully alleviate the 

side effects of the 5-FU cancer treatment. 
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Figure 6.3: Similarity in reactive site and neighborhood defines para-metabolites in 5-FU metabolism and inhibited human metabolic 

enzymes. Eight para-metabolites in the 5-FU metabolic neighborhood (represented as defined in section 6.2.8). We show the most 

similar native human metabolites, inhibited enzymes, and native products of the reactions.  
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6.3.2 Metabolic	degradation	of	5-FU	leads	to	compounds	with	Fluor	in	their	reactive	site	
that	are	less	reactive	and	more	toxic	than	other	intermediates	

 In the previous case study, we showed inhibitors that contain the identical active site to the native enzyme. 

However, a slightly different reactive site might still be able to bind to an enzyme and compete with a native 

substrate, also defined as anti-metabolite [41]. We explored this scenario by defining relaxed constraints in 

two steps. We first identified all atoms around a reactive site to compare the binding characteristics between 

the native molecule and putative inhibitor. Next, we compared the reactive site of the native molecule and 

putative inhibitor and scored the latter based on similarity (section 6.2.9). Following these two steps, we 

assessed the similarity between intermediates in the 5-FU metabolic neighborhood and human metabolites. 

Among all 407 compounds in the 5-FU metabolism (appendix, Table 8.23), we found 8 that show a close 

similarity to human metabolites (NICEdrug score above 0.9,  

Figure 6.4) that might be competitive inhibitors or anti-metabolites. Inside the reactive site, the original 

hydrogen atom is bioisosterically replaced by fluorine. F-C bonds are extremely stable and therefore block 

the active site by forming a stable complex with the enzyme. The inhibitory effect of the intermediates 

tegafur, 5-fluorodeoxyuridine, and F-dUMP (one to two reaction steps away) has been confirmed in studies 

by Kobayakawa et.al [42] and Bielas et.al [43]. In addition, NICEdrug.ch also predicts that 5flurim, 5-

fluorodeoxyuridine triphosphate, 5-fluorodeoxyuridine triphosphate, 5-fluorouridine diphosphate, and 5-

fluorouridine triphosphate, some of which occur further downstream in the 5-FU metabolism, also act as 

antimetabolites ( 

Figure 6.4). Based on the insights from NICEdrug.ch, we suggest the inhibitory and side effect of 5-FU 

treatment might be more complex than previously thought. 5-FU downstream products are structurally close 

to human metabolites and might form stable complexes with native enzymes. This knowledge could serve to 

further refine the pharmacokinetic and pharmacodynamic models of 5-FU and ultimately the dosage 

administered during treatment. 
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Figure 6.4: A different reactive site but similar neighborhood defines top anti-metabolites in 5-FU metabolism and inhibited human 

metabolic enzyme. Eight anti-metabolites of dUMP in the 5-FU metabolic neighborhood (represented as defined in 6.2.9). Note that 

the reactive site of the anti-metabolites is different than the one of the native human metabolite, but the neighborhood is highly 

similar, which determines the high NICEdrug score (value in parenthesis). We show the inhibited human enzyme (dTMP synthase) 

and reaction, and its native product. 
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structural alerts are indicated for many compounds, and current alerts might identify redundant and over-

specific substructures, which questions their reliability [47]. 

To quantify the toxicity of downstream products of drugs in NICEdrug.ch, we collected all of the molecules 

cataloged as toxic in the LTKB and super toxic databases (approved toxic molecules) along with their lethal 

dose (LC50), as well as the existing structural alerts provided by ToxAlert. We measured the similarity of an 
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input molecule with all approved toxic molecules using the reactive site-centric fingerprints implemented in 

BridgIT and the NICEdrug score (see section 6.2.6). Next, we scanned both the toxic reference molecule and 

the input molecule for structural hints of toxicity, referred to here as NICEdrug toxic alerts. We kept common 

NICEdrug toxic alerts between the reference, which is a confirmed toxic compound, and input molecule. With 

this procedure in place, NICEdrug.ch finds for each input molecule the most similar toxic molecules along 

with their common toxic alerts and serves to assess the toxicity of a new molecule based on the mapped 

toxic alerts. Additionally, the NICEdrug toxic alerts and toxicity level of drug intermediates can be traced with 

NICEdrug.ch through the whole degradation pathway to reveal the origin of the toxicity. 

As an example, we herein tested the ability of NICEdrug.ch to identify the toxicity in 5-FU metabolism. First, 

we queried the toxicity profile of all intermediates in the 5-FU metabolic neighborhood, integrating both 

known and hypothetical human reactions (see section 6.2.4). In this analysis, we generated all compounds 

up to four steps away from 5-FU. Based on the toxicity report of each potential degradation product, we 

calculated a relative toxicity metric that adds the LC50 value, NICEdrug score, and number of common 

NICEdrug toxic alerts with all approved toxic drugs (see section 6.2.12). We generated the metabolic 

neighborhood around 5-FU, and labeled each compound with our toxicity metric (appendix, Table 8.23). 

Interestingly, we show that the top most toxic intermediates match the list of known three toxic 

intermediates in 5-FU metabolism (Figure 6.5) [48]. Based on the toxicity analysis in NICEdrug.ch for 5-FU, 

we hypothesize there are highly toxic products of 5-FU drug metabolism that had not been identified either 

experimentally or computationally and it might be necessary to experimentally evaluate their toxicity to 

recalibrate the dosage of 5-FU treatment. 
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Figure 6.5: Comparing downstream products to known toxic molecules and analyzing their common structural toxic alerts explains 

metabolic toxicity of 5-FU. Example of six suggested toxic molecules in the 5-FU metabolic neighborhood (represented as defined in 

6.2.12). We show toxic compounds from the supertoxic and hepatotoxic databases that lead to the highest NICEdrug toxicity score 

(number under toxic intermediate name). We highlight functional groups linked to five NICEdrug toxic alerts (legend bottom right). 
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6.3.4 The	NICEdrug	reactive	site-centric	fingerprint	accurately	clusters	statins	of	type	I	
and	II	and	guides	drug	repurposing.	

Because potential side effects of a drug are documented when the drug passes the approval process, 

repurposing approved drugs for other diseases can reduce the medical risks and development expenses. For 

instance, the antitussive noscapine has been repurposed to treat some cancers [49], [50]. Because 

NICEdrug.ch can search for functional (i.e., reactivity), structural (i.e., size), and physicochemical (i.e., 

solubility) similarities between molecules while accounting for human biochemistry, we wanted to determine 

if NICEdrug.ch could therefore suggest drug repurposing strategies. 

As a case study, we investigated the possibility of drug repurposing to replace statins, which are a class of 

drugs often prescribed to lower blood cholesterol levels and to treat cardiovascular disease. Indeed, data 

from the National Health and Nutrition Examination Survey indicate that nearly half of adults 75 years and 

older in the United States use prescription cholesterol-lowering statins [51]. Since some patients do not 

tolerate these drugs and many still do not reach a safe blood cholesterol level [52], there is a need for 

alternatives. Being competitive inhibitors of the cholesterol biosynthesis enzyme 3-hydroxy-3-methyl-

glutaryl-coenzyme A reductase (HMG-CoA reductase) [53], [54], all statins share the same reactive site. 

BNICE.ch labeled this reactive site, in a linear or circular form, as corresponding to an EC number of 4.2.1.- 

[55]. NICEdrug.ch includes 254 molecules with the same reactive site that are recognized by enzymes of E.C. 

class 4.2.1.-, ten of which are known statins. We used the NICEdrug score to cluster the 254 molecules into 

different classes (appendix, Table 8.24, Figure 6.6). Two of the classes correspond to all currently known 

statins, which are classified based on their activity into type 1 and 2, wherein statins of type 2 are less active 

and their reactive site is more stable compared to type 1. This property is well distinguished in the clustering 

based on the NICEdrug score (Figure 6.6 panel A). 

In addition to properly classifying the ten known statins (Figure 6.6 panel B and C, molecules non-marked), 

we identified seven other NICEdrug.ch molecules that clustered tightly with these statins (Figure 6.6 panel B 

and C, molecules marked with *). These new molecules share the same reactive site and physicochemical 

properties, and they have the highest similarity with known statins in atoms neighboring the reactive site. In 

a previous study by Endo et al., these seven NICEdrug.ch molecules were introduced as Mevastatin analogues 

for inhibiting cholesterol biosynthesis [56]. Therefore, they were already suggested as possible candidates 

for treating high blood cholesterol and could be a good option for repurposing. Furthermore, we found eight 

known drugs not from the statin family among the 254 scanned molecules (appendix, Table 8.25). One of 

them, acetyl-L-carnitine (Figure 6.6 panel C, molecule marked with **), is mainly used for treating 

neuropathic pain [57], though Tanaka et al. have already confirmed that it also has a cholesterol-reducing 

effect [58].  
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Figure 6.6: Clustering of molecules with statin reactive sites based on NICEdrug score suggests drugs for repurposing. 

