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Abstract
Landslide-generated waves, also called impulse waves, occur as a result of the intrusion of

landslides (such as rock falls, debris flows, and avalanches) into bodies of water (such as lakes,

reservoirs, and seas). The objective of this thesis was to study the momentum transfer from

the slide material to the body of water, in order to develop a better understanding of how the

slide material’s properties affect the wave generation and to discover alternative modeling

approaches to existing empirical equations.

Previous experimental studies have usually used blocks and granular materials to mimic

natural landslides. However, many landslides in real worlds have been idealized as viscoplastic

fluids in theoretical and numerical studies. No studies have used viscoplastic material in

experimental studies of landslide-generated waves. The originality of this thesis lies in the

use of a viscoplastic material called Carbopol Ultrez 10, an artificial aqueous micro-gel whose

rheological behavior can be described using the Herschel-Bulkley model. Carbopol’s cohesive

and deformable properties are different to both block and granular slides. Further, Carbopol

is transparent and can easily be seeded with micro-seeding particles, so its velocity field can

be measured using particle image velocimetry (PIV). As a comparison of Carbopol, I also used

a granular material named polymer-water balls whose density is close to that of Carbopol. The

investigations of this thesis are as follows:

• I conducted two series of experiments. First, I observed waves generated by Carbopol,

water balls, and mixtures of them using high-speed cameras, to investigate the role of

slide material’s properties in wave prediction. Second, I conducted PIV experiments

with Carbopol to investigate the internal dynamic of slide-water interaction.

• I developed a theoretical model that combined the momentum conservation of two-

phase flow in a control volume (Zitti et al., 2016) and viscoplastic theory (Ancey et al.,

2012). With the experimental results obtained from PIV measurements, I analyzed the

drag force and hydrostatic force that act on stopping the sliding mass, and validated the

theoretical model.

• I developed empirical equations using the dimensionless groups that emerged from the

governing equations to quantify the wave characteristics (for example, maximum wave

amplitude and height) as functions of the slide parameters. Using empirical equations, I

compared the characteristics of waves generated by cohesive Carbopol and cohesionless

water balls, and discussed the effect of slide cohesion on wave generation.

• Taking advantage of a purely data-driven approach that strictly relies on the dataset

and does not need any physical constraints in advance, I applied an artificial neural
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Abstract

network method to predict wave characteristics under complex configurations, such as

dealing with an experimental dataset with several different slide materials (Carbopol,

water balls, and mixtures of them).

• Using a panel data model called random coefficient model, I predicted the time series

data of wave characteristics from the time series data of slide parameters on impact.

Given the slide parameters on impact by the viscoplastic theory, the temporal wave

characteristics were quantified from the parameters of the slide material at the initial

stage (at rest on the slope and then starting to move).

Keywords: landslide-generated waves, momentum transfer, impulse waves, viscoplastic fluid,

Carbopol, granular slide, wave prediction, data-driven approaches.
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Résumé
Les vagues générées par glissements de terrain, aussi appelées vagues d’impulsion, sont

produites par l’intrusion de glissements de terrain (par exemple chutes de pierres, coulées

de débris, avalanches, etc.) dans une étendue d’eau (par exemple lacs, réservoirs, mers, etc.).

L’objectif de cette thèse est d’étudier le mécanisme physique régissant l’impact, en particulier

le transfert de quantité de mouvement du corps glissant vers l’eau, afin d’obtenir une meilleure

compréhension de l’influence des propriétés du matériau glissant sur la formation de la vague

et de développer de nouveaux modèles par rapport aux équations empiriques existantes.

Dans les études expérimentales précédentes, les blocs et les matériaux granulaires étaient

souvent utilisés pour simuler des glissements de terrain naturels. Toutefois, dans les études

théoriques et numériques, de nombreux glissements de terrain sont considérés comme des

fluides viscoplastiques. Aucune matériau viscoplastique n’a été utilisée dans l’étude

expérimentale des vagues générées par les glissements de terrain. L’originalité de cette thèse

réside dans l’utilisation d’un matériau viscoplastique appelé Carbopol Ultrez 10, un micro-gel

aqueux artificiel dont le comportement rhéologique peut être exprimé par le modèle

Herschel-Bulkley. Par rapport aux blocs et aux matériaux granulaires traditionnellement

utilisés dans ce genre d’expériences, le Carbopol est cohésif et déformable. De part sa

transparence et de sa compatibilité aux microparticules, il est possible de mesurer la

dynamique interne et les champs de vitesse du Carbopol et de l’eau pendant l’impact en

utilisant la PIV. En plus du Carbopol, j’ai utilisé un matériau granulaire, des boules d’eau en

polymère dont la masse volumique est proche de celle du Carbopol. Les contributions de cette

thèse se résument comme suit :

• J’ai fait deux séries d’expériences : d’abord, j’ai utilisé des caméras à grande vitesse pour

observer les vagues crée par Carbopol, boules d’eau et des mélanges de ceux-ci, afin

d’étudier le rôle des matériaux des glissières dans la prévision des caractéristiques des

vagues. Ensuite, j’ai utilisé PIV pour observer les vagues crée par Carbopol, afin d’étudier

la dynamique interne de l’interaction entre l’eau et Carbopol.

• J’ai développé un modèle théorique basé sur les équations de conservation de la

quantité de mouvement du matériau glissant et de l’eau, dans lequel le mouvement du

matériau glissant a été modélisé avec un modèle viscoplastique. À partir des résultats

expérimentaux obtenus par PIV, j’ai analysé la force de traînée et la force hydrostatique

qui arrêtent la masse glissante, et puis validé le modèle théorique.

• À l’aide des variables adimensionnels issus de l’analyse dimensionnelle des équations

du mouvement, j’ai développé des équations empiriques pour quantifier les
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Résumé

caractéristiques des vagues (par exemple l’amplitude maximale des vagues, la hauteur,

et etc) en fonction des paramètres de glissement. J’ai étudié l’influence de la cohésion

du matériau glissant sur la génération de vagues, en comparant les caractéristiques des

vagues générées par le Carbopol (avec cohésion) et les boules d’eau (sans cohésion) en

utilisant des équations empiriques.

• Profitant de l’approche purement statistique qui repose uniquement sur l’ensemble des

données et ne nécessite aucune notion physique préalable, j’ai utilisé un approche

appelé « artifical neural network » pour prédire les caractéristiques des vagues en

configurations complexes, par exemple en prédisant les vagues générées par les

matériaux différents (Carbopol, les boules d’eau, et des mélanges de ceux-ci).

• En utilisant un modèle de données de panel appelé « random coefficient model », j’ai

prédit des caractéristiques des vagues des séries temporelles à partir des données de

séries temporelles des paramètres de glissement à l’impact. En estimant l’épaisseur

et la vitesse de glissement au moment de l’impact avec la théorie viscoplastique, j’ai

quantifié les caractéristiques des vagues des séries temporelles à partir des réglages de

glissement au départ.
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1 Introduction

This chapter details the context of the research topic, the knowledge that previous studies

have gathered, the remaining research gaps in the domain, as well as the approaches and

strategies adopted by this thesis to fill these gaps.

1.1 Context

Landslides such as avalanches, debris flows, mud flows, glacier calving, and rockfalls are

common in mountainous regions and coastal areas. When these masses intrude the

surrounded bodies of water (such as mountain lakes, reservoirs, rivers, and oceans), they can

generate large impulse waves (also called landslide-generated waves or landslide-tsunamis or

landslide-waves) that can have devastating effects.

A typical example of landslide-waves occurred at Lituya Bay, on the southern coast of Alaska,

in 1958: an earthquake triggered a major subaerial landslide into the Lituya Bay and the

associated waves reached an elevation of 524 m, causing forest destruction and erosion down

to the bedrock (Miller, 1960; Fritz et al., 2009). Another example occurred at the Vajont

reservoir in Italy in 1963: a block landslide formed an impulse wave that over-topped the dam

and swept through two villages downstream of the reservoir, causing 1,910 deaths (Ciabatti,

1964; Genevois and Ghirotti, 2005). An example in Switzerland was a cohesive avalanche

that exerted impacts on a lake close to Göschenen in February 1999 (Ammann, 2000). The

resulting snow-water mixture flowed out of the lake as a thick viscous fluid, over-topped a 6-m

protection wall, and damaged the village structures (see Figure 1.1).

The probability of such events is increasing due to the effects of global warming. A recent

example occurred in Lake Askja in Iceland in 2014, where an approximately 20 × 106 m3

landslide generated a 50 m large wave that inundated the shoreline up to 80 m (Gylfadóttir

et al., 2017). Another recent example was a rapid rock avalanche that occurred in 2017 in

Greenland, where approximately 50 Mm3 of slide material impacted the Karrat Fjord and

created a wave that propagated 32 km to the village of Nuugaatsiaq (Gauthier et al., 2018;
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Figure 1.1 – Snow-water mixtures resulting from the intrusion of an avalanche into a lake near
Göschinen, Switzerland in 1999 (photo taken from Swiss Federal Topography Agency).

Bessette-Kirton et al., 2017). On a global scale, considering regions such as China with over

80,000 reservoirs, Norway with 1190 fjords, and numerous hydropower project worldwide, it is

necessary to predict and evaluate the possible landslides-waves (Liu et al., 2013; Greeman,

2015).

The problem of impulse waves generated by subaerial landslides has attracted considerable

attention in recent decades. Many of the physical insights into this phenomena have come

from laboratory scale-down experiments (Kamphuis and Bowering, 1970; Huber and Hager,

1997; Fritz, 2002a; Panizzo et al., 2005; Zweifel et al., 2006; Fuchs and Hager, 2015; Heller

et al., 2016; Mulligan and Take, 2017; Evers, 2017; Jing et al., 2020), and to a lesser extent from

theoretical models (Kranzer and Keller, 1959; Le Méhauté and Wang, 1996; Zitti et al., 2016),

numerical simulations (Watts, 1997; Abadie et al., 2010; Zhao et al., 2016; Yavari-Ramshe and

Ataie-Ashtiani, 2017; Ruffini et al., 2019), and field data surveys (Fritz et al., 2013; Grilli et al.,

2016; Engel et al., 2016; Poupardin et al., 2017).

As illustrated in Figure 1.2, subaerial landslides generating waves can be divided into three

phases: (1) the landslide enters the body of water and generates waves; (2) the waves propagate

over the body of water; (3) the waves run-up on the opposite shore and, in some cases, over-top

the dam (Fritz, 2002a; Heller, 2007). This thesis focuses on the first phase: the formation of the

impulse waves as a result of momentum transfer from the sliding mass to the body of water.
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Figure 1.2 – The three phases of impulse waves generated by a subaerial landslide: (1) wave
generation, (2) wave propagation, and (3) wave run-up on the opposite shore (Fritz, 2002a).

1.2 Knowledge gaps

1.2.1 Slide materials

The choice of material used for the landslide is a problem that needs to be considered in all

experimental studies. Blocks and granular materials have been routinely used for mimicking

landslides at the laboratory scale (Fritz, 2002a; Noda, 1970; Kamphuis and Bowering, 1970;

Huber, 1980; Huber and Hager, 1997; Viroulet et al., 2013; Heller and Spinneken, 2015; Heller

et al., 2016; Tang et al., 2018; Heller et al., 2019). A series of comparisons have been conducted

for experiments with different slide materials such as rigid blocks and granular slides (Zweifel,

2004; Ataie-Ashtiani and Nik-Khah, 2008), blocks with different shapes (Heller and Spinneken,

2013), granular slides with different grain diameters (Lindstrøm, 2016), etc. The results indicate

that the wave’s characteristics depend heavily on the material’s properties.

The differences in the characteristics of waves generated by different slide materials have been

interpreted as a consequence of material deformability (Yavari-Ramshe and Ataie-Ashtiani,

2016; McFall et al., 2018; Yavari-Ramshe and Ataie-Ashtiani, 2019): by changing the shape of

the slide during the impact, a deformable mass would be less prone to impart its momentum

to the water. The differences also have been explained with slide porosity (Lindstrøm, 2016),

slide mobility (Bullard et al., 2019), etc. One may also suppose that the material’s cohesion

plays a key part in the momentum transfer from the sliding material to the body of water: a

rigid block moves as one element when immersed in water, whereas granular material consists

of numerous particles when striking the free surface (Fritz et al., 2004; Meng and Ancey, 2019).

Any hypothesis (either the slide material’s deformability, porosity or cohesion dominates

the wave generation) on the basis of reliable experimental data is plausible. However, most

scientific data could swing the balance of evidence to favor one hypothesis over another.

It is difficult to assess the influence of each factor, if one merely works with rigid blocks

and granular materials, as the differences between these two materials are manifold; for

example, blocks not only retain their shape, but also have infinitely large cohesion, whereas

granular materials are deformable and cohesionless. The controversy regrading the effect of

slide materials on wave characteristics is not only a tell-tale sign that the physics behind the
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slide-water interaction are more complicated than commonly believed, but also urges us to

introduce slide materials whose properties are distinguishable from both block and granular

materials into experiments rather than trap in an endless loop of comparing between block

and granular materials.

To investigate the rheology of gravity-driven flows such as mud flows, debris flows, and

avalanches, in addition to granular flows, scientists have developed an analogy with yield-

stress fluids (Ancey, 2007); that is, materials that behave like fluids when their stress state

exceeds a critical stress called yield stress and like solids when they are not sufficiently stressed

(Balmforth et al., 2014). The analogy has made it possible to develop flow-dynamics models

and run experiments in the laboratory to understand how the material properties (yield

stress, viscosity, and if applicable friction) affect the bulk dynamics. Dent and Lang (1983)

demonstrated that viscoplastic models such as the Bingham model and the Herschel–Bulkley

model approximately describe the flow behavior of snow avalanches flowing down on an

inclined flume. Laboratory experiments have also shown the possibility of describing the

motion of clay and mud flow by viscoplastic models (Ancey and Cochard, 2009; Andreini et al.,

2012; Chanson et al., 2006; Chambon et al., 2014). The analogy has also been regarded as a

crude over-simplification of natural gravity-driven flows (Iverson, 1997; Iverson and Vallance,

2001). We will not engage in this debate here.

In the domain of landslide-generated waves, viscoplastic models have been widely used in

numerical simulations (Skvortsov and Bornhold, 2007; Bonn et al., 2017; Cremonesi et al.,

2011; Zhao et al., 2016), while none has used viscoplastic materials in experiments. Even

some numerical studies have modelled the landslide with a viscoplastic model, while their

models were validated using experimental data obtained with granular materials. Introducing

viscoplastic material into experiments will help us gain a better understanding of the role of

slide material’s properties in wave generation.

1.2.2 Predicting wave characteristics from slide parameters

Laboratory experiments not only make it possible to shed light on the physical processes that

govern the wave generation, but also allow us to quantify how waves’ features (such as

amplitude and height) depend on the initial conditions (for example, the mass, density, and

velocity of the incoming flow). In most earlier studies, these quantitative analyses combined

dimensional analysis and non-linear regression techniques (Fritz et al., 2003; Heller, 2007;

Heller and Hager, 2014; Zitti et al., 2015; McFall and Fritz, 2017; Mohammed and Fritz, 2012).

The studies have occasionally involved a scale analysis of the governing equations (Walder

et al., 2003; Fernández-Nieto et al., 2008; Zitti et al., 2016, 2017); for instance, Zitti et al. (2016,

2017) studied how mass and momentum were exchanged between the incoming sliding

material flow and the outgoing impulse wave by using a control volume surrounding the

impact zone. By scaling the mass and momentum balance equations, they obtained

dimensionless numbers that could subsequently be used for correlating wave features with
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initial parameters.

For both of the two above-mentioned approaches, the modeling of the wave characteristics

mostly relied on empirical equations in the form of power functions of several selected

dimensionless parameters that pertained to the momentum flux of the incoming sliding mass.

The most commonly used dimensionless parameters include the slide Froude number, the

relative slide thickness, and the relative slide mass (Heller and Hager, 2010, 2014). In recent

years, more and more parameters were implemented into the predictive equations to predict

the wave features under different configurations; these included the grain diameter of

granular slides, and the front angle of block slides, the slide width and length. When

integrating new parameters into the empirical equations, most researchers chose to presume

the functional form as a power function in advance, which well followed the assumptions of

previous studies. This functional form usually suited the experimental data well (Mohammed

and Fritz, 2012; Bolin et al., 2014; Heller and Spinneken, 2015; McFall and Fritz, 2017).

However, the possibility of over-fitting behind the high performance of empirical equations

would be largely increased, with more and more parameters included in the equations. We

can neither confirm if the presumed functional form is the best fitting one nor verify whether

all the selected parameters are necessary.

On many occasions, researchers have developed empirical equations that have fit well with

their own experimental data, but these equations then exhibited large deviations from the

datasets obtained by other teams, especially when different slide materials were involved in

these datasets. The performances of the different equations on a given dataset remain

uncertain. This uncertainty reflects the limitations of empirical equations with a given

functional form. Heller and Spinneken (2013) developed generic empirical equations for

blocks of various shapes, and discussed the data discrepancies between using blocks and

granular slides. In fact, none of the existing empirical equations can account for the full range

of materials used in experiments. Applying empirical equations may be difficult when, for

instance, the slide material involves different components. A typical example is Tang et al.

(2018), who conducted experiments using blocks, granular slides, and a mixture of block and

granular slides. The representative parameters of blocks and granular slides were the aspect

ratio and the grain diameter, respectively. Without knowing how these two materials interact

with the body of water, integrating these two parameters into one equation might be

problematic if we have presumed a functional form for that equation in advance. For more

complex landslide materials, providing physical constraints on the mathematical operators of

prediction equations formulation of empirical equations becomes more challenging. This

creates the need to develop predictive models that do not to need presume the functional

from in advance and have high adaptabilities to cope with complex configurations.

