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Abstract

Computational studies of metabolism aim to systematically analyze the metabolic behaviour
of biological systems in different conditions. Reconstruction of genome-scale metabolic
network models (GEMs) using genome annotations, literature data, and enzymatic wet-lab
experiments is an important step toward the systematic study of metabolism. These models
capture the interconnection between different elements of the network by applying
stoichiometric balances while taking into account gene-protein-reaction associations. Several
methods have already been developed for the analysis of metabolic network models. These
methods are mainly used to optimize a single or combination of biologically relevant objective
functions subject to stoichiometric, thermodynamic, and other essential constraints. In this
thesis, we have summarized the optimization methods and objective functions by classifying
them based on biological and mathematical features. Particularly, we suggest reformulations
to convert some of the complex optimization classes to simpler ones. One of the interesting
reformulations is the conversion of mixed-integer linear fractional programming (MILFP) to
mixed-integer linear programming (MILP). We show that this conversion is specifically useful
in studying coupling relationships in metabolic network models that are thermodynamically
constrained. Coupling is an important concept in metabolic networks that determines how
different components of the network such as metabolites or reactions are interrelated.
Particularly, flux Coupling Analysis (FCA) is a method, which has been used extensively for
evaluating the dependencies between metabolic reactions. FCA has been exploited for
several applications such as studying gene essentiality, network evolution, etc. In FCA, two
reactions are considered as coupled if the activity of one, constrains the activity of the other.
So far, FCA has been used for analyzing metabolic reactions in flux-balanced models. In this
work, we developed a new formulation, Thermodynamic Flux Coupling Analysis (TFCA), which
calculates flux couplings of metabolic models that are subjected to thermodynamic
constraints. With TFCA, we show that adding thermodynamic constraints to a flux-balanced
model can significantly change the coupling relationship of reactions of the network. Such

thermodynamic constraints can assign directionalities to the reactions and hence reduce the
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number of bidirectional reactions (BDR). Decreased BDRs subsequently result in a significant
reduction in the solution space. We show that calculating coupling relations helps in reducing
the number of combinations of BDRs, which in turn will facilitate the analysis of the metabolic
network. In addition to proposing several mathematical reformulations to gain global
optimality, we also addressed the issue of finding the proper cellular objective function in
different conditions of cellular metabolism. This is not always straight-forward, since the
metabolic activities of some organisms are not well-characterized. Metabolism of dormancy
phase in some bacteria and parasites is an example of a poorly characterized biological
system. In this thesis, we studied the metabolic behaviour of dormant malaria parasite using
genome-scale model of Plasmodium falciparum. We examined several known and novel
objective functions and scored them based on the model’s consistency with experimental
gene expression data. Our results suggested that minimizing energy dissipation can best
describe the metabolic activities of the malaria parasites in the dormancy phase.

In the last chapter of this thesis, we focus on studying another poorly characterized metabolic
system that is the process of iron reduction in Clostridium acetobutylicum. C. acetobutylicum
is a well-known model organism for the production of several solvents and organic acids.
Research has shown that this organism can reduce Fe(lll), but the mechanism behind this
reduction is yet to be identified. In this thesis, we analyzed the metabolism of C.
acetobutylicum using one of its reconstructed genome-scale metabolic network models and
experimental transcriptomics data in the presence or absence of Fe(lll). By performing several
computational studies, we suggested that NAD(P) is involved in the reduction of iron and is

the potential physiological electron donor to Fe(lll).

Keywords: metabolism, metabolic network models, optimization, global optimality, objective
function, flux coupling analysis, Plasmodium falciparum, dormancy, Clostridium

acetobutylicum, Fe (lll) reduction.



Résumé

Les études informatiques du métabolisme visent a analyser systématiquement le
comportement métabolique des systémes biologiques dans différentes conditions. La
reconstruction de modeles de réseaux métaboliques a I'échelle du génomique (GEM) a l'aide
d'annotations des génomes, de données de la littérature et d'expériences enzymatiques en
laboratoire humide est une étape importante vers |'étude systématique du métabolisme. Ces
modeéles detect les connexions entre différents éléments du réseau en appliquant des bilans
stoechiométriques en tenant compte des associations géne-protéine-réaction. Plusieurs
méthodes ont déja été développées pour I'analyse des modeéles de réseaux métaboliques.
Ces méthodes sont principalement utilisées pour optimiser une seule ou une combinaison de
fonctions objectives biologique qui sont soumises a des contraintes stoechiométriques,
thermodynamiques et autres. Dans cette these, nous avons résumé les méthodes
d'optimisation et les fonctions objectives en les classant selon des caractéristiques
biologiques et mathématiques. En particulier, nous suggérons des reformulations pour
convertir certaines des classes d'optimisation complexes en classes plus simples. L'une des
reformulations intéressantes est la conversion de la programmation fractionnaire linéaire en
nombres entiers mixtes (MILFP) en programmation linéaire en nombres entiers mixtes
(MILP). Nous montrons que la conversion est particulierement utile pour étudier les relations
de couplage dans les modeles de réseaux métaboliques qui sont soumis a des contraintes
thermodynamiques. Le couplage est un concept important dans les réseaux métaboliques qui
détermine comment les différents composants du réseau tels que les métabolites ou les
réactions sont interdépendants. En particulier, I'analyse de couplage de flux (FCA) est une
méthode qui a été largement utilisée pour évaluer les dépendances entre les réactions
métaboliques. La FCA a été exploitée pour plusieurs applications telles que I'étude de
I'essentialité des génes, I'évolution du réseau, etc. En FCA, deux réactions sont considérées
comme couplées si I'activité de I'une contraint l'activité de I'autre. Jusqu'a présent, la FCA a
été utilisée pour analyser les réactions métaboliques dans des modeéles a flux équilibré. Dans
ce travail, nous avons développé une nouvelle formulation, I'analyse de couplage de flux

thermodynamique (TFCA), qui calcule les couplages de flux de modeles de métabolisme
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soumis a des contraintes thermodynamiques. Avec TFCA, nous montrons que l'ajout de
contraintes thermodynamiques a un modéle a flux équilibré peut modifier considérablement
la relation de couplage des réactions du réseau. De telles contraintes thermodynamiques
peuvent affecter des directionnalités aux réactions et donc réduire le nombre de réactions
bidirectionnelles (RBD). Une diminution des RBD entraine par la suite une réduction
significative de I'espace de solution. Nous montrons que le calcul des relations de couplage
permet de réduire le nombre de combinaisons de RBD ce qui, a son tour, facilitera I'analyse
du réseau métabolique.

En plus de proposer plusieurs reformulations mathématiques pour atteindre I'optimalité
globale, nous avons également abordé la question de la recherche de la fonction objectif
cellulaire appropriée dans différentes conditions de métabolisme cellulaire. Ce n'est pas
toujours simple, car les activités métaboliques de certains organismes ne sont pas bien
caractérisées. Le métabolisme de la phase de dormance chez certaines bactéries et parasites
est un exemple de systeme biologique mal caractérisé. Dans cette thése, nous avons étudié
le comportement métabolique du parasite dormant du paludisme en utilisant un modele a
|'échelle du génome de Plasmodium falciparum. Nous avons examiné plusieurs fonctions
objectives connues et nouvelles et les avons notées en fonction de la cohérence du modeéle
avec les données d’expression génique expérimentales. Nos résultats suggérent que
minimiser la dissipation d'énergie peut mieux décrire les activités métaboliques des parasites
du paludisme en phase de dormance.

Dans le dernier chapitre de cette thése, nous nous concentrons sur I'étude d'un autre systéme
métabolique mal caractérisé qui est le processus de réduction du fer dans Clostridium
acetobutylicum. C. acetobutylicum est un organisme modele bien connu pour la production
de plusieurs solvants et acides organiques. la littérature montre que cet organisme peut
réduire Fe (lll), mais le mécanisme derriere cette réduction reste a identifier. Dans cette
these, nous avons analysé le métabolisme de C. acetobutylicum a I'aide d'un de ses modéles
de réseaux métaboliques reconstruits a I'échelle du génome et de données transcriptomiques
expérimentales en présence ainsi qu’en I'absence de Fe (lll). En effectuant plusieurs études
informatiques, nous avons suggéré que le NAD(P) est impliqué dans la réduction du fer et est

le donneur d'électrons physiologique potentiel a Fe (lll).



Mots-clés: métabolisme, modéles de réseaux métaboliques, optimisation, |'optimalité
globale, fonction objectif, analyse de couplage de flux, Plasmodium falciparum, phase de

dormance, Clostridium acetobutylicum, réduction du Fe(lll).
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Bidirectional Reaction

Consistency Score

Electron Transfer Chain

Flux Balance Analysis

Flux Coupling Analysis

Flux Coupling Finder

Flux Directionality Profiles

Flux Variability Analysis

Genome-scale model

Gene-Protein-Reaction

Linear Fractional Programming

Linear Programming

Mixed Integer Flux Coupling Analysis

Mixed Integer Linear Fractional Programming
Mixed Integer Linear Programming

Minimal Network Enrichment Analysis

Mixed Integer Non Linear Programming
Mixed Integer Quadratic Fractional Programming
Mixed Integer Quadratic Programming
Minimization of Metabolic Adjustment
Quadratic Fractional Programming

Quadratic Programming
Thermodynamics-based flux analysis
Thermodynamics-based Flux Balance Analysis
Thermodynamics-based Flux Coupling Analysis

Thermodynamics-based Metabolic Flux Analysis
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1 Background

The focus of biological researches started from study of biological components through
genetic, biochemical or molecular biology approaches. These approaches have provided in
depth understanding of individual components. However, they do not capture the systematic
connections of biological elements and environmental factors that lie behind the ultimate
physiology of the cells. Systems biology’s aim is to convert detailed information about an
organism into a computational platform, such that cellular phenotype can be analyzed and
predicted from cellular genotype (1). It can help to realize how all the molecules in a cell can
cooperate to create rational physiological functions. The focus of systems biology has shifted
to many different areas including stochastic kinetic models and statistical Bayesian networks
(2). However, systems-level study of metabolism kept its significance and proved to be a
promising and useful research area. This systems-level study requires the detailed
information about all the metabolites and reactions occurring in the cells and genes encoding
enzymes that catalyze those reactions. Gene to protein to reaction (GPR) associations can
connect genome to biochemistry. Technological advances have now facilitated high-
throughput characterization of different biological components all at once. One of the major
progresses in this area is the development of advanced strategies for genome sequencing of
different organisms. This advancement gives a systems-level or genome-scale point of view
of metabolism. The combination of full genome sequences with the massive progresses in
genetics, molecular biology, and biochemistry has enabled the genome-scale reconstruction
of metabolic networks (1,3). The number of reconstructed genome scale metabolic models
has increased tremendously in recent years. These metabolic models can be utilized as an
illustrative of all bio-chemical reactions that can happen in a cell and contain all the
information about metabolic reactions and metabolites that are present in a cell (4).
Metabolic networks are very complex due to both large number of metabolic reactions and
connections of metabolites that take part in these reactions. A metabolite can be involved in

different parts of the metabolism and being used by several enzymes as substrates or produce
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as products. Genome-scale metabolic networks have facilitated the study of this complexity.
These models can be converted to a mathematical format. More specifically, participation of
each metabolite in each reaction can be illustrated in a stoichiometric matrix. The rows and
columns of this matrix represent the individual metabolites and reactions respectively. The
entries of this matrix are the stoichiometric coefficients of each metabolite in different
reactions. Negative and positive coefficients are used for substrates and products
respectively. The relation between metabolites and reactions represented by the
stoichiometric matrix is a set of linear equations. The important assumption behind the study
of metabolic networks is the quasi-steady state assumption which presumes that there is no
accumulation or dissipation of metabolites in the cell. These models usually contain a biomass
reaction which represents the composition of 1 gDW of cell producing from different building
blocks. The metabolic models also include information on possible uptaken and secreted
metabolites through boundary reactions. The basic mathematical representation of

metabolic networks is the following formulation:

min/maxZ = cTv
subject to:
Sv=0

17i,min < v; < vi,max

Where S is the stoichiometric matrix and v is the vector including the fluxes through all
individual reactions in the network. The equality constraint represents the quasi-steady state
assumption ensuring there is no net accumulation or consumption of metabolites. v,,;;, and
VUmax indicates the possible lower and upper bounds of each metabolic reaction. Z show the
metabolic objective of the cell which is represented through linear combinations of different
fluxes in the network.

Using the above optimization approach, which is called flux balance analysis (FBA) helped
researchers to study not only the overall behavior of metabolic networks, but also the
contribution of individual metabolic fluxes in this metabolic behavior. In the linear space, the
objective function has only one global optimum value. However, since these models are
usually underdetermined, the solution to the above optimization problem is not unique. In

other words, there are different flux distributions that can satisfy the same global objective
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value. One of the reasons that may cause having alternative flux distributions is the bi-
directionality of reactions. The experimental or literature data about the reversibility is only
available for a subset of enzymes and associated reactions. One of the ways to assign
directionalities to the reactions is by applying thermodynamic laws on the reactions of the
network. In thermodynamic flux analysis (TFA), a mixed-integer linear programming (MILP) is
solved to introduce thermodynamic constraints to the original FBA problem (5). These
constraints take into account metabolite concentrations and Gibbs free energy of reactions
to determine directionality of all individual reactions of the network. By assigning
directionalities to the reactions, the solution space can be reduced significantly, due to the
reduction in the number of the bidirectional reactions (BDRs).

Maximizing the flux through the biomass reaction was originally used as the objective
function in the above optimization problem. However, it has been shown that living cells have
other important goals such as energetic efficiency or optimal resource allocation (6). In
addition, genetic and environmental perturbations may force the organisms to use their
metabolic capabilities to achieve other biological objectives rather than maximum growth (7).
Apart from the study of different objective functions, metabolic network models can be
treated as platforms to integrate wide range of experimental data from gene expressions,
protein abundances to reaction fluxes and metabolite concentrations. These models have
also been extensively used for different applications such as knowledge gap filling of
metabolism, drug targeting and overproduction of valuable compounds. Researchers have
developed many different optimization methods for the analysis of metabolic networks,
where a single or a combination of objective functions are optimized subject to
stoichiometric, thermodynamic and other known constraints. There are different classes of
optimization problems based on the type of variables, constraints and objective functions.
Not all these classes can be solved to global optimality having current solvers. In addition,
some of the classes can be converted to other classes using transformation or linearization
strategies. In the second chapter of this thesis, we introduce different classes of optimization
problems that are used in study of metabolic network models. Then, we review papers about
metabolic network model analysis and classify the optimization methods that are used in
them based on different properties including problem type, objective function type and the
goal of the study. Further, we explain which of these problems can be solved to global

optimality and which of them need reformulation. Finally, we discuss how introducing
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thermodynamic constraints can change problem type and arise the need for further
reformulations. We will show an interesting example of the need for reformulation after the
introduction of thermodynamic constraints in chapter three.

Different components of the metabolic network models, such as metabolite concentrations
or reaction fluxes are not completely independent of each other and connectivity in the
network do has an effect on how these components are coupled. Flux Coupling Analysis (FCA)
is a method, which has been used extensively for evaluating the dependencies between
metabolic reactions (8). FCA has been exploited for several applications such as studying gene
essentiality, network evolution and gap filling. In FCA, two reactions are considered as
coupled if the activity of any of them constrains the activity of the other. So far, FCA has been
used for analysing metabolic reactions in flux-balanced models. In FCA a fractional
programming problem is solved to identify the ratio of any two reactions in the network.
having these ratios different types of couplings with different strength are defined between
pairs of reactions. The original FCA is a non-linear problem, but can be converted to a linear
problem by applying appropriate strategies. FCA is a useful method for researchers that are
going to extract biologically meaningful information from metabolic network reconstructions.
Investigation of the coupling properties of metabolic networks is important to both
understand the organizational principles of metabolic interactions within metabolic
networks, and for more efficiently suggesting engineering modifications. Coupling
information can be used to suggest ways for inactivating a particular reaction, or making some
reactions of interest coupled to each other. In chapter three, we develop a new formulation,
Thermodynamic Flux Coupling Analysis (TFCA), which uses mixed integer linear fractional
(MILFP) programming to calculate flux couplings for thermodynamically constrained models
of metabolism. With TFCA we show that addition of thermodynamic constraints to a flux-
balanced model can significantly change the coupling relationship of reactions of the network.
We show that calculating coupling relations helps in reducing the number of combinations of
BDRs, which in turn will facilitates the analysis of the metabolic network. The MILP
formulation of the TFCA allows for analysis of a broader class of problems, with and without
thermodynamic constraints that involve integer variables.

In chapter four of the thesis we show another application of our study of objective functions
in chapter two. We have studied the cellular objectives of the dormancy phase in malaria

parasite. Malaria is an infectious disease caused by Plasmodium genus. Some plasmodium
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species can enter the dormancy phase and leave this phase at a later time in their life cycle.
This state is still poorly characterized and the mechanisms of entering or leaving this phase is
not known. In this chapter by utilizing an already existed genome-scale metabolic network
model of Plasmodium falciparum (9), we study different objective functions that can describe
the dormancy phase. We then score and rank these objective functions based on the
agreement of the model with available experimental gene expression data of the dormant
parasite. We show that among all the objective functions that are investigated, minimizing
energy dissipation can best describe the physiology of dormant parasite.

In chapter five of this thesis, we are going to analyze the metabolism of Clostridium
acetobutilycum by utilizing an existing genome-scale model of this organism (10). C
acetobutylicum is a gram-positive anaerobic bacterium that is known for its ability to produce
different organic acids and solvents. In addition, experimental studies confirm that C.
acetobutylicum is able to reduce different forms of Fe(lll) (solid and soluble) to Fe(ll). Iron is
an important element for cell survival and is involved in many vital biological processes
including energy generation. However, the mechanisms behind and enzymes and cofactors
involved in this process are not characterized yet. To investigated the mechanism of iron
reduction, we hypothesized three different electron donors for reducing Fe(lll) and constrain
the metabolic network with experimental metabolite concentration and transcriptomics
data. We then analyzed parts of the metabolism that have changes in their activity when
Fe(lll) is provided for the model. By means of this analysis, we could propose potential
mechanism for iron reduction and identify enzymes, reactions and pathways involved in this
process.

In this thesis, we targeted investigation of metabolic network models by several approaches.
We thoroughly studied the optimization methods and objective functions used in the study
of metabolic network models. We analyzed the effects of introducing thermodynamic
constraints on optimization methods. We used flux coupling analysis as a tool to study the
relation between different reactions of a thermodynamically constrained metabolic network
model. To this goal we developed a MILFP problem and converted it to MILP formulation
using known strategies. We have also investigated different known objective functions from
chapter one and also novel functions, to study the metabolic goal of the latency phase of

malaria parasite. At the end, we analyzed the metabolism of Clostridium acetobutylicum in
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iron reduction condition, using known optimization methods for physiological study and data
integration.

Apart from this thesis, | also contributed to the development and refinement of a pipeline
that evaluates pathways generated for production of target chemicals. This pipeline
integrates the pathways to the genome-scale model of interest and check the thermodynamic
feasibility and does the evaluation of yield of embedded pathways. In addition, | contributed
in the development of a method for analysis and integration of C'3 labelling data into
metabolic models to study the impact of different physiological states on the distribution of
atom labels in the central carbon metabolism. Moreover, | contributed in the development
of Optknock framework for thermodynamically constrained models in order to have

thermodynamically feasible genetic intervention strategies.
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2 Classifying optimization methods and
objective functions in studying cellular

metabolism

2.1 Author contribution and publications used in this chapter

The work of this chapter is based on the following paper which is under preparation for
submission:
Z. Hosseini, MO. Oftadeh, V. Hatzimanikatis (2020) “Global optimization problem to describe

different objective functions used in studying cellular metabolism” (in preparation).

This work was done in collaboration with Mohammad Omid Oftadeh, a PhD student in LCSB.

2.2 Global optimization problem

Global optimization is the task of finding the global maximum or minimum of a function or
set of functions. The goal of global optimization is to determine not just a local minimum
(maximum) but the smallest (largest) local minimum (maximum). In contrast to local
optimization in which the fulfillment of the local minimum can be guaranteed (when the
gradient is equal to zero), no such general condition exists in global optimization to confirm
that the global minimum has been reached (11). In linear programming (LP) and other types
of optimization problems, the input variables are subject to some equality or inequality
constraints. Linear programming and mixed-integer linear programming (MILP) are problems
that can be solved to global optimality using current solvers such as CPLEX. Quadratic
programming (QP) and mixed integer quadratic programming (MIQP) are not linear but they

can also be solved to global optimality. There are other classes of problems such as linear
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fractional programming (LFP) or mixed integer linear fractional programming (MILFP) that are
not linear. These classes can be convex or non-convex. However, there are some
reformulations that can be applied on these classes that will convert them to LP or MILP
problems and therefore their global optimum can be calculated using existing approaches. It
should be noted that global optimality is with respect to the objective function. However, the
variables are not fixed to a certain value and multiple solutions may exist for a single global

objective function.