(A) Pairwise NICEdrug score between all molecules with statin reactive sites (heat map) and number of metabolic reactions in which 

they participate (right). We highlight clusters of statins of type 1 (cluster a) and type 2 (cluster b), and clusters of most similar 

molecules to type 1 statins (cluster c) and type 2 statins (cluster d). Within the metabolic reactions, we indicate the total number of 

reactions (dark color) and the number of reactions that involve the statin reactive site (light color). (B) Examples of statins and 

Mevastatin analogues of type 1 from cluster c (blue) and of type 2 from cluster d (gold). We left the known statins unmarked, which 

are appropriately clustered together based on the NICEdrug score, and we mark with * new molecules that cluster with statins and 

NICEdrug
score

Pravastatin Lovastatin AcidAtorvastatinCerivastatin

Lovastatin Simvastatin

RosuvastatinFluvastatin

Monacolin J acid * Monacolin L acid *dihydromonacolin
L acid *

3-Hydroxy-3,5-
dihydromonacolin L *

Compactin
diol lactone *Mevastatin Pravastatin 

lactone ML-236C * Dihydro-
monacolin L *

Number of 
metabolic reactions

A
c d

a b

B

1

0.5

0

C
H3C

O

O

CH
3

HO

O

OCH
3

CH
3

H 3
C

O

O

H 3
C

H
O

O

O

CH
3

CH
3

H 3
C

H
O

H
3 C

O
H

O

O

H3C
O

O
HO

O

OCH
3

CH
3

H3CO

O

OH

HO

O

OCH
3

CH
3

H
O

H
3 C

O

O

H
3 C

O
H

O

O

C
H
3

OH

O

OH OH

N

CH3H3C

F

O

HN

CH3

O

OH3C

O

OHOHOH

CH3

CH3H3C
O

F

O

OHOHOH

N

CH3

H3C

CH3

CH3

CH3

O

OHO

O

OHOHOH

CH3

CH3
OH

O

OHOH

N

N

F

N

S OO

CH3

H3C

CH3

CH3

HO

O

F

N

CH3

H3C

OHOH

OH

O

OH OH

H3C

HO CH3
OH

O

OH OH

H3C

CH3

OH

O

OH OH

H3C

CH3OH

O

OH OH

H3C

OH

CH3

acetyl-L-carnitine ** 

0 10 20 30

a
b

d
c



NICEdrug.ch: a workflow for rational drug design and systems-level analysis of drug metabolism 
 

180 

that NICEdrug.ch suggests could be repurposed to act as statins. Reactive sites in type 1 statins and type 2 statins are colored in blue 

and orange, respectively. The reactive site neighborhood as considered in the NICEdrug score is also marked 

 

Overall, NICEdrug.ch was able to characterize all known enzymatic reactions that metabolize statins, 

including proposed alternatives and new hypothetical reactions that could be involved in their metabolism 

within human cells Figure 6.6 panel A, Appendix Figure 8.5). The identification of seven drugs that clustered 

around the statins and were already designed as alternatives to statins verifies the ability of NICEdrug.ch and 

the NICEdrug score to search broad databases for similar compounds in structure and function. Furthermore, 

the discovery of the eight compounds unrelated to known statins offer multiple candidate repurposable 

drugs along with a map of their metabolized intermediates for the treatment of high cholesterol, though 

further preclinical experiments would be required to verify their clinical benefits. 

6.3.5 NICEdrug.ch	 suggests	 over	 500	 drugs	 to	 target	 liver-stage	 malaria	 and	
simultaneously	minimize	side	effects	in	human	cells,	with	shikimate	3-phosphate	

as	a	top	candidate	

Efficiently targeting malaria remains a global health challenge. Malaria parasites (Plasmodium) are 

developing resistance to all known drugs, and antimalarials cause many side effects [59]. We applied 

NICEdrug.ch to identify drug candidates that target liver-stage developing malaria parasites and lessen or 

avoid side effects in human cells. 

We previously reported 178 essential genes and enzymes for liver-stage development in the malaria parasite 

Plasmodium berghei [32] (appendix, Table 8.26). Out of 178 essential Plasmodium enzymes, 32 enzymes are 

not essential in human cells [34] (appendix, Table 8.26). We extracted all molecules catalyzed by these 32 

enzymes uniquely essential in Plasmodium, which resulted in 68 metabolites and 157 unique metabolite-

enzyme pairs (appendix, Table 8.26). We used NICEdrug.ch to examine the druggability of the 32 essential 

Plasmodium enzymes with the curated 48,544 drugs (Figure 6.1) and the possibility of repurposing them to 

target malaria. 

We considered as candidates for targeting liver-stage malaria as the drugs or their metabolic neighbors that 

show a good NICEdrug score (NICEdrug score above 0.5) with any of the 157 Plasmodium metabolite-enzyme 

pairs. We identified 516 such drug candidates, targeting 16 essential Plasmodium enzymes (appendix, Table 

8.27). Furthermore, 1,164 other drugs appear in the metabolic neighborhood of the 516 identified drugs 

(between one and three reaction steps away). Interestingly, out of the 516 identified drug candidates, 

digoxigenin, estradiol-17beta and estriol have been previously validated as antimalarials [60] and 

NICEdrug.ch suggests their antimalarial activity relies on the competitive inhibition of the KRC enzyme (Figure 

6.7). This enzyme is part of both the steroid metabolism and the fatty acid elongation metabolism, which we 
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recently showed is essential for Plasmodium liver-stage development [32]. Among the 516 NICEdrug 

antimalarial candidates, there are also 89 molecules present in the metabolic neighborhood of antimalarial 

drugs approved by [60], which suggests these antimalarials might be prodrugs (appendix, Table 8.27). 

Being an intracellular parasite, antimalarial treatments should be efficient at targeting Plasmodium as well 

as assure the integrity of the host cell (Figure 6.7 panel A). To tackle this challenge, we identified 1,497 

metabolites participating in metabolic reactions catalyzed with essential human enzymes (appendix, Table 

8.26, see 6.2.13) and excluded the antimalarial drug candidates that shared reactive site-centric similarity 

with the extracted human metabolite set (to satisfy NICEdrug score below 0.5). Out of all 516 drug candidates 

that might target liver-stage Plasmodium, a reduced set of 64 molecules minimize the inhibition of essential 

human enzymes (appendix, Table 8.27, see 6.2.14) and are hence optimal antimalarial candidates. 

Among our set of 64 optimal antimalarial candidates, a set of 14 drugs targeting the Plasmodium shikimate 

metabolism, whose function is essential for liver-stage malaria development [32], arose as the top candidate 

because of its complete absence in human cells. The set of drugs targeting shikimate metabolism include 40 

prodrugs (between one and three reaction steps away) that have been shown to have antimalarial activity 

[60] (appendix, Table 8.27). NICEdrug.ch identified molecules among the prodrugs with a high number of 

toxic alerts, like nitrofen. It also identified four molecules with scaffolds similar (two or three steps away) to 

the 1-(4-chlorobenzoyl)pyrazolidin-3-one of shikimate and derivatives. This result suggests that downstream 

compounds of the 40 prodrugs might target the Plasmodium shikimate pathway, but also might cause side 

effects in humans (appendix, Table 8.27). 

To this end, NICEdrug.ch identified shikimate 3-phosphate as a top candidate antimalarial drug. We propose 

that shikimate 3-phosphate inhibits the essential Plasmodium shikimate biosynthesis pathway without side 

effects in the host cell (Figure 6.7, appendix, Table 8.27). Excitingly, shikimate 3-phosphate has been used to 

treat E. coli and Streptococcus infections without appreciable toxicity for patients [61]. Furthermore, recent 

studies have shown that inhibiting the shikimate pathway using 7-deoxy-sedoheptulose is an attractive 

antimicrobial and herbicidal strategy with no cytotoxic effects on mammalian cells [62]. Experimental studies 

should now validate the capability of shikimate 3-phosphate to efficiently and safely target liver malaria, and 

could further test other NICEdrug.ch antimalarial candidates (appendix, Table 8.27). 
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Figure 6.7: NICEdrug.ch suggests shikimate 3-phosphate as a top candidate to target liver-stage malaria and minimize side effects in 

host human cells. (A) Schema of ideal scenario to target malaria, wherein a drug efficiently inhibits an essential enzyme for malaria 

parasite survival and does not inhibit essential enzymes in the host human cell to prevent side effects. (B) Shikimate 3-phosphate 

inhibits enzymes in the Plasmodium shikimate metabolism, which is essential for liver-stage development of the parasite. Shikimate 

3-phosphate does not inhibit any enzyme in the human host cell since it is not a native human metabolite, and it does not show 

similarity to any native human metabolite. (C) Mechanistic details of inhibition of aroC by shikimate 3-phosphate and other NICEdrug 

candidates 
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NICEdrug.ch identifies over 1,300 molecules to fight COVID-19, with N-acetylcysteine as a top candidate 

SARS-CoV-2 is responsible for the currently on-going COVID-19 pandemic and the death of over half a million 

people (as of today, July 15 [63]) and there is currently no confirmed treatment for it. Attacking the host 

factors that allow replication and spread of the virus is an attractive strategy to treat viral infections like 

COVID-19. A recent study has identified 332 interactions between SARS-CoV-2 proteins and human proteins, 

which involve 332 hijacked human proteins or host factors [36]. Here, we first used NICEdrug.ch to identify 

inhibitors of enzymatic host factors of SARS-CoV-2. Targeting such human enzymes prevents interactions 

between human and viral proteins (PPI) (See section 6.2.16, Figure 6.8 panel A). Out of the 332 hijacked 

human proteins we identified 97 enzymes (See section 6.2.16, appendix, Table 8.28) and evaluated their 

druggability by inhibitors among the 250,000 small molecules in NICEdrug.ch and 80,000 molecules in food 

(See section 6.2.15, Figure 6.8 panel A). NICEdrug.ch suggests 22 hijacked human enzymes can be drug 

targets, and proposed 1301 potential competitive inhibitors from the NICEdrug.ch database. Out of 1301 

potential inhibitors, 465 are known drugs, 712 are active metabolic products of 1,419 one-step-away 

prodrugs, and 402 are molecules in fooDB (appendix, Table 8.28). We found among the top anti SARS-CoV-2 

drug candidates the known reverse transcriptase inhibitor didanosine (Figure 6.8 panel B, appendix, Table 

8.28), which other in silico screenings have also suggested as a potential treatment for COVID-19 [64], [65]. 