Another interesting issue is that no studies have yet examined how the time series data of

wave characteristics depend on the slide parameters. All previous predictive equations have

focused on the relation between the slide parameters at impact and the maximum values of

wave characteristics. The momentum transfer between the sliding mass and the body of water
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lasts from the point at which the front of the slide material touches the shoreline until the

point at which the slide stops moving. Miller et al. (2017) demonstrated that only the frontal

part of the slide mass, rather than the whole slide mass, is involved in the wave generation,

showing the need to consider the impacting time and the time series relation between the

slide features and wave characteristics. A recent experimental study measured the time series

data of the slide’s thickness and velocity passing through the shoreline (Bullard et al., 2019).

There remains a gap in how the temporal wave characteristics depend on the time series data

of slide parameters.

1.2.3 Experimental difficulties

One laboratory challenge is to measure the internal velocities of the sliding mass and the

water body during the intrusion of the slide; this is important for understanding the physical

mechanism governing the slide-water interaction and for building the time series relation

between the wave characteristics and slide features. Using PIV, Fritz (2002b) measured the

near-field velocity field of the body of water during the intrusion of granular slides. PIV is

a laser optical measurement technique that can be used to measure the velocity field of an

entire region within a flow (Santiago et al., 1998). The major difficulty in measuring water’s

velocity field during the impact came from the reflective index differences between air and

water. As observed from laboratory experiments, when granular particles entered the body of

water, a large amount of air bubbles intruded into the water body along with the slide particles

(see Figure 1.3). As the reflective index of air is different from that of water, the reflections

from the surface of the air bubbles made it arduous to trace the motion of seeding particles in

water.

Further, the velocity field of the submerged slide material is lacking to date, due to the difficulty

of finding a slide material that is transparent and can be traced using PIV. Previous studies

have approximated the velocity of the slide material by its frontal velocity passing through

the shoreline. It was logical to assume that the block slide passing through the shoreline at

a constant velocity. Yet, for slide material that behaves like a long and thin train of material

(such as granular slides and viscoplastic slides), the velocity at shoreline was found to vary

with time (Bullard et al., 2019).

1.3 Objectives

This thesis provides insights into impulse waves generated by viscoplastic fluid. The thesis

objectives are as follows:

• Analyze the effect of slide material’s cohesion on wave generation by comparing

characteristics of waves generated by viscoplastic and granular slides.

• Develop a theoretical model for viscoplastic fluid interacting with water, based on the
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Figure 1.3 – The intrusion of granular particles into water.

mass and momentum conservations of two-phase flow in a control volume and the

viscoplastic theory.

• Develop a predictive model that is adaptable to an experimental dataset with several

different slide materials (for example, viscoplastic material, granular material, and

mixtures of them).

• Quantify the temporal wave characteristics from the time series data of slide parameters.

1.4 View of approaches taken in this thesis

With the objectives in mind, I conducted experiments using a viscoplastic material called

Carbopol, and observed the internal dynamic of how submerged Carbopol interact with the

water body with the support of the PIV technique. The analysis of how the wave characteristics

depend on the slide parameters relied on a theoretical model and two data-driven approaches.

1.4.1 Slide materials and experimental method

Carbopol Ultrez 10 is an artificial aqueous micro-gel whose rheological behavior can be

described using the Herschel-Bulkley model (Contreras et al., 2001; Fresno et al., 2002, 2001).

In recent years, it has been increasingly used to mimic landslides over a wide range of shear

rates in various studies, such as standard rheological measurements, channel configurations,

and more complex hydrodynamics such as gravity-driven flows and fingering instabilities

(Bonacucina et al., 2004; Freydier et al., 2016; Luu et al., 2015; Møller et al., 2006). Using

Carbopol, the Environmental Hydraulic Laboratory (LHE) at EPFL has conducted a number

of experimental studies on several topics, such as dam break problems (Cochard and Ancey,

2009), internal dynamics of flowing viscoplastic fluid (Andreini et al., 2012), and physical

entrainment problems (Bates et al., 2016; Ancey and Bates, 2017; Bates and Ancey, 2017).

The present thesis introduced Carbopol into experimental study of landslides-generated

waves. For comparison purposes, a granular material called polymer-water balls was used.
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The densities of both Carbopol and water balls were lower than that of most natural landslides

and close to that of water (about 1000 kg·m−3). Previous studies have shown that the material

density may influence wave features, especially when the slide penetrates the body of water at

a low Froude number (Zitti et al., 2016). Independently of this, it would have been difficult to

find materials with the same properties as water balls and Carbopol, but with higher densities.

One advantage of Carbopol is its cohesive and deformable properties, which are

distinguishable from both block and granular materials, and can serve to study the effect of

the slide cohesion on wave generation. Another advantage is that Carbopol is transparent and

can be easily seeded with tracing particles without changing the rheological properties, so

that its internal velocity can be measured using PIV. Further, in contrast to granular materials

that separate into numerous particles once immersed into water, Carbopol moves as a whole.

The quantity of air bubbles induced by the intrusion of Carbopol are fairly small compared

with granular slides, so the noises due to air bubbles when measuring water’s velocity are

greatly reduced.

In addition to record the impacting process using high-speed cameras, the PIV system was

built in our laboratory. Using Carbopol as the slide material, I measured the near-field velocity

fields of both the submerged slide and the body of water. With the experimental results

obtained from PIV, the interaction forces between the slide material and the body of water

were determined, and the momentum variations of the slide and water were analyzed.

1.4.2 Wave characteristics analysis

A theoretical model for viscoplastic fluid interacting the body of water was developed in this

thesis. I first revisited the governing equations developed by Zitti et al. (2016), which was

based on the mass and momentum conservations of two-phase flow in a control volume.

The slide thickness and velocity at the left boundary of the control volume were given by

the lubrication model and kinematic wave model (Ancey and Cochard, 2009; Ancey et al.,

2012). Using the dimensionless groups extracted from the momentum conservation equations,

empirical equations in the form of power functions were developed. Using these empirical

equations, the characteristics of waves generated by Carbopol and water balls were compared,

which quantified the effect of slide cohesion on wave generation.

With increasingly complex configurations and slide materials involved in experiments, it

becomes challenging to provide physical constraints on the mathematical operators of

empirical equations. It would be preferable to use an approach that did not assume the

functional form of the equation in advance and relied strictly on the data alone. Considering

the high adaptabilities of data-driven approaches (Panizzo et al., 2005), I applied an artificial

neural network (ANN) method to cope with complex configurations that run into difficulty

when modelled using empirical equations: (i) predicting wave features from subaerial

landslide parameters at their initial stage (with the mass beginning to move down the slope)

rather than from the parameters at impact; and (ii) predicting waves generated by different
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slide materials, specifically, viscoplastic slides, granular slides, and viscoplastic–granular

mixtures. Unlike empirical equations, in which mathematical dependence was fixed in

advance, the ANN method provides an approach in which both the explanatory and explained

variables in the data ultimately define their internal relationship without any prior

assumptions about the equation’s functional form or physical constraints. Moreover, the

model can be easily calibrated when new data or parameters become available, which makes

it powerful in terms of solving complex problems.

In addition to predicting the maximum values of wave characteristics from the slide

parameters on impact, we quantified the temporal wave amplitude and height from the

momentum flux of the sliding mass (that is, time series data of the slide velocity and thickness

passing through the shoreline) using a panel data model. Assuming the incoming landslide as

a viscoplastic fluid, the time evolutions of the depth-averaged velocity and thickness of the

sliding mass were estimated from the initial slide parameters using the lubrication model and

kinematic wave model. Combining the panel data model with the viscoplastic theory, we

estimated the time series data of wave characteristics from the landslide parameters at their

initial stage when the mass beginning to move down the slope.

1.5 Thesis layout

The thesis is structured as follows:

• Chapter 2 presents the physical model of the problem and the experimental method.

• Chapter 3 displays the modeling approaches including a theoretical model, an artificial

neural network method, and a panel data model.

• Chapter 4 studies the effect of slide material’s cohesion on wave characteristics, by

comparing features of waves generated by Carbopol and water balls using empirical

equations. The artificial neural network model is then used to cope with complex

configurations, including predicting wave characteristics when the experimental dataset

consists of several different slide materials.

• Chapter 5 exhibits the results of the PIV experiments, including the interaction forces

between the slide phase and the water phase, and the momentum variations of the two

phases. The theoretical model is validated with the experimental results. The time series

data of wave characteristics are predicted with the slide parameters using a random

coefficient panel data model.

• Chapter 6 outlines the concluding remarks of the thesis.
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2 Experimental methods

This chapter presents the methods used for the two-dimensional experimental investigation.

Section 2.1 illustrates the simplified physical model of the impacting process. Section 2.2

introduces the two slide materials used in experiments: a viscoplastic material called

Carbopol and a granular material called water balls. Section 2.3 presents the experimental

instrumentations including the flume, the high-speed cameras, and the particle image

velocimetry (PIV) system. Section 2.4 discusses the experimental settings and scale effects.

Section 2.5 shows how the images recorded from the experiments are processed.

2.1 Physical model

Figure 2.1 illustrates the two-dimensional physical model of a landslide moving down a slope

and intruding into a body of water. The whole process can be divided into three stages. In the

first stage, the slide is at rest in the container box, and then it starts moving. In the second

stage, it moves down the slope and reaches the shoreline. In the third stage, it enters the body

of water and generates waves.

We consider a slope with an inclination of θ entering a horizontal flume filled with water. The

still water depth is denoted by h0, and the water density is denoted by ρ f . A coordinate system

(x, y) is defined with its origin located at the shoreline, with the x-axis proceeding out across

the water, stream-wise, and the y-axis pointing directly upward.

A slide mass, with volume of VI and density of ρs , is released at a distance ls from the shoreline.

The slide’s initial shape is idealized as a trapezoid limited by a height of sg and length of l0

with the top surface parallel to the free water surface. When the sliding mass moves down the

slope, its thickness s(l , t ) and depth-averaged velocity u(l , t ) vary as a function of l and t . The

volume of the immersed slide is denoted by Vs . The free water surface η(x, t ) depends on the

horizontal coordinate x and time t . The wave created by the incursion of the sliding mass is

mainly evaluated quantitatively by its height h and amplitude a. The gravity acceleration is

denoted by g .
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Figure 2.1 – Sketch of the physical model.

2.2 Slide materials

We used two slide materials with the same density: one was an artificial viscoplastic material

called Carbopol Ultrez 10; another was granular slide called polymer-water balls (see Figure

2.2).

(a) (b)

Figure 2.2 – Photos of (a) Carbopol and (b) polymer-water balls.

The rheological behavior of Carbopol gels can be described using the Herschel-Bulkley model,

whose expression for simple-shear flows is:

τ= τc +µγ̇n (2.1)
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where τc is the yield stress (that is, the stress threshold below which the material behaves

like a solid and above which it flows like a fluid), γ̇ is the shear rate, µ is the consistency

and n is a power-law index that reflects shear thinning (or shear thickening when n > 1)

(Balmforth et al., 2007; Bonn et al., 2017). We conducted the rheological measurements using

a Bohlin Gemini rheometer equipped with striated parallel plates (diameter: 25 mm, gap size:

1 mm). The Herschel-Bulkley equation was fitted with these measurements. Table 2.1 shows

the rheological parameters τc , µ, n of the Carbopol gels used in this thesis. The rheological

behavior of Carbopol depended on its concentration c: the yield stress τc increased as a

power-law function of c (see Figure 2.3).

Table 2.1 – Rheological characteristics of Carbopol used in this thesis

c [%] Ultrez 10 [g] NaOH [g] H2O [L] τc [Pa] µ [Pa · sn] n [-]
1.5 45 18.0 30 38 10.3 0.289
1.6 50 20.7 30 43 12.3 0.293
1.7 53 22.0 30 49 14.4 0.295
1.8 55 22.8 30 53 16.2 0.315
1.9 58 24.0 30 55 17.1 0.321
2.0 60 24.9 30 58 18.9 0.330
2.1 62 25.9 30 59 19.2 0.331
2.2 65 26.9 30 60 19.8 0.333
2.3 68 28.2 30 65 23.2 0.339
2.4 70 29.0 30 68 24.6 0.348
2.5 75 31.0 30 74 29.1 0.364
2.6 75 32.1 30 75 30.9 0.387
2.7 80 33.2 30 78 32.1 0.388
2.8 85 35.0 30 80 35.8 0.390
2.9 85 36.1 30 83 38.9 0.391
3.0 90 37.3 30 85 42.1 0.392

To produce Carbopol gels, first, the powder of Carbopol Ultrez 10 was poured into

demineralized water heated at 50−70◦C, and the dispersion was left to rest for a few hours.

The pH was adjusted by adding a sodium hydroxide solution. See Cochard (2007) for further

information. As the powder density was close to that of water, the resulting gel density was

approximately 1000 kg m−3, regardless of its concentration c.

For the granular material, we used polymer-water balls that were approximately 15 mm in

diameter. To create the water balls, we soaked initially dry beads of a water-absorbent polymer

in water. After about four hours, the beads had swelled into balls with a density very close to

that of water. Excess liquid was finally removed by draining the balls.

The densities of these two materials were close to 1000 kg m−3, which is lower than that of the

usual materials involved in debris flows or rockfalls (over 2000 kg m−3), but similar to that of

ice (910 kg m−3). Zweifel (2004) found that buoyancy plays a crucial role in the momentum

transfer of slides with low densities when Fr < 2. Zitti et al. (2016) also found that low-density
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Figure 2.3 – The concentration of Carbopol c versus its yield stress τc .

avalanches generated impulse waves whose amplitudes were half as large as those created by

high-density avalanches. As it is difficult to find materials with rheological properties similar

to those of Carbopol gels and polymer-water balls, but with higher densities, we were unable

to test density effects.

2.3 Experimental facilities

I conducted two series of experiments. One was performed with high-speed cameras (non-PIV

experiments), which recorded the fluctuation of the water surface and the slide parameters

on impact. The other was performed with PIV, which observed the internal motion of the

slide-water interaction. For slide materials of the non-PIV experiments, I used Carbopol, water

balls, and mixtures of them. For the PIV experiments, only Carbopol was used as the slide

material.

2.3.1 Flume

Experiments were conducted in a two-part, two-dimensional flume (see Figure 2.4 (a) and (d))

located in a temperature- and humidity-controlled room. The first part was a chute, 1.5 m

long and 0.12 m wide, which could be tilted at angles θ, ranging from 30◦ to 50◦. Its bottom

was lined with sandpaper (P180) whose mean surface roughness Ra = 27.28 µm. The side walls

of the slope were made of PVC. The second part was a water-filled, transparent, glass-sided

flume, 2.5 m long, 0.4 m deep and 0.12 m wide. The body of water was backlit using a light

panel placed parallel to the rear of the flume. The slide material was initially contained in

a box located at the chute entrance, closed by a locked gate 0.2 m high and 0.12 m wide.

This gate could be opened in less than 0.1 s owing to two pneumatically-driven pistons. The

distance from the gate to the shoreline ranged from 0.5 m to 1.5 m. Once released, the material

accelerated energetically under gravity and reached velocities as high as 2.5 m/s. A 0.2×0.4

m2 mesh grid was used to calibrate the raw images and determine the size conversion factor

between the images and the real world.
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cameras laser 

(a) 

(d) (c) profile view: 

top view: 
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Figure 2.4 – (a) Sketch of the facilities, (b) settings of the laser and the lenses (I denotes a
circular lens, II is a laser line generator lens, III is a rectangular lens, IV is an oblong lens), (c)
optical design of the laser illumination, (d) photo of the facilities in the lab, and (e) photo of
the operating PIV device.

2.3.2 High-speed cameras

Two high-speed cameras were placed in front of the shoreline with their optical axis

perpendicular to the side-wall (see Figure 2.4 (a)). A black-and-white camera with a frequency

of 400 frames per second (fps) and a resolution of 1280 × 1024 pixels was used to record the

motion of water. A color camera with the same frequency and with a resolution of 600 × 800

pixels was used to record the motion of the sliding mass. For the experiments with high-speed

cameras (non-PIV experiments), each experiment was repeated twice. I first colored the slide

material by Methylene blue and recorded the motion of the submerged sliding mass using the

color high-speed camera. I then repeated the experiment with the same controlled variables

while coloring the water body by Methylene blue, and then recorded the wave formation

using the black-and-white camera. Figure 2.5 shows an example of raw images observed with

the high speed cameras. The initial settings of the selected test were: the concentration of
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Carbopol c = 2.5%, the slope length ls = 0.85 m, the slope angle θ = π/4, the initial slide mass

mI = 4.0 kg, and the still water depth h0 = 0.2 m.

(a)

(b)

(c)

(d)

Figure 2.5 – Raw images of Carbopol intruding the body of water recorded by high-speed
cameras: (a) t = 0.1 s, (b) t = 0.2 s, (c) t = 0.3 s, and (d) t = 0.4 s.

2.3.3 Particle Image Velocimetry

Figure 2.6 displays the principle of the PIV measurement. The particle-seeded flow was

illuminated in a target area with a light sheet, and the velocity vectors were derived from

sub-sections of the target area by measuring the movement of seeding particles between two

image frames. I only used Carbopol as the slide material in PIV experiments. I was unable

to trace the interaction between water balls and water with the current PIV setup, due to

the effect of air entrainment (see section 1.2.3). The water body was seeded by poly-amides

seeding particles with a diameter of 50 µm, and Carbopol was seeded by fluorescent seeding

particles with a diameter of 20 µm. The fluorescent seeding particles were produced with

poly-amide seeding particles and Rhodamine B dye in the laboratory (see Müller et al. (2013)

for details).