2.3 General overview of metabolic objective functions and

optimization methods

The goal of systems biology is quantitative understanding of functional interactions between
the multiple cellular components to eventually predict network, cell and organism behavior.
This understanding needs computational models to capture the large numbers of molecular
components that can interact within interlinked biochemical networks. Genome-scale
metabolic network model reconstruction has been recognized as one of the main modeling
approaches for systems-level metabolic studies (12,13). A genome-scale model
computationally describes a whole set of stoichiometry-based, mass-balanced metabolic
reactions in an organism using gene-protein-reaction (GPR) associations that are formulated
on the basis of genome annotation data and experimentally obtained information. Metabolic
networks are well established since we know most reactions, their catalyzing enzymes and
encoding genes, and how they interact stoichiometrically within a biochemical network.
These models allow to predict network capabilities, for example, by predicting metabolic
fluxes using flux balance analysis (FBA). To identify optimal solutions in the big solution space,
FBA objective functions are defined to solve the system of equations that represent the mass
balance, thermodynamic and other constraints (6). While different objectives were proposed
for different biological systems, by far the most common assumption is that microbial cells
maximize their biomass yield. However, it is shown that maximization of biomass yield might
not be necessarily the evolutionary favored way of organisms to live (14). Therefore,
alternative objective functions have been proposed for physiological study of metabolic

network models such as optimizing enzyme efficiency by minimizing total flux through the
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network or optimizing energetic efficiency through maximizing ATP production (6).
Combination of different objective functions have been used when a single objective is not
enough to describe a metabolic system. Since the objective function of a cell cannot be known
a priori, bi-level based optimization methods have been developed to suggest an objective
function for a model by minimizing the distance of flux prediction and experimental flux
measurements (15,16). In addition, several methods have been developed to integrate and
analyze biological data, including different large scale omics data or small scale
measurements of metabolite concentrations or fluxes (5,17-19). Furthermore, methods have
been proposed to use the metabolic network models for different applications. These
applications include drug target identifications in pathogens, genetic modifications for the
overproduction of compounds that can already be produced by the organism, strain
development for production of new bio-based compounds, and prediction of new metabolic
capabilities through gap filling to propose enzymatic functions (20-22).

In the first part of this chapter, we are going to present a classification for optimization
methods that have been used in the analysis of metabolic network models. The classifications
are based on the linear, quadratic or fractional terms in the equations and also the type of
variables (integer or continuous or both) that are used to formulate the problem. We then
review papers in metabolic network models analysis and classify them based on the
optimization methods and objective functions that they used in their study of metabolism.
We show that some of these problems can be convertible to each other. We propose proper
reformulation so that we can ensure global optimality for every possible optimization
problems and objective functions in these categories. We discuss that by having this global
reformulations one can add more complex constraints and variables to an already existed
problem and it can still be solved to global optimality. We also propose another classification
for existing methods in the analysis of metabolic networks based on their goal of study. One
can easily see that many of the methods can be categorized in more than one class. We
believe that this classification of papers can serve as a repository of existing methods for
metabolic network model study and analysis and also for easily expanding the known

approaches to do more complex and thorough analysis of metabolism.
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2.4 Classification of optimization problems

We are going to classify the optimization problems in ten groups. A general mathematical

formulation for each group is represented:

Linear programming (LP)
min cTx
x
subject to:
Ax < b
x=0

LPs are a group of optimization problems with only continuous variables and both objective

function and constraints are linear.

Mixed integer linear programming (MILP)

min¢, Tx +¢,Ty
X,y

subject to:
Aix+A,y<b
x=0
y e
MILPs are optimization problems with both continuous and integer (or in a simpler case
binary) variables. The constraints and objective function are still linear combination of

variables but can have terms with integer variables.

Linear fractional programming (LFP)
CTx+a
m;nm
subject to:
Ax<b
x=0
LFP is a class of optimization in which the objective function is the division of two linear

combinations of variables. The constraints are linear and the variables are continuous.
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Mixed integer linear fractional programming (MILFP)

aglx+c,’y+a

min—: =
xy dix+dy+pB

subject to:
Ax+By <b
x=0
y e
MILFPs have both integer and continuous variables. The constraints are linear combinations
of both types of variables. However, the objective function is a fractional equation that have

both continuous and integer variables.

Quadratic programming (QP)
1
min=xTQx + c¢Tx
x 2
subject to:
Ax < b
x=0
QPs are like LPs with additional terms in the objective function. These additional terms are

the square of continuous variables with some coefficients.

Mixed integer quadratic programming (MIQP)
1 1
n;iynExTle + EyTsz + x4,y
subject to:
Ax+By <b

x=0

y e
The difference between MIQPs and QPs is that they can have integer variables in the objective
function and constraints.

Quadratic fractional programming(QFP)

%xTle +'x+a

min1
e 7XTP1X + leX + B

subject to:
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Ax+By <b
x=0
y EZ"
QFPs are like LFPs with quadratic terms in addition to linear terms in the objective function.

Mixed integer quadratic fractional programming(MIQFP)

1 1
fxTle + 7yTQ2y +o’x+c,"y+a

min

i %xTPlx + %yTsz +d " x+d, "y +p
subject to:
Ax+ By <b
x=0
y e

MIQFPs are a rare problem with fraction of quadratic and linear terms of continuous and
integer variables in the objective function. The constraints are linear combinations of both

types of variables.

Bi-level optimization
minc; " x
X
subject to:
Aix < by
minc,” x
X
subject to:
Ay,x < by
x=0
Bi-level problems are nested optimization problems in which, in addition of typical constraints
of an optimization problem, the outer problem is subject to another optimization problem
with its own constraints. One should note that both inner and outer level problems can

consist of integer variables or quadratic terms.
Multi-objective optimization

r?i;n(fl(x' J’)' fZ(x' }’): ""fn(xl y))
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subject to:
Ax+ By <bh
x=0
y e
In multi-objective optimization, a combination of objective functions is optimized subject to
linear constraints of continuous or integer variables. Objective functions can be from any of

the above classes.

2.5 How different optimization classes can be converted to each

other

Not all the classes that are described above can be solved to global optimality having current
solvers. we can easily solve LPs, MILPs, QPs and MIQPs. Some of the classes can be converted
to each other using proper transformation and introduction of new variables. Figure 2-1
shows the optimization classes introduced in section 2-4 and the ones that can be converted
to each other. The blue dashed line is an approximate conversion and the original and the

converted problem are not exactly the same.

Optimization
methods
[ 1 ] | | | | | |
—— - - Mixed-integer ~ Mixed-integer
2 Mixed-integer . Mixed-integer Linear ey B Quadratic ixed-intege: -
Linear % Quadratic 2 : Linear : Quadratic Bi-level
= Linear e z Quadratic Fractional : Fractional . i
Programming PFropatnmig Prog B P i P ; Fractional Programming Fractional Optimization
= = s = Programmin, Programminy
I

i — ___I____ i

Figure 2-1. Possible conversion of optimization methods to each other. The blue dashed line is an approximate conversion
and the original and the converted problem are not exactly the same.

Fractional programming for instance, are nonlinear problems that can be reformulated to
linear programming using Charnes-Cooper transformation (23). A linear fractional problem
after the transformation will be in the below form.
mfltn cT® + at
subject to:
Ax < bt
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dT2+pt =1

x=0t=0
This new formulation is the result of multiplication of numerator and denominator of the
objective function and both sides of all constraints to a new positive continuous variable, t.

Then, xt is replaced by X, a constraint is added to force the new denominator to be equal to

1 and the new numerator is minimized. Therefore, in the above reformulation, x = " andt =

Y More details about this transformation can be found in literature (8,23).

In addition, MILFP can be converted to MILP using both Charnes-Cooper transformation and
Glover’s linearization scheme (24). Applying Charnes-Cooper transformation on a MILFP will
result in the following problem
I%l;l‘tl ciTX+c, Tyt + at
subject to:
AX + Byt < bt
d,"24+d, yt +pt =1
x=20,t=>0

y e

Here, yt is a bilinear term that can be replaced with a continuous variable. It is done by adding
a couple of linear constraints based on Glover’s linearization strategy. For every bilinear term,
three more constraints should be added to the problem:
y<t
y <My
yzt—-M1-y)
Here, ¥ = yt and the above constraints insure that = 0 whenever y =0 and y =t
whenever y = 1. Here, M is a sufficiently large number. After these variable conversions and
constraints additions the final problem will look like below:
rr%1t11 T2 +c6,"y + at
subject to:
AX + By < bt
d,"2+d, 9+ pt=1
y<t

32



Quadratic fractional programming is a rare class of problems. There is no conversion to global
optimality for these kind of problems. Authors in (25,26), for instance, used approximations
to convert it to quadratic programming.

Bi-level problems and multi-objective problems have been used a lot in the study of metabolic
networks and they also need specific strategies and reformulations for solving. These

strategies are discussed in section 2-7 and 2-8.

2.6 Review Process

Here, we review papers that are considering different objective functions for a metabolic
network model. We reviewed around 1100 papers that reconstructed, analyzed or integrated
data into metabolic network models. At the end we chose the papers that are either published
recently (from 2018 to June 2020), or they have more than 100 citations based on Scopus
database for more detailed classification and analysis. Among these papers, we extracted 103
unique single or combination of objective functions for analysis of metabolic network models
which are summarized in table 7-1 of Appendix. The rest of the papers use already existed
methods or objective functions for their studies. We then categorize the papers based on

different features.

2.6.1 Classification based on objective function and optimization problem

We classify the optimization types of the methods based on the classes introduced in section
2-4. Specifically, we categorize the papers based on their objective type, i.e., either it consists
of linear or quadratic or fractional terms with linear or mixed integer and linear variables, or
it has multi-objective function. We also categorized the studies based on the problem types.
The problem type can also be a LP, MILP, QP, MIQP, LFP, MILFP or bi-level problem. Table 2-

1 shows some example of each category. The complete table can be found in the Appendix.
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LPs are used for optimizing biomass (5,27—-29), production of a desired metabolite (30,31)
and ATP production (32). Having minimum number of changes after a perturbation (33),
minimum number of metabolites that are required in a media so that the cell can grow (34),
or maximum number of reactions in the network that their activities are consistent with gene
expression data (35), have been solved using MILPs.

Examples of methods based on fractional programming in studying metabolism are the study
of flux couplings or maximizing ATP production per enzyme reaction (8,36). Flux coupling
analysis in thermodynamically constrained metabolic network models is an example of mixed
integer linear fractional programming which we will discuss in detail in the next chapter. QPs
and MIQPs are used to study minimizing the difference between measured and predicted
fluxes (37) or minimizing the sum of squared fluxes in order to have enzyme efficiency (38).
People used QFP to optimize maximization of ATP production divided by sum of squared

fluxes to optimize for both enzymatic and energetic efficiency (25,26).

2.6.2 Classification based on study goal
We further group the papers based on the purpose of the study. More precisely, we classify

the papers in three groups:

2.6.2.1 Papers that are studying physiology of cells using metabolic network modelling

These studies include prediction of maximal biomass production or yield for single species
(27-29,39-41) or communities (42—-46) for growth efficiency. Maximal ATP production
(32,47,48), or maximal of ATP production per enzyme reaction (36) are used as objective
function when energetic efficiency of cells are of biological importance. Finding minimal
growing reaction set (49,50), minimizing sum (51,52) or squared sum of fluxes (38,46,53) or
minimizing number of active reactions (54) are used to optimize for enzymatic efficiency.

Finding minimal media (34) or minimal set of exchange metabolites between two organisms
so that they can grow simultaneously (55), minimum amount of substrate consumption
(45,46,56—-59) or minimization of non-essential nutrients uptake rate (60) are examples of
objective functions used for optimum resource consumption. Maximizing NAD (NADH, NADP,
NADPH) production or consumption from specific pathways or in the specific compartments

(61) or the whole model (62) are used for optimizing redox potential of cells.
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Minimization of the difference between the flux vectors of wild-type and mutated models is
also a very well-known objective function that is used in a method called MOMA
(Minimization Of Metabolic Adjustment) for studying the physiology of genetically perturbed
cells (7). The distance between acidogenic and solventogenic phases is another target of
minimization that have been used by Lee et al (63). Succurro et al., used the distance between
consecutive time steps in dynamic flux balance analysis as the objective to be minimized (64).
ROOM suggests minimization of number of significant flux changes instead of minimizing the
distance between two flux vectors (33). Flux coupling analysis is another physiological study
of cells in which authors calculated reaction dependencies in a model in different conditions
(8). The objective functions in this paper is to find the minimum and maximum of reaction
pairs of study (8). Some studies investigated the maximum production rate of some
metabolites in a specific condition or physiology having usually considering a minimum
amount for biomass flux (30,31,65,66). Some of these metabolites that their production are
mostly targeted for optimization are succinate, lactate, acetate or lipids (67—69). Another
attempt in studying physiology is finding essential and synthetic lethal genes without the need
for exhaustive search. Authors in (70) used a bi-level programming approach that maximize
and minimize biomass in inner and outer levels respectively, subject to desired number of
gene deletions to ensure no biomass production after gene deletion. There are also several
studies that considered combination of the above-mentioned functions as objective function
of the model in a multi-objective type problem (71-74). For instance, combination of biomass
maximization and sum of fluxes minimization is a widely used objective function for
simultaneously optimize for enzyme efficiency and growth (75,76). We will discuss more

about multi-objective problems in section 2-8.
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Table 2-1. classification of objective functions used in the study of metabolic networks

Objective
Function

Type of Objective

Type of Problem

Goal of Study

Need for
reformulation

LP

MILP

LFP Qp MiQp

QFp

MO

LP

MILP

LFP

QP MiQP QFP

MO

BL

Phys3

4
App

oI

NRNG | RN

References

Max. biomass
(growth rate)

*

*

(5,39,77)

Max. ATP
production

(32)

Min. the
squared sum of
fluxes

(38)

Max. ATP per
flux unit (sum of
fluxes)

(36)

Max. number of
reactions whose
activity is
consistent with
their expression
state

(35)

Min. number of
reactions that
can produce a

(19)

1 Multi-objective
2 Bi-level

3 Physiology

4 Application

5 Data Integration

6 No Reformulation is Needed
7 Reformulation is Needed
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specific
metabolites

Min. Growing
Reaction Set

(50)

Outer: Max.
bioengineering
objective
Inner: Max.
biomass

(20)

Min. metabolic
adjustment

(7,78)

10

Min. number of
significant flux
changes after

perturbation

(33)

11

Min. the
difference
between fluxes
and Min. the
total sum of
square of fluxes

(79)

12

Outer: Max.
bioengineering
objective
Inner: weighted
Max. of biomass
and Min. of sum
of fluxes

(80)
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2.6.2.2 Papers that are integrating experimental data such as transcriptomics,
metabolomics or fluxomics data, into metabolic network models

The general idea of most of the papers in this category is using LP or MILP formulations to
maximize the consistency (or minimize the inconsistency) between reaction activities and
their corresponding expression states (17,35,81-83). There are also studies that have just
used the transcriptomics data to put more constraints on lower and upper bounds of fluxes
and then used the constrained model for further analysis (84). MiNEA is a method that uses
gene expression changes between two conditions to find deregulated metabolic tasks (19). In
a recent study Sarkar et al., used single polymorphism data to minimize the deviation from a
reference flux state plus the deviation from mass action kinetics (85). Minimizing the
difference between flux predicted from metabolic modelling and flux calculated from
experimental proteomic data is the objective of a study by Yizhak et al (37). Minimizing the
error from experimental measurement of proteomics or transcriptomics data is considered
as part of the objective function in a study by Tian et al (86). Minimizing the error between
experimentally constrained and unconstrained model is another way of using experimental
gene expression data (87). MOMA and ROOM can also be considered in this category if the
reference flux that is used for distance minimization is the result of a fluxomics study (7,33).
Metabolite concentrations is another source of data that have been used in studies of
genome-scale models. In Thermodynamics-based flux analysis (TFA), metabolite
concentrations have been used for constraining genome-scale models using thermodynamic
constraints (5). It has also been used for finding the consistency between model metabolite
production/consumptions with experimental measurements (88). Mo et al., used external
metabolomics measurement to connect them to internal fluxes (89). Experimental gene
knock-out analysis have been used to minimize the number of false positives and false
negatives between model predictions and experimental measurements (90). GrowMatch for
instance, uses a bi-level algorithm with maximum biomass and minimum biomass as the
objective functions of outer and inner problems, respectively. It Then resolves a false positive
case by finding the minimum number of deletions that are needed so that the model do not
produce biomass (21). For false negative cases the problem is resolved by adding minimum

number of reactions to the model so that the model produces biomass (21).

38



2.6.2.3 Papers that are using the computational studies of metabolism for different kind
of applications

The mostly used application is optimizing the production of a desired metabolite and it is
usually done via a bi-level optimization problem. Optknock uses a bi-level problem with
maximizing production of the target metabolite in the outer problem and maximization of
biomass production in the inner problem (20,91). There are also multi-objective studies with
simultaneously optimizing for production of metabolites and another biologically meaningful
objective function (92). Choi et al., maximized biomass flux while forcing the production of
target flux and found the increased fluxes as targets for amplification (93). OptForce identifies
minimum number of flux knock-outs, upregulations or downregulations in order to ensure a
minimum target overproduction through a bi-level problem (94). Moreover, Pharkya et al.,
used a bi-level problem to identify reaction inhibition, activation or eliminations for
maximizing the flux of biochemical target having combination of maximum biomass and
minimum sum of fluxes as the objective function of inner problem (80). Maximizing the
minimum production of target metabolite while having biomass is another way of formulating
the bi-level problem for this purpose (95). By having maximum target production in the outer
problem by a constraint on number of knock outs, or having minimum number of knockouts
with a constraint on minimum target production one can formulate another bi-level
formulation to study target overproduction. The objective of inner problem can be minimizing
the production of target metabolite (96). In some papers, authors add minimum number of
non-native reactions to the model so that it can produce some percentage or the maximum
theoretical yield that is calculated in a previous step (97,98). OptOrf maximizes the desired
production and minimizes the number of gene deletions or over productions with a penalty
in the outer problem. In the inner problem, it maximizes biomass production (99). Many
problems simply did single gene knock outs to find the effect of gene knock outs on
production of desired metabolites (100-103). The correlation between reactions of the model
and the target production reaction when the target reaction is maximized have also been
studied to find highly correlated pairs (104). In addition, authors have maximized the
availability of NADPH for natural product biosynthesis (105).

Studying diseases and drug target identification is another field of application of metabolic
network models (22). A bi-level optimization framework has been used to infer oncoenzymes

in hepatocytes. The outer objective of this problem is finding maximum similarity of model
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fluxes and experimental measurements of Warburg effect and the inner objective is quadratic
summation of fluxes (106). People also studied the effect of drugs on biomass production by
limiting the flux through reactions that are associated to the drug (107).

Optimization methods have also been extensively used in improving the accuracy of models
through gap filling (21). Finding the minimum number of reactions that are needed to be
added to the model to have less blocked reactions and dead-end metabolites in the model is

an example (108).

2.6.3 Classification based on the need for reformulation

Moreover, we analyzed if and how some of the computational problems in these papers
needed reformulation based on the information in figure 2-1. About 60% of the methods that
are part of our review need some sort of reformulation in order to have global optimality
solving with current solvers. In other word, all the papers that are using FLP, MILFP, multi-
objective and bi-level programming need reformulations. Details about these reformulations

can be found in section 2-5, 2-7 and 2-8.

