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Abstract

In this thesis we study various one-dimensional quantum spin systems with SU(2) and
SU(N) symmetry. We investigate the short-distance behavior of the SU(2) Heisenberg
model in the limit of large spin and show that there exists an extended regime where
perturbation theory, in the form of spin-wave theory, can be successfully applied.
The reason for this perturbative regime stems from the asymptotic freedom of the
nonlinear sigma model onto which the Heisenberg model can be mapped. When
considering observables which respect the rotational invariance of the model, we
observe a cancellation of infrared divergences in the perturbative expansions, leading
to a meaningful description of correlation functions. We then turn to the study of
SU(N) models. Building on the representation theory of the SU(/NV) group and on the
matrix product state (MPS) formalism, we introduce a generic method to construct
Affleck-Kennedy-Lieb-Tasaki (AKLT) models having edge states described by any self-
conjugate irreducible representation (irrep) of SU(XN). A simple example is given by
a spin-1 AKLT model having spin-1 edge states. The phase transition between this
model and the original AKLT model is shown to be continuous and to correspond to a
topological phase transition described by the SU(2), Wess-Zumino-Witten conformal
field theory universality class. In addition we study an SU(3) AKLT model for the
3-box symmetric irrep at each site. We demonstrate that the edge states are adjoint
edge irreps, we extract its correlation length and provide a useful construction as an
optimal MPS. Finally, we develop a density matrix renormalization group algorithm
based on standard Young tableaus and subduction coefficients to make full use of
the non-abelian symmetry and to investigate the SU(3) Heisenberg model with 3-box
symmetric irrep at each site. We show that the model has a finite gap above the singlet
ground state, in agreement with an extension of the Haldane conjecture to SU(3) chains
in the fully symmetric irreps. We also argue that there are five branches of elementary
excitations living in four different irreps, each of which is gapped.

Keywords: condensed matter physics, one-dimensional quantum magnetism, Heisen-
berg model, nonlinear sigma model, SU(/V) symmetry, Affleck-Kennedy-Lieb-Tasaki,
Young diagram, standard Young tableau, Haldane’s conjecture, density matrix renor-
malization group, spin-wave theory, asymptotic freedom.
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Résumeé

Dans cette these, nous étudions différents modeles quantiques de spin avec symé-
trie SU(2) et SU(NV). Tout au long de ce travail nous nous concentrons sur le réseau
unidimensionel. Nous étudions le comportement a courte distance du modele de
Heisenberg SU(2) dans la limite de grand spin et démontrons qu’il existe un régime
étendu ou la théorie des perturbations, sous la forme de théorie des ondes de spin,
peut étre appliquée avec succes. Ce régime perturbatif trouve son origine dans la li-
berté asymptotique du modele sigma non-linéaire qui décrit le comportement a basse
énergie du modele de Heisenberg. De plus, nous démontrons que les divergences in-
frarouges qui apparaissent généralement dans les calculs perturbatifs a une dimension
se compensent exactement lorsque les observables considérées respectent la symétrie
de rotation du modele. En conséquence, les résultats obtenus pour les fonctions de
corrélations fournissent une description précise du modele a courte distance. Nous
nous penchons ensuite sur I'étude des modeles SU(NV). Apres avoir décrit en détails la
théorie des représentations du groupe, nous présentons une méthode générique pour
construire des modeéles Affleck-Kennedy-Lieb-Tasaki (AKLT) ayant des états de bord
décrits par une représentation irréductible auto-conjuguée arbitraire de SU(V). Nous
illustrons cette méthode avec la construction d'un modele AKLT de spin-1 ayant des
états de bord de spin-1. Nous étudions ensuite la transition de phase entre ce modele
et le modele AKLT original ayant des états de bord de spin-1/2. Nous démontrons
en particulier que la transition est continue et décrite par la classe d'universalité de
la théorie conforme des champs Wess-Zumino-Witten SU(2),. Cette transition est, a
notre connaissance, le premier exemple concret d'une transition de phase topologique
dans les chaines de spin. Nous présentons ensuite un modele AKLT SU(3) pour la repré-
sentation irréductible a trois boites symétriques sur chaque site. Nous démontrons que
les états de bord sont des représentations irréductibles adjointes, nous extrayons la lon-
gueur de corrélation de I'état fondamental et introduisons une construction optimale
en termes d’état de produit de matrices. Finalement, nous développons un algorithme
de renormalisation du groupe de la matrice densité basé sur les tableaux de Young
standards ainsi que sur les coefficients de subduction. Cela nous permet d'implémen-
ter la symétrie SU(3) dans l'algorithme afin d’étudier le modéle de Heisenberg SU(3)
avec la représentation irréductible a trois boites symétriques sur chaque site. Nous
démontrons que le spectre du modéle a un gap fini entre I'état fondamental singulet et
le premier état excité, en accord avec une extension de la conjecture de Haldane aux



Résumé

chaines SU(3) dans les représentations irréductibles totalement symétriques. En nous
aidant du modele AKLT associé, nous argumentons sur la présence dans le spectre
de cinq branches d’excitations élémentaires appartenant a quatre représentations
irréductibles différentes et donnant lieux a quatre gaps de Haldane distincts.

Mots-clés : physique de la matiere condensée, magnétisme quantique unidimen-
sionnel, modele de Heisenberg, modele sigma non-linéaire, symétrie SU(V), Affleck-
Kennedy-Lieb-Tasaki, diagramme de Young, tableau de Young standard, conjecture de
Haldane, groupe de renormalisation de la matrice densité, théorie des ondes de spin,
liberté asymptotique.
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Throughout this thesis, we will make use of the few following acronyms:
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|8 Introduction

The history of quantum spin models began in the late 1920’s and early 1930’s with
the work of Heisenberg, Bloch and Bethe who studied ferromagnetism in rigid one-
dimensional arrays of atoms with spin [1-3]. After nine decades of intense investiga-
tions, the Heisenberg model is still among the most prominent models in condensed
matter research. The main reason for this great success is the ability of the model
to actually describe accurately the low-energy behavior of a wide range of magnetic
compounds. In its simplest form, the Heisenberg model is simply given as an isotropic
interaction Hamiltonian between neighboring spins lying on a lattice. This interaction
stems from the overlap of the electronic wave functions which tend to align, or anti-
align, the dipole moments at each site. Alternatively the antiferromagnetic Heisenberg
model can be derived as the effective Hamiltonian in the Mott insulating phase of the
Hubbard model. This original isotropic form has been extended to more realistic and
sometimes more exotic systems making the interaction anisotropic, adding further
neighbor couplings or higher-order interactions, by putting the model in external fields,
by varying the spin value at each site or, more recently, by changing the symmetry
group defining the transformation laws of the local “spins”. All these modifications
are motivated, to some extent, by experimental realizations. In particular, the Heisen-
berg model and its numerous variants can describe different phases of matter, and
provide tools for understanding the relevant order parameters. Tackling analytically
the Heisenberg model is, however, a challenging problem, and exact solutions are only
known in very specific and limited cases, even on the simplest one-dimensional lattice.
In this respect, the Bethe ansatz remains one of the most famous exact solution in con-
densed matter physics [3]. Perturbation theory, field theory methods and bosonization
have proved to be extremely useful to tackle different aspects of the model. Besides
these approximation methods it appeared necessary to obtain exact, or nearly exact re-
sults, and to actually compute numerical values for some quantities. The spin models
thus nurtured the development of numerical methods such as exact diagonalization
(ED) [4, 5], quantum Monte Carlo (QMC) [6-8], density matrix renormalization group
(DMRG) [9-11] and, more generically, the tensor network based methods [12-14].



Chapter 1. Introduction

In this thesis, we study the Heisenberg model on the one-dimensional chain lattice.
Throughout the thesis we focus on isotropic models where the interaction between
spins respects the symmetry group under which these spins transform. The systems
under investigation can thus be called SU(2) symmetric, or SU(/N) symmetric, when
the spin operators belong to irreducible representations (irreps) of the SU(2) or SU(V)
groups, respectively!.

The SU(2) symmetry appears as the natural symmetry for electronic spins in metallic
compounds. In particular, the SU(2) symmetric one-dimensional Heisenberg model
is realized to very good approximation for several values of the spin S. For instance,
CuS0,-5D,0 is, above the Néel temperature where a transition to a three-dimensional
ordered state occurs, a very good realization of the isotropic spin-1/2 Heisenberg
model [15]. Ni(C,HgN,),NO,(ClO,), also known as NENP, has been used to investi-
gate the Haldane spin-1 chain, in spite of a small crystal field splitting term [16-18].
Another spin-1 chain compound is given by CsNiCl;, but the zero-temperature one-
dimensional physics is inaccessible because of a relatively high Néel temperature [19—
22]. The “large spin” chains also have their experimental realizations: spin-3/2 chains
are realized by compounds such as CsVCls, CsVBr3 or AgCrP,Sq [20, 23-26], the spin-2
chains by CsCrCl; and MnCl; [27-29] and, finally, spin-5/2 chains are obtained with
Mn?* ions in SrMn,V,0g [30]. The experimental investigation of the spin-S quasi
one-dimensional Heisenberg model became of major importance after Haldane con-
jectured that integer spin chains have a gap while half-odd integer spin chains are
gapless [31, 32].

Conversely, the SU(/V) symmetry does not exist as a stable symmetry in condensed
matter systems. It can appear, however, as an emergent symmetry in SU(2) spin mod-
els. For instance it is well-known that the one-dimensional bilinear-biquadratic spin-1
chain has a high-symmetry SU(3) point at equal bilinear and biquadratic couplings, the
so-called Uimin-Lai-Sutherland point [33-36]. Similarly, the Kugel-Khomskii model,
which describes the interaction of spin and orbital pseudo-spin operators, can be
rewritten as a simple SU(4) Hamiltonian for the fundamental representation [37, 38].
The material a-ZrCl; has recently been proposed to be a candidate realization for this
emergent SU(4) symmetry thanks to its strong spin-orbit coupling [39]. In fact, the
realization of SU(V) spin models now relies mostly on the manipulation of ultracold
atomic gases loaded in optical lattices [40-51]. Indeed when loaded in such lattices,
fermionic alkaline-earth atoms such as 1”3Yt or 'Sr can realize Mott insulating phases
of the SU(/N) Hubbard model, whose low-energy physics is governed by the SU(N)
Heisenberg model. The emergence of the SU(/NV) symmetry with NV up to 10 originates
from the decoupling of the nuclear spin I from the electronic angular momentum [43].
At 1/N filling the atomic gas in the Mott insulating phase realizes the SU(/V) Heisen-
berg model with NV < 27 + 1 for the fundamental irrep at each site. By using two-orbital

'In this thesis, by SU(N) we mean SU(N > 2).



fermions, namely by exploiting the metastable 3 P, excited state of the atom it is possi-
ble to implement irreps described by a Young diagram with up to two columns. More
complicated irreps, such as symmetric irreps described by a Young diagram made of a
single row and more than two boxes should be under experimental reach by using the
method applied for generating SU(2) spin-S degrees of freedom out of spin-1/2 atoms
loaded in different orbitals of the same optical well [52].

The SU(N) models offer a rich playground for exotic physics ranging from quantum
spin liquids, Bose-Einstein condensation and superfluidity to symmetry-protected
topological (SPT) phases. Moreover, the versatility of the optical lattices makes it possi-
ble to study the models in different geometrical configurations and, in particular, in the
one-dimensional geometry. This prospect has motivated a recent quest for extending
Haldane’s conjecture to SU(NV) chains, namely to discriminate between the models -
or, more precisely, the irreps — exhibiting gapless excitations from the ones where a
finite gap opens in the spectrum. The route followed to develop such conjectures is
essentially an adaptation of the work of Haldane for the SU(2) Heisenberg chain. From
a general perspective, the study of the one-dimensional SU(/N) Heisenberg model
simply consists in adapting the techniques which worked for SU(2) to the SU(XV) case.
This adaptation is, however, full of pitfalls. Numerically, the investigation of the SU(N)
models is complicated by the large local Hilbert space dimension carried by SU(V)
irreps. Moreover QMC is affected by the sign problem for N > 2 as soon as the number
of boxes in the Young diagram is larger than one. The DMRG, which was originally
specifically designed for one-dimensional systems, is the most promising method to
tackle SU(V) spin chains.

The thesis is organized in two independent parts. In the first part, Chapter 2, we
revisit the SU(2) Heisenberg model in the limit of large spin. Because of the Mermin-
Wagner-Coleman theorem, it is well-accepted that perturbation theory is useless in
one-dimensional spin systems with a continuous symmetry [53, 54]. We demonstrate
that the situation is less dramatic, and that meaningful results can actually be obtained
with perturbation theory, here in the form of spin-wave theory (SWT), in spite of the
absence of Goldstone bosons in one dimension. In a second part, Chapters 3-5, we
turn to the study of SU(/V) models. In Chapter 3 we introduce a number of notions
related to the SU(V) group by building on its relationship with the permutation (or
symmetric) group S,. This chapter simply aims at providing all tools required to
fully grasp the developments of the next two chapters, in particular Young diagrams,
standard Young tableaus (SYTs) and subduction coeffficients (SDCs). In Chapter 4
we present a generic way to construct SU(/V) Affleck-Kennedy-Lieb-Tasaki (AKLT)
models using Young diagrams and the matrix product state (MPS) formalism. The
construction being absolutely general, we illustrate it with an SU(2) example: a spin-1
AKLT state having spin-1 edge states. In view of Chapter 5 we also present in details
an SU(3) AKLT model for the 3-box symmetric irrep at each site. Chapter 5 is devoted
to the development of a DMRG algorithm making full use of the SU(3) symmetry

3



Chapter 1. Introduction

to investigate the 3-box symmetric Heisenberg model, with the aim of confirming
Haldane’s conjecture stating that the p-box symmetric SU(3) chain is gapped when
p is a multiple of three. Given the heterogeneity of the thesis, we begin and close
each chapter with a specific introduction and conclusion. Finally, in Chapter 6 we
summarize our results and bridge the two parts of the thesis. We also give an outlook
oriented towards the rapidly evolving field of SU(V) physics.

The material presented in this thesis has been, to a large extent, published in the three
following articles:

Chapter 2 Ref. [55]
Chapter 4 Ref. [56]
Chapter 5 Ref. [57]



4 Asymptotic freedom in the SU(2)
Heisenberg chain

The Haldane conjecture put forward by Haldane in 1983 was a revolution for the
understanding of the one-dimensional SU(2) Heisenberg model [31, 32]. According to
Haldane, the long-distance (or low-energy) behavior of the model is different for integer
and half-odd integer spin: when the spin is an integer, the spectrum is gapped with
exponentially decaying correlation functions, but when the spin is half-odd integer,
the spectrum is gapless with power-law decay of correlations. Since Bethe’s calculation
on the spin-1/2 Heisenberg model and the calculation of the dispersion relation by
des Cloizeaux and Pearson, it was well known that the spin-1/2 Heisenberg model is
gapless [3, 58], and it was generally and erroneously thought that the gapless spectrum
would occur for any value of the spin. Through the mapping of the spin chain onto a
field theory, the O(3) nonlinear sigma model (NLoM) with a topological term, Haldane
argued that the value of the topological angle governs the structure of the spectrum. In
fact, while the gapped spectrum of the NLoM with vanishing topological angle was
known thanks to the work of the Zamolodchikov brothers [59], it was not known if
the NLoM with a topological term was gapped or gapless. The spin-1/2 chain allowed
Haldane to guess the result, which was finally proven nine years later [60].

The approach followed by Haldane to understand the low-energy physics of the Heisen-
berg model came as a way out from the dead-end in which the community had been
stuck for several decades. Indeed, perturbation theory, the most common and widely
used method of quantum mechanics, is plagued with infrared (IR) divergences. This
is a consequence of the Mermin-Wagner-Coleman theorem, which forbids the break-
ing of continuous symmetries in one-dimensional spin systems, or equivalently in
(1 4+ 1)-dimensional quantum field theories [53, 54]. Any perturbative treatment of
the isotropic Heisenberg model falls under the scope of the theorem: the classical
ground state being the Néel state, quantum fluctuations should be introduced around
this symmetry-breaking state. This is however forbidden, and the manifestation of
this illegal explicit breaking of the rotation symmetry appears under the form of IR
divergences in the calculation of observables of interest.



Chapter 2. Asymptotic freedom in the SU(2) Heisenberg chain

A natural question arises in this situation: in light of Haldane’s conjecture and mapping
onto the NLoM to describe the physics of the Heisenberg chain, does the Mermin-
Wagner-Coleman theorem completely rule out the possible use of perturbation the-
ory ? In fact, as we will see in this chapter, there is something more to learn from
perturbation theory. We will show that perturbation theory can be reliably used in
the one-dimensional Heisenberg model, provided that we use it to answer a different
question than “what is the long-distance behavior of the spin chain ?”, and provided we
adopt a way of restoring the broken continuous symmetry. The developments rely on
a major property of the NLoM: it is asymptotically free [61-63]. Asymptotic freedom is
a concept more widespread in high-energy physics as it describes the weak interaction
of quarks at short distances. Here, we shall use the asymptotic freedom of the NLocM
to motivate the use of perturbation theory, and to show that the perturbative regime is
actually relevant to experiments.

The chapter is organized as follows. In Section 2.1 we illustrate the consequences of
the Mermin-Wagner-Coleman theorem on perturbative expansions in the spin chain
through a textbook example. We then present Haldane’s mapping of the Heisenberg
chain onto the NLoM and show that the model is asymptotically free by presenting
its renormalization group analysis. We further present Elitzur’s conjecture that rota-
tionnaly invariant quantities are IR finite in perturbation theory. We then turn to the
actual perturbative treatment of the spin chain in Section 2.2. We derive equal-time
(or instantaneous) and dynamical correlation functions using SWT. Finally, Section 2.3
contains a summary and an outlook of this chapter.

At this point one should mention that the dynamical structure factor was computed to
first order in perturbation theory by Takahashi using the modified SWT in Refs. [64,
65]. However neither the validity regime of the expressions was discussed, nor the
equal-time correlation functions and the cancellation of infrared divergences. The
content of the present chapter thus goes beyond Takahashi’s derivation, in particular
by understanding the consequences of asymptotic freedom on the spin chain.

2.1 Introduction

2.1.1 Failure of perturbation theory and the Mermin-Wagner-Coleman the-
orem

The Hamiltonian of the one-dimensional antiferromagnetic Heisenberg model with
spin S is given by
H=J> Si-Sin 2.1)

where the coupling constant J > 0 and where the spin operators S = (5%, Y, 5%)T
are the generators of the su(2) Lie algebra in the spin-S representation satisfying
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S? = S(S + 1). The classical ground state of Hamiltonian (2.1) is the Néel state where
nearest neighbor spins lie anti-parallel to each others. A perturbative treatment of the
quantum model consists in introducing small fluctuations around the classical ground
state. The Holstein-Primakoff (HP) transformation is a convenient way of introducing
such fluctuations with the use of bosonic operators, which generate the so-called
“spin-waves” [66]. We will go through this derivation in details in Section 2.2. Here,
let us simply illustrate what happens when computing, for instance, the staggered
magnetization. Choosing the z-axis as the quantization axis on which fluctuations are
introduced, one has 57 = S — ala; for site i in the A sublattice and S7 = —S + a/a;
for site ¢ in the B sublattice, where ai (a;) is a creation (annihilation) operator of a
HP boson at site i, and where we assume the total number of bosons a/a; < 25. The
staggered magnetization reads

Mstagg = Ni (Z CHEDY (Sf>> (2.2)

S \ieA i€B
where N, is the number of sites. One obtains

1
Mstagg = S — 7 3 (alai) (2.3)

S

And here is the “catastrophe” [61]: the second term in Eq. (2.3) is postive and IR
divergent. The staggered magnetization obtained with this calculation is thus negative
infinity.

This textbook example shows the manifestation of the Mermin-Wagner-Coleman theo-
rem. The rotation symmetry of the spin chain was explicitly broken in the perturbative
approach, since we selected the Néel state as the unperturbed ground state on which
quantum fluctuations are introduced. As a result of this forbidden symmetry breaking,
which is artificial and does not actually happen in the spin chain, an IR divergence
occurs in the first order correction to the staggered magnetization!. Going beyond
the fact that the continuous symmetry of the spin chain was broken from the very
beginning, one can interpret the divergence of the staggered magnetization as an
indication of the absence of long-range order. Indeed, in the HP transformation, we
assumed that the number of bosons is small, namely that the ground state is mainly
described by the Néel state. But from the calculation, <a3ai> is actually IR divergent,
contradicting the initial assumption.

The zeroth order is just the classical approximation.
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2.1.2 Mapping onto the O(3) nonlinear sigma model

Haldane showed that the spin chain Hamiltonian (2.1) can be mapped, in the limit of
large spin S, onto the O(3) NLoM with lagrangian density [31, 32]

_ v i 2 _ 2> i BY 4 .
£ = 5o (50000 = 0:0) + -0+ (0,6 % 0,0) 2.4
where the different parameters take the values®

g:E’ U:2JS, 9:27TS (25)

and where ¢ is an O(3) vector satisfying
¢ =1. (2.6)

This constraint makes the first part of the lagrangian density (2.4) interacting, although
at first sight it looks like three independent scalar fields. The second term in Eq. (2.4) is
topological as it can be rewritten as a total derivative. In fact, after Wick rotation to
Euclidean space one has [67]

Seop = / A2 Logp = i0Q 2.7)
where Q is the Pontryagin index
Q= /d%eﬂfqb (0 x Ok@) € Z. (2.8)

The fact that Ly, is a total derivative can alternatively be demonstrated by showing
that the variation of Siop vanishes under an infinitesimal transformation of the field ¢.
As such, the topological term has no effect in perturbation theory. The conclusions
drawn by Haldane, however, are non-perturbative by essence. When the spin S is
integer, the topological angle is an integer multiple of 27 and the topological action is
thus trivial. Since the NLoM (2.4) has a massive one-magnon branch [59], the rotation
symmetry is preserved and Haldane argued that the integer spin-S Heisenberg chain is
gapped?. For half-odd integer spin S, the topological angle # = 7 and, being aware of
the gapless spectrum of the spin-1/2 Heisenberg chain, Haldane conjectured a gapless
spectrum of the NLoM in this case. As a consequence, he assumed that the mapping
of the spin chain onto the NLoM was not only valid for large spin, but extended up to
the most quantum case of spin-1/2.

Let us now shortly discuss how the mapping can be obtained. A simple and intuitive

“The lattice spacing of the spin chain is set to unity throughout this thesis.
3“There are no Goldstone bosons in two dimensions” [54]. The continuous (rotation) symmetry is
preserved, or restored, by quantum fluctuations.

8
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route is to decompose the spin operators into slowly varying fields which describe the
low-energy modes. These low-energy modes appear, in SWT, close to momentum 0
and 7. We thus write [68]

S; ~ (—1)'S¢p +1 (2.9)

where ¢ is the staggered magnetization field and [ is the conserved spin density and
can be obtained as 1
l=—¢ x di¢. (2.10)
vg

As a consequence, the field I remains always orthogonal to the order parameter ¢.
Actually, a more accurate transformation is defined on two neighboring sites with [69]

#(2i+3)  Ssi—Saig1

— (2.11)
1 2@2i+d)  2y/8(S+1)
+ S
and .
12+ L 4 Sy
(2i + 3) _ - So; +2821+1' 2.12)
12(2i+1)
L+ 5550

These transformations have the advantage to implement correctly the constraint
S? = S(S + 1). Inserting these expressions into the Heisenberg Hamiltonian (2.1) and
performing a Legendre transform one obtains the lagrangian density of the NLoM in
Eq. (2.4).

Alternatively one can use a spin-coherent state path integral [67, 70]. The spin coherent
states |n) satisfy
(n|Sin) = Sn (2.13)

and can be explicitly expressed in terms of Schwinger bosons. The field n is then
decomposed as a sum of the order parameter ¢ and l. Integrating out the field  one
ends up with the action of the NLoM.

2.1.3 Renormalization group analysis of the nonlinear sigma model

The renormalization group analysis of the O(3) NLoM is due to Polyakov [61] who
made use of Wilson’s renormalization group method [71] to get the leading order term.
At two-loop the -function reads [61, 72]

1

) 3 4
Blg)= 59"+ ez O(g*) (2.14)
where q
g _
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The positive sign in the 5-function shows that the coupling constant g of the model
flows to large values at large length scales. In other words, the model is strongly
interacting at low energy and weakly interacting at short distance. This behavior,
known as asymptotic freedom, is also observed in quantum chromodynamics where
quarks confine at low energy but appear as nearly free particles at short distance [62,
63].

The crossover length scale ¢ from the weakly interacting to the strongly interacting
regime can be obtained from the g-function of the model [32]. Denoting by g, the
bare coupling constant, g; = O(1) the coupling constant at scale £ and integrating the
renormalization group equation (2.15) one has

g1 dg
In¢é = —. (2.16)
: 9 B(9)
Using the -function in Eq. (2.14) one obtains
€ x goe>™9 (1 + O(go)) - 2.17)

The proportionality factor is determined by the value of g; and is a priori not known.
An expression containing the first few higher order terms is computed in Appendix A
based on the 4-loop S-function [73] of the NLoM. Equation (2.17), however, contains
the important information. Taking g = 2/S as the bare coupling one gets

1 TS -1
§ox ge (1+0(57). (2.18)

The crossover length scale ¢ increases exponentially fast with the spin of the spin chain.
The corresponding energy scale A = v/¢ reads

Ao JS%e ™ (14+0(S7h) . (2.19)

In the Heisenberg spin chain, the crossover length scale ¢ and energy scale A cor-
respond to the correlation length and the gap, respectively, of the model when the
spin is integer. Exponential decay of correlations, namely the signature of the strong
coupling regime of the spin chain, is only observed at length scales far larger than &, or
equivalently at energy scale far below A. Showing the existence of a finite gap in the
integer spin chain for a large value of the spin is thus a challenging way of confirming
Haldane’s conjecture [8, 74, 75].

Despite the absence of a gap and correlation length when the spin is half-odd integer,
the length scale ¢ and energy scale A are still well-defined quantities. They are the
characteristic crossover length scale and energy scale which define the transition from
the weak coupling regime to the strong coupling regime.

10
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Figure 2.1: Crossover (a) energy scale A and (b) length scale £ versus spin S and fit to
the scaling formulas derived in Appendix A. The fits are rather poor for small values
of the spin but the exponential scaling is already observed beyond S = 2. Values for
integer spin are taken from Refs. [8, 74-76] and are denoted by filled circles. The values
for half-odd integer spin S > 5/2 are extracted from the fit and are denoted by empty
circles.

The large-distance, low-energy, behavior of the spin chain is thus governed by the
strong coupling regime of the NLoM, where the topological term plays a crucial role,
and determines the exact scaling of correlation functions: exponential decay for integer
spin and power-law decay for half-odd integer spin. At short distance, or high energy,
however, the spin chain is in the weak coupling regime. Integer and half-odd integer
spin chains are thus expected to have a universal behavior described by this weak-
coupling regime. If there is a way to obtain meaningful results with perturbation theory
in the weak coupling regime then these results would describe the Heisenberg chain
for any value of the spin. Now recall that the crossover length scale ¢ becomes very
large with increasing spin. For S = 2 itis £ ~ 49 while for S = 3 itis £ ~ 637 [8]. Thus
for S large enough, there is a large window of distances where the spin chain is in the
weak coupling regime. By contrast, for small values of the spin the crossover length
scale ¢ is very short and the weak coupling regime is too narrow to have a chance to be
observed. Figure 2.1 summarizes the numerical values of the crossover length scale
and energy scale of the Heisenberg chain together with the scaling formulas found in
Appendix A.

11
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2.1.4 Infrared finite perturbation theory in the NLocM

Although the weak coupling regime of the NLoM extends to very small energies ac-
cording to Eq. (2.19), it sounds a priori unfeasible to actually perform perturbative
calculations in this regime because of the Mermin-Wagner-Coleman theorem. The
solution, conjectured by Elitzur and rigorously proved by David, is to focus on O(3) in-
variant quantities [77, 78]. This is actually a natural way to proceed ! From the Mermin-
Wagner-Coleman theorem one knows that the ground state wave function respects
the rotation symmetry of the Hamiltonian. Any expectation value of a non-rotational
invariant quantity will vanish in the ground state, and only the symmetry-preserving
observables are relevant. Elitzur’s conjecture can be stated as follows*:

In the O(3) NLo M the vacuum expectation value of any O(3) invariant
observable is IR finite to any order in perturbation theory.

The conjecture was built based on the IR finiteness of the two and four-point functions
up to third and second order, respectively [77].

Given the mapping from the spin chain onto the NLoM, the IR finiteness of rotationally-
invariant quantities in the field theory and the extended perturbative regime for spin
large enough and governed by asymptotic freedom, it is natural to ask whether per-
turbative expansions can be performed, using SWT, in the Heisenberg model directly
and if meaningful expressions for the short distance behavior of the spin chain can
be extracted. Adapting the perturbative expansions obtained by Elitzur in the NLoM
allows us to get good insight into the behavior of the spin chain, but the procedure fails
at extracting accurately the physics at very short distance. This is due to the fact that
the NLoM needs to be regularized in the ultraviolet (UV). By contrast, the details of the
lattice are implemented in SWT and the UV cutoff is thus incorporated naturally in the
method. In the next sections we perform a second order analysis of the equal-time and
dynamical correlation functions at zero and finite temperature using SWT and show
that the relevant quantities are IR finite in the perturbative regime set up by asymptotic
freedom.

2.2 Spin-wave theory

The material presented in this section has been exposed in great details in Ref. [55].
Here we follow closely this article, sometimes adapting the notations for more unifor-
mity throughout the thesis. Additionally we present an alternative method to derive
the equal-time correlation function from the ground state energy of a modified Hamil-
tonian.

“The conjecture actually applies to the O(n) NLoM where the order parameter ¢ is an n-dimensional
unit vector [77].

12



2.2. Spin-wave theory

To perform perturbative expansions using SWT we first rewrite the Hamiltonian, using
the HP transformation, in terms of bosonic operators — the HP bosons. To simplify the
procedure we first operate a rotation of 7 along the x axis for all spins living on the B
sublattice. Denoting by S, the rotated spins, with S;=S,, i € Aforthe spins of the A
sublattice, the HP transformation reads

S =28 £:(S) ai, (2.20)
57 =v25d! £;(9), (2.21)
S7 =8 —ala;, 2.22)
where
T
£:(8) =/1— aggl 2.23)

and where the bosonic opertors a;, %T satisfy
[a;, al] = 6. (2.24)

Making the assumption of small fluctuations around the ordered Néel ground state
fi(S) can be expanded in powers of 1/S. To first order we have

T

, 1 90 -2
fi(S) =1 T O(S™73). (2.25)
Hamiltonian (2.1) then becomes
H=HO+H® vV (2.26)
where
HO) = —JN,S? (2.27)

is the classical ground state energy, %(? is quadratic in bosonic operators

H® = J$ S (ala; + ala; + aia; + alal) (2.28)
(ig)

where (ij) denotes nearest neighbor pairs of sites, while V contains all interacting
terms which are suppressed by higher ordersin 1/5

V=H® 44O 4 | (2.29)

with H(?%) an interaction which contains 2k bosonic operators and which is O(5%~%).

13
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In particular, the first order interaction #(*) = ©(S°) is given by

gz (alaiaiaj + h.C.) JZ a; a La;a (2.30)
(i)

HE) — _

In what follows we neglect all higher order terms in 1/.5, namely we approximate
H=HO+HD + 1D + OS5~ 1O 4 3O 4 3@ 2.31)
We thus treat the model to first order in nonlinear SWT (NLSWT).

The quadratic Hamiltonian #(?) can be diagonalized with Fourier and Bogoliubov
transformations. The Fourier transformed HP bosons are given by

1 —ikr; T ikr;
ai = E e "ias, a g e Ja (2.32)
VNs 5 I ko \/

where r; = j is the position of the j-th spin. After Fourier transformation the Hamilto-
nian reads

1
12 — Z [Ak a;rgak — in (a,taik + aka_k)} (2.33)
k
where
A =2J8, B, = —2J S, vp = cosk (2.34)
and
1 -
H&D — ﬁ Z = (akl+k2+k3ak1ak2ak3 + h. C)
vl ) (2.35)
+ j{: 52(k1>k3)azla22ak3ak1+k2—k3
8 ki1,ko,ks
with 7
El(/ﬁ) = —5 Yk s EQ(kl, /{3) = _J'7k1—k3- (236)

Performing the Bogoliubov transformation

DGk e
K kU a_y

with coefficients u; and vy even functions of momentum £ satisfying
up —vi =1 (2.38)

in order to ensure the commutation relations of the Bogoliubov bosons [«y, aL] = O i/

14
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one obtains

H® =66@ + 35" qralay, (2.39)
k

where 1
@) _ _ 2
5E JN,S + 5 ij €x (2.40)

is the first order correction to the ground state energy and where

er = /A2 — B2 = 2JS|sin k| (2.41)

is the linear SWT dispersion relation. The functions u; and v, read

A A, —
up = R~ sign(By) (| 2k (2.42)
26k 2€k

To compute the first order correction to the dispersion relation one needs to rewrite the
first order interaction H(¥ in the Bogoliubov basis. First let us define the two following
expectation values taken in the free theory

1
A =(aaj) =—— Z'ykukvk, (2.43)
N 3
1
n= <ajai> = sz (2.44)
Sk

One sees that both A (not to be confused with the gap) and »n have IR divergences.
When computing the corrections to the ground state energy and to the dispersion
relation to first order, however, A and n will always appear together as an IR finite
combination

1 | sin
/-@:A+n:ﬁszk:vk(vk—'ykuk):ﬁzfz (2.45)

where, in the last equality, we have taken the continuum limit to compute the sum.

Using Wick’s theorem to decouple the interaction terms, the first order interaction (¥
then reads

HD = 5@ 4 Z 68,54)a,1ak+ : (4-bosons) : (2.46)
k

where
SEW = — N, k2 (2.47)

is the correction to the ground state energy,

58,&4) =-2JkK [(u% +vp) — 2%%%} = 2J|ksin k| (2.48)

15
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renormalizes the dispersion relation and : (4-bosons) : denotes all normal-ordered
terms made of four Bogoliubov operators. Luckily, their exact expressions will not be
needed, as we will show below. The NLSWT dispersion relation is thus given by

£ = cr+5EW + O(SY) ~ 275 (1 + |g'> | sin K. (2.49)

Two observations are in order. First we have encountered the first occurences of can-
cellations of IR divergences as we computed the expectation value of the Hamiltonian
and the spectrum of spin-waves. Secondly, in Eq. (2.46) there are no anomalous terms
with two creation or two annihilation operators.

2.2.1 Equal-time correlation function

The equal-time (or instantaneous) spin-spin correlation function is defined by

(WolS; - S;]¥o)

Cyy =
! (Wo|Wo)

(2.50)
where the expectation value is taken in the exact ground state |¥(). Both this wave
function and the operator S; - S; can be expanded in powers of 1/S. We thus write [55]

1
OijZSi'Sj:Sz<0§) SO()+S

0D + 0(5—3)) . 2.51)

Using the HP transformation we obtain Og-)) = (1),

(1) aIaj + a;a ;f aTai — aT-aj fori — j even
O =19 gt oo o (2.52)
aja; + a;a; + a;a; + aza; fori—jodd,

and

0(2) { aTalaja] -1 EalaJr Ta] + CLJraZalaJr + aT Ta a5 + aTaTala] fori — j even

a;faia;aj — 1 a;raiaiaj + aia}ajaj + aTaTa aT + aT T T a;) fori— jodd.