Among others, NICEdrug.ch also identified: (1) actodigin, which belongs to the family of cardiotonic 

molecules proven to be effective against MERS-CoV but without mechanistic knowledge [66], (2) three 

molecules in ginger (6-paradol, 10-gingerol, and 6-shogaol) inhibiting catechol methyltransferase, and (3) 

brivudine, a DNA polymerase inhibitor that has been used to treat herpes zoster [67] and prevent MERS-CoV 

infection [68], and NICEdrug.ch suggests it for repurposing (Figure 6.9, appendix, Table 8.28). 
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Figure 6.8: NICEdrug strategy to fight COVID-19, and NICEdrug candidate inhibitors of SARS-CoV-2 host factors: reverse transcriptase 

and HDAC2. (A) Schema of NICEdrug strategy to target COVID-19, wherein a drug (top-left) or molecules in food (top-right) efficiently 

inhibit a human enzyme hijacked by SARS-CoV-2. Inhibition of this host factor reduces or abolishes protein-protein interactions (PPI) 

with a viral protein and prevents SARS-CoV-2 proliferation. (B) Inhibition of the reverse transcriptase (E.C: 1.1.1.205 or P12268) and 

the PPI with SARS-CoV-nsp14 by didanosine based on NICEdrug.ch. (C) Inhibition of the HDAC2 (E.C: 3.5.1.98) and the PPI with SARS-
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CoV-nsp5 by molecules containing acetyl moiety (like melatonin, N-acetylcysteine, and N8-acetylspermidine), and molecules 

containing carboxylate moiety (like valproate, stains, and butyrate) based on NICEdrug.ch 

 

 

Figure 6.9: NICEdrug candidate inhibitors of SARS-CoV-2 host factors: galactosidase, catechol methyltransferase, and DNA 

polymerase, related to Figure 6.8. (A) Inhibition of the galactosidase (E.C: 3.2.1.22 or P06280) and the PPI with SARS-CoV-2 nsp14 by 

actodigin based on NICEdrug.ch. (B) Inhibition of the catechol methyltransferase (E.C: 2.1.1.6 or P21964) and the PPI with SARS-CoV-
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2 nsp7 by 6-paradol, 10-gingerol, and 6-shogaol, which are molecules in ginger, based on NICEdrug.ch. (C) Inhibition of the DNA 

polymerase (E.C: 2.4.1.-) and the PPI with SARS-CoV-2 nsp8 by brivudine based on NICEdrug.ch. 

 

Drugs like remdesivir, EIDD-2801, favipiravir, and inhibitors of angiotensin converting enzyme 2 (ACE2) have 

been used to treat COVID-19 [69], and act through a presumably effective inhibitory mechanism (Figure 6.10). 

For instance, the three drugs remdesivir, EIDD-2801, and favipiravir are believed to inhibit the DNA-directed 

RNA polymerase (E.C: 2.7.7.6). Here, we used the NICEdrug reactive site-centric fingerprint to seek for 

alternative small molecules in NICEdrug.ch and fooDB that could be repurposed to target ACE2 and DNA-

directed RNA polymerase. NICEdrug.ch identified a total of 215 possible competitive inhibitors of ACE2. 

Among those is captopril, a known ACE2 inhibitor [70], and D-leucyl-N-(4-carbamimidoylbenzyl)-L-

prolinamide, a NICEdrug.ch suggestion for drug repurposing to treat COVID-19. We also found 39 food-based 

molecules with indole-3-acetyl-proline (a molecule in soybean) as top ACE2 inhibitor candidate (Figure 6.10 , 

appendix, Table 8.29). To target the same enzyme as remdesivir, EIDD-2801, and favipiravir, NICEdrug.ch 

identified 1115 inhibitors of the DNA-directed RNA polymerase, like the drug vidarabine, which shows broad 

spectrum activity against DNA viruses in cell cultures and significant antiviral activity against infections like 

the herpes viruses, the vaccinia virus, and varicella zoster virus [71]. We further found 556 molecules in food 

that might inhibit DNA-directed RNA polymerase, like trans-zeatin riboside triphosphate (FDB031217) 

(appendix, Table 8.29). 
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Figure 6.10: NICEdrug candidate inhibitors of ACE2, related to Figure 6.8. Inhibition of the ACE2 (E.C: 3.4.17.23), a putative host factor 

of SARS-CoV-2, by the known inhibitor captopril, and NICEdrug candidates D-leucyl-N-(4-carbamimidoylbezyl)-L-prolinamide and 

indole-3-acetyl-proline. 

 

One of the host factors identified by Gordon and co-workers is the histone deacetylase 2 (HDAC2) [36], which 

acetylates proteins and is an important transcriptional and epigenetic regulator. The acetyl and carboxylate 

moieties are the reactive sites of the forward (N6-acetyl-L-lysyl-[histone]) and reverse (acetate) 

biotransformation of HDAC2, respectively (Figure 6.8). NICEdrug.ch recognized a total of 640 drugs for 

repurposing that can inhibit HDAC2, including 311 drugs sharing the acetyl moiety and showing a NICEdrug 

score above 0.5 with respect to N6-acetyl-L-lysyl-[histone], and 329 drugs sharing the carboxylate moiety and 

presenting a NICEdrug score above 0.5 with acetate (See 6.2.6). Among the drugs sharing the acetyl reactive 

site, we identified the known HDAC2 inhibitor melatonin [72], and to-our-knowledge new candidates like N-

acetylhistamine and N-acetylcysteine. We also located 22 molecules in food with potential HDAC2 inhibitory 

activity, like N8-acetylspermidine (FDB022894) (Figure 6.8 panel C, appendix, Table 8.29). Drugs sharing the 

carboxylate reactive site (as identified with NICEdrug) include the known HDAC2 inhibitors valproate, 

butyrate, phenyl butyrate [73] and statins [52] (Figure 6.8 panel C, appendix, Table 8.29). Interestingly, statins 

have been shown to have protective activity against SARS-CoV-2 [74], [75]. In addition and excitingly, the 

NICEdrug.ch candidate N-acetylcysteine is a commonly used mucolytic drug that is sometimes considered as 

a dietary supplement and has putative antioxidant properties. Indeed, N-acetylcysteine is believed for long 

to be precursor of the cellular antioxidant glutathione [76], but has unknown pharmacological action. 

NICEdrug.ch suggests that N-acetylcysteine might present a dual antiviral activity: firstly, N-acetylcysteine is 

converted to cysteine by HDAC2 and by that means, it is competitively inhibiting the native function of HDAC2 

and interactions with viral proteins (Figure 6.8 panel C, appendix, Table 8.29). Cysteine next fuels the 

glutathione biosynthesis pathway and produces glutathione in two steps. 

Given the high coverage of validated molecules with activity against SARS-CoV-2 that NICEdrug.ch captured 

in this unbiased and reactive site-centric analysis, we suggest there might be other molecules in the set of 

1,300 NICEdrug.ch candidates that could also fight COVID-19. Excitingly, there are many molecules that can 

be directly tested since these are drugs that have already passed all safety regulations or are molecules in 

food, like N-acetylcysteine for which we further reveal an action mechanism behind its potential anti SARS-

CoV-2 activity. Other new candidates for which no safety data is available should be further validated 

experimentally and clinically. The mechanistic analyses provided by NICEdrug.ch could also guide new 

pharmacokinetic and pharmacodynamic models simulating SARS-CoV-2 infection and treatment. 
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6.4 Conclusion	and	outlook	

To systematically illuminate the metabolism and all enzymatic targets (competitively inhibited) of known 

drugs and hypothetical prodrugs to aid in the development of new therapeutic compounds, we used a proven 

reaction-prediction tool BNICE.ch [12] and an analysis of neighboring atoms of reactive sites analogous to 

BridgIT [7] and performed the first large-scale computational analysis of drug biochemistry and toxicity in the 

context of human metabolism. The analysis involved over 250,000 small molecules, and curation and 

computation of bio- and physicochemical drug properties that we assembled in an open-source drug 

database NICEdrug.ch that can generate detailed drug metabolic reports and can be easily accessed and used 

by researchers, clinicians, and industry partners. Excitingly, NICEdrug.ch revealed 20 million potential 

reactive sites at the 250,000 small molecules of the database, and there exist over 3,000 enzymes in the 

human metabolism that can be inhibited with the 250,000 molecules. This is because NICEdrug.ch can 

identify all potential metabolic intermediates of a drug and scans these molecules for substructures that can 

interact with catalytic sites across all enzymes in a desired cell. 