2.7 Bi-level optimization

Bi-level optimization-based procedures have been utilized in many strain design, gap filling
and community modelling problems. The key concept in bi-level problems, is to use an inner
and an outer level problem. The inner problem assigns fluxes in the network to optimize for
the objective of interest of the inner problem in response to changes imposed by the outer
level constraints. The outer problem optimizes another objective of interest by identifying
appropriate changes to the network. Bi-level problems are mainly solved by converting them
into a single-level LP or MILP (depending on the original problem type) by adding the dual
constraints of the inner problem to the constraints of the inner and outer problems and
imposing the strong duality condition. Strong duality is a condition, in which the value of the
primal optimal objective function and the value of the dual optimal objective function are
equal. The following problem is the single-level conversion of a bi-level optimization problem
with only linear variable and constraints (as described in section 2-4 of this chapter):

minc; T x
X
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subject to:
Aix < by
A,x < by
"x =bhy'y
Aly > ¢,

x,y =0

The first and second constraints are the constraints of outer and inner problems respectively.
The third constraint applies the strong duality condition. The fourth constraint is the dual
constraint associated to primal variables of the inner problem and the new y variable is the
dual variable associated to the primal constarints.

Having binary variables in the original problem may make the conversion of the problem to a
single-level problem more challenging. For instance, Bilinear terms may appear in the
objective function of the dual problem. These terms can be linearized using the available
standard techniques that were discussed previously in this chapter. In most of the bi-level
methods, binary variables are the variables of the outer problem and are considered as
parameters in the inner problem. However, there are some formulations in which the
decision about the values of some of the binary variables are made in the inner problem. In
these cases, the single-level conversions are more complex and need the use of
complementary slackness condition. One can find more details and examples of the

conversion of bi-level problems with binary variables in the following papers (80,109,110).

2.8 Multi-objective optimization

Since there is no single objective function that can comprehensively describe cellular behavior
in a specific condition, several studies have considered multi-objective optimization for this
purpose. In multi-objective optimization, one solution might be optimal for one objective, but
suboptimal for the other. There are several methods to solve multi-objective optimizations.
These methods include weighted sum method, &-constraint method and the goal
programming method. In the weighted sum method, one can simply assume weights for

different objectives and then optimize for the sum of these weighted objectives (111).

min(w f,(6.3) + Wofo(6,9) + -+ W fo(6,))
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subject to:
Ax+By <b
x=0

y e

In g-constraint method, one objective function is chosen to be optimized and an upper or
lower bound (whether the objective function is to be minimized or maximized) is considered

for all other objective functions. These bounds are imposed by adding new constraints to the
original problem (112).
min(/ ()
subject to:
Ax+By <b
filk,y) <& i=23..,n
x>0

y e

In goal programming approach, one can minimize the deviation of each objective function
from a pre-defined goal. This goal can be the optimum value for that single function, even if

having this optimum value is not feasible in the multi-objective problem (113).

minz 5+ 67
i

Ax+By <b
fibey) + 8¢ =67 =g,
x=0
61,67 =0
y ez

subject to:

Here, ;" and §; are the negative and positive violations from g;, the optimum value (or goal)

of ith objective function.

There are many other methods proposed for solving multi-objective problems and they are

discussed in more details elsewhere (114,115). In our search, we found several combinations
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of objective functions that have been used in the study of metabolic network models. For
instance, Schuetz et al., used 55 single objective functions including maximum ATP, biomass,
acetate and carbon dioxide yields, and maximum sum of absolute fluxes to study microbial
metabolism (71). They also studied all pairs and triplets of these single objectives to further
investigate what combination of objectives can better explain the physiology of the studied
cells (71). Multi-objective optimization has also applications in strain design for simultaneous
maximization of biomass and desired product (92,116) and minimization of number of

knockouts (116).

2.9 Effect of adding thermodynamic constraints on problem types

Thermodynamics-based flux analysis (TFA) is an MILP formulation which confines the
directionality of reactions by introducing thermodynamic constraints. This is done by taking
into account Gibbs free energy of reactions and metabolite concentrations (5). Therefore, a
TFA problem is more constrained compared to a FBA problem and the results are more
precise due to refined reaction directionalities. Binary variables are introduced in TFA to link
Gibbs free energy of reactions to flux of reactions in the network. Therefore, there is a change
from LP to MILP when we convert a FBA problem to a TFA problem. Introducing
thermodynamic constraints can be done in all of the methods that we have discussed in
previous sections. In other words, all the problems can have a thermodynamically curated
version where directionality of reactions are constrained based on TFA formulation. If the
original problem is already having integer variables, i.e., MILP or MIQP, then introducing
thermodynamic constraints have no effect on the problem type. However, if the problem is
an LP or QP, it will be converted to MILP or MIQP after introducing thermodynamic
constraints.

An example of this change in problem type can be seen when one wants to compute flux
couplings in a thermodynamically constrained metabolic network model. Original flux
coupling analysis is a fractional programming problem, which can be converted to linear
programming using Charnes-Cooper transformation as explained in section 2-5 (8).
Thermodynamic flux coupling analysis (TFCA) however, is a MILFP which can be converted to
a MILP problem using Glover’s linearization scheme. TFCA is discussed in more detail in the

next chapter. Optknock is another example of problems that require reformulation after
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introducing thermodynamic constraints. Original Optknock formulation is a bi-level problem
(20). Optknock includes integer variables that are defined in the outer problem and are used
as parameters in the inner problem. In other words, the inner problem in Optknock does not
impose any constraints on the integer variables. However, if the inner problem is a TFA
formulation, then one need to use complementary slackness condition to convert the bi-level
problem to a single level problem with duality theorem. FOCAL and OptReg are the examples
of methods that use the same approach in order to solve their bi-level formulations (80,109).
As a conclusion, in order to globally optimize a thermodynamically constrained problem

further reformulation might be needed due to introduction of integer variables.

2.10 Conclusion

In this chapter, we propose an inventory of objective functions that can be investigated using
the general classes of optimization formulations. we provide classifications for the
optimization problems that are generally used in the analysis of metabolic network models.
We discuss about the possible conversion of classes to each other so that at the end every
optimization method can be formulated as an LP, MILP, QP or MIQP. One of the most
interesting classes of the problems are FLPs and MIFLPs. They can have many interesting
applications in metabolic engineering and in the study of branching points in metabolism and
calculation of optimal flux ratios between branches. Introducing binary variables in order to
enable flux deletions will turn such problems to MILFPs. However, FLPs and MIFLPs are not
used as widely as other classes, since the problems are not solvable using well-known solvers
such as CPLEX or Gurobi. With the reformulations that we provide in this chapter, these
classes can be easily converted to LPs and MILPs. Enabling gene or flux knock-outs are not the
only usage of Integer variables in the study of metabolic networks. They can also link the
thermodynamic properties of reactions and compounds such as Gibbs free energy of
reactions and compound formations to the metabolic fluxes as it is done in TFA formulation
(5). Introducing new thermodynamic constraints using integer variables Henry et al., could
produce flux distributions that do not contain any thermodynamically infeasible reactions (5).
We should emphasize that, with the proper reformulations as suggested in this chapter, one
can easily expand the use of thermodynamic constraints in other optimization problems used

in systems biology studies. We realized from our literature search that there is more tendency
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toward using multi-objective and bi-level optimizations, recently. Although solving these
problems are more challenging, it shows that we are heading toward the right direction,
knowing the fact that not a single objective function can describe the metabolic goals of living
cells. Further attempts should be made in order to solve these problems as efficiently and

accurately as possible.
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3 Flux coupling analysis framework for the
study of metabolic network models that

include integer variables

3.1 Author contribution and publications used in this chapter

The work of this chapter is based on the following paper which is under preparation for
submission:
Z. Hosseini, V. Hatzimanikatis (2020) “A Flux coupling analysis framework for the study of

metabolic network models that include integer variables”.

3.2 Introduction

The number of reconstructed genome scale metabolic models has increased tremendously in
recent years. These metabolic models include all known and hypothetical biochemical
reactions that can operate in a cell and contain all the information about metabolic reactions
and metabolites that are present in a cell (4). Different properties of these models, such as
metabolite concentrations or reaction fluxes are not completely independent of each other
and the structure of the network determines how these components are coupled (8,117). For
example, due to stoichiometric coupling, certain fluxes can always correlate or anti-correlate,
while others can correlate or anti-correlate depending on the conditions and on the kinetic
properties. Knowledge of such coupling relations is important for interpreting physiology and
metabolic engineering, and computational approaches are required to identify and
characterize these couplings.

Flux coupling analysis (FCA) is one of the computational approaches that is developed to
identify and characterize the coupling between any pair of metabolic reactions, and set of

coupled reactions, in metabolic network models (8). A couple of methodologies have been
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developed so far for computing flux coupling relations in metabolic network models. The
original flux coupling finder (FCF) algorithm uses a fractional programming to calculate the
ratio between two fluxes. If this ratio for two reactions is always fixed, then these reactions
are fully coupled. If it is not fixed, then there is a range of classification for the type of
coupling. The FCF belongs to the class of linear programming problems known as linear
fractional programming (LFP) problems. Some methods have been developed to improve the
performance and speed of the FCF formulation (118,119).

FCA has been used in a large number of applications so far: studying gene evolution (120),
identifying genetic interactions (121) and gene/reaction essentiality (122), gap filling of
metabolic networks (123) etc. Investigation of the coupling properties of metabolic networks
is important to both understand the organizational principles of metabolic interactions within
metabolic networks, and also for more efficiently suggesting engineering modifications
(8,109). Therefore, FCA is a useful method for both computational biologists and
experimentalists.

Many useful algorithms for metabolic network analysis and optimization are based on mixed-
integer LP (MILP) formulations (5,33,35,49,97,109). For example, ROOM is a MILP algorithm
that identifies the number of flux changes compared to the wild-type after a gene knock-out
(33). Another MILP formulation is introduced for identifying the minimal set of metabolic
reactions that can support growth on different substrates (49). FOCAL is another MILP-based
method that identifies conditions such that a reaction become essential for a specific
phenotype (109). However, current versions of FCA do not account for integer variables. Here,
we introduce MIFCA (mixed integer flux coupling analysis), a new formulation for computing
flux couplings in a problem with integer variables. MIFCA is based on a mixed integer linear
fractional programming (MILFP), which is converted to an MILP, based on some proposed
problem reformulations (11).

One of the important classes of MILP formulations is the thermodynamics-based flux analysis
(TFA) (4) which is also referred to as thermodynamics-based metabolic flux analysis (TMFA)
(5) and thermodynamics-based flux balance analysis (TFBA) (124,125). In TFA, the
directionality of metabolic reactions is constrained based on their Gibbs free energy which
also accounts for metabolite concentrations (5). Thus, by applying thermodynamic
constraints one can define reaction directionalities more precisely and classify the reactions

as bidirectional and unidirectional, depending on the thermodynamically feasible range of
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their directionality (4,124,126). The application of thermodynamic constraints within TFA
decreases the possible flux space (4,124), allows us to study the energetic feasibility of native
and heterologous pathways (4,124), and therefore it could result in more truthful predictions
(9,127).

We also introduce here TFCA (thermodynamics flux coupling analysis) as a new class of
problems which is based on the MIFCA formulation and it includes thermodynamic
constraints. We show that when thermodynamic constraints render some reactions
unidirectional, the coupling classification of the reactions is also changing. These effects and
the properties and performance of the TFCA formulation are illustrated in a metabolic
network model of E. coli.

The thermodynamic constraints in metabolic network models constrain many fluxes to a
unique direction and thus they reduce significantly the solution space (4,124,126). However,
we still have some bidirectional reactions (BDR), which in turn result in alternative flux
directionality profiles (FDPs). FDPs are important when we want to study a specific physiology
or in study of kinetic models, when one must reduce the complexity of the system as much
as possible. Theoretically, with n BDRs we can have 2™ FDPs, which makes it difficult to
analyze the network. However, the degrees of freedom of the network are less, since the
activities of some reactions are coupled to the activities of others. We show how coupling

relationships of the reactions can capture this reduction in the solution space.

3.3 Methods

3.3.1 Problem formulation for FCA

In FCA algorithm the minimum and maximum ratio of every pair of reactions are calculated.
Because the problem is a fractional program, a transformation in variables is needed to
convert it to a LP problem. The details of this transformation is discussed in (8) and the
formulation of FCA is shown below:

For any two fluxes, v; and v,, the maximization or minimization of their respective ratios in

a metabolic model is described mathematically as (8):

Maximize (minimize) 1]1/ v,
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Subject to ¥, S; v, =0 ViEN (1)

uptake uptake ,
Uj < j,max v] € Mtransport (2)

v =0 ViEM (3)

To convert the problem to a linear problem a variable t is multiplied to both denominator and
numerator of the objective function and to both sides of each constraint. Then the following

problem is obtained:

Maximize (minimize) ‘1’ t/v2 't

Subject to YL, S; jvj-t =0 VieEN (4)
tak tak .

v]?ll’ et < v}'xﬁ:laax ‘et Vj € Mtransport (5)

virt= 0 VieM (6)

t=0 (7)

The following problem is equivalent to the above problem with proper variable change and
addition of a new constraint:

Maximize (minimize) ¥,

Subject to U, = 1 ®
Xjz1 5,9 =0 vien o
ﬁ]yptake < 17},lr€1taaxke 't Vj € Miransport (10)
5 >0 vj €M (11)
t=0 12

where S is the stoichiometric matrix in which the rows represent metabolites and the columns
represent reactions, v. Each reaction through an enzyme has been split in two terms
representing the forward and the backward reaction. This separation is performed so that the
flux through each reaction can be constrained to be greater than or equal to zero. The §; ;
element in S is the stoichiometric coefficient of each metabolite i in each reaction j. The
vector ¥ is the fluxes of reactions multiplied by t and t is the auxiliary variable that is used for

transformation of the LFP into LP.
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3.3.2 Problem formulation for MIFCA

In models with integer variables, the original FCF variable transformation results in bilinear
terms in the formulation, which leads to a mixed integer linear fractional programming
(MILFP) problem. MILFPs are a class of optimization problems with a fractional objective
function and integer variables. MILFPs can be converted to MILPs (128) in the formulation
described below.

In the most general case, we consider the reactions to be catalytically reversible. This implies
that the enzymes are able to catalyse the reactions in both directions:
the forward and backward reactions. The directionality of the reaction depends then on the
displacement of the reaction from thermodynamic equilibrium. Therefore, in the problem

formulation, for each reaction i we define the net flux V; as the difference between two
fluxes, Vif and Vib, the net-forward and the net-backward flux, respectively, with the
reference direction chosen arbitrarily. In addition, for each reaction i we introduce two binary
variables, zif and zib for the net fluxes Vif and Vib, respectively. We then have the following

constraints for the variables that correspond to each reaction i:

vV, = Vif . (13)

_Vib_max < Vi < sz_max (14)
f f f_max

o</ <2y (15)

0<VP < 2P ypmex (16)

2l +zP <1 (17)

Equations (13) to (16) are the bounds for the net fluxes and equation (17) guarantees the
solution admits only one feasible directionality. If a reaction is known, or hypothesized, to be

catalytically unidirectional the corresponding z variables are set accordingly. For example, if
reaction V; is catalytically feasible in the backward direction, then we set zjb =1land ij =0.

For any two fluxes, v; and v,, the maximization or minimization of their respective ratios in

a general metabolic model with integer variables is described mathematically as:

Minimize (maximize) v, /v,

SubjecttoS-v =20 (18)
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0 <v; < ZiVnax {i=1,..,1} (19)

z € {0,1} (20)

Here S is the stoichiometric matrix, v is the flux vector, and r is the total number of reactions.
Here, the reactions are split into forward and backward directions and therefore the variables
show net forward and net backward fluxes. z; is a binary variable associated to each reaction
flux. As described before, there is a z variable for each backward and forward reaction, v. For
each reaction if z; is equal to zero, then v; is zero.

By multiplying the numerator and denominator of the objective function as well as all
constraints by a positive variable t, an equivalent problem is obtained, which is an MILFP

problem.

Minimize (maximize) v, - t/v, -t

SubjecttoS-v-t=0 (21)
0<v; t<z tVnu {i=1....r} (22)
z €{0,1} (23)

Then, the MILFP problem can be transformed into the following equivalent MINLP problem:

Minimize (maximize)¥,

Subjectto ¥, =1 (24)
S-7=0 (25)
0<7; <2zt {i=1,..,1r} (26)
z€{0,1} t=0 (27)

The only nonlinear terms in the above MINLP problem are the bilinear terms z; - t, which are
the products of a binary variable z; and a continuous variable t. This type of bilinear terms
can be linearized by introducing a number of auxiliary variables and constraints, following the
Glover’s linearization scheme (24,128). We introduce a set of auxiliary variables w;, for each
bilinear term such that w; = z; - t. Thus, the MINLP problem can be further linearized into an
equivalent MILP problem, which is given below:

Minimize (maximize) v,

Subject to v, =1 (28)
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where M is a sufficiently large number. Constraint (32) ensures that if z; is zero, then w;

should be zero; constraints (31) and (33) imply that if z; is one, then w; should be equal to t.

3.3.3 Problem formulation for TFCA

Since in thermodynamically constrained models there are integer variables, FCA in these

models can be considered as a MIFCA problem. The final MILP formulation for TFCA after

{i=1,..,r}
{i=1,..,r}
{i=1,..,1r}

{i=1,..,1r}

z€{01} t=0w=0

variable transformation and linearization is as follows:

Minimize (maximize) v,

Subject to

AG] -t +RT YT n;;In(x) = AG  {i =1,..,7 + L|A.G] is known}

fj2=1
S-9=0

0 < 7; < WiVnax

AG —K-t+Kw; <0 {i=1,..,1r|AG! is known}

AG] — Kw; <0

{i=1,..,7r}

{i=r+1,.,r+1L}

T T .
Wi + X apjw; S Mot

WiSt

w; < M-z
WLSMyl
wi2t—M-(1-2z)
wizt—M-(1-y)
w/ +wP <t

z.y €{0,1}
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fi=r+1,..,r+1L}

{i=1,..,r+1L}

{i=1,..,7r}
{i=r+1,...,r+1L}
{i=1,..,r}

{i=r+1,.,r+1L}

(29)
(30)
(31)
(32)
(33)
(34)

(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
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(Equations (35), (36), (37), (42), (43) and (44), and (45) and (46) in TFCA are the same as (28),
(29), (30), (31), (32) and (33) in MIFCA, respectively). Constraint (47) is equal to constraint (17)
and it shows that for each original reaction in R (before splitting) only one of the forward or
backward reactions can carry flux.

Here S is the m X r stoichiometric matrix, v is the flux vector, m is the total number of
metabolites and r is the total number of split reactions. z; is a binary variable associated to
each reaction flux. v; can carry flux if z; is equal to one. If z; is equal to zero, then the flux
through reaction i should be zero. Equation (38) ensures that a reaction flux cannot be
positive unless A,.G; is negative. Equation (39) associates Gibbs free energy of reactions to
metabolite activities. Equations (40) is the thermodynamic feasibility constraint for the
reactions with unknown A,.G”* and equation (41) excludes flux distributions that involve flux
through the set of reactions that comprise an infeasible lumped reaction. y; is the binary
variable which is set to zero if the lumped reaction is thermodynamically feasible and one
otherwise. In these equations, L is the number of lumped reactions, and «; ; is a coefficient
equaling one if reaction j is one of the original reactions with unknown ArGi'o that makes up
the lumped reaction i. The detailed explanation about these constraints is available in (5).
Overall, the TFCA formulation adds only a number of linear variables and constraints into the

MIFCA formulation.

3.3.4 Metabolic models and experimental data

We apply the proposed methods on metabolic network of Escherichia coli, for which we have
standard datasets of metabolite concentrations (129). We applied TFCA for a reduced model
of the E. coli genome-scale model JO1366 (130). The reduced model was produced by Dr.
Georgios Fengos using the reduction methods redGEM and lumpGEM (131,132). Briefly,
having central metabolism and subsystems of interest, redGEM reduces genome-scale
models into core models in a consistent manner. It uses graph-based approaches and
optimization methods to minimize the loss of information (131). lumpGEM, on the other
hand, generates subnetworks for the production of any target metabolite of interest in the
model, from pre-defined core precursors. Every metabolite and cofactor that is part of the
generated subnetwork is stoichiometrically balanced. LumpGEM can also merge all the

reactions of the subnetwork into elementally balanced lumped reactions (132). Together,
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lumpGEM and redGEM can be used for generation of balanced reduced core metabolic

network models.

