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Abstract
Musical grammar describes a set of principles that are used to understand and interpret the

structure of a piece according to a musical style. The main topic of this study is grammar

induction for harmony — the process of learning structural principles from the observation of

chord sequences. The question how grammars are learnable by induction from sequential

data is an instance of the more general question how abstract knowledge is inducible from

the observation of data — a central question of cognitive science. Under the assumption that

human learning approximately follows the principles of rational reasoning, Bayesian models

of cognition can be used to simulate learning processes. This study investigates what prior

knowledge makes it possible to learn musical grammar inductively from Jazz chord sequences

using Bayesian models and computational simulations.

The theoretical part of the thesis presents how questions about learnability can be studied

in a unified framework involving music analysis, cognitive modeling, Bayesian statistics, and

computational simulations. A new grammar formalism, called Probabilistic Abstract Context-

Free Grammar (PACFG), is proposed that allows for flexible probability models which facilitate

the grammar-induction experiments of this study. PACFG can jointly model multiple musical

dimensions such as harmony and rhythm, and can use coordinate ascent variational inference

for grammar learning.

The empirical part of the thesis reports supervised and unsupervised grammar-learning

experiments. To train and evaluate grammar models, a ground-truth dataset of hierarchical

analyses of complete Jazz standards, called the Jazz Harmony Treebank (JHT), was created. The

supervised grammar-learning experiments, in which grammars for Jazz harmony are learned

from the JHT analyses, show that jointly modeling harmony and rhythm significantly improves

the grammar models’ prediction of the ground truth. The performance and robustness of

the grammars are further improved by a transpositionally invariant parameterization of rule

probabilities. Following the supervised grammar learning, unsupervised grammar learning

was performed by inducing harmony grammars merely from Jazz chord sequences, without

the observation of the JHT trees. The results show that the best induced grammar performs

similarly well as the best supervised grammar. In particular, the goal-directedness of functional

harmony does not need to be assumed a priori, but can be learned without usage of music-

specific prior knowledge.

The findings of this thesis show that general prior knowledge enables an ideal learner to

acquire abstract musical principles by statistical learning. In conclusion, it is plausible that

much aspects of musical grammar have been learned by Jazz musicians and listeners, instead
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Abstract

of being innate predispositions or explicitly taught concepts.

This thesis is moreover embedded into the context of empirical music research and digital

humanities. Current studies either describe complex musical structures qualitatively or

investigate simpler aspects quantitatively. The computational models developed in this thesis

demonstrate that deep insights into music and statistical analyses are not mutually exclusive.

They enable a new kind of data-driven music theory and musicology, for instance through

comparative analyses of musical grammar for different styles such as Jazz, Rock, and Western

classical music.

Keywords: Music cognition, Computational cognitive science, Computational musicology,

Bayesian statistics, Probabilistic machine learning, Artificial intelligence, Automatic music

analysis, Jazz harmony
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Zusammenfassung
Musikalische Grammatik beschreibt eine Gesamtheit von Prinzipien, die zum Verständnis

sowie zur Interpretation der Struktur eines Musikstücks im Bezug auf einen Musikstil ver-

wendet werden. Das Hauptthema der vorliegenden Arbeit ist die Grammatikinduktion der

Harmonik — der Prozess des Erlernens struktureller Prinzipien aus der Beobachtung von

Akkordfolgen. Die Frage, wie Grammatiken aus sequentiellen Daten erlernt werden können,

ist eine Instanz einer zentralen Frage der Kognitionswissenschaft, wie aus der Beobachtung

von Daten induktiv auf abstraktes Wissen geschlossen werden kann. Unter der Annahme,

dass menschliches Lernen die Prinzipien rationalen Denkens respektiert, können Bayes’sche

Kognitionsmodelle zur Simulation von Lernprozessen verwendet werden. In der vorliegenden

Arbeit wird untersucht, welches Vorwissen es ermöglicht musikalische Grammatik induktiv

aus Jazz-Akkordfolgen mit Hilfe von Bayes’schen Computermodellen und -simulationen zu

lernen.

Der theoretische Teil der Arbeit legt dar, wie Fragen der Lernbarkeit in einem einheitlichen

Rahmen durch Musikanalyse, kognitive Modellierung, Bayes’sche Statistik und Computer-

simulationen untersucht werden können. Ein neuer Grammatikformalismus, Probabilistic

Abstract Context-Free Grammar (PACFG), wird präsentiert, der die Definition flexibler Wahr-

scheinlichkeitsmodelle ermöglicht, die in den Grammatikinduktionsexperimenten dieser

Studie Verwendung finden. PACFG kann mehrere musikalische Dimensionen wie Harmonie

und Rhythmus im Zusammenhang modellieren und Coordinate Ascent Variational Inference

als Methode für das Grammatiklernen verwenden.

Der empirische Teil der Arbeit präsentiert überwachte (supervised) und unüberwachte (un-

supervised) Grammatiklernsimulationen. Um die Grammatikmodelle zu trainieren und zu

evaluieren, wurde ein Datensatz hierarchischer Analysen vollständiger Jazz-Standards, ge-

nannt Jazz Harmony Treebank (JHT), erstellt. Die überwachten Grammatik-Lernexperimente,

in denen Grammatiken der Jazzharmonik aus den JHT-Analysen gelernt werden, zeigen, dass

die gemeinsame Modellierung von Harmonie und Rhythmus die Vorhersagekraft der Gramma-

tikmodelle signifikant verbessert. Diese Vorhersagekraft und die Robustheit der Grammatiken

wird durch eine transpositionsinvariante Parametrisierung der Regelwahrscheinlichkeiten

weiter verbessert. Im Anschluss an das überwachte Grammatiklernen wurde das unüber-

wachte Grammatiklernen durchgeführt, indem Harmoniegrammatiken lediglich aus Jazz-

Akkordfolgen induziert wurden, ohne die JHT-Bäume zu beobachten. Die Vorhersagekraft der

besten dabei induzierten Grammatik war ähnlich gut wie die beste Grammatik, die durch über-

wachtes Lernen erzeugt wurde. Insbesondere die Zielgerichtetheit der funktionalen Harmonik
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Zusammenfassung

muss nicht a priori vorausgesetzt werden, sondern kann ohne Verwendung musikspezifischer

Vorkenntnisse erlernt werden.

Die Ergebnisse dieser Arbeit zeigen, dass allgemeines Vorwissen einen idealisierten Lerner

dazu befähigt sich durch statistisches Lernen abstrakte musikalische Prinzipien anzueignen.

Zusammenfassend ist es somit plausibel, dass viele Aspekte musikalischer Grammatik von

Jazzmusikern und -hörern gelernt werden, anstatt angeborene Veranlagungen oder explizit

gelehrte Konzepte zu sein.

Darüber hinaus ist die vorliegende Arbeit in den Kontext der empirischen Musikforschung

und der digitalen Geisteswissenschaften eingebettet. Aktuelle Studien beschreiben entweder

komplexe musikalische Strukturen qualitativ oder untersuchen einfacher strukturierte Aspek-

te quantitativ. Die in dieser Arbeit entwickelten Modelle zeigen, dass sich tiefe Einsichten in

die Musik und statistische Analysen nicht gegenseitig ausschließen. Sie ermöglichen eine neue

Art datenbasierter Musiktheorie und Musikwissenschaft, beispielsweise durch vergleichen-

de Analysen musikalischer Grammatiken verschiedener Stile wie Jazz, Rock und westlicher

klassischer Musik.
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Introduction

Music is a construct of the mind (Longuet-Higgins, 1979; Wiggins et al., 2010), it becomes alive

when it is thought, played, or perceived. The study of music therefore benefits from taking into

account the relation between the music and musicians, listeners, and dancers. Two motivating

questions for the research presented in this thesis are how Jazz musicians think about the

structure of the music they play in improvisations and how they learn to think in such ways.

“To think” here refers to processes of the mind that take place subconsciously, not to conscious

reflection of the musician. These question are particularly interesting, because improvisation

is a highly complex cognitive task (Kenny and Gellrich, 2002). In jam sessions, musicians

collectively coordinate their improvisation with ease, even when they never met before. This

suggests the existence of abstract knowledge that musicians use to guide their play and freely

explore a musical style. Such abstract knowledge about the structure of Jazz music is at least

partly acquired implicitly by transcribing and playing the great masters — Thelonious Monk,

Art Blakey, John Coltrane, or Charles Mingus. Musicians are thus unconscious about parts of

their musical knowledge.

Musical grammar describes a set of principles that are used to understand the structure of a

piece according to a musical style. In this understanding, the function of the grammar is not to

normatively distinguish right from wrong. Instead, grammar is used to interpret musical struc-

ture (Steedman, 1996; Rohrmeier and Pearce, 2018). The grammar of Jazz harmony describes

the structure of chord sequences and their interaction with other musical dimensions such as

rhythm, form, and voice leading (Rohrmeier, 2020a). There are aspects of the grammar that

are domain-general — aspects that are shared with other systems such as grammars of natural

languages like English. For example, the principle of grouping certain words of a sentence or

chords of a tune into constituents can be assumed to be domain-general. Other aspects are

specific to music or even specific to a musical style. Statistical regularities of which notes or

chords occur next to each other are for example style-specific (e.g., Saffran et al., 1999; see

Rohrmeier and Rebuschat, 2012, for a review).

The main topic of this thesis is grammar induction for harmony — the process of learning

structural principles from the observation of chord sequences. The question how grammars

are learnable by induction from sequential data is an instance of the more general question

how abstract knowledge is inducible from the observation of data — a central question of

cognitive science. The majority of research about grammar induction has focused on natural
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language. The complexity of grammar acquisition lead Chomsky (1965, 1980, 1986) to the

development of the idea of a universal grammar, an innate schematism of grammars for

language that a human is able to learn. A current debate revolves around the Poverty of the

Stimulus (PoS) argument that many abstract grammatical principles are not acquired through

experience but are innate (e.g., Hauser et al., 2002; Jackendoff and Pinker, 2005; Berwick et al.,

2011; Lewis and Elman, 2001; Pullum and Scholz, 2002; Perfors et al., 2011). It is the subject

of ongoing research which principles are plausible to be learned through exposure, which

are likely to be innate, and if the innate predispositions are specific to language. For music,

less is known about grammar induction (Tsushima et al., 2018), and the question whether

innate predispositions specific to music are required to acquire musical grammar remains

unexplored. This thesis studies the theoretical requirements to acquire musical grammar in

order to investigate whether innate predisposition specific to music is required.

Under the assumption that human learning follows approximately the principles of rational

reasoning, Bayesian models of cognition can be used to simulate how the human mind builds

rich and abstract models of the world to go beyond the data of experience (Chater et al.,

2006; Griffiths et al., 2008; Tenenbaum et al., 2011), and musical grammar is an example of

such an abstract model. Specifically, this study investigates what prior knowledge makes

it possible to learn musical grammar inductively from Jazz music using Bayesian models

and computational simulations. In particular, it is studied which style-general aspects of the

grammar are learnable.

The present thesis is a continuation of previous research that applied formal grammar models

to analyse musical structure. Following up on the formalizations of generative grammar by

Chomsky (1965) and hierarchical music analysis by Schenker (1935), scholars started to apply

generative grammar models to music in the 1960s and 1970s (Winograd, 1968; Baroni and

Jacoboni, 1975; Sundberg and Lindblom, 1976). Lerdahl and Jackendoff (1983) later proposed

the Generative Theory of Tonal Music (GTTM) to link hierarchical music analysis with music

cognition, which influenced much following research (see e.g., Giblin, 2008; Bigand et al., 2009).

Many recent grammar models, including the ones presented in this thesis, are probabilistic

(McCormack, 1996; Gilbert and Conklin, 2007; Abdallah and Gold, 2014; Granroth-Wilding

and Steedman, 2014; Quick, 2016; Tsushima et al., 2020). The approach used in this thesis is

largely based on the grammar models proposed by Rohrmeier (2011, 2020a) and Rohrmeier

and Neuwirth (2015) which were earlier also implemented and applied to model harmonic

similarity (De Haas et al., 2009) or to improve automatic chord recognition (De Haas, 2012;

De Haas et al., 2012). This thesis extends those approaches with a Bayesian probabilistic

model and uses both supervised and unsupervised learning to infer probabilities of grammar

rules from data.

From the standpoint of musicology, this study can be considered an empirical investigation

of music-theoretical insights. For example, the interaction of harmony and rhythm and the

goal-directedness of functional harmony are shown to significantly improve the learnability

of a grammar for Jazz harmony. This study also contributes to the interaction of formal

2
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language theory and Bayesian statistics by proposing a novel grammar formalism that allows

for flexible probabilistic modeling. The utility of this grammar formalism is demonstrated by

the computational learning simulations. In particular, a link between the theories of Bayesian

grammar inference (Kurihara and Sato, 2004) and semiring parsing (Goodman, 1999, 1998) is

presented that aids the development as well as the implementation of probabilistic grammar

models.

