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Abstract

P ATIENT monitoring plays a major role in clinical scenarios where the extent and

progression of suspected cardiovascular or neurological disorders are undeter-

mined. Early detection of the presumed disorder allows healthcare professionals to

provide necessary care to patients in the early stages of the disease and increases the

chances for successful treatment. Furthermore, prompt disease management pre-

vents further patient state deterioration, while significantly reducing the health-care

costs associated with the patient care and treatment, which tend to rise as the disease

progresses. Therefore, there is a need to identify patients at risk by monitoring them

on a daily basis.

In the medical community, the most commonly used procedures for patient monitor-

ing require prolonged hospitalizations and involve the use of cumbersome devices.

The lack of portability of these devices makes them unsuitable for patient monitoring

in an ambulatory setting. Luckily, new technological advancements have the poten-

tial to shape the future of healthcare by opening up new opportunities for patient

monitoring through the use of wearable devices. These devices acquire and process

biosignals such as Electrocardiogram (ECG) and Electroencephalogram (EEG), allow-

ing the assessment of cardiac and brain functions.

In this thesis, I focus on monitoring of patients suffering from cardiovascular and neu-

rological diseases through the use of wearable devices. The main diseases considered

in this thesis are Atrial Fibrillation (AF), Myocardial Infarction (MI), and epilepsy. The

proposed methods for the detection of the considered cardiovascular diseases use

ECG as the main biosignal, whereas the main biosignal used for detecting epileptic

seizures is EEG.

Firstly, I propose a hierarchical heart-rhythm classification method for AF detection

from a single lead ECG recording. The proposed method is based on the features that

capture the morphology of important ECG signal segments, along with heart-rate

oscillations and time and frequency domain features of the ECG signal. Furthermore,

the classification scheme used in this method incorporates two different classifiers: a
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Abstract

multiclass classifier and a random forest classifier, resulting in an F1 score of 78.95%

for AF detection.

Secondly, I address the problem of early detection and prevention of MI by introduc-

ing a real-time event-driven classification technique that uses a hierarchical classifier

with multiple levels. The main goal of this technique is to maintain a high classifi-

cation accuracy while reducing the complexity of the classification algorithm. The

reduction in computational complexity, in turn, results in a longer battery life, which

is an important factor for wearable devices. The proposed technique is validated

on a public database and ported on a real-life wearable device. The experimental

evaluation of the proposed technique on MI data shows that this scheme reduces

the energy consumption by a factor of 2.60, with no significant loss in classification

performance.

The third chapter of this thesis is split into two parts and it focuses on epilepsy. In

the first part, I present a real-time method for personalized epileptic seizure detec-

tion that uses EEG signals acquired from two electrode pairs: F7T3, and F8T4. The

proposed method reaches a sensitivity of 90.98% and specificity of 92.10% on the

database used in this study. Furthermore, this method is ported on a pair of eyeglasses

in which the used electrodes are embedded and hidden in the temples, allowing for

2.71 days of operation on a single battery charge. This method overcomes the lack

of portability and the effect of social stigma of EEG caps, which are used as a gold

standard technique for epilepsy detection.

Since the main pitfall of epilepsy detection algorithms is the unacceptably high num-

ber of false alarms, in the last part of my thesis, I propose an interpretable patient-

specific approach to false alarm reduction for epilepsy detection. This approach is

based on similarly occurring morphological EEG signal patterns (seizure signature)

that occur frequently during seizures. The proposed approach has been experimen-

tally validated on more than 5500 hours of long-term EEG recordings, resulting in

a high classification performance with no false positive alarms. The high degree of

interpretability of this method can help physicians discover seizures faster, as well as

it can be used to improve data labeling quality in publicly available databases, which

confirms its applicability for long-term seizure monitoring.

Keywords: patient monitoring, wearable devices, atrial fibrillation, myocardial infarc-

tion, epileptic seizures, hierarchical classifier, event-driven classification technique,

seizure signature, seizure patterns, misdetection of seizures, false positive alarms

reduction.
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Résumé

L A surveillance continue des patients est un point essentiel dans les scénarios cli-

niques où des troubles cardiovasculaires ou neurologiques sont suspectés et que

leur étendue et leur progression sont indéterminées. La détection précoce du trouble

présumé permet aux professionnels de la santé d’apporter les soins nécessaires dès les

premiers stades de la maladie, augmentant ainsi les chances de succès du traitement.

En outre, une prise en charge au plus tôt de la pathologie empêche une détérioration

de l’état de santé du patient tout en réduisant considérablement les coûts de la santé

associés aux soins et au traitement du patient, ceux-ci ayant tendance à augmenter

à mesure que la maladie progresse. Par conséquent, il est nécessaire d’identifier les

personnes à risques et de les surveiller quotidiennement.

Dans le domaine médical, les démarches usuelles pour une surveillance continue

des patients nécessitent une hospitalisation prolongée et l’utilisation d’appareils en-

combrants. Le manque de portabilité de ces dispositifs les rend inappropriés à la

surveillance des patients en milieu ambulatoire. Heureusement, les dernières inno-

vations technologiques ont le potentiel de façonner l’avenir des services de santé

en offrant de nouvelles opportunités pour une surveillance des patients grâce à des

appareils portatifs. Ces appareils récoltent et traitent des signaux biomédicaux tels

que l’électrocardiogramme (ECG) et l’électroencéphalogramme (EEG), qui permettent

l’évaluation des fonctions cardiaques et cérébrales.

Dans cette thèse, je me focalise sur la surveillance des patients atteints de maladies

cardiovasculaires et neurologiques grâce à l’utilisation d’appareils portatifs. Les prin-

cipales maladies considérées dans cette thèse sont la fibrillation auriculaire (FA),

l’infarctus du myocarde (IM) et l’épilepsie. Les méthodes proposées pour la détection

des maladies cardiovasculaires et la détection des crises d’épilepsie utilisent l’ECG et

l’EEG, respectivement, comme signaux biomédicaux.

Tout d’abord, je propose une méthode de classification hiérarchique du rythme car-

diaque qui permet de détecter la FA à partir d’un enregistrement ECG à une seule

dérivation. La technique proposée est basée sur les caractéristiques qui définissent la
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morphologie des segments importants d’un signal ECG, ainsi que les oscillations de

fréquence cardiaque et les caractéristiques temporelles et fréquentielles de l’ECG. En

outre, le schéma de classification utilisé dans cette méthode est décomposé de deux

parties : un classificateur à classes multiples et un classificateur basé sur les forêts

d’arbres décisionnels. Cette méthode donne un score F1 de 78,95% pour la détection

de la FA.

Deuxièmement, j’aborde le problème de la détection précoce et la prévention de l’IM

en introduisant une technique de classification événementielle en temps réel basée

sur une classification hiérarchique à plusieurs niveaux. L’objectif principal de cette

méthode est de maintenir une précision de classification élevée tout en réduisant la

complexité de l’algorithme de classification. Cela se traduit par une durée de vie de

la batterie plus longue, ce qui est un facteur important pour les appareils portatifs.

La technique proposée est validée sur une base de données publique et testée sur

un appareil portatif réel. Cette évaluation expérimentale montre que la technique

proposée réduit la consommation d’énergie d’un facteur 2.6, sans perte significative

des performances de classification.

Le troisième chapitre de cette thèse est divisé en deux parties et se concentre sur

l’épilepsie. Dans la première partie, je présente une méthode en temps réel pour la

détection personnalisée des crises d’épilepsie qui utilise des signaux EEG acquis à

partir de deux paires d’électrodes : F7T3 et F8T4. La méthode proposée obtient une

sensibilité de 90,98% et une spécificité de 92,10% sur la base de données utilisée dans

cette étude. Cette technique est implémentée sur un système combinant une paire

de lunettes et des électrodes intégrées. Les résultats montre une autonomie de 2.7

jours en fonctionnement continu. Ce dispositif apporte une solution aux problèmes

de portabilité et aux stigmatisations des bouchons EEG, qui représentent aujourd’hui

le système de référence pour la détection de l’épilepsie.

Le principal problème des algorithmes de détection de l’épilepsie est le taux élevé

de faux positifs. Je consacre donc la dernière partie de ma thèse à proposer une ap-

proche interprétable et propre au patient pour la réduction des fausses alarmes. Cette

approche est basée sur des motifs de signaux EEG morphologiquement similaires

(signature de crise) qui se produisent fréquemment pendant les crises. La méthode

proposée a été validée expérimentalement sur plus de 5500 heures d’enregistrements

EEG à long terme, résultant en une performance de classification élevée sans faux

positif. Le degré élevé d’interprétation de cette méthode pourrait aider les médecins

à découvrir les crises d’épilepsie plus rapidement. De plus, cette technique pourrait

être utilisée pour améliorer la qualité de l’annotation des enregistrements dans les
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bases de données publiquement accessibles, ce qui confirme son utilité pour un suivi

des crises épileptiques à long terme.

Mots-clés : surveillance des patients, appareils portatifs, fibrillation auriculaire, infarc-

tus du myocarde, crise d’épilepsie, classification hiérarchique, méthode de classifica-

tion événementielle, signature de crise, motifs de crises, détection erronée des crises,

réduction des faux positifs
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1 Introduction

T HE tremendous global shift in demographics with the ageing of populations

accompanied by the development of unhealthy lifestyles and irregular medical

check-ups has led to a significant increase in the population prevalence of different

cardiovascular and neurological diseases. Annual costs for treating people suffering

from these diseases, especially those that require hospitalization, are extremely high

showing a rising tendency toward the progression of these diseases. Rates of mortality

are higher in lower socioeconomic groups due to their limited access to medical care

and treatment. Apart from possible premature death, people suffering from these

diseases, particularly neurological ones such as epilepsy, are prone to experiencing

different accidents and injuries.

In order to halt disease progression and possible disease-related accidents, as well as

to reduce treatment costs, there is a need to identify patients at risk by estimating a

set of relevant and reliable parameters. This set of parameters will allow physicians to

detect the early onset of these diseases, which is a particularly important time when

these diseases can still be prevented by administering prompt emergency medication.

One of the possible ways to tackle this problem is through the acquisition of biosignals.

Biosignals are signals that are acquired from a living being by measuring the differ-

ence in electrical potential between two electrodes. Depending on the electrode

position, biosignal recordings can be classified into invasive and noninvasive ones.

Invasive recordings are performed with electrodes placed under the skin, whereas the

noninvasive ones require electrodes to be placed on the surface of the skin. In this

thesis, the main signals used for monitoring of patients suffering from cardiovascular

and neurological diseases are Electrocardiogram (ECG) and Electroencephalogram

(EEG), respectively. These two biosignals can be used for the estimation of relevant

prediction markers that provide a valuable insight into the heart and brain structures

and functions. Long-term monitoring of these markers can be used for early disease
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detection and prevention.

Gold standard techniques used for estimating the aforementioned prediction markers

are invasive and entail many risks associated with the implantation of electrodes in

the human body such as infections and possible lesions (Wellmer et al., 2012). More

precisely, in the case of cardiovascular and neurological diseases, these techniques are

usually based on medical procedures involving a catheter insertion into the circulatory

system and the use of electrodes implanted in the deep structures of the brain. Some

studies have supported concerns regarding the appropriateness of catheters and

implanted intracranial electrodes due to their correlation with increased morbidity

and mortality (Sokolski et al., 2011; Tanriverdi et al., 2009).

On the other hand, there are also noninvasive techniques that can be used for these

purposes. Several medically approved devices used in hospitals are using these nonin-

vasive techniques for getting an insight into the patients’ health status. In particular,

the Holter monitor can be used for the assessment of cardiac functions, whereas

the monitoring of the brain activity relies on the use of cumbersome EEG head caps.

The major challenges of these devices are their high power consumption, bulkiness,

lack of portability, and social stigma associated with their use, which make them

inconvenient to be used for ambulatory and home-based monitoring.

The revolutionizing era of the Internet of Things (IoT) offers the possibility for long-

term patient monitoring through the use of wearable devices. The portable and

non-intrusive characteristic of these devices enables monitoring of patients on a daily

basis outside of clinical environments, reducing patient discomfort during everyday

activities.

1.1 Cardiovascular Diseases

Cardiovascular diseases (CVDs) represent the leading global cause of death and dis-

ability nowadays, taking an estimated 17.9 million lives every year (WHO, 2020).

These diseases include different conditions affecting the structures of the heart and

blood vessels. CVDs make the largest contribution to mortality especially in low- and

middle-income countries (LMICs) due to lack of benefits of health-care services for

early detection and treatment of people. More precisely, more than 75% of deaths

related to CVDs occur in LMICs, leading to growing inequalities in the occurrence and

outcome of CVDs between countries and populations (WHO, 2020).

Apart from a negative effect on people’s health, the economic burden of these diseases

is enormous. Costs attributable to CVDs can be split into direct and indirect ones.
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Direct costs include money spent on medical services via a physician or healthcare

system, along with the corresponding costs, such as prescription medication and

home healthcare. On the other side, indirect costs are related to lost productivity.

Total costs (direct+indirect) of CVDs in the USA were estimated at $555 billion in 2015

and are expected to rise over $1.1 trillion (Association, 2017), which is shown in Fig.

1.1. Unless addressed, the mortality and disease burden from CVDs will continue to

increase.

Some CVDs can still be prevented by addressing behavioral risk factors, mainly to-

bacco use, harmful use of alcohol, physical inactivity, and unhealthy diet. These risk

factors significantly contribute to the development of Atrial Fibrillation (AF) (Brandes

et al., 2018) and Myocardial Infarction (MI) (Greenlund et al., 2005). The development

of these diseases is accompanied by changes in the heart functions and structures

that are directly reflected in the morphology of the recorded ECG. In the medical

community, the criterion standard for detecting these ECG changes involves the

use of 12 different leads. Apart from a long setup needed for signal acquisition, the

main disadvantages of the 12-lead ECG are its lack of portability and high energy

consumption.
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Figure 1.1: Projected total costs of atrial fibrillation, coronary heart disease and all
CVDs in the USA (Khavjou et al., 2016).
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1.2 Neurological Diseases

Neurological diseases are medically defined as disorders that affect the brain as well as

the nerves found throughout the human body and the spinal cord (WHO, 2016). These

disorders include epilepsy, Alzheimer’s disease and other dementias, Parkinson’s

disease, multiple sclerosis, migraine, cerebrovascular diseases including stroke, and

different neuroinfections (WHO, 2016).

As it is shown in Fig.1.2, epilepsy is among the most prevalent neurological diseases

worldwide affecting people of all ages. People with epilepsy face considerable difficul-

ties in their daily lives associated with their independence, education, employment,

driving licence status, as well as social integration (de Boer et al., 2008). Additionally,

they experience profound psychological consequences contributing to the develop-

ment of anxiety disorders, depression, and low self-esteem (de Boer et al., 2008). The

fear of having a seizure has a detrimental impact on patient’s quality of life and psy-

chosocial functioning. Furthermore, the unforeseeable nature of epileptic seizures

may sometimes lead to different accidents such as: soft tissue injuries, fractures, as

well as serious head injuries (Nguyen and Zenteno, 2009). The most severe seizures

that involve profound unresponsiveness may have a lethal outcome (Ryvlin et al.,

2009). To reduce the incidence of seizure-related accidents, long-term seizure moni-

toring is of utmost importance for alerting caregivers and health-care professionals to

help a person during a seizure.
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Figure 1.2: Global prevalence (per 1000) of neurological disorders in 2015 (WHO,
2015).

One of the standard methods for monitoring of epileptic patients entails the use of

video-EEG (v-EEG) along with the simultaneous recording of electrical brain activity

extracted from the scalp EEG (Cascino, 2002). This procedure is commonly performed

in hospitals by neurologists who look for abnormal brain activities reflected onto EEG

signals. Particularly, neurologists inspect the EEG signal morphology trying to find
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specific wave patterns that indicate the presence of seizures. In case of their absence,

v-EEG along with other complementary neuroimaging techniques is used to confirm

the presence of seizures. Nevertheless, v-EEG monitoring is more complicated than

EEG requiring hospital admission over several days. Furthermore, the scalp EEG is

acquired through the use of cumbersome EEG head caps that use from 23 to 256

wired electrodes requiring the subject to be seated. The lack of portability of EEG

caps and associated stigma make them inconvenient to be used for ambulatory and

home-based monitoring.

1.3 Wearable Devices

The latest technological developments have caused a massive spread of wearable

devices. These devices feature different sensors such as ECG, Ballistocardiogram

(BCG), Plethysmograph (PPG), accelerometer, gyroscope, etc, as well as a user inter-

face that communicates various data to the user in real-time. Thanks to these sensors,

wearables allow the continuous monitoring of different vital body parameters such as

heart rate (HR), blood pressure, body temperature, blood oxygen saturation, posture,

etc.

One of the main design challenges of wearables include battery life, compactness,

comfort, and device safety. As these devices rely on batteries as the primary energy

source, their energy consumption should be as low as possible to allow them to

monitor and measure different body parameters continuously. Furthermore, they

should be miniaturized without affecting the degree of comfort the wearer experiences

while wearing them. Moreover, their usage should not harm the user, hence safety

mechanisms should be integrated into these devices.

Wearable devices can be used for different purposes. Tracking physical activities

through the use of wearables has become one of the most popular methods to assess

activity intensity and energy expenditure. Furthermore, these devices also find ap-

plication in fall prevention, stress detection, weight monitoring, as well as patient

management. Allowing reliable and noninvasive diagnostics, while being appealing

to patients thanks to the small form-factor enabled by the modern system-on-chip

technology, these devices represent a promising solution for long-term monitoring.

The ability to be worn along with the inconspicuous nature of these devices enables

patients to avoid social stigma of wearing cumbersome apparatuses, such as EEG

head caps mentioned in Section 1.2.

Wearable technologies offer a possibility of assessing cardiac and brain functions on a

daily basis. This is usually done through the use of a Wireless Body Sensor Network
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Figure 1.3: WBSN composed of a smartphone as a network coordinator and four
different wearable devices: smart-glasses, cardiac monitoring belt, smart-watch, and
smart-shoes. [Taken and modified with permission from (Surrel, 2019).]

(WBSN) which represents a fusion of different wearable devices. A smartphone is

typically used to collect information from these sensors and transmit it wirelessly to a

remote server for storage and further analysis. An example of a WBSN composed of

four different wearable devices is shown in Fig. 1.3. Sending medical data to physicians

opens up the possibility of evaluating cardiac and brain functions and, subsequently,

provides care to patients in the ambulatory settings rather than admitting them to

hospital for assessment of their health status.

Sending raw signals acquired through wearables over the energy-hungry wireless

link has a detrimental effect on the energy consumption of these devices, and con-

sequently, battery life. One of the possibility to reduce energy consumption lies in

processing data directly on the device. Depending on the specific application, only

valuable clinical data should be sent to a remote server for patient health status as-

sessment. For instance, previously mentioned sport-tracking monitors acquire the

full ECG signal, but they only report the value of HR, resulting in extended battery life

of these devices.

Apart from performing the entire processing on the device, another way to optimize

the energy consumption of wearable devices is by acquiring a lower amount of data.

Even though the medical standard for ECG signal acquisition requires 12 different

leads, specific heart irregularities such as AF and MI can still be detected based on
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the ECG signal morphology acquired from only one lead. On the other side, the main

drawbacks of EEG caps mentioned in Section 1.2 can be overcome by reducing the

number of EEG channels needed for detection of epileptic seizures. While significantly

lowering the overall energy consumption of wearable devices, the reduction in the

number of signals’ channels might have an impact on the device performance, result-

ing in a high number of false positive alarms. Nevertheless, some adaptive algorithms

running on wearable devices allow the user to report false positive alarms and re-tune

the parameters of the algorithm. More specifically, each time a false positive alarm

occurs, the user can manually enter it on the device which will re-train the algorithm

on the device, taking into consideration this false alarm. Furthermore, in order to

achieve a high performance accuracy, the parameters used in algorithms running on

wearable devices should be tailored to each patient, which will be shown in this thesis.

1.4 Contributions

The main contributions to this thesis are related to the monitoring of patients suffering

from cardiovascular and neurological diseases using wearable devices. The main CVDs

considered in this thesis are AF and MI. The proposed method for AF classification

from a short single lead ECG recording and the proposed technique for early detection

and prevention of MI on wearable devices are presented in Chapter 2. For neurological

diseases, the main focus is set on epilepsy. More precisely, in the first part of Chapter

3, I propose an algorithm for the detection of epileptic seizures that uses four EEG

electrodes that can be embedded and hidden in the temples of eyeglasses. In the last

part of Chapter 3, I present an interpretable approach to false alarm reduction for

long-term epileptic seizure detection.

1.4.1 Contributions to Cardiovascular Diseases

The main contributions to this thesis related to the monitoring of patients suffering

from CVDs, specifically AF and MI, are:

• Hierarchical heart-rhythm classification method for distinguishing AF from

normal sinus and other heart rhythms.

• Classification performance evaluation of the proposed hierarchical heart-rhythm

classification method on the 2017 PhysioNet/CinC Challenge (Clifford et al.,

2017).

• Real-time early detection and prevention of MI using an event-driven classifica-
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tion technique that uses a hierarchical classifier with multiple levels.

• Analysis of computational complexity and energy efficiency of the proposed

hierarchical classifier, as well as the design flow that allows users to synthesize

high-accuracy event-driven hierarchical classifiers that meet user’s battery life

requirements.

• Classification performance evaluation of the proposed event-driven classifica-

tion technique on the MI database (Physiobank - PTB Diagnostic ECG database

(Goldberger et al., 2000)).

• Porting the proposed classification technique on a real-life wearable device,

including a detailed evaluation of energy consumption and battery life for the

case of MI.

1.4.2 Contributions to Neurological Diseases

The main contributions to this thesis related to the monitoring of patients suffering

from neurological diseases, particularly epilepsy, are:

• Real-time method for epileptic seizure detection that uses EEG signals acquired

from four electrodes and can run on a wearable device.