3.3.5 Coupling of subnetworks

In reduced metabolic network model of E. coli that we are using in this study, there are
lumped reactions that link the core reactions of the model to biomass reaction. The core
reactions are reactions that belong to one of the following subsystems: (i)
Glycolysis/Gluconeogenesis, (ii) Pentose Phosphate Pathway, (iii) Pyruvate Metabolism, (iv)
Citric Acid Cycle, (v) Glyoxylate Metabolism, and (vi) Electron Transport Chain. For production
of each biomass building block several reactions are needed which are merged together to
form lumped reactions. This group of reactions are called subnetworks and after the addition
of lumped reactions to the model they are removed from the reduced model. In our case, the
subnetworks are with minimum size and are not unique, i.e., there may be more than one
minimal subnetwork for production of a biomass building block. For analyzing coupling
between subnetworks, we removed the biomass reaction and added boundary reactions for
biomass building blocks. Lumped reactions are also removed and the corresponding
subnetwork is added back to the model. We then computed the coupling between every pair
of reactions that are parts of the subnetworks. We define two types of degrees of coupling,

D;(a.b) and D,(a.b), between any pairs of subnetworks a and b, as follows:

number of coupled reaction pairs that only one of them is in subnetwork a and the other is in subnetwork b

D;(a,b) = -
1(@,b) total number of not common pairs between a and b

number of all coupled reaction pairs that one of them is in subnetwork a and one in subnetwork b

D,(a,b) = - -
2(a,b) total number of reaction pairs between a and b

It should be noted that in D,(a. b) all the coupled reaction pairs between subnetworks are
taken into account even if they are common between the two subnetworks. However in
D, (a.b), only the couplings between uncommon reaction pairs are counted. To analyze the

coupling within each subnetwork we also define D;(a) for any subnetwork a as follows:

number of all coupled reaction pairs that both of them are ina

D3(a) =
5(@) total number of reaction pairs ina

In order to analyze how optimization of production of each biomass building block affects the
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degrees of coupling between subnetworks, we maximized the production of each biomass
building block, fix the lower and upper bounds of the corresponding reaction to the maximum

value and then computed all reaction couplings again.

3.4 Results and Discussion

3.4.1 Classification of flux couplings

The different types of couplings that can arise when we compute the coupling relationships
for each pair of reactions in the network have been classified as follows (8):

(i) Directional coupling (v, = v,), if a non-zero flux for v, implies a non-zero flux for v, but
not the reverse.

(ii) Partial coupling (v, < v,), if a non-zero flux for v, implies a non-zero, though variable,
flux for v,; and vice versa.

(i) Full coupling (v, © v,), if a non-zero flux for v, implies not only a non-zero but also a
fixed flux for v; and vice versa.

Fully coupled reactions are then two reactions that are always active simultaneously and the
ratio of their fluxes is always a fixed value (Figure 3-1). However, when we consider
thermodynamics, it is possible that only one direction for one of the fluxes is allowed, and

this can reduce the ranges of the fluxes.

A) 4V B)

L 4

Figure 3-1. Full coupling in metabolic networks. A) Full coupling in bidirectional reactions. In this case, simultaneous existence
of positive direction of v, and negative flux of vy is not feasible. In addition, simultaneous existence of positive flux of vq and
negative flux of v, are also not possible (it can be vice versa, i.e., full coupling of positive flux of v,and negative flux of vgand
full coupling of negative flux of v, and positive flux of vg). B) Full coupling in unidirectional reactions.
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Partially coupled reactions are two reactions that are always active simultaneously but the
flux ratio of the two reactions can change between two values (Figure 3-2). This further
implies, that the feasible ranges of one of the fluxes, v, (or v;), depends on the value of the
coupled flux, v, (or v,). In other words, for a fixed value of one of the fluxes, v, (or v,), the
other flux, v, (or v,) is constrained with a range that depends on the value of the fixed flux.

For the case of partial coupling, the solution space is always constrained in a single quadrant.

~y

T
>

Figure 3-2 Partial coupling in metabolic networks. Partial coupling can only happen for two unidirectional reactions

In a pair of directionally coupled reactions the activity of only one of the reactions is
dependent on the activity of the other (Figure 3-3). If one of the reactions is bidirectional we
will have panel A. In this case, positive and negative fluxes of the bidirectional reaction (v,)
are dependent to the flux of unidirectional reaction (vy). If, we have two unidirectional

reactions either due to stoichiometry alone or due to thermodynamic constraints, and v, is

directionally coupled to v; then we will have panel B.
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A) B)

v

Figure 3-3. Directional coupling in metabolic networks. A) A bidirectional reaction that is directionally coupled to a
unidirectional reaction, which means its flux in either direction is coupled to the flux of unidirectional reaction. B) v is
directionally coupled to reaction vy.

Uncoupled Reactions are reaction pairs not falling into one of three categories (i)-(iii).
Uncoupled reactions can happen for all combinations of unidirectional or bidirectional

reactions and the activities of none of the reactions in the pair is coupled to the activity of

other (Figure 3-4).

AV, Tva

> € >
e
- - 1 - - - Vd
<€ e >
v

Figure 3-4. Uncoupled reaction pairs in metabolic networks.
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Conditional (directional) coupling is the new case we introduce here and corresponds to the
case when the type of coupling of the reaction is conditional to the directionality of the fluxes.
In other words, the type of coupling may change when at least one of the fluxes is switching
direction. This additional classification affects only the uncoupled reactions pairs, i.e., these
pairs were classified as uncoupled in the original flux coupling formulation This case is
illustrated in Figure 3-5 with two examples that involve bidirectional fluxes. As it is shown in
the panel (B), we will have 4 cases; (i) The positive direction of v, is directionally coupled to
positive direction of v,; (i) Negative direction of v, is directionally coupled to negative
direction of v,; (iii) Positive direction of v; and negative direction of v, are not coupled to
each other; (iv) and finally the combination of negative direction of v; and positive direction
of v, is not possible. If only one of the reactions is bidirectional (panel A), positive direction
of v, is directionally coupled to v, but negative direction of v, is uncoupled to v;. The right
panel is particularly important, because it can tell us that the number of combinations of

bidirectional reactions in this case is 3 instead of 4.

A) B)
Va,\ | Va

0
@ o
;\0 c
i@‘b 4 =3
/ D
$ /f' . 'l v, o

—— & & 3

coupled uncoupled

Figure 3-5. Conditional (directional) coupling in metabolic networks. A) only positive direction of vq is coupled to vq4. B) positive
direction of v, is directionally coupled to positive direction of vy and negative direction of vy is directionally coupled to negative
direction of v, negative direction of v, is uncoupled to positive direction of v4, and the combination of negative direction of
vq and positive direction of v, is not feasible.

In general, it is possible to have a general classification of coupling relationships and one that
considers the directionality of the reactions. Classification based on directionalities is

important since in the cells the fluxes operate under a specific flux profile with specific flux
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directionalities. Therefore, to understand cellular physiology it is important to draw

conclusions that are based on the flux directionalities.

3.4.2 Integration of data in different levels in reduced E. coli model and

identification of bidirectional reactions
We studied a reduced E. coli model derived from the genome-scale model of Orth et al. (130),
using the model reduction methods redGEM and lumpGEM (131,132). The reduced model
has 322 intracellular metabolites and 201 intracellular reactions. The model described
explicitly 6 subsystems, as originally defined in the genome-scale model: (i)
Glycolysis/Gluconeogenesis, (ii) Pentose Phosphate Pathway, (iii) Pyruvate Metabolism, (iv)
Citric Acid Cycle, (v) Glyoxylate Metabolism, and (vi) Electron Transport Chain.
In our analysis here, we considered the physiology studies of E. coli growth in a batch reactor
under aerobic condition reported by McCloskey et al. (129), and we integrated the
experimental data for specific uptake fluxes, specific production fluxes, and specific growth
rates. We included data about the standard Gibbs free energy of reaction, 4G", which
allowed to consider the effects of thermodynamic feasibility on the allowable directionality
of the reaction fluxes, and to include the information for the metabolite concentration.
When considering thermodynamic feasibility, we can assume a general range for the
concentrations based on prior knowledge and tighter ranges for the measured metabolites in
the studied physiology. We have to stress that the metabolites measurements are partial, i.e.,
measurements data are not available for all the metabolites of the model.
We used the reduced model, since this model is less complex and at the same time is
consistent with the genome-scale model of E. coli. Then, we integrated experimental data in
different levels to this model to see the impacts of different constraints on the coupling of
reaction pairs in the model.
We considered four different cases that depend on the type of metabolite data used and the
assumption about reaction directionality and the model constraints: (i) Model NT: all
reactions are reversible and there is no thermodynamics-based constraint; (ii) Model ToC: all
reactions are reversible with thermodynamics-based constraints; (iii) Model TcC: all reactions
are reversible with thermodynamics-based constraints and ranges for the measured

metabolites; and (iv) Model TcCR: pre-assigned directionalities for the irreversible reactions
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according to the reference genome-scale model. The rest of the reactions considered
reversible with thermodynamics-based constraints and ranges for the measured metabolites.
For all models we imposed the constraints on the specific uptake fluxes, specific production
fluxes, and specific growth rates. Model NT is a regular FBA model, and models ToC, TcC, and
TcCR are TFA models with different constraints on thermodynamics and intracellular fluxes.
Table 3-1 summarizes the information integrated in the models in each step.

In metabolic models the reactions can be classified as catalytically irreversible and
catalytically reversible (4). Catalytically irreversible reactions have pre-assigned directionality
and they can operate only if they are thermodynamically feasible in the catalytically feasible
direction. Catalytically reversible reactions can operate in both directions depending on the
constraints imposed on the network. For a specific physiology and set of constraints, the
reversible reactions can be classified as bidirectional if, subject to the constraints, they can
operate in both directions based on a bidirectionality analysis. In this analysis, for every
reaction we perform a flux variability analysis and if a reaction can operate in both directions
is classified as bidirectional reaction (BDR). For the four models introduced here, we also
performed a bidirectionality analysis based on the Gibbs free energy of reactions.

last column of the table 3-1 shows the number of bidirectional reactions. The third columns

in the middle show the kind of data that are integrated on the model in each step.

Table 3-1. Integrating information in different levels to reduced model of E. coli

Thermodynamic | Experimental Pre-assigned
Model # of BDRs
constraints concentrations | directionalities
NT - - - 19
ToC + - - 15
TcC + + - 15
TcCR + + + 7

3.4.3 Changes in couplings after constraining the models

We investigated the impact of addition of constraints to the models in each step. The
following three tables show the changes in flux couplings when we move from one state of

the model to the other. Table 3-2 shows the transition from non-thermo model to the
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thermodynamically constrained model with open concentrations. As it can be seen, there are
a large number of changes in flux coupling relations. For instance, there are 200 reaction pairs
that their coupling changed from uncoupled to directionally coupled. This shows that the
effect of thermodynamic constraints on other parts of the network make the change on the
coupling type of these pairs, since the directionality of the reaction pair itself is not changed.
We can also see that there are 15 reaction pairs that their coupling relationships change from
uncoupled to conditionally directionally coupled. In these cases, changes in the directionality
of reaction pair itself has an effect in the change in coupling relationship. In total, this table
shows that thermodynamic constraints have a very important effect on the coupling

relationships in the model.

Table 3-2. changes in coupling relationships when we add thermodynamic constraints to a non-thermo model
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Table 3-3 shows the changes in couplings when we introduce the concentration data to the
thermodynamically constrained model. Even in this table we see some changes in the
couplings, but the number of changes are not as large as the previous table. That is because

of the fact that thermodynamic constraints have already their effect on the network.
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Table 3-3. changes in coupling relationships when we constrain the metabolite concentrations in the thermodynamically
constrained model

Tc

Table 3-4, shows the transition from the model with constrained concentrations to the model
with having additionally the data of flux directionalities, which is gathered from different
papers. As it is shown, we have again some changes from uncoupled reaction pairs to
directionally coupled reaction pairs. The interesting change that is seen in this table is the
change from bidirectional uncoupled pairs to bidirectional pairs that are conditionally
directionally coupled. Since the directionality of reactions themselves didn’t change, again it
shows that changes in other, maybe remote parts of the network, makes these changes in
coupling. This is particularly interesting for analyzing FDPs, since it will help in reducing the

number of FDPs in the network, which is discussed in the next section.
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Table 3-4. changes in coupling relationships when we constrain reaction directionalities in the thermodynamically
constrained model with constrained concentrations

o

9 - - - - - - - - -

3.4.4 Coupling and FDPs

In this section, we will discuss how finding the coupling relations can help in reducing the
number of FDPs in thermodynamically constrained metabolic network models. Table 3-5
shows the summary of the results.

Second column of the table shows the number of bidirectional reactions in the models. The
third column shows the theoretical number of flux directionality profiles that can exist in the
models. As we expect, some of the bidirectional reactions are coupled to each other, and
therefore not all of the theoretical FDPs are possible. The number of coupled bidirectional
reaction pairs of each model and the number of reduced FDPs are presented in the third and
fourth columns, respectively. For instance, in the last and most constrained model, the
number of FDPs is changed from 128 (27) to 30 (2%°). This reduction in the number of FDPs is
helpful in reducing the complexity of the model and making the study of the physiology of the

cells much easier.
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Table 3-5. Impact of having coupled reaction pairs in reducing the number of FDPs in the model

Coupled pairs*
full I
Theoretical (fully co‘u.p ed and Reduced
Model BDRs conditionally
FDPs L FDPs
directionally coupled
pairs)
NT
1 219 22 214.23
Non-thermo 9
ToC
Thermo-open 15 21> 7 21216
concentrations
TcC
Thermo-constrained 15 21 7 21216
concentrations
TcCR
Thermo—corllstralned 7 57 9 549
concentrations and
fluxes

In the most constrained model, we started to fix bidirectional reactions in forward and reverse
directions one by one, and then compute the coupling relations again. The results are shown
in Table 3-6. As we can see fixation of some of the reactions such as Transketolasel, Ribulose
5-phosphate 3-epimerase and Fumarase in reverse direction, will result in a great reduction
of FDPs. While, for reactions such as Transketolase2, Transaldolase and Triose phosphate
isomerase, fixation of reactions in any direction would have almost the same effect on the
number of FDPs. These kinds of analysis can help in making decisions on how to rank FDPs for
different studies. Particularly, it can help when we are interested in reducing the number of
FDPs to a very small number such as in analyzing kinetic models of metabolism, where the

number of unknown parameters is already very high.
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Table 3-6. the impact of fixing bidirectional reactions to forward or reverse direction, one by one in the most constrained
model

Fixed direction # of BDRs # of coupled pairs # of FDPs
Nothing Fixed 7 9 30
R_ Transketolasel (R_TKT1) 1 0 2
F_Transketolasel (F_TKT1) 6 4 28
R_ Ribulose 5-phosphate 3-epimerase (R_RPE) 3 1 6
F_Ribulose 5-phosphate 3-epimerase (F_RPE) 5 1 24
R_Fumarase (R_FUM) 3 0 8
F_Fumarase (F_FUM) 6 6 22
R_Transaldolase (R_TALA) 6 8 16
F_Transaldolase (F_TALA) 5 4 14
R_ Transketolase2 (R_TKT2) 5 4 14
F_ Transketolase2 (R_TKT2) 4 0 16
R_ Triose phosphate isomerase (R_TPI) 6 9 15
F_Triose phosphate isomerase (F_TPI) 6 9 15

To further classify the FDPs, we constructed a FDP tree that shows how we can reduce the
number of FDPs step by step by fixing reactions to one direction (Figure 3-6). In this tree, the
number in the root node shows the number of FDPs in the model. By going through each edge
we fix directionality of one of the bidirectional reactions to a specific direction. The output
node of each edge shows the reduced number of FDPs after the directionality fixation. In the
leaves of the tree we cannot reduce the number of FDPs anymore, since the remaining
bidirectional reactions are not coupled to each other anymore. In other words, they can be

active in either direction independent of each other.
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Figure 3-6. Flux directionality profile tree. This is the FDP tree in the model with constraints on metabolite concentrations
and flux directionalities. Numbers on the nodes show the number of FDPs after fixing the directionality of some reactions to
one specific direction

3.4.5 Coupling of subnetworks

In this section, we study how different parts of the metabolism are coupled to each other. For
this purpose, we studied the coupling between different pairs of subnetworks that are
corresponding to production of different biomass building blocks in the model. One should
note that there may be several combination of lumped reactions that satisfy minimum growth
requirement and at the end only one set of these lumped reactions are used for model
reduction. To study subnetwork coupling we need to add back subnetworks corresponding to
each lumped reaction to the model and remove the lumped reaction. However, since we can
have different lumped reactions for each building block which are corresponding to different
(or similar) subnetworks, we also analyzed the subnetwork coupling when the union of all the
reactions in all the possible subnetworks are added back to the model after the removal of
the lumped reactions.

Figure 3-7 and 3-8 show D, and D, for all pairs of subnetworks, when no flux is maximized
and we only add the reactions of one subnetwork corresponding to each lumped reaction,
respectively. Figure 3-9 shows D5 for all subnetworks, when no flux is maximized and and we
only add the reactions of one subnetwork corresponding to each lumped reaction. Table 3-7
shows full name of metabolites used in these figures.

In 36% of the subnetwork pairs D,(a,b) > D;(a,b) and in 10% of the subnetwork pairs
D;(a,b) > D,(a, b). Although one may expect that D, should be bigger than D; since we are
considering more couplings in D,, it is not always the case. It is mainly happening in the
subnetwork pairs that the reactions that are common between them are less coupled to each
other which means in general they have a lower degree of intra-coupling or D;. We believe

that D, is a better metric for analyzing degree of coupling between two different subnetworks

66



since D, is also taking into account coupling between reaction pairs that both of them are
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Figure 3-7. D; for all pairs of subnetworks, when no flux is maximized and we only add the reactions of one subnetwork
corresponding to each lumped reaction.
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Figure 3-8. D, for all pairs of subnetworks, when no flux is maximized and we only add the reactions of one subnetwork

corresponding to each lumped reaction.
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inside one subnetwork and therefore it cannot truly show inter-coupling between
subnetworks. Therefore, for the rest of our analysis we are considering D; and D5 as measures
of inter- and intra- subnetwork couplings respectively. As it can be seen in figure 3-7 we can
have degrees of coupling from 0 to 0.8 between different pairs of subnetworks. One can see

that seemingly unrelated parts of the metabolism such as subnetworks for biosynthesis of
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Figure 3-9. Ds for all subnetworks, when no flux is maximized and we only add the reactions of one subnetwork corresponding to each lumped reaction
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heme O, Protoheme and Undecaprenyl diphosphate are highly coupled to subnetworks for
biosynthesis of cardiolipins. As we can see in figure 3-9 subnetworks for amino acids
metabolism are generally more intra-coupled compared to subnetworks for lipids and

cofactors metabolism.