The thread of this thesis is aimed to comprehensibly lead from music theory and the interpre-

tation of probability over formal language theory and Bayesian inference to computational

experiments in music cognition. The text is intended to be written in a way such that detailed

discussions corresponding to one of those fields are not necessary to understand the general

argument. Most chapters begin with a small introduction and a summary that acts as an inter-

face to the other chapters and the argument of this thesis. The thesis is organized hierarchically

into parts, chapters, and sections. The first part introduces the concepts and assumptions

this study is based on, presents its argument, and relates it to previous research. The second

part gives a detailed description of the data, formalisms, and methods used in the thesis. It

dives deep into the mathematical details of formal grammar models and Bayesian statistics.

The third part of the thesis reports computational experiments for musical grammar learning.

It includes supervised experiments in which grammars are learned from the observation of

music analyses by human experts, as well as unsupervised experiments in which grammars

are learned from chord sequences.

Chapter 1 starts the first part by introducing the musical structures considered in this study

from the view of music theory. Chapter 2 presents the main research questions in the context

of computational cognitive science in general and music cognition in particular (Pearce and

Rohrmeier, 2012; Jackendoff and Lerdahl, 2006; Seifert, 1993). The Bayesian interpretation of

probability is described in detail and used to link cognitive science, music theory, and compu-

tational modeling. Chapter 3 concludes the first part by comparing the present approach to

related computational research on harmony.

The second part starts by presenting the Jazz Harmony Treebank (JHT) and its creation

procedure in Chapter 4. The JHT is a dataset of tree-structured harmonic analyses by music-

theory experts including the author. The treebank is used to train and to evaluate the grammar

models presented in the computational experiments in the third part. Chapter 5 motivates and

proposes Probabilistic Abstract Context-Free Grammars (PACFGs), a novel grammar formalism

which enables the definition of complex probability models for learning musical grammars.

Chapter 6 describes parsing — the process of inferring the grammatical structure of a sequence

— for PACFGs as a generalization of parsing for context-free grammars in the semiring-parsing

framework (Goodman, 1999, 1998). The last chapter of the third part (Chapter 7) proposes a

flexible parameterization of PACFGs for grammar learning and describes the details of deriving

a variational Bayesian inference method for PACFGs.
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The third part of the thesis is empirical, it describes the computational experiments. The

concrete grammar models used in the experiments are described in Chapter 8. Chapter 9

reports supervised learning experiments to demonstrate that grammar models profit from

jointly modeling harmony and rhythm, and from transpositional invariance. Chapter 10

reports two unsupervised grammar-learning experiments to demonstrate that prior knowl-

edge about the goal-directedness of functional harmony together with a prior preference for

simple rhythms enables the induction of an interpretable harmony grammar of good quality.

The final experiment is reported in Chapter 11. It shows how the abstract concept of goal-

directedness of functional harmony can be learned from the observation of chord sequences

and domain-general prior knowledge. The thesis finally concludes with a summary of the

concrete contributions as well as a reflection and interpretation of the empirical findings in

Chapter 12.

Parts of the work presented in this thesis have been already published in peer-reviewed

conference proceedings (Harasim et al., 2018, 2019b, 2020a). Those articles can be found in

the appendix. The thesis goes beyond that work, in particular by a detailed argumentation, an

extensive literature review, a rigorous mathematical derivation of the methodology, and the

presentation of novel computational experiments and results.
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1 Hierarchical structures in
Jazz harmony

The hierarchal organization of Western music—of its melodies, chord progressions, and

rhythms—led to the development of sophisticated theories about musical structure (Schenker,

1935; Salzer, 1952; Cadwallader and Gagné, 2007; Larson, 1998; Heyer, 2012), on which formal

and computational models are based (Lerdahl and Jackendoff, 1983; Steedman, 1996; Gilbert

and Conklin, 2007; Rohrmeier, 2020a). This study builds on those theories and models to

investigate how structural principles are learnable from sequential data. The existence of

hierarchies that form the high-level organization of pieces from Western music is taken as an

assumption based on music theory. There is an ongoing debate about how many hierarchical

levels are relevant for music perception and if the hierarchical structure is caused by recursion

(Temperley, 2011; Rohrmeier, 2013; Rohrmeier et al., 2015), but the existence of hierarchical

structures is not seriously contested in music theory.

This chapter introduces the musical concepts and structures used throughout the thesis. It

starts from the viewpoint of music theory by considering example analyses before further

formalization is introduced in the following chapters. The approach presented in this chapter

is based on the musical grammar models proposed by Rohrmeier (2011, 2020a), and Rohrmeier

and Neuwirth (2015). Chapter 3 embeds the approach into the literature by comparing it to

related research.

The Jazz standard Take the “A” train is taken as a running example in this chapter to illustrate

various concepts. It is a good first example because of its simple harmonic and formal structure.

Whenever necessary, it is complemented by more advanced examples such as the tunes After

you’ve gone and Afternoon in Paris.

1.1 Jazz tunes as abstract musical entities

This study examines hierarchical structures in chord sequences of Jazz standards. The concept

of a Jazz standard is abstract; in contrast to a composition from Western classical music in

which all or most of the notes are given in a score, a Jazz standard is constituted by a basic

7
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Figure 1.1 – Lead-sheet transcription of the Jazz standard Take the A Train in the key of C
major. The transcription was created using LilyPond (http://lilypond.org/) with LilyJAZZ fonts
(https://github.com/OpenLilyPondFonts/lilyjazz).
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1.1. Jazz tunes as abstract musical entities

melody and a sketch of its harmonic accompaniment. The melodic and harmonic content

of a Jazz standard is summarized in a lead sheet.1 Both the melody and the accompaniment

are usually modified and further elaborated in musical performances. Consider for example

the Jazz standard Take the “A” train; a lead-sheet transcription is shown in Figure 1.1. The

harmonic skeleton of the accompaniment is given by the chord symbols over the melody. The

chord symbols C, D7]11, Dm7, and G7, denote a major triad with root C, a dominant-seventh

chord with sharpened 11 (the note G]) and root D, a minor-seventh chord with root D, and a

dominant-seventh chord with root G, respectively. For a detailed description of Jazz-chord

symbols see for instance Levine (1990, 1995) or Sikora (2003).

For the purpose of this study, a chord is considered an abstract entity which is denoted by a

chord symbol that is characterized by a root and a chord form. This representation abstracts

for example from the temporal realization of a chord’s notes as well as their register and

ornamentation. Consider for instance the chords C and F in measure 1 and 9 of the lead sheet

for Take the “A” train shown in Figure 1.1. Those two chords share the same chord form — they

are both major triads — but are based on different root notes, C and F. In contrast, the chords

D7]11 and Dm7 in measure 3 and 5 are an example of two chords that share the same root

note but have different chord forms. The internal structures of chords, the relations between

individual notes, are not further considered in this study. Chords’ internal structures are a

research topic of neo-Riemannian theory (Cohn, 1996, 1997, 1998; Douthett and Steinbach,

1998; Gollin, 2000), mathematical scale theory (Harasim et al., 2020b; Clough and Douthett,

1991; Carey and Clampitt, 1989; Clough and Myerson, 1985; Agmon, 1989; Domínguez et al.,

2007; Harasim et al., 2019a) and geometric approaches to harmony (Harasim et al., 2016;

Tymoczko, 2011; Callender et al., 2008; Tymoczko, 2006). This study rather considers chords

as building blocks and focuses on the relations between the chords of a sequence.

Different performances of the same Jazz standard can be rather diverse, they only need to

share the melodic and harmonic core that characterizes the Jazz standard.2 To highlight the

difference between a detailed composition or improvisation and music which is identified by

more abstract properties, the former is called a musical piece while the latter is called a tune.

Chord sequences of Jazz tunes are called Jazz chord sequences. Note that with this terminology,

a Jazz standard itself is a tune while a recorded performance or a big-band arrangement of

a Jazz standard is a musical piece. See for example Smither (2020) for a detailed discussion

about the ontological status of Jazz tunes.

Since lead sheets are rough summaries of a single performance or a set of performances, there

does not exist a definite lead sheet for any tune. Instead, Jazz lead sheets are compiled into

real books, which provide divergent lead sheets for some Jazz standards (Kernfeld, 2006; Lovell,

2007; Smither, 2020). As shown exemplarily in the next section, different harmonizations of

1Lead sheets are also called fake sheets by other theorists and musicians.
2A recording of Take the “A” train by the Duke Ellington band can be found here: https://www.youtube.com/

watch?v=cb2w2m1JmCY. A more recent interpretation by the singer Nikki Yanofsky can be found here: https:
//www.youtube.com/watch?v=K90xXn35d7o. These two very different interpretations of the same tune show the
broad notion of the concept tune.
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the same tune are, however, often similar. For simplicity, this study therefore considers only

one lead sheet for each Jazz standard, which does not affect the presented argumentation.

1.2 Hierarchy in Jazz chord sequences

There are a music-theoretical and music-psychological arguments of various strength for

the existence of hierarchical structures in music. We start this study with an elementary and

theory-agnostic argument for hierarchical structure in Jazz harmony using the example of the

tune After you’ve gone composed by Henry Creamer and Turner Layton in 1918. Afterwards,

the observations are embedded into a more principled music-theoretical understanding.

According to the Oxford English Dictionary, a hierarchy is “a body of persons or things ranked

in grades, orders, or classes, one above another” (Hierarchy, 2020). This study follows the pro-

posal by Rohrmeier (2020a) and ranks chords in terms of their importance for the overarching

coherence of the chord sequence. A chord is consequently lower ranked if it can be substituted

or omitted in performances. The hierarchical organization of Jazz chord sequences is therefore

reflected in the fact that musicians commonly substitute, omit, or insert chords at particular

positions. In contrast, chords which are played in all or most of a tune’s performances are likely

to be important for the coherence of the whole sequence. It is shown in the next section how

interchangeable or omittable chords can be understood as subordinations of higher-ranked

chords.

The following paragraphs sketch a hierarchical organization of a chord sequence from the

beginning of the Jazz standard After you’ve gone by observing four performances in which

different chords are played. Figure 1.2 shows harmonic transcriptions of four performances

of the tune. The four performances feature the musicians 1) Ella Fitzgerald, 2) Django Rein-

hardt, 3) the Huggee Swing Band, and 4) Jamie Cullum. The transcriptions were made by the

author from recordings which are available on YouTube.3 The transcribed harmonizations are

transposed to C major for comparability; The keys of the recordings are E[, G, D[, and G major,

respectively.

The chord sequences (2), (3), and (4) are compared to the version (1) which is taken as

reference. Version (1) is also the version printed in The New Real Book Volume 2 (Sher, 1991).

The chord sequences (1) and (2) are very similar, they only differ in measures 2 and 4. Version

(1) elaborates (2) by inserting the chord B[7 in measure 2 and Em7 in measure 4. Version

(3) differs from (1) in three measures, in measures 2 and 4 as version (2) and additionally in

measure 3: The chords Fm6 and B[7 are omitted in measure 2 to which F4 from measure 1

is extended. The chord Em7 from measure 4 replaced C4 in measure 3 and A7 is substituted

by E[◦7. Version (4) differs from (1) in measures 2, 4, 5, and 6. In measure 2, the chord Fm6 is

3(1: Ella Fitzgerald) https://www.youtube.com/watch?v=gCoVjIvkOEE
(2: Django Reinhardt) https://www.youtube.com/watch?v=BTH_Nn_TtDI
(3: Huggee Swing Band) https://www.youtube.com/watch?v=ew4-xVBcrmQ
(4: Jamie Cullum) https://www.youtube.com/watch?v=Sx-0_t8FMIE
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1.3. Functional harmony

(1) | F4 | Fm6 B[7 | C4 | Em7 A7 |
| D7 | G7 | C4 | C4 |

(2) | F4 | Fm6 | C4 | A7 |
| D7 | G7 | C4 | C4 |

(3) | F4 | F4 | Em7 | E[◦7 |
| Dm7 | G7 | C4 | C4 |

(4) | F4 | B[7 | C4 | D7 |
| Dm7 A7 | Dm7 G7 | C4 | C4 |

Figure 1.2 – Transcription of 4 harmonizations of the first 8 measures of the Jazz standard
After you’ve gone, created by the author and transposed to the key of C major. The recordings
on which the transcriptions are based are interpretations featuring (1) Ella Fitzgerald, (2)
Django Reinhardt, (3) the Huggee Swing Band, and (4) Jamie Cullum. Triangles such as the
one in the chord symbol F4 denote major-seventh chords. The chord symbol E[◦7 denotes a
diminished-seventh chord.

omitted. The chord D7 from measure 5 replaced the chords Em7 and A7 in measure 4, making

room for the chord sequence Dm7 A7 Dm7 in measures 5 and 6.