(2.53)

Similarly the ground-state wave function in Rayleigh-Schrodinger perturbation theory
reads

1
[W0) = 10) + 5 [¥) + O(5 ) (2.54)

where |0) is the Bogoliubov vacuum and we take the normalization (0|¥() = 1 which
implies (0|T'") = 0Vi . We thus have (¥o|Tg) = 1 + 52 (W) Ty + 0(5-3).
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Developing the correlation function in powers of 1/.5 one obtains

0y = S <0(0)+ SC(”+ SQC( )+(’)(S‘3)> (2.55)
where

CZ(]O) ( 1)i*j (2.56)

o) = (0|0 |0) (2.57)

0(2) (010210) + (0|0 1w V) + (w08 |0) . (2.58)

As we have mentioned above, the first order interaction 7 in Eq. (2.46) does not have
anomalous terms with two bosons. Thus the first order correction \\I/él)> is made of
four bosons. As a consequence one has

o 1w) = (w0 |0y = 0 (2.59)

leading to
) = (0/07|0) (2.60)

greatly simplifying the calculation of the second order term of the correlation function.
We have now presented all the necessary tools to extract the equal-time spin-spin
correlation function of the Heisenberg model to second order in 1/S using standard
Rayleigh-Schrodinger perturbation theory. In Appendix B we present an alternative
method relying on the Hellmann-Feynman theoream [79, 80] which allows us to extract
the correlation function from the ground state energy of a modified Hamiltonian. We
explicitly show in this appendix that the equal-time spin-spin correlation function is
given by [55]

'S,) = (—1)"S2 1(_2 >1<_2 _ >2 3
(So-Sp) = (-1)"S 1+S 1 WJa(n) Y 1 wJa(n) dno) +0O(S™)
(2.61)
where o = |n| (mod 2) and where the IR finite integrals .Jy and J; are given by
/2 _
Jo(n) = / ap L= costkn) (2.62)
0 sin k
/2 1 cos(kn)
Ji(n) = /0 dk (sin o ) (2.63)

Up to second order, the O(3) invariant two-point function of spin operators is thus IR
finite. Let us look now at the long distance behavior of the integrals .Jy and .J;. We take
1 < |n| butkeep |n| < £ in order to stay in the perturbative regime. One can show that
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(see Appendix C or Ref. [55])

Jo(n) = n2 4+~ +1In|n| + O(n™*) n even, (2.64)
1
Ji(n)=I2+~y+1In|n| - o2 +0(n™%) n odd (2.65)

where v ~ 0.577 is the Euler-Mascheroni constant. In the “large distance” regime
1 <« |n| < £ one thus has

(Sp-8S,) ~ (—1)"52 {1—231n(|”’>+ Lo e (’”’)}— S (2.66)

T no 2rSn?2 7252 no 2mn?

where ng = ¢™/277/2 ~ 1.35 plays the role of a UV cutoff. One recovers the logarithmic
term at first order occurring in the NLoM, and the In? term at second order [77]. The
1/n? term in the staggered part of Eq. (2.66) comes from the fact that SWT breaks
Lorentz invariance away from & = 0, 7. It is thus absent in the NLoM. By contrast the
1/n? term of the uniform part corresponds to the two-point function of the I field in
the NLoM.

Equation (2.66) or, more precisely, Eq. (2.61), is expected to describe the short distance
behavior of the spin-S Heisenberg model, namely the behavior at distance |n| < &, for
integer spin and half-odd integer spin, provided the perturbative regime is sufficiently
extended. This is the case when the spin S is large enough. At length scale |n| ~ ¢ the
crossover between the weak and strong coupling regimes occurs and, for |n| > ¢ the
behavior of the correlation function reveals the nature of the spin: exponential decay
for integer spin and power-law decay for half-odd integer spin.

Figure 2.2 shows the correlation function obtained in SWT and with QMC simulations
for spin S = 2and S = 5/2. For S = 2 where the correlation length is £ ~ 49, the
perturbative regime is extremely restricted. However for S = 5/2 one observes an
extended regime where the perturbative calculation reproduces accurately the exact
numerical results. Spin-wave theory calculations at finite temperature are presented
in Appendix D.6.

2.2.2 Dynamical structure factor

More relevant to experimentalists than the equal-time spin-spin correlation function
computed above is the dynamical structure factor S(k,w), which provides information
on the entire spectrum of the spin chain. The dynamical structure factor is essentially
the double Fourier transform of the real time, real space correlation function

S (k,w) = 3 ek / T dt et (59(1)SY(0)) (2.67)
j —o0
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Figure 2.2: Equal-time spin-spin correlation function of the Heisenberg chain for spin
(@) S =2and (b) S = 5/2 obtained with SWT and QMC. The dotted lines show that
the first order SWT calculation breaks down well before the crossover length scale
¢ ~ 49,160 for S = 2,5/2, respectively. Figure (b) adapted from Ref. [55] with the
permission of the APS, (©) 2020 American Physical Society.

where the expectation value is taken in the exact ground state |0) with energy Ej of the
Hamiltonian. Going to the Lehmann representation and taking S = (S°)f one obtains

2
S (k,w) = ﬁ” S (alSE0)? 6(w — Ea + Eo) (2.68)
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where {|«)} is a complete set of excited states having energy E,, and we have used

Sp=Y e *isy. (2.69)
J

The dynamical structure factor is accessible with neutron scattering experiments:
the energy-momentum transfer from an incident neutron to the sample is given by
(w, k). Experiments, however, usually run at finite temperature 7’ = 1/5. The ex-
pectation value in Eq. (2.67) should then be understood by use of the density matrix
p = e P /Tr(e~#™). The dynamical structure factor can then be reexpressed in terms
of the retarded Green’s function Ff(k,w; () as [81]

2

T m [Fab’R(k‘aW; 5)} : (2.70)

Sab(kvw;ﬁ) = _1—6

At finite temperature it is convenient to compute Green’s functions in imaginary time,
and to perform an analytic continuation. One first computes the imaginary-time
ordered Green'’s function of spin operators

ab . _ A iwnT a b
FO(k, i) = / dr énT (T, 58(7)S? . (0)) 2.71)
0

where w,, = 2n7 /3, n € Z are the bosonic Matsubara frequencies, 7 is the imaginary
time and 7T~ is the time ordering operator. The analytic continuation of this Green’s
function simply reads

lim  F®(k,iw,) = FOR(k w; B). (2.72)

iwn—w—+in

In this section we compute the dynamical structure factor of the Heisenberg chain
in NLSWT at finite temperature. To perform the calculation we first compute the
imaginary-time ordered Green’s functions of HP operators

Gk, 7) = — (T} < i’“(ﬂ ) (ab(0) ai(0))). (2.73)

a_,(7)

The free Green’s function is given by

. 1 A + iwy, By,
GOk, iwp) = ——— _ (2.74)
( ) (iwn)? — €2 < By, Ay — 1wn>
where one goes from imaginary-time to imaginary frequency with
B .
GO(k, iwn) = / dr "GO (k, 7). (2.75)
0
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To first order in perturbation theory the Green’s functions read (see Appendix D)

i~ g (ML B0

GaP=G\ B (1+5)  ac(14bl) - iwn) (2.76)

where ¢, is the NLSWT dispersion relation at finite temperature

& =2JS <1 + |/1§3|> | sin k| 2.77)
with (5 )
1 |sink|coth (52 ) — 1
_ L 2.
w5 = 5y zk: 5 (2.78)

which is IR finite and which satisfies limg_,+, kg = k.

Having given the tools to compute the dynamical structure factor at inverse tempera-
ture 8 we now present the final results. The actual calculation being rather tedious we
give some of its details in Appendix D. The longitudinal structure factor is given by [55]

ZZ 2w 1
S (k,w; B) = T/ N. > {Té,lq)(S(w — & — &ktqg) + T,ﬁ?ﬁ(w + &g + Ektq)
S ¢>0
HTR0(w = &g + Ervq) + TLy0(w + & — Ertg)|
(2.79)
where
m _ 1 B§q> (Bfkﬂ) {1—cosqcos(k+q)+sinq—|sin(/<:+q) B ]
Tiq = 4 [COth( 2 + cott 2 sin g |sin(k + q)| 1
(2.80)
@ _ 1 ,85(1) <ﬁ£k+q) {1—cosqcos(k—|—q)—sinq+]sin(k+Q)’ _ }
Tiqg = 4 {COth ( 2 + coth 2 sinq |sin(k + q)| ok
(2.81)
o _ 1 {Coth (Bﬁq) ot </D’§k+q) {1 —cosgcos(k + q) +sing + [sin(k + )| N 1}
& 4 2 2 sing |sin(k + q)| ’
(2.82)
@ _ 1 5§q> B (5§k+q> [1—cosqcos(k:+q)—sinq—|sin(k+q) 1]
Toa = 4 [COth( 2 coth 2 sin g |sin(k + q)| -
(2.83)

and the transverse structure factor by

Smsign
57 (s ) = TR (112

tan (é’)‘ (Ow—6) +0w+&)  (2.84)
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(0]

(o2}

Figure 2.3: Dynamical structure factor of the Heisenberg chain at inverse temperature
B = 10. The dashed lines represent the upper and lower thresholds obtained from
the dispersion relation ¢, at finite temperature. Figure adapted from Ref. [55] with the
permission of the APS, (©) 2020 American Physical Society.
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is positive and IR divergent.

Let us now analyze in details these results, which are illustrated in Fig. 2.3. First, at finite
temperature there is spectral weight at negative energy. This weight however becomes
exponentially small as the energy is lowered. Indeed, at finite temperature the ground
state is defined by the density matrix and is not only made of the Bogoliubov vacuum.
Transitions from a higher energy state to a lower energy state are thus possible.

More striking is the fact that the transverse structure factor in Eq. (2.84) is negative
along the single-magnon branch. Indeed the first order correction turns the weight
from finite and positive to infinite and negative. This is again a trace of the breakdown
of perturbation theory in one dimension. However, there are several important points
to recall. First, S** is not rotationally invariant and thus an IR divergence is expected to
occur in this quantity. It should be compensated by the divergence of the longitudinal
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2.2. Spin-wave theory

part. We shall come back to this later. More importantly, we see that the transverse
structure factor has spectral weight only along the one-magnon branch w = +¢.
Coming back to the notion of asymptotic freedom, we see that this spectral weight is
not in this regime. We have insisted above that asymptotic freedom is encountered
in the spin chain at length scale |z| < ¢ in the equal time, real space correlation
function. When treating energy-momentum-dependent quantities the relevant scale
is the crossover energy scale A = v/¢ and the two-momentum (w, k) must satisfy, in
analogy with the NLoM, |w? — €2| > A% When |w? — €| < A2, the behavior of the
spin chain is drastically different for integer and half-odd integer spin: for integer
spin, there is an opening of the gap at momentum = while the spectrum remains
gapless for half-odd integer spin. Spin-wave theory, however, is unable to describe
these behaviors: it always predicts a gapless spectrum. But these predictions are not in
the validity range of perturbation theory, and we shall completely ignore such results.

In the validity range of perturbation theory |w? — €2| > A? the non-vanishing spectral
weight comes from the longitudinal part of the structure factor. One sees from Eq. (2.79)
that it is everywhere positive, and it is finite in the perturbative regime. The divergence
of the longitudinal structure factor on the threshold w = &, must cancel the divergence
of the transverse structure factor discussed above. However we do not trust the results
close to the threshold, but only sufficiently far away where S** is finite.

Finally let us now discuss the 7' — 0 limit of these results. For the transverse part in
Eq. (2.84) the limit is taken straightforwardly and we end up with the contribution
along the positive single-magnon branch w = &, which, anyways, we do not trust. For
the longitudinal part in Eq. (2.79) we observe that only the T,Sq) term remains and the
structure factor is thus given by

1 T 1—
/ d coquOS(k’ + Q)é(w _ gq _ gk—i-q) (2.86)
0

2z ([ _ =
5%k, w) 2 sin g| sin(k + q)]

where we have taken the continuum limit. These results are consistent with Takahashi'’s
expressions at first order [64, 65].

2.2.3 Equal-time structure factor

Another relevant quantity for experimentalists is the equal-time (or instantaneous)
structure factor, obtained by integrating the dynamical structure factor over energy®

S%0(k; §) = /_ AW gaay, e ). 2.87)

0o 2T

Alternatively it can be obtained by Fourier transforming the equal-time spin-spin cor-
relation function. Since the rotationally invariant two-point function of spin operators

At T = 0 the integral can naturally be restricted to positive energy.
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Chapter 2. Asymptotic freedom in the SU(2) Heisenberg chain

was IR finite and well defined, we can expect the structure factor S(k) to be well defined.
There are a few subtleties that we should still discuss. To first order, for instance, the
IR finiteness of the equal-time correlation function was obtained thanks to constant
terms coming from the transverse part (S7S7 + S7S¥). This is traced back to the form
of the integrals J,(n), o = 0,1 in Egs. (2.62)-(2.63). When Fourier transforming the
equal-time correlation function, these constant terms give divergent contributions
at k = m. As a consequence, the longitudinal part of the structure factor will also be
divergent at £ = 7. This is again a minor problem since k£ = 7 is not in the validity range
of perturbation theory set up by asymptotic freedom. To proceed, we shall simply
ignore the contribution at £ = 7. The transverse structure factor is easily obtained,

S7% (k) = g (1 - Z) tan <’;>’ : (2.88)

Proceeding similarly for the longitudinal part we obtain

viiy L1 ™ 1—cos(q)cos(k +q)
SR =gt 47T/0 Y ) stk + o)) (269

The longitudinal part of the equal-time structure factor is thus divergent whenever
the momentum £ is different from zero. In Appendix E we show that the divergence of
S#*(k) is exactly canceled by the divergence of 25%*(k) leading to an IR finite result for
S(k), thus providing a meaningful description of the structure factor in the appropriate
window of momentum. The structure factor thus reads

S(k) = 257 (k) + S% (k)

1 k 1

I 1 1 — cos(q) cos(k + q)
+ E/o dq sin(q) ( |sin(k + q)| -2 tan(k/2)|>

where we have used the definition of » in Eq. (2.44) and where the integral is convergent
and can be computed numerically.

2.3 Conclusion

In this chapter we have shown that perturbative calculations can actually success-
fully be applied to the antiferromagnetic Heisenberg chain. There is indeed a subtle
cancellation of IR divergences when considering O(3) invariant observables in SWT.
This is analogous to “Elitzur’s conjecture” claiming the IR-finiteness of O(3) invariant
quantities in perturbative calculations on the O(3) NLoM. To illustrate the situation
we have computed the equal-time spin-spin correlation function to second order in
perturbation theory and have compared it with QMC simulations. Spin-wave theory
provides, when the spin is large enough, a surprisingly accurate description of the cor-
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relation function at short distance, namely at distance |z| < &, where ¢ is the crossover
length scale of the model which scales exponentially with the spin. For S = 5/2 we
have found that the SWT results actually reproduce the QMC data over a significantly
more extended region as the results remained very close up to distance |z| ~ £/3.

The extended perturbative regime observed in the spin chain is a consequence of the
mapping of the model onto the NLoM and of an important property of its 5-function.
The coupling constant of the NLoM flows to large values at large length scales, which
is commonly called asymptotic freedom. The length scale ¢ is the length scale at
which the coupling constant changes from the weak to the strong coupling regime. At
distances much beyond &, the behavior of the spin chain is different for integer and
half-odd integer spin. Conversely, at distances much below ¢, integer and half-odd
integer spin chains behave similarly, as described by perturbation theory.

To provide a complete description of the physics of the Heisenberg chain with SWT,
we have also computed the dynamical structure factor. We have shown that in the
perturbative regime, namely far enough from the threshold of the spectral weight, the
dynamical structure factor is well defined. This analysis was motivated by the new
potential experimental studies of spin chains, in particular with neutron scattering.
Spin-5/2 chains were studied experimentally in the 1970’s, mainly focusing on the
determination of the quantum renormalization factor, namely the correction to the
dispersion relation of the lowest lying excitation with respect to SWT [82-84]. The
lack of deeper experimental studies can find its origin in the Haldane conjecture:
the large-S spin chains being more classical than their small-S counterparts, it was
more important to investigate properties of the latter. With the improvement of the
resolution of the neutron scattering experiments, illustrated for instance by the recent
detailed experimental investigation of the dynamical structure factor of the spin-1/2
chain, showing the existence of the two- and four-spinon continuua [15], we hope that
the complete description of the equal-time and dynamical properties of the large-S
spin chain will motivate new experimental investigations to confirm the observation
of the perturbative regime, and thus of asymptotic freedom, in the Heisenberg chain.

25






81 Elements of group theory

To proceed further into this thesis one needs to introduce some notions of group
theory before we dive into the physics of SU(V) spin models. While the representation
theory of the SU(2) group (or su(2) Lie algebra) is a standard topic in any introductory
quantum mechanics course and can be grasped rather easily in a very limited amount
of time!, it is not so true for SU(N > 2). First the theory by itself is more complex,
and is actually often misunderstood. For instance a common mistake is to associate
the fundamental irreducible representation (irrep) of su(3) to the spin-1 irrep of su(2),
because both have dimension three. A quick look at their weight diagrams reveals
that the structure of both irreps is actually completely different. It is quite remarkable,
however, that almost all that a physicist interested only in practical applications needs
to know about the representation theory of the su(V) Lie algebra is contained in the use
of the Young diagrams, which are nothing but labels for the different irreps, including
the rules for tensor products of irreps, the structure of the generalized Gell-Mann
matrices and the notion of Clebsch-Gordan coefficients (CGCs), which are known
to any physicists?. When the aim is to perform numerical calculations on SU(N)
spin models it appears however that the algorithmic complexity caused by the large
dimension of the local Hilbert space, as well as the structure of the algebra, prohibits
any “non-SU(N)-symmetric” approach and the actual implementation of the SU(V)
symmetry is necessary. A possible route to incorporating the SU(N) symmetry in a
numerical algorithm [86-89] then requires a number of additional notions, such as
the standard Young tableaux [90]. In fact, the standard Young tableaux were firstly
introduced in the study of the symmetric (or permutation) group and we shall follow
the same path in this chapter. Indeed, the representation theory of the SU(V) group
can be deduced from the representation theory of the permutation group thanks to
the Schur-Weyl duality.

"We assume that the reader is familiar with the basic theory of the SU(2) group and associated su(2)
Lie algebra.

*Unlike for SU(2) where the CGCs can be expressed in terms of other coefficients such as the Racah
coefficients, the 3;- or 6;j-symbols for which explicit formulas are known, the calculation of SU(N) CGCs
in the general case is not a trivial problem, but it is a solved problem, see Section 3.3.5 and Ref. [85].
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Chapter 3. Elements of group theory

The chapter is thus structured as follows. In Section 3.1 we go through the basics of the
representation theory of the permutation group. We follow Ref. [91] as well as the four
first chapters of the excellent book of Chen, Ping and Wang, Ref. [92], and adopt the
same definitions, notations and conventions. Although we try to keep it at a minimal
level the material in this section is rather technical, in particular when it comes to
the calculation of the subduction coefficients (SDCs). Section 3.1 is mainly useful for
Chapter 5 and can be omitted by readers only interested in Chapter 4. In Section 3.2
we present briefly the Schur-Weyl duality which interrelates the permutation group
and the SU(N) group. Section 3.2 thus gives a justification for our extensive discussion
of the permutation group in Section 3.1 while our ultimate aim is at developing the
theory of the SU(V) group and su(/N) Lie algebra. Finally we turn to the representation
theory of the Lie algebra su(/N) in Section 3.3. We introduce again the notion of Young
diagrams, discuss several choices of generators of the Lie algebra and present the
Itzykson-Nauenberg (or Littlewood-Richardson) rules which explain how to decom-
pose any tensor product of irreps into a direct sum of irreps. Section 3.3 is mainly
inspired by Refs. [93, 94].

3.1 The permutation group

3.1.1 Group definition

The permutation group (or symmetric group) S,, = Sp(1, 2, ..., n) where n is an integer is
the group of all permutations of the set {1, 2, ..., n}. A permutation is a reordering of the
integers. The cardinal of the permutation group S, is n!, corresponding to all possible
permutations of the n integers. Among all permutations, the 2-cycles, or transpositions,
are those which exchange only two elements. We denote them by (i, j), namely i is
exchanged with j. An adjacent transposition is a 2-cycle of adjacent numbers (7,7 + 1).
The generators of S,, are given by the n — 1 adjacent transpositions (i,i + 1), i =
1,2,...,n — 1. Indeed, any permutation can be rewritten as a product of adjacent
transpositions. Notice that the inverse of a transposition (i, j) is the transposition
itself.

The 2-cycle class operator is the sum of all transpositions®

Co(n) = > (i,5) 3.1)

1<i<j<n

This operator will be of major importance throughout the rest of the chapter. Indeed

3An element g; of a group G is said to be conjugate to g» € G if it exists u € G such that g; = ugou™".
A class is made of all group elements which are conjugate to each other. The set of transpositions forms a
class. A class operator is obtained by summing all elements of the class.
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3.1. The permutation group

one can show that the 2-cycle class operator commutes with all group elements,
[Ca(n),0] =0, VoeS,. (3.2)

The 2-cycle class operator Cs(n) thus corresponds to what physicists call a Casimir
operator. By Schur’s lemma, it is proportional to the identity and its eigenvalues can be
used to label the different representations of the group. However, as we will see below,
the sole eigenvalue of the 2-cycle class operator Cy(n) does not provide a satisfying label
for the representations of the permutation group as different irreps can have the same
eigenvalue (this is the case for conjugate representations). A complete set of commuting
operators (CSCO) in a space L is a set of commuting operators C' = (C1,Cy, ...,C))
such that all eigenvalues of C' in the space L are non-degenerate. In other words, the
eigenvalues of C' can be used to label uniquely all states of L:

Cilbn) = Ai[n), i=1,2,...,1 whereX= (A1, \a, ... N), |thn) € L. (3.3)

3.1.2 Representations

The irreps of the permutation group can be labeled using either partitions or Young
diagrams. A partition of n is a splitting of » into a sum of integers v;,

n=vi+vy+..+ 1y,
(3.4)
Vi =2vy>=...2v, =0.

We use [v] = [v1, 12, ...] to denote a partition of n, and we shall keep only the non-zero
integers ;. The number of different partitions of n thus corresponds to the number of
irreps of S,,. A Young diagram is a graphical representation of a partition. It is an array
of boxes aligned on the left and containing v; boxes in the i-th row. Examples are given
in Fig. 3.1. Since v; > v, the number of boxes in each row is non-ascending from top
to bottom. The eigenvalue of the 2-cycle class operator C»(n) of S,, of the irrep [v] is
given by

/\[21/] = % <21: v — ;(u?)2> = ;XZ:VZ(Z/Z —2i+1) 3.5)
where /! is the length of the i-th column of the Young diagram [v], or equivalently the
length of the i-th row of the transposed shape [v”] obtained by converting each row of
[v] into a column. The second expression can be obtained easily from inspection of
the Young diagram.

Before stating the key theorem which will allow us to classify states uniquely we shall
introduce a few more technical notions. The group chain §,, > S§,-1 D ... D S is
called a canonical group chain because S, is abelian and because S,,—; is a canonical
subgroup of S,,, namely for any irrep D! of S,,, the subduced representation D! | S,,
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2] [1,1] (2,1] (2,2] [4,2] [5,3,2,2]

Figure 3.1: Examples of Young diagrams with the corresponding partition of S,,.

of S,,_1 obtained by restricting the irrep [v] of S,, to the elements of S,,_; is a reducible
representation of S,,_;, meaning that any irrep [u] of S,,_; appears at most once in the
decomposition of D! | S, into irreducible parts. We write this as

DM |8, =Y erpl(s, 1) (3.6)
(1]
where 7[[:]] = 0,1. It is in practice very simple to obtain the decomposition of the

subduced representation DI | S,, of an irrep [] of S,,. A bottom corner is defined as
a box of a Young diagram which does not have any box below and does not have any
box on its right. Then the subduced basis D! | S,, is simply obtained by following the
branching law of S,,

DM S, =3 @D (S,1) (3.7)

(V']

where the sum in the right-hand side restricts to all irreps [/] of S,,_; having n — 1
boxes and obtained from [v] by removing a box in all possible bottom corners. For
instance the irrep [v] = [3, 2] has two bottom corners,

N x] (3.8)

X

and removing a box in these bottom corners leads to the following irreps,

], and L], (3.9)

X

Thus the subduced representation of the irrep [v] = [3, 2] of S5 is given by

D | 55 = DH ¢ DHY, (3.10)

The following theorem is the key to the classification of all states of S,,.

Theorem*: The (n — 1) 2-cycle class operators C = (Ca(n), C2(n — 1), ..., C2(2)) of the
group chain §,, O §,,-1 D ... D Sz form a CSCO of S,,.

“See Ref. [92] page 127.
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Thus the eigenvalues of C', which can be easily computed using Eq. (3.5), can be used
to label uniquely the different states of the irreps of S,,.

3.1.3 Littlewood-Richardson rules

The tensor product of an irrep [v1] of S,,, with an irrep [v»] of S,,, is an induced reducible
representation of S,, with n = ny + ny denoted ([v1] x [12]) T Sn. The decomposition
into irreps of S,, reads

(1] x [1o]) = Z {vivgr} [v] (3.11)

V]

where {v115v} is the outer multiplicity of the irrep [v] in the tensor product of [14] and
[2]. The Littlewood-Richardson rules allow us to determine all the irreps [v] for which
{v1pr} is non-zero [95]. The Littlewood-Richardson rules are as follows:

1. Select among [v1] and [v»] the most complicated Young diagram as the base®.

2. Fill the other Young diagram with a’s in the first row, b’s in the second row, ¢’s in
the third row, etc...

3. Enlarge the base diagram by moving the «a’s to all possible positions satisfying the
two following constraints: i) two a’s should not stand in the same column; ii) the
diagram obtained at each step should be a valid Young diagram.

4. Perform similarly for all b’'s with the following additional constraint: iii) when
going through the Young diagram from right to left and from top to bottom, the
total number of b’s should never exceed the total number of a’s.

5. Proceed similarly for all ¢’s, ... until the resultant diagrams all contain n boxes.

For a Young diagram [v] appearing in the decomposition, the multiplicity {v,v,v} is
given by the total number of obtained arrangements of the letters a, b, c, ....

3.1.4 Standard Young tableaus

A Standard Young Tableau (SYT) is a Young diagram filled with integers from 1 to n in
ascending order from left to right and from top to bottom. All SYTs of an irrep [v] can be
obtained easily using the reducibility of the irrep [v] of S,, with respect to its subgroup

°By “most complicated” Young diagram we mean either the one with the largest number of boxes, or
the one with the shape which is far from being purely symmetric (thus several rows) and far from being
purely antisymmetric (thus several columns). In any case, the tensor product of two irreps is abelian, and
the sole aim of selecting the “most complicated” diagram is to reduce the number of operations in the
Littlewood-Richardson rules. This could thus be used to define a posterioriwhat is the “most complicated”
Young diagram.
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Sn—1 and by iterating the procedure up to ;. We denote by vl ], m = 1,...,hl" the
SYTs associated to an irrep [v] of S,,, where h!" is the dimension of the irrep [v]. For
instance the five SYTs for the irrep [v] = [3, 2] of S5 are given by

1]2 3[’ 1]2 4[’ 1]3 4[’ 1]2 5[7 1]3]5]. (3.12)

4|5 315 215 3|4 2|4

We have sorted the SYTs from left to right in a specific order called the ascending order
of the last letter order sequence (LLOS) [96]. It is defined as follows. For two SYTs v
and YJn”,] one looks at the location of the number n. If n appears in YY) in a row below
the one in which it appears in Yn[l”,], then v, < Yn[f,]. If n appears in the same row in
both SYTs, then one looks at the row of number n — 1 and proceed similarly, etc... Since
all SYTs differ from each other by at least one interchange of numbers, then this defines
an unambiguous order among SYTs®. We decide to label the SYTs with m = 1, ..., hl*!
so as to correspond with the increasing order of the LLOS. This means that the SYT
Yl[l’] is the smallest SYT in the LLOS and Yh['[’,,]] is the largest SYT in the LLOS. One can
also label SYTs using the Yamanouchi symbols. A Yamanouchi symbol » = (r,, r,—1, ...,
ro,71 = 1) is such that r; is the row of number 7 in the SYT. For the shape [v] = [3, 2] the
Yamanouchi symbols of the ! = 5 SYTs given in Eq. (3.12) are

(2,2,1,1,1), (2,1,2,1,1), (2,1,1,2,1), (1,2,2,1,1), (1,2,1,2,1).  (3.13)

We observe now that the ascending order of the LLOS corresponds to the descending
page order of Yamanouchi symbols. What is meant here is that the Yamanouchi
symbols define n-digit numbers when removing the separators between the different
entries r;, and the numbers are then in decreasing order. For our example, the sequence
is 22111 > 21211 > 21121 > 12211 > 12121.

The third labeling scheme for SYTs makes use of the last theorem of Section 3.1.2.
We define the eigenvalue A = (\,, \,_1, ..., A2) of the CSCO of S,, obtained using the
canonical group chain S,, D S;,-1 D Sp—2 D ... D Su. The eigenvalues A can then be
obtained easily from the truncated branching diagram of the group §,, and with the
help of Eq. (3.5). An example for [v] = [3, 2] is shown in Fig. 3.2. We thus extract the
eigenvalues A (again the ordering of Eq. (3.12) is respected)

(2,2,3,1), (2,2,0,1), (2,2,0,—1), (2,0,0,1), (2,0,0,—1). (3.14)

We observe that the ascending order of the LLOS corresponds to the decreasing page
order of the eigenvalues of the CSCO. Notice also that from the truncated branching
diagram one can easily obtain the SYTs by following the group chain

SNotice how algorithmically simple it is to generate efficiently on a computer all SYTs for an irrep [v] of
Sr in the LLOS [97].
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3.1. The permutation group

Figure 3.2: Truncated branching diagram of the group Ss. Only the relevant irreps
for [v] = [3, 2] are shown. The number of possible paths to reach [1] from [v] = [3, 2]
following the arrows corresponds to k) = 5, the total number of SYTs for the irrep
[v]. The eigenvalues ), of the 2-cycle class operator Cy(f) of Sy (f =n,n —1,...,2,1) of
each irrep along the paths are given in parenthesis.

“« <—<—é2|31<—}l§31
e 002 « G« [ A2
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Finally I shall mention that, from a numerical point of view, it is convenient to label a
SYT Y, by the reversed Yamanouchi symbol y obtained by flipping the Yamanouchi
symbol r [86]. Thus y = [y; = 1, y2, ..., yn] is such that y; = r; is the row of number 1.
Table 3.1 summarizes all labeling schemes presented above.

The total number of SYTs h*! for an irrep [v] of S,, can be calculated easily from the
Young diagram of the irrep. Let us introduce the hook length of a box as the number
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m 1 9 3 4 Increasing
page order
v] i[2[3] i[2[4] i[3[4] i[2[5] 1[3]5] Increasing
Y 415 315 2[5 314 2]4 order of LLOS
Decreasing
r (2,2,1,1,1)(2,1,2,1,1) (2,1,1,2,1) (1,2,2,1,1) (1,2,1,2,1) page order
y 1,1,1,2,2] [1,1,2,1,2] [1,2,1,1,2] [1,1,2,2,1] [1,2,1,2,1]
Decreasing
A (272>3> 1) (2727071) (2a2a07_1) (2,0,0, 1) (27070,_1) page order

Table 3.1: Different labeling schemes for the SYTs of the irrep [v] = [3,2].

of boxes in the same row on the right of this box, plus the number of boxes below in
the same column, plus one for the box itself. Then the dimension of an irrep (Young
diagram) of S,, is given by,
vl n!
11 6
where the denominator is the product of the hook lengths of all boxes in the Young
diagram [v].

(3.15)

3.1.5 The Yamanouchi basis and the Young rules

To each SYT Y;%) we associate a Yamanouchi basis vector |Y;X)), m = 1,2, ..., AlYl. As
defined by Chen et al. (Ref. [92] page 121) “the symbol ]Yn[f ]) stands for an irreducible
basis vector belonging to the irrep [v], [v/], ["], ..., [1] of the group S, S;—1, Sp—2, .-, S1.”
The chain is obtained by successively removing the largest number in the SYT. The SYT
for the irrep [v()] is denoted Ygzn. For instance,

vyl = é 3 4|6l_>YTE,//} _ ; ? 4|61_>YW[Z:/] _ é 2|4|6[_>Yn[:(§>} _ ; 2[4]
9E 5] 5] 5]
(3.16)
v 1[2]4 () 12 v(©) (D
—>Yn[1(4)]:i | [—>Yn[1(5)]:i [_>Y7,[1(6)}:_>Yﬂ[1(7)]:-

Assume now that YYLV/] = (i,i+ 1)Y7L” l namely the Young tableau Yn[f/] (not to be confused

]

with Yif,l]) is obtained from the Young tableau vl by exchanging i and ¢ + 1. Then the

34



3.1. The permutation group

following important relation holds [98-100]

(i i+ D) Y = —p [V + 1 - p2 v (3.17)

where p is the inverse of the axial distance to reach i + 1 from 7 in the Young tableau v
The axial distance from i to 7 + 1 is obtained by counting +1 (respectively —1) for each
step made downwards or to the left (respectively upwards or to the right) along any
rectangular path from i to i 4+ 17. A crucial corollary of Eq. (3.17) is that one should take
care of distinguishing a SYT from a Yamanouchi basis vector. Indeed as shown above
(i,1 + 1)Y,£§’] = YTL”,] but (i, + 1) |Y,,[f]> # |Yn[1”,]>. Now assume that V;"! has numbers i
and i + 1 located in the same row (: and i + 1 are then necessarily adjacent to each
other). Then

(i,i + 1) |,V = [y (3.18)

Conversely, if i and 7 + 1 are in the same column of YY) (thusi + 1 appears directly
below i) then
(i,i +1) |V, = — |y iy (3.19)

Equations (3.17)-(3.19) are the Young rules®.

The Yamanouchi basis is also called the standard basis and the Yamanouchi basis
vectors are also denoted as
V]

m

>;|xm>. (3.20)

This notation will be used when computing SDCs of the permutation group. As we
will see below, the SDCs are merely a unitary change of basis from the so-called non-
standard basis (to be introduced in the next section) to the standard (Yamanouchi)
basis.

3.1.6 The non-standard basis and the subduction coefficients

The basis vectors of the non-standard basis of S,, are denoted by

(1] [V2]>7 i

my ma =1,.,{vivorv}, my =1, R me =1, Rl 3.21)

“Notice the different convention between Ref. [92] (Section 4.4 page 122) and the convention adopted
in Refs. [57, 86-89], which corresponds to the one of Refs. [98-100]. In Refs. [92, 94], the axial distance is
counted positively when going upwards or to the right and negatively when going downwards or to the
left, leading to a positive sign in the first term of Eq. (3.17).

80ne should now mention that the Young rules together with the decomposition of any permutation
into a product of adjacent transpositions and the Schur-Weyl duality is, in practical calculations, all what
is required to diagonalize the SU(INV) Heisenberg model in specific SU(V) irreps [86].
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Chapter 3. Elements of group theory

The number {v;1,v} is equal to the multiplicity (or number of occurences) of the
irrep [v] in the tensor product of the irreps [v1] and [1»], thanks to the Frobenius reci-
procity theorem [101]. {v11,r} can thus easily be computed by using the Littlewood-
Richardson rules for the permutation group given in Section 3.1.3.

The non-standard basis corresponds to the subduced basis belonging to the irrep [v]
of S, O S,, ® S,,, n1 + na = n, where the subduction is denoted by

W] 4 (Sny @ Spy) = Y {river} (w1, [va)). (3.22)

The [v] | ([n1], [2]) subduction coefficients (SDCs) of S,, are the transformation coef-
ficients of the permutation group between the standard basis and the non-standard
(][]

basis of S,
s [ (]

In the previous equation the summation is restricted to the Yamanouchi basis vectors
]Yn[f ]) such that the first n; particles of ;Y are located in the same positions as the
particles of Yr[nylﬂ. This is natural since, as we have explained above, the Yamanouchi
basis vector |Yn[1f ]> of S, is also an irreducible basis vector of the subgroup S,,,. Now
one can easily convince oneself that the SDCs are independent of m;, and that 1]
can be determined from [v], m and n9. In what follows, we shall nevertheless use the
notation
< V]
m

but we keep in mind that a “minimalist” notation would make use only of [v], m, T,
[12], ma. The SDCs should be chosen in order to satisfy the following orthogonality

(1] [ve] > .

myp M2

],

], 7

(3.23)

v, 7

] el > (3.24)

myp  ma

relations
S CA LI (] [ R R
7,[v2],ma

SR

The subduced basis is thus an orthonormal basis of S,,.

[I/], - [Vl] [V%]
mi me

> = 5[1/2],[1/é]5m2,m’257-,7-/- (3.26)
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3.1. The permutation group

3.1.7 Calculation of SDCs - the multiplicity-free case

In this section we focus on the case where the multiplicity index 7 can take a single
value 7 = 1 = {v11»r}, namely the problem is multiplicity-free.

Calculation of SDCs using the eigenfunction method

We follow Chen et al. and use the eigenfunction method to compute the SDCs [91, 92].
The calculation is easily done by diagonalizing the CSCO of S,,, in the Yamanouchi
basis |Yn[i’ }>. In practice, we compute the kernel of an operator (see Eq. (8) of Ref. [91]
or Eq. (4-172) of Ref. [92])

S[1EE1)- ()] (2

where (C'(ng), C'(s2)) = (Ch(ng), Ch(ny — 1), ...,C%(2)) is the CSCO of S,,, (n1 + 1, ..., n).
More precisely C5(n2) is the 2-cycle class operator of S,,, (n; + 1, ..., n) given by

C'(n2)
C'(s2)

(1] [ve]

],

> =0 (3.27)

Cy(nz) = > (i.4) (3.28)

n1<i<j<n

and similarly for C4(s2), so = n — 1, ..., 2. There are two sorts of phases that we need to
fix. First, there is an overall phase convention. If

< [v]

(][] >

v, 7 my e (3.29)
solves Eq. (3.27) then so does
[v] (1] (v
_< m v, 7 my > (3.30)

Second, we should fix the relative phase convention between SDCs with different my’s.