The PIV system consisted of a laser, four lenses, and two high-speed cameras (see Figure 2.4

16
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Figure 2.6 – The principle of the PIV measurement.

(a) and (b)). The same cameras were used as in the non-PIV experiments. The laser generated

a green laser beam with a wavelength of 527 nm, a maximum output of 150 W, and a pulse

duration of 100 ns/CW. As shown in Figure 2.4 (b) and (c), the laser beam first passed a circular

lens (I) with a focal length of d = 90 mm; it then passed through a laser line generator lens (II)

with a divergence angle of 30◦ and became a laser sheet; afterwards, the laser sheet passed

through a rectangular lens (III) with a focal length of d = 200 mm in the vertical direction;

finally, it passed by an oblong lens (IV) with a focal length of d = 1.5 m in the horizontal

direction. Figure 2.4 (e) exhibits the operating PIV system.

2.4 Experimental settings and scale effects

As shown in Table 2.2, for non-PIV experiments (i.e., experiments using high-speed cameras),

we conducted experiments using Carbopol with concentrations ranging from 1.5% to 3.0%,

water balls, and mixtures of them (20% Carbopol + 80% water balls, 80% Carbopol + 20% water

balls, 50% Carbopol + 50% water balls). For PIV experiments, we only used Carbopol with a

concentration of 2.0% as the slide material.

Table 2.2 – List of materials used in the present study.

Experimental technique Materials Number of tests

Non-PIV experiments

Carbopol 291
20% Carbopol + 80% Water balls 35
50% Carbopol + 50% Water balls 35
80% Carbopol + 20% Water balls 35
Water balls 65

PIV experiments Carbopol 92

In this thesis, the still water depth h0 was fixed at 0.2 m. As the slide material was initially
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(a)

(d)

(c)

(b)

Figure 2.7 – Raw images of Carbopol (left) and water (right) observed from the PIV
measurement: (a) t = 0.1 s, (b) t = 0.2 s, (c) t = 0.3 s, and (d) t = 0.4 s.

contained in a box located at the chute entrance and accelerated under gravity, both the

parameters of the slide material on impact were controlled by varying slope length ls , slope

angle θ, and initial slide mass mI . The initial slide mass mI ranged from 2.0 to 5.8 kg for

Carbopol, 0.5–5.0 kg for Carbopol-water balls mixtures, and 0.2–3.5 kg for polymer-water balls.

The slope lengths ls ranged from 0.85 to 1.05 m. The slope angle θ ranged from π/6 to π/4.

The maximum slide velocity on impact u0 was 2.5 m/s. Slide thicknesses on impact s0 ranged

from 2 to 5 cm.

The scale factor between the experimental set-up and the real-world scenarios was

approximately λL ∼ 100. The set up was originally devised to mimic landslides striking into a

body of water. The main parameters representing the motion of a landslide such as avalanche

include volume of the slide, flow depth (also called thickness), and velocity. The mechanism

governing the generating wave process is the momentum transfer from the frontal part of the

sliding mass to the water body. Hence, the dominant factors controlling the slide-water

interaction for the slide part involve its height and frontal velocity. Taking avalanches as an

example, the velocity of many avalanches in the natural world ranges from 5 to 25 m/s, and
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the height of a large avalanche typically ranges from 2 to 5 m. In our experiments, the slide

thickness at impact ranged from 0.02 to 0.05 m (λL ∼ 100), and the frontal velocity ranged

from 0.5 to 2 m/s (λV =λ0.5
L ∼ 10). The diameter of water balls was 15 mm, corresponding to

big rock avalanches with a diameter of 1.5 m. The still water depth was held at 0.2 m in

experiments, representing a water basin with a depth of 20 m in real-world with the scale

factor λL ∼ 100. There was a fairly good match between experiments and real scenarios. As

presented in section 2.2, the densities of Carbopol and the water balls (about 1000 kg/m3) are

lower than most natural landslides, and close to that of ice. As it is difficult to find materials

whose rheological properties are similar to those of Carbopol gels and polymer-water balls,

but with higher densities, we were unable to test density effects.

Physical modeling of impulse waves is commonly based on the Froude similitude. If the model

dimensions applied are too small, scale effects may arise as a consequence of surface tension

in the impact zone and fluid viscosity. The influence of surface tension on wave dynamics

can be assessed using the Weber number We= ρ f g h2
0/σ f and the fluid viscosity effects can

be estimated using the Reynolds number Re= g 1/2h3/2
0 /µ f . As Re > 3000,000 and We > 5000

in our experiments, the scale effects resulting from surface tension and fluid viscosity are

negligible for the slide impact zone. Further, as h0 = 0.2 m and 0.38 s < T < 2.24 s in our

experiments, we think that the disrupting effect of surface tension was not a confounding

factor during the wave propagation (Heller et al., 2008). To avoid significant scale effects using

scale series, the slide Froude number Fr, scaled slide mass M and scaled slide thickness S are

identical between the prototype and the real scenarios. In our experiments, the dimensionless

parameters are controlled in the ranges as follows: the slide Froude number 0.05 < Fr < 2.78,

the scaled effective mass 0.03 < ME < 0.33, and scaled slide thickness 0.12 < S < 0.25 (see the

details in section 3.1.3).

In addition, a laboratory-numerical approach is used to quantify scale effects in relation to

the slide. Numerical simulation using Gerris shows excellent agreement with the laboratory

experiment for slide frontal velocity, and the simulation with Gerris did not capture any scale

effect at a scale range from λ = 0.5 to λ = 2 compared to the experimental scale. With regard

to the side wall effect, the flow front of the Carbopol in our experiments is relatively flat,

suggesting that the slump is largely two dimensional and the side wall does not have much

effect (Balmforth et al., 2007).

2.5 Image processing

2.5.1 Images recorded with high speed cameras

For each image, we measured (1) the position of the free surface when the leading wave

reached its maximum amplitude, (2) the velocity and thickness of the sliding mass upon

impact, and (3) the mass of the slide’s immersed part. To that end, we first located the interface

between the water and surrounding air for each image (see Figure 2.8 (a)). We then deduced
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the time variation of the wave features including the wave height and amplitude from the

position of the free water surface. To estimate the velocity of the sliding mass on impact, we

tracked its front during its course down the chute. The front’s velocity was averaged over a time

length δt = 0.03 s (6 frames). The slide material’s thickness was defined as the mean thickness

in the observation window. For polymer-water balls, we defined an effective immersed volume

by integrating the flux of particles (crossing the water interface) over time. For the Carbopol

and mixtures of Carbopol and water balls, we first extracted the interface between the sliding

material and the surrounding water (see Figure 2.8 (b)), and then measured the immersed

part’s volume by counting the number of its pixels in the image.

(a)

(b)

Figure 2.8 – Evolution of the (a) free water surface and (b) slide-water interface from t = 0.1 s
to 1.0 s. Initial settings of the selected test were the same as those of Figure 2.5.

Open-channel flows of viscoplastic material are subjected to side-wall effects, which explains

why the measurements along the centerline are not fully representative of the whole flow.

To quantify how the position of the laser plane affects the measurements error, we lit five

equispaced parallel cross-sections and compared the wave and slide features under these

measurement planes. From this comparison, we deduced that the error was negligibly small

(less than 1%). The maximum uncertainties in the image processing were 0.18 mm/s for
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the sliding mass’ velocity on impact, 0.9 mm for the free surface position and slide material

thickness, and 20 g for the immersed mass. I conducted reproducibility tests and found that

the observations can be reproduced closely from one to the next, for example, within 2 pixels

for the free surface for both PIV and non-PIV experiments.

2.5.2 Images recorded with PIV

In addition to the slide and water parameters extracted from non-PIV experiments, PIV

experiments provided velocity fields of the slide and the near-field water body. With the

velocity fields, we estimated (1) the depth-averaged velocity of the sliding mass passing

through the shoreline, and (2) the momentum of the submerged sliding mass and water body

in the observation window.

Using a toolbox in Matlab named MatPIV, the velocity fields were determined from images

recorded with PIV. We used a 32 × 32-pixel interrogation windows and 50% overlap between

adjacent windows. To remove the spurious velocity vectors, a range validation filter was

used, i.e., all the velocity vectors larger than 3 m/s were discarded. Using a moving average

validation filter, the velocity vectors that deviate 15% from the average value of its surrounding

3 × 3 vectors fields was substituted by interpolation. The velocity vectors were converted

into the velocities by calibrating the physical size of a pixel in an image. Figure 2.10 and 2.9

display the velocity fields of the submerged slide and the near-field water body, respectively.

The initial settings of the selected test were the same as those of Figure 2.5. The momentum

was calculated by integrating the velocity at each interrogation window. The slide’s depth-

averaged velocity passing through the shoreline was estimated by the average velocity of the

interrogation windows near the shoreline.

(a) (b)

(c) (d)

Figure 2.9 – Velocity fields of the body of water at: (a) t = 0.1 s, (b) t = 0.2 s, (c) t = 0.3 s, and (d)
t = 0.4 s.
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(a) (b)

(c) (d)

Figure 2.10 – Velocity fields of the submerged sliding mass at: (a) t = 0.1 s, (b) t = 0.2 s, (c) t =
0.3 s, and (d) t = 0.4 s. The blue line indicates the position of the free water surface.
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3 Modeling

This chapter presents the modeling approaches used in this thesis including a theoretical

model and two data-driven methods. Section 3.1 presents the theoretical model, which

expressed the momentum transfer between an incoming viscoplastic flow and a body of water.

Section 3.2 presents the data-driven approaches: an artificial neural network method was

used for wave prediction under complex configurations, and a panel data model was used to

predict the time series data of wave characteristics.

3.1 Theoretical model

This section provides a two-dimensional theoretical model to express the physical mechanism

governing the slide-water interaction. Zitti et al. (2016) studied how mass and momentum

were exchanged between the incoming sliding mass and the outgoing impulse wave using a

control volume surrounding the impact zone. They developed mass and momentum balance

equations for both the slide phase and water phase in the control volume. The left boundary

of the selected control volume was overlapped with the shoreline. The unknown parameters

at the left boundary of the control volume involve the thickness and depth-averaged velocity

of the slide mass. Zitti et al. (2016) assumed the slide velocity as a constant and the slide

thickness following a parabolic curve. The theoretical model proposed in this section followed

Zitti et al. (2016), with the slide parameters at the left boundary given by the lubrication model

and kinematic wave model (Ancey et al., 2012).

3.1.1 Governing equations

Following Zitti et al. (2016), we now consider the mass and momentum balance equations

in a control volume V (see Figure 3.1). The control volume V consists of three phases: the

slide phase, the water phase, and the air phase. Neglecting the influence of the air phase, I

developed governing equations for the slide phase and the water phase.

The integral form of mass and momentum balance equations at time t for each phase can be
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control volume V

x

y

θ

Figure 3.1 – Sketch of the control volume.

written as:
d

d t

∫
V
αiρi dV = d

d t

∫
V
αiρi dV +

∫
S
αiρi (ui ·n)dS = 0 (3.1)

d

d t

∫
V
αiρi ui dV = d

d t

∫
V
αiρi ui dV +

∫
S
αiρi ui (ui ·n)dS = F (3.2)

where the subscript i = s, f refers to the slide or fluid phase, αi is the fraction of the volume

occupied by phase i , ρi denotes the density of each phase, and ui denotes the velocity. F are

the forces applied on the control volume V.

Equations (3.1) and (3.2) can be written in a manner that is easier to interpret. The volume-

averaged slide and fluid velocities are denoted by:

ūi = 1

Vi

∫
V

ui dV (3.3)

where the subscript i = s, f . The depth-averaged velocities at the left and right boundaries

of the control volumes are defined similarly, for example, the depth-averaged velocity of the

water phase at the right boundary can be written as:

ū f ,r = S−1
r

∫
Sr

u f ,r dS (3.4)

where Sr = B(h0 +ηr ) is the surface of the outgoing flow with B denoting the width of the

flume. Thus, the mass balance Equation (3.1) for the slide phase becomes:

ρs
dVs

d t
−ρsB s0(t )u0(t ) = 0 (3.5)

and for the water phase becomes:

ρ f
dV f

d t
+ρ f ū f ,r (t )(h0 +ηr )B = 0 (3.6)

24



3.1. Theoretical model

where ρs and ρ f denote the slide density and water density, respectively; Vs and V f represent

the volume of slide phase and water phase in V , respectively; s0(t) and u0(t) denote the

thickness and depth-averaged velocity of the sliding mass passing through the left boundary

of the control volume V , respectively; B denotes the flume width, t is the time, ls is the slope

length, h0 is the still water depth, ηr is the water surface perturbation at the right boundary,

and ū f ,r denotes the depth-averaged water velocity at the right boundary.

On the left-hand side of Equations (3.5) and (3.6), the first terms represent the rate of change of

the mass of slide and fluid in the control volume V , respectively. The second term of Equation

(3.5) reflects the slide material’s mass flux across the left boundary of V , and the second term

of Equation (3.6) the fluid mass across the right boundary of V .

The momentum balance Equation (3.2) for the slide phase in the x-direction is then expressed

as:

ρs
dVs ūs

d t
−ρsB su2

0 cosθ =−FD,x +FP,x (3.7)

and in the y-direction:

ρs
dVs v̄s

d t
−ρsB su2

0 sin2θ/cosθ =−FD,y +FP,y −ρsVs g (3.8)

For the water phase, we can write the momentum balance in the x-direction as:

ρ f
dV f ū f

d t
+ρ f ū2

f ,r (h +ηr )B = FD,x − 1

2
ρ f g B

[
(h +ηr )2 − (h +ηl )2] (3.9)

and in the y-direction as:

ρ f
dV f v̄ f

d t
= FD,y (3.10)

where ηl and ηr are the water surface perturbation at the left and right boundary, respectively;

(ūs , v̄s) are the slide’s mean velocity in V in the x- and y-direction, respectively; (ū f , v̄ f ) are

the water’s mean velocity in V in the x- and y-direction, respectively; and (FD,x , FD,y ) is the

drag force and (FP,x , FP,y ) is the hydrostatic force applied on the slide material. Equations

(3.5) to (3.10) form a system of 6 coupled equations describing the interplay between the slide

phase and the fluid phase. The dependence variables include ūs , v̄s , ū f , v̄ f , Vs and V f .

On the left-hand side of Equation (3.7) to (3.10), the first terms represent the rate of change

in the side’s (or fluid’s) momentum in the x- (or y-) direction inside V , the second terms

reflect the solid’s (or fluid’s) momentum flux across the boundary of the control volume V .

The right-hand sides of Equation (3.7) to (3.10) reveal that two mechanisms are at play in the

momentum change and transfer to the fluid phase: the momentum imparted by the slide

phase through the drag force and the pressure force difference. For the momentum balance

equation of the slide phase in y-direction (Equation (3.8)), the hydrostatic force is assumed to

be balanced with the gravity force, as the density of the slide material used in experiments is

close to that of water. For the momentum balance of the water phase in x-direction (Equation

(3.9)), the hydrostatic force applied to water by the submerged slide is considered balanced
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with the hydrostatic force at the right boundary.

The hydrostatic force FP can be written in an integral form:

FP =
∫

As

−ρ f g hs f nd As (3.11)

where As denotes the area of the slide-water interface, hs f is the vertical distance between

the slide-water interface and the free-water surface, and n denotes the normal vector. We

approximate the drag force FD by:

FD = 1

2
Cdρ f A f

(
ūs − ū f

) | ūs − ū f | (3.12)

where A f is the effective cross-sectional area of the slide-water interface, Cd is the drag

coefficient (we take Cd = 0.5); and ūs and ū f are idealized by the mean velocity of the slide

phase and water phase in the control volume, respectively. Here, A f , ūs and ū f are unknown.

3.1.2 Boundary conditions

For the right boundary, I assumed that the depth-averaged outgoing velocity in the y−direction

v̄ f ,r = 0 and considered that the water pressure difference has a neglectable effect on the wave

generation; that is, ηr −ηl = 0. The ū f ,r is unknown. Analogous to solitary waves generated by a

piston wave maker, the depth-averaged velocity can be related to the free surface perturbation,

that is, ū f =C η
h0+η , with the phase speed C =√

g (h0 +a) and the wave amplitude a. Assuming

the phase speed at the right boundary is C =
√

g
(
h0 +ηr

)
and the outgoing velocity is close to

the volume-averaged velocity (ū f ,r = ū f ), the closure equation can be written as:

ū f = η
√

g

h0 +η
(3.13)

and thus the free-water surface perturbation:

ηr = 1

2g

(
ū2

f +u f

√
ū2

f +4g h0

)
(3.14)

For the left boundary, the slide thickness s0(t ) and the depth-averaged velocity u0(t ) crossing

the boundary must be given. As shown in Figure 3.2, I used a coordinate system (x̂, ŷ), where

x̂ denotes the downstream coordinate measured from the top of the plane and ŷ denotes the

coordinate normal to the slope. The initial flow depth is given by:

s(x̂) = sg + (x̂ − l0) tanθ (3.15)
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and the initial flow depth at the lock gate sg is given by:

sg =VI /l0 + 1

2
l0 tanθ (3.16)

where VI is the volume of the slide material in the reservoir and l0 denotes the length of the

slide material in the reservoir.