The comparison of the transcriptions shows that the chords F4 in measure 1, G7 in measure

6, and C4 in measures 7 and 8 are played at the same positions in all of the four transcribed

performances (disregarding the displacement of G7 in version (4)). It is therefore plausible

that these three chords are most important for the coherence of the chord sequence, and

thus ranked high in the harmonic hierarchy. The chords C4 in measure 3 and D7 or Dm7

in measure 5 are also mostly played and thus also hierarchically important. In contrast, the

chords in measure 2 and 4 are different between the four versions, suggesting a lower ranking

of those chords. In conclusion, the harmonic cornerstones of this chord sequence are the

chords F4, G7, and C4 in measures 1, 6, and 7, respectively. They function as pre-dominant,

dominant, and tonic chords, respectively, as described in the next section.

1.3 Functional harmony

The definitions given in this and in the next section are based on the formal syntax models

proposed by Rohrmeier (2011, 2020a), and Rohrmeier and Neuwirth (2015). The concept of

functional harmony describes perceivable dependency structures between musical elements

such as notes, chords, and keys. There are also non-functional relations between chords

which are briefly discussed in Section 1.6. The core relations of functional harmony are

prolongation and preparation. Prolongation expresses that two elements are an extension of

a single higher-order element; Preparation is a relation between two elements in which the
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first element implies the second one, like a dominant chord implying a tonic chord. Consider

for example the chords of the A part of Take the “A” train (measures 1 to 8), C D7]11 Dm7 G7

C. Figure 1.3 shows the harmonic dependency structure of this chord sequence. Directed

arrows denote implications of preparations, and undirected arrows denote prolongations.

The first C establishes the tonic and as such creates the expectation that C is reached again,

which happens at the end of the phrase. This establishes a prolongation relation between

the first and the last chord of the A part. The chord D7]11 functions as an applied dominant

to G7 and Dm7 has subdominant function in C major. Both chords D7]11 and Dm7 therefore

prepare G7. The chord G7 functions as a dominant and therefore prepares the last tonic chord

C. Abstractly, a chord X is said to refer to a chord Y if X either prolongs or prepares Y . Any

direct dependency is thus understood as a harmonic reference. A graph that visualizes the

harmonic dependency structure of a chord sequence such as the one shown in Figure 1.3

is called a harmonic dependency graph or harmonic dependency structure. In such graphs,

prolongation and preparation are denoted by directed and undirected edges, respectively. The

harmonic dependency graph of the whole tune Take the “A” train is shown in Figure 1.4.4

C D7]11 Dm7 G7 C

Figure 1.3 – Harmonic dependency structure of the A part of Take the “A” train. The undi-
rected edge denotes the prolongation of the tonic chord C major. The directed edges denote
preparations.

C D7 Dm7 G7 C C D7 Dm7 G7 C F D7 Dm7 G7 C D7 Dm7 G7 C

Figure 1.4 – Harmonic dependency structure of Take the “A” train. The chord symbol D7]11 is
abbreviated as D7.

4Note that dependency graphs are plotted with reversed edges in linguistics. There, the arrows show from which
other word a word is generated.
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1.3. Functional harmony

Prolongation and preparation have an interpretation as a system for the build-up and release

of harmonic tension (Rohrmeier, 2020a):

[...] [T]he foundation of the build-up of musical tension lies in the set of (recur-

sively nested) goal-driven implications [...], and the release of tension corresponds

to every (sub)goal that is reached in a fulfilled preparation. Such a modeling of ten-

sion naturally implies that all tension is released when the final tonic is reached.

This implication-realization logic of harmonic dependencies acts as an interface between

musical structure and expectancy (Rohrmeier, 2013). In contrast to the “timeless” harmonic

dependency structure which describes a (part of a) tune as a whole, musical expectancy de-

scribes the temporal aspects of a listening experience. Since expectancy has been understood

as fundamental for parts of musical experience, meaning, and emotion by Meyer (1956, 1967,

1973), it has grown to a central aspect of research on music perception (Huron, 2006). Hierar-

chical dependencies can describe aspects of musical expectancy as quoted above. Lerdahl and

Jackendoff (1983), Jackendoff (1991), and Lerdahl (2001) use an alternative model to describe

how non-local dependencies influence musical expectancy (see Section 3.2 and Rohrmeier

(2020a) for a comparison). Most previous research, however, studied musical expectancy using

models that take a local context of the music into account (Schmuckler, 1989; Narmour, 1990,

1991, 1992; Pearce, 2005a; Juslin and Vastfjall, 2008; Egermann et al., 2013; Sears et al., 2018;

Pearce, 2018).

Harmonic dependency structures are assumed to be created implicitly by listeners to respond

to the music (Jackendoff and Lerdahl, 2006). The denotation of one’s perceived dependency

structure of a chord sequence is an act of music analysis; it involves taking other musical

dimensions into account such as harmonic rhythm, phrasing, musical form, and melody. For

the analysis of whole tunes, the influence of form is most important as described in Section 1.5.

Sufficiently long chord sequences can be perceived in several ways, without one harmonic

interpretation being clearly preferable. The purpose of a dependency structure is therefore to

denote an individual and subjective understanding in an unambiguous formal representation.

Even in the short example shown in Figure 1.3, one could argue that the chord Dm7 is a

(weak) prolongation of D7]11, because both chords share the same root note D. This alternative

reading would be denoted by exchanging the edge from D7]11 to G7 by an edge from D7]11 to

Dm7. It is further possible to emphasize that a C augmented triad is contained in the chord

denoted by D7]11 in the lead sheet (the note E is present in the melody). That chord could

then be analyzed as a preparation of Dm7. Crucially, none of these three analyses can be

considered the “correct” analysis of the tune. Instead, they denote different hearings that

depend on particular performances. In what follows, only the first analysis shown in Figure 1.3

is considered further. In the opinion of the author, this analysis best describes the original

recording of the tune by Duke Ellington and his band.
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So far, this section considered the task of analyzing the dependency structure of a given

chord sequence, similar to reductive analyses of more traditional harmony theory (Kostka

and Payne, 1984; Strunk, 1979). There is a dual perspective to such analyses which describes

the dependency structure by stepwise reconstruction of the sequence, starting from a single

tonic chord. Stepwise reconstruction is also called generation. Figure 1.5 shows the generation

steps of the A part of Take the “A” train which reconstruct the dependency structure shown

in Figure 1.3. A fundamental principle of such generation is that chords must be generated

adjacent to the chord they refer to. The order in which the chords are generated is therefore

important. For example, the chord Dm7 must be generated after the chord D7]11 to be adjacent

to G7. If otherwise Dm7 would be generated first, then the order of D7]11 and Dm7in the

sequence would be reversed.

Harmonic dependency structures can be described more generally using the concept of scale

degrees which abstract from the root a tune’s key. A scale degree denotes a note on a diatonic

scale relative to the tonic. It is written as a Roman numeral I, II, III, IV, V, VI, or VII, possibly

with accidentals. In a C major scale for example, the note D is the scale degree II and the

note G is the scale degree V. The canonical triads and seventh-chords of a scale, which are

constructed by stacking of thirds, are also denoted by the scale degree of their roots. When the

form of a chord is clear from the context, it can be omitted in scale-degree notation. The word

scale degree is thus also used to refer to a whole chord.5

In cases in which the tonal center shifts from the tonic note to another note of the scale

without constituting a proper modulation, scale degrees can be denoted relative to other scale

degrees. A chord D7which acts as a dominant applied to a chord G7in a C major scale can for

instance be denoted by V/V. With this notion of relative scale degree, a simple scale degree

such as V could equivalently be notated as V/I to explicitly show the relation to the tonic. Using

scale-degree notation, the chord sequence of the A part of Take the “A” train, C D7]11 Dm7 G7

C, can be written as I V/V II V I.

Scale degrees are mainly used for music-theoretical considerations in this study. The models

used in the computational experiments are defined directly on chord symbols to minimize

the domain knowledge put into the models. Minimal knowledge prior to the observation of

musical data is desireable, because it simplifies the analysis of what is learnable from the

observation of music — from listening.6

5Some authors who explicitly distinguish notes as scale degrees from chords as scale degrees use Arabic
numerals with hats for the former and roman numerals for the latter. Since such a distinction is not crucial for this
study, the introduction of the additional notation is avoided.

6If otherwise scale degrees and keys would be directly encoded into the models, sophisticated regularization
methods would have to be used (Harasim et al., 2018).
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1.3. Functional harmony

Step 0: single tonic chord

C

Step 1: tonic prolongation

C C

Step 2: dominant preparation of the tonic

C G7 C

Step 3: double-dominant preparation of the dominant

C D7]11 G7 C

Step 4: subdominant preparation of the dominant

C D7]11 Dm7 G7 C

Figure 1.5 – Stepwise generation of the harmonic dependency structure of the A part of Take
the “A” train.
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1.4 Prolongation and preparation as formal grammar rules

A system of rules that is able to generate all well-formed harmonic dependency structures

is called a generative grammar for functional harmony. Such grammars differ for different

styles and this study is mainly concerned with grammars for functional harmony of Jazz

standards. Since it is hard to make clear distinctions between styles (Meyer, 1989), tonal Jazz

is considered including Swing, Bossa Nova, Jazz Blues, Bebop, Cool Jazz, and Hard Bop, and

excluding parts of traditional Blues, Modal Jazz, Free Jazz, and Modern Jazz. The core of the

harmony grammars for these styles is furthermore expected to be similar to grammars for the

harmonic structure of other tonal styles such as Baroque music (Rohrmeier, 2011).

The following definition presents a simple formalization of prolongation and preparation

using context-free grammars, a standard formalism for modeling hierarchically structured

sequential data (Manning and Schütze, 1999). Context-free grammars constitute a starting

point for many generative models for the syntax of natural language in the Chomskian tradition

(Chomsky, 1957, 1965, 1995; Adger, 2003).

Standard context-free grammar A (standard) context-free grammar G = (T, N ,Start,R) con-

sists of a finite set T of terminals, a finite set N of nonterminals disjoint to T , an initial

nonterminal Start ∈ N , and a finite set R ⊂ N × (T ]N )∗ of rewrite rules, where T ]N denotes

the disjoint union and (T ]N )∗ =⊎
n∈N(T ]N )n denotes the set of all sequences (also called

lists or strings) of terminals and nonterminals. A rule (A,α) ∈ R is denoted by A −→α which

reads as “the nonterminal A is rewritten into the sequence α”. The grammar generates se-

quences of terminals by starting to apply a rule to rewrite the start symbol into a sequence of

terminals and nonterminals. Afterwards, it iteratively generates rules to rewrite nonterminals

of the sequence until the sequence only consists of terminals. Then, the process halts and the

terminal sequence is returned.

Rohrmeier (2020a) formalizes a grammar of functional harmony with chord symbols as termi-

nals, scale degrees as nonterminals, and the scale degree I as start symbol. This formalization

assumes that each scale degree knows its key (Rohrmeier, 2011). The following paragraphs

give a rather high-level description of the grammar rules. The grammar models used in the

computational experiments are defined rigorously later in Chapter 8.

Preparation is formalized by rules of the form X −→ Y X for scale degrees X and Y such

that Y prepares X . The preparation of the first scale degree by the fifth scale degree is for

example represented by the rule I −→ V I. The formalization further distinguishes two types

of prolongation, strong prolongation and weak prolongation. The former describes a relation

between chords with the same root and chord form while the latter more generally describes a

relation between functionally equivalent chords (e.g., scale degrees II and IV). Strong prolon-

gation is formalized by rules of the form X −→ X X for scale degrees X (e.g., I −→ I I). Weak

prolongation is formalized by rules of the form X −→ Z X and X −→ X Z for functionally

equivalent scale degrees X and Z (e.g., I −→ I VI in major or I −→ I III in minor). Note that this
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I

I

I

C

V

V

V

G7

II

Dm7

V/V

D7]11

I

C

Figure 1.6 – Derivation tree of the A part of Take the “A” train. The harmonic dependency
structure shown below the chord sequence stands in 1-to-1 relation to the derivation tree.

concept of weak prolongation is more general than in the Generative Theory of Tonal Music

(GTTM) where prolonging chords are required to have the same root (Lerdahl and Jackendoff,

1983). In contrast to the GTTM, departure is not modeled as a primitive relation, because

it is not consistent with the presented formalization of functional harmony (see Rohrmeier,

2020a).