• Classification performance evaluation of the proposed method for epileptic

seizure detection on CHB-MIT Scalp EEG database (Goldberger et al., 2000;

Shoeb, 2009).

• Porting the proposed method for epileptic seizure detection on an inconspic-

uous pair of eyeglasses in which the used EEG electrodes are integrated in the

temples, and estimating the battery life and energy consumption of this device.

• Interpretable approach to false alarm reduction for long-term epileptic seizure

detection based on similarly occurring morphological EEG signal patterns.

• Classification performance evaluation and detection latency estimation of the

proposed approach to false alarm reduction on CHB-MIT Scalp EEG database

(Goldberger et al., 2000; Shoeb, 2009) and the European Epilepsy Database

(surface recordings) (Ihle et al., 2012).

• Identifying unlabelled seizures in both, CHB-MIT database (Goldberger et al.,

2000; Shoeb, 2009) and the European Epilepsy Database (surface recordings)

(Ihle et al., 2012).
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T HIS chapter provides an introduction to the heart anatomy and physiology along

with the electrical system of the heart. Furthermore, the basic principles of

Electrocardiogram (ECG) along with the ECG signal morphology of the normal sinus

rhythm are discussed. Then, a heart-rhythm classification method for differentiating

Atrial Fibrillation (AF) from normal sinus rhythm and other cardiac arrhythmias along

with the dataset used for its evaluation is described. Finally, the last part of this chapter

focuses on early detection and prevention of Myocardial Infarction (MI) presenting a

novel real-time event-driven classification technique for wearable systems.

2.1 Human Heart Anatomy and Physiology

The human heart is a muscle that pumps blood throughout the body via the car-

diovascular system. In order to do its work, it requires a constant supply of oxygen.

Oxygen is supplied to the heart by the coronary arteries that wrap around the outside

of the heart. The inside of the heart is divided into four heart compartments: two

upper chambers called the atria (right and left) and two lower chambers called the

ventricles (right and left). The structure of the heart along with the pathway of blood

flow through the heart is shown in Fig. 2.1.

The arrows in Fig. 2.1 indicate the blood flow. More precisely, oxygen-poor blood

from the body returns to the right atrium of the heart through two veins: the superior

vena cava (SVC) and the inferior vena cava (IVC). Blood from the upper part of the

body returns through the SVC, whereas blood from the lower body returns through

the IVC. As soon as the right atrium gets filled with blood, it contracts pumping blood

into the right ventricle through the open tricuspid valve. Once the right ventricle is

filled, the tricuspid valve closes preventing blood from flowing backward into the right

atrium. Then, the right ventricle contracts, the pulmonary valve opens, and blood is
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Figure 2.1: Structure of the heart. Blood flow through the chambers and heart valves.
[cbaOriginal by Wapcaplet, updated by Yaddah.]

pumped into the pulmonary artery reaching the lungs where it is oxygenated. The

pulmonary valve shuts to prevent blood from flowing back into the ventricle. After

picking up oxygen, oxygen-enriched blood from the lungs returns to the left atrium

of the heart via the left pulmonary vein. When the left atrium is filled with blood it

contracts, the mitral valve opens and blood is pumped into the left ventricle of our

heart. This occurs at the same time as the right atrium pumps blood into the right

ventricle on the other side of the heart. Once the left ventricle is full, the mitral valve

shuts, the aortic valve opens, the left ventricle contracts and oxygen-enriched blood is

pumped into the aorta to reach all parts of the body. This happens at the same time as

the right ventricle pumps blood into the pulmonary artery on the other side of the

heart. The aortic valve quickly closes to prevent blood from flowing back to the heart.

Meanwhile, the atrium is filled with blood and the cycle repeats itself.

During a normal heartbeat called a cardiac cycle, the contraction of both, the atria

and ventricles is controlled by the intrisic cardiac conduction system, shown in Fig.

2.2. The starting point of this system is the sinuatrial node (SA node) which is a mass

of cells located in the right atrium near the opening of the SVC. The SA node is often

referred to as the primary pacemaker of the heart as it determines the rate at which

the heart beats (Goldberger et al., 2013). Each heartbeat is initiated by an electrical

stimulus generated automatically in the SA node that spreads throughout both atria

and stimulates them to contract. The electrical activity arrives to the atrioventricular

node (AV node) that serves as electrical gateway to the ventricles. The AV node delays

the passage of electrical impulses to the ventricles, allowing blood to pass from the
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Figure 2.2: The intrinsic conduction system of the heart. [ cOpenStax, Anatomy &
Physiology.]

atria down into the ventricles and to fill them with blood. After passing through the

AV node, the impulse is rapidly transmitted via a pathway called the bundle of His,

and then into the ventricles. The bundle of His divides into right and left pathways

to provide simultaneous electrical stimulation to both ventricles. Finally, the signals

are then passed onto Purkinje fibers causing the contraction of the ventricles. As the

ventricles contract, the blood is ejected, either to the lungs through the pulmonary

artery or to the body through the aorta. As soon as the SA node fires another impulse,

the entire cycle begins again.

2.2 Electrocardiogram - ECG

The two main events of the cardiac cycle include (Goldberger et al., 2013):

• Depolarization - the spread of electrical signals throughout the atria and ventri-

cles

• Repolarization - the return of heart muscle cells to their resting state following

depolarization

Namely, at their resting state, heart muscle cells are polarized, i.e., they carry electrical
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Figure 2.3: Depolarization and repolarization phase of heart muscle cells. A, a heart
cell at rest. B, The beginning of the depolarization phase. C, The fully depolarized cell.
D, The beginning of the repolarization phase. The directions of depolarization and
repolarization are represented by arrows.

charges on their surface. This polarization is determined by different concentrations

of ions inside and outside the cell, as well as by the permeability of the cell membrane

to different types of ions. At rest, the inside of the cell is more negative than the outside,

as shown in Fig. 2.3 A. When the heart cell gets stimulated, it depolarizes making the

area where the stimulation happened more positive on the inside, and more negative

on the outside (Goldberger et al., 2013). Hence, an electrical current that propagates

along the cell is generated, as shown in Fig. 2.3 B. This leads to depolarization of the

entire cell, Fig. 2.3 C. Depolarization is followed by repolarization in which the cell

begins to return to its resting state, by making a small area on the outside of the cell

positive again, as shown in Fig. 2.3 D. The repolarization spreads across the entire cell

until the cell goes back to its resting state.

The electrical activity of the heart can be recorded in the form of an ECG, shown

in Fig. 2.4. The ECG tracing consists of three main forms: the P wave, the QRS

complex, and the T wave, and can further be decomposed into: the PR interval, the

PR segment, the ST segment, and the QT interval. Each of these forms corresponds to

certain events of the cardiac cycle. More precisely, the P wave and the QRS represent

atrial and ventricular depolarization, respectively. The ventricular repolarization

is represented by the T wave. The atrial repolarization occurs during ventricular
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Figure 2.4: ECG signal morphology.

depolarization. However, since the ventricles tend to contract stronger than the

atria, the wave of atrial repolarization is small in amplitude, and hence, it is masked

by the QRS complex. The PR interval, represents the time from the onset of atrial

depolarization to the onset of ventricular depolarization, whereas the QT interval

represents the time of ventricular depolarization and subsequent repolarization. PR-

and ST-segment reflect the time delay of the electrical impulse in the AV node and the

time between ventricular depolarization and repolarization, respectively (Stouffer,

2009). The R-R interval shown in Fig. 2.5 represents the time between consecutive

QRS complexes and it is inversely proportional to the heart rate, i.e.,

RR (in sec) = 60

HR (in beats/min)
. (2.1)

The ECG is the essential clinical test for interpretation of the cardiac rhythm and

conduction system abnormalities (Stouffer, 2009). Abnormal conduction of electrical

impulses within the heart, as well as some pathological heart conditions produce

characteristic deviations of different ECG segments. One of these pathological heart

conditions is AF.

AF is one of the most common types of cardiac arrhythmia. In 2010, 20.9 and 12.6
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million men and women were affected worldwide, respectively, with higher rates

in developed countries (Kirchhof et al., 2016). It may manifest in short episodes

rather than a sustained condition, which increases detection complexity. Despite the

progress in detection and treatment of AF, the arrhythmia remains one of the major

risk factors for stroke and heart failure (Kirchhof et al., 2016).
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Figure 2.5: RR interval. Taken from record A00848 from the PhysioNet Challenge 2017
database.

Conventionally, AF is diagnosed by analyzing ECG, and a typical pattern is associated

to an AF episode: abnormal atrial activity and irregular ventricular response. Previous

studies analyze the two responses either separately or combined to discriminate AF

from normal sinus rhythm (NSR). The need to capture the abnormal atrial activity

has given rise to a plethora of studies. In (Ladavich and Ghoraani, 2015), the authors

construct a statistical model of NSR P-waves to capture the absence of P-waves or the

presence of F-waves, which appear as a "sawtooth" pattern hiding a clear P-wave in AF.

Another similar study that analyzes the atrial activity is described in (Ródenas et al.,

2015) in which AF episodes are detected based on wavelet entropy and the energy on

several wavelet scales computed for each ECG beat. On the other side, the effect of AF

on ventricular activity consists mainly in analyzing the irregularity of RR intervals. In

(Zhou et al., 2014), the authors propose a method for real-time automated detection

of AF episodes considering symbolic dynamics and Shannon entropy to describe the

dynamic behaviour of RR-interval time-series. Nevertheless, the combined analysis

of atrial and ventricular responses can improve the accuracy of AF detection. For

instance, a method proposed by (Rincon et al., 2012) combines heart-rate and P-wave

analysis to detect AF in real-time on a wearable device. Although the classification of

NSR and AF from a surface ECG has been investigated for many years, distinguishing

AF from other types of arrhythmias still remains a challenging task, as many non-AF

arrhythmias exhibit irregular RR intervals (Clifford et al., 2017; Gayathri et al., 2012).

14



2.3. 2017 PhysioNet/CinC Challenge

2.3 2017 PhysioNet/CinC Challenge

As one of the contributions to this thesis, I tackled the problem of discriminating AF

from NSR and other types of cardiac arrhythmias in short term ECG recordings. For

this purpose, I took part in the 2017 PhysioNet/CinC Challenge in which a total of

8,528 ECG signal recordings lasting from 9–61 seconds were provided as a publicly

available training test (Clifford et al., 2017). Four classes of recordings were considered:

NSR, AF, other rhythm (OthR), and noisy signals (Noise). The OthR class consists

of different cardiac anomalies. Some of these anomalies are shown in Fig. 2.6. The

proposed method used for this Challenge is described in Subsection 2.4.

Tachycardia
(A07833)

Bradycardia
(A05308)

Wide QRS complex
(A06071)

Presence of ventricular or
fusion beats

(A00688)

Presence of at least one
extrasystole

(A05301)

Long PR interval
(A06295)

Ventricular tachycardia
(A00741)

Atrial flutter
(A00326)

Figure 2.6: Anomalies identified as examples of the OthR class in the 2017 Phys-
ioNet/CinC Challenge. [Taken from (Teijeiro et al., 2018) with permission.]
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All ECG recordings were sampled at fs = 300Hz and were acquired with a commercial

single-channel ECG device (Clifford et al., 2017). A hidden set that consisted of 3,658

recordings of similar lengths and class distributions was not provided to the public.

This set was used by the Challenge organizing committee as a test set to evaluate

the performance of the proposed algorithms. The definitions of parameters used for

performance scoring are provided in Table 2.1:

Predicted classification
NSR AF OthR Noise Total

Reference
classification

NSR Nn Na No Np
∑

N
AF An Aa Ao Ap

∑
A

OthR On Oa Oo Op
∑

O
Noise Pn Pa Po Pp

∑
P

Total
∑

n
∑

a
∑

o
∑

p

Table 2.1: The definition of parameters for performance scoring of the heart rhythm
detection algorithms in the 2017 PhysioNet/CinC Challenge. (Clifford et al., 2017).

For each of the classes, the F1 measure is defined as follows:

FNSR = 2 ·Nn∑
N +∑

n

FAF = 2 · Aa∑
A+∑

a

FOthR = 2 ·Oo∑
O +∑

o

FNoise =
2 ·Pp∑
P +∑

p

(2.2)

The final scoring function FFINAL used in this challenge is an average of F1 values from

normal sinus, atrial fibrillation, and other rhythm, defined as follows:

FFINAL = FNSR+FAF+FOthR
3

. (2.3)
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2.4. Hierarchical Heart-Rhythm Classification Method

2.4 Hierarchical Heart-Rhythm Classification Method

The overall flow of the proposed hierarchical method for heart-rhythm classification

is shown in Fig. 2.7 and it consists of three main phases: pre-processing (Subsection

2.4.1), feature extraction (Subsection 2.4.2), and hierarchical classifier (Subsection

2.4.3). The hierarchical classifier comprises two different classifiers: a multiclass

classifier based on error-correcting output codes (ECOC) and a random forest classifier

for binary decision making. Each of these three main phases is thoroughly explained

in the following sections.

Feature 
Extraction

Random 
Forest 

ECG

Multiclass  
Classification

(ECOC)

AF
Noise

NSRUndR

OthR

Pre-Processing

Hierarchical Classifier

Figure 2.7: Hierarchical cardiac-rhythm classification technique for four classes of
signals: NSR, OthR, noisy signals (Noise), and AF. In the case of getting undefined
rhythm (UndR) at the output of the ECOC classifier, a random forest classifier is used
for binary decision making.

2.4.1 Pre-Processing

As a first step, the ECG signals are filtered to remove the baseline wander and high

frequency noise. Firstly, two median filters are used for ECG baseline wander removal

based on the work described in (de Chazal et al., 2003). The first median filter of

200ms width is used to remove QRS complexes and P waves. Then, the resulting signal

is further processed with a median filter of 600ms width to remove all T waves. The

signal at the output of the second median filter contains the ECG baseline wander

and is subtracted from the original ECG signal resulting in a baseline-free signal. The

use of these two median filters is illustrated in Fig. 2.8. After removing the baseline

wander, a 32nd-order zero-phase FIR band-pass filter with cut-off frequencies f1 =

0.05Hz and f2 = 40Hz is applied for high-frequency noise and artefact removal. Then,

the R-peaks of the ECG signals are detected using Pan-Tompkin’s algorithm (Pan and

Tompkins, 1985).
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(a) The original ECG signal is shown in blue. Signals at the output of the first and second median filter are shown in red and
green, respectively. The signal shown in green represents the ECG baseline wander.
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(b) The baseline-free ECG signal shown in red is obtained by subtracting the ECG baseline wander from the original ECG signal
shown in blue.

Figure 2.8: The use of two median filter for ECG baseline wander removal. Recording
A00026 from the 2017 PhysioNet/CinC Challenge. (Clifford et al., 2017).

2.4.2 Feature Extraction

In the following subsections, the features used for heart rhythm classification are

thoroughly explained. As previosuly mentioned, four different types of signals are

considered: NSR, AF, OthR, and noisy signals. NSR is any cardiac rhythm where

depolarization of the cardiac muscle begins in the SA node with a heart rate (HR) of

60−100 bpm (Clifford et al., 2017). The representation of NSR is shown in Fig. 2.9a.

On the other side, as it can be seen in Fig. 2.9b, AF records are characterized by the
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absence of the P wave (Ladavich and Ghoraani, 2015). Moreover, most AF records also

exhibit irregular RR intervals (Zhou et al., 2014). However, many different types of

arrhythmias OthR could exhibit irregular RR intervals (Clifford et al., 2017; Gayathri

et al., 2012). The last class of signals contains signals that are too noisy to be classified

(Clifford et al., 2017).

(a) NSR. (b) NSR versus AF

Figure 2.9: The morphology of an ECG beat of NSR versus an ECG beat of AF with
absent P wave.

HR–Based Features: The instantaneous HR is calculated based on Eq. (2.1). HR

signal as well as its first, second, and third-order derivatives are used as the main

signals for feature extraction. The minimum value, the maximum value, the mean

value, the median value, the standard deviation, as well as and the Euclidean norm

of these four signals are considered. These features are referred to as basic statistical

characteristics (BSCH) of a signal in the remainder of this section. Two additional

features are defined to describe bradycardia and tachycardia. The former represents

the percentage of HR values that are below 40 bpm, whereas the latter is defined as the

percentage of HR values that are above 140 bpm. Additionally, the extreme bradycardia

feature captures if the value of HR falls below 40 bpm for any five consecutive beats,

whereas the extreme tachycardia feature captures if the HR is above 140 bpm for any

17 consecutive beats. Moreover, three binary features Flimit1 , Flimit2 , and Flimit3 are

used to determine the average value of the instantaneous HR across the entire signal

recording. Namely, features Flimit1 and Flimit2 capture whether the average HR is above

100 bpm and 130 bpm, respectively, whereas, feature Flimit3 captures if the average HR

is below 40 bpm.

P–Wave and T–Wave Features: As one of the main characteristics of AF records is the

absence of the P-wave in the ECG signal, for each heart beat the part of the signal

corresponding to the P-wave is extracted, resulting in matrix P in which each column

19



Chapter 2. Monitoring of Cardiovascular Diseases

represents the P wave of one heart beat. Similarly, matrices P(1), P(2), P(3) represent

the first, second, and third-order derivative of each P-wave. As matrix P contains all

P-waves, the following five vectors are constructed: pmax, pmin, pmean, pmedian, and

pstd. These vectors are obtained by calculating the minimum, maximum, average,

median and standard deviation values of each P-wave, respectively. BSCH of these

vectors are used in the set of features. In addition, vectors pnorm, p(1)
norm, p(2)

norm, p(3)
norm

are constructed by calculating the Euclidean norm of each P-wave along with the

norms of their first, second, and third-order derivative, and BSCH of each of these

vectors are used as features. Analogously, BSCH of vectors obtained from matrices P(1),

P(2), P(3) are also included. Furthermore, the pairwise linear correlation coefficient

between all P-waves is calculated, resulting in a p ×p matrix Pcorr, where p represents

the number of R peaks of ECG signal. In order to capture the variability in P-waves,

signal sp is defined. This signal is obtained by concatenating all parts of the signal

that correspond to P-waves, as well as feature fp defined as:

fp =
∑p

i=1 Pcorr − trace(Pcorr)

p2 −p
,

where trace(Pcorr) represents the sum of the elements of the main diagonal of matrix

Pcorr. The normalized power of sp in the frequency band [0,30]Hz, as well as the

Shannon entropy of sp are also considered in the final set of features. Furthermore,

the first, second, and third-order derivatives of sp are also calculated. BSCH of these

signals are added to the final set of features, along with the percentage of times where

the peak of the P-wave is negative. Similarly, by concatenating all signal parts that

correspond to the T wave, signal st is defined. The normalized power of this signal in

frequency bands [0,5]Hz and [5,30]Hz, along with its Shannon entropy is calculated.

These two frequency bands have been selected, as clear differences in power were

noticed for NSR and OthR classes.

Time- and Frequency–Domain Features: Abnormalities in the generation and/or

conduction of electrical impulses throughout the heart may affect the duration of

different ECG segments such as the PR interval, the PP interval, the QRS width, and

the QT interval. The duration of the normal PR interval in adults is between 0.12 and

0.2 seconds (Goldberger et al., 2013). As previously mentioned, this interval represents

the time it takes for an electrical impulse to spread through the atria and pass through

the AV junction. When the spread of the electrical impulse through the AV junction

is impaired, the PR interval may become prolonged. Furthermore, the atrial and

ventricular rate for NSR are the same, whereas in the case of AV conduction delay
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these rates may differ. Therefore, to capture the delay in the AV junction as well as

to determine the atrial rate, the PR and the PP interval are used. The PR interval

is calculated from the peak of the P-wave to the Q-wave of the ECG signal. Basic

statistical characteristics of the PR intervals along with the ratio between standard

deviations of the PR and RR intervals are used as features. The PP interval is defined

as the distance between two consecutive P-wave peaks and represents the atrial rate.

To compare the atrial and ventricular rate, the ratio between the mean values of the

PP and RR intervals, as well as their standard deviations are added to the feature set.

On the other side, the spread of a stimulus through the ventricles is reflected onto

the QRS width. Normally, the QRS width is 0.1 sec or less (Goldberger et al., 2013).

However, when the spread of a stimulus is slowed, the QRS width gets lengthened.

Additionally, the duration of ventricular contractions can be estimated using the

QT interval. Therefore, the QRS width and the QT interval are used to capture the

spread of electrical impulses throughout the ventricles. The former is defined as the

distance between the Q-wave of the ECG signal and the peak of the T-wave, whereas

the latter is defined as the time difference between the S-wave and the Q-wave. Basic

statistical characteristics of QT intervals and QRS widths are considered in the final

set of features.

In order to detect noisy signals, the normalized signal powers at very low frequencies

[0.005,0.05] Hz, the power within [0.05,50] Hz, as well as the normalized power at

higher frequencies [50,150] Hz are used. These frequency-domain features have been

extracted from raw ECG signals.

Additional Features: Additional features are only defined for random forest classifier

for binary decision making, which is explained in Subsection 2.4.3. As many different

arrhythmias exhibit RR irregularities, we consider the percentage of times that the

difference between three consecutive HR values exceeds 5 bpm, as well as 10 bpm.

Similarly, the same set of features is extracted for five consecutive HR values. Addi-

tionally, the number of zero-crossings of the parts that correspond to the P-wave and

T-wave are also taken into consideration.

2.4.3 Hierarchical Classifier

After performing feature extraction, two different classifiers are considered: a multi-

class classifier based on error-correcting output codes (Dietterich and Bakiri, 1994),

and a random forest classifier for binary decision making (Pal, 2005), as shown in Fig.

2.7.
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In order to make sure that the extracted features are on a similar scale, before running

any of these classifiers, each feature is normalized by subtracting its mean value and

dividing it by its standard deviation.