The interest is to determine s(x̂ = ls , t̂ ) and u(x̂ = ls , t̂ ), where ls is the distance from the origin

to the left boundary of the control volume V , and t̂ is time. The time difference between

Figure 3.1 and 3.2 is t = t̂ − t0, with t0 as the time taken from the slide starts moving till the

front touches the left boundary of V .

Figure 3.2 – Sketch of the sliding mass (a) at rest and (b) moving along the slope.

I first considered a steady uniform flow of viscoplastic fluid over an inclined surface. The

rheological behavior of the viscoplastic fluid is described by the Herschel-Bulkley equation

(see Equation (2.1)). Independently of the constitutive equation, the shear stress distribution

throughout the depth is:

τ(ŷ) = ρs g (s − ŷ)sinθ (3.17)

where s denotes the flow depth, ρs is the density of the slide material, and g is the gravitational

acceleration. The no-slip condition was assumed for the stream-wise velocity component u at

the bottom (i.e., u(ŷ = 0) = 0). The integration of the constitutive Equation (2.1) provides the

cross-stream velocity profile:

u(ŷ) = n A

n +1

{ (
Y 1+1/n

0 − (Y0 − ŷ)1−1/n
)

ŷ ≤ Y0

Y 1+1/n
0 ŷ ≥ Y0

(3.18)

with

Y0 = s − sc , A =
(
ρs g sinθ

µ

)1/n

, sc = τc /
(
ρs g sinθ

)
(3.19)

where sc denotes the critical flow depth, that is, no steady uniform flow is possible for s < sc

and Y0 denotes the position of the yield surface with ŷ < Y0 the sheared region and ŷ > Y0 the
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unyielding region. A further integration leads to the depth-averaged velocity:

ū = n A

(n +1)(2n +1)

s(n +1)+nsc

s
Y 1+1/n

0 (3.20)

When the flow is slightly non-uniform, the shear stress alters as a result of the changes in the

free-surface gradient. A common approach is to start from the Cauchy momentum balance

equation, in which the inertia terms have been neglected together with the normal stress

gradient (Balmforth and Provenzale, 2001). With the assumption of negligible inertia, the

downstream projection of the momentum balance equation reads: 0 = ρs g sinθ− ∂p
∂x̂ + ∂τ

ŷ , and

the pressure is found to be hydrostatic to leading order: p = ρs g (s − ŷ)cosθ. Then, the shear

stress distribution reads:

τ= ρs g (s − ŷ)cosθ

(
tanθ− ∂s

∂x̂

)
(3.21)

Substituting Equation (3.21) into Equation (2.1) and integrating it yields:

u(ŷ) = nK

n +1

(
tanθ− s

x̂

)1/n
{ (

Y 1+1/n
0 − (

Y0 − ŷ
)1+1/n

)
ŷ ≤ Y0

Y 1+1/n
0 ŷ ≥ Y0

(3.22)

with the parameter K and the updated yield surface position Y0:

K = ρg sinθ/k, Y0 = max(0, s −τc /(ρg cosθ(tanθ−∂x s))) (3.23)

The critical depth is sc = τc /
(
ρs g sinθ

)
. A further integration leads to the depth-averaged

velocity for non-uniform flow:

ū = nK

(n +1)(2n +1)

(
tanθ− ∂s

∂x̂

)1/n s(n +1)+nsc

s
Y 1+1/n

0 (3.24)

Using Equation (3.24) requires an equation specifying the gradient of the free surface ∂x s(x̂, t̂ ).

I used the kinematic wave model to evaluate s(x̂, t̂). The kinematic wave approximation

assumes that the fluid is locally uniform; that is, ū is given by Equation (3.20). The bulk mass

balance ∂s
∂t̂

+ ∂sū
x̂ = 0 provides the governing equation for s:

∂s

∂t̂
+ f ′(s)

∂s

∂x̂
= 0 (3.25)

with f ′(s) = As(s − sc )1/n , and A =
(
ρg sinθ

µ

)1/n

(3.26)

This hyperbolic nonlinear advection equation can be solved easily using the method of

characteristics. Equation (3.25) can be put into a characteristic form d s
d t̂

= 0 along the

characteristic curve d x̂
d t̂

= f ′(s). These initial characteristic curves are straight lines whose
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slope is dictated by the initial depth:

x̂ = f ′(s(x̂0))t̂ + x̂0 (3.27)

with s0(x̂0) the initial value of s at x̂0 is given be Equation (3.15) and (3.16). As h = h0 along the

characteristic curve, using Equation (3.15) to eliminate x̂0, an implicit equation for s can be

obtained:

x̂ = As(s − sc )1/n t̂ + (s − sg )cotθ+ l0 (3.28)

The starting time counted for Equation (3.28) is given by x f (t) = ls (details see Ancey et al.

(2012)). Then, with Equations (3.24) and (3.28), u0(t) and s0(t) at the left boundary of the

momentum balance equations (Equations (3.5) to (3.10)) are given.

3.1.3 Dimensional analysis

Following common practice in this field, some dimensionless groups have been introduced

directly: the slide material thickness s0 was scaled as S = s0/h0, where h0 is the original still-

water depth. The initial slide mass mI was scaled as M = mI /ρ f Bh2
0, where ρ f is the water

density and B is the flume width. The slide velocity upon impact u0 was scaled by the water

wave velocity
√

g h0, resulting in the classic Froude number Fr = u0/
√

g h0.

In this study, the dimensionless groups were derived by scaling the mass and momentum

balance equations. Using the following change in the variables in Equation (3.7):

V f → Bh2
0V ′

f , Vs →VE V ′
s , t →

√
h0/g t ′

(us ,u f ) → u0(u′
s ,u′

f ), s → s0s′,
(3.29)

where B is the flume width, VE is the slide’s volume when the wave height reaches its maximum,

and s0 is the mean slide thickness when it penetrates the water. The momentum balance

equation of the slide phase (Equation (3.7)) was considered as the most important equation

governing the momentum transfer from the slide phase to the water phase. The scaled

momentum balance equation of the slide phase in the x-direction is:

ρs

√
g

h0
u0VE

du′
sV ′

s

dt
−ρs s0u2

0B cosθ =−Fx . (3.30)

We then cast it in the following form:

VE

Bh2
0

du′
sV ′

s

dt
− s0

h0

u0√
g h0

cosθ =− F

h0Bu0
√

g h0ρs
. (3.31)

Three dimensionless groups appear in Equation (3.31):

Π1 = VEρs

Bh2
0ρs

= mE

ρsBh2
0

(3.32)
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where mE is the effective slide mass (related to VE ). The dimensionless groupΠ1 corresponds

to the scaled effective mass M . The second group is:

Π2 = s0/h0 (3.33)

which corresponds to the scaled slide thickness S. The third dimensionless group is the slide

Froude number:

Π3 = Fr = u0/
√

g h0 (3.34)

The dimensionless groups obtained from the dimensional analysis of governing equations

were the same as those commonly used in previous studies. In this study, the slide Froude

number Fr, scaled effective massΠ1, and scaled thicknessΠ2 varied within: 0.05 < Fr < 2.78,

0.03 <Π1 < 0.33, and 0.12 <Π2 < 0.25.

3.2 Data driven analysis

3.2.1 Artificial neural network

The artificial neural network (ANN) has been successfully employed in many other fields

to cope with complex dependence in experimental data processing and to develop highly

accurate predictive models (Abraham, 2005; Kim and Park, 2005; Yegnanarayana, 2009; Lee

et al., 2016; Armaghani et al., 2016; Gedik, 2018). In contrast to empirical equations in which

mathematical dependence is fixed in advance, the internal relation between the explanatory

and explained variables in the ANN model is defined without any prior assumptions about the

equation’s functional form or physical constraints. Thus, the model can be easily calibrated

when new parameters are available, making it powerful for solving complex problems (Dou

et al., 2015).

As shown in Figure 3.3, the ANN method is inspired by how the human brain processes

information and is constructed from interconnected processing elements called neurons (Liu

et al., 2000). A typical ANN model consists of three parts: learning rules, network structure,

and activation function. The network structure comprises several layers: one input layer, one

output layer, and one or several hidden layers with each layer containing several neurons.

Each of the neurons in a layer is connected to neurons of the adjacent layers via coefficients

called weightings.

From a mathematical perspective, the principle of neural networks involves the composition

of non-linear functions. Starting with a linear model, considering a dataset z and a vector of

inputs x, a linear model for the output ẑ(x) can be constructed considering ẑ(x) = W x +β,

where the weighting matrix W and the bias vector β are obtained by solving an optimization

problem that minimizes the overall difference between z and ẑ. This process is called model

training. Such a simple model may lack the flexibility to represent complex functional

mapping, so intermediate variables (layers) y are introduced: y = σ(W (1)x + β(1)) and
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(a)

(d)

(b)

(c)

Figure 3.3 – A biological neuron in comparison to an artificial neural network: (a) human
neuron; (b) artificial neuron; (c) biological synapse; and (d) ANN synapses (Suzuki, 2013).

z =W (2) y +β(2), where σ is a user-specified activation function, like the hyperbolic tangent.

The composition of several intermediate layers results in a neural network capable of

efficiently representing arbitrarily complex function forms.

In this thesis, I selected a one-hidden-layer network, and adopted a feed-forward

back-propagation algorithm to train the network. The algorithm programming was developed

using Matlab. Establishing an ANN model consists of three steps: (i) preparing the required

data for training the network; (ii) evaluating neural networks with different structures and

choosing the optimal one; and (iii) testing the neural network’s performance using data that

have not been used previously for training the network.

The feed-forward path is expressed by Equations (3.35) and (3.36):

yi = f
(
X j

)= f

(
Wo j +

I∑
i=1

Wi j xi

)
(3.35)

Zk = f (Yk ) = f

(
Wok +

J∑
j=1

W j k yi

)
(3.36)

where xi , y j , and Zk represent the input, hidden, and output layers, respectively, Wo j and

Wok are the bias weightings for setting the threshold values, X j and Yk temporarily represent

computing results before using the activation function, and f is the activation function applied

in the hidden and output layers.

For the activation function, I chose the Sigmoid function, which ranges between 0 and 1 (see
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Equation (3.37)). The activation function is defined on each layer’s neurons and is applied to

the sum of the weighted inputs and to each neuron’s bias to generate the neuron output.

f (a) = ea

ea +1
(a = X j ,Yk ) (3.37)

Equation (3.38) displays the residual function for residual back-propagation training.

E = 1

2

K∑
k=1

e2
k = 1

2

K∑
k=1

(tk − zk )2 (3.38)

where tk is the predefined target value and ek is the residual of each output node. E is the

residual between the expected and actual output values.

I used a gradient-descent strategy to adjust the weightings, aiming to obtain a minimum E .

Equations (3.39) to (3.42) express the weightings between the hidden and output layers:

∂E

∂w j k
=−ek

∂F (Yk )

Yk
y j =−δk y j (3.39)

and hence

δk = ek F ′(Yk ) = (tk − zk )F ′(Yk ) (3.40)

Therefore, the weighting adjustments in the hidden and output link ∆w j k can be expressed

by:

∆w j k = η× y j ×δk (3.41)

where η is the learning rate ranging between 0 and 1. With a lower learning rate, the network

model will take a longer time to converge. Conversely, a higher learning rate may lead to

a widely oscillating network. In addition, maintaining a consistent learning rate across the

model is preferable. The new weighting w j k is updated by Equation (3.42), where r is the

number of iterations.

w j k (r +1) = w j k (r )+∆w j k (r ) (3.42)

Similarly, the error gradient in the links between the input and hidden layers can be derived

from the partial derivative with respect to wi j .

∂E

∂wi j
=

(
K∑

k=1

∂E

∂zk

∂zk

∂Yk

Yk

y j

)
× ∂yi

∂X j
× ∂X j

∂wi j
=−∆ j xi (3.43)

where

∆ j = F ′(X j )
K∑

k=1
δk w j k (3.44)

The new weighting dominates the link between the input layer and the hidden layer, δwi j ,

and can be updated as:

δwi j = η×xi ×δ j (3.45)
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wi j (r +1) = wi j (r )+δwi j (r ) (3.46)

All of the input data were normalized in the range between 0 and 1 using the following equation:

Y = X −Xmi n

Xmax −Xmi n
(3.47)

where X is the raw data and Y is the normalized data. The initial parameter settings are shown

in Table 3.1.

Table 3.1 – Initial settings for the parameters in the ANN model.

Parameters Initial setting
Initial weightings 0.2-0.5
Learning rate 0.1
Maximum number of epochs 200
Objective mean square error 0.00001
Training function traingdx
Momentum parameters 0.9
Activation function Sigmoid function

The performance of predictive models can be evaluated by the coefficient of determination

(R2), mean square error (MSE), and its sum of squares due to error (SSE):

R2 = 1−
ε∑

i=1

((
yp,i − yo,i

)2(
yp,i − ȳo

)2

)
(3.48)

MSE =
√∑ε

i=1

(
yp,i − yo,i

)2

ε
(3.49)

SSE =
ε∑

i=1
(yo,i − yp,i ) (3.50)

where ε is the number of series of experimental data, yp,i and yo,i are the predicted and

observed data, respectively, and ȳo is the average of observed data.

3.2.2 Panel data analysis

A panel data model was used to solve the problem of predicting the temporal wave

characteristics from the time series data of slide parameters. As shown in Figure 3.4, the

experimental dataset can be considered as a data panel with three dimensions that contains a

time series t and a cross-sectional panel x − y . The cross-sectional panel includes a counter

for experiments y and the parameters recorded in each experiment x (e.g., slide velocity, slide

thickness, wave amplitude). For example, a data N (xa , yb , tc ) represents the experimental
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data of the ath parameter of the bth test at time c. The idea was to quantify the relation

between the time series data of wave characteristics and time series data of slide parameters.

⋯ → ⋯

11 12 ⋯ 1 predict 11 12 ⋯

21 22 ⋯ 2 21 22 ⋯

31 32 ⋯ 3 31 32 ⋯

⋮

1 2 ⋯ 1 2 ⋯

slide parameters wave parameters

(parameters)

(�me)

(test number)

,

(a) (b)

Figure 3.4 – The (a) three-dimensional and (b) two-dimensional structures of data panel.

Random coefficient panel data

For the panel data model, I selected the random coefficient model and started from a two

dimensional dataset. Equation (3.51) expresses the regression coefficients of a

two-dimensional panel, a x − y panel without time variation.

yi t =
K∑

i=1
βki xki t +ui t =

K∑
k=1

(βk +γki )xki t +u, (3.51)

where yi t is the cross-sectional data, xki t denotes the explanatory variables, t is the time

index; i is the index of the tests, k is the explanatory variables index, βki includes βk and γki ,

β= (β1, · · · ,βK )
′

is the common mean coefficient vector, γ= (γ1i , · · · ,γK i )
′

is the operator from

individual data to the common mean value, and u is a random interference term. Assuming

βi =β+γi as a random variable (Swamy, 1970):

E(γi ) = 0,

E(γiγ
′
j ) =

∆, i = j ,

0, i 6= j ,

E(xi tγ
′
j ) = 0,

E(ui u
′
j ) =

σ2
i IT i = j ,

0, i 6= j .

(3.52)

Integrating the N T th observation data, Equation (3.53), which is in the form of the matrix can
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be obtained.

y = Xβ+ X̃γ+u, (3.53)

where yN T×1 = (y
′
1, · · · , y

′
N )

′
, XN T×K =


X1

X2
...

XN

, X̃N T×N K =


X1 0

X2

. . .

0 XN

,

u = (u′
1, · · · ,u′

N )′, γ= (γ′1, · · · ,γ′N )′, N counts the number of the cross-sectional panel, T is the

test number in each panel, the compound error term X̃γ+u is a diagonal matrix, and the i th

diagonal block is ψi = Xi∆X ′
i +σ2

i IT . According to Swamy (1970), the estimation of β with

ordinary least squares is biased. Once 1
N T X ′X converges into a non-zero constant matrix, we

can obtain a consistent non-effective estimation. The optimal linear unbiased estimator of β

is eliminated from the generalized least squares:

β̂GLS =
(

N∑
i=1

X
′
iψ

−1
i Xi

)−1 (
N∑

i=1
X

′
iψ

−1
i yi

)
=

N∑
i=1

Wi β̂i ,

Wi =
{

N∑
i=1

[
∆+σ2

i (X
′
i Xi )−1

]−1
}−1 [

∆+σ2
i (X

′
i Xi )−1

]−1
,

β̂i =
(

X
′
i Xi

)−1
X

′
i yi .

(3.54)

The variance of the estimator is:

V ar
(
β̂GLS

)= (
N∑

i=1
X

′
iψ

−1
i Xi

)−1

=
{

N∑
i=1

[
∆+σ2

i (X
′
i Xi )−1

]−1
}−1

. (3.55)

β̂GLS follows an asymptotic normal distribution and is an effective estimation of β. The

random coefficient model limits the explanatory variables coefficients by constraining the

coefficients of the explanatory variables following asymptotic normal distributions.

Classification of the dataset

As observed from experiments, large waves and small waves often have different tends in

time variation of wave features. This difference may induce uncertainties in predicting wave

characteristics of time series. To avoid these uncertainties, we used a Gaussian mixture model

to classify the dataset into several groups based on the properties of the data samples. Here,

I selected the slide Froude number Fr, scaled thickness S and scaled effective mass M as

the evaluation criteria to classify the dataset into several groups. I then used the random

coefficient panel data model to model each sub-dataset separately.