Additional to grammar rules for prolongation and preparation, the grammar comprises unary

terminal rules of the form X −→ x for chord symbols x which are analyzable as scale degrees X

(e.g., V −→ G7 in C major). Furthermore, modulation can be formalized by unary rules which

reinterpret any scale degree as a first scale degree in the modulated key. For example, the scale

degrees II and IV in C major would be reinterpreted as scale degree I in D minor and F major,

respectively.

A context-free grammar generates a sequence of terminals by recursive application of rules,

starting from the start symbol. The A part of Take the “A” train can for example be derived by

application of the binary rules

1) I −→ I I,

2) I −→ V I,

3) V −→ V/V V, and

4) V −→ II V,

together with the corresponding terminal rules. Each application of one of these binary rules
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Step 0: start with start symbol

I

Step 1: apply rule I −→ I I

I

II

Step 2: apply rule I −→ V I

I

I

IV

I

Step 3: apply rule V −→ V/V V

I

I

IV

VV/V

I

Step 4: apply rule V −→ II V

I

I

IV

V

VII

V/V

I

Step 5: apply terminal rules

I

I

I

C

V

V

V

G7

II

Dm7

V/V

D7]11

I

C

Figure 1.7 – Stepwise generation of the derivation tree of the A part of Take the “A” train. All
scale degrees are relative to C major. The generation steps 0 to 4 correspond to the generation
of the harmonic dependency structure shown in Figure 1.5.
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corresponds to one step in the generation shown in Figure 1.5, where the k-th rule corresponds

to the k-th derivation step. The full generation process is shown as a derivation tree — also

called syntax tree — in Figure 1.6. The harmonic reference graph shown below the chord

symbols is not part of the derivation tree, but is closely related to it. The branches of the

tree (from the root at the top to the leafs at the bottom) are generated using the four binary

rules enumerated above. They therefore also correspond to the generation steps shown in

Figure 1.5. To illustrate how to read the derivation tree, Figure 1.7 shows the mechanics of

how the derivation tree is generated step by step. The stepwise generation of the tree does,

however, not contain more information than the full derivation tree — the end product of the

generation procedure.

The Jazz standard Afternoon in Paris is a good example for reinterpretation by modulation.

A tree analysis of this tune’s A part is shown in Figure 1.8. From the first to the last chord,

the sequence modulates from C major to B[ major to A[ major and back to C major. The

modulations are formalized by the unary rules VE[ −→ IB[ and [II/VC −→ IA[. The first rule

expresses that the chord B[4 functions both as a tonic in B[major and a predominant in A[

major. The second rule expresses that the chord A[4 functions both as a tonic in A[major and

a predominant in C major. Note that because of the goal-directedness of functional harmony,

IC

IC

IC

C4

VC
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Figure 1.8 – Harmonic derivation tree of the A part of Afternoon in Paris in C major. The chord
sequence modulates from C major to B[ major, A[major, and back to C major. The local keys
are indicated by subscripts. The modulations are represented by the unary rules [II/VC −→ IA[

and VE[ −→ IB[. The first two chords constitute a parsimonious voice-leading connection
which is not part of the syntactic structure.
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Chapter 1. Hierarchical structures in Jazz harmony

the initial modulation of the sequence from C major to B[major is not directly represented

by a single rule but as the composition of the modulations from C major to A[major and A[

major to B[major.

1.5 Hierarchical phrase structure and form in Jazz standards

Harmonic analyses of whole Jazz standards benefit from the consideration of form (Rohrmeier,

2020a):

[...] [H]armonic syntax characterizes harmonic dependencies and their interpreta-

tion. Form, by contrast, describes the regularities of phrases and their (hierarchi-

cal) organization as well as repetition structure in melodic, motivic or harmonic

domains (Diergarten and Neuwirth, 2019). Hence, syntax and form serve different

purposes, but they can interact in rich ways. They are closely linked when it

comes to the understanding of prolongation and key structures that govern whole

phrases and even entire pieces, and often, analyses of both harmonic syntax and

form share large parts of their substructure.

Consider for example the complete derivation tree of Take the “A” train shown in Figure 1.9. The

tune is structured into four phrases which constitute an AABA form. Each phrase corresponds

to a subtree as indicated by the circled letters in the figure. In this example, the harmonic

dependency structure is perfectly aligned with the formal structure, which is not always

the case. Section 4.2 later proposes a solution to coordinate special kinds of misalignments

between harmonic references and form such as it is the case for phrases which end in half

cadences.
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Figure 1.9 – Harmonic derivation tree of Take the “A” train in C major.The tune is structured
into four parts AABA. Each part corresponds to a subtree as indicated by the circled letters.
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The joint consideration of form and functional harmony has several benefits. It helps to

resolve many ambiguities that would otherwise be hard to reason about. At the same time,

it enables the formal description of structures which would otherwise be given in a more

informal fashion. Consider for example the last chord of the first A part and the first chord of

the second A part of Take the “A” train. Both chords are C major chords and as such are likely

to constitute a direct prolongation from the viewpoint of pure harmonic reference relations.

Yet they do not sound like they are a direct prolongation.7 Instead, the last chord of the first

A part sounds like an end while the first chord of the second A part sounds like a beginning.

This is easily explained by consideration of the tune’s phrases.

Musical form was studied in depth for Western classical music of the common-practice period

(Schachter, 1980; Rothstein, 1989; Caplin, 1998; Cone, 1968; Cooper and Meyer, 1960). The

concept of a phrase is there commonly also approached harmonically; one of the defining

properties of a phrase is that it ends with some form of a cadence. Such harmonic phrases

tend to be reinforced by surface features such as textual changes, motives, long notes, and

rests. A similar approach was applied to Jazz tunes, which also identifies phrases by essential

harmonic motions such as cadences (Forte, 1995). More recently, Love (2012) broadened

the cadential requirement to more general forms of closure for the application of the phrase

concept to improvised Jazz melodies.

Phrase structure in Jazz is strongly correlated with hypermeter. That is, with the regular

organization of “groups of multiple measures that seem to begin with a relatively strong beat;

two- and four-bar hypermeasures are ubiquitous in jazz” (Love, 2012). This is well illustrated

by a quote by Strunk (1979):

The rhythm of bop harmony at the foreground level is virtually always duple at

each division or subdivision: the duration of most chords is two, four, six, or eight

beats; phrases are two, four, six, or eight measures long; compositions [i.e., tunes]

are usually twelve, sixteen, or thirty-two measures long. The utter simplicity and

rigidity of these rhythmic structures highlights the complexity and subtlety of the

jazz rhythmic nuances and syncopations which proliferate against the basic duple

pulse.

Indeed, the running example Take the “A” train is 32 measures long, it consists of four 8-

measure long phrases, and the duration of the chords is either 2, 4, or 8 beats (i.e., quarter

notes). A corpus study by Salley and Shanahan (2016) confirms that this holds for many Jazz

standards. Moss et al. (2020) make similar observations for Brazilian Choro, a musical style

closely related to Jazz.

Despite the close relation between phrase structure and hypermeter, it is important to dis-

tinguish rhythm from meter (Lerdahl and Jackendoff, 1983; London, 2012). Meter can be

conceptualized as a fixed grid, “an ongoing hierarchical temporal framework of beats aligned

7The described listening experience is the subjective listening experience of the author.
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with the musical surface” (Jackendoff and Lerdahl, 2006). Chords are positioned in the met-

rical grid by their onset and offset. The “segmentation of the musical surface [the chords]

into motives, phrases, and sections” is called the grouping structure of the chord progression

(Jackendoff and Lerdahl, 2006), and its rhythmic structure can be understood as the relation

between grouping and meter.

Rhythms become interesting when the grouping structure is not perfectly aligned with the

metrical grid. Common examples for misalignments in Jazz are upbeats (also called pickup or

anacrusis) and syncopation. Measure 4 in the second version of the A part of After you’ve gone

shown in Figure 1.2 is an instance of a harmonic upbeat, because the A7chord in that measure

refers to a chord on a hypermetrically much stronger measure — the D7chord in measure

5. Syncopation is often realized during the interpretation of a lead sheet, but commonly not

explicitly written there.

In some Jazz standards, phrases are composed to form compound phrases. Such a nesting

of phrases can occur multiple times, therefore giving rise to a hierarchical phrase structure.

The large-scale structure of Take the “A” train can for example be considered a binary form

consisting of two compound phrases, AA and BA. A second common form is the period-like

form ABAC realized by tunes such as All of me, How high the moon, and A fine romance. The

term period-like is used here to acknowledge both the similarities and the differences between

the period form in Jazz and Western classical music. In both genres, periods consist of two

phrases of which the first closes on a dominant chord and the second starts as the first and

closes on a tonic chord. The cadences and the melodic movements are, for example, more

freely interpreted in Jazz. However, a detailed comparison is beyond the scope of this study.

Ternary forms AAB are also common, such as in Song for my father, Blue monk, and Mr. P.C..

1.6 Non-functional harmonic relations between chords

The transition from the first to the second chord of Afternoon in Paris, shown in Figure 1.8,

is an example of a relation between chords which is not analyzed as part of the functional

harmonic structure. This relation is that of a parsimonious voice leading, that is a chord

transition with a small voice movement (Harasim et al., 2016; Douthett and Steinbach, 1998;

Cohn, 1997; Tymoczko, 2011). From C4 to Cm7, the E and B move down by one semitone to

E[ and B[, respectively, and C as well as G stay the same. Despite their importance for the

coherence of the sequence (Wall et al., 2020; Huron, 2016), voice leading is not included in the

tree analysis, because it is not directly considered a part of functional harmony. Moreover, if

the chords would hypothetically be analyzed as being directly related, then only one of the two

harmonic relations to the chords F7 and C4 could be represented in a tree. Other examples

of non-functional harmonic relations include linear chromatic or diatonic shifts (Rohrmeier,

2020a).
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2 Reasoning and learning as
probabilistic inference

This chapter presents the main research questions that motivate the research presented in

this thesis and describes how they are studied using probability theory, Bayesian statistics,

and computational learning experiments.

2.1 This study’s research questions and their relation to

music cognition and cognitive science

Jackendoff and Lerdahl (2006) propose studying the human capacity for music by disentan-

gling 1) the cognitive structures invoked by music, 2) the musical grammar used to construct

such structures, 3) the acquisition of musical grammar, and 4) the innate resources for music

acquisition. The two core questions of this study consider the cognitive structures invoked by

Jazz harmony and the acquisition of the corresponding grammar.

Q1: Which harmonic dependency structures are constructed by human minds in response

to Jazz tunes?

Q2: What prior knowledge makes it possible to acquire musical grammar from an exposure

to Jazz tunes?

The first question can be considered a cognitive framing of a music-theoretical problem. In

general, humans create mental representations of perceptual input to learn about the en-

vironment and to make predictions about the future (Bubic, 2010; Pitt, 2020). Accordingly,

humans create mental representations of what they hear when listening to music (Rohrmeier

and Koelsch, 2012). Such representations might be created fully unconsciously or partly con-

sciously. In both cases, they can be interpreted as music analyses — as listeners’ understanding

of the music (Jackendoff and Lerdahl, 2006) — whose sophistication depends to a large extent

on the musical expertise of the individual listener. As structured representations are frequently

viewed as theoretically central in cognitive science (Fodor, 1981; Chater et al., 2006), they are a

connecting factor between cognitive science and music theory (Rohrmeier and Rebuschat,
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2012). The second question is a fundamentally cognitive one since it concerns the learning

process in which musical knowledge is acquired through the observation of examples. This

study operationalizes the exposure to Jazz tunes as observations of chord sequences. The

second question is moreover an instance of one of the main questions in cognitive science:

“How does abstract knowledge guide learning and reasoning from sparse data?” (Tenenbaum

et al., 2011)

2.1.1 Statistical learning and computational modeling

One fundamental assumption this study builds on is that much musical competence of

both musicians and nonmusicians can be acquired through mere exposure — by conscious

and unconscious listening to music (Rohrmeier and Rebuschat, 2012; Bigand and Poulin-

Charronnat, 2006; Huron, 2012; Loui, 2012; Tillmann, 2005; Dienes and Perner, 1999; Huron,

2006). Such acquisition is commonly referred to as implicit learning or statistical learning.