Multiclass Classification (ECOC): Multiclass classification paradigm based on ECOC

is used to classify instances into more than two classes. This paradigm assigns a

unique binary string of length n to each class. These binary strings are known as

codewords (Dietterich and Bakiri, 1994). Binary representation for each of the classes

results in a coding matrix m ×n, where m represents several classes in a classification

problem. One classifier is trained for each bit position in a coding matrix. At the

test time, each of these n classifiers are evaluated to generate an n-bit string b. This

string is further compared to each of the m coding words, and the new test example

is assigned to the class whose codeword is closest in the sense of Hamming distance

to the generated bit string b (Escalera et al., 2009). The list of features used for this

classifier is detailed in Table 2.2.

Random Forest: As shown in Fig. 2.7, a random forest classifier for binary decision

making is used in case of getting undefined rhythm (UndR) at the output of the ECOC

classifier.

Random forest is an ensemble of decision trees that are combined to classify a sample

data by aggregating decisions of all individual trees. This aggregation of decisions of

all trees in the forest reduces the variance of the prediction, resulting in a low-variance

model and a robust outcome (Liaw and Wiener, 2002). Each decision tree in the

forest is constructed using a different bootstrap sample of data. In particular, if our

training set has M rows in the feature matrix, a bootstrap sample of data of size M is

constructed by randomly picking one of the M rows of the dataset with replacement.

For each bootstrap sample, an unpruned tree (fully grown) is grown. At each node, a

subset of features is randomly selected and the best split within this subset is chosen.

To classify a new sample, each decision tree gives a classification decision. The forest

chooses the classification decision that has the most votes among the other trees in

the forest.

In this work, random forest classifier uses the additional features explained in Section

2.4.2 and a subset of features explained in Subsection 2.4.2. Specifically, the P-wave

features obtained from matrices P, P(1), P(2), P(3) are not considered, as these features

are mostly used for AF detection. The detailed list of features used for random forest

classification is given in Table 2.3.
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HR: BSCH of HR
HR(1): BSCH of the first derivative of
HR

HR(2): BSCH of the second derivative
of HR

HR(3): BSCH of the third derivative of
HR

bradycardia_feature: % of HR values be-
low 40 bpm

feature_extreme_bradycardia = 1 if the
value of HR falls below 40 bpm for any
five consecutive beats, otherwise 0

tachycardia_feature: % of HR values
that are above 140 bpm

feature_extreme_tachycardia = 1 if the
value of HR is above 140 bpm for any
17 consecutive beats, otherwise 0

Flimit1 = 1 if the value of the average HR
is above 100, otherwise 0

Flimit2 = 1 if the value of the average HR
is above 130, otherwise 0

Flimit3 = 1 if the value of the average HR
is below 46, otherwise 0

Fpmax : BSCH of vector pmax

Fpmin : BSCH of pmin Fpmean : BSCH of pmean

Fpmedian : BSCH of pmedian Fpstd : BSCH of pstd

F(1)
pmax : BSCH of p(1)

max F(1)
pmin : BSCH of vector p(1)

min
F(1)

pmean : BSCH of p(1)
mean F(1)

pmedian : BSCH of p(1)
median

F(1)
pstd : BSCH of p(1)

std F(2)
pmax : BSCH of p(2)

max

F(2)
pmin : BSCH of p(2)

min F(2)
pmean : BSCH of p(1)

mean

F(2)
pmedian : BSCH of p(2)

median F(2)
pstd : BSCH of p(1)

std
F(3)

pmax : BSCH of p(3)
max F(3)

pmin : BSCH of p(3)
min

F(3)
pmean : BSCH of p(3)

mean F(3)
pmedian : BSCH of p(3)

median
F(3)

pstd : BSCH of p(3)
std

Fpnorm : BSCH of pnorm

F(1)
pnorm : BSCH of p(1)

norm F(2)
pnorm : BSCH of p(2)

norm

F(3)
pnorm : BSCH of p(3)

norm fp
Psp : Normalized power of sp in [0, 30]
Hz

Esp : Shannon entropy of sp

F(1)
sp : BSCH of the first derivative of sp

F(2)
sp : BSCH of the second derivative of

sp

F(3)
sp : BSCH of the third derivative of sp NEGp: % of negative P-waves

Pst1
: Normalized power of st in [0, 5]

Hz
Pst2

: Normalized power of st in [5, 30]
Hz

Est : Shannon entropy of signal st PR: BSCH of the PR intervals
STDPR: Ratio between standard devia-
tions of the PR and RR intervals

MEANPP: Ratio between mean values
of the PP and RR intervals

STDPP: Ratio between standard devia-
tions of the PP and RR intervals

QT: BSCH of the QT intervals

QRS: BSCH of QRS widths
Plow: Normalized ECG signal power
within [0.005,0.05]Hz

PECG: Normalized ECG signal power
within [0.05,50]Hz

Phigh Normalized ECG signal power
within [50,150]Hz

Table 2.2: List of features used for ECOC. BSCH represents the basic
statistical signal characteristics defined in Subsection 2.4.2

.
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HR: BSCH of HR
HR(1): BSCH of the first derivative of
HR

HR(2): BSCH of the second derivative
of HR

HR(3): BSCH of the third derivative of
HR

bradycardia_feature: % of HR values be-
low 40 bpm

feature_extreme_bradycardia = 1 if the
value of HR falls below 40 bpm for any
five consecutive beats, otherwise 0

tachycardia_feature: % of HR values
above 140 bpm

feature_extreme_tachycardia = 1 if the
value of HR is above 140 bpm for any
17 consecutive beats, otherwise 0

Flimit1 = 1 if the value of the average HR
is above 100, otherwise 0

Flimit2 = 1 if the value of the average HR
is above 130, otherwise 0

Flimit3 = 1 if the value of the average HR
is below 46, otherwise 0

fp
HR3,5: % of times the difference be-
tween three consecutive HR values ex-
ceeds 5 bpm

HR3,10: % of times the difference be-
tween three consecutive HR values ex-
ceeds 10 bpm

HR5,5: % of times the difference be-
tween five consecutive HR values ex-
ceeds 5 bpm

HR5,10: % of times the difference be-
tween five consecutive HR values ex-
ceeds 10 bpm

NT: Number of zero-crossings of the
T-waves

NP: Number of zero-crossings of the
P-waves

Psp : Normalized power of sp in the fre-
quency range [0, 30] Hz

Esp : Shannon entropy of sp

F(1)
sp : BSCH of the first derivative of sp

F(2)
sp : BSCH of the second derivative of

sp

F(3)
sp : BSCH of the third derivative of sp NEGp: % of negative P-waves

Pst1
: Normalized power of st in [0, 5]

Hz
Pst2

: Normalized power of st in [5, 30]
Hz

Est : Shannon entropy of st PR: BSCH of the PR intervals
STDPR: Ratio between standard devia-
tions of the PR and RR intervals

MEANPP: Ratio between mean values
of the PP and RR intervals

STDPP: Ratio between standard devia-
tions of the PP and RR intervals

QT: BSCH of the QT intervals

QRS: BSCH of QRS widths
Plow: Normalized raw ECG signal
power within [0.005,0.05]Hz

PECG: Normalized raw ECG signal
power within [0.05,50]Hz

Phigh Normalized raw ECG signal
power within [50,150]Hz

Table 2.3: List of features used for random forest classifier. BSCH represents the basic
statistical signal characteristics defined in Subsection 2.4.2

.
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2.4.4 Experimental Setup and Results

In this section, the cross-validation scheme for training the classifiers, the final clas-

sifiers’ parameters, along with the results are explained. As previously mentioned,

PhysioNet/Computing in Cardiology Challenge 2017 database is used to validate the

proposed classification method for heart rhythm detection (Clifford et al., 2017). This

database consists of 5050 NSR records, 2456 records that belong to OthR records, 738

AF records, and 284 noisy records.

Cross-Validation: In order to avoid the overfitting problem, the entire database is

split into the training and the test set. The training set contains 80% of randomly

selected records of each class. The remaining 20% percent of each class is used in the

test set. The training set is further divided into two different sets, set I and set II. Set I

contains 70% randomly selected training records, and the remaining 30% is used for

set II. The split of training data into set I and set II is repeated five times in order to

assess the robustness of the results. The F1 score given in Eq. (2.2) is used, as a metric

for classifier performance evaluation. The results obtained on set II for five different

data splits are tabulated in Table 2.4:

F1(%) NSR AF OthR Final score
Fold1 89.89 79.13 70.76 79.93
Fold2 88.96 76.61 68.82 78.13
Fold3 89.31 77.56 70.85 79.24
Fold4 88.83 77.46 70.04 78.78
Fold5 88.70 75.50 70.71 78.30

Table 2.4: Results of five-fold cross-validation results obtained on set II for NSR, AF,
and OthR.

The multiclass classifier is further trained using the entire training test. After run-

ning this classifier on the test set, the obtained F1 scores for NSR, AF, and OthR are

89.73%,78.83%,73.85%, respectively. By examining the misclassified examples, I no-

ticed that 43% of misclassified examples consisted of OthR signals that are classified

as NSR, whereas 23% of misclassified samples consisted of NSR that are classified

as OthR. This is the main reason for designing a random forest classifier for binary

decision making between OthR and NSR ECG signals. Due to the fact that classes

OthR and NSR are not balanced, the geometrical mean of sensitivity and specificity

(Gmean) is used to inspect the performance of the random forest classifier.
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These metrics are defined as follows:

sensitivity = tp
tp+ fn , (2.4)

specificity = tn
tn+ fp , (2.5)

Gmean =
√

sensitivity · specificity, (2.6)

where tp, tn, fp, fn represent the number of true positive, true negative, false positive,

and false negative, respectively. Similarly to F1 measure, Gmean also takes into account

the class imbalance. The obtained results for 5-fold cross-validation scheme are the

following ones: Gmean = {81.91,82.08,82.22,82.58,82}%. In order to minimize 5-fold

cross-validation loss, the hyperparameters of ECOC classifier are optimized, resulting

in a coding scheme that uses n = 25 bits for a binary representation of each of the four

classes. Furthermore, classifiers that are trained for each bit are LogitBoost ensemble

of classification trees with surrogate splits and 100 weak learners. Random forest

classifiers for binary decision making uses 400 weak learners. The last step consists

of training both multiclass and binary classifier on the entire available data (on both

training and test set). The results obtained on the hidden test set of challenge are the

following ones: FNSR = 90.31%,FAF = 78.95%,FOthR = 70.76%,FFINAL = 80%, whereas

the winning algorithms in the 2017 PhysioNet/CinC Challenge achieved an FFINAL
score of 83%.

One of the main problems of the 2017 PhysioNet/CinC Challenge was data labeling.

Namely, due to the high degree of disagreement between expert clinicians who labeled

the data, both the training and the hidden set were re-labelled (Clifford et al., 2017).

Apart from label inconsistency, the proposed heart-rate classification method could

be further improved. Firstly, the presented method does not take into account the lead

inversion. Many signals in the training set were inverted as the user was not required

to hold the acquisition device in any particular position (Clifford et al., 2017). The lack

of lead inversion correction has an impact on the training process of both classifiers

due to the difficulty of identifying the important segments of the ECG trace. Moreover,

no feature selection method was used to select the relevant features for each of the
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classes.

2.5 Myocardial Infarction

MI, also known as a heart attack, remains one of the leading life-threatening conditions

nowadays. MI is a very serious cardiac disease affecting people all around the world.

Based on the latest statistics, in the USA alone, every 40 seconds someone gets a heart

attack (HeartFacts, 2019). The economic burden of US hospitalizations due to MI in

2010 was already estimated at over 45 billion US dollars (Reed et al., 2017).

MI occurs due to fatty deposits called plaques that gradually form on the inner walls

of coronary arteries. Due to smoking, hypertension, diabetes as well as family medical

history, these plaques can build up significantly throughout the years. Then, a sudden

rupture of these plaques at an unexpected moment triggers a blood clot to form.

The blood clot can completely block an artery impeding the normal circulation of

the blood. The muscle cells of the part of the heart that was getting supplied by the

blocked artery become starved for oxygen and nutrients. Due to this lack of oxygen

and nutrients, these cells begin dying.

The histological death of these starved cells begins in as little as 20 minutes after the

artery occlusion (Thygesen et al., 2012), (Camm et al., 2009). As soon as one of the

coronary arteries becomes blocked, the person must receive treatment in less than

90 minutes. The earliest possible heart attack detection minimizes the number of

dead cells. The mortality rate drastically increases by 41–62% if the delay between

the hospital arrival and the performance of the treatment is longer than 2 hours

(Cannon et al., 2000). The prolongation of this detection period results in irreversible

consequences of the affected myocardial cells (heart attack). These consequences

can be observed based on the altered ECG beat morphology, as shown in Fig. 2.10.

This altered ECG beat morphology is often reflected onto the ST segment abnormality

(elevation or depression) and is the same across all ECG beats. Additionally, patients

who have suffered a heart attack remain at an increased risk of recurrent heart attacks.

The annual death rate of survivors is six times higher than in people who have not had

a heart attack (WHO, 2013).

In order to prevent potential recurrent heart attacks, adequate care should be provided

to these patients. Thus, real-time patient monitoring is performed in hospitals through

common tests for heart attack diagnosis. These tests include ECG and echocardiogram.

However, all these tests are usually performed by bulky medical equipment. The lack

of portability of this equipment, as well as its high energy consumption, make it

unsuitable and uncomfortable for ambulatory monitoring.
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Figure 2.10: An ECG beat from a healthy subject versus an ECG beat from a person
with MI. MI beats have an ST elevation, i.e., the ST segment is abnormally high above
the baseline.

Wearable devices represent a suitable solution to address the aforementioned con-

straints of medical equipment for real-time patient monitoring. These low-cost de-

vices are portable and can be used autonomously by patients (Riazul Islam et al., 2015).

Moreover, they enable the continuous remote patient monitoring during daily life by

collecting patient’s data and providing it to healthcare professionals. Hence, they can

reduce the possibility of significant worsening of the patient’s condition by detecting

early cardiac irregularities. This is done by sending patient data acquired from wear-

able devices using Bluetooth to a mobile phone, which is later on sent to physicians

through the cloud. However, sending data using Bluetooth consumes a lot of energy,

which drains the battery of wearable devices (Rincón et al., 2011), (Mamaghanian

et al., 2011). Furthermore, not only is sending data to the cloud energy-hungry (Fan

Zhang et al., 2012), but its latency and reliable communication are also affected by

the connection quality (Tang et al., 2017). Nonetheless, many commercial wearable

devices have stringent latency requirements. Thus, as constant good-quality network

connections are only available at limited locations and a high cost, and that even with

good network connectivity the required latency often cannot be acquired (Klas, 2017),

streaming data to the cloud is not suitable for real-time patient monitoring. Therefore,

in order to overcome the aforementioned problems, the latest trend is to use smart

wearable devices, or so called edge computing techniques (Ananthanarayanan et al.,

2017), in which the entire processing is performed on the on-board microcontroller of
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the wearable device.

Nowadays, the algorithms running on smart wearables are mostly based on simple

machine learning techniques (Patel et al., 2009), (Apiletti et al., 2009). However,

the major challenge of highly-accurate machine learning algorithms is their high

computational complexity. Hence, these algorithms cannot be implemented on

wearable devices for real-time monitoring. Therefore, these algorithms need to be

highly optimized, which promotes the need for a paradigm shift in the classifier

design. In this context, the event-driven computing approach offers a promising

solution to reduce the computational complexity of embedded machine learning

algorithms. Moreover, it can substantially lower the energy consumption of smart

wearable devices.

2.6 Previous Work on Detection of Myocardial Infarction

Several studies have been conducted concerning the detection of MI using various

classification techniques. For instance, in (Reddy et al., 1992), the authors use QRS

measurements obtained from different ECG leads as inputs to the neural network

to detect MI. Another similar approach to MI detection based on the use of a fuzzy

multi-layer perception network trained on a set of morphological features is presented

(Bozzola et al., 1996). These features include the amplitude and duration of the QRS

complex, as well as the amplitude of the T wave and Q/R ratio. Then, in (Acharya et al.,

2016), the authors report a high accuracy in classifying normal and MI ECG beats using

the k-nearest neighbors classifier. However, none of these studies are performed on

existing wearable devices, taking into consideration the stringent energy and memory

constraints of these devices.

The need to reduce the energy consumption of wearable devices has given rise to

a plethora of studies. In (Braojos et al., 2014), a real-time classification scheme

for automatic detection of abnormal heartbeats targeting embedded and resource-

constrained wearables has been proposed. This scheme also incorporates an ad-

vanced digital signal processing block that is activated just when abnormal beats

are detected, which considerably decreases the computational requirements and the

energy consumption. First, from a medical reliability point of view, the authors do not

investigate the confidence level of the obtained results, which is a key parameter in

medical applications. Secondly, from an energy-efficiency point of view, their work

focuses on a context where pathological heartbeats occur less frequently than normal

ones. Therefore, in case of many pathological heartbeats happening one after another,

the advanced digital signal processing block will be successively invoked, which will
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Figure 2.11: Motivational example.

increase the computational complexity and energy consumption.

As one of the contributions to this thesis, a new real-time event-driven classification

technique for early detection and prevention of MI through means of ultra-low energy

wearable systems is proposed. The proposed classification technique reduces the

energy consumption of wearable devices, while maintaining a high classification

accuracy. This technique is validated on the case of MI based on the set of features

used in (Acharya et al., 2016). The main target of this technique is the use of ultra-low

energy wearable devices, thus it is not strictly limited to the problem of early detection

and prevention of MI.

The remainder of this chapter is organized as follows. The motivation behind the

proposed event-driven technique is described in Section 2.7. Then, the proposed

real-time event-driven classifier is explained in Section 2.8. The analysis of the com-

putational complexity, battery life, and energy efficiency of the proposed approach

is described in Section 2.9. The experimental setup used for validating the proposed

approach in the case of MI is presented in Section 2.10, whereas the experimental

results are given in Section 2.11.
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2.7 Motivational Example

In this section, the main idea of the proposed real-time event-driven classification

technique is illustrated using a small example. Without loss of generality, and for the

simplicity of the presentation, two sets of features for the binary classification problem

are considered, as shown in Fig. 2.11. We define the computational complexity of an

algorithm as the maximum amount of time it takes to run the algorithm for inputs

of a given size (Sipser, 2006). Supposing that each elementary operation within the

algorithm takes a fixed amount of time to perform, the computational complexity is

commonly estimated by counting the number of elementary operations performed

by the algorithm (Sipser, 2006).

Let us suppose that the computational complexity of the feature set that is along

the vertical axis (feature set 2) is higher than the computational complexity of the

one along the horizontal axis (feature set 1). For instance, feature set 1 can contain

time-domain features of the dataset, whereas feature set 2 can contain frequency-

domain features. Time-domain features have a complexity order of O (n), where n is

the signal’s length, whereas the frequency-domain features have a complexity order of

O (n log2 n), as the calculation of frequency-domain features requires additional signal

transformations, such as, the Fourier transform.

In this example, 25 circle-shaped samples of class 1 and another 25 square-shaped

samples of class 2 are considered. For instance, in the case of MI, circle-shaped

samples belong to people suffering from MI, whereas square-shaped ones belong to

healthy subjects. Let us suppose that n = 210. Depending on the confidence level,

three different linear classifiers can be built.

The first classifier is shown by the dashed line in Fig. 2.11. This classifier uses only

feature set 1 to separate two classes. As it can be observed in Fig. 2.11, if this classifier

is used, some samples within the shaded gray area will be misclassified. The accuracy

and the expected computational complexity of this classifier are: Accuracydashed =
88%, Complexitydashed = n = 210. Hence, the expected computational complexity

of this classifier is low, whereas its classification accuracy is lower than that of the

optimal solution.

Another alternative is to use both feature sets. This is done using the second classifier

shown by the solid line in Fig. 2.11. The accuracy and the expected computational

complexity of this classifier are Accuracysolid = 100%, Complexitysolid = n log2 n =
10240, respectively. This classifier outperforms the first classifier in terms of classifica-

tion accuracy, but it is ten times more computationally complex.
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Finally, the hierarchical classifier combines the benefits of the two previous classifiers.

Based on the desired confidence level, either the classifier that uses feature set 1 (i.e.,

the dashed line, the first classifier) or the one that uses both sets of features (i.e., the

solid line, the second one) is used. The desired confidence level represents the degree

to which we rely on the decision of the first classifier. The main goal of this scheme

is to reduce the classifier complexity in terms of the number of features that will be

used for the final classification, while maintaining a high classification accuracy. As

shown in Fig. 2.11, the first classifier cannot make confident decisions for samples

that happen to be in the shaded gray area. For these samples, the second classifier,

i.e., the classifier that uses all available features should be used to target medical

applications that truly require a high confidence level. Hence, once the region in

which the first classifier does not provide high confidence results is identified, the

next step is to check for each testing example if it falls into this shaded area and, if

so, to use the second classifier. Otherwise, we use the first classifier, i.e., the classifier

with a reduced number of features. For this particular example, let us suppose that

the region in which the first classifier does not provide high confidence results is

found, shown in Fig. 2.11. If the hierarchical classifier is used, the classification

accuracy is Accuracyhierarchical = 100%, whereas its expected classification complexity

is calculated as:

E(C ) = 30
50 ·n + 20

50 ·n · log2 n.

For n = 210, the expected classification complexity is Ehierarchical(C ) = 4710.4, whereas

with the classical approach that uses all available features (shown by the solid line

in Fig. 2.11) we obtain Esolid(C ) = 50
50 ·n · log2 n = 10240. Hence, for this motivational

example and n = 210, the proposed approach reduces the classification complexity by

a factor of 2.

In summary, for this motivational example shown, three different classifiers have been

presented. The first classifier (the dashed line) has a low computational complexity,

but its classification accuracy is much lower than the performance of the second

one (the solid line). On the other hand, the second classifier has a high classification

accuracy, but it is significantly more complex than the first one. Thus, the proposed hi-

erarchical classifier combines the two previous classifiers, such that we get a classifier

that has a high classification accuracy and a low computational complexity.
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2.8 Real-Time Event-Driven Classification Technique

In this section, a real-time event-driven classification technique for early detection

and prevention of MI based on random forest (Díaz-Uriarte and Alvarez de Andrés,

2006) is proposed. This real-time event-driven technique incorporates m +1 different

classification levels. The number of features at level i is equal to i ·K , where the pa-

rameter K is used by the designer to make a trade-off between the performance of the

system, in terms of classification accuracy and energy efficiency, and the complexity

of design space exploration.