For multivariate continuous data, the parametrized component density mostly is a

multivariate Gaussian density. For a one-dimensional dataset, the probability distribution of a
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random variable x follows a mixture of two Gaussian distributions:

P
(
x|µ1,µ2,σ

)= 2∑
k=1

pk
1p

2πσ2
exp

(
−

(
x −µk

)2

2σ2

)
, (3.56)

where k = 1 and k = 2 represent two Gaussian distributions, the kth prior probability is{
p1 = 1/2, p2 = 1/2

}
, and

{
µk

}
and σ are the mean value and variance of the two Gaussian

distributions, respectively. We use θ ≡ {{
µk

}
,σ

}
to simplify these parameters. The dataset

{xn}N
n=1 containing N tests is assumed as an independent sample from the distribution. kn

denotes the unknown class tag for the nth test. In the case when
{
µk

}
and σ are known, the

posterior probability of the class tag of the nth test kn can be written as:

P (kn |xn ,θ) = 1

1+exp[− (ω1xn +ω0)]
. (3.57)

If the case when
{
µk

}
is unknown but σ is known, we can deduce

{
µk

}
from the data series

{xn}N
n=1. We then derive the iterative algorithm of

{
µk

}
to maximize the likelihood estimation:

P
(
{xn}N

n=1 |
{
µk

}
,σ

)=∏
n

P
(
xn |

{
µk

}
,σ

)
. (3.58)

The natural logarithm of the likelihood L can then be expressed as:

∂

∂µk
L =∑

n
pk|n

xn −µk

σ2 , (3.59)

where pk|n ≡ P (kn = k|xn ,θ) is the Gaussian density (see Equation (3.57)). Ignoring the items

in
∂

∂µk
P (kn = k|xn ,θ) , the second derivative versus

{
µk

}
can be approximated as:

∂2

∂µ2
k

L =−∑
n

pk|n
1

σ2 . (3.60)

µ′
1 and µ′

2 can be obtained by iterating the initial µ1 and µ2 using the approximate Newton–

Raphson steps.

µ′
k =

∑
n pk|n xn∑

n pk|n
. (3.61)

The Gaussian mixture density of a multidimensional dataset (i.e., multiple Gaussian

distribution) can be written as:

pk|n =
πk

1∏I
i=1

p
2πσ(k)

i

exp

(
−∑I

i

(
µ(k)

i −x(n)
i

)2
/2

(
σ(k)

i

)2
)

∑
k ′ πk ′

1∏I
i=1

p
2πσ(k ′)

i

exp

(
−∑I

i

(
µ(k ′)

i −x(n)
i

)2
/2

(
σ(k ′)

i

)2
) , (3.62)

with k the serial number of the Gaussian distribution, i the serial number of the data’s

dimension, n the serial number of the data sequence, I the total number of the data’s
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dimension, πk the weighting, µ(k)
i the mean value of the Gaussian distribution, σ(k)

i the

variance of the Gaussian distribution, and x(n)
i a parameter in an experiment. The iterative

formula of µk
i has been presented in Equation (3.61). The iterative formulas of the variance

σ(k)
i and the weighting πk are as follows:

σ2(k)
i =

∑
n pk|n

(
x(n) −µ(k)

i

)2

∑
n pk|n

, (3.63)

πk =
∑

n pk|n∑
k
∑

n pk|n
. (3.64)
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4 Role of slide material’s properties in
wave prediction

This chapter presents the role of the slide material’s properties in wave prediction. The

results were obtained from the experiments conducted with high-speed cameras. Section

4.1 examines how the viscoplastic slide’s parameters on impact depend on the initial settings

of experiments. Section 4.2 investigates the effect of slide cohesion on wave generation

by comparing waves generated by Carbopol and water balls. Section 4.3 applies a purely

data-driven approach to predict wave characteristics under complex configurations, such

as integrating the parameters of different categories of slide material into one model (the

Bingham number for viscoplastic material and the grain diameter for granular material).

4.1 Slide parameters on impact

As analyzed in section 3.1.3, the momentum transfer from the slide to water greatly depend

on three slide parameters: the slide velocity on impact u0, the slide thickness on impact

s0, and the effective slide mass mE . In this section, with the support of the experiments

conducted using Carbopol, I examine how these parameters depend on the initial parameters

for impulses waves generated by viscoplastic fluids.

4.1.1 Slide velocity and thickness

The slide thickness on impact s0 and velocity on impact u0 were estimated by Carbopol’s

frontal velocity and thickness when the front of slide reaches the shoreline. Figure 4.1 (a)

and (b) shows the variations of s0 and u0 to the initial settings of experiments, respectively.

The initial parameters were varied symmetrically: the slope length ls = 0.85, 0.95, and 1.05

m, the initial slide mass mI varied from 2 to 5.8 kg, the slope angle α= 6/π and 4/π, and the

yield stress of Carbopol τc = 60, 75, and 90 Pa. The yield stress τc represents the rheological

properties of Carbopol (see Table 2.1). Within the set of range used in the experiments, s0

varied between 0.025 and 0.05 m and u0 varied from 1.1 to 2.4 m/s. In general, s0 increases

with the increase of mI , α and τc and with the decrease of ls . u0 increases with the increase of
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mI , α and with the decrease of τc and ls .

Figure 4.1 – Variation of (a) s0 and (b) u0 with the initial settings of the experiments.

4.1.2 Effective mass

In most previous experiments with blocks or granular slide materials, the sliding mass intruded

into the body of water at very high velocities in a very short time. Thus, the mass of the

slide material at impact was often approximated with its initial mass. Carbopol gels flowed

downstream more slowly than most granular materials used in previous studies and spread

themselves more uniformly along the chute. Part of the gel volume could deposit along the

chute. Whereas the granular particles penetrated quickly into the body of water, the Carbopol

gels entered and interacted more smoothly with the water phase. Thus, only a fraction of the

sliding mass engages in the leading wave generation.

When analyzing the momentum conservation equations of the sliding mass, I found that the

momentum transfer between slide and water depends on the mass of the submerged slide

material rather than the initial slide mass (Equations (3.31) and (3.32)). In addition, when

analyzing the experimental data, I found it more convenient to relate wave features to the

immersed masses rather than the initial masses. I defined the effective mass mE , defined as

the immersed part’s mass when the wave height reached its maximum. This definition also

more closely reflects the physics of the problem at hand.

I examined the use of the effective mass and initial slide mass in predicting wave characteristics,

using the empirical equations of Heller and Hager (2010) with the impulse product parameter P.

In these equations, the scaled maximum wave amplitude Am = 4
9 P4/5 and the scaled maximum

wave height Hm = 5
9 P4/5, with:

P = FrS1/2M 1/4 cos(6/7θ)1/2 (4.1)

where Fr is the slide Froude number, M is the scaled slide mass, S is the scaled thickness, and

θ is the slope angle. See Equations (3.32), (3.33), and (3.34) for the expressions of M , S and
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Fr, respectively. By using the effective slide mass mE instead of the initial slide mass mI to

calculate M , we were able to obtain better correlations between the scaled maximum wave

amplitude Am (or the scaled maximum wave height Hm) and the slide mass (see Figure 4.2).

While the question of effective mass primarily concerned viscoplastic flows, it also affected

polymer-water balls, but to a lesser extent. The effective mass of water balls varied almost

linearly with their initial slide mass, so I used this variable for both materials.

Figure 4.2 – Comparison of (a) Hm and (b) Am predicted using mE and mI . Blue diamonds
and red squares denote the predicting results obtained with mE and mI , respectively.

Figure 4.3 shows the effective mass mE in response to the initial slide mass mI , with the slope

length ls ranging between 0.85 and 1.05 m, the yield stress τc = 60, 75, and 90 Pa corresponding

to the concentration of Carbopol c = 2.0%, 2.5%, and 3.0%, initial slide mass 2.0 < mI < 5.8

kg, and slope angle θ =π/4 and π/6. Within this set of range of experiments, the ratio of the

effective mass to the initial slide mass as the effective ratio RE varied in the range of 10% to

30%, that is, 10% to 30% of the slide material engaged in the leading wave generation. RE

increases with the increase of the slope angle θ, and with the decrease of the slope length

ls and the yield stress τc . Carbopol gels with higher concentrations (and thus yield stress)

deposited more material along the chute, so the effective mass entering into the basin was

reduced. In addition, the effective mass reduced with longer slope length or lesser initial slide

mass.

4.2 Comparison of waves generated by viscoplastic and granular

slides

The slide material’s properties significantly affect the momentum transfer from the slide

material to the body of water. One major hypothesis from previous comparisons of waves

generated by rigid blocks and granular slides was that the material’s deformability plays a key

part in wave formation. Indeed, blocks are not only rigid, but they are also cohesive, whereas

41



Chapter 4. Role of slide material’s properties in wave prediction

2 3 4 5 6
mI [kg]

0

0.4

0.8

1.2

1.6

m
E

[k
g
]

ls = 0.85 m, , = :=4, =c = 60 Pa
ls = 0.95 m, , = :=4, =c = 60 Pa
ls = 1.05 m, , = :=4, =c = 60 Pa
ls = 0.85 m, , = :=6, =c = 60 Pa
ls = 0.95 m, , = :=6, =c = 60 Pa
ls = 1.05 m, , = :=6, =c = 60 Pa
ls = 0.85 m, , = :=4, =c = 75 Pa
ls = 0.95 m, , = :=4, =c = 75 Pa
ls = 1.05 m, , = :=4, =c = 75 Pa
ls = 0.85 m, , = :=6, =c = 75 Pa
ls = 0.95 m, , = :=6, =c = 75 Pa
ls = 1.05 m, , = :=6, =c = 75 Pa
ls = 0.85 m, , = :=4, =c = 90 Pa
ls = 0.95 m, , = :=4, =c = 90 Pa
ls = 1.05 m, , = :=4, =c = 90 Pa
ls = 0.85 m, , = :=6, =c = 90 Pa
ls = 0.95 m, , = :=6, =c = 90 Pa
RE = 0:1
RE = 0:2
RE = 0:3

Figure 4.3 – The effective mass mE versus the initial mass mI with ls = 0.85 m, 0.95 m, 1.05 m;
α = π/6, π/4; τc = 60 Pa, 75 Pa, 90 Pa; 2 < mI < 5.8 kg.

granular media are deformable and cohesionless. I compared waves generated by Carbopol

(viscoplastic material) and water balls (granular material), to shed light on the effect of slide

cohesion on wave features.

4.2.1 Empirical equations

Following the tradition used by a number of authors, we aggregated the dimensionless

numbers into a power product of the Πi groups, and looked for the best linear correlation

between this aggregated number and a single wave feature:

Xn = δ
N∏

i=1
Π
βi

i (4.2)

where X represents the scaled wave characteristics (for example, the scaled maximum wave

amplitude, wave height, wave length, and wave period);Πi indicates the explanatory variables

selected, where N is the number of explanatory variables.

As presented in section 3.1.3, several dimensionless groups have been emerged from the

dimensional analysis of the governing equations (see Equations (3.32) to (3.32)): the

dimensionless groupΠ1 = mE

ρs Bh2
0

is the scaled effective mass M ; the second groupΠ2 = s0/h0

corresponds to the scaled slide thickness S; the third dimensionless groupΠ3 = u0/
√

g h0 is

the slide Froude number Fr. We used the maximum wave height hm and maximum wave

amplitude am to characterise the leading wave’s features. We studied the wave features in

terms of scaled variables: the scaled maximum wave height Hm = hm/h0 and scaled
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maximum wave amplitude Am = am/h0. Thus, Equation (4.2) became:

X1,2 = δΠX = δΠβ1

1 Π
β2

2 Π
β3

3 (4.3)

where δ and β1,2,3 denote the regression parameters, and X1,2 = Hm , Am . In addition, many

other combinations are possible. For instance, Zitti et al. (2016) showed that regressions

X = aQb , with Q =Π1Fr, closely captured their experimental trends.

4.2.2 Wave characteristics

Wave amplitude and height

We first studied how the slide’s rheological behavior affected wave formation. Figure 4.4 shows

how the scaled maximum wave amplitude Am and height Hm varied with the dimensionless

group Q =Π1Fr for Carbopol at concentrations of 2.0%, 2.5% and 3.0%. As underlined above,

we used effective slide masses rather than initial slide masses in the regression analyzes, which

explains why the Carbopol concentration had little effect on the trend Am(Q). This turned out

to be a decisive advantage when comparing the results of Carbopol gels and polymer-water

balls.

Figure 4.4 – Variations in (a) the scaled maximum wave amplitude Am and (b) the scaled
maximum wave height Hm relative to Q for Carbopol (at concentrations of 3.0%, 2.5%, 2.0%,
and 1.5%), respectively.

Figure 4.5 shows the variations in the scaled maximum wave heights Hm relative to the

dimensionless groups Πi (i = c or w) and Q for the Carbopol gels and polymer-water balls.

Regardless of the dimensionless group used, Carbopol gels generated larger Hm values than

the polymer-water balls. The mean deviation was approximately 50% in our experiments. The
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regression curve that best matched the experimental trends for Carbopol gels was:

Hm = 1.019Πc , with Πc =Π0.123
1 Π0.617

2 Π1.748
3 (4.4)

and for polymer-water balls:

Hm = 0.267Πw , with Πw =Π0.164
1 Π0.008

2 Π1.004
3 (4.5)
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Figure 4.5 – Variations in scaled maximum wave heights Hm relative to three combinations
of dimensionless groups: (a)Πc =Π0.123

1 Π0.617
2 Π1.748

3 , (b)Πw =Π0.164
1 Π0.008

2 Π1.004
3 , and (c) Q =

FrΠ1.

The variations in the maximum scaled wave amplitude Am with Πi (i = c or w) and Q are

shown in Figure 4.6. When usingΠi , we found the regression equations for Carbopol:

Am = 1.538Πc , with Πc = Fr1.012Π0.319
1 Π0.750

2 (4.6)
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and for polymer-water balls:

Am = 0.725Πw , with Πw = Fr0.611Π0.518
1 Π0.255

2 (4.7)

The wave amplitudes were 30% higher for the Carbopol gels than for the polymer-water balls.
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Figure 4.6 – Variations in scaled maximum wave amplitudes Am relative to three combinations
of dimensionless groups: (a)Πc =Π0.319

1 Π0.750
2 Π1.012

3 , (b)Πw =Π0.518
1 Π0.255

2 Π0.611
3 , and (c) Q =

FrΠ1.

Wave nonlinearity

I now examine each material’s wave type. The degree of nonlinearity for impulse waves can be

qualified using the Am/Hm and L/Hm ratios (Heller and Hager, 2011). According to Zweifel

(2004), strongly nonlinear waves correspond to the range 0.9 < Am/Hm < 1.0, moderately

nonlinear waves to 0.6 < Am/Hm < 0.9, and weakly nonlinear waves to 0.4 < Am/Hm < 0.6.

45



Chapter 4. Role of slide material’s properties in wave prediction

Figure 4.7 (a) shows how scaled maximum wave amplitudes Am varied relative to the scaled

maximum wave heights Hm . The degree of nonlinearity was slightly higher for Carbopol gels

than for polymer-water balls (see Figure 4.7 (a)). Figure 4.7 (b) shows the variations in the

Am/Hm ratio relative to Q. As the Am/Hm ratio fell within the 0.6–0.9 range, the impulse

waves generated by the Carbopol gels and polymer-water balls were classified as moderately

nonlinear solitary waves.

Figure 4.7 – (a) Variations in the scaled maximum wave amplitudes Am relative to scaled
maximum wave heights Hm . (b) Variations in Am/Hm relative to the dimensionless group Q.

A similar process was used with the ratio between the scaled maximum wave length L = `m/h0

and the scaled maximum wave height Hm (see Figure 4.8). The maximum wave length `m was

defined as the distance between the two points associated with zero crossings (i.e., still-water

level). One interesting feature was that waves generated by the Carbopol gels were much more

nonlinear than those formed by the polymer-water balls when we consider the L/Hm values

in Figure 4.8(b). For the polymer-water balls, we found 4 < L/Hm < 6, but only 2 < L/Hm < 4

for Carbopol gels–a significantly lower ratio.

Wave energy

The energy conversion factor estimates how much of the slide’s kinetic energy is transferred

to the wave. The slide’s kinetic energy can be estimated as: E I = 1
2 mE u2

0. The wave’s energy

involves two terms: its potential energy and kinetic energy. The wave’s potential energy results

from the displacement of the water surface from its original still position, whereas its kinetic

energy is estimated from particle motion in the body of water. The wave’s potential and kinetic

energies are:

Ep = 1

2
ρ f g b

∫ xfini

xini

η2 (x, t )dVx (4.8)
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Figure 4.8 – (a) Variations in the scaled maximum wave amplitudes Am relative to the scaled
maximum wave lengths L. (b) Variations in L/Hm relative to the dimensionless group Q.

and

Ek = 1

2
ρ f g b

∫ xfini

xini

(
h +η)

ū2
w dVx (4.9)

where u0 denotes the slide velocity at impact, ρ f is the water density, g is the gravity

acceleration, and η denotes the water surface. Here, we assumed equipartition of the

potential and kinetic energies (as in the case of linear waves) and set Ek = Ep (Mohammed

and Fritz, 2012; Zitti et al., 2016).