Implicit learning emphasizes the unconscious aspect, and statistical learning the quantitative

aspect of learning. However, both terms are used interchangeably in the literature (Rohrmeier

and Rebuschat, 2012). As a simple example of statistical learning, consider the behavioral

experiment by Jonaitis and Saffran (2009) who found that listeners make use of statistical

information when learning an artificially created musical style which allows for some chord

transitions and disallows others. More precisely, they trained participants on chord-sequence

examples from one of two styles represented by simple formal grammars.1 They then found

that participants were able to assign newly generated chord sequences to the style they were

created from, significantly above chance level. Since the frequency of each chord was the

same for both artificial styles, the results suggest that the participants based their decisions on

chord transition probabilities.

The current debate in music cognition about which musical concepts can be acquired by

statistical learning is another motivation of this study. It is rather a consensus that simple reg-

ularities such as frequent chunks of two or three notes or chords can be acquired by statistical

learning (Rohrmeier and Rebuschat, 2012; Saffran et al., 1999; Tillmann and McAdams, 2004;

Schön et al., 2008; Loui et al., 2009; Rohrmeier et al., 2011; Rohrmeier and Widdess, 2017).

Rohrmeier and Cross (2014) further argue that implicit learning of grammatical structure is

also plausible when only parts of sequences are well-formed. Rohrmeier and Cross (2013)

argue that prior knowledge and processing constraints are important for successful implicit

learning of artificial melodies. The possibility that abstract concepts such as structural proper-

ties of a context-free grammar can be acquired from mere exposure to sequential data is far

less clear and subject of a current cognitive debate (Rohrmeier and Rebuschat, 2012). There

is, however, growing empirical evidence that implicit learning can go beyond the learning

of chunks and create knowledge about nonlocal relations in music (Kuhn and Dienes, 2005;

Rohrmeier and Cross, 2009; Rohrmeier et al., 2012, 2014). Such empirical evidence is largely

based on artificial grammar experiments which have the drawback that they isolate musical

1Regular grammars were used to create the chord sequences.

24



2.1. This study’s research questions

dimensions such as harmony and rhythm and use artificial stimuli instead of excerpts of real

music. This can be problematic since music theory argues for the importance of interaction

between musical dimensions (Rohrmeier and Rebuschat, 2012; Cadwallader and Gagné, 2007;

Lerdahl and Jackendoff, 1983).

Computational models offer an approach to music cognition that is in some sense complemen-

tary to empirical psychology. Empirical psychology works directly with human participants

and studies their percepts with quantitative methods. The laboratory nature of psychological

experiments, however, requires stimuli that can be far away from the actual object of study

— the music. Furthermore, abstract knowledge representations of human minds are hard

to study in psychological experiments, because “[t]he difficulty with studying minds and

brains is that they are very difficult to measure” (Wiggins et al., 2011). In contrast to empirical

psychology, computational cognitive models can focus on abstract knowledge representation

and are easily applied to actual music through corpus studies. They are specified as precisely

as that they are implementable on a computer (Wiggins et al., 2011; Wiggins, 2011; Temperley,

2012), and explicitly represent the knowledge available prior to learning. Computational

cognitive models are important to advance the understanding of the human mind, because

they allow research to focus on the question what the mind does instead of how it does it. This

distinction was most famously proposed by Marr (1982) and is discussed in greater detail to

conclude this chapter in Section 2.6. The major drawback of computational cognitive models

is that much argumentation and philosophical background is required to relate computational

results to music perception. This is, however, not a problem from the view of cognitive science

which understands itself as the interdisciplinary study of natural and artificial intelligence

(Thagard, 2019).

Since there is to date no methodology available (and there might never be) to directly study

abstract knowledge representation in the human mind, this study investigates the learnability

of aspects of such representations in principle. This has the advantage that it can be studied

using computational cognitive models and learning simulations as described in the following

sections. For computational models of learning, a central question is what knowledge is

available to the learner prior to the observations she learns from. This includes the form of

possible knowledge representations, the space of possible hypotheses about the world, and

prior preferences over hypotheses (e.g., a preference for simple hypotheses). The role of prior

knowledge is essential to Bayesian models of cognition, because they assume that nothing can

be learned without prior knowledge — the only possibility to learn is to update knowledge.

In addition to the prior knowledge, the mechanics of the learning process must be modeled

rigorously. It defines the interaction of the learner with the rest of the world.

As outlined at the beginning of this chapter, the main research questions of this study are

which prior knowledge enables learning of grammars for harmony and which aspects of

harmonic syntax are learnable. More concretely, the goal is to find domain-general or at

least style-general prior knowledge that enables statistical learning of the characteristics

of Jazz harmony and form in a way such that the results are interpretable from the view
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of music theory. Candidates for potentially important prior knowledge include the joint

consideration of harmony and rhythm, relative pitch perception, and a preference for simple

rhythm. Assuming such prior knowledge, Chapter 10 presents a model which learns a harmony

grammar for Jazz standards that successfully uses nonlocal dependencies and musical form.

In Chapter 11 furthermore presents a model that is able to learn the goal-directedness of Jazz

harmony from minimal and domain-general prior knowledge.

2.1.2 Learnability arguments and counterarguments of abstract syntactic princi-
ples in natural language

Computer modeling is one of the three main approaches of cognitive science — along with

experimental psychology and neuroscience (Temperley, 2012). Learnability arguments similar

to the one presented in this study were previously made for domains other than music. For

example, Kemp and Tenenbaum (2008) argue that abstract knowledge is learnable in the

form of knowledge graphs for many domains such as biology, vision, and topography. Such

computational arguments make use of what are called Bayesian models of cognition (Griffiths

et al., 2008), which are discussed below in the following sections.

A similar learnability argument to the one presented in this study was proposed by Perfors

et al. (2011) who used computational simulations to show the learnability of abstract syntactic

principles in natural language. That argument is a contribution to the “Poverty of the Stimulus”

(PoS) debate in linguistics. The PoS debate discusses the statement whether children are

exposed to data rich enough to acquire all features of their first language without the need

of language-specific predispositions. A prototypical argument against that statement is the

following: Since children learn the correct syntactic constructions when they acquire their first

language, even when they have no direct evidence for corner cases, their generalizations must

be guided by abstract knowledge, by some inductive bias. The debate now revolves around the

question whether that abstract knowledge is innate or learned, “nature versus nurture”. Since

some part of the learning capability must be innate, the question is more precisely stated

as to which extent the inductive bias is innate and whether that predisposition is specific

to language (Chomsky, 1975; Piattelli-Palmarini, 1980; Hauser et al., 2002; Jackendoff and

Pinker, 2005). Such language-specific predisposition is referred to as universal grammar. The

similar question of whether there exists music-specific innate knowledge was later asked by

Jackendoff and Lerdahl (2006).

The side that argues for the existence of innate language-specific predispositions (Chomsky,

1965, 1971, 1975; Crain and Nakayama, 1987; Crain, 1991; Legate and Yang, 2002; Berwick et al.,

2011) considers for example the case of auxiliary fronting in English to construct questions

from statements. For instance, the question Is the man a musician? is constructed in such a

way from the statement The man is a musician. The argument then proceeds by the observa-

tion that there could at least two grammatical rules be learned from such examples: 1) the first

(leftmost) auxiliary verb in the sentence moves to the front or 2) the predicate of the sentence
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moves to the front (which reflects hierarchical phrase structure). Both rules coincide in the

above example but diverge for more complex statements such as The man who is playing

piano is Thelonious Monk. The first rule results in the ungrammatical question Is the man who

playing the piano is Thelonious Monk? while the second rule results in the correct question Is

the man who is playing the piano Thelonious Monk? The core of this poverty of the stimulus

argument is then that complex questions of that kind are non-existent in child-directed speech

in sufficient quantity to make the correct inference. Therefore, hierarchical phrase structure is

assumed to be innate.

The other side which argues against innate language-specific predispositions uses psychologi-

cal experiments and computational simulations to accumulate evidence for the learnability of

abstract syntactic principles (Gomez and Gerken, 1999; Lewis and Elman, 2001; Pullum and

Scholz, 2002; Perfors et al., 2006, 2011). For instance, Lewis and Elman (2001) use recurrent

neural networks applied to a corpus of child-directed speech (MacWhinney, 2000) to show

that “Chomsky’s poverty of stimulus argument that structure dependence must be a principle

of UG [Universal Grammar] fails to hold once stochastic information is admitted”. As a second

example, Perfors et al. (2011) propose a Bayesian grammar-learning model which demon-

strates that an ideal learner (also called agent in this study) could infer the hierarchical phrase

structure of language from child-directed speech using domain-general prior knowledge.

Although particular linguistic examples such as auxiliary fronting do not translate 1-to-1 to

music, the general question how abstract structural concepts are learnable does. By providing

initial evidence that hierarchical phrase structure is also learnable in the case of Jazz standards

without music-specific prior knowledge, this study contributes to the general argument for

the power of domain-general prior knowledge in conjunction with statistical learning.

Note that the statement that aspects of musical grammar are learnable does not imply that

listeners actually learned and use them for perception. Musical expertise varies a lot across

individuals, possibly much more than language expertise. This variation is partly caused

by the different levels of engagement with music in general and specific musical styles in

particular. In contrast to language where nearly every individual consumes and produces

large amounts of spoken language, detailed musical knowledge is only needed by musicians.

It is plausible that Jazz musicians learned aspects of musical grammar that are learnable

in computational simulations. Non-musicians who have little exposure to Jazz are much

less likely to have learned any details of the grammar of Jazz. Psychological experiments in

which random participants do not perceive hierarchical structures in music can therefore

not necessarily be interpreted as evidence against musical grammar. For natural language,

the authority of native speakers simplifies the situation. The concept of a native musician is,

however, questionable.
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2.2 An agent model for learning simulations

This study uses computational experiments to investigate the research questions introduced at

the beginning of this chapter. That is, a scenario is considered in which an agent has some prior

knowledge about Jazz music or music in general. The agent then learns implicitly by observing

(“listening to” or “engaging with”) Jazz chord sequences. What would be reasonable to assume

how this agent analyzes the harmonic structure of a new, unfamiliar tune? Probability theory

and Bayesian statistics provide a mathematical framework to study this question. The question

how a human individual learns is thus shifted to the question how an idealized rational agent

learns. Such agents are also referred to as ideal learners. The shift is an approximation that

enables rigorous scientific reasoning. Importantly, individual differences are not ignored by

this approximation but modeled by the prior knowledge that is brought into the learning

process. Computational learning experiments can therefore also be considered a modern and

quantitative derivative of traditional thought experiments.

Which harmonic reference structure an agent choses to analyze a Jazz chord sequence depends

on three crucial factors:

Prior knowledge: what the agent knows before learning,

Learning mechanism: how the observation of one chord sequence

changes the agents view on Jazz music, and

Data: which Jazz tunes are observed during learning.

Probability theory provides the tools to study the agent model including the uncertainties

associated with unknowns. In particular, Bayesian models of cognition explicitly represent and

coherently integrate the three factors into a uniform mathematical framework (Griffiths et al.,

2008). Probability is in this framework interpreted as plausibility (Jaynes, 2003), quantification

of uncertainty (Bishop, 2013), or degree of belief (Chater et al., 2006). The term plausibility is

more common in contexts in which probability theory is used as extended logic. The terms

quantification of uncertainty and degree of belief emphasize the reference to the rational agent.

All three terms refer to what is known as the objective Bayesian interpretation of probability

(Hájek, 2019). A probability is a number that represents the agent’s degree of belief that a

statement holds; it is objective in the sense that the agent is assumed to act in a rational

manner — independent of subjective judgments, hopes, or fears. Moreover, probability theory

can therefore be considered a natural extension of classical binary logic as described in the

following paragraphs.

The axiomatic formalization of probability theory as an extended logic calculus originated

from the economist Keynes (1929) and the mathematician Jeffreys (1939). They proposed to

interpret probability as a degree of rational belief ranging between certainty and impossibility

and considered classical deductive logic a special case that only considers the values certain
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and impossible (Cox, 1946). Keynes’ and Jeffrey’s interpretation of probability was mathemat-

ically justified by the physicist Cox (1946, 1961) who derived the laws of probability theory

from the requirement of consistency with Boolean algebra and elementary postulates about

common sense reasoning. Cox’ argumentation is extended, for example, by Jaynes (2003) to

derive Kolmogorov’s calculus of probability — the axiomatic probability theory of modern

mathematics (Kolmogorov, 1933). See for example Jaynes (1986) for more historic information.

The interpretation of probability as degree of belief is fundamentally different from the so

called frequentist interpretation which defines the probability of an event as its relative fre-

quency in an infinite sequence of independent trials. Cox (1946) writes about the relation

between the interpretations:

Probability is recognized also as providing a measure of the reasonable expectation

of an event in a single trial. [...] According to the second main school of probability

[i.e., the Bayesian interpretation], this measure of reasonable expectation, rather

than the frequency in an ensemble [i.e., in an infinitely repeated process], is the

primary meaning of probability.