NICEdrug.ch adapts the metric previously developed for reactions in BridgIT [7] to precisely compare drug-

drug and drug-metabolite pairs based on similarity of reactive site and the neighborhood around this reactive 

site, which we have recently shown outperforms previously defined molecular comparison metrics [7]. Since 

NICEdrug.ch shows high specificity in the identification of such reactive sites and neighborhood, it provides 

a better mechanistic understanding than currently available methods [77]. Despite these advances, it remains 

challenging to systematically identify non-competitive inhibition or targeting of non-enzymatic biological 

processes. We suggest coupling NICEdrug.ch drug metabolic reports with other in silico and experimental 

analyses accounting for signaling induction of small molecules and other non-enzymatic biological processes 

like transport of metabolites in a cell. The combined analysis of drug effects on different possible biological 

targets (not uniquely enzymes) will ultimately increase the coverage of molecules for which a mechanistic 

understanding of their mode of action is assigned. 

A better understanding of the mechanisms of interactions and the specific nodes where the compounds act 

can help re-evaluate pharmacokinetic and pharmacodynamic models, dosage, and treatment. Such 

understanding can be used in the future to build models that correlate the pharmacodynamic information 

with specific compounds and chemical substructures in a manner similar to the one used for correlating 

compound structures with transcriptomic responses. We have shown for one of the most commonly used 

anticancer drugs, 5-FU, that NICEdrug.ch identifies and ranks alternative sources of toxicity and hence can 

guide the design of updated models and treatments to alleviate the drug’s side-effects. 

The mechanistic understanding will also further promote the development of drugs for repurposing. While 

current efforts in repurposing capitalize on the accepted status of known drugs, some of the issues with side 
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effects and unknown interactions limit their development as drugs for new diseases. Given that drug 

repurposing will require new dosage and administration protocols, the understanding of their interactions 

with the human metabolism will be very important in identifying, developing, and interpreting unanticipated 

side effects and physiological responses. We evaluated the possibility of drug repurposing with NICEdrug.ch 

as a substitute for statins, which are broadly used to reduce cholesterol but have many side effects. 

NICEdrug.ch and its reactive site-centric comparison accurately cluster both family types of statins, even 

though they are similar in overall molecular structure and show different reactivity. In addition, NICEdrug.ch 

suggests a set of new molecules with hypothetically less side effects [56], [58] that share reactive sites with 

statins. 

A better mechanistic understanding of drug targets can guide the design of treatments against infectious 

diseases, for which we need effective drugs that target pathogens without side effects in the host cell. This 

is arguably the most challenging type of problem in drug design, and indeed machine learning has 

continuously failed to guide such designs given the difficulty in quantifying side effects—not to mention in 

acquiring large, consistent, and high-quality data sets from human patients. To demonstrate the power of 

NICEdrug.ch for tackling this problem, we sought to identify drugs that target liver-stage malaria parasites 

and minimize the impact on the human host cell. We identified over 500 drugs that inhibit essential 

Plasmodium enzymes in the liver stages and minimize the impact on the human host cell. Our top drug 

candidate is shikimate 3-phosphate targeting the parasite’s shikimate metabolism, which we recently 

identified as essential in a high-throughput gene knockout screening in Plasmodium [32]. Excitingly, our 

suggested antimalarial candidate shikimate 3-phosphate has already been used for Escherichia and 

Streptococcus infections without appreciable side effects [61]. 

Finally, minimizing side effects becomes especially challenging in the treatment of viral infections, since 

viruses fully rely on the host cell to replicate. As a last demonstration of the potential of NICEdrug.ch, we 

sought to target COVID-19 by identifying inhibitors of 22 known enzymatic host factors of SARS-CoV-2 [36]. 

NICEdrug.ch identified over 1,300 molecules that might target the 22 host factors and prevent SARS-CoV-2 

replication. As a validation, NICEdrug.ch correctly identified known inhibitors of those enzymes, and further 

suggested safe drugs for repurposing and other food molecules with activity against SARS-CoV-2. Among the 

NICEdrug.ch suggestions for COVID-19, based on the knowledge on its mechanism and safety, we highlight 

N-acetylcysteine as an inhibitor of HDAC2 and SARS-CoV-2. 

Overall, we believe that a systems level or metabolic network analysis coupled with an investigation of 

reactive sites will likely accelerate the discovery of new drugs and provide additional understanding regarding 

metabolic fate, action mechanisms, and side effects and can complement on-going experimental effects to 

understand drug metabolism [8]. We suggest the generation of drug metabolic reports to understand the 

reactivity of new small molecules, the possibility of drug repurposing, and the druggability of enzymes. Our 
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results using NICEdrug.ch suggest that this database can be a novel avenue towards the systematic pre-

screening and identification of drugs and antimicrobials. In addition to human metabolic information, 

NICEdrug.ch currently includes information for the metabolism of P. berghei and E. coli. Because we are 

making it publicly available (https://lcsb-databases.epfl.ch/pathways/Nicedrug/), our hope is that scientists 

and medical practitioners alike can make use of this unique database to better inform their research and 

clinical decisions—saving time, money, and ultimately lives. 
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 	Conclusion	and	outlook	

“Biology adapted itself to the computer, not the computer to biology” 

Hallam Stevens  

 

The purpose of this final chapter is to review challenges entailed in this thesis and summarize the main 

findings. In addition, we discuss the future perspectives and the outline regarding computational modeling 

of metabolism and their potential applications in systems biology, metabolic engineering and drug discovery.  

In this thesis, we employed computer programming in several disciplines such as chem-informatics, 

computational biology, bio-informatics, database development, etc. to explore the catalytic mechanism of 

enzymes.  Understanding the structure and mechanism of enzymes with atom resolution has enabled us to 

mine, model and predict biochemistry.  Here, we will recapitulate our major learnings in different chapters 

of this thesis.  

To begin with, we need to know how to access, curate and implement data in an efficient way (chapter 2). 

The new advances in omics technology has led to accumulation of ever-growing amount of biological data 

and simultaneously the demand for innovative computational approaches for their analysis is increasing. 

High-performance, integrated databases that are capable of efficiently storing and searching for big amounts 

of biochemical data are demanding. Moreover, we need advanced algorithms for searching these databases. 

Towards this end, several databases were developed such as  KEGG [1], MetaCyc [2], BRENDA [3], HMDB [4] 

that accommodate large portion of the reported biochemical data. Despite the recent efforts in developing 

biochemical databases, several challenges remain to be addressed: (i) the data entries in these databases are 

partially linked to each other, (ii) data exchange or  data integration among several databases requires 

unification of datasets which is challenging, and (iii) the databases are typically focused on a specific 

organisms or pathway and at a specific scale. However, large-scale study of biological systems requires high 

quality homologous data covering vast range of biochemical networks. To handle this overload of big and 

heterogeneous data, a high level of data organization and data integration is necessary. An effective 

approach to integrate and classify large sums of data is to design and develop ontology-based databases. 

Ontology as a strategy for data classification, was developed in computer science to facilitate data reuse and 

data sharing [5]. It has been extensively used to model heterogeneous big data and the reason for this 
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popularity is due to its ability to keep semantics away from the type of data. In an ontology, each entity is 

defined a “concept” or an “instance” of a “concept” linked together by different relations. This structure in 

ontology allows to abstract data and capture the relationships between entries.  Moreover, ontological 

design of a database allows for a flexible data organization. However, its application in biological and 

chemical data management and storage has not yet been fully explored. To overcome the problems of 

working with heterogeneous repositories, we developed an ontological database, called LCSB DB, and we 

integrated more than 14 external biochemical databases into our unified resource. LCSB DB enclosed 

biochemical data in several levels of compounds, enzymes, metabolic reactions, metabolic pathways and 

metabolic networks. To avoid replication inside database, we applied the established chem-informatics tools 

to convert compounds to several standardized formats such as canonical SMILES. Currently, the biochemical 

data integrated in LCSB DB accounts for 1M bio-compound and over 60k metabolic reactions (this section of 

LCSB DB is called bioDB). Further, by including chemicals and the results of computational tools developed in 

our group, e.g., BNICE.ch, number of compounds and reactions increase to more than 70M and over 5M 

respectively. LCSB DB serves as the standard platform to store and share data between users and 

computational tools. In future, integrating new data sources in LCSB DB is simply connecting the existing 

concepts and instances (or defining new ones) without the need to modify the architect of the database. 

Such an approach not only makes data integration easier and quicker, but also it standardizes the data 

definition and makes the semantic relationships among different entities explicit. In addition to regularly 

updating biochemical data in LCSB DB to keep up with the latest metabolic discoveries, we suggest expanding 

the currently defined properties. An example would be to annotate metabolic reactions with their kinetic 

characteristics. To do this, one should add kinetic rate laws as new concepts. Kinetic laws along with 

experimental conditions and parameter values will be linked as new properties to biochemical reactions. 

Further, we suggest expanding the scope of LCSB DB beyond metabolism and covering signaling pathways. 

Although metabolic and signaling networks are often investigated separately, based on our experience, 

incorporating different levels of biological data into one comprehensive and homogeneous source, and 

examining interplay occurring among them could lead to more realistic understanding of bioprocesses. 