Figure 3-10 and 3-11 show D; and D; for all pairs of subnetworks and all subnetworks
respectively, when no flux is maximized and we add the union of reactions of all possible

minimal subnetworks.
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Figure 3-10. D; for all pairs of subnetworks when no flux is maximized and we add the union of reactions of all possible
minimal subnetworks
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Figure 3-11. D3 for all subnetworks when no flux is maximized and we add the union of reactions of all possible minimal subnetworks
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If we compare figures 3-10 and 3-11 to figures 3-7 and 3-9 respectively, we can see that when

the network is more flexible, i.e., we add more reactions to the network, in general the

degrees of coupling is less. For example, we can see that the maximum number for D, is

decreased from 0.8 to 0.25 as it can be seen in figures 3-7 and 3-10, respectively. In addition,

Table 3-7. Full name of biomass building blocks in E. coli model

Metabolite
Metabolite abbreviated
abbreviated Metabolite full name Metabolite full name
name
name

10fthf 10-Formyltetrahydrofolate ser-L L-Serine

2dmmq|8 2-Demethylmenaquinol 8 thf 5,6,7,8-Tetrahydrofolate

2fe2s [2Fe-2S] iron-sulfur cluster thmpp Thiamine diphosphate

4feds [4Fe-4S] iron-sulfur cluster thr-L L-Threonine

adocbl Adenosylcobalamin trp-L L-Tryptophan

ala-L L-Alanine tyr-L L-Tyrosine

arg-L L-Arginine udcpdp Undecaprenyl diphosphate

bmocogdp bis-molybdopterin guanine dinucleotide | utp Uridine-5'-triphosphate

Ca? Calcium val-L L-Valine

chor chorismate colipa core oligosaccharide lipid A

ctp Cytidine triphosphate clpni6l cardiolipin (tetrahexadec-9-enoyl,
n-C16:1)

cys-L L-Cysteine clpn181 cardiolipin (tetraoctadec-11-enoyl,
n-C18:1)

datp Deoxyadenosine triphosphate murein3p3p two linked disacharide tripeptide
murein units (uncrosslinked,
middle of chain)

dctp Deoxycytidine triphosphate murein3px4p two disacharide linked murein
units, tripeptide crosslinked
tetrapeptide (A2pm->D-ala)
(middle of chain)

dgtp Deoxyguanosine triphosphate mureindp4p two linked disacharide tetrapeptide
murein units (uncrosslinked,
middle of chain)

enter Enterochelin mureindpx4p two disacharide linked murein
units, tetrapeptide corsslinked
tetrapeptide (A2pm->D-ala)
(middle of chain)

fad Flavin adenine dinucleotide oxidized murein4px4px4p three disacharide linked murein
units (tetrapeptide crosslinked
tetrapeptide (A2pm->D-ala) &
tetrapeptide corsslinked
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tetrapeptide (A2pm->D-ala))

(middle of chain)

gthrd Reduced glutathione 5mthf 5-Methyltetrahydrofolate

hemeO Heme O accoa Acetyl-CoA

his-L L-Histidine amet S-Adenosyl-L-methionine

ile-L L-Isoleucine btn Biotin

leu-L L-Leucine dttp Deoxythymidine triphosphate

lipopb lipoate (protein bound) malcoa Malonyl-CoA

lys-L L-Lysine mlthf 5,10-Methylenetetrahydrofolate

met-L L-Methionine mocogdp molybdopterin guanine
dinucleotide

mococdp molybdopterin cytosine dinucleotide mql8 Menaquinol 8

nad Nicotinamide adenine dinucleotide pel6l phosphatidylethanolamine
(dihexadec-9enoyl, n-C16:1)

pel60 phosphatidylethanolamine pel8l phosphatidylethanolamine

(dihexadecanoyl, n-C16:0) (dioctadec-11-enoyl, n-C18:1)

phe-L L-Phenylalanine q8h2 Ubiquinol-8

pheme Protoheme sheme Siroheme

pro-L L-Proline spmd Spermidine

ptrc Putrescine clpn160 cardiolipin (tetrahexadecanoyl, n-
C16:0)

pydx5p Pyridoxal 5-phosphate GAM D-Glucosamine

ribflv Riboflavin gtp Guanosine triphosphate

the coupled or uncoupled subnetworks are different comparing figures 3-7 and 3-10. For

example, lysine (subnetwork 24) and disaccharide linked peptide (subnetwork 47) are the

most coupled subnetworks in figure 3-10. This shows that selection of subnetworks and

lumped reactions have an impact on coupling relationship for the production of different

biomass building blocks.
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Figure 3-12. D; for all pairs of subnetworks, when NAD production is maximized and we only add the reactions of one
subnetwork corresponding to each lumped reaction.
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Figure 3-13. D, for all pairs of subnetworks, when acetyl-CoA production is maximized and we only add the reactions of one
subnetwork corresponding to each lumped reaction.

When we maximize the production of biomass building blocks the network is more
constrained and therefore the degrees of couplings are higher compared to when we do not

maximize for any flux. This is shown for NAD and acetyl-CoA in figures 3-12 and 3-13.
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Figure 3-14. Ratio of number of fully coupled reaction pairs when maximizing for production of each of the building blocks to the number of fully coupled reaction pairs when no flux is

maximized
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Figure 3-15. Ratio of number of directionally coupled reaction pairs when maximizing for production of each of the building blocks to the number of directionally coupled reaction pairs when

no flux is maximized
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Figure 3-14 and 3-15 show the ratio of number of fully and directionally coupled reaction pairs
when maximizing for production of each of the building blocks to the number of fully and
directionally coupled reaction pairs when no flux is maximized, respectively. As it can be seen,
for both fully and directionally coupled reaction pairs in most of cases the ratio is more than
one which shows the dependency between the fluxes are higher when we constrain the
network. In case of fully coupled reaction pairs, for the ratios that are less than one at least
one of the reaction pairs have become blocked therefore the coupling does not exist
anymore. In case of directionally coupled reaction pairs, when the ratio is less than one, the
reactions are either blocked or reaction pairs became fully coupled after the maximization of

the building block.

3.5 Conclusion

In this chapter, we contribute to the analysis of metabolic networks by developing an
optimization method for the analysis of coupling and dependencies in fluxes.

Analysis of flux couplings in metabolic network models is important to understand how
different components of the network are interacting with each other and controlling the
activity and availability of each other. In particular, in thermodynamically constrained
metabolic network models, we can reduce the number of possible flux directionality profiles.
Subnetworks coupling is a good systemic measure to see if the activity of different parts of
the metabolism that may be seemingly unrelated are actually coupled to each other. As an
ultimate goal, coupling analysis can be used for design of new phenotypes and engineering
metabolism of organisms. This can be done by detecting parts of the network that removal of
them can make a certain flux to be coupled with another one.

Furthermore, several known (novel) pathways may exist that can produce a metabolite of
interest in a metabolic network. However not all of them have the same priority for being
used in metabolic engineering purposes. Pathways are ranked based on different criteria such
as pathway length, yield, thermodynamic feasibility and etc. Coupling analysis can introduce
new ways of ranking pathways. For instance, those pathways that the production of the
desired metabolites are coupled with biomass reaction may be of more interest for being

used in experimental evaluations.
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4 Cellular objectives of dormancy in malaria

parasite

4.1 Author contribution and publications used in this chapter

The work of this chapter is based on the following paper which is under preparation for
submission:

A. Chiappino-pepe, Z. Hosseini, E. Vayena, H. Frammery, V. Hatzimanikatis (2020) “Objective
function, essentiality, and metabolic hallmarks of dormant malaria parasites” (in
preparation).

The parts that are presented in this thesis was done in collaboration with Dr. Anush

Chiappino-pepe and Hugo Frammery.

4.2 Introduction

Malaria is one of the most fatal infectious diseases which is caused by Plasmodium genus
parasites. P. Falciparum and P. vivax are two species that play significant roles in malaria
disease in humans. Parasite life cycle in human body consists of entering liver and infecting
hepatocytes, replicating, rupturing hepatocytes, entering blood stream, infecting red blood
cells, rupturing these cells and again entering blood stream. It should be noted that the
parasite is not pathogenic outside red blood cells (133). Some species of malaria parasite such
as P. vivax can form hypnozoites when they enter liver cells. Hypnozoites reduce their
metabolic activity and energy consumption and remain dormant in hepatocytes. They can
restart their activities after a period of time which can vary from weeks to months. After
reactivation, hypnozoites can go through the same life cycle as the parasites that did not enter
the dormancy phase (134). Although there are some hypotheses, it is still not known why
parasites enter or leave the dormancy phase or what is the metabolic activity of parasite in

dormancy (134-136).
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Most malaria drugs are not effective on the dormant parasite. Hence, with the currently
available drugs the dormant parasites should first be activated to leave the dormancy phase
which is not very desirable. The alternative option is to have drugs that can target essential
biological tasks in the dormant phase itself. Therefore, in depth understanding of metabolic
activities of hypnozoites is essential to find new drug targets. Metabolic network analysis of
malaria parasite gives a valuable opportunity to study the metabolism of this dangerous
pathogen systematically. Thermodynamically curated genome-scale model of Plasmodium
falciparum has been reconstructed in 2017 (9). For fast growing parasites maximizing biomass
is a reasonable objective function that can be optimized in mathematical study of the model
as it is done in (9). However, this is not the case for the dormant parasite since it is non-
growing. Therefore, it is important to determine what are the potential cellular objectives of
malaria parasite in the dormant phase in order to study its metabolism. In this chapter, we
aim to analyse the dormant malaria parasite using an updated version of the genome- scale
model of P. falciparum. Although this species of malaria parasite does not enter the dormant
phase, it is the most comprehensive GEM that is available and there is significant similarity
between this species and other hypnozoite forming species. Our results suggest that
minimizing energy dissipation is the most consistent objective function with the experimental

gene expression data of P. vivax.

4.3 Materials and methods

4.3.1 P. falciparum genome-scale model used for the study

iPfa2 consists of 429 genes and 1317 reactions. It includes 261 extracellular and 1170
intracellular metabolites. The model has five compartements: the cytosol, the mitochondrion,
the apicoplast, the endoplasmic reticulum and the nucleus. The iPfa2 is also

thermodynamically curated for 69% of the reactions.

4.3.2 Thermodynamics-based flux analysis (TFA)
TFA is a MILP formulation that integrates metabolite concentrations into the flux-balanced

model in order to impose second law of thermodynamics on model reactions. In addition to
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the mass balance constraint of FBA problem, the following constraints describe TFA
formulation:

0 <v; <ZVnax {i=1,..,r}
Where, v is the vector representing the flux through reactions of the model and z is the vector
of binary variables associated to each reaction. If z; is equal to 1 then reaction i can carry flux,
otherwise the flux through ith reaction should be equal zero. Every reaction in TFA
formulation is split to forward and backward reactions with positive fluxes. r here, is the total
number of forward and backward reactions.

Zi,forward + Zi,backward < 1
The above constraint that applies to all pairs of forward and backward reactions ensure that
only one of the associated binary variables can be equal to 1. In other words, in each flux
distribution, one reaction can only have flux in one direction.

AGi—K+Kz <0
For all the reactions that have known A,.G’, the above constrained insures that z; can only be
1if corresponding A,.G; is negative. K here, is a sufficiently large number.

AG] + RT YT, s;;In(x;) = A G

Finally, the above constraint applies the second law of thermodynamics on reactions of the
model. ArGi’o is the standard Gibbs free energy change of reaction i in the model. R and T are

ideal gas constant and temperature in Kelvin, respectively. s; ; is the stoichiometric constraint
of metabolite j in reaction i and ln(xj) is the natural logarithm of the activity of metabolite

j.

4.3.3 Flux Variability Analysis (FVA)

FVA is a technique used to determine the range of possible values, each reaction can take
under the constraints imposed on the model. First, the objective function is optimized. Then,
in a new constraint, a certain percentage of the optimal value of the objective is set as the
lower or upper bound of the objective function. Finally, the objective function is changed to
be the minimization or maximization of each flux. As a result, the allowable range for each

reaction is computed.
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4.3.4 Objective functions
A set of six objective functions were chosen for this study. Their formulation is described
below. These objective functions were analyzed with the thermodynamics constraints

included in the model.

4.3.4.1 Minimization of the sum of all fluxes

The objective is to minimize the sum of the absolute value of all fluxes

Minimize ZiERxn |vi|

where Rxn is the set of all reactions in the model, and v; is the net flux through reaction i.
Since in TFA formulation, fluxes are split between forward and backward directions and all
flux values are positive, the above objective function can be simplified as follows:

Minimize Yicrxn Vi

4.3.4.2 Minimization of the number of active reactions

The objective is to find the minimal network of reactions that makes the model feasible.
Minimize Yicrxn Zi

where Rxn is the set of all reactions in the model, and z; is a binary variable equal to O if

there is no flux through reactioni. This is ensured by the following constraint from TFA

formulation:

0< Vi = ZiVmax

4.3.4.3 Minimization of the sum of all fluxes through the uptake reactions
The objective is to minimize the sum of the absolute value of the fluxes through all the uptake
reactions.

Minimize ¥ieypt |vil

where Upt is the set of all uptake reactions in the model, and v; is the net flux through

reaction i.
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This is implemented in a similar way to the problem of minimizing the sum of all fluxes. Here,
only the backward direction of the exchange fluxes is taken into account so that we only

minimize the flux through uptake reactions.

4.3.4.4 Minimization of the number of active uptakes
In this problem, the objective is to find the minimal set of uptakes that have to be active to
render the model feasible.
Minimize Y.icype Z;
where Upt is the set of all uptake reactions and z; is the binary variables associated to

backward direction of each uptake flux in the model.

4.3.4.5 Minimization of energy dissipation

The objective is to minimize the energy dissipated by the system, that is the sum over the
product of the Gibbs free energy change of all the internal reactions in the model and the flux
through the reactions.

. . . !
Minimize ZielntRxn viArGi

where IntRxn is the set of all internal reactions in the model, excluding exchange reactions
and transports between the external compartment and the cytosol. v; is the net flux through
reaction i, and A,.G; is the Gibbs free energy change of reaction i.

Since both v; and A,.G; are variables, this is a Mixed Integer Non Linear Programming (MINLP)
problem. However, it can be shown that for all reactions that are not boundary reactions,
A, G; can be approximated by ArGi’o ,the standard Gibbs free energy change of reaction, which
is a constant. The usage of this approximation allows to transform the non-linear problem
into a linear problem that can be solved with the regular MILP solver used for the other

objective functions.

4.3.4.6 Maximization of ATP yield per flux unit

The objective is to find maximum ATP that can be produced per some of all fluxes:

. . v
Maximize —22—
ieRxn Vi
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vyrp IS the flux of unused ATP produced, Rxn is the set of all reactions in the model, and v; is
the flux through forward or backward direction of reaction i.

To implement this problem, an exchange reaction is added to the model to be able to simulate
an ATP secretion. Maximizing the production of unused ATP can consequently be done by
maximizing the flux through this new exchange reaction.

This problem is inherently an MILFP but we will apply a linearization process to transform it
into an equivalent MILP (128). This transformation relies on the fact that an equivalent

optimization problem is:

varp't

Maximize
YieRxnVi't

where t is a continuous positive variable such that

Dierxn Vit =1
If the above equation holds, then the denominator of objective function can be simplified and
the objective function of the problem becomes

Maximize vyrp - t
This can be transformed into a linear problem by performing the variable substitution

Uy=v;-t

which results in the following general MILP problem:

Maximize Uyrp

Subject to

ZiERxn D=1

~

where S is the stoichiometric matrix, ¥ is the vector containing all the substituting flux
variables, and LB and UB are the vectors holding respectively the lower and upper bounds
of the original flux variables.

Additionally, the vector y holding all the binary variables contained in the model also needs
to be converted into a new vector w by introducing a set of additional constraints as follows
(128):

w=y-t
w<st
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w<sM-y
w=>t—-M1-y)
w=0
where M is a sufficiently large number representing the upper bound of t. The details about
these additional constraints are explained in chapter two and three.
For each objective function, all the alternative solutions that can achieve the optimal value of
the objective function are identified. This is done by first performing an optimization of the
objective, identifying the optimal value and setting it as a constraint. Then the set of active
reactions of the solution achieving this optimum are identified and an integer cut constraint
is added to the model to prevent the solver from finding the same exact set of active and
inactive reactions again. This procedure is repeated till all the alternative optimal solutions

are identified.

4.3.5 Integration of transcriptomics data.

Recent experimental analyses on dormant parasites have been performed to determine gene
expression levels for dormant P. vivax (137). These data were used for our consistency
assessment which is explained later in this chapter. Since the experimental measurements
were performed on P. vivax, and the iPfa2 GEM is for P. falciparum, the equivalence between
the genes of the two species were identified using a blasting technique, available in the
RAVEN toolbox (138).

The genes that have equivalence in the iPfa2 model are sorted in ascending order of
expression level. Then, by manually setting two thresholds, the genes are classified in three
categories: lowly expressed genes, normally expressed genes and highly expressed genes. The
Gene-Protein-Reaction (GPR) rules are used to determine what are the corresponding
upregulated and down-regulated reactions. A gene highly expressed is likely to produce more
of the enzyme it is coding for which results in a larger flux in the corresponding reaction.

In the next step, constraints are added to the model that can be switched on or off to force
the reaction fluxes to be in their high flux regime, for upregulated reactions, or in their low

flux regime, for downregulated reactions.
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4.4 Results and discussion

4.4.1 Integration of objective functions and hallmarks of dormancy:

The aim of this study is to understand the metabolic activities of hypnozoites through
analyzing different objective functions for dormancy phase. The list of objective functions
used in this study are as follows and discussed in details in the materials and methods section:
i) Minimization of the sum of all fluxes;

ii) Minimization of the number of active reactions;

iii) Minimization of the sum of all fluxes through the uptake reactions;

iv) Minimization of the number of active uptakes;

v) Minimization of energy dissipation;

vi) Maximization of ATP yield per flux unit.

Although metabolic behavior of hypnozoites are poorly characterized, there are some
postulations for this phase known as hallmarks of dormancy (139,140). We used some of
these hallmarks as constrains imposed on the model. In particular, we considered seven
conditions for the model by applying appropriate constraints:

i) Forced glucose uptake; by applying a small flux through the reaction uptaking glucose from
environment.

ii) Forced lactate production; by applying a small flux through the reaction secreting lactate
to the environment.

iii) Forced ATP synthesis; by applying a small flux through the ATP synthesis reaction in
electron transfer chain (ETC).

iv) Forced ATP maintenance; by applying a small flux through the ATP phosphohydrolysis
reaction in cytoplasm.

v) Forced biomass production (this is not a hallmark of dormancy); by applying a small flux
through biomass reaction.

vi) Combination of five conditions above;

vii) Combination of five conditions above except biomass production;

Since in dormancy no growth is observed, in all of the above conditions except conditions v
and vi, a small positive upper bound is considered for the biomass condition to simulate for

the absence of growth.

83



4.4.2 Computation of alternative flux distributions

All the conditions presented above are combined separately with all the objective functions
described before. For each combination, all the alternative solutions were computed, which
are different sets of active and inactive reactions that can achieve the same optimal value for
the objective function. Table 4-1 shows the number of alternative optimal solutions identified

for each combination of condition and objective function.

Table 4-1. number of optimal alternative solutions per combinations of condition and objective function

Glucose Lactate ATP ATP All All but
growth
uptake secretion synthesis maintenance conditions growth
Min. sum of
296 20 274 429 853 827 209

all fluxes
Min.
number of 1 2 2 28 5 1 1
active fluxes
Min. sum of
all fluxes

1 15 5 4 227 512 11
through
uptakes
Min.
number of 1 9 7 18 7 12 6
uptakes
Min.