Figure 4.9 displays how the wave’s maximum potential energy Ep varied relative to the slide’s

kinetic energy E I . I have also plotted the empirical formulas that captured the experimental

trends between the wave’s maximum potential energy and the slide’s kinetic energy: Ep =
0.092E I for Carbopol gels and Ep = 0.096E I for polymer-water balls. The empirical formulas

for Carbopol and polymer-water balls were quite close to each other. Previous studies have

reported that energy conversion factors ranged from 1 to 85.7% for granular slides (Fritz, 2002a;

Heller, 2007), and from 2 to 50% for blocks (Ataie-Ashtiani and Nik-Khah, 2008; Kamphuis

and Bowering, 1970). The energy conversion factor also exhibited considerable variations

depending on the initial conditions. In our experiments, the energy conversion factors for

Carbopol gels and polymer-water balls were similar, ranging from 9 to 30%, with an average of

19%. One possible explanation for the discrepancy between these experiments is that earlier

studies used the slide’s initial mass when computing its kinetic energy, whereas we used the

slide’s effective mass.
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Figure 4.9 – Variation in the wave’s maximum potential energy Ep relative to the slide’s kinetic
energy E I .

4.2.3 Discussions

Multicollinearity

Multicollinearity is a phenomenon where one explanatory variable in a multiple regression

model can be linearly predicted from the others with a substantial degree of accuracy. This

may lead to the problem that the multiple regression’s coefficient estimates change erratically

in response to small changes in the model. The natural logarithmic form of Equation (4.3) can

be written as:

ln X = lnδ+β1 lnΠ1 +β2 lnΠ2 +β3 lnΠ3 (4.10)

The coefficients lnδ, β1, β2, and β3 were estimated using the least squares (linear regression)

method based on experimental data. As length [L] was scaled by the still-water depth h0, h0

appears in the three aggregated parametersΠ1,Π2 ,andΠ3, and specifically, they are correlated

with h−2
0 , h−1

0 , and h−1/2
0 , respectively. The high correlations among explanatory variables may

result in multicollinearity during the linear regression. However, to date, none of the studies

using empirical equations has discussed multicollinearity.

To estimate the correlations between each pair of explanatory variables, we calculated their

Pearson correlation coefficients r . As illustrated in Figure 4.10, the Pearson correlation

coefficient RP between Π1 and Π2 is relatively high (RP = 0.69), however, it is still under the

upper limit of 0.8. Furthermore, to determine how influential the water depth h0 was in wave

generation, we determined the sensitivity of the maximum wave amplitude am to a ±20%

change in each of the following parameters (taken in isolation from the others): slide volume

on impact Vs , slide velocity on impact u0, slide thickness s0, and still-water depth h0. We

obtained similar results to those obtained by Heller et al. (2009): the am variations due to

changes in these parameters were smaller than 20%, and am was more sensitive to u0 and Vs

rather than h0. Therefore, we can consider that the multicollinearity lies within an acceptable
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range.

Figure 4.10 – Correlation matrix of explanatory variablesΠ1,Π2, andΠ3 in Equation (4.3).

Effect of slide cohesion

Within the range of Carbopol concentrations tested, no significant rheological effects on wave

amplitudes and heights were detected. As presented in Figure 4.6, wave amplitudes generated

by Carbopol gels were approximately 30% larger than those generated by polymer-water

balls. This behavior was similar to that observed with rigid blocks and granular materials by

Ataie-Ashtiani and Nik-Khah (2008): blocks formed waves whose amplitudes were up to 35%

larger than for granular slides. Differences in wave characteristics have been considered to

arise due to the materials’ deformability (for example, blocks are rigid, whereas granular slides

are deformable). In the present case, both the Carbopol gels and polymer-water balls were

deformable, but Carbopol gels generated the waves with the highest amplitudes. The main

difference between Carbopol gels and polymer-water balls lay in their cohesion. Carbopol gels

moved as united slides because they were cohesive, whereas polymer-water balls dispersed

into numerous particles after entering the body of water. In this respect, material cohesion

had more influence on how the slide momentum was transferred to the body of water than

did slide deformability.

In addition to the slide cohesion and deformability, the slide permeability, which is related

to the material porosity, is likely to influence wave formation. Lindstrøm (2016) compared

impulse waves generated by four granular slides with different porosities, and found that
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granular slides with smaller porosities generated larger amplitudes. That study deduced that

permeability played a key part in wave formation: smaller permeability implies that the water

filling the pore space cannot instantaneously drain out upon slide impact, and in this case,

the slide tends to behave like a rigid body. By contrast, Heller and Hager (2010) observed that

the grain diameter had negligible effects on wave formation, which was why they excluded the

grain diameter from the list of governing parameters. Evers and Hager (2015) noted that the

waves generated by packed slides were similar to those generated by free granular material.

4.3 Wave prediction under complex configurations

In contrast to empirical equations that specified the mathematical operators in advance,

the data-driven approach relies solely on datasets and does not require any assumptions

about functional form or physical constraints. The present study applied an artificial neural

network (ANN) method, one of the most commonly used data-driven methods, to cope

with wave prediction under complex configurations. The dataset consists of experiments

conducted using Carbopol, water balls, and mixtures thereof. After validating the ANN model

by comparing its prediction accuracy with that of empirical equations, we applied the model

to two scenarios: (i) predicting wave characteristics from the parameters of landslides initially

at rest on the slope and (ii) integrating the parameters of different categories of slide mass

material into one model (the Bingham number for viscoplastic material and the grain diameter

for granular material).

4.3.1 Model development

Using the same variables as empirical Equation (4.3), the three neurons in the input layer and

the two neurons in the output layer of the artificial neural network (ANN) model were:

• 3 inputs: Π1,Π2, andΠ3

• 2 outputs: Am and Hm

I first selected a dataset of 291 experiments conducted with Carbopol to develop the model.

80% of the samples (233) were selected as training data for model construction and 20% (58

samples) were saved as test data for model validation, providing an independent measure of

ANN performance after training. Samples for each group were selected randomly.

I used a basic three-layer network structure; namely, one input layer, one hidden layer, and

one output layer. To select the optimal number of neurons in the hidden layer, we set a

random number of neurons and ran the program, determining their performance by the

coefficient of determination R2 (see Equation (3.48)). Each run was repeated 5 times and R2

was calculated by eliminating the maximum and minimum coefficients of determination and

averaging the results of the remaining three tests. As shown in Figure 4.11, the R2 of both Hm
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and Am reached their maximum values when the hidden layer contained 6 neurons. Thus, the

optimum network for the present study was a 3–6–2 structure (input–hidden–output).

3 4 5 6 7 8 9 10 11 12
Numbers of hidden neurons

0.8

0.85

0.9
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1
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average

Figure 4.11 – Variation of R2 versus the number of neurons in the hidden layer.

Model training was constrained by the following indicators: the maximum epoch number

was initially set to 100; the objective mean square error (MSE)(see Equation (3.49)) was set to

1×10−4; the minimum gradient was set to 1×10−5; and the maximum number of validation

fails, which represents the number of successive iterations that the validation performance fails

to decrease, was initially set to 6. Training would stop once one of the indicators mentioned

above reached its initial value. In the present study, training stopped when the number of

validation fails reached 6. Figure 4.12 illustrates the evolution of these indicators (that is,

gradient, validation fails, and MSE) at each epoch until the training is stopped.

In Figure 4.12 (c), the MSEs of the training data and the test data were counted separately. The

curves of the evolution of the MSE for these three data series were very close, indicating the

model’s high level of adaptability. The best validation performance was an MSE = 0.00025337

at epoch 43, and the training terminated at epoch 48 as the number of validation fails reached

6. The gradient = 0.0011736 at epoch 48. Figure 4.13 displays a histogram of the residuals

between the predicted Am and the observed Am . The probability density of the residuals

approximately follows a Gaussian distribution.

Figure 4.14 displays the observed Am and Hm versus the predicted data modeled using the

ANN model and the empirical equations. The empirical equations of Am and Hm for waves

generated by Carbopol were Equation (4.6) and Equation (4.4), respectively. The R2 of Am and

Hm of the test data in the ANN model were 0.9682 and 0.9479, respectively; the R2 of Am and

Hm of the test data predicted by the empirical equations were 0.9214 and 0.9062, respectively.

As shown in Table 4.2, the ANN model outperformed the best-fitting empirical equation. In

addition, the R2 of Am was always slightly higher than that of Hm in both models, which may

result from measurement errors in the experiments (Meng, 2018; Meng and Ancey, 2019).
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Figure 4.12 – Variations in (a) the gradient, (b) the number of validation fails, and (c) MSE,
against epochs.

4.3.2 Prediction of wave characteristics from initial slide parameters

Previously, empirical or semi-empirical equations determined wave characteristics from the

mass slide features on impact (illustrated as Stage II in Figure 2.1), and most equations were

established in the form of power-law equations of several dimensionless groups (see Equation

(4.3)). When we predict the wave characteristics from the slide features at Stage I, it is difficult

to provide physical constraints on the mathematical structure of predictive equations because

of the complex physical mechanisms involved in the whole process. In this case, assuming

a functional form for the prediction equation in advance might be problematic. Therefore,

a data-driven approach that relies strictly on the data rather than on a fixed form equation

is preferable, and the ANN method fits this requirement. The process involves the following

parameters:

η(x, t ) = η(τc ,K ,n, l0, s0, ls ,h0,θ,ρ f ,ρs , t , g ) (4.11)

The slide mass’s rheological parameters include τc , K , and n. Although they have little effect

on the slide mass–water interaction and wave formation (Meng and Ancey, 2019), they have

great effects on the slide mass flowing down the slope. The Pearson correlation coefficients

between each pair of these three parameters were all above 0.9 (see Table 4.1), indicating that
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Figure 4.13 – Error histogram of Am with 20 bins. The red part denotes test data and the grey
part denotes training data.

all three parameters correlated highly. Therefore, we selected the yield stress τc , namely the

stress at which the material starts yielding, to represent the rheological parameters.

Table 4.1 – The Pearson correlation coefficients between τc , K , and n.

τc K n
τc 1 0.9739 0.9604
K 0.9739 1 0.9633
n 0.9604 0.9633 1

Figure 4.15 provides an initial insight into how the wave characteristics depend on the

rheological properties of the slide mass and on its parameters at the initial stage. It shows

experimental data with the yield stress set at τc = 41, 62, and 80 Pa. Overall, the maximum

wave amplitude am increased with rising yield stress τc and initial slide mass mI , and

decreased with the slope length ls .

ε = l∗
h∗

and ς = s∗
h∗

are aspect ratios for the l-axis to the y-axis, and for the s-axis to the y-

axis, respectively. The natural choice for defining the typical scale introduced by these ratios

was to select the dimensions of the reservoir: l∗ = l0, h∗ = h0, and s∗ = sg . The Bingham

number can be expressed as Bi = τc
K (v∗/s∗) , which is a dimensionless yield stress (relative

to the viscous forces). We assumed that the viscoplastic flow reached a near-equilibrium

regime, where viscous forces balanced gravity acceleration, and the velocity scale was then

v∗ = (ρs g sinθ/K )1/n s1+1/n∗ . The Bingham number then became Bi = τc
ρs g sg sinθ (see Ancey and
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Figure 4.14 – Plot of observed and predicted (a) Am and (b) Hm , for the empirical equations
and the ANN model. Training data and test data in the ANN model are displayed separately.
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Figure 4.15 – Variations in wave amplitude am against mI l−1
s , with the water depth h0 = 0.2 m

and slope angle θ = 45◦.

Cochard (2009) for further information).

The dimensions involved in Equation (4.11) are length [L], mass [M], and time [T]. We chose

three scaling parameters: water density ρ f , still-water depth h0, and gravitational acceleration

g (Zitti et al., 2015). Thus, the dimensionless form can be expressed as:

η′ = η(x, t )

h0
= η′

(
τc

ρg s0 sinθ
,

l0

h0
,

sg

h0
,

ls

l0
,θ,

ρs

ρ f

)
(4.12)

where η′ is the scaled free-water surface elevation. Same as in section 4.3.1, we selected the

scaled maximum wave amplitude Am and height Hm to represent the water surface elevation.

As the slide mass density ρs and water density ρ f were constant throughout our experiments,
ρs

ρ f
can be eliminated. Therefore, there were therefore five neurons in the input layer and two

neurons in the output layer:
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• 5 inputs: Bi , ε, ς, ls
l0

, and θ

• 2 outputs: Am and Hm

The modeling method used was the same as in section 4.3.1. First, based on the optimal

number of hidden neurons determined, a 5–10–2 network structure was developed. The

experimental data were then divided into training data and test data. Finally, the ANN model

was trained using the training data and validated using the test data. The coefficient of

determination R2, the mean square error (MSE), and the sum of squares due to error (SSE)

of Am were 0.8983, 0.00089, and 0.2591, respectively. The R2, MSE, and SSE of Hm were

0.8497, 0.00295, and 0.8483, respectively. The expressions of R2, MSE, and SSE have been

introduced in Equations (3.48) to (3.50). Because R2 > 0.8, the present model is validated.

However, compared with the scenario that predicted wave characteristics from the slide mass

parameters on impact, the prediction accuracy of the ANN method in the present scenario

was lower. The more complicated the physical process is, the more information could be lost

in the prediction.

4.3.3 Waves generated by viscoplastic-granular mixtures

In this section, I quantified the characteristics of waves generated by viscoplastic-granular

mixtures, with the percentage of Carbopol in volume varying symmetrically (0, 20, 50, 80,

and 100%). As shown in Figure 4.16, larger waves are generated with higher proportions of

Carbopol in the mixture, which implies that the slide mass material’s composition influenced

wave generation. Here, to provide identical criteria for all slide mass materials, I quantified

the slide mass properties using a universal dimensionless group named the Impulse product

parameter P, which was proposed by Heller and Hager (2010):

P =Π1/4
1 Π1/2

2 Π3 cos(6/7θ)1/2 (4.13)

where Π1, Π2, and Π3 denote the same parameters as in Equation (4.3). One issue that

should be noted is that the properties of granular slides are usually represented by their grain

diameters, whereas the rheological behavior of viscoplastic materials is commonly described

using the yield stress. It is difficult to integrate these two parameters into one equation in the

form of a power-law equation. To overcome this limitation and provide a compatible model

for these parameters, I applied the ANN method to avoid assuming the functional form of a

prediction equation. Here, I predicted the wave characteristics from the mixture’s parameters

on impact.

As highlighted above, the dimensionless parameters in modeling experiments with a single

material commonly involve the relative slide mass Π1, relative slide thickness Π2, and slide

Froude numberΠ3. To quantify the properties of mixed viscoplastic and granular slides, we

introduced the following dimensionless groups: the Bingham number Bi = τc
ρs g sg sinθ ,

representing the rheological properties of a cohesive material; the scaled diameter of the
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Figure 4.16 – Effects of slide mass material composition on the scaled maximum wave
amplitude Am .

granular slide mass Ds = dg

h0
, where dg is the diameter of a granular particle; the volume ratio

of the viscoplastic material in the mixture RV = Vs
Vg+Vs

, where Vs is the volume of the

viscoplastic slide mass and Vg is the volume of the granular slides; and the density ratio

between the two materials, which is a constant in the present study.

Figure 4.17 – Predicted (a) Am and (b) Hm with a 6–8–2 ANN model versus experimental data.
Training data and test data in the ANN model are displayed separately.

Hence, the input layer contained 6 neurons {Π1,Π2,Π3, Bi, Ds , and RV }, and the output layer

again contained {Am and Hm}. Using the same method as presented in section 4.3.1, the

number of hidden neurons was determined and the network’s optimum structure was 6–8–2.

The R2, MSE, and SSE of Am were 0.9325, 0.0072, and 0.2172, respectively. R2, MSE, and SSE of

Hm were 0.9173, 0.00178, and 0.6154, respectively. As R2 of both Am and Hm were greater than

0.8, the model can be considered as valid. The predicted Am and Hm are illustrated against

the experimental data in Figure 4.17.
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4.3.4 Discussions

Model adaptability

In sections 4.3.2 and 4.3.3, we presented two applications that were difficult to model using

empirical equations with a fixed functional form. One application was predicting wave

characteristics from slide mass features at the initial stage I. When doing this, it is difficult to

provide physical constraints on the mathematical structure of predictive equations because of

the complex physical mechanisms involved in the whole process. In this case, assuming a

functional form for the predictive equation in advance might be problematic. Another

application was predicting waves generated by viscoplastic–granular mixtures. The properties

of granular slides are usually represented by their grain diameters, whereas the rheological

behaviors of viscoplastic materials are commonly described using yield stress. It is difficult to

integrate these two parameters into one equation in the form of a power-law equation.

Both these scenarios can easily be adapted using the ANN method’s high prediction accuracy

(see Table 4.2). This clearly demonstrates the advantage of using a purely data-driven method

in terms of model adaptability (and this is not limited to an ANN method). Unlike empirical

equations with fixed formulae, the ANN method has no external constraints, making it a

scalable open system. It also has the ability to self-update and is highly adaptable when

new parameters become available or fresh constraints appear (they are not limited to the

two scenarios presented in this study). With more information, richer datasets, and stronger

correlations can be built from the input layer to the output layer.

Prediction accuracy

Table 4.2 concludes the coefficient of determination R2, mean square error (MSE), and sum

of squares due to error (SSE) values for each of the models. The following features are worth

noting:

• The ANN model gives more precise predictions than empirical equations based on

regression techniques. Using the same explanatory variables, the coefficient of

determination R2 improved from 0.9214 to 0.9682 for Am , and from 0.9062 to 0.9479 for

Hm . Of course, the improvement in prediction accuracy is not large.

• The prediction precision for Am was greater than for Hm in predictions made with

empirical equations and with the ANN models. This may be because the experimental

measurement errors of wave heights hm were larger than those for wave amplitudes

am . Prediction precision depends not only on the prediction performance of the model

selected but also on experimental accuracy.