Bio DB unifies our current understanding of biochemical data, but it cannot explain the chemodiversity that 

we observe in living organisms. For example, plants synthesize a broad range of chemicals with various 

pharmacological applications. Even though scientists can isolate and measure these chemicals using 

analytical chemistry techniques, their synthesis pathways are often unknown. Not only the biosynthesis of 

chemicals is complicated, but also their degradation is a challenging task; even though many microorganisms 

are known to degrade these chemicals using unknown biochemical pathways. Therefore, we need to fill our 

biochemical knowledge gaps not only to understand natural processes, but also to unleash the potential of 

biochemistry for bioengineering purposes. Today, biochemical knowledge gap is beyond the scale to be 

addressed experimentally using biochemical assays. Therefore, it is essential to computationally propose 
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hypothesis and guide experimental efforts. We need computational methods that are able to learn from the 

available data and expand the boundaries of currently known biochemical space. The computational tool 

BNICE.ch, helps toward this aim by systematically exploring biochemistry and predicting novel metabolic 

reactions. BNICE.ch is a forerunner tool in predictive biochemistry which was developed more than fifteen 

years ago. Since then, its application and scope has been actively growing. The backbone of this algorithm is 

a collection of 850 expert-curated, generalized enzymatic reaction rules that mimic the action of enzymes 

and transform in silico substrates into products. Enzymatic reaction rules, a powerful network generation 

algorithm, and stored biochemical information in LCSB DB, make BNICE.ch an exceptional tool for filling gaps 

in biochemistry. In order to keep up with the latest biochemical discoveries, reaction rules and biochemical 

data in LCSB DB are regularly updated. Currently, we are at the stage that we can apply reaction rules on 

metabolites and (i) reconstruct all the processable known biochemical reactions, and (ii) predict novel 

metabolic reactions due to the promiscuity of reaction rules. In chapter 3, we focused on the application of 

BNICE.ch on different sets of compounds (such as biological molecules, drugs or chemical compounds), called 

ATLASx series of projects. In the first ATLAS database, reaction rules were applied on all the compounds in 

KEGG database, which resulted in reconstruction of around 5.2k known metabolic reactions, prediction of 

more than 130k novel biotransformations, and integration of more than 4k orphan compounds (compounds 

without any known biochemical activity). Over the years, the new biochemical discoveries and new reactions 

added to the databases such as KEGG have validated hundreds of novel ATLAS reactions.  Moreover, a recent 

study by Yang, et.al [6] approved the activity of two novel ATLAS reactions in the context of one carbon 

assimilation pathways. Since the first publication of ATLAS in 2016 and up until today, more than 150 

academic or industrial groups have requested to access it. The interest of research community on the first 

ATLAS encouraged us to publish an updated version in 2018. In the updated ATLAS, we applied the reaction 

rules on the last release of KEGG compounds, and we used an improved method for annotation of novel 

reactions with enzymes (BridgIT). The updated ATLAS incorporates 149k reactions and integrates 4.5k orphan 

compounds into network of metabolism. However, we quickly realized that using only KEGG compounds 

limits the type of problems we can address. For example, many drugs and chemicals are not listed in KEGG, 

and therefore they cannot be reached by ATLAS. Hence, we expanded the methodology of ATLAS to all 

biological and bioactive molecules (bioATALS) in LCSB DB and further to chemical compounds (chemATLAS). 

Basically, ATLAS projects attempt to use biochemical knowledge and biochemical reaction principles to map 

the hypothetical vicinity of known biochemical databases to address the vast amount of metabolic “dark 

matter”. We first predicted 1.6 million biochemically possible biotransformations between biological and 

bioactive compounds using bioATLAS, and then predicted more than 3.6 million reactions that involved 

compounds from the chemical compound space, resulting in a total amount of ~5.2 million reactions in 

chemATLAS. From this new wealth of information, we extracted insightful numbers on the reactivity and 

connectivity of biologically relevant molecules, and provide public access to our ATLASx database 
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(https://lcsb-databases.epfl.ch/Atlas2).” Moving forward, in the later stages of ATLASx projects, we 

recommend expanding our set of biochemical reaction rules to the known reaction mechanisms of organic 

chemistry. This will enable scientists to consider non-enzymatic and spontaneous reactions in ATLASx’s 

reaction network. In addition using these upgraded networks, one can determine which steps in the synthesis 

pathway could be achieved by chemical reactions. The result will be a hybrid tool that smoothly connects 

biochemistry with chemistry. 

The novel hypothetical metabolic reactions predicted by advanced computational tools  (ATLAS reactions) 

allow expanding the known space of metabolism. However, the predicted novel reactions lack an associated 

enzyme for their catalysis, which limits their further application. Beside these novel biochemical reactions, 

half of the enzymatic reactions that are catalogued in the KEGG database remain orphan, i.e., that there is 

no known enzyme for their catalysis [7]. Such knowledge gaps limit the utility of the pathways that involve 

orphan reactions in synthetic biology and metabolic engineering. Furthermore, even if enzimens in the whole 

pathway are characterized, not all the enzymes are phylogenetically compatible to the others. This reality 

limits the implementation of even non-orphan reactions from different family of species. In chapter 4, we 

introduced a new reaction similarity method for assigning protein sequence to orphan and novel reactions, 

named BridgIT[7]. BridgIT uses reaction fingerprints to compare enzymatic reactions and is inspired by the 

“lock and key” principle that is used in protein docking methods; wherein the enzyme binding pocket is the 

“lock” and the ligand is a “key”. If a molecule has the same reactive sites and a similar surrounding structure 

as the native substrate of a given enzyme, it is then rational to expect that the enzyme will catalyze the same 

biotransformation on this molecule. Following this logic, BridgIT uses the structural similarity of the reactive 

sites of participating substrates together with their surrounding structure as a metric for assessing the 

similarity of enzymatic reactions. This consept is substrate-reactive-site centric. Its reaction fingerprints 

reflect the specificities of biochemical reactions that arise from the type of enzymes catalyzing them. BridgIT 

introduces an additional level of specificity into reaction fingerprints by capturing critical information about 

the enzyme binding pocket. More precisely, BridgIT allows us to capture approximately the 2D structure of 

the enzyme binding pocket by incorporating the information about sequences of atoms and bonds around 

the substrate reactive site. The fact that BridgIT similarity calculations can be performed only by structural 

information of a reactions , is interesting and makes it a promising method for annotation of orphan reactions 

and filling the gaps of metabolic pathways.  

A follow-up project to BridgIT, could involve the analysis of orphan protein sequences and evaluate their 

potential enzymatic activity, which is called BridgIT+ method here ( 

Figure 7.1). While the number of fully sequenced genomes are rapidly increasing, their functional annotation 

lags behind [8]. Approximately, the function of 30% to 50% of a normal genome is unknown[9]. Moreover, it 

has been estimated that 30% of unannotated sequences have metabolic function [9], indicating important 
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knowledge gaps in our understanding of cellular metabolism. However precise characterization of an 

uncharacterized protein requires extensive in vitro and in vivo experiments. Computational methods by 

significantly reducing time and cost of this process are very attractive approaches for protein characterization 

[10, p. 4].  

Figure 7.1: Conceptual comparison of BridgIT and BridgIT+ applications. BridgIT 

method annotates orphan reactions with protein sequences. Conversely, 

BridgIT+ method will aim to annotate orphan (or hypothetical) protein 

sequences with biochemical functions.  

 

Computational approaches today are widely focused on inferring biochemical functionality from sequence 

or structural homology [11]. They assume if two sequences (or structures) are more similar than what is 

expected by chance, they could have evolved from a common ancestor [12], [13]. Nevertheless, following 

this logic, it is difficult to identify, (i) functional similarity of ortholog proteins (i.e. protein sequences with the 

same ancestor diverged as a result of speciation [11]), or (ii) difference in functionality of paralogs (i.e. 

homologue sequences diverged as a result of duplication [11]). Therefore, functional annotation only based 

on homology is not enough. We need better enzymatic descriptors to guide homology search for functional 

annotation of enzymatic sequences [11], [14]. Following this argument, PRIAM method [11] employs specific 

enzymatic profiles for protein sequence annotation. Enzymatic profiles distill the functional knowledge 

embedded in a group of sequences associated to one EC number. The trained enzymatic profiles for each EC 

number are later used for similarity evaluation and annotation of uncharacterized proteins. Nevertheless, 

the EC numbers are not the ideal criteria for this purpose. EC numbers are designed to systematically classify 

enzymatic activities based on type, functional group, involved cofactors and substrates. Thus, they don’t 

capture the evolutionary changes of enzymes. This hypothesis is confirmed by the fact that approximately 

40% of enzymes have evolved to completely new EC numbers (different in first digit of EC) [15]. Therefore, 

relation between chemistry and protein sequence of enzymes is more complicated than what is believed 

[15]. BridgIT method unbiasedly discovers the secondary functions of enzymes and quantifies their 

promiscuity [7]. We suggest, enriching enzymatic profiles with the knowledge of closest promiscuous 

enzymes using workflow in figure 7.2.  
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Figure 7.2: Suggested workflow for BridgIT+ method. The input of this workflow is an EC number (reference EC). The reference EC 

number is used to query LCSB DB in order to find all linked biochemical reactions. Next, BridgIT finds the most similar reactions to 

the extracted biochemical reactions using reactive site centric fingerprints. The EC numbers associated to the most similar reactions 

designate the candidate promiscuous activities. The ranked list of EC number will be used to collect sequences from protein databases 

(such as uniport [16]). Then, sequence clustering tools such as cd-hit [17] will be applied to group proposed promiscuous sequences 

into similar clusters. We suggest using MAFTT method [18] to align reference sequences with clustered promiscuous sequences. 