Phase conventions

The developments in this section correspond to Eq. (12)-(14) of Ref. [91] or equivalently
Eq. (4-173)-(4-174) of Ref. [92]9).

The Yamanouchi relative phase between SDCs with different my’s is easily fixed thanks

9Notice that the definitions of T, and T3 are exchanged between Ref. [91] and Ref. [92].
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to the following equation [91],

(1] [ve]

(1] [ > 1
/ = —
My D’E:Z},mQ (TQ)

> (3.31)

(13— D, (1) | W] 7

m2,m2
where Té = (’L',i + 1) S SnQ(nl + 1, ...,n), T = (Z —ny,t—ng + 1) S Snz(l, 2, ...,TLQ),
DI*2l(Ty) is the representation of T, in irrep [1] of S,,, and
Tyl =y, (3.32)
2
Then the SDCs with different my’s are simply related with,

V] (1] [ve]
<m M’Tm1 m2,2>:MX

/
my,m2

Z (Dy[z]/7m (Té) - D7[7,;22},m2 (T2)5m,m’) < £I:L]/

m/

(] [ > '

mi1 M2

v, T

(3.33)
The overall phase convention is fixed as follows (Chen et al., Ref. [91]):

“We remove all sign arbitrariness by requiring the absolute phase convention that the
first nonvanishing coefficient of a nonstandard basis vector (where the Yamanouchi
basis vectors are enumerated in decreasing page order) with ms = 1 be positive.”

In other words, we first compute the SDCs for the state my = 1 (smallest in the LLOS)
and fix the phase by setting to positive value the first (in ascending order of the LLOS
— decreasing page order of Yamanouchi symbols) non-vanishing coefficient, namely
the coefficient of the smallest m. Then one computes the SDCs for the state m4 using
Eq. (3.33). A complete example of calculation of SDCs is given in Appendix G.

3.1.8 Calculation of SDCs - the non-multiplicity-free case

We now treat the case where the multiplicity is {v;vor} = 2. The case of multiplicity
{virarv} > 2is a straightforward extension. We note that we could not find any details
on how to deal with non-trivial multiplicities in Chen et al.’s work [91, 92]. However
Table I1.23 of Ref. [91] shows that the problem of multiplicity was actually handled by
the authors, and we shall explain here the method that we induced from these results.

Phase convention

Assume that we proceed to the calculation for the smallest SYT in the LLOS for the
irrep (2], thus mg = 1. This SYT is the “reference” SYT which will be used to set the
Yamanouchi relative phases among the SDCs for the other ms’s, as we have done in the
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3.1. The permutation group

case where {v11or} = 1.

We proceed similarly to the multiplicity-free case. When solving Eq. (3.27) one obtains
two sets of SDCs which we label with 7 = 1, 2 (the kernel of the operator in the square
braket is two-dimensional). The SDCs must satisfy the following orthogonality relation
(see Eq. (3.26) or Eq. (4) of Ref. [91])

(0o

W], - ] > —6,.. (334

mi1 M2

Any orthonormal basis of the span of the two sets of SDCs will be a valid set of SDCs.
We fix the relative phase bewteen 7 = 1 and 7 = 2 as follows. One finds a rotation which
sets to zero the coefficient of the last non-zero coefficient (where the Yamanouchi
basis vectors are enumerated in decreasing page order) of the SDCs with 7 = 1. One
then applies the same rotation to the SDCs with 7 = 2. The overall phase of each set
is then fixed using the same convention as above: one ensures that the first non-zero
coefficient is positive, where again the Yamanouchi basis vectors are enumerated in
decreasing page order of Yamanouchi symbols.

Once this is done, the calculation of the SDCs for my > 1 follows from Eq. (3.33) without
any ambiguity, since each 7 now defines an independent set of SDCs.

Example

We consider the case given by Chen et al. in Table I1.23 of Ref. [91]: [v] = [3,2,1],

[v1] = [r2] = [2,1]. We begin with the “reference” SYT YJ:;]:l corresponding to the
smallest in the LLOS:
vl e e r=211) & y=[1,1,2) & A=(0,1). (3.35)

Computing the kernel as in Eq. (3.27) one obtains two states. To simplify the notation
one defines two 6-dimensional vectors a and b such that

= { ¥

m

-

m

V], 1 E:l] [Vf] > m=1,..6 (3.36)

W], 2 (1] [ve]

ma 1

>, m=1,..,6. (3.37)
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One has for instance:

0.4456... —0.1420...
0.7719... —0.2459...
o 0.0468... b= 0.5283... ' (3.38)
0.0605... 0.6820...
—0.2235... —0.2093...
—0.3871... —0.3625...
Observe that
ala=1, b’b=1, a’b=0 (3.39)

namely the SDCs already satisfy the orthogonality relations. However no specific
relative phase is chosen. The two vectors a and b are merely two orthogonal random
vectors living in a specific plane embedded in RS.

We observe that ag # 0 and bg # 0. We will thus define a unitary transformation U such
that the last component of a’ = Ua is ai; = 0. This rotation is trivial to obtain. Applying
the same rotation on b one ends up with

5

1 -~

—= 96

Ve 5

ﬁ 32

_ 1 5

a' =Ua= ¢§5 , b’ =Ub = gg ) (3.40)

3
0 V32

0 9

32

Now we note that ¢/ > 0 and ] > 0, thus the overall phase for each set of SDCs is
already satisfied and no more unitary transformation needs to be operated. We thus
replace the SDCs in Eq. (3.38) by,

< [my] ], 1 E;ll] [Vf] > —d,, m=1,..6, (3.41)
< [:L] ], 2 E:l] [1/12] > 0., m=1,..,6. (3.42)

Now we compute the SDCs for my = 2 by proceeding independently for each 7, starting
from the SDCs given in Egs. (3.41)-(3.42) and using Eq. (3.33). All phases are already
fixed: the overall phase for each set (7) and the relative phase between both sets.

We can thus state the following rule to fix the relative phase convention between
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3.2. The Schur-Weyl duality

different sets of SDCs:

We fix the phase such that the SDCs with T = 1 have a vanishing coefficient for the
largest possible m.

If the multiplicity {v11ov} > 2 we proceed in the exact same way as above, but fixing
the largest possible ({1121} — 1) coefficients of the SDCs with 7 = 1 to zero, then fixing
the largest possible ({v;vor} — 2) coefficients of the SDCs with 7 = 2 to zero, etc ...

3.2 The Schur-Weyl duality

It is far beyond the scope of this thesis to discuss in full details the Schur-Weyl dual-
ity [96, 101]'°. Here we adopt a very superficial description. The Schur-Weyl duality
essentially states that irreps of the symmetric group S,, are related to the irreps of the
special unitary group SU(V), which itself is closely related to the Lie algebra su(V), as
is described in Section 3.3.6. From a practical point of view, it follows that irreps of
the Lie algebra su(V) can be labeled by Young diagrams exactly as it was the case for
the symmetric group, but with the additional constraint that a Young diagram cannot
have more than N rows. Once this condition is imposed, the machinery developed
for the symmetric group applies directly to su(/NV). As we will see below, in a Young
diagram of an su(XN) irrep, any column with N boxes can be removed. For su(2) for
instance, the irrep H corresponding to a totally antisymmetric wave function made
of two particles, a singlet state such as 1)) — |/1) where {7, |} are the two colors of
su(2), is simply represented as e since the column with 2 boxes can be removed from
the Young diagram. Thus, in compact form an irrep [v] of su(N) is actually a set of
1 < k < N — 1 non-ascending integers [v] = [v1, v, ..., Vg].

However when using the technology of the symmetric group to study the represen-
tation theory of the SU(V) group (or su(NV) Lie algebra) it is often useful to preserve
the columns of N boxes in the Young diagrams. Keeping these “totally antisymmetric
columns” corresponds actually to particle conservation. In a tensor product of two
irreps, for instance, one forces the conservation of the total number of boxes in the
decomposition. This is only necessary when interpreting an su(N) irrep as an irrep of
the symmetric group. In Chapter 5, while we will be treating the case of N = 3, we will
often encounter irreps [v1, vo, v3] with row lengths v; > v > 13 > 0. This corresponds
to an irrep of S,, with n = 11 + 15 + v3 having v3 columns of three boxes, which is
reduced to [v; — v3, 2 — v3] in the su(3) language. The Dynkin labels (to be introduced
below) in the su(3) language are then (vy — v2, v — v3).

To convince the reader of the usefulness of preserving the columns of N boxes, let us
provide a simple example. Let us consider a chain (or actually any arrangement on a

%And even further beyond my abilities.
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Chapter 3. Elements of group theory

lattice) of 6 spin-1/2 degrees of freedom, and ask the question: what is the dimension
of the singlet sector and the dimension of the quintuplet sector ? In other words, how
many singlets and how many quintuplets are there when decomposing the product
(S = 1/2)%% as a direct sum of irreps ? These questions are of major interest in physics
because if the Hamiltonian of the 6 spins is SU(2) invariant and if one knowns a priori
that the ground state lives in the singlet sector, for instance, then the Hamiltonian only
needs to be diagonalized in this specific symmetry sector. The real difficulty is then
to find out what is the form of the Hamiltonian in this sector, and the answer to the
first question above simply provides the dimension of the effective Hamiltonian in
the singlet sector. The first route to answering the questions consists in performing
explicitly the tensor product (S = 1/2)®° and reading the multiplicities. This method
actually answers a more general question since it provides the dimension of every
sector S = 0,1, 2, 3. We indeed obtain

296 — 5% 1309IXx3D5X5DT (3.43)

where a spin-S has been denoted by its dimension 2S + 1. One reads out that there
are 5 singlets and 5 quintuplets in the tensor product of 6 spin-1/2’s. The complete
decomposition above, that we will call a Clebsch-Gordan series, can be checked by
dimensional-counting: 26 = 549 x 3+ 5 x 5+ 7. Another technique which answers the
questions above, and solely the questions above, is the following one. The total number
of singlets, respectively of quintuplets, in the tensor product of 6 spin-1/2 corresponds
to the total number of SYTs for the irrep [3, 3], respectively the irrep [5, 1] [86]. The SYTs
in each of these cases are given by

11213 112(4 113]4 11215 113]5
45|16 3|5]6]) 2(5|6) 3(4(6] 2(4|6

(3.44)

and

112]|3|4](5 112]|3|4|6 112]|3|5(6 1(2(4|5|6 1(3(4|5|6 34
a 7 7 7 . (5)

Notice that the irrep [3, 3] is the singlet irrep since each column of 2 boxes could be
removed

=e - 5=0. (3.46)

In fact, for su(2), the spin S can be obtained from the Young diagram as S = (v; — 12)/2
where 1 and v, are the lengths of the first and second rows, respectively, in the Young
diagram. It follows that the irrep [5, 1] is actually the quintuplet irrep,

LI =T 5 s=2 (3.47)

One thus concludes that one needs to preserve the total number of boxes between the
Kronecker product representation 2% and the decomposition into irreps to obtain
sensible results, in particular one needs to keep columns of N boxes in the Young
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diagram if one aims at performing calculations related to the theory of the symmetric
group. This conservation of boxes is a key aspect of the implementation of the SU(V)
symmetry in ED and DMRG codes [57, 86-89].

3.3 Thesu(N) Lie algebra

3.3.1 Preliminary definitions

A Lie algebra L (over a field K) is a K-vector space g with a bilinear operator [-, -] :
g X g — g such that:

1. [z,2] =0, Vz € g,

2. the Jacobi identity is satisfied: [z, [y, z]] + [y, [z, z]] + [z, [z,y]] = 0, Vz,y, z € g.

The bilinear operator [-, ] is called a Lie product, a Lie bracket or a commutator. A
Lie algebra is said to be abelian if [z,y] = 0 Vz,y € £. A non-empty subalgebra
L' of L is said to be proper if £ \ £’ is not empty and it is said to be invariant if
[z,y] € L'Vx € L',y € L. Finally a Lie algebra is said to be simple if it is not Abelian
and if it does not possess a proper invariant Lie subalgebra. The Lie algebra su(/N), on
which we should focus later on, is a simple Lie algebra'l.

Here we will specialize to finite-dimensional Lie algebras, for which Ado’s theorem
holds.

Ado’s theorem: Every finite-dimensional Lie algebra £ over a field K is isomorphic to
a Lie algebra of matrices with the Lie bracket being the usual matrix commutator.

Thus, in what follows one should simply study the matrix Lie algebra, for which explicit
calculations can be performed easily.

Let us introduce two more important concepts. A d-dimensional representation of a
Lie algebra £ is a matrix representation R : £ — K% such that R(-) itself forms a
Lie algebra. A representation R of a Lie algebra is said to be irreducibleif it cannot be
decomposed into a direct sum of representations. One can now state one of Weyl’s
theorems.

Weyl’s theorem on complete reducibility: Every finite-dimensional representation of
a semi-simple Lie algebra can be decomposed into a direct sum of irreps.

We are now equipped with the very basics requirred to understand sufficiantly deeply
the structure of the su(N) Lie algebra.

"The Lie algebra su(N) is actually a semi-simple Lie algebra, meaning that it is a direct sum of simple
algebras.
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3.3.2 Thesu(/N) Lie algebra

The su(N) Lie algebra is the real algebra of N x N anti-hermitian matrices with vanish-
ing trace. Clearly the set of anti-hermitian matrices is a R-vector space, the commutator
is closed under the Lie braket and the Jacobi identity is satisfied. It is easy to see that
any traceless anti-hermitian matrix can be written as a linear combination (with real
coefficients) of N? — 1 basis elements. Thus the Lie algebra su(N) has dimension N2 —1.
The Lie algebra su(N) is a subgroup of the N2-dimensional Lie algebra u(N) which
does not have the condition of vanishing trace. Let us use E;; to denote the canonical
basis of square N -dimensional real matrices, which form a N2-dimensional real Lie
algebra, defined as

(Eij ks = 0abji, iy, k1 =1,...,N. (3.48)

The matrix £;; has zeros everywhere except at row ¢ and column j whereitis (£;;); ; = 1.
Then a possible basis for su(N) is given by the following matrices:

Eijj +Ej;, 1<:1<j<N, (3.49)
—i(EZ" — Eji)7 1<1< ] < N, (3.50)

and
E;; — Ei+1,i+17 1<7<N. (3.51)

This indeed defines N?—1 independent elements of the Lie algebra. Notice that N —1 of
them are diagonal, and we shall call this the rank of su(N) [102]. The diagonal elements
form the so-called Cartan subalgebra and are at the root of the weight diagrams often
used in high-energy physics to classify hadrons. Let us now denote by {ei}i]\; 21_1 a
generic basis of su(/V). We then define the following matrices,

N = 2ie;, i=1,..,N?—1. (3.52)

The )\;’s are hermitian matrices, and, as such, they do not form a Lie algebra. We then
define the generators of su(N) as

1
ti = 5/\1» =ie;, i=1,..,N*—1, (3.53)
The structure constants f;;;, are real coefficients which define the Lie algebra'?,

lei, e5] = fijrer (3.54)

!2The structure constants are real since the Lie algebra is closed under the Lie bracket.
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where a sum over the repeated index is implicit. This equation can be reexpressed in
terms of the generators of the Lie algebra as

[ti, t5] = ifijute (3.55)

which is the usual form known by physicists for the commutation relations of the
generators of the su(N) Lie algebra. Observe that for su(2) the basis elements in
Eq. (3.49)-(3.51) indeed correspond to the usual Pauli matrices,

o) (0) %) o
10 i 0 0 -1

For su(N) we shall replace the diagonal basis elements in Eq. (3.51) in order the follow-
ing trace condition to be satisfied,

Tr(\Aj) = 265, Vi, j=1,..,N?—1. (3.57)

Indeed a convenient consequence of this trace condition is that the new structure
constants are totally anti-symmetric in all indices. For su(3) an appropriate set of
hermitian matrices \; = 2ie; is given by the Gell-Mann matrices [93],

010 0 —i 0 1 0 0
M=110 0|, =i 0o of, x=|0 -1 o], (3.58)
000 0 0 0 0 0 0
00 1 0 0 —i 000 00 0
M=[0 0 o], xs=[00 of, xx=|00 1|, xx=]|0 0 -i],
100 i 0 0 010 0 0
(3.59)
L[t 00
d=—101 0. (3.60)
\/300—2

The matrices \;, © = 1,2, 3 are simply obtained by embedding the Pauli matrices in
3 x 3 matrices. The matrices \;,7 = 4, ..., 7 are obtained by putting 1 or —i at all possible
locations in the third column, except in the last row. Finally A\g is simply obtained
by imposing the trace condition in Eq. (3.57). The same procedure can be followed
to derive the generalized su(/N) Gell-Mann matrices from the su(N — 1) Gell-Mann
matrices when N > 3 [93]. The N-dimensional matrix representation e¢; = —i\;/2
where \; are the Gell-Mann matrices is called the defining representation, or the
fundamental representation of su(/V). Thanks to the trace condition in Eq. (3.57) the
structure constants are totally antisymmetric in all indices and can be easily computed
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as follows )

fijk = ETr([)\,», NilAk) - (3.61)
Another important representation that we can introduce without further notions is
the adjoint representation. It is the representation for which the generators are the
structure constants themselves,

(29); 0 = —ifijn- (3.62)

Obviously the dimension of the adjoint representation corresponds to the dimension
of the underlying Lie algebra, namely N2 — 1.

From the su(3) generators ¢; in the fundamental representation one can build three
sets of raising and lowering operators,

ui =1t + itg, Ui =1y + it5, wi = t6 + it7 (3.63)

where v~ = (u*)f, v= = (v and w™ = (w™)T. For su(N) in general one defines

N(N —1)/2 sets of raising and lowering operators by proceeding similarly. The remain-

ing operators are the N — 1 diagonal operators. We define the Cartan operators as,
2

hy = ts, hy = ﬁt& (3.64)

The definition of raising and lowering operators allows us to circulate from one state
to the other, exactly as one circulates from one state to the other by applying S* in the
case of su(2). Moreover, since there are N — 1 diagonal generators one can illustrate how
the operators act in the Hilbert space of states using a weight diagram. Figure 3.3(a)
shows the weight diagram of su(3) in the defining representation where we have used
the three “colors” A, B and C to denote the states of the irrep. The state A is called the
highest weight state since the application of any raising operator on A vanishes.

Now we will define a new set of generators widely used in physics and which will appear
to be “maximally symmetric”. Let us introduce the operators S®* where o, 3 = 1, ..., N
are the su(N) colorindices. For the case of su(3) developed above we take S'? = u™,
S13 =ot, 8% = wt as well as S = (S*#)f. We further define the diagonal elements
§* a =1,..., N using the Cartan generators,

N
ha = (ha)aeS*™, a=1,.,N -1 (3.65)
a=1

Moreover, in order S*?, o, 8 = 1, ..., N to have the good number of elements we impose
the overall trace condition,

N
> S§*=0. (3.66)
a=1
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(a) su(3), ] (b) su(3), L] () su(3), 1]

Figure 3.3: su(3) weight diagrams of (a) the fundamental irrep, (b) the 2-box symmetric
irrep and (c) the 3-box symmetric irrep. The generators for (b) and (c) are given in
Appendix F.

Inverting Eq. (3.65)-(3.66) one ends up with explicit expressions for the diagonal oper-
ators S*“. For N = 3 for instance one has,

1 1 ,
S =h + 5/12, S = —hy + 5/12, 8§33 = —h,. (3.67)

The commutation relations satisfied by the generators S are easily obtained by direct
calculation and are given by

(S8 S| = gHBSW — g SHB, (3.68)

These commutation relations are called the su(N)-commutation relations as they are
true for any N. Because of the structure of S®# one observes also that the bilinear
operator is written as,

N2-1
26t =2 )  tit; =SS =Tr (SS) (3.69)
i=1

where a sum over the color indices is implicit in the next to last expression.

3.3.3 Irreducible representations

The other irreps of the su(/N) Lie algebra can be labeled with Young diagrams with
no more than N rows. This constraint comes from the fact that a column of p boxes
corresponds to p-particle states which are antisymmetric in the N colors. Thus, any
column of N boxes in a Young diagram can be safely removed since it corresponds
to a singlet state, a totally antisymmetric combination of N colors. We have already
encountered the fundamental irrep, which is denoted by a Young diagram with a single
box [ ] as well as the adjoint irrep. The Young diagram of the adjoint irrep is made of
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two columns, one with N — 1 boxes and one with a single box. For instance for su(3) it

is [.

The dimension of an irrep can be obtained from the shape of the Young diagram. We
have already introduced the hook length /; of a box defined as the number of boxes in
the Young diagram situated to the right of that box, plus the number of boxes situated
below that box, plus one for the box itself. We also define the algebraic distance ; of a
box as the the distance from the main diagonal to that box, counted positively when
going to the right and negatively when going downards [86]. Then, the dimension of
an su(N) irrep is given by

N +;
D:H h7 (3.70)

where the product is over all boxes of the Young diagram. For instance, the dimension
of the fundamental irrep is D = N/1 = N as expected while the dimension of the
adjoint irrep is

NN +1)

~ N(N —2)!
as expected. In fact, the D states of a given irrep can be constructed explicitly using the
fact that boxes in the same row of the Young diagram are symmetrized while boxes in
the same column are antisymmetrized. For instance, the states of the 3-box symmetric
irrep of su(3) corresponding to a Young diagram with three boxes in the first row, [ [ [ ],
are given by

=N?2-1 (3.71)

[elele))

75 [AAB) + |ABA) + |BAA))

w

L (|JABB) + |BAB) + |BBA))

S

L (JAAC) + |ACA) + |CAA))

S

L (JACC) + |CAC) + |CCA))

S

L (|BBC) + |BCB) + |CBB))

S

L (|BCC) + |CBC) + |CCB))

&

75 [ABC) + |ACB) + |BAC) + |BCA) + |CAB) + |CBA)).

S

(3.72)
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These states indeed correspond to all possible fully symmetric states with three parti-
cles (boxes) and three colors. From Eq. (3.70) we obtain the dimension of the 3-box
symmetric irrep,

— 3x4x5 _ 10

3Ix2x1 (3.73)

in agreement with the above wave functions. It is sometimes convenient to denote an
irrep by its dimension, which we write in boldface characters. For instance 10 = [ [ .
However this notation is not ideal as different irreps can have the same dimension.
For instance, the (complex) conjugate irrep of an irrep has the same dimension'3. The
Young diagram of the (complex) conjugate irrep of a given irrep is obtained as follows:
replace each column of length v of the irrep [v] by a column with N — v/ boxes. Then
flip the obtained diagram around the vertical axis to obtain a valid Young diagram. For
instance one has, for su(3),

10 = . (3.74)

An irrep is said to be self-conjugate if it is conjugate to itself. The adjoint irrep, in
particular, is self-conjugate. For su(3), a self-conjugate irrep has as many columns
with two boxes as columns with one box. An alternative and convenient notation for
irreps of su(NV) is through the Dynkin label, which counts the number of columns
with i boxes in the Young diagram. For an irrep [v]| the Dynkin label is thus given by
(v1 — vo,v9 — 3, ...,un_1). Forinstance 10 = [ [ ] = (3,0). The Dynkin label of the
conjugate irrep of an irrep is thus simply obtained by reversing the Dynkin label:

LIT]=,0) — =(0,3) (3.75)

and a self-conjugate irrep must then be invariant under this transformation of the
Dynkin label,

= (1,1). (3.76)

To each irrep [v] we associate a set of generators T;, i = 1,..., N> — 1 which are D-
dimensional hermitian traceless matrices and which satisfy the same algebra as the
generators in the fundamental irrep, namely they satisfy Eq. (3.55) with the struc-
ture constants given in Eq. (3.61). Moreover we impose the following normalization

condition [103],
D(C,

N2 -1
where C is the eigenvalue of the quadratic Casimir operator [104]

1
C=T T=; (n <N - ;) + ZZ:V? - Z(y}’ﬁ) (3.78)

J

BForsu(N > 3) there are irreps not related by complex conjugation which do have the same dimension.
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and n is the total number of boxes in the the Young diagram of the irrep [v]. The
normalization factor in Eq. (3.77) is called the Dynkin index of the irrep [v] of su(N).

The D states of the irrep [v] can be placed on a (N — 1)-dimensional weight diagram
according to the eigenvalues of the diagonal generators. For instance Fig. 3.3(c) shows
the 10 states of the irrep [ [ ]of su(3) given in Eq. (3.72) in their weight diagram. One
can again circulate from one state to the other by acting with the raising and lowering
operators U*, V* and W defined in the same fashion as in the fundamental irrep (see
Eq. (3.63)). Moreover one follows the same steps as in the fundamental irrep to define
the operators S*’. One thus has S'2 = Ut, S1¥ = V*, $ = W+ and one should
replace Eq. (3.65) by

N
Ho=> (ha)aaS*, a=1,.,N-1 (3.79)

a=1

where H, is the Cartan generator defined as in the fundamental irrep. Explicit expres-
sions of the generators 7;, i = 1, ..., 8 of su(3) in the 2-box and 3-box symmetric irreps
LI Jand [ I ] respectively, are given in Appendix F.

3.3.4 The Itzykson-Nauenberg rules

Starting from the fundamental irrep, any irrep of su(N') can be constructed by adding
one box at a time until the obtained Young diagram has the right shape. For instance,
taking the tensor product of two fundamental irreps of su(3) one obtains two different
irreps,

Oe O :H@ 11 (3.80)

One can then obtain all irreps of su(3) with three boxes by multiplying the result with
another fundamental irrep,

D@D@D:(H@Dﬂ)@ﬂ:.@2 o (1T (3.81)

where e denotes the singlet irrep of su(3) and corresponds to a Young diagram with
three boxes in a single column. Equation (3.81) can be checked with the use of
Eq. (3.70). We indeed have 3 x 3 x 3 = 1 4+ 2 x 8 + 10. We observe that the adjoint
irrep appears twice in the product of three fundamental irreps. In fact, the number of
times that an irrep [v| with n boxes appears in the tensor product of n fundamental
irreps corresponds to 2"/ given in Eq. (3.15), the total number of SYTs for the irrep [v]
of S,, [86].

More generally, two arbitrary irreps [v1] and [v2] of su(N') can be multiplied and decom-
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posed into a direct sum of irreps

1] @ [vo] =Y (1av)[V] (3.82)
]

where (v119v) is the outer multiplicity of the irrep [v] in the tensor product of [v;] and
[2] [92]. The decomposition is called the Clebsch-Gordan series and is obtained by fol-
lowing the Itzykson-Nauenberg rules, which are slightly different from the Littlewood-
Richardson rules of the permutation group [105].

1. Select among [v1] and [»] the most complicated Young diagram as the base.

2. Fill the other Young diagram with «’s in the first row, b’s in the second row, ¢’s in
the third row, etc...

3. Enlarge the base diagram by moving the a’s to all possible positions satisfying
the two following constraints: i) two a’s should not stand in the same column;
ii) the diagram obtained at each step should be a valid Young diagram for su(V),
namely it should have at most N rows, and row lengths are non-ascending from
top to bottom.

4. Perform similarly for all b’s with the following additional constraint: iii) when
going through the Young diagram from right to left and from top to bottom, the
total number of b’s should never exceed the total number of a’s.

5. If two diagrams are identical (same shape and same letters placed at the same
locations), then only one instance should be kept.

6. Proceed again to steps 4 and 5 for all ¢’s, d’s etc ... until the resultant diagrams
all contain n boxes. At each step, when counting from right to left and from top
to bottom, the total number of ¢’s should not exceed the total number of b’s, the
total number of d’s should no exceed the total number of ¢’s etc ...

7. Once all boxes containing letters are placed, keep all diagrams for which the
pattern of letters is different (if two Young diagrams have the same shape but the
pattern of letters is different, then both instances should be kept).

8. Remove all letters and remove all columns with N boxes.

When N = 2 the Itzykson-Nauenberg rules reduce to the simple rules for the multipli-
cation of angular momenta, j; ® jo = |j1 — j2| @ ... ® (j1 + j2) where angular momentum
j corresponds to a Young diagram made of a single row with 2j boxes. When N > 2
however the rules are more sophisticated and, in particular, they allow for a non-trivial
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outer multiplicity: a given irrep [v] can appear more than once in the tensor product of
two irreps [v1] and [v]. For instance in su(3) one has

o 1 ]= e a2 [ oTTe o ] (3.83)

The adjoint irrep of su(3) appears twice in the tensor product of two adjoint irreps.

3.3.5 The Clebsch-Gordan coefficients

The CGCs are closely related to the Clebsch-Gordan series. Indeed according to
Eq. (3.82) the Kronecker product (or tensor product, or direct product) representation
[11] ® [v2] is a reducible representation of su(N). The CGCs are thus the recombination
coefficients which allow us to pass from the tensor product representation to the differ-
ent irreps. Denoting by |[v;], m;) , m; = 1,...,dim([w;]) for i = 1, 2 the states of the irrep
[v;] then the states |[v], m, 7) of the T-th irrep [v] appearing in the decomposition (3.82),
7=1,.., (1), and m = 1, ...,dim([v]), are given by'*

Whmry= > cpimr il mas (el ma) (3.84)
mi,m2
where |[v1], m1; [2], m2) = |[11], m1) ® |[va], m2) and where C[[Zh%:,[l%m are the CGCs.

The CGCs are merely a change of basis from the tensor-product basis to the irreducible
basis and one shall take the following normalization conditions,

[v],m,T « ~V]m/ T .
Z (C [ug],m2) c = O[] Om,m’ Or 7/ (3.85)

[v1],ma, [v1],ma,[va],ma
mi,ma

Z (C[V],m,T )*C[V],m,‘r — 5m1,m’1 5m2,m’2‘ (3.86)

[ ] [Vl]vmlv[VQLmQ [Vl]zmav[’j?}’mé

Moreover, for su(/N) the CGCs can be chosen to be real and we shall do so in what
follows. The explicit calculation of CGCs being a standard exercise for su(2) and being
well-documented for su(/N > 2) we shall not provide further details [92, 106-113]. We
should also point out Ref. [85] which provides an efficient computer implementation
of the calculation of the CGCs for su(V).

Let us now shortly come back to the generators of su(/V) in a specific irrep. Denoting by
TJM ,j =1,..., N>~1the generators in the irrep [v;], i = 1, 2 of su(V), and assuming that
condition (3.77) is satisfied, the generators in the Kronecker product representation
[11] ® [v2] can simply be obtained as

e — g1 p 1T, =1, N2 1L (3.87)

YIf (11v2v) = 1 for a given irrep [v] one often omits the index 7 which can take a single value.
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The generators T]M in the different irreps [v] appearing in the tensor product of [ ] with
[2] are then extracted by performing the change of basis using the CGCs. This method
ensures that the new generators satisfy Eq. (3.77). As a consequence, a straightforward
procedure to obtain the generators of su(/N) in a given irrep [v] having n boxes in the
Young diagram with the good normalization convention in Eq. (3.77) is to start from
the generators in the fundamental irrep, which are obtained from the generalized
Gell-Mann matrices, and to perform n — 1 successive Kronecker products with a
fundamental irrep followed by a rotation given by the CGCs, and keeping only the
irreps in the chain leading from [ ] to [v].

3.3.6 Therelationship to the Lie group SU(N)

All over this section we have discussed the representation theory of the Lie algebra
su(N). However, physicists mainly talk about SU(/V) Heisenberg models, for instance,
rather than su(/V) Heisenberg models, so what is the relationship ? The special unitary
group SU(N) is the Lie group of N-dimensional unitary matrices with unit deter-
minant!®. It is a group as it satisfies all properties of a group: closed under matrix
multiplication, associative, existence of an identity element (the unit matrix), and
existence of an inverse element for any element of the group. Itis a Lie group because it
is a smooth manifold [101, 114]. It appears that the elements of SU(/V) are then smooth
functions of N? — 1 real parameters x = (1, ..., ¥ y2_1), the origin & = 0 corresponding
to the identity element U(x = 0) = 1. For any matrix U € SU(/V) one then has [93]
d . 2 .
- Ui,j($) = _l(tk)i,ja k= 1,...,N —1, 1,] = 1,...,N (388)
8:1:’k =0

where ty, k = 1,..., N?>—1 are the generators of the Lie algebra su(N) in the fundamental
irrep, and we recall that —it; = e, forms the Lie algebra su(/NV) as defined in the above
sections. The generators of the Lie algebra thus span, or generate, the tangent space of
SU(N) at the identity'®.

When looking at a spin Hamiltonian such as the standard Heisenberg model, one writes
the Hamiltonian in terms of the spin operators S*, S¥ and S* which are the generators
of the Lie algebra su(2) in the spin-S irrep and which, through the exponential map,
generate infinitesimal SU(2) rotations. The Hamiltonian, denoted

H=81-S= > S5 (3.89)

a=z,y,z

is then invariant under SU(2) rotations, and it sounds reasonable to call this model the
SU(2) Heisenberg model. We shall extend this model to su(N) (or SU(V)) by using the

>SU(N) is thus the subgroup of U(NN) which is connected to the identity.
!The tangent space at the identity, T.SU(N) = Lie(SU(N)) actually defines a Lie algebra Lie(SU(N))
called the Lie algebra of SU(/N) and denoted su(N).
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generators of su(/N) in a given irrep [v] and define the SU(/V) Heisenberg model as

H =2T, Ty =878 = Tr (8:82). (3.90)
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The Affleck-Kennedy-Lieb-Tasaki (AKLT) model derived in 1987 has been of great im-
portance to understanding more deeply the structure of the spin-1 Heisenberg chain, in
particular the gapped spectrum and the topologically protected edge states [115, 116].
It was the first exactly solvable point in the phase diagram of the bilinear-biquadratic
spin-1 chain for which the existence of a finite gap could be rigorously demonstrated,
and as such was a key model to confirm Haldane’s conjecture on spin-S Heisenberg
chains [31, 32].

With the advent of the matrix product state (MPS) formalism, the AKLT wave function
could be reinterpreted in a very convenient fashion, making use of matrices of CGCs. In
particular, the existence of a finite gap follows from the finite correlation length which
can be extracted from the transfer matrix of the MPS, and the spin-1/2 edge states in
an open chain are nothing but traces of the building blocks of the wave function.

Given the usefulness of the AKLT wave function, it was extended in many different di-
rections, either by adapting the spin values, upgrading the lattice to higher dimensions
or changing the symmetry group of the local degrees of freedom. In this respect, and
motivated by the possible experimental realizations with ultracold atoms loaded in
optical lattices, the extension to the SU(/NV) group has been an active field of research
for several years [45, 117-121]. The protection of the edge states was studied and it was
shown that, on a one-dimensional chain, there are N — 1 gapped topological phases,
generalizing the “Haldane phase” in the SU(2) spin-1 chain [122]. More generally
the presence of an AKLT model gives insights on a possible gapped spectrum at the
corresponding Heisenberg point, provided the AKLT and Heisenberg points are close
enough. Deriving AKLT models for SU(/N) spin chains is thus an excellent starting
point to understand the extension of Haldane’s conjecture to SU(N) chains [123].

In this chapter we present a practical method to construct SU(/N) AKLT wave functions
and their parent Hamiltonians. We show that the variety of AKLT models is much
wider than what has been studied so far. In particular we demonstrate that for the
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same physical spin on each site one can derive several AKLT wave functions possessing
different types of edge modes. To provide an illustrative example we study in Section 4.2
a spin-1 AKLT chain having spin-1 edge states, and we show that it belongs to a trivial
phase separated from the Haldane phase by a continuous phase transition. We then
turn to the case of SU(/V) and, in anticipation of Chapter 5 we look at an SU(3) AKLT
Hamiltonian for the 3-box symmetric irrep at each site. This model was first derived
in Refs. [117, 118] but we present here an optimal and useful representation of the
wave function. The new construction of the AKLT wave function will be key to the
understanding of the structure of the spectrum of the 3-box symmetric Heisenberg
chain in Chapter 5.

The material covered in this chapter was published in Ref. [56].