• The predictions of wave features from the parameters at impact were better than the

predictions from the parameters at the initial stage. Also, prediction precision

decreased when the dataset involved combinations of different slide mass materials.
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Thus, prediction precision decreased as experimental complexity increased and more

parameters were involved.

Table 4.2 – The R2, MSE, and SSE values of the described models.

empirical equations ANN model (i)* ANN model (ii)** ANN model (iii)***

Am Hm Am Hm Am Hm Am Hm

R2 0.9214 0.9062 0.9682 0.9479 0.8983 0.8497 0.9325 0.9173
MSE 0.00081 0.00197 0.00025 0.00107 0.00089 0.00295 0.00072 0.00178
SSE 0.2571 0.6266 0.0865 0.3088 0.2591 0.8483 0.2172 0.6154

* prediction from dimensionless parameters on impact.
** prediction from the slide’s initial parameters.
*** prediction from data with several slide materials.
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5 Temporal analysis of the slide-water
interaction

Based on the results of PIV experiments conducted with Carbopol, this chapter provides a

temporal analysis of how the viscoplastic fluid interacts with water. Section 5.1 presents the

time series data of the slide parameters on impact including the thickness and velocity passing

through the shoreline and the submerged slide mass. Section 5.2 presents the interaction

forces between the slide phase and the water phase as well as the momentum variations of the

two phases in a selected control volume. Section 5.3 estimates the time series data of wave

characteristics from slide parameters based on the panel data model.

5.1 Temporal slide parameters on impact

Section 3.1.2 presented theoretical expressions for the time series data of the slide’s thickness

s(x̂, t̂) and depth-averaged velocity u(x̂, t̂) when it moves along a chute. The sketch of the

slide moving along the slope is presented in Figure 3.2. Here, the theoretical expressions of

s(x̂, t̂ ) and u(x̂, t̂ ) (Equations (3.24) and (3.28)) were solved numerically using Matlab. Figure

5.1 shows the numerical solutions of s(x̂, t̂ ) and u(x̂, t̂ ) for the following specific case: the slope

angle θ = π/6 and the yield stress of slide material τc = 58 Pa (see the figure caption for the

other parameters). Both s(x̂, t̂ ) and u(x̂, t̂ ) increase with x̂ and decrease with t̂ .

The time series data of the slide thickness at the shoreline s(x̂ = ls , t̂ ) is denoted by s0(t ), and

the depth-averaged velocity of the sliding mass at the shoreline u0(x̂ = ls , t̂) is denoted by

u0(t ). The relation between t and t̂ is:

t = t̂ − t0 (5.1)

where t0 denotes the time taken from when the slide starts to move until the front of the slide

material touches the shoreline. Both s0(t ) and u0(t ) can be measured from the PIV experiments.

Figure 5.2 compares the experimental data of s0(t ) and u0(t ) with their theoretical values for

the case displayed above. The theoretical results had good agreement with the experimental

data. In the selected test, the residual r between the theoretical and experimental data was
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Figure 5.1 – Numerical solution of (a) slide thickness s(x̂, t̂ ) and (b) depth-averaged velocity
u(x̂, t̂) along the chute (initial setting: θ = π/6, sg = 0.4 m, l0 = 0.3 m, n = 0.33, τc = 58 Pa, µ =
18.9 Pa · sn , and g = 9.8 m/s2).

fairly low: |r | < 2×10−3 m for the slide thickness at shoreline s0(t), and |r | < 0.2 m/s for the

depth-averaged velocity u0(t). The averages of the absolute residuals |r̄ | were smaller than

10% of the experimental data for both s0(t ) and u0(t ). In addition, both s0(t ) and u0(t ) follow

hyperbola functions. u0(t ) decreased sharply since the front of the sliding mass had passed

through the shoreline, whereas the decreasing tendency of s0(t ) was relatively flat.

The slide mass on impact was quantified by the immersed part’s mass of the slide material.

Figure 5.3 (a) shows the evolution of the submerged slide mass mE (t), with the initial slide

mass mI ranging from 2.44 to 5.75 kg and the slope length ls fixed to 0.85 m. Figure 5.3 (b)

shows the time evolution of mE (t), with mI fixed to 4 kg and ls systematically varied from

0.80 to 0.90 m. It can be seen that the submerged slide mass mE (t) increases quickly at the

beginning, and then slows down and finally stops. In addition, less than 50% of the initial slide

mass has entered the body of water until the slide stops moving, while the rest of the slide

material deposits along the slope.
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5.2. Momentum transfer

Figure 5.2 – Comparison of theoretical and experimental results of (a) s0(t ) and (b) u0(t ).

5.2 Momentum transfer

This section displays how the momentum is transferred from the slide phase to the water

phase, by analyzing the interaction forces engaged in stopping the motion of the slide phase

and the momentum variations of the two phases in the observation window.

5.2.1 Interaction forces

The forces governing the momentum transfer from the slide phase to the water phase consist

of two parts: the hydrostatic force FP and the drag force FD .

Hydrostatic force

The hydrostatic force FP can be experimentally determined from the records of the

slide-water interface and free water surface (see Figure 2.8). Due to the complexity of the

slide-water interface’s evolution, it is difficult to presume a theoretical expression for FP

directly. The strategy was to determine the force experimentally and then make a

mathematical approximation based on the experimental data.

I first selected an observation window with a length of 0.6 m, which corresponds to the

control volume V in the theoretical model. I selected four representative experiments as

examples, with which I displayed the general tendencies of the results. Table 5.1 shows the

initial parameters of the four selected experiments.

Figure 5.4 shows the time variation of the hydrostatic force FP acting on the submerged

slide material for the four selected experiments. The horizontal projection of the hydrostatic
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Figure 5.3 – Time variation of the submerged slide mass mE (t) with varying (a) initial slide
mass mI and (b) slope length ls .

Table 5.1 – Initial parameters of the selected tests which served as examples.

Test number C [%] ls [m] α [-] mI [kg] h0 [m]
Test 32 2.5 1.05 π/4 3.0 0.2
Test 40 2.5 0.95 π/4 3.5 0.2
Test 42 2.5 0.85 π/4 4.0 0.2
Test 46 2.5 0.85 π/4 4.5 0.2

force FP is denoted by Fp,x , and the vertical projection of FP is denoted by Fp,y . At the very

beginning, both Fp,x and Fp,y increased quickly. Then, Fp,x and Fp,y begun to decrease, with

the submerged slide starting to stop and the leading wave starting to decay. After the slide had

stopped, Fp,x and Fp,y were finally balanced with the gravity and the anchorage force provided

by the slope.

As mentioned in section 3.1, the transfer of momentum in horizontal direction plays a key

role in wave formation, so I emphasized on the horizontal projection of the hydrostatic force

Fp,x . As shown in Figure 5.4, Fp,x approximately follows a parabola function that increases

quickly at the beginning and begins to decrease after reaching the maximum value. The axis

of symmetry of the parabola curve in Figure 5.4 was defined as acting time ta , which can be

approximated by the time taken from the front of the slide touching the shoreline to the wave

reaching its maximum height. Thus, Fp,x can be expressed as:

Fp,x =
{ 4Fpmx

t 2
a

t (ta − t ) 0 < t < ta

0 x > ta
(5.2)
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Figure 5.4 – Time variation of the hydrostatic force FP acting on the slide phase: (a) horizontal
projection Fp,x and (b) vertical projection Fp,y .

where Fpmx is the maximum value of Fp,x . In this simplified equation, Fpmx and ta were

unknown. I then developed empirical equations for Fpmx and ta by regressing with

experimental data:

Fpmx =−25.4117s0.4802
0 u1.0890

0 m0.3866
E (5.3)

ta = 0.3579s−0.0506
0 u0.2432

0 m0.0029
E (5.4)

Here, the slide thickness s0, slide velocity u0 at impact and the effective mass mE have been

routinely used to estimate wave characteristics. Figure 5.5 displays the measured and

predicted maximum hydrostatic force in x-direction Fpmx and acting time ta . The coefficient

of determination R2 was 0.884 for Fpmx and 0.875 for ta , which means the Fpmx and ta fitted

well with Equations (5.3) and (5.4).

Figure 5.5 – Comparing the measured and predicted (a) Fpmx and (b) ta .
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Drag force

The drag force FD mainly depends on the velocity difference between the slide material and

the body of water. It is also influenced by many other factors, including the shape of the slide-

water interface, the slide material’s deformability, etc. Equation (3.12) displays the expression

of FD . In the equation, the effective area of the slide-water interface A f , the velocity of the

submerged slide material ūs , and the water velocity ū f are lacking.

As shown in Figure 5.6 (a) and (b), both the horizontal and vertical projection of the center

of mass of the submerged slide material decreased from t = 0.2 s, showing the deformation

of the submerged slide material. As the slide is deformable, the velocity at the frontal area is

different from the mean velocity of the slide. As a simplification, I estimated the velocity of the

two phases by their mean velocity in the control volume. Figure 5.6 (e) and (f) show the x−
and y−projection of the mean velocity of the submerged slide, respectively.

Figure 5.6 – Time variation of the horizontal and vertical projection of: the slide’s center of
mass (a) cx and (b) cy , the frontal area (c) Ax and (d) Ay , and the mean velocity of submerged
mass (e) ūx and (f) ūx .

Figure 5.6 (c) and (d) show the time variation of the horizontal and vertical projection of the
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frontal area A f ,x and A f ,y . I assumed the x−projection of the effective frontal area A f ,x follows

a parable function. Thus, A f ,x can be approximated by:

A f ,x =
{ A f xm

t 2
a

(t − ta)2 + A f xm 0 < t < ta

A f xm x > ta
(5.5)

where A f xm denotes the maximum value of A f ,x . The empirical equation of A f ,x was obtained

by regressed with experimental data using s0, u0 and mE :

A f xm = 0.0377s0.9846
0 u0.0667

0 m0.0984
E (5.6)

Figure 5.7 compares the A f xm measured from experiments and estimated with Equation (5.6).

The coefficient of determination R2 = 0.891.

Figure 5.7 – Comparison of the measured and predicted A f xm .

The velocity of the submerged slide material ūs and the velocity of water in the control volume

ū f were unknown parameters not only in the drag force equation but also in the momentum

balance equations. The horizontal mean velocity of the submerged slide ūs and water in the

control volume ū f can be solved along with the momentum conservation equations.

5.2.2 Momentum variation

Figure 5.8 illustrates the momentum variations of the two phases in the observation window for

the four selected tests. See Table 5.1 for the parameters of these four tests. For the momentum

of both the slide phase ps and the water phase p f , the momentum variations in horizontal

direction (ps,x and p f ,x ) are significantly larger than those in vertical direction (ps,y and p f ,y ).

Knowing the governing equations, boundary conditions (i.e., s0, u0, ū f ,r , ηr ) and force applied
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Figure 5.8 – Time variation of the momentum of the (a) slide phase ps and (b) water phase p f

in the observation window.

on the control volume (i.e., FD,x , FP,x ), we can obtain the momentum of the two phases in

the control volume by solving Equations (3.5) to (3.9). Taking test 42 as an example, Figure

5.9 (a) and (b) compare the experimental slide momentum in the x-direction ps,x and water

momentum in the x-direction p f ,x with their theoretical data. The curves of both ps,x and

p f ,x fitted well with the theoretical results before they reach their maximum value (i.e., t < 0.2

s). The observed ps,x decreased much more sharply than the theoretical curve after t = 0.2 s,

and had a slight rally from 0.4 to 0.6 s. From Figure 5.9 (c) and (d), it can be seen that, with

different initial parameters, all the curves follow similar tendencies. ps,x increases during 0

< t < 0.2 s, then begins decreasing. p f ,x increases until t = 0.4 s.

5.2.3 Discussions

Deformation of the submerged slide

Figure 5.10 shows the moving direction of the mean velocity of the submerged slide material

for the four selected tests. The time span between each marker is ∆t = 0.01 s. It can be seen

that the submerged slide material exhibits significant deformation after it has entered the

body of water. The deformation of the slide material unavoidably affects the interaction

forces between the slide material and the body of water. For example, both FP,x and FD,x

depend greatly on the shape of the slide-water interface which is greatly influenced by the

slide deformability.

Figure 5.11 illustrates how the submerged Carbopol is deformed during it intrudes into water.

The deformation can be divided into four phases. First, the slide material intrudes into the

body of water (phase i), and then it moves upwards due to the buoyancy effect (phases ii and
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Figure 5.9 – Comparison of (a) ps,x and (b) p f ,x obtained from experiments with the theoretical
estimation (Test 42). Theoretical estimations of (c) ps,x and (d) p f ,x , with the initial settings
0.85 < ls < 1.05 m, 0.15 < sg < 0.40 m, 0.2 < l0 < 0.4 m, and 60 < τc < 90 Pa.

iii), before the slide material finally moves backward due to the water pressure (phase iv).

We made simplifications for the expressions of both FP,x and FD,x in this study. The effect

of deformation on the efficiency of momentum transfer was not considered due to these

simplifications. It remains an open question as to how the deformability of the submerged

slide affects the momentum transfer between slide and water.

Temporal wave characteristics

In addition to the interaction forces and momentum variations, the time series data of wave

amplitude and wave height were measured from experiments. Figures 5.8 and 5.12 show that

the wave amplitude and height follow similar tendencies as the momentum variations of the

submerged sliding mass. Both reach their maximum values at approximately t = 0.15 s. This

produces evidence that the time series data of wave characteristics are particularly reliant

on the momentum variation of the slide phase. Further, if we look back at Figure 5.4, it is

notable that the increasing stage of Fp,x (t) is synchronous with the increasing stage of the

wave amplitude a(t ). Thus, it would be interesting to provide insights into how the temporal

wave characteristics depend on the slide momentum flux passing through the shoreline.

5.3 Prediction of temporal wave characteristics

In this section, I quantified the time series data of wave characteristics from the slide

parameters. I first classified the experimental dataset into several groups using a Gaussian
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Figure 5.10 – Direction of the mean velocity of the submerged mass.

Figure 5.11 – Sketch of the deformation of the submerged slide mass.

mixture model, and then used a panel data model named random coefficient model to model

the time series data. The principles of the Random coefficient model and the Gaussian

mixture model have been presented in section 3.2.2.

5.3.1 Classification of the data samples

I used the 92 experiments conducted with the PIV system as the dataset to develop the

model. Using the Gaussian mixture model, I classified the experimental dataset into several

groups according to three dimensionless parameters: the slide Froude number Fr, scaled

slide thickness S, and scaled effective slide mass M . Figure 5.13 (a) shows the results of the

classification. There were 5 Classes in total: 14 experiments in Class 1, 9 experiments in Class

2, 30 experiments in Class 3, 30 experiments in Class 4, and 9 experiments in Class 5.

To verify whether the classification results well reflect the wave characteristics, I displayed the

two dimensional distribution of the dataset of each class. Figure 5.14 (a) shows the ratio of

the scaled maximum wave amplitude to the scaled maximum wave height Am/Hm and the

impulse product parameter P of all experiments. In addition to Am/Hm , Figure 5.14 (b) and (c)

display the Am/Lm and Hm/Lm of all experiments. Am/Hm , Am/Lm , and Hm/Lm reflect the

non-linearity of the impulse wave. The impulse product parameter P reflects the size of waves,

as the wave characteristics can be regressed with P for most experiments (see Equation 4.1 for
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Figure 5.12 – Time variation of (a) wave amplitude a(t ) and (b) wave height h(t ).

Figure 5.13 – (a) Classification results based on the evaluation criteria Fr, M and S.

details). It can be seen that the classification results based on S, M , and Fr not only reflect the

nonlinearity of the waves but also reflects the size of the wave.

5.3.2 Predicting results

As discussed in section 5.2.3, the evolutions of the wave amplitude a(t ) and wave height h(t )

depend heavily on the momentum of the submerged slide in the x-direction Ps,x . Based on

Equation (3.7), Ps,x depends on the momentum flux crossing the shoreline, which can be

quantified by the slide thickness on impact s0(t ) and slide velocity on impact u0(t ). Therefore,

we may quantify a(t ) and h(t ) from s0(t ) and u0(t ). Further, as exhibited in section 3.1.2, s0(t )

and u0(t ) can be estimated from the initial settings of the experiments based on the kinematic

wave model and lubrication model. The idea of this section is to determine how the time

69



Chapter 5. Temporal analysis of the slide-water interaction

Figure 5.14 – Two dimensional distribution of experiments in each class: (a) P and Am/Hm , (b)
Am/Lm and Hm/Lm , (c) Am/Lm and Am/Hm .

series data of wave characteristics depend on the slide parameters on impact, and how they

depend on the initial settings of the experiments.

When predicting the maximum values of wave characteristics from the slide parameters on

impact, three dimensionless parameters have been used: the slide Froude number Fr, the

scaled thickness S, and the scaled effective mass M (see chapter 4). It is worth-noting that,

according to the mass conservation Equation (3.5), the change rate of the submerged slide

mass dmE
d t can be expressed by the thickness and velocity crossing the shoreline:

dmE

d t
= ρsB s0(t )u0(t ) (5.7)

where the slide density ρs and the width of the flume B are constants. This means that the time

series data of the submerged slide mass mE (t) depend on the thickness and velocity of the

sliding mass passing through the shoreline (s0(t ) and u0(t )). Therefore, I eliminated the mass

term when quantifying the time series data of wave characteristics from slide parameters.