MAFTT method begins by aligning the reference sequences (MSA of reference sequences), then it aligns the cluster of promiscuous 

sequences to the reference MSA (joint MSA). Joint MSA preserves the biochemical knowledge of the reference EC number and on 

top of that takes into account promiscuity. Finally, Joint MSA is used for generation of enzymatic profiles (BridgIT profiles). After 

creation of BridgIT profiles for all EC numbers, they can be used for the annotation of whole genome using rps BLAST.   

 

One of the main applications of BridgIT is in enzymatic annotation of metabolic reactions in bioproduction of 

valuable compounds. Fully annotated pathways have the capability to be implemented in organisms and 

optimized for bioproduction purposes. The bioproduction of added value compounds using cell factories 

could be an intriguing solution to few environmental related issues such as the effects of traditional chemical 

synthesis on global warming. In chapter 5, we took a step beyond the theoretical studies, and we tested the 

performance of BridgIT in practice to address challenges in bioproduction via two case studies: adipic acid 

and plant natural products (PNPs). 

Adipic acid is a dicarboxylic acid used as a precursor for the production of nylon. About 2.5 billion kilograms 

of this compound is produced annually worldwide [19] by catalytic oxidation of benzene derivatives. 

bypeoducts of this method are nitrous oxide, which contributes to the greenhouse effect and ozone layer 

depletion [20]. Replacing the current petrochemical approach with bioproduction of adipic acid is a desirable 

alternative [21]. We used BridgIT method to annotate a new biosynthetic route towards adipic acid via the 
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lysine pathway in the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Y. lipolytica was engineered 

by over-expression of homocitrate synthase YALI0F31075g (E.C.2.3.3.14), homoaconitate hydratase 

YALI0E02728g (E.C.4.2.1.36), di- and tri-carboxylic acids mitochondrial transporters YALI0D02629g and 

YALI0F26323g, and by expression of codon-optimized adipate-semialdehyde dehydrogenases from 

Acinetobacter sp. and Pseudomonas sp. The engineered strain produced up to 0.2 mg/L of adipic acid in 

mineral medium with glucose as the sole carbon source and up to 30 mg/L adipic acid in municipal solid waste 

hydrolyzate.  

In the second case study, we developed a computational workflow to identify potential derivatives of 

intermediate compounds  of a given biosynthetic pathway and subsequently predict enzyme candidates that 

may carry out the desired transformation(s). In contrast to previously reported retrobiosynthesis studies, in 

which a predicted pathway to a given target is generated, our workflow begins with a set of starting 

compounds (i.e., the intermediates of a heterologous biosynthetic pathway) and determines a set of novel 

target compounds and associated pathways that can be generated. The method expands the chemical space 

around a pathway of interest using BNICE.ch to create a map of all compounds accessible with biochemical 

reactions and then identifies enzymes capable of carrying out the desired transformations on the prioritized 

set of compounds using BridgIT. As an example, we applied this workflow to the reconstructed noscapine 

biosynthetic pathway in yeast. We narrowed our search to enzyme candidates capable of producing (S)-

tetrahydropalmatine, a PNP found in plants of the genus Corydalis that has been shown to possess analgesic 

and anxiolytic effects and are known as a potential treatment for opiate addiction. After experimental 

evaluation of top BridgIT enzyme candidates in yeast strains, the two top predicted enzymes enabled 

production of (S)-tetrahydropalmatine. To the best of our knowledge, our work describes the first use of a 

computational workflow to expand a heterologous biosynthetic pathway to produce additional compounds.  

The findings stemming from these two case studies show the value  of chem-informatic tools in design stage 

of a design-build-test-learn cycle in engineering biology. The described  pipeline can be used for systematic 

exploration of  alternatives in  production of many chemically complex compounds spanning diverse 

therapeutic activities.   For any target compound,  computational design workflow consists of (i) discovery of 

pathways, (ii) predicting enzymes and (iii) evaluating feasibility of proposed pathway. In future, advancement 

of technology and development of our knowledge could lead to further optimization in each step of this  

workflow. Particularly, enhancement of computational power of pathway prediction tools to explore beyond 

linear pathways and ability to analyse branched and complex pathways would open new doors to an 

untapped space of metabolism. Moreover, to further optimize the activity of proposed enzyme candidates, 

we suggest coupling the results of BridgIT method with the protein design tools (such as Rosetta Design 

software, YASARA and FoldX [22]–[24]). The mentioned tools use the 3D structure of proteins and by 

performing free energy state calculations and molecular dynamic simulations, they are able to predict the 
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outcome of amino acid substitutions on protein structures. Their outcome offers a list of candidate variants 

for identification of improved enzymes. The proposed enzymes for catalyzation of orphan reactions by 

BridgIT,  can serve as good initial sequences for further enzyme engineering using protein design tools. 

Understanding metabolism at the molecular level is one of the most important element in drug discovery 

and drug development. In chapter 6 of this thesis, we focused on application of the predictive biochemistry 

tools in drug design. Discovering new non-toxic drugs is essential to treat diseases and infections, target drug 

resistance, and develop personalized treatments. However, identifying, testing, and approving a single small 

molecule can take decades and billions of dollars—and there is still a high risk that the proposed drug 

candidate fails. There is an urgent need to define strategies that accelerate the discovery of new, safe, and 

effective drugs. The computational screening of all possible targets and molecules can help toward this aim. 

Most computational approaches to date have focused on molecular structures without considering the 

reactivity of the molecules in a cell. However, reactive site information and drug metabolism determine 

which enzymes the drugs will target, the drug’s metabolic fate or degradation, and the potential source of 

its toxicity and side effects. Understanding drug effects in the context of cellular metabolism also offers great 

promise in evaluating the reactivity of a new small molecule, the druggability of an enzyme, and the 

possibility of drug repurposing. Yet, the in silico mechanistic analysis of drug biochemistry is relatively 

unexplored, and no major large-scale computational studies of drug metabolism in cells have ever been 

performed. To systematically illuminate the metabolism and all enzymatic targets of known drugs and 

hypothetical prodrugs, we have performed the first large-scale computational analysis of drug biochemistry 

and toxicity evaluation in the context of human metabolism. To this end, we employed proven tools for 

analyzing the neighboring atoms around enzyme reactive sites (BridgIT and BNICE.ch). The analysis involved 

over 250,000 small molecules, and was a major technical effort spanning the curation and computation of 

bio- and physico-chemical drug properties. We assembled this in an open-source drug resource, NICEdrug.ch, 

that can generate drug metabolic reports and can be easily accessed and used by researchers, clinicians, and 

industrial partners around the world. Excitingly, NICEdrug.ch revealed for the first time that known drugs, 

such as anticancers, cholesterol reducing drugs, antimalarials, and drugs against COVID-19, share millions of 

reactive sites with native human metabolites and can hence act as competitive inhibitors. As a first case 

study, NICEdrug.ch showed unexplored sources of toxicity for one of the most used anticancer drugs 5-FU 

and suggested an alternative treatment to alleviate its toxic side-effects. Secondly, we studied the reactivity 

of statins, which are broadly used as cholesterol reducing drugs, and showed that comparing the reactive 

sites can accurately cluster two families of statins that are similar in overall molecular structure but have 

different reactivities. As a third proof-of-principle demonstration, we applied NICEdrug.ch to identify new 

drug candidates for targeting liver-stage malaria parasites and minimize their impact on the human host cell. 

To our surprise, the top identified drug candidate by NICEdrug.ch has already been used for Escherichia and 

Streptococcus infections without appreciable side effects. In our fourth demonstration, NICEdrug.ch 
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identified over 1,300 drugs and molecules in food substances to fight COVID-19 and explained their inhibitory 

mechanism. Among our results we have both experimentally validated drugs, like statins, and new ones, like 

N-acetylcysteine. NICEdrug.ch currently includes metabolic information for human cells, Plasmodium, and 

Escherichia coli, and it is easily expandable to other organisms in the future. NICEdrug.ch also allows for the 

input of new small molecules to tailor it for a user’s needs. This major informational database will be updated 

regularly to provide the latest information on drugs and drug metabolism. 

We close this thesis by highlighting the fact that computational mindset brings a new order into our 

understanding of life, allows us to put together the individual insights, create a reference map and see the 

big picture [25]. During this PhD work, we contributed to the field of computational biology through 

developing new methods and databases for enhancing our understanding of metabolism. Utility of these 

tools provides an unprecedented potential for large-scale and systematic analysis of metabolism. 
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Table 8.1: Quality of reactions in different sources based on mass balance and EC annotation. 