The frequentist understanding of probability crucially relies on the possibility of indefinite

identical repetition and models uncertainty as variance of such repetition. It is thus not as

natural to apply to learning simulations as the Bayesian interpretation.

Fortunately, modern mathematics studies probability theory based on the axiomatic system

proposed by Kolmogorov (1933). Since the theorems derived from Kolmogorov’s axioms

are independent from the interpretation of probability, they can be used with all sound

interpretations. In contrast, methods of frequentist statistics such as classical hypothesis

testing using p values rely on the frequentist interpretation. They are therefore not used in

this study.

2.3 Interpretation of fundamental concepts of probability

This section presents fundamental concepts of probability together with their notation and

Bayesian interpretation. The focus lies on describing the intuition; mathematical details are

provided in footnotes. The motivation of this writing is that the fundamentals of modern

probability theory are rarely presented together with their Bayesian interpretation in a concise

and comprehensible manner. In fact, no exhaustive source that applied to the problem at

hand was found in the literature. The work by Burgoyne (2012) is closely related, but he used a

frequentist interpretation; Temperley (2007) gives a good introduction to the intuition behind

Bayesian reasoning about discrete random variables. The aim of this chapter is to extend those

approaches by presenting the foundations of measure-theoretic probability theory along with

their Bayesian interpretation to construct state-of-the-art learning models step by step. The

gap between modern probability theory and statistical applications as observed by Fine (1973)
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still exists in many disciplines — particularly in music cognition. Since this gap seems to be

caused by confusion about the interpretation and construction of probabilities, the definition

and interpretation of the mathematical objects used in this study are made explicit. It is,

however, assumed that the reader is familiar with probability theory in some form.

Under the Bayesian interpretation, all probabilities represent a degree of belief of a rational

agent who reasons about the aspects the world that she cannot observe or did not observe yet.

For example, the grammar of Jazz harmony can never be observed directly and its peculiarity

is therefore always associated with uncertainty. The same is true more generally for all abstract

cultural entities. In statistics, such entities that are not directly observable are called latent.

In contrast, examples of observable entities include Jazz chord sequences and harmonic

reference analyses of any particular analyst. The agent can reason about observable entities

based on prior knowledge and other observations, but she might also be able to observe them

and acquire certain knowledge.

In probability theory, the agent’s reasoning about the unknown aspects of the word is formal-

ized as reasoning about statements about the world. Such a statement A ⊆Ω is modeled as the

set of worlds in which the statement holds, where Ω denotes the set of all possible worlds.2

The set of all statements is denoted by A .3 The belief of the agent is modeled as a probability

measure P which assigns each statement A a real number 0 ≤ P(A) ≤ 1 that represents the

plausibility of A.4 The values 0 and 1 are interpreted as impossibility and certainty, respec-

tively. Note that an additional agent can be represented by a different probability measure, for

example denoted by Q.

Statements about the world commonly refer to certain aspects of the world modeled as

functions x̌ : Ω→ X , where X is the set of possible values of x̌, called its range. Aspects of the

world whose values are unknown are called random variables.5 The uncertainty about the

value of x̌ thus results from the uncertainty in the world. One common form of statements

is that the value of a random variable x̌ is contained in a set Y ⊆ X . The probability of that

statement is written as

P(x̌ ∈ Y ) :=P({ω ∈Ω | x̌(ω) ∈ Y }). (2.1)

2Some researchers criticize the assumption that there is a single set of all possible worlds. This is one of the
criticisms about the Bayesian interpretation of probability (Fine, 1973).

3The mathematical structure of A ⊆Ω is that of a σ-algebra.
4Probability assignments are assumed to satisfy P(Ω) = 1 (Ω can be interpreted as a tautological statement) and

P(
⋃∞

i=1 Ai ) =∑∞
i=1P(Ai ) for countably many mutually exclusive statements A1, A2, . . . (i.e., at most one statement

can be true at the same time). An interpretation of the first equation is that tautological statements are inevitable.
The second equation states that the plausibility that one of some mutually exclusive statements is true equals the
sum of the plausibilities of the single statements.

5Technically, only functions that are measurable are called random variables. This is, however, not really a
restriction in practice. In fact, the author never encountered a non-measurable function in any application.
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Using this notation, the probability that x̌ has a particular value x ∈ X is then denoted by

P(x̌ = x) :=P(x̌ ∈ { x }). (2.2)

The random variable x̌ could here for example refer to a harmonic dependency structure of a

tune to be analyzed. In that case, X would denote the set of all possible dependency structures

of that tune and x ∈ X would denote a particular structure.

In this chapter, random variables are always denoted using a check accent (e.g., x̌). As common

in the machine learning literature, such accents are not written in the rest of this study. It

should then be clear from the context when random variables x̌ and when concrete values x

are meant.

Random variables which range over a finite or countable set are called discrete. For a discrete

random variable x̌, there is a function p : X → R≥0 such that p(x) = P(x̌ = x) for all possible

values x ∈ X . The function p is called the probability mass function of x̌ with respect to P.

A random variable that ranges over a subset of Rd for some dimension d ∈ N≤0 is called a

continuous random variable if there exists a function p : X →R≥0 such that for all coherent sets

of possible values Y ⊆ X , P(x̌ ∈ Y ) = ∫
x∈Y p(x).6 The function p is called the density function

of x̌ with respect to P. For a unified simple terminology, probability mass functions are also

referred to as density functions in the following.7

The function which maps a subset of possible values Y ⊆ X to the probability P(x̌ ∈ Y ) is

called the distribution of the random variable x̌. For a discrete random variable, P(x̌ ∈ Y ) =∑
x∈Y p(x). Since this study assumes all random variables to be either discrete, continuous or

a combination of both, each distribution has an associated density function.8 By convention

of the machine learning literature, the distribution of a random variable x̌ is denoted by p(x̌).

Note that since the accent is omitted later in this study, the notation of a distribution clashes

with the notation of the probability p(x) of a value x ∈ X .

One of the most important properties of a random variable x̌ is its expected value E [x̌]. It

is defined by E [x̌] = ∑
x∈X p(x) x for discrete random variables and by E [x̌] = ∫

x∈X p(x) x for

continuous random variables.9 In cases that benefit from explicitly denoting the underlying

probability distribution, such distribution can be indicated as a subscript, like in Ep(x̌) [x̌].

This applies for instance to complex random variables constructed as transformations from

simpler random variables. The transformation of a random variable x̌ by a function g : X → Z

is denoted by g (x̌); it is defined by (g (x̌))(ω) = g (x̌(ω)) for a world state ω ∈Ω. The expected

value of the transformed random variable g (x̌) is thus denoted by Ep(x̌)
[
g (x̌)

]
. For example,

if g (x) = x + y for x, y ∈ X =N and if random variables are not explicitly marked, like it is the

6A subset Y ⊆ X is called coherent if it is a Borel set.
7This is common in mathematical probability theory. It is justified by the fact that probability mass functions

are density functions with respect to the counting measure.
8This follows from the Radon-Nikodym theorem.
9The definition of the expected value of a discrete variable x̌ requires that the values over which x̌ ranges can be

added and multiplied with a real number in a meaningful way.
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case in later chapters, then Ep(x)
[
x + y

]
clarifies that the expectation is calculated with respect

to the random variable x and the underlying probability measure P.

2.4 The observation process: modeling learning as conditioning

The probability measure P implicitly includes all assumptions that the agent makes about the

world. Model assumptions which are accepted throughout an experiment are usually treated

that way. Other assumptions are incorporated using conditional probability; the probability

measure constructed from P with an additionally assumed statement A is denoted by P( · | A)

and the corresponding distribution of a random variable x̌ by p(x̌ | A). The observation of

data can for example be expressed as conditioning. One scenario considered in this study

is that the agent reasons about the unknown grammar of Jazz harmony by observation of

chord sequences. Both the grammar and the sequences are aspects of the world; their random

variables are denoted by ǧ and w̌ = (w̌1, . . . , w̌ I ), respectively, where I ∈N denotes the number

of sequences. The observed sequences are denoted by w = (w1, . . . , w I ). The probability distri-

bution p(ǧ ) represents the belief about the grammar before the observation of the sequences

w . It is called the prior distribution. The belief about the grammar after the observation is

represented by the conditional distribution p(ǧ | w̌ = w ), commonly abbreviated by p(ǧ | w ).

It is called the posterior distribution. The learning that takes place by the observation of w is

thus represented by the transition from the prior distribution p(ǧ ) to the posterior distribution

p(ǧ | w ).

Conditional probability densities such as p(g | w ) for which p(w ) 6= 0 (i.e., the observation

must have been possible) are calculated by

p(g | w ) = p(g , w )

p(w )
, (2.3)

where p(g , w ) denotes the density of the joint distribution of ǧ and w̌ . Analogously,

p(w | g ) = p(g , w )

p(g )
. (2.4)

By substitution of p(w | g ) p(g ) for p(g , w ) in Equation 2.3, Bayes rule is obtained,

p(g | w ) = p(w | g ) p(g )

p(w )
. (2.5)

In words, it states that the posterior belief is proportional to the prior belief multiplied by

the sample probability p(w | g ) — the probability that the observed data (here a set of chord

sequences) was generated from the assumed grammar. Note that because Equation 2.3 states

a property of densities, it is not true by definition but must be derived (Schervish, 2012).

Bayes rule is at the core of Bayesian statistics, as it formalizes learning from data by induction.

Furthermore, it associates in a single equation the idea of statistical learning with structured
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domain knowledge that is encoded into the prior distribution. Critiques of Bayesian meth-

ods argue that the choice of the prior distribution brings undesired biases into statistical

evaluations. Might that be true or not for other problems, the comparison of different prior

distributions is a well-suited tool to study human’s abstract knowledge about music, because

both statistical learning and structured domain knowledge are necessary to explain the use

and acquisition of human knowledge (Tenenbaum et al., 2006). As Griffiths et al. (2008) put it

more generally:

Most human inferences are guided by background knowledge, and cognitive mod-

els should formalize this knowledge and show how it can be used for induction.

From this perspective, the prior distribution used by a Bayesian model is critical,

since an appropriate prior can capture the background knowledge that humans

bring to a given inductive problem.

The prior distribution p(ǧ ), the data-generating distribution p(w̌ | g ), and the observed data

w are the three dependent factors mentioned Section 2.2. The distribution p(w̌ | g ) is an

important part of the statistical model since it describes how the harmonic grammar assigns

probabilities to chord sequences. For context-free grammars, there is a standard construction

for this assignment, which is described in the next section.

2.5 Bayesian statistics and probabilistic generative modeling

So far, probability theory was presented along with its Bayesian interpretation. The application

of the theory to empirical problems is the topic of statistics. Statistics thus acts as an interface

between mathematics and the real world. More precisely, statistics can be considered the

study of probabilistic models, their assumptions, and their interpretation. Therefore, the term

statistical model is used to refer to a probabilistic model together with the assumptions it

makes and the interpretation that is attributed to it.

But what is a probabilistic model? The aim of such a model is to relate the observed and

the latent variables of the problem at hand. In Bayesian statistics, all observed and all latent

variables are modeled as random variables and the uncertainty about unobserved variables

is represented by their probability distributions. All relations between the variables are fully

described by their joint distribution.

The models considered in this study are instances of a generic grammar-learning model. There

are three kinds of random variables: one for the grammar of Jazz harmony, one for Jazz chord

sequences, and one for derivation trees of such sequences. The chord sequences are observed

and the grammar is latent. In a supervised learning setting, the derivation trees are observed,

whereas they are latent for unsupervised learning. In this section, the random variables of

the grammar, the derivation trees, and the sequences are denoted by ǧ , ť = (ť 1, . . . , ť I ), and

w̌ = (w̌1, . . . , w̌ I ), respectively. The random variable for the grammar includes information
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about the grammar’s nonterminal representation and its rewrite rules. As described below,

a grammar can be understood as a distribution over derivation trees. A distribution over

grammars is therefore a distribution over distributions, much like the Dirichlet distribution

is a distribution over categorical distributions (see Section 7.2). This will become clearer in

Chapter 7 when distributions over grammars are discussed in detail. For now, it suffices to view

the uncertainty about a grammar as a result of the uncertainty about the rules contained in

the grammar as well as the uncertainty about how probable a rule is to be applied to generate

a derivation tree.