4.1 Generic construction of SU(/N) AKLT models

4.1.1 AKLT states

An AKLT wave function is a valence-bond solid (VBS) state: the wave function is made
of singlets on every bond of the lattice. From now on, we focus on the one-dimensional
case, but most of the results can be extended to higher dimensions. To construct an
AKLT wave function with a physical irrep P on each site of the lattice, we select two
virtual irreps V;, and Vy such that the physical irrep belongs to the tensor product of
V1, with Vg. This ensures that, if one puts two virtual irreps Vr,, Vi on each physical
site, one is able to project them onto the physical irrep. To impose the formation
of singlets on every bond, one must also ensure that the singlet irrep belongs to the
tensor product of V;, with V. This is indeed the case provided that V;, and Vy are
conjugate to each other. If the two virtual irreps V;,, Vi are not the same, then there
are two ways of combining the virtual irreps on neighboring sites into a singlet bond,
as shown in Fig. 4.1(a). This leads to two AKLT wave functions which break reflection
symmetry. In what follows we focus on the case where the virtual irrep is self-conjugate,
V = V;, = Vg which ensures that the AKLT wave function does not break reflection
symmetry. The unique AKLT state with physical irrep P and virtual irrep V shown in
Fig. 4.1(b) is denoted

|AKLT) = |P, V). 4.1)

There is an important subtlety, however, when considering the SU(V) group with
N > 2. Some irreps might occur with a nontrivial outer multiplicity in the tensor
product of the virtual irreps. Denoting by * the outer multiplicity of the irrep P in the
tensor product of V ® V, one can actually build ;¥ AKLT states which we denote by

’P,V,T>, T = 17"'7,UP- 4.2)
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(a)

/_\ /_\ m /_\ ® O
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/_\ /_\ /\ /_\ o0
v v \_/ v

Figure 4.1: (a) Two AKLT states which break reflection symmetry when the virtual irreps
V1, Vg, denoted by filled and empty circles, are different. (b) Unique AKLT state |P, V)
for a self-conjugate virtual irrep V, here denoted by a filled circle. The ellipses denote
the projection of two virtual irreps onto the physical irrep P, and the thick lines joining
adjacent sites are singlets. Figure (b) taken and adapted from Ref. [56], (C) 2019 Elsevier,
under CC BY license.

All AKLT states |P, V), 7) can be constructed explicitly using the CGCs associated to the
singlet and physical irreps in the tensor product of two virtual irreps. Let us denote by
[P] the Young diagram of the physical irrep P, [V] the Young diagram of the virtual irrep
V and [0] the Young diagram of the singlet irrep. To lighten the notations we define the
following matrices of CGCs (see Section 3.3.5),

Sap = C[@M[V]’b, a,b=1,...,dim(V) (4.3)
and

MmbT o C[P] m,T

My ™= 1,..,dim(P), a,b =1,...,dim(V), 7 = 1, e 1P (4.4)

The AKLT wave functions can now be explicitly written in terms of the matrices S and
M"™T of CGCs for the singlet and physical states. We have

PV, 7) =Y Te(M™ 7" SM™ 7S .M™78)|mi,ma,...,mL) (4.5)

for a periodic chain of length L, where },,, denotes a summation over all states of the
tensor product basis |my, ma, ...,mz) € P®L. The AKLT wave functions are thus written
as MPS with virtual (or auxiliary) bond dimension D = dim(V) and physical dimension
d = dim(P). Notice that the wave functions in Eq. (4.5) are neither normalized, nor
orthogonal to each other.

The correlation length of the MPS can be directly extracted from the MPS tensors.
Defining the matrices
A™T = M"™TS (4.6)
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and the transfer matrix
TT=Y A™ @A™ 4.7)
m
as well as its eigenvalues )\ sorted in descending order of real parts, ReA] > Re\j >
ReAj > ... the correlation length is given by
1
&= —5 (4.8)
In |2~
ReAj

For SU(2) spin chains the construction described above goes beyond the widely known
AKLT states with physical spin S and virtual spin s = S/2 [115, 116, 124]. Indeed, for a
physical integer spin S one is now able to construct AKLT states with any virtual spin
s > S/2 [125]. In a similar fashion the construction of SU(N) AKLT states becomes
much richer than what has been done so far. Indeed, the usual construction consisted
in stacking fundamental irreps (or more generally antisymmetric irreps) and forming
several singlet bonds, if necessary, to achieve a given physical irrep. The construction
introduced here will prove to be very useful to characterize the structure of the edge
states on open chains, which remains unclear in the usual construction.

4.1.2 Parent Hamiltonians

Once the AKLT state is defined, the next step is to derive the associated parent Hamilto-
nian: an Hamiltonian for which the AKLT state is the unique ground state for periodic
boundary conditions (PBC), and such that the ground state degeneracy is D? for open
boundary conditions (OBC). For instance the simplest parent Hamiltonian of the
original SU(2) spin-1 AKLT state is the following bilinear-biquadratic form*

1 2
Hakir = 3 (Si “Sit1+ g(si +Siy1)?+ 3> (4.9)

2

where the constant term simply sets the ground state energy to zero [115, 116]. One
obtains this form very simply by inspection of the AKLT wave function on two neigh-
boring sites. Since there is a singlet between sites i and i + 1, the total spin of the AKLT
wave function on these sites can be either zero or one, but not two. The kernel of a
valid parent Hamiltonian must thus be the set of all wave functions satisfying this
constraint of being either a singlet or a triplet on any pair of neighboring sites. The sum
of the projectors onto the spin-2 subspace on two neighboring sites clearly satisfies
this condition, and we write

Haxir = 2 Z [P’fffl (4.10)
i

where the factor 2 is conventional and ensures the equivalence with Eq. (4.9).

'"Throughout this chapter and for ease of notation, we remove the energy scale .J from all Hamiltonians.
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This method to derive a valid AKLT Hamiltonian is not convenient for the more general
framework introduced in Section 4.1.1, and actually does not lead to any meaningful
result in many cases. For instance, let us consider again the spin-1 chain, but with
virtual spin-1. Obviously the two-site approach used for the original AKLT state does
not work here: since the physical and virtual irreps are the same, one would obtain
H = 0. The only way to solve this issue is to look at a three-site Hamiltonian. By
analogy with Eq. (4.10) a naive expression would be

H= Prin (4.11)
7

where Pfff“ 1o s the projector onto the spin-3 subspace on three neighboring sites.
Indeed, the spin S = 3 cannot be obtained from the tensor product of the two virtual
irreps, while it can be obtained from the tensor product of three physical irreps. In
fact, Hamiltonian (4.11) is not a valid parent Hamiltonian because its kernel is not only
made of the AKLT wave function. The origin of this larger ground state degeneracy is
the outer multiplicities of the spin-1 and spin-2 irreps in the tensor product of three
physical irreps.

We will now describe a generic method to find valid parent Hamiltonians for the SU(XNV)
AKLT states described in Section 4.1.1. We will then come back to the example above
and derive the complete family of valid parent Hamiltonians.

To begin, let us define a few useful sets. First we define the tensor product of two virtual
irreps
U=vYeVy (4.12)

and the decomposition of its content in terms of spaces transforming according to the
symmetry properties of Young diagrams

U= [ ]@UUM (4.13)
v|e

where U is the set of Young diagrams involved in the tensor product of the virtual
irreps. We also define the tensor product space of [ physical spins and decompose it in
a similar fashion,

Pol = @ v, (4.14)
vjeA

The space V1" can itself be decomposed into a direct sum of u*! copies V!, i =
1,..., " if the irrep [v] appears p*! > 1 times in the tensor product of  physical irreps.

Given the spaces ¢/ and P® one further defines their intersection

K=unpe (4.15)
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as well as the complement of / in P®!,

Q =P\ U. (4.16)

The spaces K and Q can also be decomposed as direct sums of spaces transforming
according to irreps of the group,

K= & K[l/]7 o= &P Q[V} 4.17)
[VeK [VeQ

and the spaces K* and Q¥ can be further decomposed into direct sums of ,ugé] and

,u[’Q/] copies of spaces if the irrep [v] appears u%’] > 1or ,u['Q’]

Q, respectively.

> 1 times in the space K or

From now on, we assume that the space Q is not empty. In other words we assume
that [ is large enough in order for Q to be non empty.

Before introducing the most general construction of the family of parent Hamiltonians
we discuss the construction of one particular parent Hamiltonian, which we call the
“MPS Hamiltonian”. Since we know the wave function of the AKLT state through its
exact expression in terms of an MPS with finite auxiliary bond dimension, one can
build a parent Hamiltonian as

h =1 — Pyps (4.18)

where Pyps is a projector onto the MPS manifold of AKLT wave functions. Dealing with
the entire wave function, however, is not so convenient and we aim at finding a local
Hamiltonian. To do so, we consider the MPS of the AKLT states on [ sites with OBC,

PV, m5a,b) = (M™TSM™>7 S M™7 )y [ma, ...;my) . (4.19)

m

The labels a,b = 1, ..., D of the unpaired virtual states at sites 1 and /, respectively, now
label the D? AKLT states with OBC on [ sites.

We choose [ in such a way that all states |P, V, 7; a, b) are linearly independent. One then
says that the MPS is injective on [ sites?. The non-orthogonality of the D? AKLT states
prevents us from using them straight away to build a local projector. Orthogonalization

The injectivity length is the smallest length [ such that the MPS is injective on [ sites. There is a criteria
to find a length [ such that the MPS is injective. Find the smallest [ such that D? < d'. Then the MPS is
injective on [ + 1 sites [126-130]. The injectivity length, however, can be smaller, as is illustrated by the
original AKLT model.
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can be obtained easily using the CGCs as

1 D v|,m,w : v
PV.mllmw) = o0 30 Oy [P Vimiad) . W] €U, m=1,...dim(UL),

a,0=

w=1,.., M[J]
(4.20)
where #E lis the multiplicity of the irrep [v] in the space/ = V ® V and U is the w-th

copy of the invariant space with symmetry [v] in /.

From the states in Eq. (4.20) one can form projectors onto the different components of

K,
dim([v])

PTKLV] = Z ’P»V, T3 [V]vm’w> <P3V77—; [V],m,w\ . (421)

m=1

The [-site local MPS Hamiltonian is then given by

mps = 1 — Pypg (4.22)
where
[v]
Hic
s = > D> Pl (4.23)
v]eK w=1

The Hamiltonian on a chain of length L is obtained as

Hygps = Z 7i(hjps) (4.24)

1

where 7;(h{;pg) is the local MPS Hamiltonian in Eq. (4.22) acting on sites (i,7 + 1, ..., +
[—1).

So far we have found how to derive one particular parent Hamiltonian. However,
parent Hamiltonians of AKLT states are not unique and we shall find the entire family
of parent Hamiltonians acting on [ sites, where [ is the injectivity length defined above.
To do so we first compute, using the CGCs, all states of the tensor product of [ physical
spins in definite symmetry sectors. The states are thus labeled by an SU(V) irrep [v/], a
state index m and a multiplicity index w,

V], m,w) € P (4.25)

The key point is to ensure that the MPS states defined in Eq. (4.20) form a subset of
these states. One obtains this property using the gauge freedom in the CGCs: within an
irrep [v] one can perform a rotation which ensures that the AKLT states labeled by the
irrep [v] correspond precisely to the states |[v], m,w). One can now define projectors
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on all sectors belonging to P&

P = 3" [v], m,w) (], m, 7] . (4.26)

Moreover one can define additional operators which swap the states of different copies
of the same irrep,

Xg},{ = Z ], m,w) (V] m, k|, 1<w,r<ull, wk. (4.27)

We call these operators the “intertwiners”.
The most general /-site local parent Hamiltonian is then given by
2
h= 30 > | LR+ XUl (4.28)
v]eQ w=1 KFw
where ¢! is a symmetric positive definite matrix.

When taking ¢! = 1, V[v] € Q, the Hamiltonian in Eq. (4.28) reduces to a projector
onto the space Q, and we recover the MPS Hamiltonian in Eq. (4.22). Tuning the
parameters c*} away, the Hamiltonian is not a projector anymore, but its kernel is still
the space K.

4.2 SU(2) AKLT model with spin-1 edge states

In this section we provide an illustrative example of the construction of AKLT states and
parent Hamiltonians discussed above: an SU(2) spin-1 AKLT state possessing spin-1
edge states. This model was initially introduced in Ref. [125] but in a somehow less
general framework.

4.2.1 Construction of the state
From the standard rules for the tensor product of two SU(2) irreps one has
33=1033D5. (4.29)

One can thus use the CGCs to write the state of the singlet in terms of the spin-1 spins.
Taking {|1) ,|0),|—1)} as the basis of states of a spin-1 irrep the singlet reads

. (I @[-1) =10 ®[0) +|-1) @ |1)). (4.30)

S

3
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4.2. SU(2) AKLT model with spin-1 edge states

One then translates this onto the following singlet matrix

1 0 0 1
S=—=10 -1 0]. (4.31)
V3 1 0 0

Similarly the triplet states are given by

(0 @)= ©0)
S(-nem-mel-n) (4.32)
(1@ -1
and the triplet matrices are thus
Ve (1) _01 8 M2 = L 8 8 _01 ME = L 8 8 f01 . (4.33)
\/§ 0O 0 O 7 \/§ 1 0 O 7 ﬂ 01 O

Notice that we have removed the multiplicity index 7 from Eq. (4.4) since no nontrivial
multiplicity occurs in the tensor product of two SU(2) irreps.

From these matrices one can build the AKLT wave function and extract its correlation
length ¢ = 1/1n2 [125]. This is longer than the correlation length £ = 1/1n3 of the
original AKLT state.

4.2.2 Parent Hamiltonians

Using Eq. (4.22) one easily derives an MPS parent Hamiltonian on [ = 3 sites, which is
the injectivity length of the MPS.

While the Hamiltonian is written as a tensor it can be explicitly rewritten in terms
of SU(2)-invariant operators. There are three reflection-antisymmetric and eight
reflection-symmetric SU(2)-invariant operators which are invariant under time-reversal
and are purely real. A possible choice for these operators is [56]
1
1 —
A =3
1
A2 — 5 ((Sl X 82)2 o (SQ X S3)2) 7 (434)
A® = ((S1-S3)(S2 - S3) — (S1 - S2)(S1 - S3)) + h.c.

(S1-S2—S2-8S3),
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Figure 4.2: Decomposition of the physical space P®3 = 393 in irreps of SU(2), and
identification of the different sets K = ¢/ and Q. Figure taken from Ref. [56], (© 2019
Elsevier, under CC BY license.

and
R =1,
R’ =1(S,-8+8,-8y)
5 1 2 2 3)
RSZSI'S?H
1
R4=§((Sl‘82) + (82 84)%), (4.35)
R® = (S, )2,
RS = (S1-82)(S1 -S3)(S2 - S3) + hec.,
R =(S1-S2)(S2-S3) + h.c,

R® = ((S1-S3)(S2 - S3) + (S1 - 82)(S1 - S3)) + h.c.
Expanding the MPS Hamiltonian on these operators one obtains [56]

1 1
s =2 — 15185 — (8185 — 2 (8182 + (S5 S5)?)
3 (4.36)
+ g ((Sl . Sg)(sl . Sg)(SQ . Sg) + hC) .

Let us turn now to the construction of the entire family of parent Hamiltonians. It is
useful to visualize the different spaces ¢, K and Q in a Venn diagram, as in Fig. 4.2. In
this case where P = V = spin-1 one has i/ = K. The most general expression for a
hermitian parent Hamiltonian is then given by

h=ci1'Pi= + 53 P5=! + 3! + O=2P7=2 4 3PS =3 (4.37)

where S = Xf S+ Xifl is the reciprocal (or hermitian) intertwiner acting on the spin-1
irreps of Q and where the coefficients ¢5=2 > 0, ¢°=3 > 0 and ¢°=! is symmetric positive
definite. Obviously Hamiltonian (4.37) is very different from the simple projector onto
the spin-3 subspace. In particular, its kernel is restricted to the space K, which is
generated by the MPS wave functions in Eq. (4.20).
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4.2. SU(2) AKLT model with spin-1 edge states

Building explicitly the states of the physical space on [ = 3 sites one can construct the
different operators appearing in Eq. (4.37) and then re-express them in terms of the
SU(2)-invariant operators in Eq. (4.34)-(4.35). Choosing the phases of the states such
that Pyss = P51 and Pyp3 = P5=2 one gets

1 1 1 1 1
PSO__( 1 2 _1p3_ pa_ tos  Ltpe L 8)
=3 R +R R* =R 27?, +2R 47?, ,

2
1 11 17 3 11 1 1 1 1
S=1_ ~ 1 "3 _ ~“'p4 155 16 7T _ 8\~ 2 - 43
PS _7(572 LR RIS IRY 4 RO R 47?,) 7(,4+2,4),
1 1 1 1
P5=1 = 3= (31R1 —16R® —19R* — 12R° + 8RO + R" — 2728) + 5 <A2 + 2A3) ,
_ 1 3 1 1
pS=l _ _ Rl R34 R4 ZR5 _ Zpb
2 Ri+ R+ TR+ R — o R,
1 1 1 1 1 1 1
PS:2 :77?’1 o *RQ 77?,37 *R4 77{57 77?’6 . *R’?
! 3 37 T3 6" TG 12 6
1 1 1 1 1 1
IPS:2:( 1 2 _ 13 tpd_ 1ps 16 L 8)
5 S (RIHRI -SRI SR - SR — TR — S RY ),
.1 1 1 1 1 1 1 1
PP = —RU 4 SR —RP 4 —RY 4+ R+ RO+ —RT+ RS
Y T T T Tt T Ty
(4.38)
Similarly
S— 1 (—8R1 +3R% - 3R* + 11R® — 3R +2R" — R8> + 3 <A2 + 1A3) :
7+/10 2 7v/10 2 39

With Eq. (4.37)-(4.39) one can build explicit expressions of the entire family of three-
site local parent Hamiltonians of the spin-1 AKLT state with spin-1 edge states. There
are five parameters in total, but one of them is a scaling factor, and there is the addi-
tional constraint on the positive definiteness of ¢°=!. Tuning the parameters one can
thus search for particularly simple parent Hamiltonians. It is possible for instance to
derive a parent Hamiltonian which does not have a 6-spin interaction, at the price of
introducing 4-spin interactions. In what follows, however, we shall focus on the MPS
Hamiltonian which can simply be obtained by setting ¢¥=2? = ¢°=3 = 1 and ¢°=! = 1 in
Eq. (4.37).

4.2.3 Topological phase transition

The Haldane phase, in which the original AKLT Hamiltonian (4.9) lies, is a symmetry-
protected topological (SPT) phase. The spin-1/2 edge states on an open chain are
protected by Zo x Zs symmetry, there is a string order parameter, and a bulk-boundary
correspondence [131-134].

By contrast, the AKLT Hamiltonian (4.36) is expected to lie in a trivial phase since
the edge states have integer spin. Since both Hamiltonians respect the translation
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and rotation symmetries they should be separated by a phase transition. The phase
transitions between Z,, x Z, bosonic SPT phases has been extensively studied in
Ref. [135]. When n = 2 the transition has been predicted to be described by a critical
theory with central charge ¢ = 1.

To study the phase transition from the SPT phase of the original AKLT model to the triv-
ial phase of the spin-1 AKLT model with spin-1 edge states we define the interpolating
Hamiltonian

My = (1 — N)Haxer + AMHmps, A € [0,1] (4.40)

and study numerically the low-energy eigenstates on short chains. Figure 4.3 shows
the spectrum of Hamiltonian (4.40) for Ny = 15 sites. We find that the finite-size gap
extrapolates in the thermodynamic limit to zero when A is tuned to A\, ~ 0.8259(1),
an indication that the transition is continuous. We further characterize the phase
transition using the standard approach based on conformal field theory (CFT). In
Fig. 4.4(a) we show the scaling of the ground state energy per site which we fit as

EO(NS)_ (00) v
N, O T 6Nz

+o(N;2) (4.41)

where ¢y(c0) is the thermodynamic ground state energy per site, c is the central charge
of the CFT and v is the speed of light. To extract the central charge we further need
to determine the speed of light. We thus look at the excited state energy of the first
state having momentum 27 /N, and non-vanishing Casimir which should satisfy the
following scaling formula for a critical theory

_ 2mv

AE;(Ns) = E1(Ns) — Eo(Ns) = -+ o(N; 1. (4.42)

The velocity v is extracted using this formula in Fig. 4.4(b). We then obtain the central
charge c ~ 1.00, in excellent agreement with a continuous phase transition described
by the SU(2); Wess-Zumino-Witten (WZW) CFT. This is further confirmed by the
analysis of the scaling dimensions of the primary fields associated to the singlet and
triplet excited states in Fig. 4.4(c). To come back to Ref. [135], the SU(2), WZW CFT
is indeed the most natural theory with central charge ¢ = 1 to describe the transition
given the symmetry of the Hamiltonian # .

4.3 SU(3) AKLT model with 3-box symmetric irrep

4.3.1 Original formulation with fundamental irreps

We now turn to the case of SU(3) and, more particularly, to the physical 3-box sym-
metric irrep 10 represented by a Young diagram with three boxes in its single row
[ I T ] The AKLT model for this irrep will be of significant help when studying the
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x1

[[——S=3
—S5=4

0.5 1

Figure 4.3: Finite-size spectrum of the interpolation Hamiltonian #, for (a) PBC and
(b) OBC on N, = 15 sites. In (a), the ground state is unique and is a singlet state.
In (b) the ground state is four-fold degenerate at A = 0 and nine-fold degenerate at
A = 1, corresponding to spin-1/2 and spin-1 edge states, respectively. Figure taken and

adapted from Ref. [56], ©) 2019 Elsevier, under CC BY license.
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Figure 4.4: (a) Scaling of the ground state energy per site of the interpolation Hamilto-
nian H) at A = 0.8259. (b) Speed of light obtained from the first excited state at momen-
tum 27 /N, and non-vanishing Casimir. (c) Scaling dimensions of the primary fields
corresponding to the singlet and triplet excited states, as well as A = (3Ag—; 4+ Ag—g)/4
which is free of logarithmic corrections [136, 137]. Figure taken and adapted from
Ref. [56], © 2019 Elsevier, under CC BY license.
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Figure 4.5: (a) SU(3) AKLT state of Greiter et al. for the 3-box symmetric irrep at each
site [117, 118]. The rectangles containing three fundamental irreps denote a projection
onto the physical irrep [ [ [ | while the thick lines joining three neighboring sites
denote extended singlet bonds. (b) Reinterpretation of the AKLT state in (a) as an MPS
with bond dimension 9. The local projection onto the physical irrep is now denoted by
an ellipse. The singlets are obtained with Levi-Civita tensors which antisymmetrize
three fundamental irreps from three neighboring sites. Figure (b) is adapted from
Ref. [56], © 2019 Elsevier, under CC BY license.

corresponding Heisenberg model in Chapter 5.

The model was first introduced in Refs. [117, 118] by Greiter et al., who built the
wave function out of fundamental irreps. On each site, three fundamental irreps
are projected onto the physical 3-box symmetric irrep while extended singlets are
made on three neighboring sites, as illustrated in Fig. 4.5(a). To rewrite this VBS state
as an MPS one uses the expressions of the fully symmetric combinations of three
colors given in Eq. (3.72). This allows us to build the local projector onto the physical
irrep. Moreover, to obtain a singlet out of three fundamental irreps we need to fully
antisymmetrize the three particles. The Levi-Civita tensor acts in the appropriate way,
and arepresentation of the MPS is given in Fig. 4.5(b). The local MPS tensor is obtained
through the contraction of the vertical auxiliary leg joining a Levi-Civita tensor to the
tensor of the projector onto 10. One thus ends up with an MPS having auxiliary bond
dimension D =9, and correlation length £ = 1/1n 5.

Although the MPS structure is now clearly exhibited, the nature of the edge states on
an open chain remains unrevealed. The auxiliary bond dimension of the MPS is D = 9.
This corresponds to the tensor product of a fundamental irrep 3 and a conjugate irrep
3 for which the Young diagram is made of a single column with two boxes. This tells us
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Figure 4.6: SU(3) AKLT state [T 1], Bj>. The edge degrees of freedom on an open
chain are, by construction, adjoint edge states. Figure adapted from Ref. [57] with the
permission of the APS, (©) 2020 American Physical Society.

that the edge states are potentially made of a direct sum of an adjoint and a singlet,

Oe H: o L. (4.43)

To shine light on the exact structure of these edge states, we compute the reduced
density matrix p and obtain a caracteristic spectrum \; = 1/ V8,1 <i<8and \g = 0.
The singlet irrep at the edge thus does not carry any weight in the reduced density
matrix. It should then be possible to rewrite the wave function of the AKLT state as an
MPS with bond dimension D = 8, showing that the MPS in Fig. 4.5(b) is not optimal.

4.3.2 AKLT state with adjoint edge irreps

Since the physical irrep 10 appears in the tensor product of two adjoint irreps given by

o - e o2 ] aTTe ® L] (4.44)

one can use the general method developed in Section 4.1.1 to construct an AKLT state
for the 3-box symmetric irrep made of adjoint virtual spins, as pictured in Fig. 4.6.
The correlation length of this state is readily obtained and corresponds to the one
obtained in the construction of Greiter et al, £ = 1/In5. The fact that the state
[ Hj) is exactly identical to the state in Fig. 4.5(a) can further be exhibited by the
spectrum of the reduced density matrix which is the same, except for the vanishing
eigenvalue which is obviously absent in the spectrum associated to [ 1], Bj>. The
MPS representation of the state |1 1], Hj> given in Fig. 4.6 having bond dimension
D = 8 with a flat spectrum of the reduced density matrix, it is optimal in the MPS
sense.

4.3.3 Parent Hamiltonian

The parent Hamiltonian of the AKLT state above was first computed in Refs. [117, 118]
based on the construction of the wave function out of fundamental irreps (Fig. 4.5).
Here we derive the same Hamiltonian using the reinterpretation of the AKLT wave
function as a VBS with adjoint edge states (Fig. 4.6). The Hamiltonian can be derived
using the quadratic Casimir operator of SU(3). Indeed, the MPS is injective on two sites,
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and the virtual and physical irreps are different. The tensor product of two physical
irreps is given by

(T e [IT1]= @ o L g rT11 11, (4.45)

Combining this decomposition with the tensor product of two virtual adjoint irreps in
Eqg. (4.44) one sees that, on two neighboring sites, the state can be either a 10 = |3, 3] or
a 27 = [4,2] irrep (these irreps appear both in Eq. (4.44) and in Eq. (4.45)). Thus a valid
local parent Hamiltonian must annihilate the states of the 10 and 27 irreps. One takes

1

h
4

(T4 +T5)2 = C5(10) ) ((T1 + T2)? — Ca(27)) (4.46)
where the eigenvalues of the quadratic Casimir C; are obtained with Eq. (3.78). The
Hamiltonian in Eq. (4.46) has the right kernel and the spectrum is positive since the
eigenvalues of C, are larger for the irreps [5, 1] = 35 and [6] = 28 than for the irreps 10
and 27. As a side remark we emphasize that & given in Eq. (4.46) is not strictly speaking
a projector, but rather a realization of Eq. (4.28). Developing Eq. (4.46) and using the
fact that C»(10) = 6 one obtains

h=(T; -Ty)?+5T;-Ty+6 (4.47)

where T are the generators in the physical irrep [3] = 10. The Hamiltonian on a chain
is then given by
H=>_ ((Ti - Ti+1)? +5T; - Tigr + 6) : (4.48)

A quick numerical study of Hamiltonian (4.48) shows that, on a periodic chain, the
ground state is unique with a finite gap to the first excited states and for OBC the
ground state is 64-fold degenerate. In that case the ground state wave functions live
in all irreps occuring in the right-hand side of Eq. (4.44), which further confirms the
equivalence of both formulations (Fig. 4.5 and 4.6) for the AKLT wave function.

4.3.4 Perspective on the p-box symmetric irrep of SU(3)

Let us now consider fully symmetric irreps of SU(3) represented by a Young diagram
with p boxes in the first row. The AKLT model discussed in the previous section is
thus the p = 3 AKLT model. One can obviously generalize this construction to any
symmetric irrep with p = 3n, n being an integer. For instance one can build a unique
AKLT model

o ) (4.49)

for the 6-box symmetric irrep made of virtual self-conjugate [4, 2] irreps.
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On the contrary, one is not able to build AKLT models when p = 3n + ¢ with ¢ = 1, 2.
This actually follows from a simple counting argument. Self-conjugate irreps of SU(3)
have a number of boxes which is a multiple of 3. Consequently all irreps appearing in
the tensor product of two virtual irreps have a number of boxes which is incompatible
withp = 3n + ¢whenqg =1, 2.

From a conceptual point of view, this has deep consequences. When p = 3n, one is
able to show rigorously the existence of a gapped VBS phase. When p = 3, the exactly
solvable AKLT model (Eqg. (4.48)) has only an additional biquadratic term compared
to the pure Heisenberg model. Keeping apart any rigorous treatment for now, it is
already reasonable to guess that the 3-box symmetric, and more generally the 3n-box
symmetric SU(3) Heisenberg model is gapped. Moreover, from the absence of AKLT
models for p = 3n + ¢ when ¢ = 1, 2, and from the Bethe ansatz solution of Sutherland
on the p = 1 model [35], one can conjecture a gapless phase of the SU(3) Heisenberg
model when p is not a multiple of three. This is nothing but a Haldane conjecture
for the SU(3) chain with p-box symmetric irrep. In Chapter 5 we will discuss more
deeply the different aguments leading to this conjecture, and will provide a numerical
confirmation when p = 3.

4.4 Conclusion

Since the derivation of the AKLT model realizing an exactly solvable gapped point in
the phase diagram of the bilinear-biquadratic spin-1 chain, and providing a strong
argument in favor of the gapped phase at the Heisenberg point conjectured by Haldane,
AKLT models have been recurrently used as a very useful tool to analyze phases of spin
chains. With the recent advent of experiments which engineer SU(/N) spin models
using ultracold atoms tuned to the Mott insulating phase of the Hubbard model, the
AKLT models have been naturally generalized to the SU(N) group. From a theoretical
point of view the SU(NN) AKLT models are of particular interest. They provide a first
indication of the existence of a gapped phase of the spin chain. Alternatively, if no
AKILT state is found for a given physical local irrep of SU(N) this potentially indicates
a gapless phase. The SU(N) AKLT models are thus valuable guides for elaborating a
Haldane-type argument for SU(/N) Heisenberg chains [118]. They further give access
to a point in the phase diagram which is computationally easily accessible, despite the
generally large local Hilbert space dimension, thanks to their short correlation lengths.

In this chapter we have described a generic method to construct reflection-symmetric
AKLT states with SU(/N) symmetry and their parent Hamiltonians. To impose the
reflection symmetry we work with “building blocks”, the virtual irreps, which are self-
conjugate. These irreps become the edge states on finite open chains, and thus dictate
the ground state degeneracy in this case. Moreover they allow us to argue if the AKLT
model lies in a SPT phase or in a trivial phase, by analyzing if the edge spins can
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merge with bulk excitations. The MPS form of the AKLT wave function proved to be
particularly useful both for visualizing the structure of the state and to construct parent
Hamiltonians. We have discussed how to actually build the entire family of local parent
Hamiltonians acting on [ adjacent sites where [ is greater than or equal to the injectivity
length of the MPS, namely the smallest length for which the MPS is an injective map
from the auxiliary degrees of freedom onto the physical space. This condition is the
most critical one: if one selects edge spins with a large dimension, the injectivity length
increases and the Hamiltonian becomes longer-ranged. Rewriting the Hamiltonian
in a compact form using spin operators becomes quickly intractable due to the large
number of rotation invariant operators on [ sites.

As an example we have constructed a spin-1 AKLT model for which the ground state
wave function possesses spin-1 edge states. The entire familiy of parent Hamiltonians
has been derived. Thanks to the relatively small number of reflection-symmetric SU(2)
invariant operators we have rewritten these Hamiltonians in a compact form with spin
operators. Since the edge states of the wave function are of the same nature as the
bulk excitations, namely integer spin states, the model was expected to lie in a trivial
gapped phase. This was demonstrated by exhibiting a continuous phase transition
between that model and the original AKLT model which lies in the Haldane phase. The
topological phase transition was shown to be governed by the SU(2); WZW CFT, in
agreement with previous analytical predictions for such transitions [135].

Finally we revisited an SU(3) AKLT model for the physical 3-box symmetric irrep of
dimension 10 initially introduced in Refs. [117, 118]. Building on the spectrum of the
reduced density matrix we showed that the wave function has edge states belonging
to the adjoint irrep. These edge states are not expected to be protected by symmetry
as they are indistinguishable from bulk excitations. One possible parent Hamiltonian
of this AKLT state being simply made of bilinear and biquadratic interactions on
two neighboring sites it will be used in the next chapter to guide our study of the
corresponding pure Heisenberg model.
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The 3-box symmetric SU(3) chain

In 1975, Sutherland extended the Bethe ansatz to the SU(/V > 2) Heisenberg model
with the fundamental irrep at each site, thus implicitly showing that, as is the case for
SU(2), the model is gapless [35]. This paved the way to an increasing interest of the
condensed matter community in the physics of SU(/V) models. Indeed, before this
paper the SU(V) group appeared mainly as a playground for mathematical physics or
high-energy physics. It is well-known that the hadrons can be described to some extent
as SU(3) particles forming different irreps!. The excitement of the condensed matter
community, however, stayed rather limited in the beginning. The topic was quite
remote and the absence of obvious experimental realizations of such models at low en-
ergy refrained the community from giving all the attention that these models deserve.
The situation has considerably changed since then, with the advent of experiments
with ultracold atoms loaded in optical lattices which can realize Mott insulating phases
of the Hubbard model, thus giving access to the physics of the SU(N) models [40-51].
With the increasing interest, both experimental and theoretical, in the SU(/V) models
the question of whether an SU(/NV) Heisenberg spin chain is gapped or gapless becomes
natural, and the situation is essentially the same as 37 years ago when considering
SU(2) spin chains: on the one hand, performing numerics on SU(/N) models with
non-trivial irreps is a difficult task, in particular because of the large local Hilbert space
dimension associated to these systems. On the other hand, although progress has
been made constantly in the experimental realizations of SU(/V) models with ultracold
atoms, they are still restricted to simple irreps, those with a Young diagram made
of two columns, and quite far from being able to extract thermodynamic quantities
and thus discriminate between gapped and gapless models. On top of this, asserting
which models are gapped or gapless for SU(/V) looks a priori more complicated since
SU(N) irreps are labeled by V — 1 integers. The variety of irreps is thus bigger, and a
general claim about gaplessness must be less simple than for SU(2). Unlike in the 80’s
where the AKLT model was developed after the Haldane conjecture and could bring

'For instance the family of mesons can be described as the combination of an SU(3) quark corre-
sponding to the fundamental irrep with an SU(3) anti-quark corresponding to the conjugate irrep.
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it additional credit, the chronology was different for SU(N > 2). AKLT models were
developed first, providing hints on what would be a possible Haldane conjecture for
the corresponding Heisenberg chains [123]. Alternatively, for some irreps AKLT models
cannot be constructed, and this hints at a gapless spectrum. The path followed by Hal-
dane in 1983 [31, 32] was finally reproduced very recently for SU(3) and SU(/N) models
in some specific irreps [138-141]. In particular, in Ref. [138], based on a mapping onto
a NLoM, it was argued that the SU(3) Heisenberg model in the symmetric irrep with
p boxes should be gapped when p is a multiple of three, and gapless otherwise, the
case p = 1 being in agreement with Sutherland’s result. From a numerical point of
view, results in favor of a finite gap in the p = 3 case were inconclusive for several
years. The model was claimed to be gapped in 2009 based on the saturation of the
entanglement entropy on a periodic chain of length 48 studied using DMRG [123]. The
saturation being observed over a very short characteristic length, it could be argued
from these results that the associated correlation length is rather short, of order 6 — 8
sites, and thus that the gap is rather large. Later on, the model was studied using ED
on a 12-site periodic chain, and the results were in contradiction with the existence of
a short correlation length [87]. Moreover the calculated central charge was surprisingly
in agreement with a critical SU(3); WZW CFT universality class. However it had been
demonstrated that the SU(/V) Heisenberg models should flow in the IR towards the sta-
ble SU(N), WZW CFT, except if finely tuned to some unstable integrable points where
the SU(N),, WZW CFT can be realized [142, 143]. These special points are actually
the generalization of the well known Takhtajan-Babudjian integrable points for SU(2)
spin chains [144, 145]. Although the results on the central charge reported in Ref. [87]
seemed in contradiction with the existence of a gap in the model, it was pointed out
that the thermodynamic regime was not achieved on a 12-site chain. This observation
was crucial in two respects. First, and most importantly, the critical behavior observed
at short length scale does not rule out the possibility of a gapped spectrum. The IR
behavior of the spin chain, namely the low-energy, or long-distance behavior must
be probed to determine the existence or absence of a gap?. Secondly, a critical read-
ing of the early DMRG results could be inferred. The correlation length that could
be extracted from the saturation of the entanglement entropy seemed significantly
underestimated, and it was argued that this saturation was actually due to a too se-
vere truncation of the Hilbert space in DMRG. The 3-box symmetric SU(3) chain, if
gapped, must then have a large correlation length which prevents the observation of
the IR behavior with ED. Quantum Monte Carlo being affected by the sign problem
for p-box symmetric irreps when p > 1, the only numerical technique which could
possibly probe the thermodynamic properties of the model is the DMRG, but the large
local Hilbert space dimension sounds prohibitive®. The confirmation of the Haldane

“This can be related to the material covered in Chapter 2, where the physics in the IR and in the UV
are, as often, drastically different, and where the characteristic length scale which specifies the transition
from one behavior to the other is a key parameter.