8 7 1 7 37 3 13
dissipation
Max. ATP
yield per 253 151 161 201 339 318 125
flux unit

4.4.3 Constitutive reactions

Constitutive reactions are the reactions that are active in all alternatives. Table 4-2 shows the
number of constitutive reactions for each combination of objective function and condition.
As it can be seen, maximizing growth has the highest number of constitutive reactions. It is
due to the fact that maximizing growth needs the production of a certain amount of all

biomass building blocks which makes the system less flexible.
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Table 4-2. Number of constitutive reactions per combination of condition and objective function

Glucose Lactate ATP ATP All All but
growth
uptake secretion synthesis maintenance conditions growth
Min. sum of
8 3 13 16 506 504 69
all fluxes
Min.
number of 12 8 24 1 304 579 149
active fluxes
Min. sum of
all fluxes
15 10 73 23 402 398 42
through
uptakes
Min.
number of 3 4 39 7 477 578 51
uptakes
Min.
288 336 357 284 604 705 282
dissipation
Max. ATP
yield per 31 26 31 19 392 396 60
flux unit

4.4.4 Production of biomass building blocks

In this section, we identified biomass building blocks (BBBs) that can be produced in each
combination of objective function and condition. Table 4-3 shows the summary of this result.
It should be noted that the numbers show how many BBBs can be produced in at least one
alternative optimal solution. Therefore, these number of BBBs are not necessarily produced
at the same time, in one solution. In addition to conditions where forced biomass production
is imposed and hence all BBBs are produced, we have three more combinations in which all
86 BBBs are produced: maximization of ATP yield per flux unit with forced glucose uptake or
lactate secretion and minimization of dissipation having all hallmarks of dormancy. We
further analyzed these three conditions and realized that only for the latter case all BBBs can

be produced at the same time in one alternative solutions and therefore, biomass can also be

produced.
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Table 4-3. Number of Biomass Building Blocks that can be synthesized in at least on alternative solution per combination of
condition and objective function

Glucose Lactate ATP ATP All All but
growth
uptake secretion synthesis maintenance conditions growth
Min. sum of
47 27 48 52 86 86 50
all fluxes
Min.
number of 3 16 42 85 86 86 20
active fluxes
Min. sum of
all fluxes
6 46 45 34 86 86 51
through
uptakes
Min.
number of 21 42 45 46 86 86 47
uptakes
Min.
85 85 37 85 86 86 86
dissipation
Max. ATP
yield per 86 86 21 31 86 86 58
flux unit

4.4.5 Scoring combinations of objective functions and conditions

As explained in materials and methods section, we added constraints for up-regulated and
down-regulated reaction. After adding these constraints, the system is forced to work at its
optimal value with respect to the objective function, and the constraint carried by the
condition studied is also enforced. Then, the number of the gene expression-based
constraints that are fulfilled is maximized as the new objective of the problem. This number
of fulfilled constraints represents the consistency between the experimental data and the
combination applied on the model. It is called the Consistency Score (CS) and it serves as a
metric to score and rank the objective functions and conditions. Table 4-4 summarizes CS for
all combinations of condition and objective function. It should be noted that maximum

theoretical CS that can be achieved is 89.
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Table 4-4. Consistency score per combination of objective functions and conditions with integrated transcriptomics data

Glucose Lactate ATP ATP All All but
growth
uptake secretion synthesis maintenance conditions growth
Min. sum of
69 69 69 69 55 55 69
all fluxes
Min.
number of 11 18 14 17 1 1 12
active fluxes
Min. sum of
all fluxes
75 75 75 75 61 61 75
through
uptakes
Min.
number of 83 83 76 82 69 69 79
uptakes
Min.
83 83 83 83 69 69 82
dissipation
Max. ATP
yield per 69 69 69 69 55 55 69
flux unit

As it can be seen in the table, for all of the objective functions that we investigate, as soon as
having growth is forced to the model, the CS is dropped. It can be explained by the fact that
growth is not a hallmark of dormancy. Therefore, forcing the model to activate flux for all the
reactions needed for growth is not consistent with experimental gene expression data of
dormancy. We further examined what are the inconsistencies that are only observed when
biomass production is forced to the model. We found eight reactions that their corresponding
genes are down-regulated based on the gene expression data. However, enforcement of
biomass production makes these reactions to have higher fluxes and therefore the
corresponding down-regulating constraint is not fulfilled. They are indicated in table 4-5.
Interestingly, all these reactions are related to protein biosynthesis. This finding shows that
dormant parasite is reducing the activity of protein synthesis, and it is not something that is
in agreement with having growth. Some of the current drugs for non-dormant malaria
parasite are targeting these protein biosynthesis genes (141,142). However, in the dormant
phase, parasite itself aims to downregulate these genes and therefore such drugs are not

effective for killing parasite in the dormancy.
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Table 4-5. Reactions that cannot be down-regulated in the forced growth condition and Reactions that can only be up-
regulated with dissipation minimization as objective function

Reactions that cannot be down-regulated in the forced growth condition

Reaction Subsystem
H,0 + dATP + thioredoxin disulfide -> ADP + thioredoxin Purine metabolism
ATP + L-tryptophan + H* + tRNA(Trp) -> diphosphate + AMP + L- Aminoacyl-tRNA biosynthesis

tryptophanyl-tRNA(Trp)

ADP + orthophosphate + L-glutamate + glutaminyl-tRNA -> H,0 + ATP + Aminoacyl-tRNA biosynthesis
L-glutamine + L-glutamyl-tRNA(GIn)

ADP + orthophosphate + L-glutamate + L-aparaginyl-tRNA(Asn) -> H,0 + | Aminoacyl-tRNA biosynthesis
ATP + L-glutamine + L-aspartyl-tRNA(Asn)

ATP + H* + L-asparagine + tRNA(Asn) -> diphosphate + AMP + L- Aminoacyl-tRNA biosynthesis
Asparaginyl-tRNA(Asn)

ATP + L-glutamate + tRNA(GIn) -> diphosphate + AMP + L-glutamyl- Aminoacyl-tRNA biosynthesis
tRNA(GIn)
ATP + L-tryptophan + H* + tRNA(Trp) -> diphosphate + AMP + L- Aminoacyl-tRNA biosynthesis

tryptophanyl-tRNA(Trp)

ATP + L-glutamate + H* + tRNA(Glu) -> diphosphate + AMP + L-glutamyl- | Aminoacyl-tRNA biosynthesis
tRNA(Glu)

Reactions that can only be up-regulated with energy dissipation minimization as objective function

Reaction Subsystem

H,0 + ATP + L-selenomethionine - > orthophosphate + diphosphate + Se- | Purine metabolism
adenosylselenomethionine

H,0 + Se-adenosyl-L-selenohomocysteine -> adenosine + Purine metabolism
selenohomocysteine

NAD* + (S)-lactate -> NADH + pyruvate + H* Pyruvate metabolism
NAD™* + 3-marcaptolactate -> NADH + H* + mercaptopyruvate Cysteine and methionine metabolism
3-hydroxyoctadecanoyl-CoA -> H20 + (2E)-octadecanoyl-CoA Fatty acid metabolism

NAD* + orthophosphate + D-glyceraldehyde 3-phosphate -> NADH + 3- Glycolysis
phospho-D-glycerol phosphate

phenylpyruvate -> 2-hydroxy-3-phenylpropenoate Phenylalanine metabolism

3-(4-hydroxyphenyl)pyruvate -> 2-hydroxy-3-(4- Tyrosine metabolism
hydroxyphenyl)propenoate
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Another important observation from table 4-4 is that in all conditions, the maximum CS is
achieved with minimizing dissipation as the objective function. This suggests that among the
objective functions that we investigated, minimizing dissipation is the most consistent cellular
objective with experimental gene expression data. We further investigated what are the
constraints that can only be fulfilled having this objective function. Eight reactions that should
be upregulated based on the data, can only be up-regulated with minimizing dissipation as
the objective function. This is the case for all seven different conditions. These reactions are
also available in table 4-5. This suggests that not all biological pathways have equally reduced
their metabolic activities upon dormancy. For the dormant parasite to stay viable, some parts
of its metabolism need to be upregulated. Our results suggest that this increase in metabolic

activity can only be captured if the cellular objective is minimizing energy dissipation.

4.5 Conclusion

The aim of this chapter was to characterize metabolic behavior of dormant malaria parasite
in the liver stage using metabolic network modeling. For this purpose, we used iPfa2, genome-
scale metabolic network model of P. falciparum and gene expression data of P. vivax in the
dormant phase. In order to simulate dormancy, we considered seven different metabolic
conditions and six different objective functions. We did all of our analysis for the forty-two
combinations of objective functions and conditions. Our computational platform for the study
of dormant parasite helped us understand the metabolic activity of hypnozoites. Specifically,
we investigated the flexibility of the networks, constitutive reactions, and ability of model to
produce biomass building blocks in each combination. With integrating gene expression data
of dormant parasite into the model we could calculate consistency score for each
combination of dormancy conditions and objective functions. Our results suggest that
minimizing energy dissipation throughout the whole metabolic network can best describe the
metabolic behavior of dormant parasites. It should be noted that minimizing dissipation is
introduced in this work for the first time to be the objective function of a metabolic modeling
study. It emphasizes again the importance of taking into account thermodynamic properties
of reactions and metabolites in analysis of metabolic network models. Minimization of energy
dissipation is the best objective function in terms of capturing the upregulation of reactions

in different pathways. It suggests that although this complex objective function is rewiring
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the fluxes so that the energy dissipation is minimized, but it can realize that some parts of the
metabolism still need to be upregulated. In addition, some of the reactions in protein
synthesis pathways are down-regulated in hypnozoites. This can be of interest in guiding drug
targeting for this disease, since some of the currently used drugs are knocking down the
enzymes associated to these reactions (141). The fact that in the dormant phase these
reactions are down-regulated, shows that these drugs may trigger the parasite to go through
the dormant phase. Therefore, an effective treatment can be a drug that target both dormant

and non-dormant phases of malaria parasite at the same time.

90



5 Study of iron reduction in Clostridium

acetobutylicum

5.1 Author contribution and publications used in this chapter

The project presented in this chapter is the result of our collaboration with Prof. Rizlan
Bernier-Latmani and Dr. Cornelia List from Environmental Microbiology Laboratory at EPFL.
The experimental measurements were done by our collaborators and the computational
studies were done by Zhaleh Hosseini. Some of the results are published in the following
paper:

C. List, Z. Hosseini, K. Lederballe Meibom, V. Hatzimanikatis, R. Bernier-Latmani (2019)
“Impact of iron reduction on the metabolism of Clostridium acetobutylicum”, Environmental

Microbiology, 21(10):3548-63.

5.2 Introduction

Clostridium acetobutylicum is an anaerobic gram-positive bacterium that can convert various
sugars to acetate, butyrate and solvents such as acetone, butanol, and ethanol (143-145). C.
acetobutylicum has been studied as the model organism for the production of solvents on an
industrial scale through the acetone-butanol-ethanol (ABE) fermentation (63,146,147).

The life cycle of C. acetobutylicum consists of an initial growth phase in which the organism
produces butyrate and acetate (the acidogenic phase). Production of these organic acids
cause the pH to decrease. Then, the metabolism shifts to the production of acetone, ethanol
and butanol (the solventogenic phase). Additionally, the bacterium produces H; and CO;
(145,148). Studies showed that providing additional electron acceptors such as Fe(lll) for
fermentative bacteria, helps in generating energy and pH stabilization. In addition, the impact

of iron reduction on growth yield, glucose consumption and fermentation has been discussed
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(149,150). Most microorganisms need iron as an essential element for their growth and
survival. Iron serves as a main cofactor for the activity of some enzymes and can be used
directly as an electron donor or acceptor. Iron is cycled between its ferric (Fe(lll)) and ferrous
(Fe(l1)) states and bacteria take up these forms differently. The reduced form of iron is more
soluble compared to ferric iron. Thus, it is easier to be acquired from the environment.
However, some bacteria can use the oxidized form of iron as an electron acceptor, producing
Fe(ll). Iron reduction can be used not only for direct energy gain from electron transport to
Fe(lll), but also for enhanced fermentation (148,151-153). C. acetobutylicum can be used as
a model to study the process of iron reduction and extracellular electron transfer in a gram-
positive organism and to uncover the mechanism of extracellular electron transfer and
influence of iron reduction on its metabolism. Our collaborators in the laboratory of
environmental microbiology at EPFL showed that C. acetobutylicum can reduce soluble and
solid Fe(lll). Iron reduction affect pH balancing and carbon and electron flow. They showed
that the amount of hydrogen, butanol, organic acids and ATP productions are changed if iron
is provided (148).

C. acetobutylicum ATCC 824 is the first sequenced Clostridium and it can serve as a model
organism for clostridial metabolism in general (135,154). There are a couple of reconstructed
genome scale models of C. acetobutylicum that will help in genetic, biotechnological and
physiological researches of different clostridia with annotated genomes (10,63,143,154,155).
In this chapter, we study the metabolism of Clostridium acetobutylicum by using the genome-
scale model for this organism which is reconstructed in 2014 by Dash et al (10). We are using
the data provided by our collaborators in Environmental Microbiology Laboratory at EPFL to
study mechanisms and reactions involved in iron transfer and reduction process. For this
purpose, we performed the thermodynamic curation of the model to allow the integration of
metabolomics data to the genome scale model of this organism (5). Thermodynamics-based
metabolic flux analysis (5), flux variability analysis (FVA) (156), and flux sampling (157) was
used to investigate C. acetobutylicum metabolism. Metabolic modelling showed an increase
in some of the fluxes of central pathways if iron is provided. In addition, computational
analysis suggests that more alternative reactions are possible with iron reduction compared
to the condition with no iron. In addition, transcriptomics data was integrated to the model
to analyse the enriched metabolic pathways with iron reduction using Minimal Network

Enrichment Analysis (MIiNEA) (19). MINEA finds the minimal reaction sets need to fulfil
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different metabolic tasks. Then, having transcriptmotics data MiNEA shows what minimal
subnetworks are enriched with over or under expressed genes. We showed that Minimal
subnetworks for some of the amino acids, RNA and cross-linked peptidoglycans biosynthesis
are enriched after iron is provided for reduction by the cell. Our analysis suggests that NADH
and NADPH are more probable to have role in iron reduction in Clostridium acetobutylicum.
In addition, ATP and FAD minimal subnetworks are significantly deregulated which is in
agreement with experimental data and shows that iron reduction affect energy generation in

this model organism.

5.3 Materials and methods

5.3.1 Experimental data

Time-point measurements of concentrations of some metabolites used in constraining
metabolic network model. Experiments were done providing 4% glucose and 40 mM soluble
Fe(lll) for the cells. Glucose and Fe(lll) consumptions and acetate, lactate, butyrate, ethanol,
acetone, buthanol, Fe(ll), pyruvate, H, and CO; productions were measured at 0, 2, 4, 6, 8,
12, 18 and 24 hours after cultivation of the microbes. These concentrations were used to fit
polynomial equations to calculate specific uptake and secretion rates in exponential growth
phase. OD600 data was used to calculate specific growth rate for different time points.

For RNA sequencing analysis, the initial concentrations were 0.5% glucose and 2.5 mM solid
Fe(lll) and 4% glucose and 40 mM soluble Fe(lll). Time series concentration of glucose
consumption, Fe(ll) production and OD600 data were available were used for polynomial
fitting. Analysis of transcriptomics data provided us with upregulated and down regulated
genes when the iron is available (in solid or soluble form) compared to conditions where no

iron is provided for the cells.

5.3.2 TFA, FVA, sampling and calculation of minimal reaction subnetworks
iCac802 was used as the genome-scale model in this study (10). The original model contains
1457 reactions and 1247 metabolites. To be able to model iron reduction, the three following

reactions were added to the model one at a time:

NADH + 2Fe3* - NADY + HY + 2Fe?*
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NADPH + 2Fe3t - NADP* + HY + 2Fe?*
reduced ferredoxin + Fe3* — oxidized ferredoxin + Fe?*
The uptake and secretion flux rates calculated in previous section were used to constrain the
corresponding uptake and secretion rates in the model and to compare the results of model
simulation with experimental measurements. Metabolic network models are usually studied
using flux balance analysis (FBA) (158). In FBA, an objective function in the model is optimized
subject to stoichiometric and capacity constraints. Here, thermodynamic-based flux balance
analysis (TFA) was used for studying iron reduction in iCac802. In TFA, metabolite
concentrations and Gibbs free energy of reactions are also taken into account (5). To check
the consistency between model predictions and experimental data, all above-mentioned
constraints for metabolite secretions and uptakes, (except the growth rates) were put as
lower and upper bounds of the corresponding fluxes in the metabolic network. The
experimental standard deviations were used to calculate the lower and upper bounds put
into the model. Then, the model was optimized by maximizing the biomass production and it
was compared with the experimental data of growth rates. After maximizing biomass
production, the lower bound for biomass reaction was set to 90% of its maximum and then
Flux variability analysis was performed to identify reactions that shifted fluxes when the
appropriate iron reduction reaction is added to the model. Flux variability analysis calculates
maximum and minimum possible flux for all reactions of the network by having suboptimal
biomass and other constraints of interest. Sampling of the solution space was done to see the
change in the mean value of the reactions involved in glycolysis, citric acid cycle, fermentation
and pentose phosphate pathway. For doing so, the minimum amount of acetate needed to
be produced from central fluxes to fulfil experimental constraints was calculated and was set
as a new constrain to the model. In addition, the reactions from acetoacetyl-CoA to
acetoacetate and butyryl-CoA to butyrate were forced to only carry fluxes in the forward
direction. After sampling 5000 points, the mean value of the reactions in the iron-reducing
condition was divided by the mean value of the reactions with no iron condition. Moreover,
to compare the experimental and theoretical flux ranges for acetate, butyrate, butanol and
H,, the bounds on these fluxes were relaxed and the maximum and minimum possible fluxes
were calculated for each. For this calculation, all other experimental constraints were
imposed and lower bound for biomass reaction was set to 90 percent of its maximum. To

calculate ATP production, the predetermined bounds on ATP maintenance reaction were

94



relaxed and maximum flux for this reaction was calculated for each of the iron-reducing
reactions, while maintaining the experimental constrains. The results were compared with
the no Fe(lll) case. Finally, all alternative minimal reaction subnetworks were constructed by
setting all experimental data as constraints. Metabolic graphs were drawn using yEd graph
editor. It should be noted that in all the above computations the experimental bounds on
pyruvate secretion makes the model infeasible having ferredoxin as electron donor for iron

reduction. Therefore, the bound on this flux is relaxed only with ferredoxin as cofactor.

5.3.3 Minimal Network Enrichment Analysis
iCac802 had originally 803 genes. We added CA_C0028, gene corresponding to hydrogenase

enzyme, to the model and linked it to the following reaction:

2 Reduced ferredoxin + 2 H+ <=> Hydrogen + 2 Oxidized ferredoxin
Minimal Network Enrichment Analysis (MiNEA) was done to understand what parts of
metabolism are involved in iron reduction and if they are enriched in deregulated genes (19).
We performed MiINEA for biosynthesis of all biomass building blocks and for NADH, reduced
ferredoxin, H,, Lactate, butanol and Fe(ll). We studied the synthesis networks of these
metabolites using MiNEA, where we called the synthesis of a metabolite as a metabolic task.
The inputs of MiNEA are metabolic network model of the organism, desired metabolic tasks
and experimental gene expression data. MiIiNEA enumerates all the thermodynamically
feasible minimal-size networks that are active for the fulfillment of the desired metabolic
task.

A mixed-integer linear programming (MILP) problem is solved in MIiNEA to optimize the
objective of maximization of the number of reactions that cannot carry flux, while maintaining
a certain threshold for the production of the desired task. We used 95% of the maximum
possible production of the metabolic task as the threshold. All the alternative minimum-size
networks for the synthesis of metabolic tasks were calculated. In the next step of MiNEA, the
deregulated genes that are different between the two conditions (here solid and soluble
Fe(lll) vs. no Fe(lll)) are determined. A reaction can have three states based on its associated
genes: up-regulated, down-regulated or un-regulated. A reaction is considered as up (down)

regulated if its associated genes are only up (down) regulated. If a reaction is associated to
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both up and down regulated genes, it is considered as un-regulated. In the last step, the
significantly deregulated minimal networks are identified using a hypergeometric test on
deregulated reactions. For instance, to see if a minimal network is significantly upregulated,
the probability of having a minimal network with the same size, with equal or more
upregulated reactions and with as few as possible down-regulated reactions is calculated.
This probability shows the p-value for the significance of upregulation of the corresponding
minimal network. More details about the MILP formulation and the way p-value is calculated
for the significance of deregulation of each subnetwork can be found in (19). For this analysis,
lower bounds and upper bounds of glucose uptake and Fe(ll) secretion are constrained based
on experimental concentration data. In addition, the upper bounds of all the by-product
productions are also constrained based on available experimental data. The model is not
constrained with the specific growth rate data, since we wanted the minimal subnetworks to

be specific to the desired tasks and not to contain all the pathways required for growth.

5.4 Results and discussion

The metabolic network model allows analysis of several aspects of the metabolism: i)
comparison of the model predicted flux ranges for each by-product and growth rate to their
experimentally calculated flux ranges; ii) computing flux ranges of all individual reactions
within the metabolic network, allowing the comparison of specific reaction contributions into
the whole metabolic system between different conditions (i.e., with and without iron); iii) the
minimum number of reactions that would support the transformation of substrate to
products as observed in the experimental data; iv) analysis of enriched minimal subnetworks
for different metabolic tasks to better understand what parts of the networks are significantly
affected based on the gene expression data.

The metabolic model of C. acetobutylicum did not include any reaction for iron reduction.
Iron reducing reactions either with NAD(P)H or with reduced ferredoxin as cofactor were

added to the model to analyse the mechanism of iron reduction in this organism.
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5.4.1 Experimental and theoretical growth rates

We compared maximum biomass production from model with the calculated fluxes for
growth from time dependent OD600 data. The model is constrained with experimental
glucose consumption and by-product secretion data. The physiological electron donor for iron
reduction for this analysis is NAD(P)H. The error bars are associated to the standard deviation
from different replications of the experiments. As shown in Figure 5-1, in time points of 4-
hour and 6-hour model predictions are in experimental range or less. This suggests that model
may lack some reactions or pathways to be able to achieve more growth and proper gap filling
of the network may result in better predictions. In 8-hour, cells slowly start to enter lag phase,
however this is not recognizable by a stoichiometric model and therefore the predicted
growth is slightly higher compared to experimental value. It should be noted that if Ferredoxin
is used as the electron donor, all the experimental constraints cannot be set for the model. In
other words, if all by-product productions are constrained based on the experimental data,
the model is infeasible. If we relax the constraints on pyruvate production the model becomes
feasible. However, the growth predictions are not in agreement with the experimental
growth rates. This is one of the first evidences that suggests NAD(P)H is more probable to be

the physiological electron donor for iron reduction in C. acetobutylicum.