The joint distribution of all random variables is synonymous to the probabilistic model,

because all relations between the variables are captured in that distribution. Bayesian models

are commonly specified in two parts:

1. a factorization of the joint distribution into a product of conditional distributions and

2. distribution assumptions for all of the conditional distributions.

The factorization describes which random variables depend on which other variables and the

conditional distributions define how random variables relate to the variables they directly

depend on. In the example of grammars, derivation trees, and chord sequences, the density of

the joint distribution is factorized by

p(g , t , w ) = p(g )
I∏

i=1
p(t i | g ) p(w i | t i ). (2.6)

The probability mass function p(w i | t i ) is simple; it returns 1 if w i is the leaf sequence of

the tree t i and 0 otherwise. The density functions p(g ) and p(t i | g ) are more complicated

and defined below. This probability model is standard for context-free grammars (Kurihara

and Sato, 2004, 2006; Johnson et al., 2007b). It is furthermore an instance of a class that is

called probabilistic generative models (Bishop, 2006; MacKay, 2003). A model is defined as

being part of that class if the dependency structure represented by the factorization of the

joint distribution is acyclic. The dependency structure of the grammar model is acyclic as

shown in Figure 2.1. Given any grammar, all derivations trees are independent and a chord

sequence depends only on its derivation tree. If otherwise, the grammar and the derivation

trees are not known, then all chord sequences depend on each other.

Generative models are called generative, because they have an interpretation as a generative

process in which the random variables are generated one at a time. The generation can be

done in any order that respects the dependency structure of the model, that is a variable can

be generated only if all variables it depends on are already generated. In the grammar example,

one possible order is to first generate the grammar, then all derivation trees, and then all chord

sequences.
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g

t 1 t 2 · · · t I

w1 w2 · · · w I

Figure 2.1 – Dependency structure of the generative model of a grammar g , derivation trees
t 1, . . . , t I , and chord sequences w1, . . . , w I .

To define the distribution p(ť | g ) of a derivation tree t given a grammar g , the definition of

context-free grammars is extended to probabilistic context-free grammars. Such probabilistic

grammars also have an interpretation as a generation process of derivation trees, formalizing

the more intuitively presented generation procedure of context-free grammars in the last

chapter. For the random generation, each nonterminal is equipped with a distribution of rules

which have that nonterminal as their left-hand side (e.g., that rewrite the nonterminal into a

sequence of terminals and nonterminals). The generation procedure starts by generating a

rule to rewrite the start symbol into a sequence of terminals and nonterminals. Afterwards,

it iteratively generates rules to rewrite the leftmost nonterminal of the sequence until the

sequence only consists of terminals. Then, the process halts and the derivation tree including

the terminal sequence is returned.

Probabilistic context-free grammar. A Probabilistic Context-Free Grammar (PCFG) is a

context-free grammar (T, N ,Start,R) in which each rule (A −→ α) ∈ R is associated with a

positive real number p(A −→α) such that∑
α∈(T]N )∗

p(A −→α) = 1 (2.7)

for all nonterminals A ∈ N , where α denotes a sequence of terminals and nonterminals. A

number p(A −→α) is then interpreted as the probability that the rule A −→α is sampled to

rewrite the nonterminal A. The probability of a derivation tree is defined as the product of the

probabilities of the rules that constitute that tree. The probability of a sequence of terminal

symbols is defined as the sum of the probabilities of all its derivations.

Probabilistic grammars are described more elaborately in Section 5.4. For now, it suffices

to note that a PCFG defines a distribution p(ť | g ) over derivation trees t where the rule

probabilities are included in the representation of the PCFG g . All information about a PCFG is

contained in the function (A −→α) 7→ p(A −→α) that maps rules to their probabilities, where

rules which are not contained in the grammar are assigned to zero. The distribution p(ǧ ) that
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models the prior knowledge of the agent can thus be understood as a distribution over such

mappings. The concrete definition of prior distributions will be subject to experimentation

in the computational learning experiments presented in the third part of the thesis. To allow

for a wide range of distributions p(ǧ ), this study proposes probabilistic abstract context-free

grammars in Chapter 5. A general class of prior distributions which will be used for grammar

learning is then described in Chapter 7.

2.6 The computational level of cognition

Bayesian models provide the opportunity to rigorously study cognitive representations without

the need to assume any details about human processing mechanisms. They are therefore well-

suited for this study which is concerned with the learnability of cognitive representations. Even

the learning process is modeled without specific assumptions about learning mechanisms; it

is characterized by the relation between two distributions, the prior and the posterior. In the

grammar example, the prior distribution p(ǧ ) represents the agent’s (e.g., an ideal learner’s)

belief about the grammar before learning, and the posterior p(ǧ | w ) represents the belief

after the learning process. Learning is thus modeled as the transition from the prior to the

posterior.

The distinction of what the mind computes from how it does it was first proposed by Marr

(1982) for the study of vision. Marr’s proposal aimed at a better understanding of high-level

cognitive processes and contributed to an improvement of theory development in cognitive

sciences (Anderson, 1990). Concretely, Marr proposed to distinguish three levels of cognition:

Computational level: What mathematical function is computed?

Algorithmic level: What algorithm is used to compute the function?

Implementational level: How is the algorithm physically implemented?

The implementational level is different for biological and artificial systems. In biological

systems such as mammals it is realized by neural structures, and in artificial computing

systems by electronic transistors. The computational and the algorithmic level are, however,

similar for both systems.

An analogy from computer science can aid the understanding of the three levels. The compu-

tational level describes the mathematical function that is computed, for example the sum of

a list of integers. That level does not concern how such a sum might be computed, the only

thing that matters is that a list of integers is mapped to the sum of its elements. A description

on the computational level is thus similar to a specification of a computer program. A state-

ment of a mathematician that she proved some function exists without knowing an explicit

construction of it could also be classified into the computational level. The algorithmic level

can be understood as describing algorithms as programs in any assembly language (e.g., in
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primitive machine instructions). Commonly, such programs are written a high-level language

such as python or haskell and the high-level language is then interpreted in or compiled

to an assembly language. In the example of the sum of a list, a high-level program would

take a list as input and return the sum of it. Valid programs for this simple case include

the summation from left to right, resulting in the term (((((1+2)+3)+4)+5)+6)+7 for the

input list [1,2,3,4,5,6,7], or a program which recursively splits lists into half and sums the

smaller lists, resulting in ((1+2)+ (3+4))+ ((5+6)+7). Since the second program can be easily

parallelized, it can run much quicker than the first program when multiple processor cores are

available. This illustrates another difference between the computational and the algorithmic

level; while the former does not have a notion of time, the latter can compare algorithms in

terms of their runtime complexity. While the algorithmic level can be understood in terms of

programs written as machine instructions, the implementational level can be understood as

the implementation of the machine instructions in physical computer hardware.

Coming back to the generic grammar model used in this study, the mathematical function

that is computed maps the prior distribution p(ǧ ) and the observed chord sequences w to the

posterior distribution p(ǧ | w ). The probabilistic model characterized by the joint distribution

of the grammar, the derivations trees, and the sequences constitutes the specification at the

computational level. Bayes’ rule then seems to correspond to the algorithmic level, because it

is a formula that describes how to compute the posterior:

p(g | w ) =
∑

t p(g , t , w )

p(w )
=

∑
t p(g , t , w )∫

g
∑

t p(g , t , w )
(2.8)

This is in practice, however, not the case, because the calculation of the integral in the denomi-

nator is intractable. Therefore, algorithms which provide approximations of the posterior such

as Markov chain Monte Carlo (MCMC) or variational Bayesian inference methods correspond

to the algorithmic level. There is even some evidence for the “Bayesian coding hypothesis”

which states that brains indeed represent uncertainty by approximation of probability dis-

tributions (Knill and Pouget, 2004; Brighton and Gigerenzer, 2008; Friston, 2009, 2010; Clark,

2013b). However, “[p]erhaps the greatest open question about Bayesian network and Bayesian

learning models is how they might be implemented in the brain” (Gopnik and Tenenbaum,

2007).

Finally, note that Marr’s computational level is loosely related to Chomsky’s concept of com-

petence. In Aspects of the Theory of Syntax, Chomsky (1965) proposed the distinction of

competence from performance for natural language syntax. The former describes the ideal

language system possessed by native speakers. It enables for example the distinction be-

tween grammatical and ungrammatical sentences. The latter, performance, describes how the

language system is used in communication. In Chomsky’s view, many sentences of spoken

language which seem ungrammatical can be thus understood as grammatical sentences per-

turbed by speech errors. As mentioned above, there is some similarity between competence

and the computational level, for example the abstraction from time, but as Anderson (1990)
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wrote:

The relationship between competence and performance is really not the same

as the relationship between Marr’s level of computational theory and his lower

levels [the algorithmic and the implementational level]. In Marr’s case, the lower

levels achieve the goals of the computational level. Chomsky’s competence level

is a theory based on a certain subset of data that is thought to be a direct and

reliable reflection of the person’s linguistic knowledge. For instance, judgments of

whether a sentence is grammatically well formed provide key data for a theory of

competence, but time to understand a sentence is thought to be less stable and

is consigned to a theory of performance. Performance is somehow constrained

to reflect the competence, but it reflects other factors as well. Unlike Marr’s case,

performance is not just a matter of implementing the goals of competence. Indeed,

unlike Marr’s computational-level, Chomsky’s competence is not concerned with

the goals of the system. A computational-level theory of language would have

to be concerned with the functionality of language — a concern that Chomsky

explicitly rejected.

In the context of this study, competence is the ideal system of harmonic structure that corre-

sponds to the unknown grammar the agent reasons about. It is thus used as a representation

on the computational level. For example in Jazz Improvisation: A Theory at the Computa-

tional Level, Johnson-Laird (1991) uses derivation trees to describe the structure of Jazz chord

sequences at the computational level. In contrast, Ogura et al. (2020) apply Earley’s parsing

algorithm (Earley, 1970) to suggest how the creation of a derivation tree could be realized at

the algorithmic level.
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3 Related approaches to
musical structure

The present study is a continuation of previous research that applied formal grammar models

to analyse musical structure. The approach used in this study is largely based on the gram-

mar models proposed by Rohrmeier (2011, 2020a) and Rohrmeier and Neuwirth (2015) as

introduced in the first Chapter 1. Those models were earlier also implemented and applied to

model harmonic similarity (De Haas et al., 2009) or to improve automatic chord recognition

(De Haas, 2012; De Haas et al., 2012). This chapter gives an overview over related formalisms

and models of musical structure. The three most related previous approaches are discussed

in greater detail: 1) grammar models that directly formalize aspects of Schenkerian theory,

2) models based on the Generative Theory of Tonal Music (GTTM), and 3) models directly

related to the Jazz-harmony grammar proposed by Granroth-Wilding and Steedman (2014).

The term harmonic syntax is used both by traditional music theory and research on formal

models of harmony. Aldwell and Schachter (2003) define the term harmonic syntax based on

the order how chords appear in a sequence:

In studying music, we can use the term harmonic syntax to refer to the arrange-

ment of chords to form progressions; the order of chords within these progressions

is at least as important as the order of words in language.

This definition is very general since it does not mention the kinds of structural dependencies

between chords that constitute the syntactic structure. In contrast to linguistics where syntax

commonly refers to a hierarchical structure between the words of a sentence, approaches

which model only local relations between chords might also be considered studies of harmonic

syntax. Rohrmeier and Pearce (2018) and Pearce and Rohrmeier (2018) present an overview

over computational models of harmonic syntax of different complexity, including local, linear,

and hierarchical models.

Following up on the formalization of generative grammar by Chomsky (1965), scholars started

to apply similar grammar models to music in the 1960s. Roads and Wieneke (1979) and

Sundberg and Lindblom (1991) review early approaches to hierarchical structure in music
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that use formal grammars. The first formal grammar for Western tonal harmony known to the

author was formulated by Winograd (1968). Later, Sundberg and Lindblom (1976) complement

that model by sketching a formal grammar for melody to argue that both melodies and natural

language syntax exhibit hierarchical constituent structure. Baroni and colleagues discussed

the concept of musical grammar in greater detail in relation to natural language and cognitive

science, and propose grammar rules for simple melodies of Baroque music (Baroni and

Jacoboni, 1975; Baroni et al., 1983; Baroni and Jacoboni, 1983; Baroni et al., 1992; Baroni, 1999).

Many of recent grammar models are probabilistic (McCormack, 1996; Gilbert and Conklin,

2007; Abdallah and Gold, 2014; Abdallah et al., 2016; Tsushima et al., 2020). For example Quick

(2010, 2014, 2016) and Quick and Hudak (2013a,b) use probabilistic grammars for automatic

music generation and composition. Other approaches propose alternative grammar forms or

algorithms for music analysis (Tidhar, 2005; Tojo et al., 2006; Sidorov et al., 2014).