30ther tensor network based methods which probe directly the model in the thermodynamic limit,
such as the variational uniform matrix product state (VUMPS) algorithm are also promising, see Sec-
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conjecture, however, relies almost entirely on the demonstration that the p = 3 case
is gapped. Itis indeed the “most quantum” case for which the conjecture predicts a
gap. As it is the case for SU(2) where the mapping from the spin chain onto the NLcM
is exact in the limit of infinite spin, and where the spin-1 chain is the most quantum
gapped spin chain, the mapping from the SU(3) spin chain becomes exact in the limit
of infinite p. One can thus trust more safely Haldane’s conjecture at large p than at
small p.

Not to our disappointment, and in a similar fashion as for SU(2) where it was shown
that the characteristic length scale of the spin-S Heisenberg chain scales as e/, it
is expected that the characteristic length scale of the p-box symmetric SU(3) chain
scales as e®?/p, o > 0. The simplest model, meaning the model with the shortest
characteristic length scale, which is thought to be gapped is thus the p = 3 one, and the
attempt at demonstrating the presence of a finite gap in the p = 3 SU(3) spin chain is
the exact analogue of the search for a finite gap in the spin-1 chain in the early 80’s. For
the reason mentioned above, showing numerically rigorously the existence of a finite
gap in the 3-box symmetric SU(3) chain would be a very strong indication that the
Haldane conjecture for SU(3) spin chains in the p-box symmetric irrep applies when
p is any multiple of 3. The next step to strengthen Haldane’s conjecture would be to
probe the 2-box symmetric chain and to show the gaplessness of the spectrum.

The aim of this chapter is to present a numerical study of the p = 3 Heisenberg model,
using the group theory machinery developed in Chapter 3 to implement a DMRG
algorithm taking advantage of the full SU(3) symmetry, and to show evidence for the
existence of a finite gap in the model. The AKLT model and wave function presented in
Chapter 4 will prove to be valuable guides in our search for a tiny gap.

The chapter is organized as follows. In Section 5.1 we present Haldane’s conjecture
for the p-box symmetric SU(3) Heisenberg chain as developed in Refs. [138, 139]. We
then turn to the description of the numerical tool used for our analysis, a DMRG
algorithm with the implementation of the full SU(3) symmetry, making use of the SDCs
introduced in Chapter 3. We then numerically study the AKLT model with a biquadratic
interaction introduced in Refs. [117, 118] and extensively discussed in Section 4.3. We
then turn to the numerical investigation of the pure Heisenberg model in Section 5.6.
Finally, Section 5.7 gives some concluding remarks and an outlook of this chapter.

Part of the material presented in this chapter has been the object of Ref. [57]. More
precisely: Section 5.1 is mainly inspired from Ref. [138]. Sections 5.2 and 5.3 have been
presented in Ref. [57]. Section 5.4 goes beyond what has been provided in Ref. [57]
and gives a number of additional details adapted from Ref. [89] for the case of the
3-box symmetric irrep. Finally, the results presented in Secs. 5.5 and 5.6 are the core of
Ref. [57].

tion 5.7 [146].
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Chapter 5. The 3-box symmetric SU(3) chain

5.1 Haldane’s conjecture for symmetric SU(3) chains

5.1.1 Statement of the conjecture

Let us consider the antiferromagnetic SU(3) Heisenberg model with p-box symmetric
irrep at each site
H=2J) T; Tip (5.1)

where J > 0 is the antiferromagnetic coupling and T; are the generators in the p-
box symmetric irrep. When p = 2, 3 the generators are given in Appendix F. This
Hamiltonian can be rewritten in terms of the operators S*” as

H=1J)" SMsP (5.2)

where a sum over the color indices is implicit. The Haldane conjecture is as fol-
lows [138]:

e when p is a multiple of three, the spectrum of Hamiltonian (5.1) is gapped;

e when p is not a multiple of three, the spectrum of Hamiltonian (5.1) is gapless.

5.1.2 Hints from AKLT construction and Lieb-Schultz-Mattis-Affleck theo-
rem

In Section 4.3 we have shown the existence of AKLT models for the p-box symmetric
chain when p is a multiple of three. In particular, when p = 3 the AKLT parent Hamil-
tonian was a bilinear-biquadratic form [117, 118]. When p is not a multiple of three,
however, we showed that no AKLT model can be constructed. This is a first hint of the
existence of a gapped phase for p = 3n and a gapless phase otherwise.

The case of p = 3n+¢when g = 1, 2 can be treated with the Lieb-Schultz-Mattis-Affleck
(LSMA) theorem [147, 148]. In this case one can indeed show that either the ground
state is degenerate or the spectrum is gapless [138]. When p = 3n, however, nothing
can be extracted from the LSMA theorem. Finally, the case of p = 1, which is Bethe
ansatz solvable, corresponds to the gapless realization of the LSMA theorem.

The three arguments above (existence or absence of AKLT models, LSMA theorem, gap-
less spectrum for p = 1) already shape Haldane’s conjecture as stated in Section 5.1.1.
To complete and to fully ground the conjecture for symmetric SU(3) chains, it is nec-
essary to follow Haldane’s procedure for SU(2) chains, namely to map the spin chain
onto a low-energy theory and to derive consequences based on the structure of this
field theory [31, 32]. In the next section, we summarize this procedure which was
carried out in Refs. [138, 139].
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5.1. Haldane’s conjecture for symmetric SU(3) chains

5.1.3 Mapping onto a nonlinear sigma model

This section summarizes step by step the mapping of the spin chain onto the NLcM
introduced in Ref. [138].

Following Haldane who mapped the SU(2) Heisenberg spin chain onto the O(3) NLcM
in the limit of large spin .S, the idea is to look at the large-p limit. Examining the classical
limit one faces a first problem: the ground state of the Heisenberg Hamiltonian (5.2) is
degenerate. This is a major issue for developing a large-p semi-classical limit where
fluctuations are introduced around a unique classical ground state. The solution
consists in lifting this degeneracy by introducing further-neighbor couplings,

H =T S8 + 1Y S8k — 1Y STUS . (5.3)

The antiferromagnetic and ferromagnetic couplings .J» and J3, respectively, are both
decreasing as p increases and are generated by quantum fluctuations in the Heisenberg
model, selecting one particular ground state, the three-sublattice state which is made
of the alternation of the three colors of SU(3), ABCABC.... It is thus #', not #, which
will be mapped onto a NLoM. In fact, it would be sufficient to take only .J; or J5 to lift
the degeneracy, but for consistency with Ref. [138] we also keep both couplings here.

The mapping onto the field theory can be conveniently derived by writing the action
as a path integral over spin-coherent states at inverse temperature (3 as

S[®, o1 = /Oﬁ dr ((é(ﬂm'@m —i—pz 34, 7)o, 8 (5, ﬂ) (5.4)

where &(j, 7) is a 3-dimensional unit complex vector at site j and imaginary time T,
&(j, 7)I®(j, 7) = B(j,7)* - B(j,7) = 1, Vj, 7, and where |®(7)) is the spin-coherent state
of the entire chain at time 7,

[8(r)) = ®18(j, 7)) (5.5)

J

where

-

86.7) = = (2,6.7.0))" 10 56)

and there is an implicit sum over the index . = 1,2, 3, ®,,(j, ) being the u-th compo-
nent of &(j, 7). In Eq. (5.6) |0) is the vacuum and the operator bL (7) creates a boson of
color p at site j.

After some algebra, which essentially consists in introducing some quantum fluc-
tuations around the three-sublattice classical ground state (when Ji, J2, J5 > 0) by
decomposing the 5( j, ) fields into the combination of a field describing the fluctua-

77



Chapter 5. The 3-box symmetric SU(3) chain

tions inside a unit cell and a field describing the fluctuations between the unit cells,
taking the continuum limit and integrating out the slow motion within the unit cell
one ends up with (see Eq. (4.14) of Ref. [138])

3
. 1 . . .
SUE AN = X [ dudr o= (10,6, ~ 165 - 0,60 )
n=1
3
. 9” v g g
+ 1; o /dxdT " 0 - 0y, (5.7)
A S . N .
gD [ dwdre (&1 -0u60) (Guir - 0,87)

The fields ¢,,, n = 1,2, 3 are 3-dimensional unit complex vectors satisfying the unitarity
condition*

and, in the third line of Eq. (5.7), we take 54 = 51- Notice that all over Eq. (5.7)
we have omitted the space-time variables (z,7) on which the fields depend, ¢,, =
én(z, 7). Although the first line of the action (5.4) looks like three independent field
theories, they are actually interacting through the unitarity condition. Each field theory
in the first line of (5.4) is called a CP? field theory, and the action (5.7) is called an
SU(3)/[U(1) x U(1)] flag manifold NLoM [149, 150], SU(3)/[U(1) x U(1)] describing the
manifold of the 3-dimensional matrix U formed by staking the vectors ¢1, n = 1,2,3
in its rows. The coupling constant g is the same for all copies of the CP? theories as
a consequence of the lattice symmetries of the spin model, and the mapping gives
gt =p/JiJo + 21 J5 + 2J2J3/(J1 + J2). The second line in the action (5.7), where e**
is the Levi-Civita tensor on two space-time indices, is a topological action made of three
terms with topological angles 0,,, n = 1, 2, 3, respectively. The associated topological
charges are actually not independent, and one can thus remove one of them from the
action. Moreover, thanks to the translational invariance, the two remaining topological
angles take the values +27p/3. Finally the third line of (5.7) is an interaction term
with coupling A which can again be expressed in terms of J;, Jo and Js. It is non-
topological as it cannot be rewritten as a total derivative, unlike the second line of the
action. A renormalization group analysis shows that the theory in the first line of (5.7)
is asymptotically free, and that the A-term is relevant in the IR [139, 151].

Classical Monte Carlo simulations on the model (5.7) when A = 0 show that [138]: i)
when the two remaining independent topological angles vanish, corresponding to p
being an integer multiple of three, the model is gapped for all values of the coupling
constant g; ii) when the topological angles are chosen as +27/3, corresponding to

*Defining the matrix U such that its n-th row corresponds to the transposed vector ¢~ , then Eq. (5.8)
translates into the condition UUT = UU = 1. The action (5.7) can also be compactly written in terms of
U(z,7)and U'(z,7), see Eq. (4.6) of Ref. [138].
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p = 1,2, the model is gapped at strong coupling g > g. and gapless at weak coupling
9 < G-

These observations, together with lattice realizations of the SU(3) chain model, such as
the AKLT model extensively discussed in Chapter 4 for p = 3 [118] and the known results
on the p = 1 case when J, = J3 = 0 [35], the Lieb-Schulz-Mattis theorem [147, 148]
and the apparent analogy with the SU(2) case naturally leads to the conjecture as
stated at the beginning of this section.

5.2 The Hamiltonian as a sum of permutations

To make full use of the representation theory of the permutation group presented in
Chapter 3 we need to rewrite Hamiltonian (5.2) in terms of permutations. To do so, we
first rewrite the operators Sf‘/B in terms of bosonic operators as follows (we keep N and
p since the developments are general)

Sgﬂ Z ba a zbﬁ,a i Néaﬁ (59)

where the bosons satisfy the usual commutation relations
[bavais by 5] = Bapdabdi (5.10)

and where the constraint of p bosons at each site is imposed

ZZ Faibaai =D, Vi G.11)

a=1la=1

The states of the irrep can be simply expressed in terms of the bosonic operators. For
instance, when N = 3 and p = 3 the expressions of the states are (omitting the site
index 1)

Ina,np,nc)
A4 3,0,0) bly (b 2%y 5 10)
BEE  0.3,0) bl 1} 503 5 10)
0,0,3) b 106 2bE510)
A@AE  [2,1,0) I (0l 10l o0l + Bl 1 b 5 + 0] 10 50l ) 10)
AEE  [1,2,0 I (bl 10l 9Bl 5 + bl By ol + bl 1Bl 0Bl ) 10)
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Chapter 5. The 3-box symmetric SU(3) chain

2,0,1) % (bA by ch3+bA 1b2*25j43+501bA 2bA3) 0)
1,0,2) NE ( AleCQbCZ’)_'_bCle 2bcg+bc 1b62by 3) 0)
0,2,1) 75 (bh1bh bl + bl 1D o] 5 + BB 20 ) 10)
0,1,2) 7 (bg 1ch*2503 + bo bl ch,3 + ch,leazbjB,S) 0)
A (111 J5 (bl b obhs + ) 0)

where the first column contains the Weyl tableaux and in the second column |n 4, ng, n¢)
is the occupation number of each color 4, B, C. In the last line the ellipse denotes
all permutations of the three colors. These states are the ones already introduced in
Eq. (3.72).

Inserting Eq. (5.9) into the Hamiltonian one obtains
2
H= JZ Z Z baazb,@azbﬁbH_lbabH»l N . (5.12)
i a,f=1a,b=1
Now observe that the quartic form in bosonic operators can be rewritten as
p N
Z Z aalb/ng_le,a'L a,b,i+1 — Z Pa,z,b i+1 (5.13)
a,b=1 a,f= a,b=1

where P, ;. ;11 is the permutation operator which interchanges the state of the a-th
boson of site 7 with the state of the b-th boson of site 7 + 1.

For the sake of simplicity, let us number the particles (boxes) from 1 to n within the
chain, with » the total number of boxes, and introduce the set I'; which contains the
particle’s numbers situated at site i. For instance, for an SU(3) chain with the 3-box
symmetric irrep at each site and Ny = 6 sites in total, the numbering is given in Fig. 5.1.
The interaction Hamiltonian between two sites i and j then takes the simple form

H(z‘m:?Ti'Tj:S?ﬁSf“:ZZPM—— (5.14)
kel'; lely

where P}, ; interchanges particle £ with particle (.

In what follows we shall remove the constant term in this expression and consider the
following permutation Hamiltonian,

H=J> > > Pu. (5.15)

i kel leT 4y
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5.3. Dealing with the edge states

i= 1 2 3 4 5 6
T; = {1,2,3} {4,5,6} {7,8,9}  {10,11,12} {13,14,15} {16,17,18}

Figure 5.1: Numbering of particles (boxes) within a chain with Ny = 6 sites. I'; is the
set of particles living at site 7 in a global numbering of particles.

5.3 Dealing with the edge states

Since we expect the pure Heisenberg Hamiltonian (5.1) with p = 3 and the AKLT
Hamiltonian (see Eq. (4.48) or Eq. (55) of Ref. [118])

H=57% (T@- Ty STy Tin) + 6) (5.16)

- ) 5)

to lie in the same Haldane phase, for OBC Hamiltonian (5.1) is expected to have low-
lying edge states. The nature of the edge states at the AKLT point has been extensively
discussed in Section 4.3, and we shall extend the discussion to the case of the Heisen-
berg model. From a numerical point of view the edge states could be removed by using
PBC. However from the perspective of the DMRG, the choice of using PBC has deep
consequences: for a given chain length convergence is much more difficult, preventing
the study of large systems. For OBC, the presence of edge states is also critical. First,
convergence is affected because the edge modes couple to each other between the
left and right end of the chain. Secondly the bulk gap is not obtained by accessing the
lowest energy state in a given symmetry sector, but the second or the third®. Indeed,
from Fig. 4.6 we expect the edge states to be adjoint edge modes. This edge modes
recombine into all irreps given in Eq. (4.44) . When the chain length N, is a multiple
of three, the ground state is the singlet wave function, and the five other states are
low-lying excited states. Thus, to access the singlet-adjoint bulk gap, for instance, one
needs to compute the third lowest energy state in the adjoint sector, since the first two
lowest energy adjoint states are low-lying and collapse on the ground for increasing
system size®.

°If the different symmetry sectors cannot be targeted, for instance by the use of a standard DMRG code
without implementation of the SU(3) symmetry, one needs to access the 64-th excited state to actually
compute the bulk gap from the ground state.

®Notice that this is analogous to the SU(2) spin-1 chain. For OBC, the spin-1/2 edge states couple
and form a singlet (ground state) and a low-lying triplet which collapses on the ground state in the
thermodynamic limit. To compute the singlet-triplet bulk gap, one thus needs to compute the second
lowest energy state in the spin-1 sector, or, if one cannot access the different spin sectors separately, the
fourth excited state. The only difference between the SU(2) and SU(3) cases, besides the fact that the
SU(3) edge irreps have significantly larger dimension (8 versus 2 for SU(2)), is that the edge modes can
only form a triplet excitation on top of the singlet ground state, while in the SU(3) p = 3 case, the adjoint
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Jend J J J J J Jend
SN NS NS NS N NN
OO OO O OO0 OO OO |

Figure 5.2: Structure of the 3-box symmetric SU(3) chain, with the adjoint edge spins
coupled antiferromagnetically with J.,q > 0 to their neighbor [57]. The Heisenberg
Hamiltonian corresponding to this chain is given in Eq. (5.17). Figure adapted from
Ref. [57] with the permission of the APS, (C) 2020 American Physical Society.

There is however a way to lift the edge states with OBC, and this is again inspired from
the VBS structure of the AKLT state in Fig. 4.6, as well as from what has been done in
SU(2) spin chains [152-156]. We add adjoint edge spins at both ends of the chain, and
couple them antiferromagnetically with their 3-box symmetric neighbor in order to
form a singlet bond. Figure 5.2 shows the structure of the chain. For any chain length,
the ground state lies in the singlet sector, and any excited state is then a bulk excited
state. Introducing the end coupling J.,q > 0 the Hamiltonian becomes

Ns—1

H = Jond (H(L?) + H(NS—I,NS)> +J Z Hiit1) (5.17)
=2

where N; is still the total number of sites, including the adjoint edge spins, and where
the interaction is given by

Hiirny =D, > Pri (5.18)

kel; lEFrL'+1

One can now guess the structure of the lowest energy excited states, which, if the model
is gapped, will all be separated from the ground state by a finite gap. Building again
on our understanding of the SU(2) spin-1 chain and on Eq. (4.44) one postulates the
existence of five branches of elementary excitations. Indeed, the simplest excitations
are obtained by breaking one singlet bond in the VBS. The two unpaired adjoint irreps
can recombine and form an adjoint irrep (two times), a 3-box symmetric irrep, its
conjugate or a [4, 2] irrep. Defining the Haldane gap as the bulk gap from the singlet
ground state to the elementary excitation, one thus has five Haldane gaps in the model,
corresponding to the five elementary excitations.

edge modes can form 5 low-lying excitations.
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5.4. Density matrix renormalization group with SU(3) symmetry

5.4 Density matrix renormalization group with SU(3) symme-
try
5.4.1 Non-abelian symmetries in DMRG

As discussed above, obtaining the bulk gap of Hamiltonian (5.1) without the trick of
adding adjoint spins at both ends of the open chain with a standard DMRG code which
does not make use of any symmetry would require the calculation of the ground state
and of 64 excited states, since the first 63 excited states are low-lying. This is obviously
prohibitive. The adjoint edge spins reduce the total number of wave functions to
compute to two. However, the dimension of the full Hilbert space, which is 64 x 10Vs~2
for a N;-site chain, is a limiting factor. The scaling is the one corresponding to an SU(2)
spin-9/2 chain and only extremely short chains could be studied, or longer chains
at the price of a severe truncation of the Hilbert space which forbids any controlled
extrapolation.

The implementation of the full SU(3) symmetry in the DMRG code seems to be the
only viable solution to tackle Hamiltonian (5.1) numerically. The route of the imple-
mentation of the non-abelian symmetry is usually avoided by DMRG practionners
performing simulations on SU(2) models. At least three reasons can be found. First, the
implementation of the U(1) (charge conservation, or magnetization conservation) sym-
metry is standard (it was implemented in the original DMRG papers of White [9, 10])
and already leads to a significant speed-up [11, 157-160]. The other reason is that
implementing a non-abelian symmetry is more technical, and, in the most common
case of SU(2) spin systems, the trouble to deal with such technicalities is not strictly
necessary. Indeed the algorithmic gain (memory and operation complexity) is largely
compensated by the use of more powerful clusters. Finally, the full rotational invari-
ance of the spin model is restrictive as it forbids the study of the effects of anisotropies
and external fields, of great importance both theoretically and experimentally. Never-
theless, the SU(2) symmetry has been successfully implemented in DMRG algorithms,
with a significant speed-up as long as the total number of DMRG states kept is large
enough, as is illustrated for instance in Ref. [161].

The SU(2) symmetry was first implemented in DMRG using an interaction-round-a-
face (IRF) approach for the spin-1/2 chain, where the symmetry is naturally factorized
out, and where the fusion rules of SU(2) are incorporated by the use of Bratelli dia-
grams [162]. The method was then extended to higher spins, where the benefit of the
factorization of the symmetry really comes in [156, 163], and the incorporation of edge
spins was carried out in Ref. [156]. In the IRF method, the Wigner-Eckart theorem is
used to factorize the matrix elements of the interaction as a product of a “reduced
matrix element” and a CGC [164]. The IRF weights, namely the matrix elements of the
interaction, are then expressed in closed form in terms of Wigner 6; symbols. Since
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exact analytical expressions are known for such coefficients, their calculation can be
performed at a very limited cost. However the drawback of this method is that the total
number of coefficients which need to be computed increases with the system size and
with the local spin at each site.

To overcome this issue, and to provide a more general setup for DMRG with non-
abelian symmetries, McCulloch and Gulécsi devised an algorithm again based on
the Wigner-Eckart theorem where the blocks themselves transform as irreps of the
symmetry group, and where the Clebsch-Gordan series is used to target a specific irrep
for the entire chain [165]. By the use of an appropriate density matrix the truncation
of the Hilbert space ensures that the total spin is conserved at each step. The method
being adaptable to any symmetry group’, provided one knows how to compute the
associated CGCs, it was used for SU(2) spin chains but also for systems with SO(4) and
U(1) x SU(2) symmetries [158, 165-167]. Interestingly the SU(3) case was claimed to
be under investigation in Ref. [165] but no results were later reported by the authors.

With the advent of the new formulation of the DMRG algorithm in terms of matrix
product states [11, 168], the SU(2) symmetry was introduced in the representation of
the tensors [161, 169-171]. The Wigner-Eckart theorem translates into the factorization
of each symmetric tensor into the product of a “degeneracy tensor” and a “structural
tensor”, the latter containing the CGCs [161, 170]. Implementing the symmetry directly
in the tensors makes their use extremely versatile. The different tensor network based
methods can then directly incorporate these symmetric tensors and perform the
optimizations on the “degeneracy tensors” [170, 171]. In Ref. [171] Weichselbaum
described this framework in a generic way, opening the door to the implementation
of SU(N > 2) symmetric tensors to be used in variational algorithms such as the new
formulation of the DMRG.

In the first studies of SU(NV)-symmetric spin models [123, 172], the non-abelian sym-
metry was kept aside because it was considered “inconvenient” [123], and only po-
tentially “useful” [173]. In 2018, two papers made full use of the SU(/NV) symmetry
for the fundamental irrep at each site, one of them being based on Weichselbaum’s
construction [171] and being used to study SU(V) spin ladders with N < 6 [51]. The
ladder geometry in this paper brings an additional level of complication and increases
at the same time the real need for the non-abelian symmetry to be implemented.
The other paper introduced a new DMRG algorithm based on SYTs and SDCs of the
symmetric group, and provides numerical results on the SU(/V) Heisenberg chain for
N up to 8 [89].

In this section, we shall extend the latter construction to the case of the 3-box symmet-
ric irrep of SU(3) at each site. In fact, the generalization applies to the p-box symmetric

"In fact, the algorithm simply reduces to the standard formulation of White when the symmetry group
is reduced to the U(1) abelian group [10].
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irrep of SU(N) with p and N being general, up to minor changes but at the cost of an
increasing algorithmic complexity. We will in particular show how one computes the
reduced matrix elements of the interaction using the SDCs of the permutation group,
avoiding the need of the more common CGCs. The construction relies on the original
formulation of the DMRG by White [9, 10].

5.4.2 Description of the algorithm

The DMRG algorithm has been extensively discussed in Ref. [89] for the case of the
fundamental irrep of SU(/V) at each site. The structure of the algorithm for the case of
the symmetric irrep at each site is exactly the same, up to minor changes. We need in
particular to incorporate the adjoint edge states (or any other sort of edge states), and
to adapt the genealogy of irreps. This is of course trivial using the Itzykson-Nauenberg
rules.

The algorithm is based on the idea of McCulloch [165]: the left and right blocks in
DMRG must transform as irreps of the symmetry group. The first truncation of the
Hilbert space thus consists in selecting a finite number M of irreps to describe the
left and right blocks. For the case of antiferromagnetic chains, the ground state is
expected to live in the irrep with the lowest quadratic Casimir compatible with the total
number of boxes and with the local constraints. We thus choose the M irreps to be the
irreps with the lowest quadratic Casimir. For instance, Fig. 5.3 shows the first M = 22
irreps for SU(3), together with their eigenvalue of the Casimir, as given in Eq. (3.78).
We define the ordered list

Tas = {.,D,H, | - (5.19)

containing these M irreps. Notice that several of these irreps will never show up in
the calculation when considering the 3-box symmetric irrep at each site. This is for
instance the case of the irrep [ [ | € Z;,_,, because it has two boxes, which is not a
multiple of three. Notice further that in the list Z); we have taken the irreps without
the columns of N = 3 boxes. When considering a given block of length L in DMRG,
one can simply add columns of N boxes in order that the total number of boxes is
conserved.

Denoting by [3?] the irrep at the i-th site and considering now a left block made of L
sites, the relevant irreps are all irreps appearing in the tensor product

R =

=1

181=3" uly] (5.20)
[v]

where the right hand side is a direct sum of irreps [1/] with outer multiplicities n.[*]. The

second truncation consists in keeping m[L”} < ul’! states to represent the block in the

85



Chapter 5. The 3-box symmetric SU(3) chain

. 0 [ 1] | 2

O H s EEEE %

| 5 [T] Y

T - 10 [TT] I

- : Eearas i

111 6 L] 15
[] 9

Figure 5.3: List of the first M = 22 irreps of lowest quadratic Casimir for SU(3). The
eigenvalue of the quadratic Casimir corresponding to Eq. (3.78) is given beside the
irrep(s). Two irreps having the same Casimir are conjugate to each other.

irrep [v], where [v] appears in the list of M irreps Z,,. We denote these states by

{\5% ey !éﬂyﬁ} : (5.21)

The total number of states kept at step L is then simply given by

my =Y ml. (5.22)
V]

We apply a truncation procedure such that m; < m at each step. Actually we fix m
beforehand and choose the most appropriate distribution of states, namely we choose

the m[L”} 's in order to minimize the total discarded weight while satisfying m; < m.

Initialization

To grow the chain up to its final length N, we use the infinite-size DMRG algorithm.
Observe that the right block is mirror symmetric to the left block. Denoting by #;, the
Hamiltonian on the first L sites, and H E’] a matrix representation in the global [v] sector
in a basis which respects the SU(/V) symmetry, one starts by constructing H[L”}:2 in all
relevant sectors [v], namely all irreps appearing in [3'] ® [3?]. How to construct these
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5.4. Density matrix renormalization group with SU(3) symmetry

matrices has been extensively discussed in Refs. [86-88]. In our case where [3!] = |
and [8%] =[] ]one has 4 relevant sectors

| o111 = e HH [ oL (5.23)

Notice that we have preserved the number of boxes, and that all irreps in the right
hand side belong to the list Z;;—22 when columns of N = 3 boxes are removed.

We denote by 71, the list of irreps kept at step L, and define M}, = card(Zf,) the number
of such irreps. The index M in Z%; keeps track of the fact that there is a truncation over
the M irreps listed in Z;;, namely I]@ must be a subset of Z,,. Here one has

i, Z{ Uj:D, | [7 [ 1] [} C Trr=22. (5.24)

We have removed all columns of N boxes in the elements of Z%,. Indeed, we know that
at step L, the total number of boxes is .~ | p; where p; = 3, 3% since the irrep at site i
is [3Y] = [B%, 3%, ...]. One can thus easily restore all columns when necessary.

In the example of Eq. (5.23) there is no non-trivial outer multiplicity, namely each irrep
in the right hand side appears only once. Thus one has m[L"]:2 =1, V[v] € Z};7%, and
the matrices H[L'ig are made of a single number.

Selecting the new states

Now let us consider the more general case where the left block has L > 2 sites, and
the Hamiltonian #;, on these L sites is described by the matrices H[LV}, [v] € L, where
TE, € Iy To increase the system length by 2 sites one needs to incorporate one site to
the left block, and then compute the superblock Hamiltonian. The total Hamiltonian
for the chain of length 2L + 2 is given by

igh
Hor 42 = 'Hlf_fh + H(LJ,_LLJ,_Q) + 'Hgif (5.25)

where Hgihf is the Hamiltonian on sites L + 2, ..., 2L + 2 and is mirror symmetric to

HIM while H(1 41 142 joins the left and right blocks. The Hamiltonian H¥, = 74,4
is itself given by

HL-H - HL + H(L,L-ﬁ-l) (5.26)

where H;, 41) is the interaction Hamiltonian between sites L and L + 1 and #, is
the Hamiltonian on the previous L-site block, see Fig. 5.4. The Hamiltonian #, is

. M o V] . . .
represented by matrices ’HE'} € R™ %™ in the different sectors [v] € 7§, and their
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Hr H(L,L+1)
+ oo oo - Djj]—Eljj
1 2 3 L L+1

Figure 5.4: The Hamiltonian on the new left block of length L + 1 is made of the Hamil-
tonian #y, on the previous left block of length L and of the interaction Hamiltonian
H(r,1+1) between sites L and L + 1.

matrix elements are simply given by

(), = @uleh . 1<ig<my (5.27)

where |¢ ]M) is the j-th eigenstate of the previous reduced density matrix in the sector
[v] (see below), and the associated eigenvalues are

{)\[1”],/\[2”], A } = Al (5.28)

) v
ml”

Let us introduce some vocabulary. We say that an irrep [x] is a descendant of an irrep
[v] with respect to an irrep [5] if [x] € [v] ® [5]. Conversely we say that an irrep [o] is an
ascendant of an irrep [v] with respect to an irrep [3] if [v] € [0] ® [3]. We can thus form
the genealogy of an irrep [v] by identifying all its ascendants and all its descendants.
We denote by nL”s}C the total number of ascendants of the irrep [v] and n([iye]sc the total
number of its descendants. Figure 5.5 shows the genealogy of the irrep [v] = [4, 2] of

SU(3) with respect to the irrep [5] = [3].

When adding site L + 1 to the left block, the possible irreps for the new block of length
L + 1 are then all the descendants of the irreps [v] € 7L, with respect to irrep [35+1].
We define this ensemble as 75,

[x] € ZLH o3[v] € TE such that [x] € [v] ® [BE1]

: . (5.29)
([x] is a descendant of [v] € Zy;).

By definition, f]\L[l might contain (and actually does contain as soon as L is larger
than a few sites) irreps which do not belong to the list of M irreps Z;,. For instance
in Fig. 5.5 the descendant [7, 2] does not belong to Z,;—22. We thus define the list of
relevant irreps for the new block of length L + 1 as

L = TEH N7y, (5.30)
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[ 1]

[T T[]

Figure 5.5: The genealogy of the irrep [4, 2] of SU(3) with respect to the irrep [3]. The

irrep [4, 2] has n;[i’f] = 2 ascendants and ”Eféi = 8 descendants.

Equation (5.30) is the actual realization of the truncation over the irreps, and we define
My = card(Z4™).

Now that we have identified the relevant irreps at step L + 1 one needs to distribute the
mpr+1 < mstates among the M irreps. One proceeds as follows. We find all ascendants
[Z/J[-X]], 1 < j <l of each irrep [x] € 71 with respect to the irrep [3%*!] and form
the lists

At = {080 L e ZE .31

asc

X
If the irrep [uj["]] belongs to 7%, then it points to a set A[LJ ] of eigenvalues of the reduced

density matrix in sector [v/¥

;"']. One thus build the list of eigenvalues

o=y Al (5.32)
[u]eA[L"]mIﬁI

Finally the list 7,1 defined as

Kpo= U KM, (5.33)

L+1
(XI€Zy,

contains all relevant eigenvalues coming from step L, with possible repetitions. Since
the cardinal of K, is larger than m, the truncation on the states then consists in
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selecting the my; = min {card(K1), m} states corresponding to the my largest
elements in K71 . Since each element A € K, is labeled by an irrep [v] € IJLV[ and an

index1 < j < mg] and since the irrep [v] is itself an ascendant of an irrep [x] € Z5;",

one can easily distribute m[LXJ]rl states to the irrep [x], and one keeps track of the origin

of these states. One further defines m{;}] L+1 a8 the number of states attributed to the

irrep [x] coming from the irrep [v] and one has

Z mE/(]},LJrl = m[LXJ]rr (5.34)
(V]

Knowing the distribution of the states in the different irreps [x]| one introduces two
new quantities. First, we define the set of irreps containing at least one state

Tt = {[x} e 75 mp, > 0} : (5.35)
Second, one defines the total number of effective states

mer= > dim(x])mid,. (5.36)

L+1
XE€Trm

From 7, ]{f;i one can verify that the truncation of the Hilbert space does not depend

on M, but only on m. Indeed, if M is chosen large enough, and since we look at
antiferromagnetic chains, only the card(7j;}!) < card(Z{;™) irreps with the smallest
quadratic Casimir will be “occupied”. This is illustrated in Fig. 5.6.

The total Hilbert space on the left block is thus described by the decomposition

A= B mb [y (5.37)

NEeTniim
and the Hilbert space on the right block .7#"8 is the same during this part where the
chain length grows up to its final size.
For each irrep [x| one can separate all the elements of IC[LXJrl into two sets /C[LXL‘;““ and
IC[LXJ]F’?ISC such that card(IC[LXJr’ll(ept) = m[LXJ]r1 and K%‘Lll(em U }C%J]r’(lhsc = IC[LXJ]rl.

The discarded weight Wgﬂl atstep L + 1 in sector [x] is then simply defined as

wgﬂl:g[[;;gm > (5.38)

Akl dise
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Number of states m[LXL
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Figure 5.6: Typical distribution of m = 4000 (blue) and m = 8000 (blue and orange)
states in the different irreps [x]. The irreps are sorted in ascending order of quadratic
Casimir from left to right. For readability, only the self-conjugate irreps are labeled,
and we have shown the first 36 irreps only, while M was chosen much larger (M = 300)
to ensure that the truncation does not depend on M. After a few starting steps, the

distribution m[LXJ]rl of states in the different irreps does not change significantly with
respect to L. The effective number of states kept associated to these distributions are
megs = 195268 and meg = 412420, respectively.

where the symmetry factor g[%dL 41 18

g dim(x])

and the total discarded weight is®

W= S Wil (5.40)

X€Tiiin

As a side remark, one observes that the selection of states described above does actually
not minimize the discarded weight. To actually minimize the discarded weight one
would first need to multiply all the elements of £ 4, by the correct symmetry factor

Q%]L ) and then select the largest elements. Proceeding this way would in general

8Notice that this is equivalent to Eq. (6) of Ref. [89].
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12] 12] 12] [VQ} 1%
o)) o] o)) o] Al

[x]

Figure 5.7: Ascendance tree of the irrep [x|. The first level ascendants are all the irreps
[y][.’d] € A[lfd and the second level ascendants are all the ascendants of the ascendants
of [x]. We have only shown the second level ascendants stemming from the ascendant

[yé’d] = [1»] and forming the set A[L”i}l, for readability.

lead to a different selection of states leading to a lower total discarded weight. How-
ever we have observed that this selection scheme is in practice less optimal for the
minimization of the energy.