In an event-driven computing paradigm, the execution of a particular action depends

on the occurrence of predefined trigger events (Årzén, 1999). Therefore, the event-

driven schemes perform the most computationally expensive processing only in case

a particular trigger event occurs, which reduces the computational complexity and,

therefore, enhances the battery life of wearable devices. In our case, based on the

required confidence level, we choose the classification level that is used for classify-

ing a sample data. Hence, the event that triggers the use of more computationally

complex classifiers is the insufficient level of decision confidence of classifiers at

previous levels. The overall flow of the proposed approach is shown in Fig. 2.12. The

proposed classification technique consists of two main phases: the offline phase that

is explained in Section 2.8.1, and the online phase explained in Section 2.8.2.
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Figure 2.12: Diagram of the proposed event-driven classification technique that con-
sists of m +1 classification levels. Each classification level i contains i ·K features,
where i = 1, . . . ,m, whereas the last classification level contains all available features.
Parameter K is used by the designer to make a trade-off between the classification ac-
curacy performance of the system, its energy efficiency, and the complexity of design
space exploration.

2.8.1 Offline Phase of Our Real-Time Event-Driven Classification

Technique

In an event-driven classification scheme very often we do not need to compute all

available features to make confident decisions, as often they can be made based on

only a few features. Reducing the number of features that we need to compute for

making confident decisions, in turn, reduces the energy consumption of our system.

Therefore, the basic idea is to use a hierarchical classifier, where all features are

computed only when needed.
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Consequently, in the proposed technique the classifiers at lower levels consider a

limited number of features and, therefore, are computationally efficient, but do not

provide as high classification accuracy as those at higher levels. On the other hand,

classifiers at higher levels can provide a high classification accuracy, but are computa-

tionally complex. In this real-time event-driven classification technique, classifiers

at higher levels are invoked only if classifiers at lower levels are unable to classify a

sample data with the required level of confidence.

The inputs of the proposed hierarchical classification techniques are:

• input feature matrix, denoted by X, where the overall number of available fea-

tures is denoted by n,

• class labels for each training example, denoted by y.

The input feature matrix contains features for both classes. Each column of the input

matrix corresponds to a feature, whereas each row corresponds to an observation.

The main goal is to design a high-accuracy hierarchical classifier satisfying the battery

life requirements, in case such classifier can be designed.

First, the features from the input signals are extracted. Then, these features are sorted

based on their relevance by using the infinite latent feature selection algorithm to find

the most informative ones (Roffo et al., 2017). This algorithm uses a robust proba-

bilistic latent graph-based feature selection algorithm that performs feature ranking

by considering all possible subsets of features. Each subset of features is considered

as a path connecting set of nodes of a weighted graph, where each node represents

one feature and each weight indicates the feature importance. The weighted graph

is used to perform the ranking step providing a score of importance for each feature

as a function of the importance of its neighbors. However, the proposed real-time

event-driven approach is not restricted to this feature selection method.

The number of classification levels is found based on Algorithm 1. Parameter Tl i f et i me

refers to the battery life of a wearable system, whereas Tmi n refers to the minimum

expected battery life of the wearable device. The condition that uses Tl i f et i me in

Algorithm 1 is thoroughly explained in Section 2.9. Each classification level i con-

tains features from the previous classification level, along with additional features

that belong to level i . The last classification level contains all available features. In

order to make sure that all features are on a similar scale, before training any of the

classifiers, each feature is normalized by subtracting its mean value and dividing it by

its standard deviation. The mean value (meanv) and the standard deviation of each

feature (sigv) are stored. Next, we apply the random forest algorithm explained in
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Algorithm 1 Exploration of classification levels

1: function TRAINING(thl ,K ,Tmi n ,X,y)
2: m = 1;
3: C alcul ate Tl i f et i me (m) based on E q. (2.14)
4: while (Tl i f et i me (m) < Tmi n) do
5: m = m +1
6: C alcul ate Tl i f et i me (m) based on E q. (2.14)
7: end while
8: Sor t f eatur es
9: Shu f f le the d at a

10: S1 ← 0.8 · leng th(d at a)
11: S2 ← 0.2 · leng th(d at a)
12: meanv,sigv,S1 ← nor mali zati on(S1)
13: for j = 1 to m do
14: M j ← Tr ai n(S1,K ,numberlevel s = j )
15: end for
16: M f ul l ← Tr ai n(al l f eatur es)

17: S2 ← nor mali zati on(S2) based on meanv,sigv

18: Test (S2, thl ,K , M1, · · · , Mm , M f ul l )
19: C alcul ate Gmean on S2

20: end function

Section 2.4.3 based on the confidence-related decision making process for training

each classification level. In this work, the following approach for aggregating decisions

from individual trees has been adopted. Namely, we define the parameter th that rep-

resents a percentage of mutually agreed trees. This parameter is used for inspecting

the confidence level of the obtained results. Comparing the value of this parameter to

the value of the decision-making threshold set in the design process thl , we decide

which classifier is invoked. Random forest classifiers at each classification level use

100 weak learners.

The input feature matrix X and the class labels for every training example y are used in

the offline phase, as shown in Fig. 2.12. The outputs of this phase are the number of

classification levels m, as well as the m +1 classifiers, namely M1, . . . , Mm , M f ul l . The

last-level classifier M f ul l uses all of the available features.
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Figure 2.13: Flowchart of the online phase of the proposed event-driven classification
technique

2.8.2 Online Phase of Our Real-Time Event-Driven Classification Tech-

nique

The overall flow of the online phase of the proposed hierarchical classification tech-

nique is shown in Fig. 2.13. Before applying any of the classifiers, we first normalize

a new testing example. When classifying it, we first calculate features from the first-

level classifier. We inspect a decision of each tree and calculate the parameter th in

the following way. Assuming that the number of trees in the forest is NT , we define

functions F (ti ) and G(ti ) for each decision tree ti within the forest, as follows:

F (ti ) =
1, if decision(ti) =+1

0, other wi se
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G(ti ) =
1, if decision(ti) =−1

0, other wi se.

Labels ti = +1 and ti = -1 are assigned to different classes. Feature vectors that corre-

spond to non-MI ECG beats are labelled as -1, whereas those extracted from MI ECG

beats are labelled as 1. The value of th is calculated as follows:

th = max(
∑NT

i=1 F (ti ),
∑NT

i=1 G(ti ))

NT
.

If the first-level classifier cannot make a confident decision, i.e., if the value of the

parameter th is below the decision-making threshold thl , we keep the first k1 features

in the feature set, and we calculate the rest of k2 −k1 features of the second-level

classifier. This process is repeated until one of the classifiers matches the criteria for

making a confident decision. As previously mentioned, the last classification level

contains all available features. Therefore, in case none of previous m classifiers can

make a confident decision, the full classifier is invoked.

2.9 Analysis of the Proposed Real-Time Event-Driven

Classification Technique

In this section, the complexity, battery life, and energy efficiency of the proposed

approach are analyzed. In Subsection 2.9.1, the expected complexity of the proposed

real-time event-driven technique is estimated, whereas its energy consumption is

estimated in Subsection 2.9.2.

2.9.1 Complexity of the Proposed Real-Time Event-Driven

Classification Technique

For the sake of simplicity, in this discussion we focus on a two-level classifier in which

the first-level considers k1 < n features, while the second-level considers all of n

available features, including k1 features from the first-level classifier. Firstly, the first-

level classifier is invoked to classify a new data sample by calculating its k1 features.
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In case the first-level classifier is unable to classify a sample data with the required

level of confidence, the second-level classifier is invoked. In this case, we keep k1

calculated features and we calculate the other n −k1 features. Therefore, the expected

computational complexity (the mathematical expectation denoted by E(·)) of this

two-level classifier E(C2) is computed as follows:

E(C2) =
k1∑

i=1
ci + (1−p1) ·

n∑
i=k1+1

ci , (2.7)

where p1 is defined as the probability that the first-level classifier is sufficient for

making confident decisions, whereas ci represents the computational complexity of

feature i . By reorganizing addends in Eq. (2.7), we derive the following equation:

E(C2) = p1 ·
k1∑

i=1
ci + (1−p1) ·

n∑
i=1

ci , (2.8)

where
∑k1

i=1 ci represents the complexity of the first-level classifier and
∑n

i=1 ci that of

the second-level (which uses all available features). The first-level classifier is invoked

with a probability of p1. If the first-level classifier fails to classify a new data sample

with the required level of confidence, the second-level classifier is invoked with a

probability of 1−p1. Therefore, in Eq. (2.8), the complexity of the first-level classifier

is multiplied by p1, whereas the complexity of the second-level one is multiplied by

1−p1. For k1 < n, the following inequality holds:

p1 ·
k1∑

i=1
ci + (1−p1) ·

n∑
i=1

ci <
n∑

i=1
ci , (2.9)

which indicates that the overall computational complexity of the two-level classifier

is always smaller than that of the second-level classifier (the classifier that uses all

available features).

Let us now consider the case of a three-level classifier in which the first-level is com-

prised of k1 features, the second-level includes k2 > k1 features (including k1 features

of the first-level classifier), and the third-level has all of n available features (including
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all of the features of the previous classifiers). First, we invoke the first-level classifier

for classifying a new data sample. If the first-level classifier cannot classify a new data

sample with the required level of confidence, we invoke the second-level classifier

by calculating its remaining k2 −k1 features. In case neither the first-level nor the

second-level classifier can classify a new data sample with the required confidence

level, the third-level classifier is invoked. In this case, we keep k2 features of the

previous two classification levels and calculate the other n −k2 features of the third-

level classifier. Therefore, the expected computational complexity of the three-level

classifier is computed as follows:

E(C3) = p1 ·
k1∑

i=1
ci + (1−p1) ·

(
p2 ·

k2∑
i=1

ci + (1−p2) ·
n∑

i=1
ci

)
.

For k2 < n, the following inequality holds:

E(C3) < E(C2), (2.10)

showing that the computational complexity of the third-level classifier is smaller than

that of the second-level one. Taking into consideration both Eq. (2.9) and (2.10), for

k1 < k2 < n we have the following inequality:

E(C3) < E(C2) <
n∑

i=1
ci , (2.11)

which shows that the computational complexity decreases as the number of classifica-

tion levels increases.

In the general case, considering that m represents the number of classification levels,

ki the number of features at level i , where i = 1, . . . ,m, ki = i ·K , cr the computational

complexity of feature r , n the number of all available features, and pi the probability

that the classifier at level ki is sufficient for making confident decisions, the expected
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computational complexity of our hierarchical classifier can be estimated as follows:

E(C ) =
( m∑

i=1

i−1∏
j=1

(1−p j ) ·pi ·
ki∑

r=1
cr

)
+

m∏
j=1

(1−p j ) ·
n∑

r=1
cr , (2.12)

where k1 < k2 < ·· · < km < n, and we have:

m∑
i=1

i−1∏
j=1

(1−p j ) ·pi +
m∏

j=1
(1−p j ) = 1,

as the sums of computational complexities in Eq. (2.12) are multiplied by the product

of probabilities, which must add up to 1.

2.9.2 Energy Consumption of our Real-Time Event-Driven Technique

Following the same analogy as in Subsection 2.9.1, the energy consumed by our

hierarchical classifier is estimated as follows:

E(EC ) =
( m∑

i=1

i−1∏
j=1

(1−p j ) ·pi ·
ki∑

r=1
Er

)
+

m∏
j=1

(1−p j ) ·
n∑

r=1
Er ,

where Er represents the energy spent on the calculation of feature r , and we have:

m∑
i=1

i−1∏
j=1

(1−p j ) ·pi +
m∏

j=1
(1−p j ) = 1.

In order to meet the battery life requirements, let us assume that the minimum

required life of the wearable device is Tmi n hours. Considering the fact that we want

the battery of the wearable device to last for at least Tmi n hours, we have the following
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set of inequalities:

Tl i f et i me ≥ Tmi n , (2.13)

[
ES · (1−dC )+ (EC +EP ) ·dC

]
·Tl i f et i me = EB , (2.14)

where Tl i f et i me , ES , dC , EC , EP , EB represent the battery life of the wearable system,

the energy of the system consumed in the idle state, the CPU duty cycle, the energy

spent by our hierarchical classifier (Eq. (2.12)), the energy spent on the preprocessing,

and the battery storage according to its specifications, respectively. The energy spent

on the calculation of each feature along with the energy spent in the preprocessing

stage can be estimated on the wearable device. By combining inequality (2.13) and Eq.

(2.14) we obtain the following inequality:

EC ≤

(
EB

Tmi n
−ES · (1−dC )

)
dC

−EP . (2.15)

2.10 Experimental Setup

In this section, the proposed technique is validated in terms of classification quality

on a set of real-life ECG signals from a control group and from patients suffering from

MI. In Subsection 2.10.1, we introduce the classification metrics used to evaluate the

approach in terms of classification performance are introduced. Subsection 2.10.2 de-

scribes the real-life MI database used for the evaluation of the hierarchical technique

along with the main preprocessing steps. The target platform used for deploying the

real-time event-driven classification technique is described in Subsection 2.10.3.

2.10.1 Classification Performance Metrics

The simplest diagnostic test used in the medical community combines different

metrics to classify patients into two different groups. The majority of medical studies

often report two different metrics used to correctly assess the ability of diagnostic tests:
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sensitivity and specificity, defined in Section 2.4.4. The classification is based on the

presence or the absence of a particular symptom of interest (Altman and Bland, 1994).

In order to capture the information obtained from both, sensitivity and specificity, the

commonly used metric is their geometric mean (Gmean) (Fleming and Wallace, 1986),

given in Eq. 2.6 in Section 2.4.4. The final classification performance is evaluated

based on the test set. Each test sample is classified using the first classifier that can

make a confident decision.

2.10.2 PTB Diagnostic ECG Database

The proposed technique is evaluated on the ECG signals from the Physionet (PTB

Diagnostic ECG database) open access database (Goldberger et al., 2000). Signals

from two groups of subjects are used for ECG beat classification: the control group

and the group of patients. The control group contains ECG signals from 52 healthy

subjects, whereas the group of patients consists of 52 patients who have already had a

MI. All ECG signals are sampled at fs = 1000H z.

In order to perform ECG beat classification, we need to subtract ECG beats for each

person in the database. Therefore, we first filter ECG signals to remove the base-

line wander and high frequency noise. The baseline wander is removed through

morphological filtering (Sun et al., 2002). Furthermore, we apply a zero-phase FIR

band-pass filter of order 32 with cut-off frequencies f1 = 0.05H z and f2 = 40H z for

high-frequency noise removal. Pan-Tompkin’s algorithm is used for ECG R-peaks

detection (Pan and Tompkins, 1985). Similar to the previous study in Acharya et al.

(2016), the segmentation of ECG beats is performed by taking fs/4 samples to the

left and fs/2.5 samples to the right of ECG R-peaks. Moreover, each individual ECG

beat is decomposed using a discrete wavelet transform (DWT) down to level four with

Daubechies 6 (db6) as a basis function, which results in four detail and four approxi-

mation DWT coefficients. The main features used in this classification technique are

extracted from these eight coefficients based on the study in (Acharya et al., 2016).

Namely, the normalized signal energy, the Higuchi’s fractal dimension (Gómez et al.,

2009), along with the following entropies: approximate, fuzzy, permutation, wavelet,

Shannon, Renyi, and Tsallis (Acharya et al., 2015). These features all together represent

the input feature matrix X. The features are sorted based on their relevance using the

infinite latent feature selection algorithm (Roffo et al., 2017).

43



Chapter 2. Monitoring of Cardiovascular Diseases

2

1

3

4

Figure 2.14: The SmartCardia INYU device prototype. Front: 1: STM32L151RDT6
(ARM Cortex-M3 MCU, 384 KB Flash, 48KB RAM), 2: MPU-6000 (6-axis I 2C motion
sensor), 3: nRF8001 (Bluetooth low energy v4.0 radio). Back: 4: ADS1191 (Analog
front-end for ECG applications).

2.10.3 Target Platform

The SmartCardia INYU wearable sensor (INYU, 2013) is considered as the target device

in this work. In this device, a single-lead ECG signal is obtained through an ECG sensor

with a 24-bit ADC (ADSECG, 2011) operating at a frequency that ranges from 125 Hz

up to 16 KHz, with up to 16-bit resolution. This ADC is designed specifically for ultra-

low power ECG applications. Then, this device features an ultra-low power 32-bit

microcontroller STM32L151 (STM32, 2013) with an ARM® Cortex®–M3 on which

the entire processing is performed with the possibility of operation at a maximum

frequency of 32 MHz. The SmartCardia device also has a 48 KB RAM, 384 KB Flash,

and a standard 710 mAh battery. The prototype of the SmartCardia INYU device is

shown in Fig. 2.14. More detailed information about this device can be found in

(Murali et al., 2015).
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2.11 Experimental Results

2.11.1 Classification Quality Evaluation

The entire ECG database is split into training and test sets. The data of one patient is

either put in the training set or in the test set. Therefore, all features extracted from

ECG beats of one subject are assigned to one of these sets. The training set contains

80% of randomly selected subjects, whereas the remaining 20% percent of subjects is

used in the test set. Considering the fact that there are 104 subjects in the database,

83 subjects are used in the training set, and 21 subjects in the test set. In order to get

robust results, this random split is performed ten times, and the geometrical mean of

these ten repetitions is reported. For classification quality evaluation, both the online

and offline phases of our classification technique are implemented in MATLAB.

In this implementation, we fix the first level classifier to contain K = 5 features. Each

succeeding classification level contains features from the previous level and the next

five relevant features obtained through feature selection. For instance, for m = 2,

we have three different classifiers within our classification technique. Namely, the

first-level classifier that contains five features, the second-level one that contains

ten features including the five features from the first-level classifier, and the full

classifier that contains the entire set of available features (n = 72). The classifier that

uses all available features reaches a geometric mean of 83.26% (Sensitivity = 87.95%,

Specificity = 78.82%). The overall geometrical mean of sensitivity and specificity, as

well as the expected complexity of the proposed event-driven classification technique,

are estimated for different values of decision-making thresholds thl and classification

levels m. Fig. 2.15 shows the overall geometrical mean of sensitivity and specificity of

the proposed event-driven classification technique (vertical axis) versus the number of

classification levels (horizontal axis) for different values of decision-making thresholds.

As shown in Fig. 2.15, an increase in the number of classification levels leads to an

increase in the classification performance. This is due to the fact that by increasing

the value of decision-making threshold, we start invoking higher level classifiers that

are more accurate. However, we see that for a particular value of decision-making

threshold, for m ≥ 4, there is no major improvement in terms of classification quality

regarding the number of classification levels.

Fig. 2.16 shows the expected complexity of the proposed technique versus the value

of the decision-making threshold for different number of classification levels m. From

this figure, we can see that an increase in the value of decision-making threshold

leads to an increase in the expected complexity. This is due to the fact that for higher

values of decision-making threshold, we invoke higher level classifiers that use more
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Figure 2.15: Geometrical mean of the proposed real-time event-driven classification
technique versus the number of classification levels for different values of decision-
making thresholds thl .

features, and therefore, are more complex. As seen in Fig. 2.16, for m ≥ 4, there is

no major improvement in terms of computational complexity regarding the value of

decision-making threshold.

Similar to Fig. 2.15, based on Fig. 2.17, we see that for a fixed value of decision-

making threshold, also after m = 4 classification levels, there is no improvement in

terms of expected computational complexity either. Therefore, from Fig. 2.17, we can

deduce that for our experiment only four classification levels are needed, they are

sufficient to fulfill the required classification performance (with minimum complexity

possible). The full classifier that reaches an accuracy of 83.26% (Sensitivity = 87.95%,

Specificity = 78.82%) uses n = 72 features. As shown in Fig. 2.17, in the case of

having four classification levels and applying thl = 0.7 as a decision-making threshold,

we end up with an expected computational complexity of 7.7 and an accuracy of

80.32% (Sensitivity = 81.02%, Specificity = 79.63%). As the expected computational

complexity is related to the number of used features, this negligible loss of 3% in terms

of classification quality, reduces the computational complexity by a factor of 9.35.
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Figure 2.16: Expected complexity (E(C ), in Section 2.9) of the proposed real-time
event-driven classification technique versus the value of decision-making threshold
for different number of classification levels m.

2.11.2 Energy Consumption and System Battery Life Analysis

The same code and inputs of the experiments performed in Subsection 2.11 are con-

sidered, and subsequently ported into C code to assess the classification performance

and the energy consumption of the proposed event-driven classification technique

against the energy consumption of the full classifier on a commercially available

Gecko EFM32 development board (GeckoBoard, 2017). This board includes the same

ARM Cortex-M3 core as in the SmartCardia INYU device, and provides the Simplic-

ity Studio software in which a full energy profiler is integrated. The detailed energy

consumption of our technique along with different classification levels is shown Fig.

2.18.

Herein, m = 4 classification levels are considered and the number of features in the

first level is fixed to K = 5. The full classifier uses n = 72 features. By running the

classification technique on the Gecko EFM32 board, we obtain that the execution time

for processing of one heartbeat is equal to t1 = 24.27s. On the other hand, the time it
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Figure 2.17: Expected complexity (E(C ), in Section 2.9) of our real-time event-driven
classification technique versus the number of classification levels for different values
of decision-making thresholds thl .

takes for the full classifier to process one heartbeat is equal to t2 = 69.95s. Fixing that

the processing of one heartbeat is done once every 90 seconds, the CPU duty cycle

(dC , used in Section 2.9) of the full classifier is 77.73%, whereas the CPU duty cycle of

our approach is equal to 26.97%. For a standard 710mAh battery, since the processing

is done once every 90 seconds, the full classifier runs for 59.83 hours on a single

battery charge. The proposed classification technique reaches 155.41 hours, thus

allowing for more than 6 days of operation. Therefore, the event-driven classification

technique extends the battery life by a factor of 2.60. The energy consumption of

different components of the SmartCardia INYU device is shown in Table 2.5.
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Figure 2.18: Overview of the energy consumption of different classification levels.