 

Database # reactions with 
EC assigned 

# Balanced reactions 
(% Reconstructed with BNICE.ch enzymatic rules) 

HMR 3,417 3,177 (40.2%) 
MetaCyc 9,614 7,879 (78.4%) 
KEGG 9,667 9,010 (80.2%) 
MetaNetX 14,194 12,733 (54.5%) 
Reactome 342 406 (52.4%) 
Rhea 10,808 10,401 (58.1%) 
Model SEED 9,816 14,290 (47.4%) 
BKMS 15,493 10,556 (73.3%) 
BiGG models 3,874 3,445 (27.5%) 
Brenda 6,629 6,825 (63.1%) 
Total 27,107 25,296 (46.5%) 
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Table 8.2, 8.3: Comparison of EC predictor tools for two benchmark reactions 

The tables 8.2 and 8.3 show the performance of different methods (BridgIT, EC-BLAST, Selenzyme and E-

zyme2) for two main challenges that are represented by the class of reactions: 

• Reactions with a similar structure on the substrate and product side.  

• Multi-substrate multi-product reactions (a subset of reactions with more than one substrate) 

 

Note that these two classes of reactions are ubiquitous in biochemical networks. For comparisons between 

methods, we took an example reaction of each class, i.e., R00722 (2.7.4.6) for the first class and R07500 

(2.5.1.115) for the second class. For the two benchmark reactions, we ranked the similar reactions proposed 

by each of methods according to the corresponding similarity scores, and top 100 similar reactions proposed 

by each method were used for comparisons. We used the following criteria to quantitatively compare these 

tools: 

1. The number of matched 4th level EC numbers between the benchmark reaction and reactions 

proposed by the tested method. We introduced this criterion because the reactions that share the 

same 4th level EC number, in most cases have a similar mechanism, cofactors and the structure of 

substrates. 

2. The number of matched 3rd level EC numbers between the benchmark reaction and the reactions 

proposed by the tested method - the reactions that share the same 3rd level EC number, in most 

cases have a similar mechanism and cofactors, but less structural similarity of substrates compared 

to the 4th level matched EC numbers. 

3. The number of unique 4th level EC numbers in the set of reactions proposed by the tested method 

that had matched 3rd level EC numbers in Criterion 2. The higher ratio between this number and the 

number from criterion 3, the method has a wider scope of predicted enzymes. The maximal value 

of this ratio is 1.  

4. A Receiver Operating Characteristics (ROC) and the Area Under the Curve (AUC). Each of the 

compared methods predicted for the benchmark reaction a set of similar reactions together with 

their similarity scores. Using this information, we constructed the ROC curves and computed AUC 

for each of the methods. Therein, following the approach proposed in the manuscript on the EC 

Blast method, we considered a result as true positive if a predicted reaction by the tested method 
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matched the 3rd level EC number of the benchmark reaction. The obtained ROC curves allow us to 

assess the robustness and confidence levels of each tool’s predictions. 

5. Mapping each input reaction to itself (whenever the input reaction is not orphan) – as a basic 

functionality of enzyme annotation methods.  
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Table 8.2: Comparison of EC predictor tools for benchmark reaction 1 exemplifying the first class of reactions characterized by a very similar structure of substrates and products. 

 

  

Existing	tools Description

BridgIT Based	on	BridgIT Fingerprint which	
includes	 information	of	reactive	site	
and	its	neighborhood.

EC
	B
LA
ST

Bond	
changes	
(BC)

Based	on	bond change	
similarity:bond formed/cleaved, bond	
order	change and	stereo	change

Reaction	
center	(RC)

Based	on	reaction center	similarity.	
Reaction	centers		are	connected	to	a	
bond	 that	is	broken/formed	or	the	
order	of	bond	or	its	stereo	is	
changed.

Both	BC
and	RC

Based	on	both	bond change	and	
reaction	center	methods.

Structural	
similarity

Based	on	substructure	 similarity.
All	the	molecules	 in	the	query	
reaction	are	compared	to	all	those	in	
a	target.

Se
le
nz
ym

e Rdkit based	on	Rdkit fingerprints

Morgan based	on	pattern	fingerprints

Pattern based	on	Morgan	fingerprints

E-zyme2 Based	on	structures	of	substrate-
product	pair	(reactant	pair).	

Self
recogni
zed

# similar	rxns #	similar	unique	 4	
level	EC	with	the	
same	3rd level

score
Best	ECs

4	level	
EC

3	level	
EC Best min

yes 11 35 22 1 0.51 2.7.4.6

yes 11 15 10 1 1
2.7.1.73 2.7.4.6
2.7.4.3 3.6.1.60

(22 more)

yes 11 30 19 1 0.77

2.7.4.6
2.7.4.18
2.7.4.15
2.7.6.2

yes 11 30 19 1 0.88 2.7.4.6 2.7.4.18.	 	
2.7.4.15.		2.7.6.2

yes 7 10 8 0.94 0.78 2.7.1.73

yes 0 3 3 0.92 0.88 2.7.1.73

yes 0 8 4 0.91 0.85 2.7.1.25

yes 0 9 8 0.7 0.63 2.7.4.8

- - - - - - -

2.7.4.6
ATP IDP ITP

+ +
2.7.4.6

ADP

R00722

Challenge:	similar	structure	in	product	and	substrate	side
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Table 8.3: Comparison of EC predictor tools for benchmark reaction 2 exemplifying the class of multi-substrate multi-product reactions. 
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The following tables are published on the Zenodo platform and accessible at https://doi.org/10.5281/zenodo.4004191). 

 

Table 8.4: Strains used in adipic acid bioproduction chapter 5.2. 

Table 8.5:  Plasmids used in adipic acid bioproduction chapter 5.2. 

Table 8.6: Biobricks used in adipic acid bioproduction chapter 5.2. 

Table 8.7:Primers used in adipic acid bioproduction chapter 5.2. 

Table 8.8:Heterologous genes discussed in adipic acid bioproduction chapter 5.2. 

Table 8.9: The  result of BLASTp algorithm with default settings to align the amino-acid sequence of the large and small subunits of 

all 121 annotated in KEGG metanogen homoaconitases to Y. lypolytica genome (CLIB122), related to chapter 5.2. 

Table 8.10:Yeast strains used in (S)-tetrahydropalmatine bioproduction in chapter 5.3. 

Table 8.11:Oligonucleotides used in (S)-tetrahydropalmatine bioproduction in chapter 5.3. 

Table 8.12:Genes used in (S)-tetrahydropalmatine bioproduction in chapter 5.3. 

Table 8.13:Plasmids used in (S)-tetrahydropalmatine bioproduction in chapter 5.3. 

Table 8.14: LC-MS/MS multiple reaction monitoring (MRM) transitions and parameters used in (S)-tetrahydropalmatine 

bioproduction in chapter 5.3. 

Table 8.15: sequences of codon-optimized genes used in (S)-tetrahydropalmatine bioproduction in chapter 5.3. 

Table 8.16: Biochemical network generated by BNICE.ch – COMPOUNDS related to chapter 5.3. 

Table 8.17: Biochemical network generated by BNICE.ch – REACTIONS related to chapter 5.3. 

Table 8.18: Overview on network statistics related to chapter 5.3. 

Table 8.19: Popularity analysis for all BIA compounds in the network, related to chapter 5.3. 

Table 8.20:50 most popular compounds in the generated network, related to chapter 5.3. 

Table 8.21:Additional information for 15 candidates targets one reaction step away from the initial pathway, related to chapter 5.3. 

Table 8.22:(A) List of cofactors, (B) list of metabolites, and (C) list of E.C. numbers considered in BNICE.ch for the generation of 

reactions in the analysis of drug metabolism in a human cell, related to chapter 6. 

 

Table 8.23: Metabolic neighborhood of 5-FU. (1) List of compounds in the 5-FU metabolic neighborhood including up to four reactions 

or steps away. (2) Description of reactions in the 5-FU metabolic neighborhood including up to four reactions or steps away, related 

to chapter 6. 
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Table 8.24: NICEdrug score between all molecules with reactive site of statins in NICEdrug.ch. Matrix of NICEdrug score between each 

pair of the whole set of 254 molecules in NICEdrug.ch with reactive site of statins, related to chapter 6. 
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Table 8.25: Description of nine drugs candidates for repurposing to replace statins based on NICEdrug.ch, related to Figure 6.5. These drugs can act as competitive inhibitors of HMG-CoA reductase, like 

statins, related to chapter 6. 