Hamiltonian on the left block

Now that the relevant states have been selected one can build the new left block of
length L + 1. To build the matrix H[LX] which represents the Hamiltonian #, in the
sector [x] € J, J@t; one simply needs to concatenate the restrictions to the first mg{]} I41

states of the matrices H [L”] for [v] € A[LX]. The matrix H[LX] is thus a block-diagonal

matrix, each block being of dimension mE’(]] L1t

The construction of the matrix representation of the new left block follows by con-
structing the matrix representation H ([’i] Li1) of the Hamiltonian #;, ;). We do this
with the help of the genealogy of irreps. Indeed, since #;, .41) acts only on sites L
and L + 1, namely on the last p; + pr4+1 particles, the goal is to find all the states

corresponding to irreps which are identical at step L — 1. For any [x] € J, ]\Lj;i c T

Ix]
one has already introduced the set of ascendants A[L’d. One further introduces A Lyil],

[V][-X}] € A%d with 1 < j < nLS} the set of all ascendants of the irrep [u][X]] which is itself
an ascendant of [x]. This leads to an ascendance tree as pictured in Fig. 5.7.
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5.4. Density matrix renormalization group with SU(3) symmetry

From the ascendance tree one can identify branches with a common second level
ascendant, as shown in Fig. 5.8(a) in the general case, and Fig. 5.8(b) for a concrete

example. The matrix elements of the interaction H ([’]i] L+1) then follow using the tech-

nology developed in Refs. [87, 88], considering that the irreps with the colored boxes
are representants of equivalence classes of SYTs?. For the case illustrated in Fig. 5.8(c),
for instance, one has

(T e [T ) = B
(] e [T =
(] e [T ) =
<EE—| Mo \EE_> _

Construction of the superblock

\%

\a

To construct the Hamiltonian of the entire chain of length Ny = 2L + 2 we select a
target sector (or global sector) [y] in which we build its matrix. One thus first needs to
combine the left and right blocks constructed in the previous step in order to reach
the global sector, and then construct the matrix of the interaction between the left and
right blocks, as in Eq. (5.25). To identify all contributing sectors one simply defines the
following set,

jL+1 {[ ] € L“E[ e JLH such that [y] € [x] ® [X/]}- (5.41)

One thus has 7,71} € ;"' and all irreps belonging to the complement of 77" in
Jit can be removed since they do not allow to access the global [] sector. One thus
restrlcts the Hilbert space of the left block to these irreps (compare to Eq. (5.37))

A= D mb [y (5.42)

9An equivalence class of SYTs is an ensemble of SYTs satisfying some local constraints, translating into
the fact that particles of a given site occupy the same boxes. All SYTs of the same equivalence class are
thus related by permutations of particles within each site [87, 88].
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N
\/

(9]

P — ™ —
P —

Figure 5.8: (a) Two branches of the ascendance tree of the irrep [x] which have a
common second level ascendant [o]. (b) A concrete example where the ascendance is
with respect to the 3-box symmetric irrep [ [ |, namely along each arrow there is a
tensor product with the irrep L I_I 1. (c) The two branches corresponding to (b), where
we have kept track of the positions of the particles added at each level.

and similarly for the right block. For each couple of irreps in J,; L“ one defines a
multiplicity matrix

M []

o = XD, VI X € Tirhn (5.43)

containing the outer multiplicity of the irrep [v] in the tensor product of the irreps [x]
and [y’], and the associated boolean matrix

(]
] i 1 if M7 >0
By ) = Bool (M ) = { ]

v Taie. 5.44
0 otherwise . IxT e Jui ( )

In the rest of this chapter, and this is one of the main limitations in the algorithm in its
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5.4. Density matrix renormalization group with SU(3) symmetry

current state, we restrict ourselves to the irreps [v] such that

M (7] — B [

! 7L+1
vl = Brgper VXL IXT € Tt (5.45)

In other words we only consider global irreps [y] which can appear at most once in the
tensor product of two irreps. For SU(N) with N > 2 this is clearly a limitation since
outer multiplicities do occur. In particular, for the study of the chain illustrated in
Fig. 5.2 we avoid the global adjoint sector, since its multiplicity in the tensor product of
an adjoint from the left block and an adjoint from the right block, for instance, is two.
In the outlook of this chapter we argue that this limitation can be overcome in light of
Section 3.1.8.

The total Hilbert space on N, = 2L + 2 sites is then given by
H = A g it (5.46)

and the matrices of the left and right blocks in this space are obtained as (see Eq. (12)
of Ref. [89])

H'= & Hpl e1fd (5.47)
B["/] =1
X1, [x']
and '
HE T = @ 1, e HP (5.48)
B =t
X1 1X

In Egs. (5.47) and (5.48) the identity matrices ]l[LXﬂ1 and IL[LX]+1 are of dimension m[LXﬂl
and m[LX]H, respectively, and one must of course take care of respecting the structure of

2 when building the matrices of the left and right blocks in this space.

The basis states of the Hilbert space in Eq. (5.46) are labeled by two irreps and two
integers,

= eMie), b e T 1< <mbdy, 1< <mp

(5.49)
The last thing to be constructed is the matrix of the interaction ;1 ;.) between the
left and right blocks (see Eq. (5.25)) in this basis. We shall argue that the solution is
provided by the SDCs. There are three important reasons for this:

’fz[X]>left ® ’EJ[X ]>right

e The matrix elements of #; , 149) can only be computed easily in the standard
basis of SYTs for the global irrep [v], by use of the Young rules.

e In the standard basis, namely in a basis made of SYTs corresponding to the
global irrep [7], the matrix elements of H ;. 1,2, only depend on the locations
of particles corresponding to sites L 4+ 1 and L + 2.
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e The positions of the particles of site L+ 1 and L +2 in the irreps [x], [X'] € J, ]\Lj;,lL C

71, can be retrieved since we have kept track of the genealogy of each state. For
instance in Fig. 5.8(c) these positions are indicated by green boxes for the irrep

[X] = [67 2, 1]'

The procedure is now natural: we shall rewrite the basis states in the standard basis,
because one can then compute easily the reduced matrix elements using the Young
rules. Furthermore, the reduced matrix elements will only depend on the positions of
the particles of sites L + 1 and L + 2. Thus the reduced matrix elements can be written

<[v],[>l<§’] bl(f] ‘H(LH,LH)‘ [v],bl(ll] bl(j]> (5.50)

where [, identifies the locations of the particles of site L + 1 (respectively L + 2) in the
irreps [x1] and [x3] (respectively [x2] and [x4]), and where we have indicated that the
reduced matrix elements are computed in the global [y] sector. We have purposely
used a notation similar to the one used for the basis elements of the non-standard (or
subduced) basis of S,, in Eq. (3.21). There are two differences: first, we have replaced
my, the identifier of a SYT for the irrep [vx] by I, which only gives the locations of
the particles of site L + 1 or L + 2. This is because H ;1 119) only acts on these
particles. Secondly, there is no multiplicity index 7 in Eq. (5.50). This is because
we have restricted ourselves to a global sector [v] satisfying Eq. (5.45). Thus, the
multiplicity index is implicitly 7 = 1. The ket and the bra in the matrix elements (5.50)
are then actually some representative of a basis vector of the non-standard basis. The
SDCs allow us to rewrite these representative in the standard basis and to use the
Young rules to compute the reduced matrix element of the interaction between the left
and right blocks. In the next part, we explain how to do this using the technology of
Section 3.1.7.

Calculation of the reduced matrix elements of the interaction

We denote by n the total number of particles in the irrep [y] when all columns of N
boxes are kept, and n;, the number of boxes in the irrep [y in Eq. (5.50). In the case
of the chain illustrated in Fig. 5.2, for instance, one has n = 3N; = 6(L + 1) where
N = 2(L + 1) is the length of the entire chain, and there are three particles per site.
The particles living on site L + 1 and L + 2 are indexed by the elements of I';; and
I'z12 (see Fig. 5.1) which take the values

Ppir={n1 —pr1+1L,n —prs1+2,..,m}, Trpo={n+1n+2,..,n1 +pra}
(5.51)
where p; is the total number of particles at site i.
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To keep track of the positions of the p;; and pyo last particles in the irreps [xx] in
Eq. (5.50) one can for instance take [, to be the rows of the bottom corners occupied
by these particles. For instance, if in the irrep [x1] = [4, 2] the last three particles are
situated at the positions of the crosses in

x[x] (5.52)

X

then one simply takes I; = (1, 1,2) which are the rows of each cross in the irrep [x;].

Let us now define [x}] to be the irrep obtained from [y;] by removing the boxes at the
bottom corners 1 ([x}] is thus an ascendant of [x;] with respect to the irrep [311]).
We construct a SYT Yii‘ll(]ll) for the irrep [x:] as follows. We begin by positioning the
pr+1 last numbers in descending order in [x;| from the lowest bottom corner of /; to
the highest. We then fill the remaining irrep [x}] such that ybal y» corresponds to the

my(l1
smallest SYT in the LLOS. For instance,
1
(alh) = Dy 5 5], ; 2 5], Yn[iil(]ll)' (5.53)

The actual choice of the SYT Yglll(]ll), is not important, because the SDCs are indepen-
dent of m, and because the interaction H . 142y does not involve these particles.
In other words, we could equally well have chosen the largest SYT in the LLOS for
YTK&(}II),, or any other SYT for the irrep [x]. Conversely, it is crucial to position the
last py 11 particles from top to bottom because this corresponds to our choice of the

representative SYT of the equivalence class [87].

For the right block, we proceed similarly. For instance,

(el to) = ) (L) [T ybol (554

Now we have actually formally defined the ket in the reduced matrix element (compare
to Eq. (3.21))

8 Dl [xel > _ | 8 Dl [xe > (5.55)

s L 1 "mi(ly) ma(l2)

where the right hand side is strictly speaking a basis vector of the non-standard basis
since m;(1;) and ma(l2) are proper SYTs for the irreps [x:] and [x2], respectively.

One can now expand this basis vector of the non-standard basis onto the standard basis.
There is one subtlety, however. When constructing the CSCO of S,, in the eigenfunction

method, one needs to remember that the p; o largest numbers in Yn[f(]b) actually

correspond to the numbers in I'; ;2 and, as such, are the smallest in the right block.

One can thus renumber the boxes in Yf[nxf(]h) such that number j is mapped onto n—j+1.
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For the example above (Where n; = ny = 6, n = 12) the renumbering is

—

[vo] _
ma(la) —

2[4[5 [va] 121198
2J4l5)_, yle = [8] (5.56)

w

The tableau )77)[11’22(]12) is not strictly speaking a SYT, but it is convenient to work with this

object rather than with Yw[l”j(]lg) when computing the CSCO of S,,. We shall put a star on
the SDCs to remember this subtlety when computing the CSCO of S,,,

<[7] | . Dal [xel > (5.57)

m mi(ly) *ma(ls)

If Y[’”(}l ) is not the first SYT in the LLOS for the irrep [x2] then we need to deal with
the Yamanouchi relative phase as explained in Section 3.1.7, starting with the first SYT
ms = 1 and acting with a sequence of operations which transform Y[ ] , into Y%Q(]h) 10,
Once this is done we have an expansion of the basis vector of the non standard basis

onto the standard Yamanouchi basis,

[’Y]vnjf(ll}l) *77[12 5 > Z ‘ Me.c. ><me]c

Now the important point is that ]YMC) itself should be understood as a linear com-
bination of SYTs in order to implement the local symmetry at sites L + 1 and L + 2.
This is the major difference with the case of one particle per site treated in Ref. [89].
The SYT YTDE]_C. in Eq. (5.58) is actually the SYT of an equivalence class in the language of
Ref. [87]. Since there is only one state per equivalence class in the symmetric case, it is
easy to find out the exact expression of the state by using the appropriate projector
which symmetrizes particles of sites L + 1 and L + 2. Finally,

(5.58)

[xi] [xa] >

’ mi (ll) *mg(lg)

_ (] [x1l,Ixal

1] [12] >
_Z ma(l1),*ma(l2)

’ ma (ll) *mg(lg)

V) > (56.59)

m

[V [xals[xal
where le(lll) *m22(12)

the symmetrization with respect to sites L + 1 and L + 2, and where |Y1ﬁ£;y ]> are now the
SYTs for the irrep [].

is a combination of SDCs and of coefficients which implement

Once the same steps have been followed for the bra in Eq. (5.50), the matrix element of
the interaction can straightforwardly be computed using the Young rules. From this
procedure one deduces a few simple rules:

"Notice that in Eq. (5.54) we could have used the last SYT in the LLOS for the irrep [x5] obtained from

[x2] by removing the boxes in the bottom corners described by I>. When fixing the Yamanouchi relative
phase, one should then check if the obtained SYT YmX2(l ) corresponds to the last SYT in the LLOS for the

irrep [x2]. This will lead to a different, yet fully equivalent, set of SDCs.
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1. (trivial) If the multiplicity 7, [[ }} =0 then the reduced matrix element vanishes.

[x2

2. If the ascendant irreps of [y;] and [x3] are not the same, then the reduced matrix
element vanishes.

3. If the ascendant irreps of [x2] and [x4] are not the same, then the reduced matrix
element vanishes.

Appendix H provides a complete example of calculation of a reduced matrix element
of the interaction [57].

Reduced density matrices

The Hamiltonian of the chain of length N; = 2L + 2 can be diagonalized and we obtain
a ground state wave function

Z Z\II[X] |§X] ®|£[X]> (5.60)

DXL B3

For each sector [y] one can define a reduced density matrix plX! with matrix ele-
ments [89]

x] 1 I Ty i D )
J dim([x]) [le]:k( k ) gk

The full diagonalization of each reduced density matrix leads to a new set of eigen-
values A[LXJ]rl and of eigenstates | ][-X}>. These eigenvectors are then used to rewrite the

Hamiltonian matrices H[LXL in the new basis. Moreover one can extract the entangle-
ment entropy from the eigenvalues of the density matrices [89]

S=— 3 dim([]) > AN mNM). (5.62)

7L
X]eJ, A,q:'—y,ll

5.5 The SU(3) AKLT model with 3-box symmetric irrep

The AKLT model of Greiter and Rachel is a good starting point for a numerical analysis
of the Heisenberg model. The Hamiltonian can be written in terms of permutations
using the general AKLT construction presented in Chapter 4 and Section 5.2. We obtain

Ng—2
2 3
HAKLT = Jend (H(LQ) + H(stl,Ns)) +J Z ( (i,5+1) + /H(z i+1) 4) (563)
=2
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Figure 5.9: Finite-size gaps of the AKLT model in the symmetry sectors corresponding
to the elementary excitations and in the 6-box symmetric sector for PBC. DMRG data
in the themodynamic limit in the [3], [3, 3] and [6] sectors are indicated. Figure adapted
from Ref. [57] with the permission of the APS, (©) 2020 American Physical Society.

where the interaction H; ;1) is given in Eq. (5.18) and where we have incorporated
the Heisenberg exchange to the adjoint edge spins. In what follows, all results are for
Jend/J = 1.

We first investigate the gap using ED. Indeed the correlation length £ = 1/1In 5 is short
and we expect to be able to see signs of convergence on small chains. Moreover one is
not limited to some specific sectors as it is the case for DMRG. Figure 5.9 shows the gap
of the AKLT Hamiltonian with PBC versus inverse chain length in the symmetry sectors
corresponding to the so-called elementary excitations, and in the 6-box symmetric
sector. All sectors show a good convergence towards a finite value, with a smallest gap
in the adjoint sector.

The adjoint sector, however, is not reachable using the DMRG algorithm developed
in Section 5.4 in its current state. One studies instead the [3], [3, 3] and [6] sectors in
Fig. 5.10. In the two former cases, a good accuracy can be obtained with a very limited
number of states. In the latter case, although we have kept only the first M = 76 irreps,
one sees a good convergence towards a value Ag = 2A3). This shows that the first [6]
excitation is not an elementary excitation but a composite excitation made of two [3]
excitations which repel each other.

This nature can be exhibited by computing the bond energy along the chain, which is
readily obtained in the DMRG. Figure 5.11 shows the bond energy along the chain in
the three same sectors as Fig. 5.10. For the irreps [3] and [3, 3] the bond energy displays
a single peak structure, showing that these excitations are elementary, while in the [6]
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Figure 5.10: Gaps of the AKLT model from the singlet sector to (a) the 3-box symmetric
sector [3], (b) its conjugate sector [3, 3] and (c) the 6-box symmetric sector [6]. Figure
adapted from Ref. [57] with the permission of the APS, () 2020 American Physical
Society.

sector one observes a double peak structure, corresponding to the two elementary
excitations which repel each other [174].

These numerical results are in agreement with the structure of the spectrum that we
proposed in Section 5.3. The singlet ground state is separated from the first elementary
excited states by finite gaps, and these elementary excitations are all those coming from
the tensor product of two adjoint irreps. More complicated excitations are obtained by
combining elementary excitations, which can be in the [2, 1], [3], [3, 3] and [4, 2] sectors.
For instance, the [6] excitation studied above comes from the combination of two [3]
elementary excitations.

5.6 The SU(3) Heisenberg model with 3-box symmetric irrep

5.6.1 Haldane gaps

We turn now to the study of the pure Heisenberg model. Figures 5.12(a)-(b) show
the singlet-[3] and singlet-[3, 3] gaps versus inverse chain length obtained by DMRG.
Although the gap curves do not show a convergence in the system size, as it was
obviously the case for the AKLT model, we clearly see that the gaps will extrapolate
towards strictly positive values. From the finite-m data, we proceed as follows to extract
an estimate of the gaps in the thermodynamic limit. First we extrapolate the lowest
energy in each sector (singlet, [3] and [3, 3]) with respect to the discarded weight. This
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Figure 5.11: Bond energy along the AKLT chain in the (a) [3], (b) [3, 3] and (c) [6] sectors.
The double peak structure in (c) together with the gap value show that the first [6] exci-
tation is made of two [3] excitations. In each plot we have subtracted the contribution
of the ground state (singlet sector). Figure adapted from Ref. [57] with the permission
of the APS, (©) 2020 American Physical Society.

leads to the black curves labeled m = oo in Fig. 5.12(a)-(b). The extrapolation to the
thermodynamic limit is obtained by following Schollwock in Ref. [154]. Extrapolation
of the m = oo curves in a linear way leads to lower bounds for the gaps. Since these
curves clearly extrapolate to strictly positive values, the model has a finite gap in the [3]
and [3, 3] sectors. For each sector an upper bound can be obtained from the scaling of
the gap at large length scale. Indeed for a gapped system, at length scale N, > ¢ where
¢ is the correlation length and we take the lattice spacing a = 1, the gap should behave
quadratically with respect to the inverse chain length,

vin?

A N2

S

A(N,) = Ao + (5.64)
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Figure 5.12: (a)-(b) Finite-size gap from the singlet sector to the 3-box symmetric
sector and [3, 3] sector. (c)-(d) Extrapolation of the minimum of each finite m curve
with respect to the total discarded weight. Figure adapted from Ref. [57] with the
permission of the APS, (©) 2020 American Physical Society.

where A is the thermodynamic gap and v = £A. There is thus a crossover between
the linear regime and the quadratic regime. Since we do not see the emergence of the
quadratic regime in our data, we assume that it develops at length scale just larger than
the largest system size that we have investigated. This is indicated by the red circles in
Fig. 5.12(a)-(b), and we fit a parbola tangent to these points, leading to an approximate
upper bound for the gap in each sector.

One observes that the gap curves at finite m in Fig. 5.12(a)-(b) go through a minimum
and then increase to large values as the system size increases. This is a purely nu-
merical effect [154-156]. At the minimum, the accumulated error on the gap due to
the truncation becomes larger than the decrease of the gap due to the increase of
the system size. We thus use the value at the minimum as the smallest estimate of
the gap at this specific value of m. One uses these minimal values of the gap at finite
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m and perform an extrapolation with respect to the total discarded weight, which is
the sum of the discarded weights in the singlet and in the [3], or [3, 3] sectors [156].
Figures 5.12(c)-(d) show these extrapolations, and one sees that the thermodynamic
gaps, reported as blue diamonds in Fig. 5.12(a)-(b) lie between the lower and upper
bounds derived above.

5.6.2 Entanglement entropy

The results presented in Fig. 5.12 are already showing unambiguously the existence of a
gap in the [3] and [3, 3] sectors, and, as a consequence, in all other sectors of elementary
excitations, as we will see below, thus showing that the Heisenberg Hamiltonian is
gapped. To bring one more evidence we have studied the curvature of the entangle-
ment entropy in the singlet sector. For a critical model the entanglement entropy
follows the Calabrese-Cardy formula [175]

S(x) = gln (2‘77:7 sin (ﬁ)) Yo (5.65)

where c is the central charge of the associated CFT and ¢; is a non-universal constant.
For critical SU(N) spin chains, the CFT describing the low-energy behavior is the
SU(N),, WZW model with central charge
k(N?—-1)

= TNTh (5.66)
The critical SU(/V) Heisenberg models are expected to flow to the stable SU(V), fixed
point, except if finely tuned to the integrable points [142, 143]. For the SU(3) chain with
3-box symmetric irrep at each site, the smallest possible central charge compatible
with an SU(3),, WZW CFT is the level one CFT giving ¢ = 2. In Figure 5.13(a) one shows
the entanglement entropy of a chain with N, = 300 sites. Despite the large system size,
there is no evidence for a clear plateau. A plateau in the entanglement entropy would
rule out the possibility of a gapless spectrum. However, the curvature — or “central
charge” obtained by fitting the Calabrese-Cardy formula in the middle of the chain —
yet non-zero, is smaller than ¢ = 2, and is compatible with a vanishing curvature in
the thermodynamic limit, as shown in Fig. 5.13(b). The analysis of the entanglement
entropy in the singlet ground state thus shows that the spectrum of the Heisenberg
chain is gapped. This is in agreement with the finite gaps found in the [3] and [3, 3]
sectors, but goes beyond these results. Indeed, the flat entanglement entropy in the
thermodynamic limit tells us that all symmetry sectors are gapped, in particular all
symmetry sectors associated to the elementary excitations. This information thus
compensates for our unability to study the adjoint and [4, 2] sectors with DMRG. In
the next section, we give another argument for a gapped spectrum in all sectors of
elementary excitations.
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Figure 5.13: (a) Entanglement entropy of the ground state in the singlet sector for a
chain of length N, = 300 sites. (b) Extrapolated central charge versus inverse chain
length. The three series ¢ = 0,1, 2 correspond to the central charge c, obtained by
fitting the Calabrese-Cardy formula over the points = = 3n + ¢ with » an integer. Figure
adapted from Ref. [57] with the permission of the APS, © 2020 American Physical
Society.

5.6.3 Analysis of the spectrum

To summarize we have shown that the antiferromagnetic Heisenberg model has a
finite gap from the singlet ground state to the 3-box symmetric irrep, A3 /J ~ 0.04,
and also a finite gap to the conjugate sector [3, 3] of the same order. Moreover, an
analysis of the entanglement entropy in the singlet ground state has shown that the
“central charge” obtained by fitting the Calabrese-Cardy formula is smaller than ¢ = 2
and it thus incompatible with any SU(3), WZW CFT. In addition, for sufficiently large
chains the central charge is even smaller than ¢ = 1, providing one more argument for
a gapped spectrum.

If the spectrum is gapped, however, one expects the smallest gap to be in the adjoint
sector, based on ED results on small chains and on the AKLT results presented in
Fig. 5.10. One can actually find a lower bound for the singlet-adjoint gap, or for the
smallest Haldane gap of the model. Indeed, as we have argued above, the spectrum is
made of five branches of elementary excitations, which come from the tensor product
of two adjoint irreps: two adjoint excitations and one excitation of each of [3], [3, 3]
and [4, 2] irreps. Since the 3-box symmetric irrep appears in the tensor product of two
adjoint irreps, then the adjoint elementary excitations cannot be low lying. If it were,
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this would contradict the existence of a finite gap in the 3-box symmetric sector, since
one could create a composite excitation in the 3-box symmetric sector made of two
adjoint irreps, which would then be a low-lying excitation. The same reasoning applies
to the [4, 2] irrep. Thus the smallest Haldane gap of the Heisenberg model must be at
least twice as small as the 3-box symmetric gap, A > A3)/2. Taking the lower bound
for A5 one finally concludes that the gap A of the 3-box symmetric Heisenberg chain
given by Hamiltonian (5.17) satisfies

A/J > 0.017. (5.67)

5.7 Conclusion and outlook

Despite being almost the simplest possible SU(3) chain for which a gap was expected!!,
showing rigorously the existence of a finite gap in the 3-box symmetric spin chain
took us on a long journey starting from the implementation of the full SU(3) symmetry
into the DMRG algorithm, studying the associated AKLT model and then turning to
the Heisenberg model. The results obtained in this chapter are in agreement with the
extension of Haldane’s conjecture to SU(3) chains, and is thus a first confirmation of its
validity. Although it has never been really debated whether the 3-box symmetric spin
chain was gapped or gapless, in contrast to the spin-1 chain, our results shine light on
the early DMRG and ED results on the model [87, 123]. First, the value of the gap is tiny,
A/J > 0.017, presumably corresponding to a correlation length of several hundred
sites. It would thus be very difficult to extract thermodynamic properties using ED,
or even DMRG on small chains, unless sophisticated — and potentially uncontrolled —
extrapolation methods are used [75]. Secondly reliable results were obtained using an
extensive number of states in the DMRG algorithm, and this was only possible thanks
to the direct implementation of the non-abelian symmetry and an efficient calculation
of the group theory coefficients.

There are several directions in which the results presented here should be extended.
First of all, to provide a complete and accurate answer about the smallest Haldane
gap, the model should be studied in the adjoint irrep. Indeed we expect the lowest
excitation to lie in this sector. We have not considered the adjoint and also the [4, 2]
sectors as they lead to nontrivial outer multiplicities in the calculation of the reduced
matrix elements of the interaction. These multiplicities need to be handled carefully
to construct the Hamiltonian on the superblock. Since we have explained a method
to deal with the outer multiplicities at the level of the SDCs it should be possible to
incorporate consistently the outer multiplicities in the DMRG, and thus to compute
directly the gaps in the adjoint and [4, 2] sectors.

""The SU(3) adjoint spin chain is also expected to be gapped, and the local Hilbert space dimension is
8. From this point of view, it is simpler than the the 3-box symmetric spin chain studied here.
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We have shown that the spectrum of the 3-box symmetric SU(3) Heisenberg chain is
gapped. According to Haldane’s conjecture, it is reasonable to extrapolate this result
to the 3n-box symmetric chain, with » an integer. Indeed the mapping from the spin
chain onto the NLoM becomes exact in the limit of an infinite number of boxes in the
symmetric irrep. Since the conjecture applies for n = 1, then we can expect it to apply
for n > 1. While the gap has been extracted for SU(2) spin chains with integer spin
S up to 6 [8, 74, 75], confirming every time the original Haldane conjecture, it seems
that it would be difficult with the technique presented above to extract the gap of the
6-box symmetric SU(3) chain. Indeed the SU(3)/[U(1) x U(1)] NLoM is asymptotically
free [138, 151, 176], and the crossover length scale thus increases exponentially with the
number of boxes in the Young diagram. Extracting the gap becomes thus exponentially
more complicated for bigger irreps.

There is a more promising way to further confirm Haldane’s conjecture, however. The
2-box symmetric SU(3) chain is expected to be gapless, with low-energy excitations
described by the SU(3), WZW CFT [138, 142, 151, 176, 177]. The analysis of this model
should follow the exact same lines as described in this chapter. In particular, we expect
the entanglement entropy to satisfy the Calabrese-Cardy formula with a central charge
¢ = 2 provided the chain length is larger than the crossover length scale. If the chain
length is smaller than this crossover length scale, there is no physical reason to observe
a c = 2 critical theory. The model being asymptotically free, the strong coupling limit is
only present in the IR. The results obtained in Ref. [87], in particular the central charge
compatible with the SU(3), WZW CFT simply show that the model was not probed at
an appropriate length scale, because of the intrinsic limitations of ED. To really observe
more exotic critical theories one must add higher order interactions and fine-tune
them at the integrable points derived by Johannesson [143]. At these unstable fixed
points the critical theory is the SU(3), WZW CFT where p is the number of boxes in the
symmetric irrep.

We have mentioned several times the importance of the crossover length scale in the
Heisenberg model, and its scaling with the number of boxes in the Young diagram.
However we have not extracted a precise estimate of this crossover length scale in
the case of the 3-box symmetric irrep. Indeed, computing two-point functions in
the traditional DMRG language is an expensive calculation. In this respect, it would
be interesting to investigate how to translate the DMRG algorithm presented in this
chapter “to the age of matrix product states” [168], where the calculation of correlation
functions is more transparent and economical. An estimate of the correlation length
could also be obtained using a different algorithm, such as the variational uniform
matrix product state (VUMPS) algorithm, which optimizes a single tensor for a transla-
tionally invariant wave function, and extracts the correlation length from the gap in
the associated transfer matrix [146, 178]. It seems however that the traditional route
consisting in implementing the SU (V) symmetry by use of CGCs is not the appropriate
one, as the number M of irreps that can be handled is significantly smaller than with
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the technique presented in this chapter [146]. It would thus be particularly interesting
to investigate how to implement a VUMPS algorithm making use of SDCs, to avoid
both the use of CGCs and the trouble of working with finite-sized chains.
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Summary and outlook

Despite nine decades of intense investigations, the one-dimensional spin models
are still a major subject in condensed matter physics. A remarkable aspect of this
field of research is the intricate effort of the experimental, theoretical and numerical
communities to bring a deeper understanding of the various phenomena exhibited by
spin systems. With the advent of experiments with ultracold atoms which realize the
SU(N) Hubbard model, and thus the SU(/V) Heisenberg model at low energy, it is now
not only a matter of theoretical curiosity to study these models, which generalize, but
also complexify, the SU(2) models. In this thesis we have studied three different aspects
of one-dimensional quantum spin chains with full SU(/V) symmetry. The thesis was
organized in two independent parts, the first one focusing on the SU(2) Heisenberg
model and the second part discussing SU(N) models with generic values of NV, and, in
particular, N = 3.

In Chapter 2 we revisited the SU(2) Heisenberg chain in the limit of large spin S and
showed that perturbation theory, in the form of SWT, can provide meaningful and
accurate results, in spite of the Mermin-Wagner-Coleman theorem. When considering
observables which respect the symmetry of the model, namely rotationally invariant
observables, the IR divergences which plague the usual perturbative expansions pre-
cisely cancel each other between the longitudinal (symmetry-breaking direction) and
transverse parts. In addition, we argued that the perturbative regime is of significant
interest as it is the relevant one at short distance. Indeed, Haldane mapped the spin
chain onto the O(3) NLoM, which is asymptotically free. The short distance, weak
coupling regime thus extends up to a length scale of order ¢™¥/S. For the realistic and
experimentally relevant case of S = 5/2, the crossover length scale is ¢ ~ 160. The
perturbative regime should be observable experimentally at distance |z| < &, as was
demonstrated by comparing with QMC simulations. In this regime the spin-spin corre-
lation function shows a logarithmic decay, in contrast to the strong coupling regime
where the decay is exponential for integer spin and algebraic for half-odd-integer spin.
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Chapter 3 was devoted to the exposition of elements of group theory related to the
SU(N) group. This chapter did not go beyond the material presented in standard
textbooks. Nevertheless, a rather detailed presentation was necessary in anticipation
of Chapter 4, and, especially, of Chapter 5. The chapter was mainly focused on the
representation theory of the permutation group. Indeed, by the Schur-Weyl duality
one can apply the machinery of the symmetric group to the SU(XN) group. We have
introduced the important notions of Young diagrams, which are convenient graphical
representations of the irreps of the group and which are intensely used throughout
Chapters 4 and 5, standard Young tableaux, which are Young diagrams filled with
integers, and the Itzykson-Nauenberg (or Littlewood-Richardon) rules, which are the
rules for decomposing the tensor product of two arbitrary SU(V) irreps into a direct
sum of irreps.

In Chapter 4 we introduced a generic construction for AKLT models with SU(N) sym-
metry and arbitrary self-conjugate edge states, building on group theory notions
introduced in Chapter 3, and on the MPS form of the AKLT states. This allowed us to
build, for instance, a spin-1 AKLT model having spin-1 edge states. Unlike the original
AKLT model, this model was shown to lie in a trivial gapped phase, separated from
the Haldane phase by a continuous phase transition with central charge ¢ = 1, in
the SU(2), WZW universality class, in agreement with previous predictions for such
a topological phase transition. When generalizing the construction to SU(N > 2) the
new feature is the possibility for non-trivial outer multiplicities of irreps in the tensor
product of two irreps. With the method presented in this chapter we showed how
to build AKLT parent Hamiltonians having a unique ground state. From a practical
point of view, however, the construction becomes intractably complicated when the
edge irreps have a larger dimension than the physical irreps. Indeed, to ensure the
uniqueness of the ground state one must deal with an injective MPS. The only way to
enforce this injectivity condition is to enlarge the MPS. As a consequence, the parent
Hamiltonians become longer ranged. The construction was applied to revisit the SU(3)
model with physical 3-box symmetric irrep at each site. In particular, we could show
that the edge states belong to the adjoint sector. In the original construction, the nature
of the edge states remained mysterious, and the AKLT wave function was not optimal
in the MPS sense. The new construction for this AKLT state became an extremely
valuable guide for our study of the associated Heisenberg model in Chapter 5. The
construction of AKLT states described in this chapter also gives a hint on what AKLT
models could lie in SPT phases.

Finally in Chapter 5 we investigated numerically the SU(3) Heisenberg model with
completely symmetric irrep made of three boxes at each site, and showed that it has a
finite gap. This result comes as a confirmation of the recent Haldane-type argument for
a gapped spectrum when the number p of boxes in the symmetric irrep is a multiple of
three and gapless excitations when p is not a multiple of three. To unambiguously show
the opening of a gap in the p = 3 case, the simplest case where a gap was expected,
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we developed a DMRG algorithm making full use of the SU(3) symmetry of the model.
The core of the algorithm is the calculation of the so-called reduced matrix elements
of the interaction between the left and right blocks in DMRG, using the SDCs of SU(3)
which are in one-to-one correspondence with the SDCs of the symmetric group. The
SU(3) AKLT model with 3-box symmetric irrep at each site, which we presented in
Chapter 4 as a model made of virtual adjoint irreps, proved to be extremely useful for
the analysis of the spectrum at the Heisenberg point. We argued that there are actually
four Haldane gaps in the model, corresponding to five elementary excitations, two
of them being adjoint excitations. Based on ED results at the AKLT point we argued
that the smallest Haldane gap is the adjoint gap. The weakness of our analysis is the
fact that we could not, for technical reasons, directly access the singlet-adjoint gap.
Nevertheless, based on the nature of the elementary excitations we argued that if one
of the elementary excitation is gapped then all the others should also be gapped.

The search for a gap in the 3-box symmetric SU(3) chain was motivated by the recent
mapping of the spin chain onto a NLoM. As the O(3) NLoM relevant in the SU(2) case,
the SU(3)/[U(1) x U(1)] flag manifold NLoM is asymptotically free. This means that the
opening of a gap is only seen at length scales larger than the crossover length scale &
which scales as e*? /p, o > 0'. The value of the gap that we found, A/J = 0.04040.006
brings us to a very large correlation length, of order several hundreds sites, although
we have not attempted to evaluate precisely this length scale. In any case one sees
that the weak coupling regime is significantly more extended in the SU(3) model
than in the SU(2) spin chain. It would be very interesting to extend the perturbative
calculations presented in Chapter 2 to the SU(3) case. Since experimental realizations
of SU(N) models deal with a limited number of atoms loaded in the optical lattice,
the analytical predictions of flavour-wave theory, the analogue of SWT for N > 2,
would be particularly relevant [179-183]. Performing such perturbative calculations,
however, would be a rather technical challenge given the difficulties encountered in
recent progress on the methods for more than one particle per site [140, 184, 185].
These difficulties arise already at linear order with the presence of zero-energy modes
in the flavour-wave spectrum. Even when the flat modes are lifted we expect the linear
order to be a rather poor approximation of the spin chain, as we have seen in the SU(2)
case, and it would be necessary to take interactions into account to obtain an accurate
description of the model.

Showing the existence of a finite gap in the p = 3 SU(3) chain was conceptually equiva-
lent to the quest for a finite gap in the spin-1 chain in the 1980’s. To confirm further
the SU(3) Haldane conjecture, it would be crucial to demonstrate that the model with
p = 2is gapless, and lies in the SU(3); WZW universality class. A possible route is the
investigation of the entanglement entropy with the Calabrese-Cardy formula. For the

'The 8-function of the coupling g being known only at order g2, the scaling of the crossover length
scale is, to this order, ¢ ~ ¢“P. However it is unlikely that the unknown ¢* term vanishes.
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p = 3 case we showed that the central charge decreases as the system size increases
and becomes ultimately smaller than one, a sign for a gapped spectrum. For the
p = 2 model, the analysis should show a saturation of the central charge converging to
¢ = 2 from above. It has already been shown by ED that, on small systems, the central
charge was compatible with the SU(3), WZW universality class, but such a behavior is
prevented in the thermodynamic limit since this fixed point is unstable.