Current Duty cycle Avg. current
Operation (mA) (%) (mA)
ADS1191 (ADSECG, 2011) 0.427 100 0.427
MPU-6000 (MPU, 2013) 0.005 100 0.005

Signal acquisition subsystem 0.432
ECG delineation 14.397 1.71 0.246
MI processing 14.397 26.97 (77.73) 3.882 (11.190)
Idle time 0.018 71.32 (20.56) 0.013 (0.004)

STM32 (STM32, 2013) data processing subsystem 4.141 (11.440)
nRF8001 (NRF, 2015) 11 0.0007 0.008

Wireless subsystem 0.008
Total 4.581 (11.880)

Table 2.5: Current used for MI detection on the target device. Currents drawn by
the signal acquisition subsystem are experimentally obtained by running our classi-
fication technique on the Gecko EFM32 development board. The currents outside
parentheses are currents drawn by our classification technique, while the currents in
paretheses are drawn by the full classifier.
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T HIS chapter covers the second part of my thesis. Namely, the first part of this chap-

ter explains the electrical activity in the human brain and the generation of the

electrical signal that can be measured on the surface of the head. Furthermore, a brief

history of Electroencephalogram (EEG) along with its recording and the characteristic

EEG rhythms is provided. The rest of the thesis focuses on the detection of epileptic

seizures. Fistly, a real-time method based on EEG signals obtained from four EEG

electrodes is presented. In the last part of the thesis, a novel interpretable approach to

false alarm reduction for long-term epileptic seizure detection is proposed.

3.1 Neuronal Activity

The human brain contains approximately 86 billion neurons (Herculano-Houzel,

2009). Neurons are the cells that along with glia make up our nervous system, and they

are composed of four main parts: a cell body, an axon, dendrites, and axon terminals,

shown in Fig. 3.1. Each neuron is connected to a lot of other neurons, and it gets

information from its dendrites. The dendrites take the information from axon termi-

nals of connected neurons and transmit it to the cell body. The information is further

propagated down the axon until it reaches axon terminals where a synaptic contact

with another neurons is made. The propagation of information is unidirectional, from

the sending neuron (presynaptic neuron) to the receiving one (postsynaptic neuron).

In its resting state, a neuron has a voltage across its membrane that can result in an

action potential generated by different ion concentrations inside and outside the

cell. The action potential leads to depolarization and repolarization of the neuron,

as explained in Section 2.2. The firing of an action potential happens once the mem-

brane potential of a neuron reaches its threshold value, and it highly depends on the

connections with the surrounding neurons. More specifically, each neuron is con-
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Figure 3.1: Morphology of a neuron.

nected to many other neurons through its dendrites. The communication between

neurons is made at junctions called synapses where the information is transmitted in

the form of chemical receptors called neurotransmitters. The neurotransmitters of the

presynaptic neuron bind to the protein receptors on the postsynaptic cell. Depending

on the type of released neurotransmitters, as well as on the type of the receptors on the

postsynaptic cell, either positive or negative ions will travel through the postsynaptic

membrane. There are two main types of neurotransmitters and receptors, the excita-

tory and the inhibitory ones. The excitatory ones increase the membrane potential of

the postsynaptic cell increasing the probability of firing an action potential, whereas

the inhibitory ones have the opposite effect, keeping the neuron from firing. The

firing of a single neuron depends on the summation of all excitatory and inhibitory

signals coming from the connected surrounding neurons. In case of firing, an action

potential is passed down the axon of the postsynaptic cell.

The propagation of an action potential starts at the part of the neuron where the

cell body connects to the axon (called axon hillock). Once the threshold value of the

membrane potential is reached, the hillock depolarizes, changing the voltage of the

adjacent axon segment. Each axon segment triggers the depolarization of its adjacent

segment. The insulating cells around the axon make up the myelin sheath allowing a

faster signal propagation down the axon. Once the signal reaches the axon terminals,

synaptic contacts with connected neurons are made, starting the process all over

again in the postsynaptic neurons.

The synaptic excitation of the dendrites of many neurons in the brain gives rise to

the currents that can be measured in the extracellular medium (Buzsáki et al., 2012).

Even though all of the neurons in the brain contribute to the generation of these

currents, pyramidal neurons contribute most with their bodies orthogonal to the

brain surface (Jefferys, 1995). The dendrites of these neurons constitute masses
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of equally oriented fibers that acquire properties of electric current dipoles during

postsynaptic potentials (Ivanitsky et al., 2009). Nevertheless, the electric contribution

of every individual neuron is extremely small, as the signal has to penetrate many

non-neuronal tissues, including the meninges, fluid, bones of the skull, and skin,

to reach the electrodes (Bear et al., 2007). Hence, it takes many pyramidal neurons,

activated together, to produce an electrical signal on the surface of the head (Bear

et al., 2007). The measured signal represents the sum of electrical contributions of all

simultaneously activated neurons below the selected pair of electrodes and is called

EEG. The EEG signal amplitude reflects the synchronization of underlying neurons.

Namely, in case of many neurons firing simultaneously, the resulting EEG signal will

be high in amplitude, whereas in case of neuronal firing happening at irregular time

moments, the obtained signal amplitude will be low.

3.1.1 History of EEG

The first roots of the EEG date back to 1875 when English physiologist Richard Caton

observed electrical impulses from the surfaces of monkey and rabbit brains (Coenen

and Zayachkivska, 2013). The first human EEG was successfully recorded in 1924 on a

17-year-old boy during a neurosurgery (İnce et al., 2020) by German psychiatrist Hans

Berger, also known as the inventor of EEG. In 1929, Berger succeeded in recording

the electrical activity from the surface of the human brain (Berger, 1931). One of his

findings was also the existence of different wave patterns present in the brain, such as

alpha waves, also known as Berger waves. Berger also studied different EEG changes

related to attention and mental effort, as well as EEG alternations associated with

brain disorders (Haas, 2003).

3.1.2 EEG Recording

EEG measures electrical activity in the brain generated by the synchronized activity

of underlying neurons. Depending on the way EEG signals are acquired, EEG signal

recordings can be divided into:

• Invasive EEG recordings

• Scalp EEG recordings

Invasive EEG recordings require the use of electrodes surgically implanted on the

surface (electrocorticogram, ECoG) or in deep structures of the brain (stereo-EEG)

(Ball et al., 2009). Implanting electrodes in the brain offers a high spatial and temporal
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signal resolution, as the electrodes are close to the source, and therefore, the signal

gets less distorted by the electrical conductivity of the surrounding tissues before

reaching the electrodes. Invasive EEG recordings are essential for treating patients

with advanced Parkinson’s disease (Groiss et al., 2009). Namely, deep brain stimulation

can slow the disease propagation in patients with unstable medication reducing

tremor and improving their motor skills. Furthermore, invasive EEG recording is

widely used for diagnosis in patients suffering from epileptic seizures that are resistant

to pharmacological treatment (Ball et al., 2009). Namely, in these patients, invasive

EEG is used for presurgical evaluation to accurately localize the seizure-onset zone for

surgical removal (Fong et al., 2012).

Even though invasive EEG recordings offer a high spatial and temporal signal resolu-

tion, these recordings suffer major drawbacks. Namely, the complications related to

electrode implantation include infections and intracranial hematomas (Tanriverdi

et al., 2009), permanent neurological deficit (Cossu et al., 2005), raised intracranial

pressure, infarction, and bone infection (Wong et al., 2009). Apart from their high

degree of invasiveness, another major disadvantage of these procedures is their lim-

ited spatial sampling to the area of implantation, which may result in inaccurate

localization (Santiuste et al., 2008).

On the other side, scalp EEG is a noninvasive recording of electrical brain activity

involving no risk and complications, as no electrode implantation is required. Scalp

recordings use a set of electrodes placed along the scalp along with a conductive

gel that improves the conductivity between the scalp and the electrode surface. The

placement of electrodes is based on the international 10-20 system (Jasper, 1958)

that uses 23 EEG electrodes placed at fixed distances with respect to the anatomical

landmarks (nasion, inion, and pre-auricular points interior to each ear) in steps of 10

or 20%. This standard method of placing electrodes can be further extended to higher

density electrode settings such as 10/10 and 10/5 systems (Jurcak et al., 2007). The use

of EEG head caps with embedded electrodes allows the quick and accurate placement

of any number of electrodes (up to 256) (Ivanitsky et al., 2009). These head caps are

further discussed in Subsection 3.2. Nevertheless, high-density electrode settings are

beyond the scope of this thesis. The electrode setting used in this thesis is shown in

Fig.3.2.
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Figure 3.2: The international 10-20 EEG electrode placement used in this thesis. Each
electrode is represented by letters and a number. The numbers indicate the side of the
head so that odd number are on the left side and even numbers are on the right. Lower
numbers are attributed to the electrode that is closer to the midline. The midline is
represented the dotted line that connects the nasion and the inion, and it consists of
electrodes with a subscript z. The letters are the indicators of the position on the head,
where F stands for frontal, C for central, and P for parietal lobe. Electrodes Pg1 and
Pg2 represent the location of pharyngeal electrodes, whereas electrodes A1 and A2 are
used for contralateral referencing of all EEG electrodes.

EEG signals can be displayed in different montages. The most commonly used type of

montage is a bipolar montage in which the difference between two adjacent channels

is displayed. Another common type of montage is a common average reference

montage. Here, the difference between an electrode of interest and the selected

reference point is displayed. Typically, an average of the rest of the head is used as

reference. Nevertheless, an average of signals from both earlobes can also be used as

a reference point (Ivanitsky et al., 2009).

Scalp recordings suffer a low spatial resolution due to different neuronal and non-

neuronal tissues EEG signals have to penetrate before reaching the electrodes placed

on the scalp. These tissues act as a spatial low-power filter that spreads electric

potentials all around the head (Ivanitsky et al., 2009). Therefore, the scalp EEG fails

to precisely localize the seizure-onset zone (Ball et al., 2009). Nevertheless, scalp

EEG recordings remain a fundamental tool in studying electrical brain activity mainly

due to their noninvasive nature and low price. Furthermore, the temporal resolution

of scalp EEG is much higher in comparison to other noninvasive methods used for

measuring brain activity, such as positron emission tomography (PET) and functional

magnetic resonance imaging (fMRI) (Sejnowski et al., 2014).
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3.1.3 EEG Rhythms

Rhythmical properties of EEG come from two main sources. On the one hand, there

are neurons in the human body that can provoke oscillations of the membrane po-

tential in the absence of any synaptic input, resulting in bursts of action potentials.

(Ivanitsky et al., 2009). These membrane potential oscillations are the result of inter-

actions between different types of voltage-gated ion channels (Ivanitsky et al., 2009).

On the other hand, a large assembly of synchronized neuronal groups form networks

with oscillatory properties (Ivanitsky et al., 2009).

Oscillatory properties of EEG span from 0.5Hz to 200Hz and are broken down into

eight frequency bands where each band correlates with a distinct behavioral state

(level of attentiveness, sleeping, or waking) or pathology (seizures or coma) (Bear et al.,

2007). These bands are typically referred to as follows:

• Delta rhythm - It is represented by slow waves in the frequency range from 1 to

4Hz, mostly seen in deep sleep or pathological sleep such as coma. These waves

tend to be high in amplitude as cortical neurons are not engaged in information

processing, and large numbers of them are highly synchronized (Bear et al.,

2007).

• Theta rhythm - The range of frequency this rhythm can be seen from 4 to 7Hz.

These waves are usually present in young children, but can also be seen during

both sleeping and waking states in adults (Bear et al., 2007).

• Alpha rhythm - The most commonly encountered rhythm during wakefulness,

especially prominent in occipital recording site during relaxation with eyes

closed (Ivanitsky et al., 2009). These waves attenuate with eye-opening or mental

exertion. The frequency range of this rhythm spans from 7 to 14Hz.

• Mu rhythm - Similar to alpha rhythms in terms of frequency from 8 to 13Hz,

but are more concentrated over the motor and somatosensory areas (Bear et al.,

2007).

• Beta rhythm - This rhythm lies in the frequency range from 15-30Hz and is

associated with waking states. It is believed that this rhythm underlies cognitive

processing (Ivanitsky et al., 2009).

• Gamma rhythm - Fast waves that range from 30-90Hz and are associated with ac-

tivated cortex. This rhythm is believed to be involved in the sensory processing

(Ivanitsky et al., 2009).
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Apart from the aforementioned EEG rhythms, there are other EEG rhythms, such as

spindles and ripples. Spindles are represented by short waves from 8 to 14Hz that can

be seen during sleep, whereas ripples are associated with waking states and can be

seen in the form of brief waves from 8 to 200Hz (Bear et al., 2007).

The existence of rhythmical properties of scalp EEG gives rise to the possibility of

using EEG signals for detection of various neurological disorders. These disorders

include epileptic seizures, sleep disorders, Alzheimer’s disease, schizophrenia, stroke,

brain tumors and injuries, dementia, development delays, as well as other disorders

such as behavioral and attention ones (Sharma et al., 2019). Due to the unpredictable

nature of epileptic seizures, patients with epilepsy are at higher risk of accidents

compared to the general population (Cornaggia et al., 2006). A prompt response and

assistance provided by family members and/or caregivers at the time of a seizure

can be beneficial to avoid these accidents as well as epilepsy-related death. During

seizures, there is an extreme synchronization of large neuronal populations mostly

reflected onto the EEG signal morphology (Jiruska et al., 2013) in time and frequency

domain. Furthermore, there are publicly available databases of epileptic patients.

Therefore, the rest of this thesis focuses on the detection of epileptic seizures.

3.2 Epilepsy

Today, epilepsy represents one of the major neurological health issues affecting more

than 65 million people worldwide (Patricia O. Shafer, RN, 2014) and it is among the

most prevalent neurological disorders along with migraine, stroke, and Alzheimer’s

disease (Hirtz et al., 2007). Despite substantial progress in the efficacy and tolerance

of anti-epileptic drugs, one-third of the epileptic patients continue to have seizures

(Kwan and Brodie, 2010).

Epilepsy is characterized by intermittent seizures caused by disturbances in the nor-

mal electrical activity of the brain (Patricia O. Shafer, RN, 2014). These disturbances

affect either the entire cerebral cortex (generalized seizures), or just a particular area

of the cortex (partial seizures) (Bear et al., 2007). Both, generalized and partial seizures,

involve an extreme level of neuronal synchronization within the affected areas that is

typically seen on the EEG signal morphology. These seizures can last from seconds

to minutes and can range from an impaired consciousness, automatic movement,

up to severe convulsions of the entire body. Impaired consciousness may lead to

driving accidents, drowning, as well as other serious injuries (Blumenfeld, 2012). This

contributes to a severe reduction in the quality of life and psychosocial function-

ing. The unpredictable nature of seizures can be life-threatening with a 2–3 times
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higher mortality rate in these patients than in the general population (Szucs et al.,

2006). Furthermore, the most severe seizures, especially when occurring at night, can

result in sudden unexpected death in epilepsy (SUDEP) (Ryvlin et al., 2009). Epilepsy-

related causes of death account for 40% of mortality in high-risk groups of people

with epilepsy (Téllez-Zenteno et al., 2005). In order to reduce morbidity and mortality

due to epilepsy, real-time patient monitoring is essential for alerting family members

and caregivers to administer prompt emergency medication and assist a person at the

time of a seizure.

In the medical community, the standard procedures commonly used for epileptic

patient monitoring are performed based on the video-EEG (v-EEG) (Cascino, 2002).

v-EEG takes place in hospitals over several days and involves the acquisition of the

audio signal using a microphone, the video recording of the patient using a camera,

the brain electrical activity using EEG, as well as the electrical activity of the heart

using Electrocardiogram (ECG). Considering the unpredictability of seizures, it is not

possible to monitor patients on a long-term basis, due to the highly intrusive nature

of these procedures.

With the currently flourishing era of embedded computing, wearable technologies

are opening up new opportunities for real-time epileptic seizures monitoring. These

new ultra-low energy portable devices overcome the limitation of medical equipment

for real-time and long-term patient monitoring. In particular, the portability of these

devices allows real-time remote patient monitoring daily. Ambulatory real-time pa-

tient monitoring allows hospital physicians to access patient information remotely

and, hence, prevent further patient state deterioration by early detection of epileptic

seizures.

The most popular wearable system for the detection of epileptic seizures consists

of EEG head caps with embedded electrodes for measuring the electrical activity

of the brain (Blom and Anneveldt, 1982). This system uses the international 10-20

electrode placing system, mentioned in Subsection 3.1.2. In (Ocak, 2009), a new

scheme for epileptic seizure detection based on approximate entropy and discrete

wavelet transform analysis of 100 EEG channels has been proposed. Furthermore,

different approaches that use artificial neural networks for epileptic seizure detection

based on EEG signals are reported in the literature (Webber et al., 1996). Nevertheless,

all these methods use EEG head caps that are cumbersome and uncomfortable as

they require from 23 to 256 wired electrodes to be placed on the patient’s scalp. The

majority of epileptic patients refuse to wear these caps due to the effect of social

stigma they are facing in their daily lives (Hoppe et al., 2015).

58



3.3. Real-Time Method for Epileptic Seizure Detection

In order to alleviate the impact of social stigma on patient’s daily life, several studies

have been conducted to reduce the number of EEG electrodes needed for epileptic

seizure detection. For instance, in (Fürbass et al., 2017), the authors use two different

montages with a reduced number of electrodes for automatic multimodal detection

of epileptic seizures: eight electrodes in forehead montage, and seven electrodes in

posterior montage. However, the proposed solution is still intrusive and, hence, the

problem of social stigma persists.

One of the contributions to this thesis is a real-time method for epileptic seizure

detection that uses a reduced set of EEG electrodes (Section 3.3), validated on CHB-

MIT database (Physionet.org (Goldberger et al., 2000)). Experimental setup along with

the evaluation of classification performance of this method is presented in Section

3.4.

3.3 Real-Time Method for Epileptic Seizure Detection

The overall flow of the proposed real-time method for epileptic seizure detection

is shown in Fig. 3.3, and it consists of two main phases: feature extraction and

classification. Feature extraction is explained in Subsection 3.3.1. Random forest

explained in Section 2.4.3 is used for differentiating between seizures and non-seizure

events.
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Figure 3.3: The overall flow of the proposed method for detection of epileptic seizures.
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3.3.1 Feature Extraction

EEG signal-morphology based features: In order to capture the complex, non-stationary,

and nonlinear nature of EEG signal morphology, various entropy measures along with

several power features are extracted. When using entropy measures for epileptic

seizure detection, it has been shown that applying a discrete wavelet transform (DWT)

as a pre-processing step improves the detection rate by more than 20% (Ocak, 2009).

Therefore, EEG signals are decomposed down to level seven using a DWT. In particular,

Daubechies 4 (db4) is used as wavelet basis function. The value of sample entropy

is calculated from detail wavelet coefficients at level 6 and 7, whereas the rest of the

nonlinear features are calculated from detail wavelet coefficients at levels 3, 4, 5, 6,

and 7 for different values of input parameters.

• Sample entropy: Given a time-series X = x(1), . . . , x(N ) along with the pattern

length m and the criterion of similarity r (Xinnian Chen et al., 2005), the follow-

ing sequences are defined Xm(i ):

Xm(i ) = {x(i ), x(i +1), . . . , x(i +m −1)}

∀i = [1, N −m +1].

Then, two patterns Xm(i ) and Xm( j ) are similar if the difference between any

pair of corresponding measurements in the patterns is less than r :

|x(i +k)−x( j +k)| < r,∀k = [0,m).

All sequences of length m, Xm , along with the criterion function Ci m(r ) are

defined as follows:

Xm = {Xm(1), Xm(2), . . . , Xm(N −m +1)},

Ci m(r ) = ni m (r )
N−m+1 ,

where ni m(r ) is the number of patterns in Xm that are similar to Xm(i ) excluding

self-matches. The sample entropy is defined as:

SampEn(x,m,r ) = ln( Cm (r )
Cm+1(r ) ),

where Ci m(r ) is calculated for each pattern in Xm . and we define Cm(r ) as

the mean over Ci m(r ). In this work, parameters m = 2, and r = k · std(si g nal )

are used, where std(si g nal ) represents the standard deviation of a signal, and

k ∈ {0.2,0.35}.
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• Permutation entropy: Given a time-series {xt }t=1,...,T , where T is the length of

the time-series, all possible n! permutations are calculated (Bandt and Pompe,

2002). The parameter π corresponds to the permutation type, whereas the

parameter n represents the number of instances considered to estimate the

permutation entropy (e.g., (xi , x j , i 6= j )), where n = 2, or (xi , x j , xk i 6= j 6= k),

where n = 3. For instance, for n = 2, π can take on only two values. For simplicity

of explanation, let us denote them by 01 or 10. If xt < xt+1, then π = 01, and

if xt > xt+1, then π = 10. Hence, in case of n = 2, there are just two possible

permutations, namely, 01 and 10. The relative frequency for type π is estimated

as follows:

p(π) = number of perms that have the type π

T−n+1 .

The permutation entropy of order n ≥ 2 is defined as:

PE(n) =−∑
π

p(π)log(p(π)).

In this work, the value of permutation entropy is computed for n ∈ {3,5,7}.

• Renyi entropy: This entropy is calculated as follows (Acharya et al., 2015):

RE(q) = 1
1−q ln∑

pq
i ,

where q 6= 1, and pi defines the normalized spectral power in i -th band.

• Shannon entropy: This entropy is the special case of Renyi entropy (Acharya

et al., 2015) for q = 1, namely:

SE =− lim
q→1

RE(q) =−∑
pi ln(pi ).