A) B)
Flux (mmol/gow.h)  Growth rates — Fe(lll) provided Flux (mmol/gow.h) Growth rates — Fe(lll) not provided
12 0.6
1 05 I
0.8 0.4
0.6 0.3
0.4 0.2
02 . . 01 . l
0 0
4 6 8  Time (h) 4 6 8 timen
B experiment @ model M experiment | model

Figure 5-1. Experimental and theoretical growth rates, A) with Fe(lll) and, B) without Fe(lll)

5.4.2 Experimental and theoretical by-product productions

The flux ranges (minimal and maximal fluxes in mmol/gDW.h) of the experimental by-
products (acetate, butyrate, butanol and H,) produced at three time points (4, 6 and 8 h) were
compared with model-predicted fluxes. For this analysis lower bound of the biomass flux is
set to 90 percent of the values obtained in the last part and the experimental constraint on
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the flux of these four by-products were relaxed one by one. It can be seen that the model
largely agrees with the experimental data (Figure 5-2). More specifically, the experimental
data mainly fell within the predicted flux ranges except for the 8-hour time point. At that time
point, the model predicted a higher minimal and maximal flux for butyrate and acetate
compared to what was obtained experimentally, when Fe(lll) was not provided. If Fe(lll) is
provided, the model predicted minimal and maximal flux ranges that were higher for acetate,
but lower for H, and butyrate compared to experimental data. Since the 6-hour time point
shows more agreement with experimental data, both in terms of growth rate and by-product
productions, for the rest of our analysis constraints imposed on the model are based on the

experimental data of this time point.
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Figure 5-2. Flux ranges of experimental by-products production compared with model-based predictions of fermentation, A)
with Fe(lll) and, B) without Fe(lll). The minimal and maximal flux of acetate, butyrate, butanol and H, were compared of
experimental data (blue) and model predicted data (red) by using NAD(P)H as physiological electron donor.

5.4.3 Changes in FVA and mean flux values with and without iron reduction

Flux variability analysis (FVA) was performed to determine whether changes are observed in
the metabolic flux ranges with and without iron reduction for central metabolic pathways at
time point 6 h. The results obtained with 90 percent of maximum biomass as the lower bound
of biomass reaction and all other experimental constraints imposed on the model. If Fe(lll)
was provided, there was a distinct shift in the flux ranges of some reactions compared to the
condition with no iron. The most interesting changes in flux ranges was observed for reactions
of glycolysis (glucose 6-phosphate to fructose-6-phosphate and phosphoenolpyruvate to
pyruvate) and the TCA cycle (oxaloacetate to a-ketoglutarate). The minimum possible flux for

these reactions when iron is provided is higher compared to the maximum possible flux of
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them when no iron is available. Furthermore, in the riboflavin metabolism, the conversion of
riboflavin to Flavin mononucleotide and FAD was distinctly shifted towards higher values with
iron reduction which is in agreement with experimental results (148). Finally, a large number
of anabolic reactions exhibited a higher flux range in the iron case relative to the noiron case.
To visualize the shift in fluxes, 5000 feasible flux distributions were generated by flux sampling
to get the mean values for each flux. Then, the ratio (reaction flux with iron
reduction/reaction flux without iron reduction) of the mean values are calculated for each
reaction. Figure 5-3 and 5-4 show reactions of glycolysis, TCA cycle, pentose phosphate
pathway and solventogenesis with NAD(P)H and reduced ferredoxin as the physiological
electron donor for iron reduction respectively. Colors show different values for the ratio of
fluxes. In most reactions of the central metabolism, the mean of the flux values is higher with
iron reduction (>1), with some exceptions. Using NAD(P)H as the physiological electron donor
for iron reduction, a number of reactions exhibited greater flux during fermentation without
iron reduction: most significantly, a reaction producing ATP (acetyl phosphate + ADP —
acetate + ATP), one reaction consuming ATP (ribose 5-phosphate + ATP — 5-phosphoribosyl
1-pyrophosphate + AMP), the reactions for butanol production, the reaction of d -xylulose 5-
phosphate to ribose 5-phosphate and the reaction of 2-deoxy-d -ribose 1-phosphate to
glyceraldehyde 3-phosphate (Figure 5-3). Using reduced ferredoxin, the result is similar, but
higher flux ranges are obtained with fermentation without iron reduction for another reaction
in the citric acid cycle: succinate to succinyl-CoA consuming ATP and the reduction of NADP

with reduced ferredoxin to produce oxidized ferredoxin and NADPH (Figure 5-4).
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Figure 5-3. The ratio of mean value of fluxes with and without iron reduction using NAD(P)H. The mean of flux values (in
mmol/gDW.h) from model-based samples was used to calculate the ratio of fermentation with iron reduction divided by
fermentation without iron reduction for the reactions of glycolysis, fermentation, citric acid cycle and the pentose phosphate
pathway. Grey lines show reactions were no flux was present in the model and gaps in the values within the figure legend
indicate that these range was not represented. Colours representing values greater than 1 show reactions with higher flux in
fermentation with iron reduction and those less than 1 show reactions with higher flux in fermentation without iron reduction.
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Figure 5-4. The ratio of mean value of fluxes with and without iron reduction using reduced ferredoxin. The mean of flux
values (in mmol/gDW.h) from model-based samples was used to calculate the ratio of fermentation with iron reduction
divided by fermentation without iron reduction for the reactions of glycolysis, fermentation, citric acid cycle and the pentose
phosphate pathway. Grey lines show reactions were no flux was present in the model and gaps in the values within the figure
legend indicate that these range was not represented. Colours representing values greater than 1 show reactions with higher
flux in fermentation with iron reduction and those less than 1 show reactions with higher flux in fermentation without iron
reduction.

5.4.4 Minimal reaction subnetwork for fermentation with and without iron

reduction
Minimal reaction subnetworks provide the minimum number of reactions that are necessary
to allow the transformation of given substrates into given products. There can be more than
one minimal subnetwork for a given substrate/product combination. In this section, we
imposed all experimental constraints including a lower bound on biomass flux before
calculating the minimal reaction subnetworks. Reactions that are present in some, but not all
of the minimal networks are termed as ‘substitutive reactions’. Minimal networks were
obtained for fermentation with and without presence of iron either with NAD(P)H or with
ferredoxin as the physiological electron donor for iron reduction. Figure 5-5 and Figure 5-6

show the glycolysis and solventogenesis parts of these minimal subnetworks. It should be
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noted that for iron reduction with ferredoxin, experimental constraint for pyruvate
production is not imposed on the model, because it will cause model infeasibility. As it can be
seen in figures 5-5 and 5-6, no additional reactions are needed for the reduction of Fe(lll)
relative to fermentation alone (apart from the reaction describing the reduction of Fe(lll) by
NAD(P)H or reduced ferredoxin). If the iron reduction process uses NAD(P)H, the reactions
from butyryl-CoA to form butyrate via butyryl phosphate are not necessary for all minimal
networks, whereas they are necessary for fermentation alone or when reduced ferredoxin
serves as the physiological electron donor. These can be seen as the reactions that are green
in Figure 5-5 and black in Figure 5-6. Red reactions in Figure 5-5, which are gray in Figure 5-6
show the reactions that are substitutive in minimal networks with NAD(P)H but absent in
minimal networks of ferredoxin, and the condition with no iron reduction. On the other hand,
glycolysis is more flexible with ferredoxin used as the cofactor compared to NAD(P)H or no
iron reduction. Reactions that are red and green in Figure 5-6 and black and gray in Figure 5-
5 indicate this difference in glycolysis between subnetworks. For fermentation with iron
reduction modelled with either reduced ferredoxin or NAD(P)H as the physiological electron
donor, more alternative minimal subnetworks can be found compared to fermentation
without iron reduction. In conclusion, the higher number of alternative networks and more
possible pathways in both glycolysis and solventogenesis, suggest that the network including
reactions for iron reduction have higher flexibility compared to the network that cannot

reduce iron.

5.4.5 Excess ATP production calculation

The maximal excess ATP production rate was calculated to be 13 mmol/gDW.h for
fermentation without iron and 15.6 mmol/gDW.h during iron reduction by using NAD(P)H as
a physiological electron donor. Reduced ferredoxin as a physiological electron donor for iron
reduction gives a maximum flux for ATP of 9.6 mmol/gDW.h. Since the experimental results
confirm that energy generation is increased when iron is provided for the cells, our results

suggest that iron reduction is more probably reduced via NAD(P)H as cofactor (148).
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Figure 5-5. Minimal reaction subnetwork for fermentation with and without iron reduction with NAD(P)H as electron donor
(only glycolysis and solventogenesis reactions are shown). Black arrows show reactions present in all minimal networks
(necessary); green arrows show reactions present in some minimal networks (substitutive) with iron provided and present in
all minimal networks of fermentation without iron; and red arrows show reactions present in some minimal networks of
fermentation with iron, but not present in any minimal networks of fermentation without iron reduction. Grey arrows are
reactions not present in any minimal subnetwork.
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Figure 5-6. Minimal reaction subnetwork for fermentation with and without iron reduction with ferredoxin as electron donor
(only glycolysis and solventogenesis reactions are shown). Black arrows show reactions present in all minimal networks
(necessary); green arrows show reactions present in some minimal networks (substitutive) with iron provided and present in
all minimal networks of fermentation without iron; and red arrows show reactions present in some minimal networks of

fermentation with iron, but not present in any minimal networks of fermentation without iron reduction. Grey arrows are
reactions not present in any minimal subnetwork.

5.4.6 Enrichment analysis with MiNEA

We performed MINEA to see if certain metabolic subnetworks are significantly up- or
downregulated according to the transcriptomic data (19). We have three sets of
transcriptomics data for solid and soluble Fe(lll) and for condition when no Fe(lll) is provided.
From these data list of upregulated and downregulated genes are obtained for solid and
soluble Fe(lll) compared to no Fe(lll) condition. Therefore, we have in total six combinations
of conditions that is formed from three different physiological electron donors (NADH,
NADPH and reduced ferredoxin) and two different relative gene expression data from solid
or soluble iron. For all these six combinations, MiNEA was done for the following tasks:

biosynthesis of all biomass building blocks, NADH, Fe(ll), lactate, hydrogen, butanol and
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reduced ferredoxin. A list of the metabolites for them significantly enriched subnetworks

were identified is shown in Table 5-1. It mainly includes amino acids, RNA and cross-linked

peptidoglycan. Interestingly, with all the three potential electron donors (NADH, NADPH and

ferredoxin) we can find enriched subnetworks for FAD and ATP synthesis in the presence of

solid or soluble iron. Besides of the synthesis of some amino acids, there is no difference

between the three potential electron donors. With solid iron, the production of NAD(P) and

NAD(P)H was also enriched with deregulated genes, showing that NAD(P)H is involved in iron

reduction and suggesting that it can be the potential physiological electron donor for Fe(lll)

rather than ferredoxin.

Table 5-1. List of enriched subnetworks by MiNEA. MiNEA was done by maximizing the formation of certain metabolites
using three potential electron donors (NADH, NADPH and ferredoxin) for Fe(lll) reduction. Underlined are the differences
between the potential electron donors within either solid iron reduction or soluble iron reduction. The model was

constrained with glucose and Fe(lll) fluxes

Physiological electron donor for
Fe(lll) reduction

Metabolic tasks for them enriched subnetworks were identified

Solid Fe(lll) as electron acceptor

NADH NAD(H), NADP(H), acetyl-CoA, CoA, FAD, ATP, dATP, dGTP, RNA, crosslinked
peptidoglycan, histidine, isoleucine, leucine, threonine, tryptophan, valine

NADPH NAD(H), NADP(H), acetyl-CoA, CoA, FAD, ATP, dATP, dGTP, RNA, crosslinked
peptidoglycan, histidine, isoleucine, leucine, threonine, tryptophan, valine,
phenylalanine, thymine

Ferredoxin NAD(H), NADP(H), acetyl-CoA, CoA, FAD, ATP, dATP, dGTP, RNA, cross-

linked peptidoglycan, histidine, isoleucine, leucine, threonine, tryptophan,
valine, phenylalanine, thymine

Soluble Fe(lll) as electron acceptor

NADH

FAD, ATP, dATP, dGTP, RNA, cross-linked peptidoglycan, threonine,
tryptophan, valine, menaquinone, arginine, proline, serine, glutamate,
glycine, citrulline, thymine

NADPH

FAD, ATP, dATP, dGTP, RNA, cross-linked peptidoglycan, threonine,
tryptophan, valine, menaquinone, arginine, proline, serine, glutamate,
glycine, citrulline, methionine

Ferredoxin

FAD, ATP, dATP, dGTP, RNA, cross-linked peptidoglycan, threonine,
tryptophan, valine, menaquinone, arginine, proline, serine, glutamate,

glycine, citrulline, glutamine, leucine

We analyzed the enrichment of NADH, Fe(ll), lactate, hydrogen, butanol and reduced

ferredoxin subnetworks in more details. We enumerated all the alternative minimal
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subnetworks for maximum production of each of these metabolites. Figure 5-7 shows number
of alternative subnetworks in different conditions. As it can be seen, NADH has the most
flexible biosynthesis among these metabolites due to the large number of alternative
subnetworks. It should be noted that the difference in number of alternative subnetworks
between two conditions is only because of the difference in the imposed lower and upper
bound on uptake fluxes of glucose and Fe(lll) and upper bound on the uptake flux of by-
products. Figure 5-8 indicates sizes of minimal subnetworks. More parts of the system are
involved in NADH synthesis, and lactate, H, and Fe(ll) need smallest number of reactions for
their biosynthesis. In Figure 5-9, number of core reactions (common reactions among all
alternative subnetworks) are shown for all metabolites in different conditions. we can see
that reduced ferredoxin has only one alternative subnetwork and all of the reactions are core
reactions. For almost all other metabolites, when solid iron is provided the number of core
reactions are less compared to when soluble iron is provided. It shows that biosynthesis of
these metabolites can be more divergent with solid iron. Finally, figure 5-10 indicates the
percentage of deregulated core reactions. As it can be seen in Table 5-1, only NADH
biosynthesis among these six metabolites is significantly deregulated. However, single
reactions within subnetworks are deregulated and it can give a hint for the importance of
these metabolites in Fe(lll) reduction. The highest amount of upregulated core reactions is in
the case of maximized NADH production (Figure 5-10). That is the case for assuming NADH,
NADPH or ferredoxin as electron donor. Hence, this result gives more evidence that NADH is
the most probable physiological electron donor of Fe(lll) reduction. As stated before, other
metabolites have also deregulated reactions in their subnetwork. For instance, we can see in
Figure 5-10 that Fe(ll) and H; have more deregulated reaction with solid iron compared to
soluble iron. We show the deregulated core genes and corresponding reactions for Fe(ll), Ha,
butanol and lactate biosynthesis with NADH as electron donor in Table 5-2. These deregulated
genes show what parts of production of these important by-products and cofactors are

affected by providing Fe(lll) for the cell.
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Soluble iron Solid iron

Fe2

H2

Lactate

NADH

Reduced Ferredoxin

Butanol 7y Y 4 12 12 12
NADH NADPH Reduced NADH NADPH Reduced
Ferredoxin Ferredoxin

Figure 5-7. Number of alternative minimal subnetworks in different conditions.

Soluble iron Solid iron
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Fe2 7 27 Fid 26 26 25
H2 28 28 28 3 ") 1
Lactate 27 27 21 27 27 27
NADH
Reduced Ferredoxin 38 £ £
Butanol 41 41 41
NADH NADPH Reduced NADH NADPH Reduced
Ferredoxin Ferredoxin
Figure 5-8. Sizes of alternative minimal subnetworks in different conditions.
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Reduced Ferredoxin
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Butanol

NADH NADPH Reduced NADH NADPH Reduced
Ferredoxin Ferredoxin

Figure 5-9. Percentage of common reactions between alternative minimal subnetworks in different conditions.
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Soluble iron Solid iron

Fe2 4 4 4 12 1 12 0
10
H2 4 4 4 L] 10 10 10
25
a
Lactate 4 4 4 8 8 8
T 20
-]
15
Reduced Ferredoxin 5 5 3 5 15 15 15
4
Butanol 3 3 3 10
3
NADH NADPH Reduced NADH NADPH Reduced
Ferredoxin Ferredoxin

Figure 5-10. Percentage of deregulated common reactions in different conditions.

Table 5-2. Up and down regulated genes and corresponding reactions for the biosynthesis of metabolites that are enriched
with deregulated genes when NADH is used as electron donor. Essential genes are those genes that are present in all
alternative minimal subnetworks and substitutive genes are those genes that are present only in a subset of alternative
minimal subnetworks. e and c after the names of some metabolites show that they are extracellular or cytoplasmic,
respectively

Fe(Il) synthesis with Solid Fe(lll) as electron acceptor

CAC0682 (essential) NH;_e <=> NH4_c
CAC0711 (essential) glyceraldehyde triphosphate <=> dehydroxy acetone phosphate
CAC2018 (essential) H,0 + oxidized ferredoxin + glyceraldehyde triphosphate <=>

3phosphoglycerate + 3 h + reduced ferredoxin

H, synthesis with Solid Fe(lll) as electron acceptor

CACO0682 (essential) NH4_e <=>NH4_c
CACO0711 (essential) glyceraldehyde-3-phosphate <=> dehydroxy acetone phosphate
CAC2018 (essential) H,0 + oxidized ferredoxin + glyceraldehyde-3-phosphate <=>

3phosphoglycerate + 3 h + reduced ferredoxin

CAC1673 and CAC1674 NADP + 2 L-glutamate <=> H+ + NADPH + L-glutamine + 2-oxoglutarate
(substitutive)

CAC2658 (substitutive) nh4 + ATP + L-glutamate <=> H+ + phosphate + ADP + L-glutamine

CAC3112 (substitutive) ATP + AMP <=> 2 ADP

Butanol synthesis with Solid Fe(lll) as electron acceptor

CAC0682 (essential) NH4_e <=>NH4_c

CAC0711 (essential) glyceraldehyde-3-phosphate <=> dehydroxy acetone phosphate
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CAC1348 (essential) D-fructose 6-phosphate + glyceraldehyde-3-phosphate <=> D-erythrose4-
phosphate + D-xylulose 5-phosphate

sedoheptulose7-phosphate + glyceraldehyde-3-phosphate <=> D-xylulose
5-phosphate + D-ribose-5-phosphate

CAC1347 (essential) sedoheptulose7-phosphate + glyceraldehyde-3-phosphate <=> D-fructose
6-phosphate + D-erythrose4-phosphate

CAC2658 (essential) NH4 + ATP + L-glutamate <=> H+ + phosphate + ADP + L-glutamine
CAC2708 (essential) NAD + (S)-3-hydroxybutyryl-CoA <=> NADH + H+ + acetoacetyl-CoA
CAC3112 (essential) ATP + AMP <=> 2 ADP

CAP0O035 (essential) NAD + CoA + acetaldehyde <=> NADH + H+ + acetyl-CoA

Lactate synthesis with Solid Fe(lll) as electron acceptor

CACO0711 (essential) glyceraldehyde-3-phosphate <=> dehydroxy acetone phosphate

CAC2018 (essential) H,0 + oxidized ferredoxin + glyceraldehyde-3-phosphate <=>
3phosphoglycerate + 3 H+ + reduced ferredoxin

Fe(Il) synthesis with Soluble Fe(lll) as electron acceptor

CACO0532 and CAC0570 (essential) | phosphoenolpyruvate + glucose_e <=> pyruvate + glucose 6-phosphate

H; synthesis with Soluble Fe(lll) as electron acceptor

CACO0532 and CAC0570 (essential) | phosphoenolpyruvate + glucose_e <=> pyruvate + glucose 6-phosphate

Butanol synthesis with Soluble Fe(lll) as electron acceptor

CAC0532 and CAC0570 (essential) | phosphoenolpyruvate + glucose_e <=> pyruvate + glucose 6-phosphate

Lactate synthesis with Soluble Fe(lll) as electron acceptor

CACO0532 and CAC0570 (essential) | phosphoenolpyruvate + glucose_e <=> pyruvate + glucose 6-phosphate

5.5 Conclusion

In this chapter, we used a reconstructed genome-scale metabolic network of C
acetobutylicum to study the mechanisms behind iron reduction in this model organism. Our
computational studies were validated by comparing our results with experimental growth
rate and metabolite concentrations data. Our work shows the importance of using
computational models as a platform to integrate experimental metabolomics and

transcriptomics data to better understand the behavior of cells in different conditions. The
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usage of experimental data helped us to understand important reactions, genes and
subnetworks that are involved in iron reduction. In addition, we indicated that providing iron
for the cell could affect different aspects of metabolism, even those parts that are not
obviously related to iron reduction or fermentation. We showed that synthesis of ATP and
FAD are significantly affected in all conditions. The mechanism of iron reduction is not
perfectly known in C. acetobutylicum. Our results showed that with NAD(P)H as cofactor for
iron reduction, ATP synthesis is more in agreement with experiments. In addition,
biosynthesis of NADH is highly affected when Fe(lll) is provided for the cells. Therefore, our
analysis suggests that NAD(P)H is the potential physiological electron donor in process of iron
reduction. In conclusion, this systematic evaluation of metabolism using genome-scale
metabolic model helped us to have a better understanding of metabolic changes during iron

transfer and reduction by Clostridium actebotylicum.
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6 Conclusions and perspectives

In this thesis, we had mainly three perspectives i) investigating the computational methods
and objective functions that have been used in the study of metabolism in both biological and
mathematical points of view; ii) developing a novel method for analysing complex cellular
objectives for metabolic models with integer variables; and iii) use known and novel
computational methods for analysing metabolic models of specific organisms for different
purposes.