Finally, let us mention that the recent development of Haldane’s conjectures for the
different irreps of SU(N > 2) motivates further numerical investigations. For the SU(2)
Heisenberg model, the existence of a gap has been confirmed up to spin S = 6,
validating every time Haldane’s argument. In fact, the study of the long-distance
behavior of the large-spin Heisenberg chain is mainly motivated by the challenging
numerical difficulty of extracting a tiny but finite gap rather than being motivated by
the need of confirming Haldane’s conjecture, which is well established. In this respect,
the demonstration of the existence of a gap in the spin-1 chain was the strongest
argument in favor of the validity of the conjecture. Indeed, the mapping from the
spin chain to the NLoM becomes exact in the large spin limit. It is thus both more
complicated and less necessary to show the existence of a gap for the large integer spin
models. Conversely the numerical confirmation of SU(N > 2) Haldane’s conjectures is
at its premises, where, by opposition, we look at the simplest models, namely the most
quantum ones, to confirm their low-energy behavior ! The DMRG algorithm is, at the
time of writing this thesis, essentially the only viable numerical method adapted to
tackle such models. It is very likely that more sophisticated methods based on tensor
networks, such as the promising VUMPS, will permit a more systematic and somehow
less troublesome study of SU(/V) spin chains in the relevant lowest dimensional irreps,
and will thus provide confirmations of the Haldane conjectures. In any case, given
the large local Hilbert space dimension associated with non-trivial irreps of SU(N > 2)
and the intrinsic structure of the group, it appears evident that the implementation of
the non-abelian SU(N) symmetry in the numerical techniques is not only useful but
absolutely necessary to obtain reliable results with classical computers.
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Y Crossover scale of the NLoM

In this appendix we derive the higher-order corrections to the crossover length scale
¢ in Eq. (2.17) and Eq. (2.18) based on the 4-loop S-function of the NLoM derived in
Ref. [73]. We then deduce the corrections to the crossover energy scale A in Eq. (2.19).

The 4-loop S-function reads [73]

2 3 4 5
g g 5g 23g
plg) = -+ +

or T m2 T aea? T 12020)

1+0(¢") (difL = B(g)> . @A

To simplify a bit the notation we define the coefficients {a;}?_, of the expansion of the
B-function in powers of g,

5
Blg) = aig" + O(¢°). (A.2)

1=2

Integrating the renormalization group equation we obtain,
g1 dg
5 B(9)

where gy is the bare coupling and g; is an arbitrary coupling at length scale £, which is
g1 = 0(1)

In¢ = (A.3)

Now we perform the integral in the right-hand side. We define

flg) =D g 0 85 s o (A4)
az g as as as

and obtain

mdg _1ogmo 11+ f(g)—flg) 1 (1 1) 1
%mw_wéd%2 1+ f(9) _@( ) S A
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Appendix A. Crossover scale of the NLcM

where

1 fle)
h= /90 e 1+ f(g) (A6

We rewrite J; as

g g 1+ — 4 a4 54 05 2 +0 3
go g1+ flg) a2 Jgo g 1+ f(9)
leading to
as g1 as 91 1 %g+%g2_f(g) +O(93)
J:ln<>—|—/ dg — =2 4 (A.8)
L 90 az Jgq gg L+ f(9)
One has now
Ji=%m (91) + 4 (A.9)
a2 90 a2
where . » ()
g 1+22g—2f(g9)+0O(g
Jo = / d = 9 . (A.10)
2 9o g 1+ f(g)
This can be rewritten as
91 do+dig+ O(g?)
J, — / (A.11)
? 9o g 1+ f(g)
where 9
do=1--3B_ g =%_95 (A.12)
asay ayq as
Since f(g) = O(g) we can develop
1 () + Ol = 1- B g4 0(g?). (A13)
1+ f(g) as
Defining ¢; = —ags/a2 the coefficient of the linear term in ¢ in the expansion of
(14 f(g))"" the integral .J, is given by
g1 9
Jy = / dg (do + (erdo + di) g + O(g?)) (A.14)
90
leading to
1
Jo = Ko —dogo — E(Cldo +d1)g5 + O(g5) (A.15)

where Ky = dy g1 + (c1do + d1)g?/2 is not relevant as it depends on the unknown
coupling ¢; at scale &.

114



We thus end up with

1 d do +d
In¢ = const + —— — a—g In <91> + a420 go + as(er 0;— 1 ge +O0(gd) (A.16)
azgo a3  \9go as 2a3

where the first constant term contains all terms depending only on ¢;.

We now define J g d
a=8d g =kt dy) (A.17)
a; 2a35

and exponentiate Eq. (A.16),

a, [12 -
£ x 903/ 2 o(a2g0) ™" exp (/\190 + )\Qgg + O(gg)) . (A.18)

Expanding the last exponential and replacing the coefficents by their exact values one
finally has

2393
£ x g0627r/g0 (1 + 5 + 0

gr " 3san? T O(gg)> ‘ (A.19)

Taking go = 2/S as the bare coupling constant this formula translates into

1 1 23 _
5«565(1+M+967T252+0(5 3)). (A.20)

The crossover energy scale is given by A = v/£ where v = 2.J S is the spin-wave velocity.
One thus has 1 17
2 —7S o _ -3
A x JS%e <1 15 06252 +O(S )) . (A.21)

Figure 2.1 in the main text shows the numerical values of the gap A and correlation

length ¢ obtained by numerical diagonalization together with fits to expressions (A.20)
and (A.21) as well as the interpolated values for half-odd-integer spin.
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Equal-time correlation function
from the Hellmann-Feynman theo-
rem

B.1 Introduction

The aim of this appendix is to derive the equal-time spin-spin correlation function
using a modified Hamiltonian and the Hellmann-Feynman theorem [79, 80].

We consider the following Hamiltonian,
H(A) =H+W() (B.1)

where H is the Heisenberg Hamiltonian given in Eq. (2.1) and which we recall here for
completeness
H=1J> Si Si

and
W) = A (=)™ °S; - Sipy (B.2)

where the distance n is fixed and ) is a (small) positive dimensionless parameter. The
factor (—1)"*! ensures that W(\) does not frustrate the model.

By the Hellmann-Feynman theorem we obtain

(=1 0Ep(\)
JN,  0A

= (Si - Sitn)y (B.3)
A=0

where Eo()\) = (H()\)) A is the ground state energy of #(\) and where (-)4 denotes
an expectation value in the ground state of the original Heisenberg Hamiltonian #.
The equal-time spin-spin correlation function can thus be obtained by computing the
ground state energy of the modified Hamiltonian # () to second order in perturbation
theory. To proceed further one needs to treat separately the case of even and odd

distance n.
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Appendix B. Equal-time correlation function from the Hellmann-Feynman
theorem

B.2 0dd distance

We take n odd. Thus (—1)"*! = 1 and W()\) comes with an overall positive sign.

B.2.1 Hamiltonian W()\)
We write an expansion of W(\) in powers of 1/5 in the following way
W) = WO + WA+ WH ) +0(s7Y) (B.4)

where the first terms take the values (compare to Eq. (2.27), (2.28) and (2.30), respec-
tively)

WO = _ TN, S?\, (B.5)
WA () = JSA Y [20)ak + (n) (afa’ , + a_gar)] (B.6)
k
with
Yi(n) = cos(kn) (B.7)
and "
W(4)()\) =—3 <§> (a}aiaiaj + h.C.) —JA <§> a}a}aiaj. (B.8)
ij ij

In Eq. (B.8) we have used the notation ((ij)) to denote all the couples (i, j) which are
separated by a distance n. In other words we have

1

Y Ousp =D Ol = B S Oiiss (B.9)
(i5) i i 6==+1
and .
Z O(ij) = Z Oliitn) = B Z Z Oiits)- (B.10)
((i5)) i i d=+n
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B.2. 0dd distance

Equation (B.6) is easily obtained from Eq. (2.52),

WE () = JS)\Z(’)

1,04+n

_JS)‘ Z Z Oz(lz)-i-5

i d=xn

=JSA= Z Z {alajﬂg + ;45 + aTa”L + aj+5az+5] (B.11)
i d=1n

— JS)\ SN {Qa ay, + ' ( al, + Gfkak)}

5 tn k
=JS\ Z [2akak + cos(kn) (a};aT_k + a_kakﬂ .
k

B.2.2 Hamiltonian 7{())

The total Hamiltonian #()) has the following expansion

HN) =HON) +HON) +HBDN) + 05 (B.12)
where H®) (X)) = H*) + WF)()). The classical ground state energy is given by
HOON) = —JN,S2(1 4 N), (B.13)

and the quadratic Hamiltonian by
~ . 1~
HO()) = ; {Akazak - 3B (azaik i a_kak)} (B.14)

where we defined
AL, =2JS(1+)N),  Bpr=-2JS%(n), )=y + In(n). (B.15)

In Eq. (B.15) and throughout this appendix we should keep in mind that quantities
with a tilde depend explicitly on the parameter ), although this dependence is removed
in the notations to lighten the expressions.

The first order interaction %) ()\) of #()) is given by

H(4)()\) = — (a}aiaiaj + h.c) JZa a;a;a;

(i)

5 (a}aiaiaj + h.C) JA Z a; al ;i
((ig))

y J
2

(B.16)
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Appendix B. Equal-time correlation function from the Hellmann-Feynman
theorem

B.2.3 Bogoliubov transformation

Performing a Bogoliubov transformation on the Hamiltonian #(?) ()) given in Eq. (B.14)
as explained in the main text we obtain the coefficients

R (A e
g = i jr k and ¥, = —sign(By) |/ h (B.17)
2€; 2€x,

with the dispersion relation
& =/ A} — B}
=275,/1+ A2 + 2\ — 72(n) (B.18)

= 275,/1 — 72 + 20 + A2 — 2Ay(n) — A2 (n).

The quadratic Hamiltonian then reads

HE(\) = 6@ + 3 &al ay, (B.19)
k

where

~ 1
2 = _JN,S(1 ~Ne .
6 JNS( +A)+22kjek (B.20)

is a first order correction to the ground state energy.

B.2.4 First order interaction

We can now proceed to the treatment of the first order interaction (¥ (\). The solution
consists in applying Wick’s theorem. It is important to recall that expectation values
are taken in the Bogoliubov vacuum of (), not the Bogoliubov vacuum of # ! Thus,
even though %% does not explicitly involve ), the coefficients of its expansion in the
Bogoliubov basis do.

We obtain

HW = s 4 Z {55&4)a7€ak + %Bgl) (azaik + oz_kozk)] + : (4-bosons) :  (B.21)
k

where : (4-bosons) : denotes normal ordered terms with four Bogoliubov bosonic
operators and where all vertices 69, 58,&4), B,(f), ... depend on \. Notice in particular
that the vertex B,(f) was vanishing in the case of A = 0 treated in the main text. The
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B.2. 0dd distance

vertices have the following expressions

SEW = _JN, {(ﬁ + A+ m(m + 8)} ,
55']&4) = (ﬂ,z -+ 17]%) (5Ak — Qﬁkﬁk(SBk, (B.22)
BY = (a2 +1}) 6By — 2ixind Ay,
and
6Ap =—J [2(A + ) + (0 + 27%)] ; (B.23)
5By = —J [m +2(A+ ﬁ)wk] : (B.24)

where the coefficients A, §, i and 7, are defined as (j being nearest neighbor of i and
the expectation values are taken in the Bogoliubov vacuum of #(\))

A= (a;a;) Z ViU Uk (B.25)
6 =(a?) = —— Zﬂkﬁk, (B.26)
m = a aJ Z vkvk, (B.27)

a a;) = Z (B.28)

Now we turn to the treatment of the first order interaction of W(\), namely W ()).
The only difference with (%) () is the fact that i and j are not nearest neighbor any-
more, but are separated by a distance n. So we should simply replace ~; by v (n). We
define, for those (i, j) (notice the similarity with A in Eq. (B.25) and 7 in Eq. (B.27))

Q: (aa) = —Z’yk )y Uk (B.29)

and
p = (ala;) Z% (B.30)

We can now rewrite our W*()\) as

W(4)(>\) — 6FW ¢ Z {w,(f)azak + %D,(f) (OéLOéT,k + oz_kozk)} + : (4-bosons) : (B.31)
k
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Appendix B. Equal-time correlation function from the Hellmann-Feynman
theorem

where ~ -
SFW = —JAN, [(+ Q) + (5 + )] .
w](;l) = (ﬁ% + 17,%) 0C), — 2ﬂkl~)k(5Dk, (B.32)
DW= (@2 +42) 6Dy, — 205 5Ck,
and
6Ck = — JA[2(Q + ) + 7 (n) (5 + 29)] | (B.33)
0Dy == JX[p+2(2+ @) s(n)] (B.34)

Regrouping #(¥ and W* ()\) we end up with

771(4)(/\) =66W 4 Z [g,£4)a£ak + %E,&‘L) (aioﬁ_k + akak)} + : (4-bosons) : (B.35)
k

with
OEW = — N, [{(7+ B) + (i + )} + A {(2 + Q) + 55+ )}, (B.36)
524) = (ﬂ% + 77]%) 0AL — 20,00 By, (B.37)
B = (@ + %) 9By — 200 A (B.38)
and
S Ay, = A, + 6C
(B.39)

= = J 208 + 7)) + (8 + 2m) + M {2(2+ ) + 3 (n)(5 +25) } |

0By, = 6By + 0Dy,

- - (B.40)
= = J [+ 28+ @)+ M+ 2AQ + A)wn) ]
At this order the Hamiltonian reads
HN) =HO 663 4 56W
- = 1
+ 3 (a+ &) alar+ 35 B (afal, +axau) (B.A1)
k k

+ : (4-bosons) : .
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B.2. 0dd distance

The ground state energy of H()) is thus given, to second order in perturbation theory,
by
Eo(\) = HO 4663 4+ 66 1 0(s7Y). (B.42)

Using Eq. (B.3) one can obtain the correlation function from this expression. We
perform the derivation separately at first and second order.

B.2.5 Analysis at first order

We focus on the two first terms in Eq. (B.42). First observe that

O€x,

€y, _ 1 — v vk(n)
B =2J§ —————~. (B.43)

- N

One has -0
a; = —JN,5? (B.44)
A=0
and @)
00E 1 0y,
= JNS+- 3 TR (B.45)
2N N 257 0A h=o
We thus obtain
1 9Ey(\) 5 S 1= m(n) 0
=-S5+ ——2 2105
JNe oA |, NS -2

s 1_
- —52—s+;/ e L2 0

\/1—7,%

S (™ 11— cos(k)cos(kn)
_ 2 L 0
=-S5 S+27r 77rdk: sin (k) +O(SY)
™ 1 _
S SO [ ar cosk) cos(kn) o gp) (B.46)
7w Jo sin(k)

SEPRPIE - (T S 0) pp
=SS RS T S | O
25

= — 8= S+ = (n) + O(S°)

- 52 [1 + % (1 — iJl(n)) + 0(52)]

= (S; - Si+n) up to first order, n odd

where J;(n) is given in Eq. (2.63).
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Appendix B. Equal-time correlation function from the Hellmann-Feynman
theorem

B.2.6 Analysis at second order

The second order contribution is obtained with the calculation of

1 0
JN, O y—o

5EW (B.47)

and €™ is given in Eq. (B.36). We need to pay attention to the fact that everything
depends on A since i, and v, depend on \. We have

aé; SEW = — JN, [ {2(ﬁ + A)(Orit + O\A) + Oy + 8) + m (O + aAS)}

+(ﬁ+fz)2+ﬁ(ﬁ+5)+)\{...}]. (B48)

Observe that the two last terms in the second line vanish when we set A = 0 because

0(A=0) =m(A=0) =p(A=0)=0. The derivative at A = 0 is finally expressed as

S| GED = —IN, 2(n + A)(Oriilysg + DA| )+ (n+ Q)2 (B.49)

O =0

where all quantities in the right-hand side are evaluated at A = 0 (thus we have removed
the tildes on the factors which do not have a A-derivative).

Let us compute all these quantities. From Eq. (B.15)

0 - o -
axAc=2J5  and  SoBi=-2J5y(n). (B.50)

Using now the definitions in Eq. (B.17) and (B.18) we obtain
1 | 28 (O\Aj + 0x&)é, — Onén(Ag + €
iy = L |2 (OnAg + Afk)6k~2 AEk(Ax + €x) (B51)
4\ Ap + & €

A —& 1 sign(By), | - 26, (OrhA) — On&r)ér — Onér(Ar — )

26, 4 A, — &, é

(B.52)
The first term in this expression vanishes at A = 0 because /(A — €x)/(2¢x) vanishes
when B;, = 0. We then obtain

~ 1
6)\73’)\:0 + BAA = — Z [2?}k a)\f)k’)\zo — ’yk(a)\ﬁk‘/\zo Uk + Ul a)\f)k‘)\zoﬂ
‘Azo Ns 5 (B.53)

=0.
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B.3. Even distance

As a consequence only the last term in Eq. (B.49) survives. It is given by
1
n+Q=— Z vg (v — Ye(n)ug) (B.54)
Ny -

and is IR finite. Applying Eq. (B.3) we get
@ __ 1 901 s
L I N OX[y—g
= —(n+9)°

2
1

= — <Ns Xk: vy (Vg — ’Yk(n)uk)> (B.55)
2

(ciihn)

(1- 2a)’

N

where J;(n) is given in Eq. (2.63).

The final expression for the correlation function to second order in perturbation theory
is thus given by

(Si - Sipn) = — S

11122 L 20m) fos dd
—i—S( T 1(”))4‘452 < - 1(”)) +0(57)|, nodd.
(B.56)

This corresponds to Eq. (2.61) obtained in standard Rayleigh-Schédinger perturbation
theory with » odd.

B.3 Even distance

We take now n even and strictly positive (the case n = 0 is trivial), leading to YW()\) with
an overall minus sign,

W) = =AJ > S; - Sity, A > 0. (B.57)

B.3.1 Hamiltonian W()\)

We write the same expansion
W) = WON) + WA\ + WD) +0(S™) (B.58)

and we have
WO(N) = — TN, 5% (B.59)
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Appendix B. Equal-time correlation function from the Hellmann-Feynman

theorem

and
W () = 2JS/\Z (1 —yx(n)) a};ak.
k

The first order interaction W () is expressed by

4 _ (2)
W) =-Jx Y O
{(is))
(2)

where Oi] is given in Eq. (2.53) (first line), leading to

WH () = % Z (a;-rajaiaj +h.C.> —JA Z a;-ra;[aiaj
((i5)) ((i5))

(B.60)

(B.61)

(B.62)

where the notation ((ij)) denotes again all couples (i, j) separated by a distance n.

B.3.2 Hamiltonian #()\)

The procedure is exactly the same as above. We obtain

HOM) = —INS(1+ ),

_ _ 1 -
7‘[(2)()\) = Z [Akaliak -3 By, (CL;LCLT_k + a_kak)}
k

with
A =2JS(1+ M1 —~,(n))) and B, = —2JSv;
and J
7—2(‘9(,\) =-3 Z (azaiaiaj + h.C.) — JZaIa}aiaj
(i5) (i5)
JA

(@)

B.3.3 Bogoliubov transformation

+5 > (azagaiaj —|—h.C.> — A aja}aiaj.
(i)

(B.63)

(B.64)

(B.65)

(B.66)

The Bogoliubov transformation is performed as above. In particular Eq. (B.17) holds
with the definitions of A; and B}, given in Eq. (B.65). One obtains the dispersion

relation

& =1\/A} — B} = 2JS\/1 — 2 4+ 20 (1 — (n)) + A2 (1 — % (n))*.
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B.3. Even distance

The quadratic Hamiltonian then reads

HOO) =6E@ + 3 &aja (B.68)
k

where 1
6P = —JNS(1+\) + 5 2 - (B.69)

k

B.3.4 First order interaction

We only need to look at the first order interaction coming from V() since we have
already treated (% (\) above.

Proceeding in a similar fashion as for n odd we obtain the constant term
SFW = —JAN, [(7— 5)* + (O - )] (B.70)

where Q and p are defined according to Eq. (B.29) and (B.30), respectively, but with
1 — j even.

Bringing the contribution of (%) and the one of W) ()) leads to
HD () = 6£W + (2-bosons) + (4-bosons) (B.71)
with

5EW = —JN, H(n + A2 +m(m + A)} A {(fz — 92+ Q0 - S)H . (B.72)

The ground state energy of H()\) is thus given by
Eo(\) = HO 4663 4+ 66W 4+ 0(57Y) (B.73)

and one is ready to use Eq. (B.3) to derive the correlation function (S; - S;,) at even
distance n.

B.3.5 Analysis at first order

Observe that )
&, _ 979 L= Yu(n) + A (1 = k(n))
o\ €x(N)/(2J95)

(B.74)
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Appendix B. Equal-time correlation function from the Hellmann-Feynman
theorem

The equal-time correlation function up to first order is thus given by

1 0Ey(N) . S 1 0
N o ':O_S +S stk:ﬁ_%? +0(57)

m 1_
:52+S—S/ a2 o g0y
2 - 1772

k

252 /W di L=k o g0y

2r J_x | sin(k)|
=524 8- S/ ap L= eostkn) o g0 (B.75)
7w Jo sin(k)
w/2 _
—pg- / ai L=k g0y
7 Jo sin(k)

2
=S5?+5— 75 Jo(n) + 0O(S?)

=[5 (12t + 057
_ g {”5 1= 2 o)) + O(57)
= (S; - Si4n) atfirst order, n even

where the integral Jy(n) is defined in Eq. (2.62).

B.3.6 Analysis at second order

The derivative of 6 is given by

. - ] S ~
) SEW — _ JN, [{z(n + A) Ozt + O\A) + Onrin( + 6) + m(Iaim + 3@} (B.76)
+(A =2+ QO —=0)+ A {'--}} :

The first part which is in the curly braket { } is exactly the same as in the case of
odd distance, Eq. (B.48). It vanishes when we set A to zero. The next to last term,
Q(Q —6) = 0 because Q(\ = 0) = §(\ = 0) = 0. Thus after setting \ to 0 we are left with

0

v c4) — _JIN.(n —p)? B.
A 0 JNs(n —p) (B.77)
where we have remove the tildes. We have
1
n—p= FZUz(l—vk(n)) (B.78)
Sk
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B.4. Summary

which is IR finite. Applying Equ. (B.3) gives

TN, OX|y—o 06® = (n—p)°
2
- (; AL ’yk(n))>
5k , (B.79)
— 1 (c,)
_ i (1 - iJo(n)>2

Dealing with the peculiar case of n = 0 we obtain the final expression of the equal-time
spin-spin correlation function at even distance

(Si - Sisn) = S

14 (1 _2 Jo(n)> + L (1 _ 2 ) =6 0)2 + 0(5—3)] |
S 7r 452 T "
(B.80)
This equation corresponds again to Eq. (2.61) obtained in standard Rayleigh-Schrédinger
perturbation theory for n even.

B.4 Summary

Bringing together Eq. (B.56) and (B.80) we obtain a generic expression for the equal-
time spin-spin correlation function of the Heisenberg chain to second order in pertur-
bation theory

(Si-Sion) = (—1)"52 |14 L (1 - ijam)) 41 (1 - % Ja(n) — 5n,o>2 +O(S?)

S 492
(B.81)

where @« = n (mod 2) and the integrals Jy(n) and J;(n) are defined in Eq. (2.62)
and (2.63), respectively. This shows the equivalence of both approaches to extract
the equal-time two-point function of spin operators, the direct perturbative expan-
sion of (S; - S;) in powers of 1/S using standard Rayleigh-Schrédinger perturbation
theory and the derivation of the correlation function from the ground state energy of a
modified Hamiltonian using the Hellmann-Feynman theorem.
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8] Asymptotic form of the integrals
Jo(n) and Ji(n)

In this appendix we show that the long distance behavior of the integrals Jy(n) and
J1(n) defined in Eq. (2.62) and (2.63), respectively, and which we rewrite here

Jo(n) = /07r/2 dk 1—8(31(;5]{(/”@) n even,
Ji(n) = /0 " Lii - C‘;ng) n odd
is given by
Jo(n) =2+~ +Injn|+0n4 n even, (C.1)
Ji(n) = In2 + + In|n| — 271# +Om™)  nodd (C.2)

where v ~ 0.577 is the Euler-Mascheroni constant. Equation (C.1) has been shown
in great details in Ref. [55]. Here we focus on Eq. (C.2), but the procedure is exactly
similar. Before proceeding to the proof of Eq. (C.2) we derive a useful result.

Proposition: Taking » even the integral

1, = "2 dk k 1 1 C.3
satisfies 2
4(—-1)" B
I, = (szz +0O(n™4). (C.4)

Proof: The proof of this result is given in Ref. [55]. We follow the same steps. First we

write ] 11 ]
Flk) = sink k k <sinckz - 1) (€.5)
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Appendix C. Asymptotic form of the integrals .Jy(n) and J;(n)

and write its Taylor expansion as

m p
2p =DM om
smck:_zk lz (2m + 3)! F ] (C6)
which is valid since k& € [0, 7/2]. One has then
= > amk®™ ! fork € [0,7/2] (C.7)
m=0

where the coefficients are expressed in terms of the first Bernoulli numbers By, as

2(=1)™(2*™ 1 — 1) By

m = 2m + 2)! (©8)
The integral Z, is thus given by
Z am T (n (C.9)
where
w/2
Tm(n) = / dk E*™ L cos(nk). (C.10)
0

These integrals can be expressed in terms of the generalized hypergeometric function
»Fy(a;b; 2) as

1 /7 2m+2 1 n2ﬂ'2
TIm(n) = 3 (2) e 1F5 <a, b; — 16 ) (C.11)
with )
a=m-+1 and b= (§,m+2). (C.12)
The integral 7, for n integer is given by
G for n even
Jo(n) = n n ’ (C.13)
olm) { —i—% for n odd.

Using Eq. (C.13) and integration by parts it can be easily proved by recurrence that [55]

|Tm(n)| = 0O (;2) for n even. (C.14)

The proof actually follows from the important relation

Im(n) = (-1 Tm-1(n), m > 0. (C.15)

/e 2m 1 <> > om (2m+1)
n2 2 n?

To compute the O(n~2) term in Z,, we make use of Eq. (C.15) and of the form of the
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derivative of f

df(k) 1 v 2m
“qn = g~ cothkesck = > am(2m + 1k (C.16)

m=0

leading to

(M2 dfn2) AN S 2mt ] (ﬂ)m

n? dk  ~  wn2 = n? 2
m= (C.17)

= Z amTIm(n) + O(n_4).
m=0

This proves Eq. (C.4).
O

Now we proceed to the proof of Eq. (C.2). Without loss of generality we take n positive.
We begin by rewriting the integrand in J;(n) as

1 cos(nk)
k) = —
9(k) sin k tan k
_ 1
sink k& X . (C.18)
— cos k cos(nk) ( - )
sink k
_ coskcos(nk) — 1
k
The integral J; (n) thus decomposes into three parts
w/2
Jl(n) = / dk g(k) =1L — 1)+ Is. (C.19)
0
The integrals I; and I3 are easily computed
/2 1 1 4
L= / dk ( L > ~n () (C.20)
0 sink k T
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and

L= /”/2 Ak cos k cos(nk) — 1
0 k

1( ™2  cos(k(n—1))—1 ™2 cos(k(n+1)) —1
= -5 (/0 dk - +/0 dk . >

1 (n—1)m/2 dt cost — 1 (nt+1)m/2 dt cost — 1
T2 /0 t +/0 t
1

(n—1)7/2) — In((n + 1)7/2) + Ci((n — 1)7/2) + Ci((n + 1)7/2))

—~

5 (=27 —In

=v+1In(7/2) + = (In(n — 1) + In(n + 1) — Ci((n — 1)7/2) — Ci((n + 1)7/2))

N

— 7+ In(r/2) +In (Va2 — 1) - % (Ci((n — 1)7/2) + Ci((n + 1)7/2))

—~——\  2(=1)(n"1/2 1 1 _
:7+ln(ﬂ/2)+ln( n2—1)+ 72 ((n—1)2_(n+1)2>+0(n ?C )
21

where Ci is the Cosine integral which satisfies

/x dt COSI;_ L Ci(z) — 7 — In(a). (C.22)
0

In the last line of Eq. (C.21) we used the asymptotic behavior of this function given by

: sin(mm)  cos(mm) 4 (=1)mtt -
Ci(mm) ~ T 3 +0(m™ %) = Ta +0(m™"), meZ (C.23)
and the fact that since n is odd, n £ 1 is even.
The second integral I is expressed as
I " dk cosk k ! !
9 = /0 cos k cos(nk) <sink - k:)
I 1 1 /2 1 1
== — k) [—— — = DE) (—— - =
5 </0 dk cos((n — 1)k) (sin(k) k:) —i—/o dk cos((n + 1)k) (sin(k) k))
1
= 5 (In—l +In+1) .
(C.24)
where Z,,_; and Z,, 1, are defined in Eq. (C.3) (n + 1 are even). Using Eq. (C.4) we obtain
2(—1)n=1/2 1 1 4
I = — . 2
) = <(n_1>2 (n+1)2)+0(n ) (C.25)
Expanding the logarithm in Eq. (C.21) as
In (\/ n? — 1) =Ilnn+In (\/ 1- n—z) =lnn— 2—12 +0(n™) (C.26)
n
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we finally obtain

1
Ji(n)=In2+~v+Inn— oz +0(n™).

To show Eq. (C.1) we proceed similarly. We rewrite the integrand of Jy(n) as

1
T sink  k
1 1
— cos(nk) <sink — k>
cos(nk) — 1
; k

and define the three following integrals
/2 11 4
fry RN — 1 —_
= /0 dw (sink k) n(ﬂ') ’

7/ cos(nk) —
I3 = /0 2dk(:>1 = Ci(nm/2) — v — In(n7/2)

fo= [ ak cosnk) (-1~ 1
= ) kot (G- )

Jo(n) = Il — I2 - 13.

and

such that

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

We note that I, = Z,, given in Eq. (C.3). Using Eq. (C.4) and the asymptotic behavior of

the Cosine integral in Eq. (C.23) one obtains the desired result.
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Calculations at finite temperature

In this appendix we provide details on the calculation of the dynamical structure factor,
of the equal-time structure factor and of the equal-time correlation function of the
Heisenberg chain to second order in perturbation theory at inverse temperature 3. The
calculation relies on the imaginary-time (or imaginary frequency) Green’s functions of
HP bosons. We shall first derive these Green’s functions and then turn to the dynamical
structure factor. The material contained in this appendix has been reported in Ref. [55],
although with significantly less details.

D.1 Free Bogoliubov Green’s function

We begin by computing the free Green’s function of Bogoliubov bosons defined as
Gk, 7) = — (T a(r)af(0), = —Tr (po Ty ak(r)af(0)) (D.1)

where p is the free density matrix defined as

L gu®
po= e U (D.2)

with Zy = Tr (e*m"(”). The Green’s function in Eq. (D.1) is easily computed

—€LT

GOk, 7) =

S (ePx0(r) + (7)) . (D.3)

Introducing the bosonic Matsubara frequencies w,, = 2nx/$ the Matsubara Green’s

function is given by

GOk, iwy,) = - ! (D.4)

iwn, — €

which is indeed the generic form of a free bosonic propagator at finite temperature.
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D.2 Free HP Green’s functions

With Eq. (D.3) one can now extract the free Green’s functions of HP operators

ar(7)
GOk, 7) = —Tr (pOTT <aT_kk (T)> (af(0) ak(0)>> (D.5)

using the inverse Bogoliubov transformation
ar = upoy — vkaT_k, aT_k = ukaik — VR Q. (D.6)
For instance the first diagonal Green’s function reads

GYy(k,7) = — (Tr ar(r)al(0)),
= —(Tr (upar(7) — vl (7)) (upa (0) — vra_r(0))),
= —u} (Tr ap(r)af(0))y — v} (Tr ol (T)a—k(0)),
= ui go(k, T) + v,% %0(—k, —T).

(D.7)

Moreover, G35 (k,7) = G, (k, —7) and G, (k,7) = GY;(k,7) are obtained in a similar
fashion

Gk, 7) = — (Tr ag(r)a_k(0))g = —wpvy (9°(k,7) + 9°(k,~7)) . (DB)

The frequency Green'’s functions are then

. 1 A +iw By,
GOk, iwn) = ——— " . D.9
wis =g (M5 a) .

D.3 Perturbative expansion for the HP Green’s functions

We illustrate the calculation of the Green’s functions of HP bosons in SWT with the
case of the diagonal G;;. We have

Gui(k,7) = — (Ty ax(r)al(0))
= T (pT; ax(7)a}(0)

=-Tr (POTT ak(T)aL(O) exp <— /O/B dn V(Tﬂ)) (D.10)
B
= G(l)l(va) + /0 dr <T'r ak(T)aL(O) V(Tl)>0 + ...

Approximating V ~ #* given in Eq. (2.35) and using Wick’s theorem one ends up with
an expansion of the Green’s function with a first order correction. The truly important
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point is that we then use Dyson’s equation to define the interacting Green’s function in
a compact way

[G(k,iw,)] ! = [Go(k,iwn)]_l — S(k, iwp) (D.11)

where X (k, iw,,) is the self-energy and is extracted from the expansion of the Green'’s
function using H® as the interaction. In particular, to this order the self-energy is
independent of the frequency and is given by

27k (1
S(k) = f% (W 7{“) . (D.12)

This leads to the Green’s function given in Eq. (2.76).

D.4 Longitudinal structure factor

The longitudinal part of the dynamical structure factor will exhibit a two-magnon
continuum, as can be seen from the HP transformation. Keeping only these two-
magnon terms one has

57(1)57 4(0) = ]\1[ S al L ()ag(r)ak,, (0)ap(0). (D.13)

It is indeed convenient to perform all calculations with the rotated spin operators and
to shift momentum by 7 at the very end.

Taking the expectation value of this term and using Wick’s theorem we have

(Tral_(T)ag(7)al,,(0)ap(0)) = (Tral_(r)al,,(0)) (Trag(r)ay(0))
(Tral . (7)ap(0)) (Trag(r)al ., (0)) (D.14)

- -

where ... denotes terms where operators are contracted at equal time and thus simply
give constant contributions. We can rewrite this using our definitions of the thermal
Green’s functions,

(Tral_y(7)ag(r)af ., (0)ay(0)) = 6yt —(rsp)Pq.—p G21(a — k. 7) Grz(g, )
+ 5q7k,p57q,k+p GQQ(Q - kaT)Gll(%T) (D15)
+ ...
Observe that formally we should have used (G?l in this expression since we only need to
compute this expectation value in the free theory. However in doing so we would ignore

the correction to the dispersion relation. Using the interacting Green’s functions G;; is
thus necessary to incorporate consistently the first order corrections to the energy. We
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thus obtain

F53 magnon (K, iwp) = / dTelwnT [612((] —k,7) Gi2(q, 7) + G2a(q — k,7) G1u(q, 7)] -

(D.16)
Performing the 7-integral this becomes

. 1 1 . . .
Fy nagnon (K, iwn) = — A Z 3 Z [G12(q — k,iwy, — iwm) Gi2(q, iwp,) D7)
S q m B

+ Goa(q — k,iwy, — iwp) G11(g, iwm)] -

Now we begin with the computationally intensive parts. We rewrite F5Z .o10n (K, iwn)
as

—F3 magnon(k:, iwn) = X1(k,iw,) + Xo(k, iwy,) (D.18)
where
1(k,iw,) = Z ZGH — kyiwn, — iwm) G12(q,iwm) (D.19)
and
o (k,iwy,) = Z ZGQQ — k,iw, — iwm) G11(g, iwnm). (D.20)

Inserting the expressions of the Green’s functions given in Eq. (2.76) one obtains

1
X1(k,iwy,) = A > p3By—iBg Si(k, q,iwn) (D.21)
S q
and
(k 1wn = ZPBA pﬁAq k _lwn) Sl(k q?“*’ﬂ)
1 . .
+ ﬁs Z (pB(Aq + Aqfk) - lwn) Sg(k, q, 1wn) (D.22)

q

1
+ E zq: 83(k7 q, lwn)

where we defined

|ks]
=1 D.23
Pg + S ( )
and where the Matsubara sums S (k, ¢, iw,), [ = 1,2, 3 are given by

Si(k, 1 2 : (D.24)

lwn - 5 . . 9 .

e T B o (iwm)? = €2 (iwm — iwn)? — &,

Sa(k, q,iwn) = 1 Z ! (D.25)

2\~, q, TL - ,8 — 1wm fq (1wm 1wn)2 — €£7q7 .
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D.4. Longitudinal structure factor

1(,um)2 1

D.26
(iwm )2 53 (i, — iwp)? — 527(1 ( )

S3(k, q,iwy) —;Z

Let us now explicitly compute the Matsubara sum S (k, ¢, iwy,) to illustrate the proce-
dure. First we rewrite it as

1 1
S1(k, q,iwy) - - - .
4 ﬁ Z (iwm — gq) (iwm + fq) (i(wm — wp) — gk—q) (i(wm — wn) + gk—q)
(D.27)
Defining
1
z) = - - (D.28)
M) = ) e €)= ton — &) (o — i + &1 y)
we have
S1(k, q,iw,) = Z f1Gwnm). (D.29)
The function f;(z) has simple poles at
ZA = gqa ZB = _fq» 20 = iwp + fk—q» Zp = iwp — gk—q- (D.30)
We also define the Bose-Einstein distribution
1

which has poles along the imaginary axis at z = iw,, = i27m/3,m € Z.