• Tsallis entropy: It is defined as in (Acharya et al., 2015):

T E(q) = 1
q−1 (1−∑

pq
i ).

Complementary features - power features: Epileptic seizures affect the distribution

of EEG signal power in different frequency bands (Sharma, 2015; EPILEPSY, 2015).

The most commonly reported features extracted from EEG signals in the literature

(Bell and Cuevas, 2012) rely on the spectral power of EEG signals in the frequency

bands mentioned in Subsection 3.1.3. Therefore, the total and the relative EEG signal

powers in these bands are calculated to complement the signal-morphology based

features. These power features are extracted from raw EEG signals.
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3.4 Experimental Setup and Results

In this section, the proposed method for detection of epileptic seizures is applied on

Physionet.org CHB-MIT Scalp EEG database (Goldberger et al., 2000; Shoeb, 2009) and

the classification performance is evaluated. This database is described in Subsection

3.4.1. Then, the target computing system of the e-Glass wearable platform on which

the proposed method is ported is explained in Subsection 3.4.2. Finally, the perfor-

mance of the proposed real-time detection algorithm and the energy consumption

estimation are presented in Subsection 3.4.3.

3.4.1 CHB-MIT Database

This database consists of more than 980 hours of long-term EEG recordings obtained

from 24 children aged 1.5-22 with refractory seizures. All EEG signals are sampled

at fs = 256Hz. The recording files of each patient contain exactly one of digitized

EEG signals, although those belonging to case chb10 are two hours long, and those

belonging to cases chb04, chb06, chb07, chb09, and chb23 are four hours long. Ictal

and interictal phases are clearly indicated. For ictal events, the onset and offset

timestamps of each seizure are specified in the separate text files. In order to be able

to evaluate the performance of the proposed method and the impact of the reduced

number of electrodes, multiple traces from 23 patients are considered. These traces

include the total number of 182 seizures. The only patient that is not taken into

consideration is chb24. Namely, the recordings of this patient were added additionally

to the database and are not compliant with the standard acquisition protocol (Jasper,

1958).

3.4.2 Target Platform

The used e-Glass wearable system is shown in Fig. 3.4. This system acquires EEG

signals from two electrode pairs: F7T3, and F8T4, shown in Fig. 3.3. The sampling

frequency of acquired EEG signals ranges from 125 Hz up to 16 KHz with up to 16-bit

resolution. Furthermore, this wearable platform features an ultra-low power 32-bit

microcontroller STM32L151 (STM32, 2013) with an ARM® Cortex®–M3, which can

operate at a maximum frequency of 32 MHz. e-Glass contains a 570 mAh battery, as

well as 48 KB RAM, 384 KB Flash, and several analog peripherals including a 24-bit ADC

(ADS, 2012). At the time of a seizure, a warning from e-Glass is sent to the caregivers

through communication with a mobile phone. For these purposes, Bluetooth low

energy (nRF8001) is used (NRF, 2015).
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4-5.5 cm
Battery
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Figure 3.4: e-Glass: a wearable system used for evaluating the performance of the
proposed method for real-time epileptic seizure detection.

3.4.3 Performance Evaluation

Classification Performance Metric and Cross-Validation: To evaluate the classifica-

tion performance of the proposed method, both sensitivity and specificity metrics

are considered, as well as their geometric mean (Gmean). These metrics are defined in

Section 2.4.4. A sliding window of four seconds with 75% overlap is used for extracting

the features mentioned in Subsection 3.3.1. These features are extracted for both,

seizure and seizure-free signal parts. Based on the discussion with expert neurologists,

seizure-free signal parts are chosen at least 30 minutes after the last and before the

incoming seizure. In order to have balanced classes, the same number of seizure and

seizure-free windows is used for each patient.

Personalized Versus Generic: The difference in terms of classification performance

between the personalized and generic approach is investigated. Namely, the generic

approach uses leave-one-out cross-validation scheme. Out of 23 subjects, a single

subject is retained for testing the model, and the remaining 22 are used as training

data. The personalized approach performs the classification based on the features

extracted from different trials of one subject. Hence, this classification is done per

subject. While splitting the data into training and test sets each trial is included into

either the training set or the test set. First, the number of seizures for each patient

is found. As the minimum number of seizures per patient is three, in order to make

sure that the test set contains at least one seizure, 30% of seizure data is put in the test

set, whereas 70% goes to the training set. For instance, let us assume that patient A

had 6 seizures. Then, feature windows that correspond to two seizures are put in the

testing set, whereas the remaining four seizure windows are put in the training test.

All possible combinations of six seizures are used to select two at a time for test set.
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Figure 3.5: Sensitivity (sensitivity) for personalized versus generic approach using four
electrodes.
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Figure 3.6: Specificity (specificity) for personalized versus generic approach using four
electrodes.

For each of these combinations, the rest of seizure-free data is split into training and

test sets for all possible 70–30% splits, and the value of Gmean (Eq. 2.6) for each subject

in the personalized approach is reported.

Fig. 3.5, 3.6 3.7, show the sensitivity, specificity, and Gmean across all subjects (vertical

axis) for four electrodes used: F7T3, and F8T4 in Fig. 3.3, respectively. The geomet-
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Figure 3.7: Geometric mean (Gmean) for personalized versus generic approach using
four electrodes.

ric mean across all subject for the generic approach is 70.33% (sensitivity = 63.49%,

specificity = 77.91%), whereas this value reaches 91.54% for the case of our personal-

ized approach (sensitivity = 90.98%, specificity = 92.10%). In the best case, for patient

15 our approach improves the detection rate for 75.42%, as shown in Fig. 3.7. As

seen from this figure, the personalized classification approach can adapt to signifi-

cant inter-patient variations in EEG patterns. Thus, it achieves a higher classification

performance.

EEG Caps Versus e-Glass: Fig. 3.8, 3.9, 3.10 show the values of classification metrics

for personalized approach using EEG caps (all available electrodes) versus the values

of those obtained from e-Glass (four selected electrodes: F7T3, and F8T4). The geo-

metrical mean across all subjects is 95.71% (sensitivity = 96.33%, specificity = 95.10%).

and 91.54% (sensitivity = 90.98%, specificity = 92.10%) for all electrodes and for the

selected subset of electrodes, respectively. As it can be observed from Fig. 3.10, using

only a few electrodes it is possible to ensure a high degree of wearability without any

major loss in classification performance. Even though there is a slight difference for

subject number 7 in Fig. 3.10, this difference is within the expected statistic range

since the number of trials for this subject is limited. Nevertheless, the maximal ob-

tained specificity for all electrodes reaches a value of 95.10%. Considering the fact

that we classify four-second windows, one out of each 20 windows will indicate the

presence of a seizure. Therefore, each 80 seconds we will get one false-positive alarm.

Since seizures differ in frequency from less than once per year to multiple times per

day, this false-positive rate is extremely high. In Section 3.5, an interpretable approach
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Figure 3.8: Sensitivity (sensitivity) for personalized approach using EEG caps (all
electrodes) versus e-Glass (four selected electrodes)
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Figure 3.9: Specificity (specificity) for personalized approach using EEG caps (all
electrodes) versus e-Glass (four selected electrodes)

to false alarm reduction for long-term epileptic seizure detection is proposed.

Energy Consumption and System Battery Life Analysis: Assuming that the EEG ac-

quisition circuit is active all the time, the proposed method for epileptic seizure

detection runs every four seconds on e-Glass system. The processing of a four-second

window takes 3.08 seconds, which represents the latency of the system. Therefore, the

66



3.5. False Alarm Reduction for Long-Term Seizure Detection

CPU duty cycle of e-Glass is 77%. This results in 65.15 hours of operation on a single

battery charge. Thus, it allows for 2.71 days of continuous operation.
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Figure 3.10: Geometric mean (Gmean) for personalized approach using EEG caps (all
electrodes) versus e-Glass (four selected electrodes)

3.5 False Alarm Reduction for Long-Term Seizure Detec-

tion

Many researchers have tried to develop automatic seizure detection algorithms that

involve only the analysis of EEG. The main pitfall of these EEG-based algorithms is the

reported prevalence of false-positive alarms that hinders their effectiveness in long-

term patient monitoring (Xu et al., 2016). Most of these algorithms are based on a set

of predefined features extracted from EEG signals that are sent to the input of a trained

classifier that distinguishes seizures from non-seizure activities, as shown in Section

3.3. The same approach is employed in (Hopfengärtner et al., 2014), where the authors

propose an automatic epileptic seizure detection algorithm based on the frequency

domain analysis. In particular, once the selected features have been extracted, the

authors use an adaptive threshold technique to identify seizures, reaching a sensitivity

of 87.3% and a false-positive rate of 0.22/h. Another study that uses a hybrid epileptic

seizure detection algorithm combining the temporal and frequency domain analysis

has been conducted in (Fürbass et al., 2015), resulting in a sensitivity of 81% and a

false-positive rate of 0.30/h. However, these high false-positive rates place a significant

burden on the healthcare infrastructure, and therefore, limit the application of these

algorithms within the medical community.
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Apart from EEG signals, other biosignals in combination with accelerometer can

be used to detect epileptic seizures. One of the examples is the Embrace device

(EMPATICA, 2020), a wrist-worn device that uses electrodermal activity along with a

three-axial accelerometer to detect generalized tonic-clonic seizures (GTCS). During

the clinical trail on 141 patients, the algorithm running on this device managed to

detect 98% of seizures with a false alarm rate of 0.94 per 24h. Nevertheless, since the

frequency of seizures for some patients ranges from less than once per year to multiple

times per day, this false-positive rate is still high for certain patients. Moreover, the

use of this device is strictly limited to the detection of GTCS.

The main inspiration behind the method proposed in this section comes from the

approach of neurologists who try to find a set of similarly occurring morphological

patterns that are likely to be seen within each seizure. Let us call this set a personalized

seizure signature. Furthermore, let us hypothesize that all seizures of each subject

either have a similar signal morphology or can be split into different seizure groups,

where seizures with a similar morphology belong to the same group. Each of these

groups can be detected using at least one of the morphological patterns of the seizure

signature. The seizure signature consists of different EEG signal patterns tailored

to each patient and simultaneously taken from the same seizure. These segments

are chosen from the set of available EEG signal channels, by visually inspecting the

signal morphology across different EEG channels from two different seizures, taking

into account the signal quality. Finding similar signal patterns, also known as motif

discovery in the literature, has been one of the most important data mining tasks

(Patel et al., 2002; Chiu et al., 2003).

The purpose of this work is to present an interpretable patient-specific EEG-based

approach for long-term epileptic seizure detection focused on the reduction of false-

positive alarms. The goal is to assess to what extent personalized similarly occurring

seizure patterns can be used to detect epileptic seizures. Furthermore, the identifi-

cation of these patterns can potentially reveal the presence of seizures that were not

annotated in the databases, as shown in Subsection 3.6.2.
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3.5.1 Datasets

The Physionet.org CHB-MIT Scalp EEG database described in Section 3.4.1 along with

the European Epilepsy Database (surface recordings) (Ihle et al., 2012) are used in

this study to demonstrate the performance of the proposed approach. The European

Epilepsy Database (surface recordings) contains a total of over 4600 hours of continu-

ous recordings obtained from 30 people in the age range from 13 to 67. Seizure onsets

and offsets for each patient are provided in separate text files. The European Epilepsy

Database contains subclinical seizures for some patients. However, these seizures are

not taken into consideration in this work, as more than 94% of these seizures lasted

for less than 5 seconds, and the majority of these annotations are missing (Ihle et al.,

2012). Therefore, for the European Epilepsy Database, only seizures with onsets and

offsets determined by EEG are considered. EEG signals in both databases are sampled

at fs = 256Hz.

3.5.2 Personalized Seizure Signature

We define a personalized seizure signature S as follows:

S := {p1, p2, ..., pN },

in which each pi represents one unique seizure pattern. The number of selected

patterns N is patient-dependent. The main motivation behind using multiple seizure

patterns pi lies in having different groups of seizures. Then, seizures that belong to

the same group have similar morphological signal segments and can be detected

using the same set of EEG signal channels that constitute the selected seizure pattern

pi . Individual seizures can be detected with more than one seizure pattern. Seizure

patterns pi are manually chosen by finding similarly occurring EEG signal segments

from two different seizures. In order to capture the abnormal synchronous electrical

discharge of the brain cells that occurs at the time of a seizure and is reflected onto

various EEG channels, each pattern pi is patient-specific and is represented by a 2×M

matrix that consists of two different EEG channels, namely:

pi :=

p(1)
i1

p(1)
i2

... p(1)
iM

p(2)
i1

p(2)
i2

... p(2)
iM



Each row of this matrix represents one of the chosen EEG channels. The duration

of each pattern is empirically obtained and it ranges from one to ten seconds, i.e.,
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(a) Recording chb02_16.edf, 14 seconds after seizure onset.

(b) Recording chb02_16+.edf, 13 seconds after seizure onset.

Figure 3.11: Two ictal EEG recordings taken from CHB-MIT Scalp EEG database. After
the visual inspection of these two seizures, a five-second long seizure pattern p1

consisting of channels T7-P7 and P7-O1 in Fig. 3.11a is chosen, as shown in red.
Seizure pattern p1 constitutes the personalized seizure signature S of this patient, i.e.,
S = {p1}. A similar seizure pattern can be found in Fig. 3.11b, shown in red.

fs ≤ M ≤ 10 · fs , where fs represents the EEG sampling frequency. EEG signal channels

p(1)
ik

and p(2)
ik

, where k = {1, ..., M }, are chosen simultaneously from the same seizure.

The aforementioned definitions are illustrated using the example shown in Fig. 3.11.

This figure illustrates an example of a seizure signature that consists of only one

seizure pattern, i.e., S = {p1}.
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Even though in most cases the personalized signature consists of only one seizure

pattern, sometime more than one pattern is needed to ensure the complete removal

of false positives. For instance, let us consider seizures of subject chb13 in CHB-

MIT database, which is shown in Fig. 3.12. In order to detect all 12 seizures of this

subject, we use the seizure signature S = {p1, p2} comprised of the following two

seizure patterns: [FP1F7, FZCZ] and [FP1F7, FP2F4]. The former is extracted from the

first seizure allowing the detection of seizures [1, 2, 4, 5, 8, 11, 12], whereas the latter is

taken from the third seizure resulting in a detection of seizures [3, 6, 7, 8, 9, 10, 12].

Seizures [8, 12] of this patient can be detected with any of the two aforementioned

patterns. Nevertheless, the rest of the seizures seems to belong to two different groups

of morphological patterns.

1 2 3 4 5 6 7 8 10 11 129 #seizure

Figure 3.12: Distribution of detected seizures in subject chb13 from CHB-MIT
database using a seizure signature that consists of two different patterns. Red circles
represent seizures detected using the first pattern, whereas the green circles show
those that are detected using the second one.

Let us now examine patient chb06 in CHB-MIT database who experienced 10 seizures.

Our approach uses three different seizure patterns i.e. S = {p1, p2, p3}. Namely, pat-

terns [C3P3, T7FT9] and [F3C3, C3P3] taken from seizure 1, and [F3C3, C3P3] taken

from seizure 2. Using these three seizure patterns, our approach detects the following

seizures [1, 6, 7, 10], [1, 3, 4, 10], and [2, 4, 5, 8, 9], respectively. Even though patterns

p2 and p3 consist of the same EEG channels, their signal morphologies are completely

different. As it can be seen from this example as well, some seizures can be detected

with more than one pattern. We found that the maximum number of patterns within

the seizure signature for the considered databases is three.

3.5.3 Real-Time Flow for the Detection of Epileptic Seizures

After a personalized seizure signature S = {p1, p2, ..., pN } has been chosen, the simi-

larity between each seizure pattern pi of length M and a signal segment of the same

length is estimated taking into account only the EEG channels present in S. First,

both the observed signal segment and each of the seizure patterns, are normalized

by removing the mean value of their EEG channels. Then, the similarity is estimated

by minimizing the distance between the selected signal segment and each seizure

pattern. Dynamic time warping (DTW) (Berndt and Clifford, 1994) is used as the un-
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derlying distance metric. The other most commonly used distance metric is Euclidean

distance (Mueen et al., 2009). However, in this work DTW is used, allowing similarly

occurring morphological segments to be out of phase in the time axis (Keogh and

Ratanamahatana, 2005). More precisely, Euclidean distance assumes the temporal

alignment of the considered morphological segments and is very sensitive to small

distortions in the segment shape. On the other side, DTW takes these distortions

into consideration by aligning the signal segments before calculating the distance

measure.

Algorithm 2 Distance metric calculation

function CALCULATEDISTANCE(S,EEG)
S = {p1, p2, ..., pN } ← MEANREMOVAL(S);
for i = 1 to N do

M ← LENGTH(pi ); pi1 ← pi1k ; pi2 ← pi2k

ch1 ← FIRSTEEGCHANNEL(pi ); ch2 ← SECONDEEGCHANNEL(pi )
s1 ← EEG(ch1, t : t +M); s1 ← MEANREMOVAL(s1); Di1 = DTW(pi1 , s1)
s2 ← EEG(ch2, t : t +M); s2 ← MEANREMOVAL(s2); Di2 = DTW(pi2 , s2)
Di = log(Di1 ) · log(Di2 )

end for
end function

Let pi be a seizure pattern of length M consisting of two EEG channels p(1)
i = p(1)

ik

and p(2)
i = p(2)

ik
. We denote the value of DTW between the first EEG segment p(1)

i and

a signal segment of length M by D (1)
i . Similarly, for the second EEG segment in the

observed pattern this value is denoted by D (2)
i . For each signal window of length M

and each seizure pattern pi in S, we minimize the following distance metric Di :

Di = log(D (1)
i ) · log(D (2)

i ),1 ≤ i ≤ N .

The calculation of this metric is based on Algorithm 2. Note that parameter t in

Algorithm 2 represents the starting point of the observed signal segment. In order

to detect seizures across the entire duration of available recording, we use a sliding

window of length M with a step of 1 second. This is done by making parameter t go

from the beginning of the recording to its end. The last step of the flow consists of

finding a threshold that allows us to detect as many seizures as possible without false

positives. We manually determine the value of each threshold hi for each value of the

distance metric Di across the entire signal recording. Fig. 3.13 shows an example of

Di . All Di values below the threshold represent seizure occurrences. In order to detect

new seizures, our method inspects only EEG channels present in each seizure pattern
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of the seizure signature. As soon as the observed signal segment resembles one of the

seizure patterns, a new seizure is detected, making our method highly interpretable.

Figure 3.13: The value of Di obtained during 39 hours of continuous patient monitor-
ing (chb05 from CHB-MIT database). In this example, we use a seizure signature S that
consists of only one seizure pattern pi , i.e., S = {p1}, taken from the second seizure.
This can clearly be seen from this figure, as the value of Di reaches its global minimum
(solid line) during the second seizure. Each of the vertical dashed lines corresponds
to the times of seizure occurrences. The dash-dot horizontal line shows the value of
the applied threshold hi = 125 that distinguishes seizures from non-seizure events. As
shown in this figure, this patient had five seizures and all of them are detected, with
no false positives.

3.5.4 Evaluation Metrics

The standard evaluation metrics commonly used for the evaluation of seizure detec-

tion approaches are: sensitivity, false alarm rate, and detection latency (Beniczky and

Ryvlin, 2018). To assess the performance of the proposed approach in terms of the

maximum number of seizures that can be detected without false-positive alarms, the

main evaluation metric considered in this work is sensitivity, defined in Section 2.4.4.

Moreover, the detection latency of the approach is reported as time in seconds from

the seizure onset to the detection time.

3.6 Results

The overall performance of the proposed approach is shown in Fig. 3.14. Namely,

each vertical bar represents the sensitivity obtained across the entire duration of

available EEG recordings for each patient. As we can see in Fig. 3.14a, the proposed

approach reaches a full sensitivity of 100% for 19 subjects of CHB-MIT databases with

no false positives. Furthermore, a personalized seizure signature that consists of only

one seizure pattern was used for more than 70% of subjects (17 subjects). A seizure

signature composed of two different seizure patterns, i.e., S = {p1, p2 | N = 2}, was only

needed for five patients, whereas only for two subjects three seizure patterns were

used to ensure an acceptable sensitivity. On the other side, the use of personalized
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(a) CHB-MIT Database.
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(b) European Epilepsy Database.

Figure 3.14: False-alarm free sensitivity of the proposed approach.

seizure signatures for each patient demonstrates a false alarm-free detection with a

sensitivity of no less than 70% per subject achieved for 70% of subjects of European

Epilepsy Database. The use of three patterns was only required for two patients of this

database. The number of patterns used for each subject is detailed in Appendix A. The

proposed method fails to detect seizures for patients 11, 23, 28, whereas for patient 10

the obtained sensitivity is below 50%. The limitations of this approach are thoroughly

explained in Subsection 3.6.1.

Detection latency results for both databases used in this study are shown in Fig. 3.15

in a form of a violin plot. Each shape in Fig. 3.15 represents the distribution of the

measured detection latency for each patient. Moreover, the white dot inside each of
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these shapes is the median value, whereas the black bar in the center indicates the

interquartile range. Data points shown within each shape represent the measured

latency of each seizure. These results reveal that more than 95% of all seizures in

CHB-MIT Database are detected with a latency below 40 seconds. The measured

latency in case of European Epilepsy Database is higher allowing the detection of

more than 70% of overall seizures in less than 40 seconds. The position of the selected

seizure signature within each seizure affects the measured detection latency. High

detection latency in Fig. 3.15 obtained for few seizures of patients 5, 13, 15, 17, 24 in

CHB-MIT Database and 3, 5, 16 in European Epilepsy Database shows that the chosen

seizure signature does not appear in the first 40 seconds of the seizure. Therefore, the

detection of the seizure signature is delayed.

(a) CHB-MIT Database.

(b) European Epilepsy Database.