In the second chapter of this thesis, a repository of objective functions and optimization
methods has been built based on the well-known or recent research studies of metabolic
network modelling. We made a classification system based on the type or purpose of studies.
Our work shows how optimization methods have been evolved to better capture the
complexities of biological systems. For instance, metabolic engineering methods started from
simple single gene knock-out studies, to systematic evaluation of effect of single or multiple
gene knock outs on the production of desired metabolites. It goes further to assess not only
the effect of gene knock outs but also gene over or under expressions on production yield. In
addition, the advancement in computational strategies made it possible to integrate different
kind of experimental data into metabolic network models and hence have the models that
encapsulate more aspects of metabolism and can make more accurate predictions. In
addition to reviewing biological aspects of strategies for analysis of metabolic networks, we
have also proposed several mathematical reformulations to transform complex optimization
methods to simpler problems that can be solved to global optimality. Particularly, we
analysed the conversion of fractional programming to linear programming both with and
without integer variables and bi-level programming to single-level programming. Moreover,
we provided some strategies for solving multi-objective problems. Our work made a
comprehensive platform to formulate and solve more complicated problems with several
simple or complex objectives in the future. This is especially necessary to analyse more

complicated metabolic activities to better understand the metabolic behaviour of more
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complex organisms such as eukaryotes or less known ones such as bacteria or parasites in
dormant phase.

One of the important features that make the study of metabolic networks difficult is the
interconnection of different elements of these networks. In other words, one metabolite can
be involved in so many reactions and therefore the activities of reactions are not independent
of each other. Flux coupling analysis is a computational method to study these flux
dependencies in metabolic network models (8). It is originally formulated for FBA-based
models with no integer variables. However, integer variables are now an important part of
optimization methods in metabolic network modelling. They are mainly used for turning on
and off different variables such as metabolic fluxes and are extremely important in metabolic
engineering studies. In chapter three of this thesis, we developed a new general formulation
for metabolic models that consists of integer variables and have a fractional objective
function. We then, used this general formulation for the specific problem of calculating flux
coupling analysis in thermodynamically constrained metabolic network models (5), which we
called TFCA. We studied the effect of introducing thermodynamic properties on flux coupling
relationships on a reduced E. coli model. We introduced the concept of conditionally
directionally coupled reaction pairs to emphasize the effect of having different physiologies
on reaction dependencies. We showed that number and therefore, combination of BDRs is
reduced because of having reaction pairs that are conditionally coupled to each other. By
making FDP trees based on conditionally coupled reaction pairs, one can realize which
reactions have the most important role in dictating directionality of other reactions. In future
studies, this feature of TFCA can be used for guiding researchers to more realistically select
for the suitable FDP in the study of metabolism specially for kinetic models. This is particularly
important, since kinetic models of metabolism already involve large number of parameters
and reducing the complexity of metabolic model under study can facilitate the kinetic
analysis. A very important follow-up study for TFCA is proposing genetic modification
strategies to couple the production of a metabolite of interest to a target flux in the network
such as biomass flux. This is previously done for Flux-balanced models of metabolism (109).
However, the proposed method does not capture the thermodynamic properties of reactions.
In order to get thermodynamically feasible and therefore more reliable metabolic engineering
strategies one can use TFCA to couple desired products with the flux of interest in the model

by identifying proper gene knock-outs, over-expressions or under-expressions. In general,
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based on the proposed strategies in chapter two and three of this thesis, one can extend any
method that is only beneficial for stoichiometrically balanced models to be used for the study
of thermodynamically constrained models. One of the interesting ideas for doing so is to have
Optknock (20) framework for TFA models. This is mathematically challenging because of the
bi-level nature of the problem and the fact that both inner and outer levels of the problem
include integer variables. However, it can give us promising engineering strategies, since
thermodynamic feasibilities of the solutions are ensured in advance with the way the problem
is formulated. Since these problems are examining the metabolism from different aspects,
the comparison between the result of this study with the study of forcing coupling relations
in TFA models can give an idea of the performance, efficiency and usefulness of different
engineering methods.

The aim of fourth chapter of this thesis, is to analyse malaria parasites in the dormancy phase.
It is a poorly characterized stage in parasite life cycle and the biological goal of parasite in this
stage is not known. However, some information about dormancy are proposed before which
are known as hallmarks of dormancy. We used these information in addition to several
potential objective functions in order to study the cellular objectives of dormancy which leads
to better understanding of metabolic behaviour of parasite in this phase. Our results
suggested that among all the objective functions that we tested, dormant parasites aim to
minimize their energy dissipation. Minimization of energy dissipation could better capture
up-regulation and down- regulation of metabolic genes in the dormancy phase compared to
other objective functions. Some of the current drugs for malaria parasite are targeting protein
synthesis pathways. However, our analysis suggest that these genes are already down-
regulated in the dormancy phase. Hence, for future drug targeting it is important to take this
into account and prevent using drugs that may trigger entering the dormancy phase. Instead,
combination of drugs that can attack appropriate genes in both non-dormant and dormant
parasites can be most effective. For future follow-up study of chapter four, one can analyse
the essential genes toward the objective function that can best describe this phase. Since the
objective function is not growth, essentiality here does not mean growth reduction and
lethality. It shows the increase in total dissipated energy if a single gene is knocked out. One
of the most important steps toward improvement of this study is the reconstruction P. vivax
genome-scale model, which is one of the plasmodium species that is actually going through

the dormancy phase and the experimental data that is used here belongs also to this parasite.
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Moreover, from the repository of objective functions from chapter two of this thesis,
additional single or combinations of objective functions can be examined for the dormant
parasite. Finally, since little information is available for the dormancy phase in general, the
framework that is presented in chapter four can be used for the study of dormancy in other
organisms such as Mycobacterium tuberculosis.

In chapter five of this thesis, we aim to characterize the mechanism of iron reduction in
Clostridium acetobutylicum using experimental gene expression and metabolite
concentration data. It is shown that this anaerobic gram positive bacterium is able to reduce
Fe(lll) in solid or soluble phase, but the involved enzymes and active pathways are not
determined. Our results suggest that NAD(P)/NAD(P)H play a role in iron reduction and most
probably are physiological electron donors for Fe(lll). In addition, we identified up-regulated
biosynthesis pathways for several metabolic tasks using MiNEA framework (19). For future
studies, one can analyse essential genes and reactions for iron reduction process and suggest
gene-knock out strategies to increase iron reduction. In addition, redGEM (131) and
lumpGEM (132) can be used to focus the study of C. acetobutylicum metabolism around the
iron reduction, solventogenesis and other subsystems of interest.

In this thesis, we discussed known and novel computational methods for the study of cell
metabolism and evaluated the performance of these methods on metabolic network models
of several organisms. The increasing availability of experimental data elevate the need for
having appropriate methods to integrate these data to genome-scale models and improve
the obtained computational results. In this thesis, we used gene expression and metabolite
concentration data for different purposes. Strategies and methods proposed in this thesis can

be applied on any metabolic network model for the same or different research purposes.
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7 Appendix

Table 7.1

L Consistency
Objective Type of Objective Type of Problem Goal of Study with This
Function Formulation

P [ mip | P [P [ mioP | aff [ Mo® [ P [ MIlP | LFP [ QP [ MIQP | QFP [ MO | BL® [ Phys' [ App* | DI* | NRN! RN:

References

Max. biomass
(growth rate)

*

*

(5,28,84,159-184)

Max. ATP yield

(ATP flux divided * & * * & (185)
by substrate flux)
Max. ATP per flux

unit (ATP flux " " N * (36)

divided by sum of
fluxes)

Max. ATP
production

(32,47,48,186-199)

Max. number of
reactions whose
activity is

(17,35,200-202)

8 Multi-objective
9 Bi-level

1 Physiology
Application
Data Integraticn

0
1

1
1
1
1

No reformulation is needed
Reformulation4s needed
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consistent with
their expression
state

Min. the
inconsistency
between gene

expression and
flux values

(81,201,203-206)

Min. the number
of reactions that
can carry flux and
produce a specific
set of metabolites

(19)

Max. the
consistency
between relative
experimentally
observed changes
in gene
expression and
metabolite
changes with the
flux levels

(83)

Outer: Max.
bioengineering
objective
Inner: Max.
biomass

(20,68,207-214)

10

Outer: Max.
bioengineering

objective and
Min. (weighted)

number of gene

(99)
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deletions or over-
expressions
Inner: Max.
biomass

1

[

Min. distance
from a given flux
vector

(7,56,63,64,78,89,1
01,102,121,156,16
8,198,215-226)

12

Min. the number
of significant flux
changes

(33,222,227)

13

Max. sum of a
subset internal
fluxes

(199)

14

Min. the
difference
between fluxes
(whole flux vector
or parts of it) and
Min. the total
sum of square of
fluxes

(79,228)

1

w

Min. the total
(weighted) sum
of absolute fluxes

(38,51,78,229-234)

16

Min. the number
of active
reactions

(49,50,54,235)

17

Min. the set of
possible
exchanged
metabolites
between two
organisms

(55)
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18

Outer: Max. the
similarity with
fluxomics and
metabolomics

data
Inner: Min. the
squared sum of

fluxes

(106)

19

Max. biomass
divided by
squared sum of
fluxes

(185)

20

Outer: Max.
community
growth (or any
community-level
objective)
Inner: Max.
species growth
(or any species-
level objective)

(44)

21

Max. ATP yield
per unit of flux
(sum of squared
fluxes)

(185)

22

Outer: Max.
bioengineering
objective
Inner: weighted
Max. of biomass
and Min. of sum
of fluxes

(80)
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23

Min. the
metabolite
turnover

(236)

24

Max. the
weighted sum for
patterns of gene

activation and
inactivation

(82)

25

Max. the
production of a
specific
metabolite

(31,65-
69,77,104,185,191,
229,237-260)

26

Min. the total
sum of square of
fluxes

(53,261)

27

Max. the rate of
protein
translation

(262,263)

28

Max. biomass
divided by a
weighted sum of
square of fluxes
and square of ATP
production flux

(264)

29

Outer: Min. the
Euclidean
distance between
flux predictions
and
experimentally
observed fluxes
Inner: Max. the
weighted sum of

(15)
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multiple linear
objectives

30

Min. (weighted)
number of
reactions to be
added to the
model

(21,90,108,265-
268)

31

Min. the number
of reactions that
must be removed
from the model

(90)

32

Max. the
presence of high-
score reactions
and Min. the
presence of low-
score reactions in
an organism
specific model

(267)

33

Outer: Max.
minimum
bioengineering
objective
Inner: max.
biomass

(91)

34

Outer: min
number of knock
ups/downs/outs

Inner: max.

bioengineering
product

(94,269,270)
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35

Max. growth
Max. production
of byproducts

(30,66,92,93,100,2
10,224,225,234,27
1-287)

36

Max. biomass
Min. substrate
consumption
Min. undesired
byproduct
production

(288)

37

Min. uptake of a
specific substrate
Max. production
of a specific
substrate

(289)

38

Max. the uptake
of a specific
substrate

(67,290,291)

39

Min. absolute
sum of fluxes
Min. deviation of
log
concentrations of
metabolites from
their
experimentally
measured values

(292)

40

Min. the absolute
difference
between
measurements
and predicted

fluxes multiplied

(293)
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by a scaling
variable

Min. the L1-norm
distance between
relative estimates

of metabolite
secretion/uptake

and predicted

fluxes
Min. absolute
sum of fluxes

41

Min. (squared)
sum of fluxes
Max. biomass

(18,64,72,76,198,2
22,232,239,251,28
0,294-303)

42

Max. growth,
Max. ATP
production
Min. the total
abundance of
metabolic
enzymes
Min. the carbon
uptake

(73)

43

Outer: Max.
bioengineering
objective
Inner: Min.
bioengineering
objective

(95,96)

44

Inner: Max. the
cellular objective,
Outer: Min. the
squared sum of

(304)

122




differences
between
predictions and
measured fluxes
and the number
of reactants and
products in the

45

inferred reaction
Inner: Min. the
uptake rate of a
specific
metabolite
Outer: Max. the
uptake rate of the
similar metabolite

(305)

46

Max. growth,
Max. demand flux
for metabolites
with increased
concentration,
Min. demand flux
for metabolites
with decreased
concentration

(88)

47

Min. the number
of reactions that

connect an
extracellular
metabolite to the
core

(306)

48

Max. production
of virulence

factors (definition

(307)
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similar to
biomass)

49

Max. flux through
symbiosis
reaction
(definition similar
to biomass)

(275)

50

Max. weighted
sum of secretion
of biomass
building blocks
and
Min. weighted
sum of number of
added reactions
to the model

(308)

51

Max. the non-
growth
associated
maintenance

(68,309-311)

52

Min. the sum of
deviation from
mass action
kinetics and
deviation from
reference fluxes
due to SNPs

(85)

53

Inner: Max.
biomass
Middle: Min. the
upper bound of
pyruvate kinase,

(312)
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Outer: Min. flux
through lactate
dehydrogenase?

54

Inner: Min. the
production of the
specific product
Outer: Min. the
number of
reaction
knockouts

(96)

55

Max. the usage of
reactions in host
to simulate the

maximum

metabolic
exploitation of

pathogen

(235)

56

Min. the L1 norm
of slack variables
for the reactions
(lower and upper
bounds calculated
based on gene
expression data)

(313)

57

Min. photon
usage
Min. sum of
fluxes
Max. biomass

(314)

58

Min. number of
reaction

(315)

1 This is a tri-levél optimization.
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knockouts (static)
and regulated
valves (dynamic)
to allow switching
between
two distinct
metabolic
phenotypes

59

Min. weighted
sum of fluxes and
violation of
reaction bounds
from
experimental
measurements

(86)

60

Outre: Max.
growth
Inner: Max. ATP
maintenance

(316)

61

Max. the
minimum lower
bound of driving

force of all
reactionsin a
pathway

(317)

62

Max. the absolute
value of reaction
fluxes

(318)

63

Outer: max.
turnover rate of
bioengineering

product

(318)
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Inner: max.
biomass

Max.
(combination of

64 all) metabolic
tasks (specific to a
tissue)

Min. variation
between flux

(22,319-322)

prediction and
65

the flux
calculated from
proteomics data
Max. a sink
reaction of

(37)

66

measured
metabolites with
their
concentrations as
stoichiometric
coefficient
Min. the
difference

(323)

67

between
experimentally
constrained and
unconstrained
model and Min.
the number of
constraints and
Max. a

biologically

(87)
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meaningful
objective

68

Max. biomass
Min. sum of
absolute values of
all fluxes
Min. flux
differences
between two
conditions

(324)

69

Min. difference
between
predicted and
estimated flux
values
Max. flux of ATP
maintenance
reaction
Min. squared sum
of fluxes

(325)

70

Min. number of
reactions in the
media

(34,55,235,306,326
)

71

Max. consistency
score with
expression data

(326,327)

72

Max.
(community)
biomass
Min. substrate
uptake

(46,56
59,240,274,310,32
8)

73

Max. biomass

(34)

128




Min. number of
uptakes
Max.
consumption of
specific
metabolite

74

Max. biomass
Min. number of
uptakes
Max. secretion of
specific
metabolite

(34)

75

Min. substrate
uptake

(45,60,196,329)

76

Max. biomass
Max. ATP
production

(239,261,330)

7

~

Max. biomass
Max. NAD(P)H
production

(239)

78

Max. the ratio of
biomass
production rate
to the substrate
uptake rate

(29,185,331)

79

Max. biomass
Min. NAD(P)H
production or
consumption

(61)

80

Outer: Min. the
difference
between kinetic

(332)
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and FBA growth
rates
Inner: Min.
squared sum of
fluxes and
maximizing
biomass

81

Max. biomass
Max. ATP
production
Max. production
of specific
metabolites
Min. sum of
absolute fluxes

(71)

82

Max. biomass
Max. production
of a specific
metabolites
Min. (squared)
sum of fluxes

(333,334)

83

Max. biomass
Max (or min).
specific
metabolite
secretion
Max. specific
substrate uptake

(335)

84

Outer:
combination of
Min. maximum

biomass

(116)
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Max. maximum
production of
specific
metabolite
Min. number of
knockouts
Inner: Max.
biomass

85

Min and Max. flux
ratios

(8)

86

Outer: Min.
biomass
Inner: Max.
biomass

(21,70)

87

Max. weighted
sum of biomass
fluxes
Min. square of
growth rate of
each species

(46)

88

Max. ATP
hydrolysis
Min. weighted
sum of substrate
uptakes

(336)

89

Max. biomass
Max. ATP
production
Max. production
of specific
product

(337)
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90

Max. combination
of internal fluxes
Max. biomass
Max. uptake of
specific
substrates
Max. Secretion of
specific products

(338)

91

Max. ATP
production
Min. total sum of
fluxes

(74)

92

Max. ATP
consumption

(339,340)

93

Min. number of
metabolite
turnovers

(222)

94

Min. flux through
drug affected
reaction
Max. biomass
Max. sum of
fluxes

(294)

95

Max. ATP
production
Max. NADP to
NADPH
conversion

(341)

96

Max. total amino
acid content of
the whole
community

(342)
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97

Max. sum of
production of
specific
metabolites in
community

(247)

98

Max. biomass of
different
microbial species
Min. total sum of
fluxes

(197,343,344)

99

Max. biomass of
different
microbial species

(42,43,345-357)

100

Max. NADPH
production rate

(105)

101

Max. NADPH
generation from
one pathway and

min. NADPH
generation from
another pathway

(289)

102

Max. product
yield
Min. number of
added reactions
to have that yield

(98)

103

Max.
bioengineering
objective
Min. number of
added reactions
to have that
production

(97)
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(MetaboAnalyst online tool, MetaboNetworks toolbox in MATLAB, analysis of reporter reactions using COBRA
toolbox in MATLAB, and R).

e  Built a novel MILP-based method for linking metabolomics data to the activity of metabolic pathways by using
metabolic network models and elementary flux mode analysis (MATLAB).

e Worked on comparing the iz silico and in vitro capabilities of two Bacillus species (Bacillus subtilis and Bacillus megaterium)
in order to investigate the accuracy of corresponding genome-scale models (MATLAB).

e  Developed a method for hierarchical organization of metabolic networks based on flux coupling analysis and the
association between different features of reactions with their level in hierarchical flux coupling graph (MATLAB and
R).

e Worked on comparative analysis of flux coupling analysis and flux correlation analysis to explain the inherent difference
of the two concepts in the field of metabolic network analysis (using MATLAB and R).

Research Assistant, Molecular Biotechnology Lab, Iran, Jul. 2012-Nov. 2012
e Worked on extracting lipase producing bacteria from different sources of soil in a metagenomics study.
Summer Intern, Kowsar Medical Genetics Lab, Iran, Jul. 2011-Sep. 2011

e Worked on DNA extraction, PCR, Gel electrophoresis, Analysis of DNA sequencing results, Primer design, etc.

Teaching Experience

e 3 years teaching assistant in Bioreactor modeling and simulation course in EPFL (used MATLAB to design different projects based
on ODE systems for modeling different types of bioreactors)

o 1 year teaching assistant in numerical methods in chemistry and introduction to chemical engineering courses in EPFL

Language

English: Fluent French: Basic German: Basic Persian:
Native

Technical Skills

e MATLAB, R, Python, C++
e  Statistical Analysis, Optimization Programming, Bioinformatics (handling and analysis of “omics” data)
e  Constrained-Based Modeling (FBA, FVA, FCA, Monte Carlo Sampling of metabolic models), Kinetic Modeling
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