Molecule name Molecule 
NICEdrug ID 

Molecule ChEMBL 
ID 

Molecule 
DrugBank ID 

Molecule 
KEGG ID Molecule SMILES Most similar 

statin  NS1 

E-64 33476   DB04276, 
EXPT01317 C01341 CC(CC(C(=O)NCCCC[NH+]=C(N)N)NC(=O)C(

CC(=O)O)O)C Pravastatin 0.23 

Nanaomycin D 3904013 
ChEMBL MALARIA, 
CHEMBL 
1988648 

DB01668, 
EXPT02375 D04648 O=C1CC2C(O1)C1=C(C(O2)C)C(=O)c2c(C1=

O)cccc2O Pravastatin 0.27 

2-Tridecanoyloxy-
Pentadecanoic A 5459982   DB01814, 

EXPT02033   CCCCCCCCCCCCC(CC(=O)O)OC(=O)CCCCCC
CCCCCC Pravastatin 0.6 

OBP-801 96065750 CHEMBL 
3126832 DB12279   O=C1OC2C=CCCSSCC(C(=O)NC(C(C1)O)C(C

)C)NC(=O)C(NC(=O)C2)C Pravastatin 0.36 

Carnitine 1467871455 

CHEMBL 
1149, 
CHEMBL 
1229656, 
CHEMBL 
1620698, 
CHEMBL 
172513, 
CHEMBL 
503189 

DB02648, 
EXPT00038 

C00318,C0
0487,C150
25 

OC(C[N+](C)(C)C)CC(=O)O Pravastatin 0.31 

O-Acetylcarnitine 1467889778 

CHEMBL 
1358846, CHEMBL 
1625375, CHEMBL 
1697733 

DB08842 C02571 OC(=O)CC(C[N+](C)(C)C)OC(=O)C Pravastatin 0.47 
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Josamycin 1467981653 

ChEMBL_NTD, 
CHEMBL 
1326015, CHEMBL 
1671903, CHEMBL 
1995525, CHEMBL 
224436, CHEMBL 
2361089, CHEMBL 
329011 

DB01321 C12662,D0
1235 

O=CCC1CC(C)C(O)C=CC=CCC(OC(=O)CC(C(
C1OC1OC(C)C(C(C1O)N(C)C)OC1OC(C)C(C(
C1)(C)O)OC(=O)CC(C)C)OC)OC(=O)C)C 

Lovastatin 
acid 0.41 

Plitidepsin 1468014507 
CHEMBL 
1773899, CHEMBL 
451930 

DB04977 C16862,D1
1032 

CCC(C1NC(=O)C(NC(=O)C(N(C(=O)C2CCCN
2C(=O)C(=O)C)C)CC(C)C)C(C)OC(=O)C(Cc2c
cc(cc2)OC)N(C)C(=O)C2CCCN2C(=O)C(NC(=
O)C(C(=O)C(OC(=O)CC1O)C(C)C)C)CC(C)C)C 

Lovastatin 
acid 0.39 

1NS: NICEdrug score between the candidate drug (column 1) and the most similar statin (column 7). This score considers the reactive site and its 
neighbourhood including up to seven atoms away (STAR Methods). 
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The following tables are published on the Zenodo platform and accessible at https://doi.org/10.5281/zenodo.4004191). 

 

Table 8.26: Essential genes or enzymes and linked metabolites in liver-stage Plasmodium and a human cell. (A) List of essential genes 

and associated reactions in liver-stage Plasmodium, as obtained from the study (Stanway et al., 2019) (B) List of essential genes and 

associated reactions in a human cell, as obtained from the study (Wang et al., 2015) (C) List of metabolites linked to essential genes 

in liver-stage Plasmodium. (D) List of metabolites linked to essential genes in a human cell, related to chapter 6. 

 

Table 8.27: Description of drugs, prodrugs, metabolites and enzymes analyzed in the study of malaria. (A) NICEdrug druggability 

analysis of essential genes or enzymes in liver-stage Plasmodium: all drugs sharing reactive-site centric similarity with the Plasmodium 

metabolites and comparison with human metabolites. (B) NICEdrug druggability analysis of essential genes or enzymes in liver-stage 

Plasmodium: all prodrugs (up to three steps away of 346 drugs) sharing reactive-site centric similarity with the Plasmodium 

metabolites and comparison with human metabolites. (C) Description of drugs and prodrugs identified in the malaria analysis with 

NICEdrug.ch and validated in the study by (Antonova-Koch et al., 2018) along with their similar Plasmodium metabolite and human 

metabolite, related to chapter 6. 

 

Table 8.28:Hijacked human enzymes by SARS-CoV-2, and drugs and food-based compounds that can inhibit them based on the 

NICEdrug score. (A) Hijacked human proteins by SARS-CoV-2 as identified by (Gordon et al., 2020) with an annotated enzymatic 

function (E.C. number), also called here "SARS-CoV-2 hijacked enzymes". (B) NICEdrug druggability report for SARS-CoV-2 hijacked 

enzymes including all NICEdrug small molecules. (C) Best candidate drugs against COVID-19: NICEdrug druggability report for SARS-

CoV-2 hijacked enzymes including drugs with NICEdrug score above 0.5 compared to the native human substrate. (D) Summary of 

NICEdrug best candidate drugs against COVID-19 and their classification according to the drug category in the KEGG database. (E) 

NICEdrug druggability report of SARS-CoV-2 hijacked enzymes including prodrugs (up to three steps away of any NICEdrug small 

molecule) with NICEdrug score above 0.5 compared to the native human substrate. (F) Best candidate food-based molecules against 

COVID-19: NICEdrug druggability report of SARS-CoV-2 hijacked enzymes including food-based molecules with NICEdrug score above 

0.5 compared to the native human substrate. (G) Summary of the NICEdrug best candidate food-based molecules against COVID-19 

and their classification according to the fooDB source, related to chapter 6. 

Table 8.29:NICEdrug analysis of inhibitory mechanisms of currently used anti SARS-CoV-2 drugs. (A) All drug molecules and (B) 

prodrugs in NICEdrug.ch sharing reactive site with the native substrates of the human enzyme HDAC2 and their NICEdrug score with 

this substrate. (C) All molecules cataloged in fooDB sharing reactive site with the native substrates of the human enzyme HDAC2 and 

their NICEdrug score with this substrate. (D) All drug molecules and (E) prodrug molecules in NICEdrug.ch sharing reactive site with 

the native substrates of the human enzyme ACE2 and their NICEdrug score with this substrate. (F) All molecules cataloged in fooDB 
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sharing reactive site with the native substrates of the human enzyme ACE2 and their NICEdrug score with this substrate. (G) All 

molecules in NICEdrug.ch or cataloged in fooDB sharing reactive site with the native substrates of the human enzyme DNA-directed 

RNA polymerase and their NICEdrug score with this substrate, related to chapter 6. 
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Supplementary	Figures	 	

 

 

Figure 8.1: Overview on Compound databases in terms of number of carbons and activity, related to chapter 2.3. 
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Figure 8.2: Extracted ion chromatogram of the 173.0444 m/z ion (mass of 2-oxopimelate, C7H8O5) in the sample in positive ionization 

mode, related to chapter 5.2. 
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Figure 8.3: Overview of number of molecules in NICEdrug.ch and their structural curation. (A) Venn diagram showing the number of 

compounds in NICEdrug.ch and their source database: KEGG, DrugBank, ChEMBLE NTD, and ChEMBLE. (B) Representation on how 

different kekulé forms affect the identification of reactive sites and prediction of biological activity for an example molecule, related 

to chapter 6. 
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Figure 8.4: Distribution of reactive sites and metabolic reactions as of E.C. numbers linked to all molecules in NICEdrug.ch.  (A) 

Distribution of reactive sites identified in all molecules of NICEdrug.ch among classes of E.C. numbers. (B) Specificity of reactive sites 

identified in drugs based on length and types of participating atoms. (C) Distribution of drug metabolic reactions based on class of 

E.C. number. (D) Distribution of Gibbs free energy for the drug metabolic reactions, which are the reactions linked to all molecules of 

NICEdrug.ch, related to chapter 6. 
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Figure 8.5: Clustering based on NICEdrug score, molecular weight, and reactivity of statin like molecules. Hierarchical clustering based 

on the NICEdrug score of all molecules in NICEdrug.ch that contain statin reactive site (left). We report the molecules’ molecular 

weight (middle left) and number of drug metabolic reactions or reactions in which these drugs participate (middle). The molecular 
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weight seems to be inversely correlated with the number of drug metabolic reactions. We highlight six clusters of drugs (a-f, middle 

right) and an example representative molecule (left). Interestingly, these clusters also group molecules based on bio- or physico-

chemical properties: “cluster a” involves a range of silicon-containing chemical molecules, “cluster b” are drug like molecules of type 

2 statins, “cluster c” includes chemical molecules with a long chain connected to the reactive site, “cluster d” involves molecules with 

1-indanone fused with a tetrahydropyran ring, “cluster e” comprises drug-like molecules of type 1 statins, and “cluster f” are 16-

membered ring macrolide antibiotics, related to chapter 6. 
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Field of Interest 
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2011-
2016 

Collaboration on production of adipic acid project, University of Denmark 
(DTU), Copenhagen, Denmark 

• Prediction of novel pathways for adipic acid biosynthesis, 
• Proposing enzymes for novel reactions  
• Analyzing the feasibility of the predicted pathways by integrating them in the metabolism 

of a microorganism.  
 
Collaboration on retro biosynthesis project, L’Oréal Company, Paris, France 
 In-silico metabolic pathway prediction 
 

Entrepreneurship center of Sharif university of technology, Tehran, Iran 
Data analysis. 
 

 

Publications 

 

2020 Jasmin Hafner1, Homa MohammadiPeyhani1, Anastasia Sveshnikova, Alan Scheidegger, Vassily 
Hatzimanikatis, “Updated ATLAS of Biochemistry with new metabolites and improved enzyme 
prediction power,” ACS, Synthetic biology., Accepted. 

1 contributed equally 

 

2019 N. Hadadi 1, H. MohammadiPeyhani 1, L. Miskovic, M. Seijo, and V. Hatzimanikatis, “Enzyme 
annotation for orphan and novel reactions using knowledge of substrate reactive sites,” Proc. Natl. 
Acad. Sci., p. 201818877, Mar. 2019. 

1 contributed equally 

 

 

 