Figure 3.15: The measured detection latency of the proposed approach per patient in
seconds.
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3.6.1 Limitations of the proposed approach

There are a few cases in which the proposed method either does not reach a full

sensitivity or it fails to detect epileptic seizures. These cases are listed below:

1. Short seizures - The duration of seizures differs greatly between patients. In

order to find seizure patterns within each seizure, the duration of each selected

seizure patterns pi within S should be shorter than the duration of each seizure.

Furthermore, short seizures that do not develop entirely exhibit the absence

of the chosen seizure patterns, and therefore, cannot be detected using our

approach.

2. Artifact - Seizures that are completely covered by artifacts caused by muscular

movements are hard to be detected using our approach. In fact, this artifact is

seen across all of the available EEG channels, which impedes the identification

of the personalized seizure signature S.

3. Seizures that are not visible on scalp EEG - Our approach tries to replicate the

work of neurologists by looking for similarly occurring scalp EEG morphological

pattern pi within each seizure. However, for some patients, no epileptic dis-

charges can be seen on scalp EEG. Therefore, to capture these seizures, another

neuroimaging techniques are needed.

4. Pattern absence - The absence of selected seizure pattern pi might be seen in

some rare cases. We look for seizure patterns by visually inspecting the EEG

signal morphology from two different seizures. However, in case of lack of at

least two seizures coming from the group with similar morphological segments,

no seizure pattern can be identified.

3.6.2 Unlabelled seizures

One of the interesting findings of this approach is that it allows us to discover the

existence of seizures that were not labelled in the databases. As previously mentioned,

a threshold hi for each seizure pattern pi is manually selected by visually inspecting

the morphology of Di , shown in Fig. 3.13. All Di values below the value of the selected

threshold represent epileptic seizure occurrences. By analyzing Di values of each

patient in both databases, some values of non-seizure events were below the selected

threshold. After a careful review of these cases by expert neurologists, two subjects

that most likely contain unlabelled seizures were found: subject chb24 from CHB-MIT

database and subject 308102 from European Epilepsy Database. In particular, the
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seizure signature of subject chb24 is extracted from seizure 1 and consists of only one

seizure pattern [F4C4, FZCZ] of length 10 seconds, which is shown in black in Fig. 3.16.

After the seizure signature has been chosen, the value of Di is estimated across the

entire duration of available signal recording for this subject. The value of Di is shown

in Fig. 3.17. This subject had 16 annotated seizures, which are represented by vertical

red lines in this figure. After applying the threshold hi = 160, we can clearly notice

four non-seizure events for which the value of Di falls below the threshold. The value

of the threshold is chosen to maximize the sensitivity of the proposed method. Fig.

3.18, 3.19, 3.20, and 3.21 show EEG signal channels of these non-seizure events. It is

clear that the chosen signature appears in these four non-seizure events. In case of

subject 308102 from European Epilepsy Database, we found one non-seizure event

that allows us to detect epileptic seizures of this patient using only one seizure pattern.

Therefore, these non-seizure events were treated as seizures in Section 3.6.

Considering the fact that epileptic seizures may occur at any moment in time, long-

term patient monitoring requires the constant presence of physicians who would look

for seizure occurrences. This is a very time-consuming task due to a large number of

hours in signal recordings. EEG signal recordings have been used as the gold standard

technique for long-term monitoring of epileptic patients in hospitals. Nevertheless,

physicians are forced to look at all of the available EEG signal channels to find changes

in the signal morphology rendering long-term patient monitoring extremely tiresome.

The proposed approach is a suitable tool to reduce the workload of hospital physicians

providing a subset of available EEG channels that should be inspected to find epileptic

seizures. Furthermore, apart from lowering the number of necessary EEG channels for

inspection, this approach also provides the exact time location of detected seizures.

Additionally, the use of personalized signatures may also reveal the presence of un-

labelled seizures, which confirms the usefulness of this approach for the analysis of

long-term seizure monitoring.
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Figure 3.16: The selected seizure signature for subject chb24 from CHB-MIT database
extracted from recording chb24_01.edf. The chosen signature consists of only one
pattern of length 10 seconds, i.e., S = {p1}, taken from the first seizure. The chosen
EEG channels are shown in black
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Figure 3.17: The value of Di obtained during 21 hours of continuous patient monitor-
ing (chb24 from CHB-MIT database). The annotated seizure occurrences are shown
in red. Since the seizure signature is extracted from the first seizure, the value of Di

reaches its global minimum during the first seizure. The dash-dot horizontal line
indicates the applied threshold hi = 160 for seizure detection. Events annotated by
numbers 1, 2, 3, 4 indicate the presence of unlabelled seizures, as their Di falls below
the selected threshold.
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Figure 3.18: Unlabelled seizures 1 in recording chb24_01.edf.
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Figure 3.19: Unlabelled seizures 2 in recording chb24_18.edf.
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Figure 3.20: Unlabelled seizures 3 in recording chb24_18.edf.
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Figure 3.21: Unlabelled seizures 4 in recording chb24_18.edf.
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4 Conclusions and Future Work

T HIS chapter summarizes the conclusions of my research outlining my main con-

tributions along with the proposed future work. The main focus of my thesis is

set on the monitoring of cardiovascular and neurological diseases using ubiquitous

wearable technologies. Cardiovascular diseases considered in Chapter 2 include Atrial

Fibrillation (AF) and Myocardial Infarction (MI). Both, AF and MI, are commonly

detected by inspecting changes in the Electrocardiogram (ECG) morphology, which is

used as the main biosignal for detection of these diseases in this thesis.

The part of neurological disorders targets the detection of epileptic seizures through

the use of Electroencephalogram (EEG). The first part of Chapter 3 presents a real-time

method for epileptic seizure detection using a reduced set of EEG electrodes. The last

part of Chapter 3 focuses on reduction of false-positive alarms in long-term epileptic

seizure detection.
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4.1 Atrial Fibrillation

One of the problems I have addressed in this thesis is detection of AF from a short

single lead ECG recording. I have proposed a hierarchical heart-rhythm classification

method that has been trained on four different classes of ECG recordings, which in-

clude ECG signals coming from normal sinus rhythm (NSR), AF, other types of cardiac

rhythms (OthR), and noisy recordings. The proposed method consists of three main

steps: pre-processing, feature extraction, and classification step. The pre-processing

step is used to remove the baseline wander and high frequency noise. Extracted fea-

tures capture the oscillations in heart rate (HR), T- and P-wave morphology, as well as

the time and frequency domain ECG behaviour. The classification step incorporates

two different classifiers: a multiclass classifier based on error-correcting output codes

(ECOC) and a random forest classifier for binary decision making. In case that ECOC

cannot distringuish between NSR and OthR recordings, random forest is applied. The

experimental evaluation demonstrates the robustness of the proposed technique

with an F1 score of 80% obtained on the hidden test set of the 2017 PhysioNet/CinC

Challenge.

The proposed heart-rhythm classification method assumes that the ECG segment at

the input is not inverted. However, as discussed in (Clifford et al., 2017), many ECG

signals were inverted. The integration of the lead inversion check has the potential to

improve the classification performance of the proposed method. Furthermore, the

selected set of features can be further reduced through the use of feature selection

algorithms, which could lower the computational complexity of the proposed method.

The reduction in computational complexity, in turn, makes the proposed algorithm

more suitable to run on wearable devices. Thus, one of the future lines of work

is to port the proposed technique on a wearable device and to estimate its energy

consumption and battery life.

List of publications:

• D. Sopic, E. De Giovanni, A. Aminifar and D. Atienza, Hierarchical cardiac-

rhythm classification based on electrocardiogram morphology, 2017 Computing

in Cardiology (CinC), pp. 1-4, 2017.
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4.2 Myocardial Infarction

A considerable portion of government health-care spending is allocated to the con-

tinuous monitoring of patients suffering from MI. Wearable devices present a cost-

effective means of monitoring patients’ vital signs in ambulatory settings. However,

a major challenge is to design such ultra-low energy devices for long-term patient

monitoring. In Section 2.5, I have tackled the problem of early detection and pre-

diction of MI using smart wearable systems. The proposed real-time event-driven

classification technique uses a hierarchical classifier with multiple levels. Each level

is based on the random forest classification scheme that uses a confidence-related

decision-making process to select the classifier that will be invoked. The main goal of

this technique is to reduce the energy consumption of smart wearable systems while

maintaining a high classification accuracy. Hence, the proposed technique is general

and can be applied to other pathological conditions that are meant to be detected

through the use of smart wearable devices. Moreover, the analysis of computational

complexity and energy efficiency of the proposed technique along with the design flow

presented in Sections 2.8 and 2.9 allow users to synthesize high-accuracy event-driven

hierarchical classifiers that meet their battery life requirements. The event-driven

classification technique is evaluated on the MI database (Physiobank - PTB Diagnostic

ECG database (Goldberger et al., 2000)) and further ported on a real wearable device.

The experimental evaluation demonstrates that this technique outperforms the exist-

ing approaches in terms of energy consumption and battery life by a factor of 2.60,

with no classification quality loss.

As mentioned in Section 2.8, parameter K represents the number of features used

in the first level classifier and is used by the designer to make a trade-off between

the classification accuracy performance of the system, its energy efficiency, and the

complexity of design space exploration. In case of MI, the number of features used in

the first level classifier was fixed to K = 5. In the future, I am planning to optimize this

parameter through its integration in Algorithm 1. Additionally, the proposed event-

driven technique uses a hierarchical classifier with multiple levels, each of which is

based on the random forest algorithm. Therefore, one of the future lines of this work

is to see the impact of another classification scheme on the obtained performance.

Furthermore, since the proposed technique is not bounded to the case of MI, in the

future, I am planning to apply this technique to other pathological conditions, such

as AF and epilepsy.
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List of publications:

• D. Sopic, A. Aminifar, A. Aminifar and D. Atienza, Real-time classification tech-

nique for early detection and prevention of myocardial infarction on wearable

devices, 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.

1-4, 2017.

• D. Sopic, A. Aminifar, A. Aminifar and D. Atienza, Real-Time Event-Driven Clas-

sification Technique for Early Detection and Prevention of Myocardial Infarction

on Wearable Systems, in IEEE Transactions on Biomedical Circuits and Systems,

pp. 982-992, 2018.
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4.3 Real-Time Method for Epilepsy Detection

The gold standard technique for epileptic seizure detection uses EEG head caps

that require a large number of electrodes to be placed on the patient’s scalp. The

lack of portability and comfort of these caps limits the possibility for long-term and

reliable patient monitoring in an ambulatory setting. Furthermore, due to the stigma

associated with EEG caps, the majority of epileptic patients refuse to wear them.

As one of my contributions, I have presented a real-time method for epileptic seizure

detection that uses EEG signals acquired from two electrode pairs: F7T3, and F8T4. The

experimental evaluation of this method on CHB-MIT Scalp EEG database (Goldberger

et al., 2000; Shoeb, 2009) demonstrates that the personalized approach outperforms

the generic one in terms of classification performance reaching a sensitivity of 90.98%

and a specificity of 92.10%. The proposed approach is ported on a wearable ultra-

low energy device in which the two electrode pairs are integrated in the temples of

eyeglasses, allowing for 2.71 days of operation on a single battery charge and ensuring

a high degree of wearability. This reduced set of electrodes overcomes the lack of

portability of hospital equipment, while reducing the computational complexity,

which further leads to a reduction in energy consumption. The used wearable device

onto which the proposed approach is ported, represents an inconspicuous system

that could enable patients to avoid the aforementioned social stigma of wearing

EEG head caps. Moreover, this device can provide an early warning of epileptic

seizures and promptly inform patient family members of preventive measures to

avoid possible accidents during seizures and epilepsy-related death. Overall, this

device can significantly contribute to improvements in the patient’s quality of life by

reducing the socioeconomic burden of epilepsy.

This method has been further improved and used in different studies. In (Zanetti

et al., 2020), the authors propose a seizure detection methodology based on the edge

computing paradigm and data fusion to improve the seizure detection robustness in

terms of false alarm rate. The proposed data fusion approach combines two epochs of

EEG to build a new set of features representing different seizure moments. This second

set is taken from a randomly selected EEG epoch, which contributes to the increase of

data variability in the training set. Thus, more informative features per target label are

obtained on the double feature set, resulting in a more robust model with respect to

the number of false positives. Using the same 570 mAh battery, the authors improve

the current false alarm rate by 34.7%, achieving over 3 days of operation on a single

battery charge.
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Another study that uses the proposed method for epilepsy detection is described in

(Pascual et al., 2019). In this study, the authors propose a self-learning methodology

for epileptic seizure detection. Their methodology uses a novel algorithm for labeling

seizures without medical supervision to generate the training data. As some of the

features in Section 3.3.1 contained redundant information, the authors first use back-

ward elimination in order to find the most relevant ones, which results in a subset of

ten most informative features that offer a trade-off between the classification accuracy

and complexity. The obtained subset of features includes: total theta band power,

relative theta band power, and total delta band power from electrode F7T3, as well as

relative theta band power, seventh level permutation entropy for n = 5 and n = 7, sixth

level permutation entropy for n = 7, third level Renyi entropy and sixth level sample

entropy for k = 0.2 and k = 0.35 from electrode F8T4. The authors demonstrate that

the median label deviation from the ground truth is less than 1% of the signal length,

which results in negligible loss in the classification performance.

Publication: D. Sopic, A. Aminifar and D. Atienza, e-Glass: A Wearable System for

Real-Time Detection of Epileptic Seizures, 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1-5, 2018.

Patent: D. Sopic, R. Zanetti, A. Aminifar, A. Aminifar and D. Atienza, A wearable system

for real-time detection of epileptic seizures, Patent numbers: WO2019162850 (A1),

P3264US00.

4.4 False Alarm Reduction in Epilepsy

As the main pitfall of automatic seizure detection algorithms remains their unac-

ceptably high number of false-positive alarms, in the last part of my thesis, I have

presented a patient-specific approach for long-term automatic epilepsy detection

focused on avoiding false-positive alarms. This algorithm is based on the similar mor-

phological EEG signal patterns that occur frequently during seizures, which makes

it highly interpretable. The duration of these patterns is patient-specific and it goes

from one to ten seconds. Seizure signature along with the value of each threshold

used to distinguish seizures from non-seizure activities are obtained manually. In

the future, the plan is to automate this procedure. The performance of the proposed

approach has been evaluated using two public databases: the Physionet.org CHB-MIT

Scalp EEG database (Goldberger et al., 2000; Shoeb, 2009) and the European Epilepsy

Database (Ihle et al., 2012). The results on the CHB-MIT database demonstrate that it

is possible to detect seizures of 87% of subjects reaching a sensitivity of over 85% per

subject with no false-positive alarms. Moreover, on the European Epilepsy Database,
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the results show a false-positive-free sensitivity higher than 70% per subject. Addi-

tionally, this approach unveiled the existence of unlabelled seizures in both databases.

Considering the irregular nature of epileptic seizures in long-term patient monitor-

ing, this method can help physicians discover seizures by inspecting only the EEG

channels of each pattern within the seizure signature along with the obtained time

location of seizures.

The proposed approach demonstrates that similarly occurring morphological patterns

are likely to be found within ictal parts of EEG signals for the majority of epileptic

patients. The use of personalized seizure signatures eliminates false-positive alarms

while ensuring a high detection sensitivity. Even though for the majority of cases the

personalized signature contains only one seizure pattern, for some patients multiple

patterns are required to reach a high false-positive-free sensitivity. Two examples

of seizure signatures that consist of multiple seizure signatures are given in Section

3.5.2. Nevertheless, as it can be seen from these examples, some seizures are detected

by more than one pattern. Thus, one of the future lines of work would be to try to

combine these patterns to reduce the number of necessary patterns.

Another interesting point to investigate in the future is a temporal evolution and

adjustment of the personalized seizure signature. As an interesting example, EEG

recordings chb01 and chb21 (CHB-MIT database) were obtained from the same female

subject one and a half years apart. This patient had seven seizures when she was 11

(chb01) and four more when she was 13 (chb21). However, the personalized seizure

signature used for detecting seizures from chb01 recordings differs from the one used

for chb21. Specifically, all seizures from chb01 can be detected using a 5-second long

pattern [P4O2, P8O2], whereas in the case of chb21 we use a 2-second long pattern

[P4O2, FT9FT10], resulting in the detection of three out of four seizures. Therefore,

another area of future work concerns a time-domain evolution of personalized seizure

signature using the data obtained at different moments in time.
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A Appendix

Patient ID Number of seizures Recording duration in hours Seizure duration in hours Number of patterns
1 7 40.55 0.12 1
2 3 35.27 0.05 1
3 7 38.00 0.11 1
4 4 156.06 0.11 1
5 5 39.00 0.16 1
6 10 66.74 0.04 3
7 3 67.05 0.09 1
8 5 20.00 0.26 1
9 4 67.87 0.08 1

10 7 50.02 0.12 1
11 3 34.79 0.22 1
12 40 23.69 0.41 3
13 12 33.00 0.15 2
14 8 26.00 0.05 1
15 20 40.01 0.55 2
16 10 19 0.02 2
17 3 21.01 0.08 2
18 6 35.63 0.09 2
19 3 29.93 0.07 1
20 8 27.60 0.08 1
21 4 32.83 0.06 1
22 3 31.00 0.06 1
23 7 26.56 0.12 1
24 16 21.30 0.14 1

Table A.1: Personalized signature - CHB-MIT Database
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Appendix A. Appendix

Patient ID Number of seizures Recording duration in hours Seizure duration in hours Number of patterns
1 11 164.67 0.24 1
2 7 159.44 0.12 1
3 10 161.08 0.50 1
4 6 143.26 0.13 2
5 6 159.67 0.73 2
6 11 159.80 0.25 1
7 6 177.41 0.12 1
8 7 137.98 0.12 2
9 9 93.96 0.12 1

10 18 115.60 0.12 3
11 5 118.11 0.06 x
12 8 135.41 0.13 2
13 10 138.06 0.25 1
14 9 159.73 0.10 1
15 8 158.09 0.20 2
16 6 162.17 0.20 2
17 4 118.73 0.09 2
18 6 92.90 0.09 2
19 9 159.09 0.14 2
20 4 178.21 0.08 2
21 20 161.14 0.40 1
22 4 164.58 0.12 1
23 7 266.37 0.21 x
24 7 159.04 0.16 3
25 9 162.29 0.22 1
26 10 94.45 0.20 2
27 5 167.79 0.17 2
28 6 137.90 0.19 x
29 9 237.52 0.14 2
30 9 159.49 0.24 2

Table A.2: Personalized signature - EPILEPSIA Database

94



Bibliography

Acharya, U. R., Fujita, H., Sudarshan, V. K., Bhat, S., and Koh, J. E. (2015). Applica-

tion of entropies for automated diagnosis of epilepsy using eeg signals: A review.

Knowledge-Based Systems, pages 85–96.

Acharya, U. R., Fujita, H., Sudarshan, V. K., Oh, S. L., Adam, M., Koh, J. E., Tan, J. H.,

Ghista, D. N., Martis, R. J., Chua, C. K., Poo, C. K., and Tan, R. S. (2016). Automated

detection and localization of myocardial infarction using electrocardiogram: a

comparative study of different leads. Knowledge-Based Systems, pages 146–156.

ADS (2012). Ads1299-4 low-noise, 4-channel, 24-bit analog-to-digital converter

for biopotential measurements | ti.com. http://www.ti.com/product/ads1299-4/

description.

ADSECG (2011). Ads1191 complete low power integrated analog front end for ecg

applications | ti.com. http://www.ti.com/product/ADS1191.

Altman, D. G. and Bland, J. M. (1994). Diagnostic tests. 1: Sensitivity and specificity.

BMJ (Clinical research ed.), page 1552.

Ananthanarayanan, G., Bahl, P., Bodik, P., Chintalapudi, K., Philipose, M., Ravin-

dranath, L., and Sinha, S. (2017). Real-time video analytics: The killer app for edge

computing. Computer, pages 58–67.

Apiletti, D., Baralis, E., Bruno, G., and Cerquitelli, T. (2009). Real-time analysis of phys-

iological data to support medical applications. IEEE Transactions on Information

Technology in Biomedicine, pages 313–321.

Årzén, K.-E. (1999). A simple event-based pid controller.

Association, A. H. (2017). Cardiovascular disease: a costly burden for

america, projections through 2035. https://healthmetrics.heart.org/

cardiovascular-disease-a-costly-burden/.

95

http://www.ti.com/product/ads1299-4/description
http://www.ti.com/product/ads1299-4/description
http://www.ti.com/product/ADS1191
https://healthmetrics.heart.org/cardiovascular-disease-a-costly-burden/
https://healthmetrics.heart.org/cardiovascular-disease-a-costly-burden/


Bibliography

Ball, T., Kern, M., Mutschler, I., Aertsen, A., and Schulze-Bonhage, A. (2009). Signal

quality of simultaneously recorded invasive and non-invasive eeg. NeuroImage,

pages 708–716.

Bandt, C. and Pompe, B. (2002). Permutation entropy: A natural complexity measure

for time series. Physical Review Letters, page 174102.

Bear, M. F., Connors, B. W., and Paradiso, M. A. (2007). Neuroscience : exploring the

brain.

Bell, M. A. and Cuevas, K. (2012). Using eeg to study cognitive development: Issues and

practices. Journal of cognition and development : official journal of the Cognitive

Development Society, pages 281–294.

Beniczky, S. and Ryvlin, P. (2018). Standards for testing and clinical validation of

seizure detection devices. Epilepsia, pages 9–13.

Berger, H. (1931). Über das elektrenkephalogramm des menschen. Archiv für Psychia-

trie und Nervenkrankheiten, pages 16–60.

Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in

time series. Proceedings of the 3rd International Conference on Knowledge Discovery

and Data Mining, pages 359––370.

Blom, J. and Anneveldt, M. (1982). An electrode cap tested. Electroencephalography

and Clinical Neurophysiology, pages 591–594.

Blumenfeld, H. (2012). Impaired consciousness in epilepsy. The Lancet. Neurology,

pages 814–26.