In order to compute the Matsubara sum S; we use Cauchy’s theorem. Choosing the
contour C depicted in Fig. D.1 we obtain

§ 5 hi2)na(:) =0 (D:32)
leading to
> Res(fi-np,iwm)=— > Res(fi-ng,z). (D.33)
m j=A,B,C,D
The residue at iw,, can be computed easily and are simply given by
Res(f1 - n, i) = ; Fi(iom)- (D.34)
Thus
Si(k,qiwn) =— > Res(fi-ngp,z). (D.35)
j=A,B,C,D
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Appendix D. Calculations at finite temperature

Figure D.1: Integration contour for the calculation of the Matsubara sum 5, (k, ¢, iwy, ).
The poles along the imaginary axis are located at z = iw,,, where w,, are the bosonic
Matsubara frequencies.

The residues at the poles of f; are also easily obtained:

np(&y)

Res(f1 - np, &) = 2 (o — £ —En o) (on — s T ) (D.36)
. _ _ _nB(_éq)
Res(f1 - np, —&;) = 2 o € — o) (om T 6 T )’ (D.37)
. _ nB(Ek—q)
Res(fi - np,iwp + &—q) = 28— q(lwn — &g + fk—q)q(iwn + &+ &kyg)’ (D.38)
Res(f1 - np,iwn — Ep—q) —np(=8k—q) (D.39)

" 26k g(iwn — & — Eh—g)(iwn + & — &rg)’
One can now use the following identity satisfied by the Bose-Einstein distribution
np(—z) = —e’*np(z) (D.40)
which leads to
Bz
np(z) + np(—=z) = —1, np(z) —np(—z) = coth (2) (D.41)

to rewrite the residues as

coth (%) ((iwn)2 + 53 — f,g_q) — 2iwn&,

Res(f1 -nB,fq) + Res(f1 - ng, _fq) = 2, [(iwn)2 _ (E/—:q)ﬂ {(iwn)2 _ (Ek:_q)ﬂ

(D.42)
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D.4. Longitudinal structure factor

and
Res(f1 ‘np,iw, + fqu) + Res(f1 -npg,iw, — fqu) =
coth (%52) ((wn)? = 2+ &) +2wn&y  (D43)
26—y |(iwn)? = (BL,)?] |(wn)? = (Bp,)?]
where
Ef =&+ &g B, =& &g (D.44)
Finally,
S1(k, q, iwp) s1(k, g, lwn) (D.45)
1\hy g, 1Wn ) = .
[Gwn)? = (B{ )?] [Gwn)? = (B;,,)?]
with
3 q : 5&1@—(1
iy = LB+ GG Yoo () (G oo (7).

2£q 2£k—q
(D.46)

The Matsubara sums Ss(k, ¢, iwy,) and S3(k, ¢, iw,,) are obtained in the exact same way,
using f2(2) = zf1(z) and f3(z) = 22 f1(z), respectively. One gets

. . Sl(k, q, iwn) _
A = T = ) [ - ] O
with
i = o (5) - Joon (%57
b (D.48)
and
SS(k, q, iwn) = - %i—q |:§q€k—q {(iwn)Q + fg — 5,%_[1} coth </32£q>

@l [+ 00~ €+ 6 poor (0]
(D.49)

Coming back to the 2-magnon part of the longitudinal structure factor one has

. 1 . .
_Ff-inagnon(kv iwn) = N. Z (Pk,q - 1ank,q) S1(k, q,iwn)
S
q
1

+ 5 > (Riq — iwn) Sa(k, q,iwy) (D.50)
S q

1
+ E ; S3(k7 q, lwn)
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where we defined the functions P, ,, Q4 and Ry, , as

Pyq = p3(AqAj—q + BeBi—y), (D.51)
Qr,q = PpAqg: (D.52)
Ryq =ps(Aq + Ag—r). (D.53)

The next step is the analytical continuation to real frequency, followed by taking the
imaginary part of the expression. The analytical continuation is defined by

iwp, = w+1in and (iwn)? = w? + isign(w)ny (D.54)

while Sokhotsky’s formula is useful for extracting the imaginary part

1
x +in

1
= PV_ F ind(x) (D.55)

where PV denotes the principal value.

Let us illustrate the calculation with the third line of Eq. (D.50). The analytical continu-
ation reads

33(ka Q7w)
[aﬂ - (E,j’q)2 + isign(w) 17] [w2 — (E,,)? +isign(w) 17]

S3(k, q,iwy) — (D.56)

Taking now the imaginary part of this expression one obtains (we omit here the factor
s3 in the numerator as it is purely real after the analytical continuation)

1
Im = —msign(w)P(k, ¢, w)
{uﬂ - (Equ)2 + isign(w) 77} {oﬂ — (Ey,)? +isign(w) 77} }
(D.57)
where
— 1 2 _ (gt )2 2 - 2
Pk, q,w) = PV—— (B §(w” = (B} ,) >+va2 BTN 6(w” = (E,)7). (D.58)

The delta functions can be rewritten as

1
6(w2 _ (E]:qf) — ﬁ <6(w — E,;fq) +0(w+ E,%)) (D.59)
and
S(w? — (Ek*q)2) = % (5(w — E,;q) +0(w+ Ekq)) (D.60)
’ Q‘Ek‘g‘ ’ ’

We have used the fact that E; , 18 positive, unlike £ , to remove the absolute value in
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the prefactor of Eq. (D.59).
Thus the third line of Eq. (D.50) becomes

Im| lim 253 (k, q,iwn)| = ”Slgn 253 (k,q,0) Plk,q,w).  (D.61)

lwn—>w+177

We can now compute the four terms appearing in the right-hand side of this expression.
The first one is given by
1 1

7751gn n
(k, ) x PV X x 0w — E; ). D.62

Since the delta function vanishes unless w = E,j " this can be rewritten as

1 1
—— X
(Eliq)2 a (Ek@)2 2Ek+,q

e
N > ss(k,q, B ) x PV X 6(w—E) (D.63)
q

where we used the fact that sign(E,‘: ;) = 1. Now the principal value is well defined and
one obtains

T 1 1
- s3(k,q, B ) % X
NS g 3( k’,q) 4§q£k—q 2E2-7q

x 6w —Ef,) (D.64)

Doing the algebra we finally obtain for this contribution

&q [coth (%) + coth (%)]
Z 88k—q

N x §(w — Ef,). (D.65)

The three other contributions are evaluated in a similar way and we obtain

&q [coth (%) + coth (%)}

B&g\ BEk—q
—%Z & [coth (55 ggk Zoth( ) % 5w — Ff,), (D.67)
S q -
and 5¢ se
q PSk—q
% Zg [coth( 2&: COth( 2 )} X &(w +Ek_,q)' (D.68)
s g —-q
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Finally the third line of Eq. (D.50) is given by

Im[ lim i;sg(k,q,iwn)]

iwn, —win
&g [coth (%) + coth (%)}

- = G 6w = B ) = 6w+ Ef )| (D.69)
S q -
& _ /ng—q
B %Z &q {COth( 2 ggk(;Oth( 2 )} [(5(&) _ Ek_,q) — 6w +Ek_,q)} )

q

This expression has a form suitable for numerical integration. We should then multiply
this quantity by 2(1 + np(w)) to obtain the contribution of the S3 term to S%*(k, w; 5)'2.

For completeness we write the contributions of the second line of Eq. (D.50)

1
Im [ lim — Z(Rk»‘l — iwp)Sa(k, q,iwn)]

iwn—w—+in Ns 7

— —%S zq: 8&1_(1 [{coth <B§q> + coth (%)} { (Rk,q - E,Iq) §(w — E,j’q)
+ (RM + E,Iq) d(w + E,';q)} - {coth (52@) — coth (%)} X

{ (Rkvq - El;q> 0w — Epg) + (Rk’q + E’;q) Ofw+ Ekvq)H

(D.70)
and of the first line
1
Im Lwnl—ig}ﬂn N, %:(Pk’q — 1wnQrq)S1(K, g, iwn)]
il 1 Bg BEk—
- ﬁs zq: 88¢€k—q l{COth (2(1) + coth <2q)} { (P’ﬁq - Elj,quaq) o(w — E]j’q)
_ (Pk,q + E]j,qQk,q) d(w + Elj,q)} — { coth (ng) — coth <f8€;—q) }x
{ (Pk,q - E];qQk,q) (5(&) - E];q) — (Pkg + E,;QOq) 5(@) + Ek_,q)}
(D.71)

The final expression in Eq. (2.79) is obtained from these equations by trivial algebra.

'Notice that Eq. (D.69) shoud not be multiplied by —2(1 + np(w)) because the minus signs from

Eq. (2.70) and (2.71) cancel each other.
*Momentum should still be shifted by = to take into account the rotation of spin operators along the z

axis that we performed in the very beginning.
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D.5 Transverse structure factor

The calculation of the transverse part of the dynamical structure factor is significantly
easier. We first use the HP transformation and write

SE(7)87,,(0) = g (ak(r)a—x(0) + ax(r)a(0) + a' \(T)a_(0) + a’ 1 (7)a}(0))

- > (1010109 000 0) + 047t (7)ao(7)a-4(0)
+ ar(7)a(0)a}(0)apsq—k(0) + al 1. (F)ap(T)ag(r)ak(0)
+aly (1)al 1 (0)ap(0)ag(0) + ab(r)al () apsqir(T)a—(0)
+ al  (7)a} (0)a}(0)ap1qk(0) + ab(T)al(T)ap qx(T)al(0))
+0(571).

(D.72)

Looking at the leading order contribution given by the first line of this expression one
obtains

F (k,iwn) = ZGJZ (k, iwn). (D.73)

The analytic continuation is now trivial and we obtain

25p5(Ar + Br) 1, S . (D.74)
1—e P w? — & + insign(w)

S (k,w; B) = —

Using Sokhotsky’s formula in Eq. (D.55) one can develop the imaginary part as

2Smpg( Ay, + By)sign(w)

S (k,w; B) = > d(w® — &)
= 2l BN L (50— +owre)) DT
_ srsign(e)

_ Srsign(e n<§)‘ (6(w — &) + 6(w + &) -

We observe that the transverse structure factor is positive for negative and positive
frequencies, and gives contributions only along the single-magnon branch w = +¢;.

Now let us look at the first order correction to this result, given by the 4-boson terms in
Eq. (D.72). As an example, the expectation value of the first term,

(Trak(r)al 41 (07)ap(0)aq(0)) (D.76)
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is treated as follows with Wick’s theorem

(Tran(T)a)y 4 1 (0)ap(0)ag(0) = 8, 4G (k, )G (p, 0) + 8, Gl (k, 7)Ghy(q, 0")

+ 51@—!1@1 (k, T)Gzz (p,07).
(D.77)
We have used the free Green’s function G?l (k, ) since the contribution is O(S°). How-
ever we will soon replace them by the interacting Green’s functions to consistently take
into account the correction to the dispersion relation due to the first order interaction
in the Hamiltonian. After summing over p and ¢ we get

fZ Trar(r)al 4 (07)ap(0)aq(0))

=GY, ( ZGIQ q,0 >+2G12 (k7 < Zng q,0 ) = 2”5@’92("377)-

=0 =ng

(D.78)
Performing the same steps for all 4-boson terms in Eq. (D.72) and performing then the
Fourier transform we obtain the following contribution

S 1
5 < 4S> 4”52(@ (k,iwn). (D.79)

Now we see that if we were to perform the analytic continuation on this equation,
followed by the use of Sokhotsky’s formula, we would end up with a single-magnon
branch at w = €. This is of course forbidden since the magnon dispersion relation
is given by ¢, which incorporates the first order temperature-dependant correction
generated by #(*). To avoid this issue, we simply replace G°(k, iw,) by G(k, iw,,). This
replacement only affects order S—! or smaller. The contribution is then precisely of
the same form as the one coming from the 2-boson terms. We thus end up with

Smsign(w n

tan (’;)‘ (0(w— ) + 6w +&)).  (D.80)

D.6 Real-space correlation function

Let us turn now to the calculation of the real-space equal-time correlation function at
finite temperature. To perform this calculation, we rewrite each term of the operator
S; - S; in Eq. (2.51) in Fourier space. For even distance |i — j| one has

—lkl’ri-i-ikgrj e—’ik‘l’r‘j-‘rik’QT’i e—i(k‘l—k‘2)7'i _7'(]‘71 kQ)TJ:I a ak (D 81)
-— E + — o .
5 k1,ko
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D.6. Real-space correlation function

and

ng):ﬁ S SOk, ko, ks, kas i) af, af axgar, (D.82)
S k1,k2,k3,kq

with

f(2) (kl’ kZ, ks’ k,4; T, Tj) — e—ikﬂ‘i—ikgrj—&—ikgri—i—ik;;rj
1

1 (ef’ilej7ik27’j+ik37‘i+ik47"j 4 ef’iklTifiszj+ik3Ti+ik47'i

+e—ik17’i—ik27"j-‘r’ik’g’l”j-‘riky“j 4 e—ik)1Ti—ikQTi+ik37”i+ik4Tj
(D.83)

Now we give a positive imaginary time 0" to all creation operators in order to respect
the ordering, and evaluate all expectation values using Wick’s theorem. The first
expectation value is given by

(] ar,) = (a], (0M)ak, (0)) = —6k, 1y Goa(—F1,07) = =0p, 4, G11(k1,07).  (D.84)

The first order term thus reads

2
<OS)>— —— > (w(r) = 1) G1(k,07). (D.85)

Similarly the expectation value of the string of operators in Eq. (D.82) is given by

(a], (0M)af (0T )ak, (0)ar, (0)) = 6k, ,—kyOhs,—kyG12(k1, 0) G1a(ks, 0)
+ (Oky ki3 Ok by + Oky ks Ok ks )G11 (k1,07 ) G11(k2,07).

(D.86)
This leads to
2
<0§?)> = <J\1[ > (w(r) — 1)G11(k70_)>
ok (D.87)
< Z’Yk )G12(k, 0 > (1\1[ Z(’yk(r) - 1)Glg(k,0)> )
5k

To evaluate these expressions, we use the Green’s functions obtained after using Dyson’s
equation. This has the advantage of taking self-consistently into account the first order
correction to the dispersion relation coming from H¥). The Green’s functions then
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Appendix D. Calculations at finite temperature

simply read
2 .88k 2
by uge + vi,
G11(k,07) = o 1 (D.88)
2 B¢k 2
-\ Uke + uk
Gua(k,07) == —ge—1 (D.89)
£y _ BEk
G12(k,07) =ugvg coth Ty (D.90)

and Gaa(k, 0F) = Gao(k, 0T). With this, one observes that the second line in Eq. (D.87)
vanishes.

Let us now give the expressions for odd distance |i — j| between the spins. In Fourier
space, the first order term of the correlator reads

1 . .
(91(31) S (e—z(kl—kZ)n + e—z(kl—kg)rj) altlc%

Ns
X ke (D.91)
+ A Z ot (k1ritkor;) (aLla};Q + aklak2>
5 k1,ka
leading to
2 2
(OS)) = _FZG“U{:’O_) - FZ'W:(T)GH(kaO)' (D.92)
S k S k

The second order term Oz(f) in the correlator is given by

(2) _ ]' —ikir;—ikari+iksr;+ikqr; T T
(’)Z»j = - — Z e J Tay, g, Qs Ok,
S k1,k2,k3,ka
—ikiri+ikor;+iksri+ikar; —tkyrj+ikor;+ikarj+ikar;
- YiTF e~ tkiritikaritiksritikary | o—ikirjtikoritiksr;+i 47"])@21%2@193@1@4
S k1,ka,k3,ka
_ —ik1r;—ikor;—ikar;+ikar; —ik1ri—ikor; —ikar;+ikar; ot ot
AN?2 (6 ' ! ‘te ' ! ! J) Aoy Vpogy Vo Uy -
S k1,k2,k3,ka
(D.93)
After some algebra one gets
1 2
2 _
<0§j>> - _ (N > (Gui(k,07) + vk(r)Gu(k,o))) . (D.94)
S
k
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13 Cancellation of divergences in the
equal-time structure factor

In this appendix we demonstrate that the divergences occuring in the transverse
and longitudinal parts of the equal-time structure factor cancel each other when
considering the O(3) invariant structure factor defined as

S(k) = 257 (k) + 5% (k). (E.1)

The structure factor is given in Eq. (2.90). We shall here focus on the last term which
contains the integral. Our aim is to show that this integral is IR finite.

We define .
fleg) = o
") = ainGy)
This is the integrand in Eq. (2.90) up to two minor changes. First we have put an
absolute value on the prefactor 1/|sin ¢|. This has no effect on S(k) since integration is
on ¢ € [0, 7], but will prove to be useful later. Second we have removed the absolute

value on the last term. This is allowed since we take k& € [0, 7]. Our aim is to show that

1 — cos(q) cos(k + q)
|sin(k + q)|

9 tan(k/2)> . (E.2)

I(k) = /Oﬂ dq f(k,q) (E.3)

is IR finite. Observe that f(k, q) is m-periodic in ¢ thanks to the additionnal absolute
value on the sin ¢ factor. Defining

g(kaQ) = f(kvq + k)a h(k7Q> = f(ka —q— 2k) (E.4)

it is then trivial to show that
I(k) :/0 dqg(k,q) :/0 dq h(k,q) (E.5)

if the integral is convergent. The important point is that both g(k, ¢) and h(k, ¢) are
divergent for g = 7 — 2k, 7 — kif 2k < morfor ¢ = 2(7 — k), m — kif 2k > =. Now let us
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Appendix E. Cancellation of divergences in the equal-time structure factor

rewrite (k) as
1 s iy
109 =5 ([ dagtho) + ["danik.o)
:% /0 dq (g(k, q) + h(k,q) (E.6)
- /ﬂ— qu(k7Q)
0
where

1 — cos(k + q) cos(2k + q) — tan(k/2) (| sin(2k + q)| + | sin(k + Q)D

G(k,q) = | sin(2k + q)| | sin(k + q)|

(E.7)

There are two ¢ points which require some attention, because the denominator in
G(k,q) vanishes forq =7 — 2k, 7 — kif2k < morforq =7 — k,2(m — k) if 2k > =. We
study the behavior of G(k, ¢) close to these points (we consider the case m — 2k > 0).

We begin by taking ¢ = 7 — 2k — 6 with § > 0. We obtain

1 — cos(d) cos(k + &) — tan(k/2) (| sin(k + d)| + | sin(5)|).

G(k,m— 2k —6) = |sin(k + 6)| | sin(6)]

(E.8)

Taking 6 > 0 sufficiently small we can remove all absolute values in this expression,
and expand the trigonometric functions in ¢ in order to keep all singular terms in ¢ as
well as terms of order O(6~!) and O(6°). We then obtain

1

Gk,m—2k—0) = 5sin (k) (1 — cos(k) — tan(k/2) sin(k))
_ Sml(k) (sin(k) — cos(k) tan(k/2) — tan(k/2)) ©9)
+ 05

— 0whend — 0.

The 1/4 term and the constant term cancel because we have the two following trigono-
metric identities

1 — cos(k) — tan(k/2) sin(k) =0, (E.10)
sin(k) — (1 + cos(k)) tan(k/2) = 0. (E.11)

In other words
lim G(k,m—2k—4§)=0 (E.12)

6—0t

such that G(k, q) is everywhere well-defined for ¢ € [0, 7 — 2k[ and is not divergent
when ¢ — 7 — 2k from below.

Now we take ¢ = 7 — 2k + 0 with § > 0, namely we study the right neighborhood of
m — 2k. Again we can take ¢ sufficiently small and remove the absolute values. We
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obtain

_1- cos(k — 0) cos(d) — (sin(k — 9) + sin(d)) tan(k:/2).

G(k,m— 2k +9) sin(6) sin(k — o)

(E.13)

After the same sort of algebra we get

1
dsin(k)

1
sin(k)

Gk, — 2k +0) =

(1 — cos(k) — sin(k) tan(k/2))
=0
(sin(k) — cos(k) tan(k/2) + tan(k/2)) +O(4) (E.14)

= 2tan(k/2)

2 tan(k/2)
A0

Thus G(k, ¢) has a well-defined limit on the right of ¢ = © — 2k,

when § — 0.

lim Gk, 7 — 2k +8) = — 2 an(k/2)

50+ sin(k) (E.15)

From Egs. (E.12) and (E.15) we see that G(k, ¢q) has a discontinuity at ¢ = = — 2k, but
the derivative of G(k, ¢) with respect to ¢ is well defined in the neighborhood of = — 2k.

We look now at the neighborhood of the second singularity of G, namely ¢ = 7 — k.
Taking ¢ = 7 — k — 4, 6 > 0 we see that G(k, ™ — k — 0) has the exact same form as in
Eq. (E.13). This is easily justified as follows. Observe that if we restore the absolute
value on the tan(k/2) factor in G(k, ¢) then we can change variables and define

u =2k +q, v=k+gq (E.16)

and

G(u,v) = G(k(u,v), q(u,v)). (E.17)
Then G is even under permutation of v and v, G(u,v) = G(v,u). Thus G(k,q) has a
well-defined limit on the left of 7 — &,

lim G, — ki — §) = — 2tan(k/2)

50+ sin(k) (E.18)

Finally we take ¢ = 7 — k + 0, § > 0 and, for the same reason as above, G(k, 7 — k + )
has the exact same form as Eq. (E.8). Thus G(k, ¢) has a well-defined limit on the right
of m —k,

lim G(k,m—k+d)=0. (E.19)

6—0t

We have thus found a function G(k, ¢) everywhere well defined except at = — k& and
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Appendix E. Cancellation of divergences in the equal-time structure factor

m — 2k or m — k and 2(m — k) where it is discontinuous, but where the derivative on the
left and on the right are well defined, such that

(k) = / dgG(k,q) (E.20)
0
thus showing that the integral itself is well defined in the sense that the divergences of

f(k,q) for g € [0, 7] cancel each other and lead to a finite result. We can thus compute
I(k) by integrating exactly G(k, ¢) numerically.

154



13 51(3) generators in the symmetric
irreps

El1 2-box symmetric irrep

The generators of su(3) in the 6-dimensional symmetric irrep [ ] are given by the
following expressions, where 73 and 7§ are diagonal:

0 1/v/2 0 0 0 0

1/vV2 0 0 1//2 0 0

- 0 0 0 0 1/2 0

0 1/v/2 0 0 0 0

0 0 1/2 0 0 0

0 0 0 0 0 0
0 -1/v/2 0 0 0 0
1/vV2 0 0 —-1/vV2 0 0
=i 0 0 0 0 ~1/2 0
0 1/vV2 0 0 0 0
0 0 1/2 0 0 0
0 0 0 0 0 0

1 1
T3 = diag (1, 0, 5 —-1,—= 0)
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Appendix E su(3) generators in the symmetric irreps

0 0 1//2 0 0 0
0 0 0 0 1/2 0
T — 1/v/2 0 0 0 0 1/V2
0 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1//2 0 0 0
0 0 —-1/V/2 0 0 0
0 0 0 0 —1/2 0
i 1/v/2 0 0 0 0 —1/V2
0 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1/V/2 0 0 0
0O 0 0 0 0 0
0 0 1/2 0 0 0
0 1/2 0 0 0 0
Ts =
0 0 0 0 1//2 0
0 0 0 1v2 0 1V2
0 0 0 0 1v2 0
0 0 0 0 0 0
0 0 —-1/2 0 0 0
ﬂ:io 1/2 0 0 0 0
0 0 0 0 —-1/v2 0
0 0 0 1v2 0 —1v2
0 0 0 0 V2 0
= diog (L L L L2
V33 23 V3 2v3 V3

They satisfy the normalization condition (see Eq. (3.77))

ﬁﬂﬂﬁzg%‘
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E2. 3-box symmetric irrep
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0

0

0

0
V3/2

Th

The generators of su(3) in the 10-dimensional symmetric irrep [_[ [ ]are given by the

following expressions, where 75 and 7 are diagonal:

E2 3-box symmetr

Ty =i
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Appendix E su(3) generators in the symmetric irreps

0

1/v/2 0

0

0

0

0
0

0 1/2 0
0 0 1/v2
V3/2

0
0

0

0

1/v2

1/2
0
0

0

0
V3/2 0

0

0

0
-1

0 —1/2

0

_1/\@

0 O
0 O

0
0

0
1

1/vV2
0

0

1/V2

1/2

0

V3/2 0

0

0

0

Ts =1

0

0
0

vz 0 1/V2
0 1/V/2 0

0
0

0 0
V3

0

0

0

0
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E2. 3-box symmetric irrep

R
OOUO/O
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~
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0

0

They satisfy the normalization condition (see Eq. (3.77))

15
50

Tr (1,T5)
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&1 Example of calculation of subduc-

tion coefficients

In this Appendix, the calculation of SDCs is illustrated with a simple example. We take
V] =[4,4,3], [11] = [3,3,1] and [2] = [2,1,1] (thusn; = 7,n2 = 4andn = n;+ng = 11).

First, we build all SYTs for the irrep [v] which are compatible with the irrep [v;]. To
perform the calculation of the SDCs, we take the largest SYT y ¥l ; but this choice

mi =hlv1
is arbitrary since the SDCs do not depend on m;. The 6 relevant SYTs V" ordered in
ascending order of the LLOS are given by

1[4[6]8 1[4]6]8 1[4167]9 1[4]6]8 1[416]9 1[4[6]10
251719, [2[5[7h0, [2[5(7h0, [2[5]701, [2(5]701, [2[5]7]- (G.1)
3ot 37911 381 3[910 3[8 10 3[8[9

These SYTs define the Yamanouchi basis ]YTE’ ]) , m=1,...,6 in which the CSCO of S,
will be solved.

There are 3 SYTs Y,ﬁ’f] associated with the irrep [11] (again in ascending order of the
LLOS from left to right)

2]

9

3] 4]

1
= (G.2)

l»hloo —

[=]r] =

[eo

We shall begin with the calculation of the SDCs for the smallest SYT my = 1 and then
derive the other SDCs using Eq. (3.33).

To solve the CSCO of S,,, in the Yamanouchi basis |Yn[f ]> we compute the quadratic
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Appendix G. Example of calculation of subduction coefficients

Casimir of the canonical group chain of S,,, associated to YJ;’;]ZI. One has:

1]2] y
B3] Ca(ne=4) = Pyo + Ps,10+ Poto + Poat + Pou1 + Pron = Ay = —2
1
é 2. CY(na—1=3) =Psg+Ps1o+Poo TV
. Cé(nz — 2= 2) = P&g — )\[ng} =1
(G.3)

where P; ; = (i, j) is the permutation operator which interchanges ¢ with j and where
)\[2”] is the eigenvalue of the quadratic Casimir operator given in Eq. (3.5).

The goal is now to find the state

written in the basis of Eq. (G.1), which satisfies the three equations in (G.3) simultane-
ously (we have kept m; arbitrary, but the calculation is performed with m; = hlvil as
discussed above). This state will thus be expressed as

] [ve] > [v] > < [v] (] [ve] >
[VL]- mi 1 :%: m m [V]’l mi 1 (G4)
where the multiplicity index is 7 = 1.
To lighten a bit the notation, we use
(1] (w2 >
@)= | V], 1 1/ (G.5)

From a numerical point of view it is useful to reduce as much as possible the number
of operators in the equations. One thus rewrite Eq. (G.3) as

(Pso—1)[®1) = 0

(Psi0+Po1o+1)[@1) = 0 (G.6)
(Ps11+ Poi1+ Proi1 +2)|P1) = 0.
One then builds the operator O defined as
O = (Psg— 1)*+ (Ps.10 + Po1o + 1)® + (Ps 11 + Po11 + Proa1 + 2)* (G.7)
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and finds its kernel in the basis of SYTs for the irrep [v] given in Eq. (G.1). We find

% 1% \/ 114(6(8 1141619 114(6(8
|P1) = M’l[mll] [12]>:§5|25710>+2|25710>\é5 5711>
391 3T’ 3910 G.8)
5 1469> 1 14610>
— — TP ) + — [[2[5]7 1) .
8v/3 ![3]5[10 V6 113789

The coefficients in this expression are the SDCs. Notice in particular that the coeffi-
cient of the first SYT in the expansion is chosen positive to satisfy the overall phase
convention.

We can now compute the SDCs associated to the other SYTs for the irrep [v3].

Let us consider the second SYT (in ascending order of the LLOS) my = 2. We first find

the sequence of permutations which brings Yl[”ﬂ onto Y#J’;] 9t

2] (23

v =g o=yl (G.9)
1 1

The axial distance from 2 to 3 in the SYT Y1 bemg +2 we obtain, using the Young

rules in Eq. (3.17),
2] 1]3]
3] >+§‘3 > (G.10)
[4] 2[4

One then defines the operator 7, € S, (1, ..., n2) as

Pa3

l»&lw»—l
N
~——

|

|
N —

Pas+ 5
Ty=—=——+ G.11
which is such that
o] 1[3] 2] ]
[Vns= 2>—‘1 >=T21 >=T2|Y12>. (G.12)
1 Z

Now we apply on the state |®,) the operator 7} € S,,,(n; + 1,...,n) obtained from
T» by transforming the permutation P; ; acting in S, (1, ..., n2) onto the permutation
Pitni1 j+n, acting on the irrep [v]. This defines the state |®) which will contain the
SDCs associated to Y,[,’L’j] 2

Po10 + 2

|@g) =T |®1) = V32

1B . (G.13)
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Appendix G. Example of calculation of subduction coefficients

Using again the Young rules to extract the action of Py ;( in the Yamanouchi basis \Y,L” ]>
we finally obtain

vl v 1[4]6]8 1[4[6]8 T4]6]9
|®y) = [V],l[l] [2]>:1\/§‘2579>_|_5\/5 2571o>_i‘25710>
my 2 3V 2 3ot 24 1371971 8v/3 1318t
/TF |[TT4]6]8 1[4]6]9
_vb 25711>+§‘25711>
8 113790 8 113718710

(G.14)

Finally let us consider the last SYT YJ;’;]:& The sequence of operations which transforms
v, onto this SYT is

12 13 1[4
v —h | es) 51 eq [ vl (G.15)
[4] [4] 3]
We then define the operator
Psat+ 3 Pazts
Ty=-—""_3"%° 2 G.16
) NP ( )
which is such that
[vs] 1[4] 1]2] (v
vt B — B <t
Defining 7} as
Pioa1 + 3 Poto+ 5
=00 T3 190 T ) G.18
one gets
(1] [re]
|‘I>3> = [V]7 1 my 3 >:Té‘¢’1>
(G.19)
V5 |[LJ4]6]8 1 /5 |[IT4]6]8 1 |[IT4]6]®
:7| 2[5 79> —\/>‘ 2[5 710>+7‘ 2[5 710>
3 3ot 3V 2139t V6 1378

The method presented above for the calculation of the SDCs, although being con-
venient because extremely simple, is not ideal in actual calculations when the total
number n of boxes increases. Indeed, the number of SYTs for the irrep [v] compatible
with the irrep [v1] increases dangerously with n» and ny. Thus it becomes more and
more difficult to build the operator O in Eq. (G.7), and to extract its kernel. To over-
come this issue, a “shortcut” has been devised in Ref. [89]. Instead of seeing [1»] as a
tensor product of fundamental irreps one interprets the irrep [»] as being obtained
from the tensor product of fully antisymmetric irreps. Actually, one can also interpret
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it as being obtained from a tensor product of fully symmetric irreps. This trick allows
us to drastically reduce the algorithmic complexity and it is absolutely necessary to
implement it when SDCs for bigger irreps need to be computed. We shall not repeat
here the details of the procedure as it can straightforwardly be obtained from the
development above and following Ref. [89].
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Example of calculation of a re-
duced matrix element

In this appendix we illustrate the procedure to compute the SU(3) reduced matrix
element of the interaction

[x3]  [x4] xal  [xel
(01 0 s | 10,502 )
when
(bl b)) =P (el 1) = FREPE (H.2)
([xs],13) = XX[, ([xal,la) = 8 (H.3)
and the global singlet irrep
V] = : (H.4)

This example was provided in Ref. [57]. We give here a number of additional details on
this calculation.

We will show that

ol ey 26, @s)

< [, [ﬁ} [X] ’H(L+1,L+2)

The multiplicity index 7 takes a single value 7 = 1 because the target irrep [v] appears
only once in the tensor products [x1] ® [x2] and [x3] ® [x4], and is thus ignored in the
basis elements of the non-standard basis.
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Appendix H. Example of calculation of a reduced matrix element

First, we proceed to the following replacements

(bl ) == x[x]__, _ a[5] ?1) 2 4a[5] _ .Ylel(}ll)’ (H.6)
and
415 112(4(|5
(Ixal, L) =[PP — HE — BEEE] = yhel (H.7)

Solving the CSCO we obtain that the ket is expressed with a single term,

> = ‘E> (H.8)

We have of course dealt with the Yamanouchi relative phase since Y[ (]l ) is not the first
SYT in the LLOS for the shape [y2].

o [>l<11] [>l<22] > _

The Young tableau in the middle of Eq. (H.8) is the representative of the equivalence
class given in the right. In other words, it is a representative of a state satisfying the
local symmetry at sites L + 1 and L + 2. In order not to confuse it with a Yamanouchi
basis vector, we should use the Young diagram (not the Young tableau) with the color
scheme to denote this state. The colors allow us to keep track of the positions of the
particles at sites L + 1 and L + 2. Notice that in general, in Eq. (H.8) we would obtain a
linear combination of representatives of equivalence classes. One must now rewrite
Eq. (H.8) in the Yamanouchi basis. This is easily done using Ref. [87]. We obtain

bl |E

G -
=5 | g i/ T3V 3 e (H.9)
2] ) 5 2]
e
9 9 E VA 1112

g m> 2|8 m> g l>
+ +2
i/ 33

+1\/5
3V3

We can now apply the interaction #;,; 142) on this expansion using the Young rules
(in the right-hand side of the following equation, each SYT should be written in a ket;
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)

[x2]
I

[x1]
-

]

gl

[

H(L41,042)

we omit the ket to lighten the notation)

3]

~ 2 SI=] B2 Bl2E] Bl=E
= =T = = = =]
| BEEl S -~ |- |

mu. u — |en — [ — [ — [

EZ
o - 150 R RN 3@ oo
=8 |23 - » |
—jo P|F @iw o0

e

| =

2]
3 10| +

2]
3 10| +
2]
3 10| +
2]
3 10| +

El=inm
5 Bi=E
[a\]
= Qﬁ ﬂ ﬂ m ™M N 3_m 13 o
Yo ™ (ap) ™ ﬂ
Qe 13 S 18 & »S o]
- +  + 4+ + o+ 8 ®
1_1 mn =IR] IR =R =1 =1 + +
~ BEE =) BEE] BEE BEE BEE ge ll + e
H = = Tl Bl = Sk = 22 7S
SE] [ o [l |~ (S |~ (Sl |~ [ || =
umn — [ — [ ) — [ — [ “. .. “.
— | [2p]
&l Q™ ™~ o S I w2 ..
=[] 3f 3_ﬂ SW = |l 7ﬁ
0 ) f
_ﬂ_% 1_1 < 0 0 3_m o Too oo 8 37 +8
|

+ +
S

II il
Il =]
| E
y po Il II

12

=]
=]

1]2

3 10| +

172]

3 10| +

2]

3 10| +

2]

3 10| +
1112

2]

3 10| +
11[12

-

o) — = ﬁ 1 o |
1_4 ZM 1_0 3_0 3_W ™ ™ f
| — < —lo0 <F S 00 0 — |0 — |00 3_8
_ + + + + + + + +

(H.10)
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We have clustered the SYTs into two groups. The first 9 SYTs obviously belong to the

equivalence class that we have already encountered,



Appendix H. Example of calculation of a reduced matrix element

while the 36 last SYTs belong to another equivalence class,

*

Looking at Eq. (H.9) (or performing the change of basis explicitly) one rewrites Eq. (H.10)

as
H(L41,042) M,bflﬂ b,f]>=—;‘ﬂ>+2\f‘ﬂ> (H.13)

Now we look at the bra in Eq. (H.1). We proceed to the following replacement

4 1{2(4
([x:a],lz)z_ixl—>_i [—>ii _. v (H.14)
B [6] [6]
and | 4] 1]2]4]
X
(bl o) =[5~ — 5 — B0 = Yost): (H.15)
X 6 6

Solving the CSCO we get that the bra is expanded in terms of a single state

G RG" al

One can now compute the overlap between Eq. (H.13) and (H.16)

(L+1,L+2)

(o

V], [>l<11] bl(j] > = 2‘5/6 (H.17)

We shall note now that this matrix element will occur when the chain length N, =
2(L + 1) satisfies L = 3¢ + 1 where ¢ is any positive integer. Thus, once the number
of irreps M has been fixed, there is a finite number of reduced matrix elements to
compute.
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