The same temporal dimensionless groups were used as in chapter 4: A(t) = a(t)/h0, S(t) =
s0(t )/h0, and Fr(t ) = u0(t )/

√
g h0. Then, time t was scaled as T = t

√
g /h0. The objective is to

estimate the scaled wave amplitude A(t ) from the scaled slide thickness on impact S(t ) and

scaled Froude number Fr(t ). Here, a(t ), s0(t ) and u0(t ) can be estimated from experiments.

For the panel data model, I used the random coefficient model, but other panel data models

can also be applied to predict time series data. 82 of the 92 experiments were selected randomly

to train the model, and the other 10 experiments were used to validate the model. I first

quantified the scaled wave amplitude A(T ) with the S(T ) and Fr(t ) recorded in experiments.

Figure 5.15 shows the variation of the scaled wave amplitude A to the scaled time T for the 10

selected validation tests. I only considered the variation of wave amplitude for t < 1 s. The

experimental and the predicted data of A(T ) were illustrated.

As presented in section 5.1, s0(t) and u0(t) can be given by the initial experimental settings
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Figure 5.15 – The scaled wave amplitude A versus the scaled time T for the 10 validation tests
(N = 1,2, ...,10). Black dots denote the experimental data and red dots are the predicted A.

based on the lubrication model and the kinematic wave model. I then quantified the wave

amplitude with the theoretical approximations of s0(t) and u0(t). Table 5.2 shows the

prediction accuracy of the two cases. One case predicted A(T ) using the S(t ) and Fr(t ) given

by experimental data, while the other predicted A(T ) with S(t ) and Fr(t ) given by theoretical

approximations. The performance of the prediction was evaluated by its coefficient of

determination (R2) and mean square error (MSE). See Equation (3.48) and (3.49) for the

expressions of R2 and MSE, respectively. The prediction precisions of both series of prediction

were quite good, as R2 of most selected tests were larger than 0.8. In addition, using

experimental records of s0(t) and u0(t) leads to a better prediction accuracy than using the

theoretical approximations of s0(t) and u0(t) to predict the time series data of wave

amplitudes.

Table 5.2 – R2 and MSE of the prediction for s0(t ) and u0(t ) given by experimental data (R2
E X P

and MSEE X P ) and given by theoretical approximation (R2
T HE and MSEE X P ).

Number R2
E X P MSEE X P R2

T HE MSEE X P

1 0.9269 0.3265 0.8891 0.4022
2 0.9337 0.2729 0.9240 0.2923
3 0.9394 0.1959 0.8940 0.2045
4 0.9275 0.4637 0.9136 0.5062
5 0.9292 0.1350 0.9285 0.1358
6 0.9310 1.4901 0.9054 1.5489
7 0.9212 1.1769 0.8809 1.2515
8 0.8731 1.0479 0.8905 1.1765
9 0.9371 0.6429 0.9296 0.6804
10 0.9225 0.5428 0.9158 0.5658

Figure 5.16 shows the R2
T HE and R2

E X P for the whole dataset. It can be seen that for most

71



Chapter 5. Temporal analysis of the slide-water interaction

experiments, the prediction accuracy of predicting A(T ) with giving S(t) and Fr(t) by

experimental data is better than giving S(t ) and Fr(t ) by theoretical approximations.
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Figure 5.16 – Comparison of R2
T HE and R2

E X P for the whole dataset.

5.3.3 Discussions

Momentum transfer rate

Section 4.2 found that waves generated by viscoplastic material are clearly larger than those

created by granular slides with identical parameters (see Figures 4.5 and 4.6). I now discuss the

effect of slide material’s properties on wave generation from the view of momentum transfer

rate. The time series response of wave amplitude a(t ) mainly relies on the momentum of the

submerged slide material ps(t ). As discussed in section 3.1.1, the change rate of ps relies on

two factors: (i) the momentum flux across the shoreline, which is dominated by s0(t) and

u0(t ); and (ii) the forces act on the slide phase, which contain FD (t ) and FP (t ).

Both blocks and viscoplastic slides are continuous fluids, whereas granular slides are non-

continuous fluids. Due to the spaces among particles, for granular slides that have the same

s0(t ) and u0(t ) as viscoplastic and block materials, its momentum flux crossing the shoreline

is lower than blocks and viscoplastic slides. The momentum flux of continuous materials

crossing the shoreline can be expressed by d p = s0u0nd t . However, the momentum flux of

granular materials should depreciate with a reduce factor, namely, d p = r s0u0nd t , where r is

the slide porosity. This point of view corresponds to a question that I have not answered in

this thesis. I discussed the effect of slide cohesion by comparing waves generated by Carbopol
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and water balls in section 4.2, however, I did not exclude the possibility of the slide porosity

resulting to the difference in wave features.

Further, the mechanisms governing the impact of granular slides, viscoplastic slides, and

blocks are different. For granular slides, the transfer of momentum in horizontal direction

mainly relies on the drag force rather than the pressure force differences, as granular slides

disperse into numerous particles once they enter into the body of water. Each particle is small

and enters the body of water in a very short time, so the pressure differences in horizontal

direction is negligible. The hydrostatic pressure (manifested as buoyancy force) in the vertical

direction is balanced with the gravity force. For blocks and viscoplastic materials that move as

a whole, the transfer of the momentum in horizontal direction is controlled by both the drag

force and the pressure force differences.
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6 Conclusions

This thesis provides insights to impulse waves generated by viscoplastic fluid. Experiments

were conducted using a viscoplastic material called Carbopol and a granular material named

polymer-water balls.

6.1 Concluding remarks

6.1.1 Impulse waves generated by viscoplastic fluid

A common problem among all experimental studies of landslide-generated waves is the

choice of the material used for the sliding mass. To avoid the complication of work with real

landslides, researchers often use simplified and idealized materials to study the behavior of

natural landslides at the laboratory scale. Blocks and granular materials have been routinely

used to mimic landslides. Many natural cohesive landslides such as snow avalanche, lava flow,

and debris flow were considered as viscoplastic fluids when investigating their rheological

behaviors. Numerical studies in the field of landslide-generated waves have used viscoplastic

models, but none has applied viscoplastic material in experiments. This thesis took the

first step toward experimental study of impulse waves generated by viscoplastic fluid. The

originality of this thesis lies in its use of an artificial aqueous micro-gel called Carbopol Ultrez

10, whose rheological behavior can be described using the Herschel-Bulkley model. As a

comparison, I also conducted experiments using a granular material called polymer-water

balls, whose density is identical to that of Carbopol. The properties of the slide materials were

presented in section 2.2.

6.1.2 Effect of slide material on wave characteristics

For most experiments using block or granular slides, the sliding masses entered water at high

velocities in a very short period of time. Thus, the slide mass on impact was often considered

the same as the initial mass of the slide material in the container box. Observations from

high-speed cameras showed that Carbopol developed into a long and thin train of material
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along the slope. Due to the long duration of the motion along the slope, only a portion of the

sliding mass contributed to the first wave formation, and the leading wave decayed before the

slide mass stopped moving. To quantify the characteristics of waves generated by viscoplastic

fluid, the first question was how much of the initial slide mass is engaged in the leading wave

formation. In section 4.1.2, I defined the slide’s effective mass on the basis of the momentum

conservation equations, defined as the immersed part’s mass when the wave height reached

its maximum. The effective mass increases with the increase of the initial slide mass and

slope angle, and the decrease of the slope length and the yield stress of the slide material.

The ratio of the effective mass to the initial slide mass ranged from 10 to 30 percent in our

experiments (see Figure 4.3). Replacing the initial slide mass with the effective mass improves

the prediction accuracies of empirical equations (see Figure 4.2).

The slide material’s properties play a key part in the momentum transfer from the sliding mass

to the body of water. The effect of slide deformability and porosity have been discussed by

comparing waves generated by rigid blocks and granular materials, and comparing waves

generated by granular slides with different diameters, respectively. In section 4.2, I studied

the effect of slide material’s cohesion by comparing experiments conducted with Carbopol

(deformable and cohesive) and water balls (deformable and cohesionless). As shown in Figures

4.5 and 4.6, the wave heights and amplitudes created by the Carbopol gels were approximately

30 percent larger than those obtained using polymer-water balls. Thus, I deduced that slide

cohesion does affect wave generation. In addition, the rheological behavior and deformability

of Carbopol depended significantly on its concentration, but I noticed no significant effects of

these concentrations on impulse wave features (see Figure 4.4). This turned out to be evidence

that the effect of slide deformability on wave features is limited. It should be noted that we

cannot exclude the effect of slide porosity from this limited set of experiments. In future

studies, the results should be examined in parallel with earlier experiments that compared the

effects of rigid blocks and granular slides on impulse wave formation.

Empirical equations in the form of power functions have been widely used to express wave

parameters from slide parameters on impact. When different slide materials were involved,

empirical equations have fit well with experimental data of one slide material, often

exhibiting large deviations when being applied to dataset with other slide materials. None of

the existing empirical equations can account for the full range of materials used in

experiments. Also, applying empirical equations may be problematic if the slide material

involves different components. Taking a viscoplastic–granular mixture as an example, the

representative parameters of these two materials are the yield stress and grain diameter,

respectively. Due to the current lack of understanding about how the materials properties

affect the physical mechanism, integrating these two parameters into one equation might be

problematic if we have presumed a functional form for that equation in advance. In section

4.3, I used the neural network method, one of the most commonly used data-driven methods,

to integrate parameters of different categories of slide mass material into one model. The

model was applied to a dataset of experiments conducted with Carbopol, water balls, and

Carbopol-water balls mixtures. In contrast to empirical equations which presumed the
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functional form with a constraint, the data-driven method predicted the wave characteristics

purely from data. Of course, the disadvantage of a data-driven model is that it may suffer from

a lack of interpretability, for example, the difficulty in explaining causal relationships between

the data, the discrepancy, and the corresponding prediction. This reduces trust in the network

relevance because of the lack of visual links between outputs, inputs and neurons.

6.1.3 Temporal analysis of the slide-water interaction

To develop universal predictive models considering the physical constraints, it is necessary to

have a better understanding of how the sliding mass interacts with the body of water. There is

a gap in experimental observations of the internal dynamics of the slide-water interaction, due

to the difficulty of finding a slide material that can be traced using particle image velocimetry

(PIV). Carbopol is transparent and can be easily seeded with tracing particles without changing

the rheological properties, so that its internal velocity can be measured using PIV (see section

2.3.3). Owing to the use of Carbopol in the experiments, I measured the near-field velocity

fields of both the submerged slide and the body of water at the same time (see section 2.5.2).

In section 3.1, I developed a theoretical model to analyze how the viscoplastic fluid interacts

with the body of water, by combining Zitti et al. (2016) and Ancey et al. (2012). Following

Zitti et al. (2016), I established governing equations based on the mass and momentum

conservation equations of two-phase flow in a control volume. For the left boundary of the

control volume, Zitti et al. (2016) considered the slide velocity passing through the shoreline

as a constant and assumed the thickness by a parabolic function. The model was validated

by experiments using granular slides. As the granular slide was replaced by viscoplastic fluid

in this study, I provided the velocity and thickness of the sliding mass passing through the

left boundary by the lubrication model and kinematic wave model (Ancey et al., 2012). With

the support of the PIV technique, I determined the time series data of the interaction forces

(that is, hydrostatic force and drag force) between the two phases experimentally, and then

approximated the forces with empirical equations, thus completing the theoretical model

(see section 5.2.1). The theoretical model quantified the time variation of the momentum of

the two phases in the selected control volume, and thereby drawing the picture of how the

momentum is transferred from a viscoplastic fluid to a body of water (see section 5.2.2).

I also noticed that the temporal prediction of the wave characteristics is lacking. Theoretical

analysis indicated that the momentum exchange between the sliding mass and the body of

water heavily relied on the momentum flux of the sliding mass passing the shoreline. In

section 5.3, I proposed a statistical-theoretical combined model that can quantify the

temporal variation of the wave amplitude from the initial parameters of the slide material in

the container box. Using a random coefficient panel data model, I quantified how the

temporal wave amplitude depends on the slide’s thickness and depth-averaged velocity

passing through the shoreline. Using the lubrication model and the kinematic wave model,

the slide’s momentum flux were expressed theoretically from the initial parameters. The
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predictive model showed a good agreement with the experimental data.

6.2 Outlook

Some questions still remain unanswered. Future investigations will be continued in the

following aspects:

• The present study only addressed the end-member case in which the materials’ densities

were close to that of water, and lower than most natural landslides. I was unable to find

other materials whose properties are similar with those of Carbopol and water balls but

with higher densities. Further investigations will be needed to gain additional insight

into how the density affects the impulse wave formation.

• The effective mass was defined to quantify the actual slide mass acting on the leading

wave generation, and it was applied to empirical equations and data-driven models.

Even though the effective mass exhibits significant dependence with the initial

parameters such as initial slide mass, slope length, and yield stress of the slide material,

this thesis did not quantify the effective mass from these influential parameters

quantitatively. It would be interesting to provide a quantitative expression for the

effective mass in future studies.

• The role of slide cohesion in wave generation was discussed by comparing waves

generated by viscoplastic slides and granular slides with the same density. However,

from this limited set of experiments, the effect of slide porosity can not be excluded. A

further comprehensive comparison should be conducted for blocks, viscoplastic slides

with different yield stress, and granular slides with different diameters.

• With the help of the PIV technique, I observed the velocity field of the submerged

sliding mass and the water body at the same time. The analysis of how the sliding mass

interact with the body of water remains at a primary level. Many open questions remain

concerning the internal dynamics of the slide-water interaction, such as how the slide

properties affect the efficiency of momentum transfer, and how the water momentum

depends on the slide momentum.
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Notation

Global variables

Alphabetical symbols

a wave amplitude

am maximum wave amplitude

A f cross-sectional area of the slide interface

A f ,x horizontal projection of A f

A f xm the maximum value of A f ,x

As area of the slide-water interface

B width of the flume

Bi Bingham number

c concentration of Carbopol

C phase speed of water

Cd drag coefficient

(cx ,cy ) coordinates of the center of mass of the submerged slide material

dg diameter of a granular particle

Ds scaled diameter of the granular slide

Fr slide Froude number

F force applied on the control volume

FD drag force applied on the submerged slide material

FP hydrostatic force applied on the submerged slide material

FD,x horizontal projection of FD

FP,x horizontal projection of FP

FD,y vertical projection of FD

FP,y vertical projection of FP

g gravity acceleration

h wave height

h0 still water depth

hm maximum wave height

hs f vertical distance between the surface of the slide phase to the water surface

l0 initial length of the slide material
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Appendix . Notation

ls slope length

M scaled effective mass

mI initial slide mass

mE effective slide mass

n normal vector

n power-law index that reflects the shear thinning

P impulse product parameter

R2 coefficient of determination

s0 slide thickness on impact

sg initial slide depth at the lock gate

S scaled slide thickness

s(x̂, t̂ ) thickness of the sliding mass moving along the slope

Sr surface of the outgoing flow at the right boundary of the control volume

sc critical flow depth of the slide material

RP Pearson correlation coefficient

RV volume ratio of viscoplastic material in granular-viscoplastic mixtures

t time

T scaled time

t̂ time

ta acting time

u0 slide velocity on impact

u(x̂, t̂ ) stream-wise velocity of the sliding mass moving along the slope

ūs volume-averaged velocity of the slide phase

ū f volume-averaged velocity of the water phase

ūs horizontal projection of ūs

ū f horizontal projection of ū f

ū f ,r horizontal depth-averaged water velocity at the right boundary of the control volume

V control volume

v̄s vertical projection of ūs

v̄ f vertical projection of ū f

v̄ f ,r vertical depth-averaged water velocity at the right boundary of the control volume

Vs volume of slide phase in the control volume

V f volume of water phase in the control volume

VI initial volume of the slide material

VE effective slide volume

VS volume of the submerged slide material

(x, y) coordinate system

(x̂, ŷ) coordinate system

Y0 position of the yield surface

Greek symbols
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αs fraction of the volume occupied by the slide phase

α f fraction of the volume occupied by the water phase

µ consistency

γ̇ shear rate

η free-water surface elevation

ηr water surface elevation at the right boundary of the control volume

θ slope angle

Π1 scaled effective mass

Π2 scaled slide thickness

ρ f water density

ρs slide density

τ shear stress

τc yield stress

Abbreviations

ANN artificial neural network

MSE mean square error

PIV p

SSE sum of squares

Local variables in Section 3.2.1

Local variables are merely defined and used in a local Section.

Alphabetical symbols

E residual between expected and actual output values

ek residual of each output node

f activation function

r number of iterations

tk predefined target value

W weighting matrix

w weighting

x input variables

xi input layer

X j temporal computing results of input layers before using the activation function

X raw data

Y normalized data

yi hidden layer

yp,i predicted data
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Appendix . Notation

yo,i observed data

ȳ0 average of the observed data

Yk temporal computing results of hidden layers before using the activation function

zi output layer

ẑ output variables

z expected output variables

Greek symbols

β bias vector

∆w j k weighting adjustment

η learning rate

ε number of experiment

Local variables in Section 3.2.2

Alphabetical symbols

i serial number of data’s dimension

k explanatory variable index

kn unknown class tag for nth test

N number of the cross-sectional panel

n serial number of data sequence

P posterior probability

pk kth prior probability

Sni i th parameter at time n of the slide

t time

T test number in each panel

u random interference term

Wn j j th parameter at time n of the wave

xki t explanatory variable

x − y data panel

yi t cross-sectional data in a data panel

Greek symbols

β common mean coefficient vector

β̂GLS effective estimation of β

γ an operator from individual data to the common mean value

µk mean value of Gaussian distribution

πk weighting

σ variance of Gaussian distribution
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