Bozzola, P., Bortolan, G., Combi, C., Pinciroli, F., and BroHet, C. (1996). A hybrid

neuro-fuzzy system for ecg classification of myocardial infarction. In Computers in

Cardiology 1996, pages 241–244. IEEE.

Brandes, A., Smit, M. D., Nguyen, B. O., Rienstra, M., and Gelder, I. C. V. (2018). Risk

factor management in atrial fibrillation. Arrhythmia & Electrophysiology Review,

pages 118–127.

Braojos, R., Beretta, I., Ansaloni, G., and Atienza, D. (2014). Early classification of

pathological heartbeats on wireless body sensor nodes. Sensors, pages 22532–22551.

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields

and currents–eeg, ecog, lfp and spikes. Nature reviews. Neuroscience, pages 407–20.

96



Bibliography

Camm, A. J., Luscher, T. F. T. F., Serruys, P. W., and European Society of Cardiology.

(2009). The ESC textbook of cardiovascular medicine. Oxford University Press.

Cannon, C. P., Gibson, C. M., Lambrew, C. T., Shoultz, D. A., Levy, D., French, W. J.,

Gore, J. M., Weaver, W. D., Rogers, W. J., and Tiefenbrunn, A. J. (2000). Relationship

of symptom-onset-to-balloon time and door-to-balloon time with mortality in

patients undergoing angioplasty for acute myocardial infarction. JAMA, page 2941.

Cascino, G. D. (2002). Video-eeg monitoring in adults. Epilepsia, pages 80–93.

Chiu, B., Keogh, E., and Lonardi, S. (2003). Probabilistic discovery of time series motifs.

pages 493––498. ACM Press.

Clifford, G., Liu, C., Moody, B., Lehman, L.-w., Silva, I., Li, Q., Johnson, A., and Mark,

R. (2017). Af classification from a short single lead ecg recording: the physionet

computing in cardiology challenge 2017. IEEE Computing in Cardiology, pages 1–4.

Coenen, A. and Zayachkivska, O. (2013). Adolf beck: A pioneer in electroencephalog-

raphy in between richard caton and hans berger. Advances in cognitive psychology,

pages 216–21.

Cornaggia, C. M., Beghi, M., Moltrasio, L., Beghi, E., and RESt-1 Group (2006). Acci-

dents at work among people with epilepsy. results of a european prospective cohort

study. Seizure, pages 313–9.

Cossu, M., Cardinale, F., Castana, L., Citterio, A., Francione, S., Tassi, L., Benabid, A. L.,

and Lo Russo, G. (2005). Stereoelectroencephalography in the presurgical evalu-

ation of focal epilepsy: A retrospective analysis of 215 procedures. Neurosurgery,

pages 706–718.

de Boer, H. M., Mula, M., and Sander, J. W. (2008). The global burden and stigma of

epilepsy. Epilepsy & behavior : E&B, pages 540–6.

de Chazal, P., Heneghan, C., Sheridan, E., Reilly, R., Nolan, P., and O’Malley, M. (2003).

Automated processing of the single-lead electrocardiogram for the detection of

obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering, pages

686–696.

Díaz-Uriarte, R. and Alvarez de Andrés, S. (2006). Gene selection and classification of

microarray data using random forest. BMC Bioinformatics, page 3.

Dietterich, T. G. and Bakiri, G. (1994). Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, pages 263–286.

97



Bibliography

EMPATICA (2020). Empatica | medical devices, ai and algorithms for remote patient

monitoring. https://www.empatica.com/.

EPILEPSY (2015). A closer look at eeg | epilepsy society. https://www.epilepsysociety.

org.uk/closer-look-eeg.

Escalera, S., Pujol, O., and Radeva, P. (2009). Separability of ternary codes for sparse

designs of error-correcting output codes. Pattern Recognition Letters, pages 285–

297.

Fan Zhang, Holleman, J., and Otis, B. P. (2012). Design of ultra-low power biopotential

amplifiers for biosignal acquisition applications. IEEE Transactions on Biomedical

Circuits and Systems, pages 344–355.

Fleming, P. J. and Wallace, J. J. (1986). How not to lie with statistics: the correct way to

summarize benchmark results. Communications of the ACM, pages 218–221.

Fong, J. S., Alexopoulos, A. V., Bingaman, W. E., Gonzalez-Martinez, J., and Prayson,

R. A. (2012). Pathologic findings associated with invasive eeg monitoring for medi-

cally intractable epilepsy. American Journal of Clinical Pathology, pages 506–510.

Fürbass, F., Kampusch, S., Kaniusas, E., Koren, J., Pirker, S., Hopfengärtner, R., Stefan,

H., Kluge, T., and Baumgartner, C. (2017). Automatic multimodal detection for

long-term seizure documentation in epilepsy. Clinical Neurophysiology, pages

1466–1472.

Fürbass, F., Ossenblok, P., Hartmann, M., Perko, H., Skupch, A., Lindinger, G., Elezi,

L., Pataraia, E., Colon, A., Baumgartner, C., and Kluge, T. (2015). Prospective multi-

center study of an automatic online seizure detection system for epilepsy monitor-

ing units. Clinical Neurophysiology, pages 1124–1131.

Gayathri, S., Suchetha, M., and Latha, V. (2012). Ecg arrhythmia detection and classifi-

cation using relevance vector machine. Procedia Engineering, pages 1333–1339.

GeckoBoard (2017). Efm32 leopard gecko | silicon labs. https://www.silabs.com/

products/mcu/32-bit/efm32-leopard-gecko.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G.,

Mietus, J. E., Moody, G. B., Peng, C. K., and Stanley, H. E. (2000). Physiobank,

physiotoolkit, and physionet: components of a new research resource for complex

physiologic signals. Circulation, pages 215–20.

Goldberger, A. L., Goldberger, Z. D., and Shvilkin, A. (2013). Goldberger’s clinical

electrocardiography : a simplified approach. Elsevier/Saunders.

98

https://www.empatica.com/
https://www.epilepsysociety.org.uk/closer-look-eeg
https://www.epilepsysociety.org.uk/closer-look-eeg
https://www.silabs.com/products/mcu/32-bit/efm32-leopard-gecko
https://www.silabs.com/products/mcu/32-bit/efm32-leopard-gecko


Bibliography

Gómez, C., Mediavilla, A., Hornero, R., Abásolo, D., Fernández, A., Hovilehto, S.,

and Al., E. (2009). Use of the higuchi’s fractal dimension for the analysis of meg

recordings from alzheimer’s disease patients. Medical engineering & physics, pages

306–13.

Greenlund, K. J., Denny, C. H., Mokdad, A. H., Watkins, N., Croft, J. B., and Mensah,

G. A. (2005). Using behavioral risk factor surveillance data for heart disease and

stroke prevention programs. American Journal of Preventive Medicine, pages 81–87.

Groiss, S. J., Wojtecki, L., Südmeyer, M., and Schnitzler, A. (2009). Deep brain stimula-

tion in parkinson’s disease. Therapeutic advances in neurological disorders, pages

20–8.

Haas, L. F. (2003). Hans berger (1873-1941), richard caton (1842-1926), and electroen-

cephalography. Journal of neurology, neurosurgery, and psychiatry, page 9.

HeartFacts (2019). Heart disease facts & statistics. https://www.cdc.gov/heartdisease/

facts.htm.

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up

primate brain. Frontiers in human neuroscience, page 31.

Hirtz, D., Thurman, D. J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A. R., and Zalut-

sky, R. (2007). How common are the "common" neurologic disorders? Neurology,

pages 326–337.

Hopfengärtner, R., Kasper, B. S., Graf, W., Gollwitzer, S., Kreiselmeyer, G., Stefan, H.,

and Hamer, H. (2014). Automatic seizure detection in long-term scalp eeg using an

adaptive thresholding technique: A validation study for clinical routine. Clinical

Neurophysiology, pages 1346–1352.

Hoppe, C., Feldmann, M., Blachut, B., Surges, R., Elger, C. E., and Helmstaedter, C.

(2015). Novel techniques for automated seizure registration: Patients’ wants and

needs. Epilepsy & Behavior, pages 1–7.

Ihle, M., Feldwisch-Drentrup, H., Teixeira, C. A., Witon, A., Schelter, B., Timmer, J., and

Schulze-Bonhage, A. (2012). Epilepsiae – a european epilepsy database. Computer

Methods and Programs in Biomedicine, pages 127–138.

INYU (2013). Inyu - the inner you - home. http://www.smartcardia.com.

Ivanitsky, A. M., Ivanitsky, G. A., Nikolaev, A. R., and Sysoeva, O. V. (2009). Electroen-

cephalography. Springer Berlin Heidelberg.

99

https://www.cdc.gov/heartdisease/facts.htm
https://www.cdc.gov/heartdisease/facts.htm
http://www.smartcardia.com


Bibliography

Jasper, H. (1958). The ten-twenty electrode system of the international federation.

electroencephalography and clinical neurophysiology. pages 371–375.

Jefferys, J. G. (1995). Nonsynaptic modulation of neuronal activity in the brain: electric

currents and extracellular ions. Physiological reviews, pages 689–723.

Jiruska, P., de Curtis, M., Jefferys, J., Schevon, C., Schiff, S., and Schindler, K. (2013).

Synchronization and desynchronization in epilepsy: controversies and hypotheses.

The Journal of physiology, pages 787–97.

Jurcak, V., Tsuzuki, D., and Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited:

Their validity as relative head-surface-based positioning systems. NeuroImage,

pages 1600–1611.

Keogh, E. and Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping.

Knowledge and Information Systems, pages 358–386.

Khavjou, O., Phelps, D., and Leib, A. (2016). Projections of cardiovascular disease

prevalence and costs: 2015–2035. page 32. https://healthmetrics.heart.org/

projections-of-cardiovascular-disease/.

Kirchhof, P., Benussi, S., Kotecha, D., Ahlsson, A., Atar, D., Casadei, B., Castella, M.,

Diener, H.-C., Heidbuchel, H., Hendriks, J., Hindricks, G., Manolis, A. S., Oldgren,

J., Popescu, B. A., Schotten, U., Van Putte, B., Vardas, P., Agewall, S., Camm, J.,

Baron Esquivias, G., Budts, W., Carerj, S., Casselman, F., Coca, A., De Caterina, R.,

Deftereos, S., Dobrev, D., Ferro, J. M., Filippatos, G., Fitzsimons, D., Gorenek, B.,

Guenoun, M., Hohnloser, S. H., Kolh, P., Lip, G. Y. H., Manolis, A., McMurray, J.,

Ponikowski, P., Rosenhek, R., Ruschitzka, F., Savelieva, I., Sharma, S., Suwalski, P.,

Tamargo, J. L., Taylor, C. J., Van Gelder, I. C., Voors, A. A., Windecker, S., Zamorano,

J. L., and Zeppenfeld, K. (2016). 2016 esc guidelines for the management of atrial

fibrillation developed in collaboration with eacts. European Heart Journal, pages

2893–2962.

Klas, G. (2017). Edge Computing and the Role of Cellular Networks. Computer, pages

40–49.

Kwan, P. and Brodie, M. J. (2010). Definition of refractory epilepsy: defining the

indefinable? The Lancet. Neurology, pages 27–9.

Ladavich, S. and Ghoraani, B. (2015). Rate-independent detection of atrial fibrillation

by statistical modeling of atrial activity. Biomedical Signal Processing and Control,

pages 274–281.

100

https://healthmetrics.heart.org/projections-of-cardiovascular-disease/
https://healthmetrics.heart.org/projections-of-cardiovascular-disease/


Bibliography

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R News,

pages 18–22.

Mamaghanian, H., Khaled, N., Atienza, D., and Vandergheynst, P. (2011). Compressed

sensing for real-time energy-efficient ecg compression on wireless body sensor

nodes. IEEE Transactions on Biomedical Engineering, pages 2456–2466.

MPU (2013). Mpu-6000, motion sensor - 6 axis, tdk invensense.

https://www.digikey.com/en/product-highlight/i/invensense/

mpu6000-6axis-integrated-spi-solution.

Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, B. (2009). Exact discovery of

time series motifs. In Proceedings of the 2009 SIAM International Conference on

Data Mining, pages 473–484.

Murali, S., Rincon, F., and Atienza, D. (2015). A wearable device for physical and

emotional health monitoring. In 2015 Computing in Cardiology Conference (CinC),

pages 121–124. IEEE.

Nguyen, R. and Zenteno, J. F. T. (2009). Injuries in epilepsy: a review of its prevalence,

risk factors, type of injuries and prevention. Neurology International, pages 466–479.

NRF (2015). nrf8001 / bluetooth low energy / products / home - ultra low power

wireless solutions from nordic semiconductor. https://www.nordicsemi.com/eng/

Products/Bluetooth-low-energy/nRF8001.

Ocak, H. (2009). Automatic detection of epileptic seizures in eeg using discrete wavelet

transform and approximate entropy. Expert Systems with Applications, 36:2027–

2036.

Pal, M. (2005). Random forest classifier for remote sensing classification. International

Journal of Remote Sensing, pages 217–222.

Pan, J. and Tompkins, W. J. (1985). A real-time qrs detection algorithm. IEEE transac-

tions on bio-medical engineering, pages 230–6.

Pascual, D., Aminifar, A., and Atienza, D. (2019). A self-learning methodology for

epileptic seizure detection with minimally-supervised edge labeling. In 2019 Design,

Automation & Test in Europe Conference & Exhibition (DATE), pages 764–769. IEEE.

Patel, P., Keogh, E., Lin, J., and Lonardi, S. (2002). Mining motifs in massive time

series databases. In 2002 IEEE International Conference on Data Mining, 2002.

Proceedings., pages 370–377. IEEE Comput. Soc.

101

https://www.digikey.com/en/product-highlight/i/invensense/mpu6000-6axis-integrated-spi-solution
https://www.digikey.com/en/product-highlight/i/invensense/mpu6000-6axis-integrated-spi-solution
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF8001
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF8001


Bibliography

Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M.,

Dy, J., Welsh, M., and Bonato, P. (2009). Monitoring motor fluctuations in patients

with parkinson’s disease using wearable sensors. IEEE Transactions on Information

Technology in Biomedicine, pages 864–873.

Patricia O. Shafer, RN, M. (2014). About Epilepsy: The Basics | Epilepsy Foundation.

pages 4–5.

Reddy, M., Edenbrandt, L., Svensson, J., Haisty, W., and Pahlm, O. (1992). Neural

network versus electrocardiographer and conventional computer criteria in diag-

nosing anterior infarct from the ecg. In Proceedings Computers in Cardiology, pages

667–670. IEEE Comput. Soc. Press.

Reed, G. W., Rossi, J. E., and Cannon, C. P. (2017). Acute myocardial infarction. The

Lancet, 389:197–210.

Riazul Islam, S. M., Daehan Kwak, Humaun Kabir, M., Hossain, M., and Kyung-Sup

Kwak (2015). The internet of things for health care: A comprehensive survey. IEEE

Access, pages 678–708.

Rincon, F., Grassi, P. R., Khaled, N., Atienza, D., and Sciuto, D. (2012). Automated

real-time atrial fibrillation detection on a wearable wireless sensor platform. In

2012 Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, pages 2472–2475. IEEE.

Rincón, F., Recas, J., Khaled, N., and Atienza, D. (2011). Development and evaluation of

multilead wavelet-based ecg delineation algorithms for embedded wireless sensor

nodes. IEEE Transactions on Information Technology in Biomedicine, pages 854–863.

Ródenas, J., García, M., Alcaraz, R., and Rieta, J. (2015). Wavelet entropy automatically

detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy,

pages 6179–6199.

Roffo, G., Melzi, S., Castellani, U., and Vinciarelli, A. (2017). Infinite latent feature

selection: A probabilistic latent graph-based ranking approach. In: Proceedings of

the IEEE conference on computer vision and pattern recognition, page 1398–1406.

Ryvlin, P., Tomson, T., and Montavont, A. (2009). Excess mortality and sudden unex-

pected death in epilepsy. Presse medicale (Paris, France : 1983), pages 905–10.

Santiuste, M., Nowak, R., Russi, A., Tarancon, T., Oliver, B., Ayats, E., Scheler, G., and

Graetz, G. (2008). Simultaneous magnetoencephalography and intracranial eeg

registration: Technical and clinical aspects. Journal of Clinical Neurophysiology,

pages 331–339.

102



Bibliography

Sejnowski, T. J., Churchland, P. S., and Movshon, J. A. (2014). Putting big data to good

use in neuroscience. Nature neuroscience, pages 1440–1.

Sharma, A. (2015). Epileptic seizure prediction using power analysis in beta band of

eeg signals. pages 117–121. IEEE.

Sharma, A., Rai, J. K., and Tewari, R. P. (2019). Identification of various neurological

disorders using eeg signals. pages 95–103. Springer, Singapore.

Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detec-

tion and treatment.

Sipser, M. (2006). Introduction to the Theory of Computation, Second Edition.

Sokolski, M., Rydlewska, A., Krakowiak, B., Biegus, J., Zymlinski, R., Banasiak, W.,

Jankowska, E. A., and Ponikowski, P. (2011). Comparison of invasive and non-

invasive measurements of haemodynamic parameters in patients with advanced

heart failure. Journal of cardiovascular medicine (Hagerstown, Md.), pages 773–778.

STM32 (2013). Stm32l1 series - stmicroelectronics. http://www.st.com/web/en/

catalog/mmc/FM141/SC1169/SS1295?sc=stm32l1.

Stouffer, G. A. (2009). Practical ECG Interpretation : Clues to Heart Disease in Young

Adults. Wiley-Blackwell.

Sun, Y., Chan, K. L., and Krishnan, S. M. (2002). Ecg signal conditioning by morpho-

logical filtering. Computers in Biology and Medicine, pages 465–479.

Surrel, G. C. J. (2019). Low power sensing and processing in wearable biomedical

devices for personalized health monitoring.

Szucs, A., Lalit, N., Rásonyi, G., Barcs, G., Bóné, B., Halász, P., and Janszky, J. (2006).

Sudden death and mortality in epilepsy. Ideggyogyaszati szemle, pages 321–8.

Tang, J., Sun, D., Liu, S., and Gaudiot, J.-L. (2017). Enabling deep learning on iot

devices. Computer, pages 92–96.

Tanriverdi, T., Ajlan, A., Poulin, N., and Olivier, A. (2009). Morbidity in epilepsy surgery:

an experience based on 2449 epilepsy surgery procedures from a single institution.

Journal of Neurosurgery, pages 1111–1123.

Teijeiro, T., García, C. A., Castro, D., and Félix, P. (2018). Abductive reasoning as the ba-

sis to reproduce expert criteria in ecg atrial fibrillation identification. Physiological

Measurement.

103

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1295?sc=stm32l1
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1295?sc=stm32l1


Bibliography

Téllez-Zenteno, J. F., Ronquillo, L. H., and Wiebe, S. (2005). Sudden unexpected death

in epilepsy: Evidence-based analysis of incidence and risk factors. Epilepsy Research,

pages 101–115.

Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., and White, H. D.

(2012). Third universal definition of myocardial infarction. Circulation.

Webber, W., Lesser, R. P., Richardson, R. T., and Wilson, K. (1996). An approach to

seizure detection using an artificial neural network (ann). Electroencephalography

and Clinical Neurophysiology, pages 250–272.

Wellmer, J., von der Groeben, F., Klarmann, U., Weber, C., Elger, C. E., Urbach, H.,

Clusmann, H., and von Lehe, M. (2012). Risks and benefits of invasive epilepsy

surgery workup with implanted subdural and depth electrodes. Epilepsia, pages

1322–1332.

WHO (2013). Who | prevention of recurrences of myocardial infarction and

stroke study. WHO. http://www.who.int/cardiovascular{_}diseases/priorities/

secondary{_}prevention/country/en/index1.html.

WHO (2015). Neurological disorders public health challenges. https://www.who.int/

mental_health/publications/neurological_disorders_ph_challenges/en/.

WHO (2016). Neurological disorders. https://www.who.int/news-room/q-a-detail/

what-are-neurological-disorders.

WHO (2020). Cardiovascular diseases. https://www.who.int/health-topics/

cardiovascular-diseases/.

Wong, C. H., Birkett, J., Byth, K., Dexter, M., Somerville, E., Gill, D., Chaseling, R., Fearn-

side, M., and Bleasel, A. (2009). Risk factors for complications during intracranial

electrode recording in presurgical evaluation of drug resistant partial epilepsy. Acta

Neurochirurgica, pages 37–50.

Xinnian Chen, X., Solomon, I., and Chon, K. (2005). Comparison of the use of ap-

proximate entropy and sample entropy: Applications to neural respiratory signal.

In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pages

4212–4215.

Xu, Y., Nguyen, D., Mohamed, A., Carcel, C., Li, Q., Kutlubaev, M. A., Anderson, C. S.,

and Hackett, M. L. (2016). Frequency of a false positive diagnosis of epilepsy: A

systematic review of observational studies. Seizure, pages 167–174.

104

http://www.who.int/cardiovascular{_}diseases/priorities/secondary{_}prevention/country/en/index1.html
http://www.who.int/cardiovascular{_}diseases/priorities/secondary{_}prevention/country/en/index1.html
https://www.who.int/mental_health/publications/neurological_disorders_ph_challenges/en/
https://www.who.int/mental_health/publications/neurological_disorders_ph_challenges/en/
https://www.who.int/news-room/q-a-detail/what-are-neurological-disorders
https://www.who.int/news-room/q-a-detail/what-are-neurological-disorders
https://www.who.int/health-topics/cardiovascular-diseases/
https://www.who.int/health-topics/cardiovascular-diseases/


Bibliography

Zanetti, R., Aminifar, A., and Atienza, D. (2020). Robust epileptic seizure detection on

wearable systems with reduced false-alarm rate. In 2020 42nd Annual International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pages

4248–4251. IEEE.

Zhou, X., Ding, H., Ung, B., Pickwell-MacPherson, E., and Zhang, Y. (2014). Automatic

online detection of atrial fibrillation based on symbolic dynamics and shannon

entropy. Biomedical engineering online, page 18.
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