A more theoretical question concerns the right level of comparison between musical and

linguistic structure (Asano and Boeckx, 2015); there is no general agreement about the nature

of the relation between music and language (Rebuschat et al., 2011; Arbib, 2013). Katz and

Pesetsky (2011) hypothesize in their Identity Thesis for Language and Music that musical

and linguistic structure are as similar as they can be. This study takes the rather different

standpoint that both language and music are similar, because they are shaped by domain-

general cognitive principles. That is, the capacity for musical skills such as improvisation and

composition is assumed to be not directly related to language skills such as speaking and

writing, but to general capabilities that also empower humans to drive and navigate a car, play

sports, or organize a birthday party. A domain-general capacity needed for all those tasks is

for example the ability to hierarchically decompose complex structures or tasks into simpler

ones.

3.1 Schenkerian theory and formalization

Schenkerian theory (also known as Schenkerian analysis) was the first rigorous theory of

hierarchical structure in music. It originated from Heinrich Schenker (1935) and can nowadays

be considered a predecessor of modern computational models for musical structure. The

theory was further developed by scholars such as Salzer (1952), Salzer and Schachter (1989),

and Cadwallader and Gagné (2007); see Forte (1959) for a brief introduction. Schenkerian

theory comprises a complex system of interacting rules for structural reduction of pieces

from Western classical music. The reduction rules can be understood as inverse generation

rules. The rule system is meant to be used by human experts of the theory to depict the

logical coherence of a piece by stepwise reduction to an Ursatz (fundamental structure) which

is assumed to be existent on the deepest structural level of all musical styles Schenkerian

theory is applied to. As in a context-free grammar, similar transformational principles apply

recursively at all levels of a Schenkerian reduction (e.g., an analysis of a piece), and the Ursatz

(fundamental structure) is analogous to the start symbol of a context-free grammar.
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Human expertise is necessary to interpret both the theory and the musical piece to be analyzed

to address their ambiguities. Schenkerian theory is thus itself commonly considered an artistic

activity with the goal of finding new hearings of a piece (i.e., new ways to hear a piece).

Schenkerian theory relates to the study of music perception, because it considers the question

of how a piece is perceivable. However, Temperley (2011) for example argues that it is not

straight-forward to evaluate Schenkerian theory as a theory of music perception. Cross (1998)

and Neuwirth and Rohrmeier (2016) acknowledge the methodological differences between

music analysis and music cognition, and suggest that they should complement each other.

The generative principles of Schenkerian theory can be generalized for styles other than

Western classical music. Recent research applied them, for example, to Jazz (Martin, 1996,

2011a,b; Larson, 1998, 2002, 2009; Givan, 2010; Heyer, 2012) and Rock music (Everett, 2004).

Applications to other styles remain largely unexplored (Stock, 1993; Clarke, 2017). Generaliza-

tions of Schenkerian analysis commonly inherit the recursive nature of the theory. In such

generalizations, the conception of the Ursatz is, in contrast, a topic of the scientific discourse:

The specific form of the Ursatz proposed by Schenker consists of a descending melody from

scale degree three or five to the root of the key, accompanied by a harmonic I-V-I movement.

That form does not apply to all styles of Western tonal music or even all music in general.

In their article A LISP-Based System for the Study of Schenkerian Analysis, Frankel et al. (1976)

reported “the first attempts at modeling musical perception on a digital computer using the

methodology of Heinrich Schenker’s theory of music.” They further developed their ideas in

the next years (Frankel et al., 1978; Smoliar, 1979) using tree-structured data representations

and transformational grammar (Chomsky, 1965). Their main findings were that computational

modeling helps to clarify the ideas of Schenkerian analysis and can help to find parts where

the theory is not explicit in a formal sense. Mavromatis and Brown (2004) find similar results

much later by aiming to implement Schenkerian theory in the programming language Prolog

using the formalism of definite clause grammars. Keiler (1978) proposes a simple phrase-

structure grammar for harmony of Western classical music, inspired by Schenkerian analysis.

Marsden (2001, 2005) uses directed acyclic graphs for the formalization of Schenkerian theory

to represent musical relations that are not tree-structured. Marsden (2007, 2010) and Kirlin

and Utgoff (2008) present implementations towards automatic Schenkerian analysis and

conclude that a scoring function is needed to distinguish plausible from implausible analyses.

Yust (2006, 2015) propose to use what are called Maximal OuterPlanar graphs (MOPs) to for-

malize reductions of Schenkerian theory. MOPs are equivalent to derivations of a context-free

grammar whose nonterminals are intervals between notes. The MOP model was extended by

Kirlin and Jensen (2011, 2015), Kirlin (2014), and Kirlin and Thomas (2015) using probabilistic

context-free grammars. Yust’s approach was also expanded by Finkensiep et al. (2019) to

define a formal grammar for North-Indian Raga melodies.
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3.2 The generative theory of tonal music

The Generative Theory of Tonal Music (GTTM) focusses on the musical idiom of Western

Classical music also known as the common practice period (Lerdahl and Jackendoff, 1983). It

was later also applied to popular music such as Beatles’ songs (e.g., Jackendoff and Lerdahl,

2006). A main goal and the core achievement of the GTTM was to link hierarchical music

analysis that originated from Schenker with music cognition (Giblin, 2008). This was accom-

plished by reinterpreting parts of Schenkerian theory as a recursive formalism to describe

cognitive representations of experienced listeners. Much following research was based on this

connection of music theory and cognitive science as well as on the relation between music

and language stressed by the GTTM (Bigand et al., 2009) as described below.

Lerdahl (2009) gives a review of the “Genesis and Architecture of the GTTM project”. The origin

of the GTTM was Noam Chomsky’s reformulation of linguistic theory as the formal study of

the human capacity for language (Chomsky, 1965). While Bernstein (1976) advocated for a

literal transfer of linguistic concepts to musical concepts, Lerdahl and Jackendoff (1983)

were more interested in the general spirit of Chomsky’s research program including the

distinction between competence and performance as well as the idea of a small set of formal

rules that can be used to generate infinitely many sentences. The rules system proposed by

the GTTM is, however, formally different from rule systems of generative grammar used in

linguistics and also by this study. Instead of generative rules, the GTTM uses preference rules

to contrast the gradient nature of music phenomena with the categorial grammatical-or-not-

grammatical distinction of phrase-structure rules in the 1970ths. The way that the GTTM uses

preference rules was criticized as being not sufficiently quantified (Peel and Slawson, 1984)

and considered “a quasi-formal description of the different musical structures that underlie

the perception of Western music” (Bigand et al., 2009). This study, as well as other modern

approaches, acknowledges the ambiguity of music using probability theory.

The GTTM models components of musical structure such as meter and pitch independently

and combines the analyses of the components to a overall structural description of a musical

piece. One important contribution of the GTTM is the disentanglement of grouping and

meter, two structures that were commonly confused before (Cone, 1968; Cooper and Meyer,

1960). That distinction is now perceptually validated, widely accepted, and assumed by many

studies (Deliege, 1987; McAdams, 1989; Palmer and Krumhansl, 1990; Large and Palmer, 2002;

Frankland and Cohen, 2004; Yust, 2018). Grouping and meter lead to a time-span reduction by

the application of stability conditions. The time-span reduction represents aspects of rhythm

as a hierarchical time structure. The GTTM generally uses the term reduction synonymously

to hierarchy. Additional to meter and grouping, pitch is considered as a third dimension of

music. The application of well-formedness rules and preference rules to the pitch-structure of

a piece leads to a prolongational reduction. The prolongational reduction trees proposed in

the GTTM are a hierarchical representation of a piece’s tonal tension and relaxation. They are

loosely related to the prolongational structure in Schenkerian theory. The time-span reduction

and the prolongational reduction thus represent complementary aspects of a piece. However,
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the prolongational reduction is partly derived from the rhythmic stabilities represented in the

time-span reduction through an interaction principle.

The GTTM interprets prolongational branchings as patterns of tonal tension and relaxation.

Right branches and left branches represent an increase and decrease in tension, respectively.

Branches are of one of three types: strong prolongation (exact repetition), weak prolongation

(small increase or decrease in tension), and progression (greater increase or decrease in ten-

sion). Following research studied the tension-relaxation system more extensively (Bigand

et al., 1996; Krumhansl, 1996; Schellenberg, 1996; Lerdahl, 1996; Lerdahl and Krumhansl, 2007).

Lerdahl (2009) writes that

[...] the prolongational component as set forth in GTTM is not quantifiable. Its

branching types describe degrees of tension and relaxation only qualitatively. And

GTTM gives merely a verbal sketch of the stability conditions that underlie both

the time-span and prolongational components.

The shortcomings of the GTTM such as the qualitative nature of the prolongational component

lead to the development of Tonal Pitch Space (TPS; Lerdahl, 1988, 2001). TPS quantifies

stability conditions based empirical data of the tonal hierarchy (Krumhansl, 1983, 1990). For

example, Yamamoto et al. (2020) very recently analyzed Jazz chord sequences as paths in TPS.

Hamanaka, Hirata, and Tojo studied computational applications of the GTTM extensively over

many years (Hamanaka et al., 2005, 2006, 2007a,b, 2014, 2015, 2016b,a, 2020; Hamanaka and

Tojo, 2009; Groves, 2016). The implementation was partly made difficult by the fact that the

GTTM was originally not meant to perform automatic analyses but to provide a quasi-formal

model for music analyses by human experts.

This study goes a different path than proposed by the GTTM and followed by Hamanaka,

Hirata, and Tojo. On one hand, the modeling goals, close relation to music cognition, and

abstract ideas such as the preliminary separation of musical dimensions like rhythm and

harmony are similar, on the other hand, this study approaches the music from a different

angle. Instead of weakening the formality of the rule system to address the ambiguous nature

of music as done in the GTTM, complex probabilistic models over simple rule systems of

rigorous formality are used. They are then investigated in order to see how much musical

structure can be captured by such simplicity.

3.3 Combinatory categorial grammars for harmonic structure

From all of the approaches to musical structure discussed in this chapter, the one by Mark

Steedman and Mark Granroth-Wilding might be most similar to the approach of this study,

both because of formal and philosophical commonalities. The differences are found in details

and notation. The grammar by Steedman and Granroth-Wilding evolved in three steps and

was influenced by earlier and related research in computational modeling of music cognition —
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most notably by Christopher Longuet-Higgins, a pioneer of music cognition in particular and

cognitive science in general (Longuet-Higgins, 1976; Steedman, 1977; Longuet-Higgins, 1979;

Longuet-Higgins and Lee, 1984; Longuet-Higgins and Lisle, 1989). The first version of the

grammar was a proposal for the harmonic structure of the 12-bar Blues which evolved into a

more general grammar for Jazz chord sequences that constitutes the third version. Simpler

context-free grammars for harmonic analysis of Jazz chord sequences influenced by the first

version of the grammar were for example implemented by Pachet (1997), Chemillier (2004),

and Katz (2017).

The first version of the model was a context-sensitive grammar for the 12-bar Jazz Blues

(Steedman, 1984). The grammar was formulated using scale degrees, and thus abstracts

form the root of a tunes’s key. The formalism acknowledges that the grammar rules can be

applied at various metrical levels, while rules used in the examples of the paper mostly split

chord durations equally. The set of rules includes a 6-ary start rule, rules for prolongation,

subdominant departure, dominant preparation, and tritone substitution. Which chords are

allowed to substitute other chords is regarded with respect to musicians’ intuition (Steedman,

1984):

[...] where a rule of the grammar says that one sequence of chords may replace

another, musicians should agree that the substitution is a possible expression of

such aspects of the musical meaning as the underlying cadential sequence.

In the terminology introduced in Chapter 1, “possible expression of such aspects of the musical

meaning as the underlying cadential sequence” means that the replaced (e.g., substituted)

chord sequence must correspond to the same harmonic dependency structure.

The second version of the grammar is a reformulation of the first version as a Combinatory

Categorial Grammar (CCG) that aims to overcome the idea of chord substitution (Steedman,

1996). CCG is a “radically lexicalized theory of grammar” which separates language-specific

syntactic information from language-independent rules (Steedman, 2019; Steedman and

Baldridge, 2006). The language-specific information is stored in a lexicon by assignment of

categorial types to words. Such categorial types include information about part of speech,

directionality, agreement, and semantic interpretation. CCG originated from the study of

natural language and comprises a transparent interface between syntax and semantic repre-

sentation. In contrast to Chomsky (1965) who considers syntax as an ideal system of structure,

Steedman (2000) considers it as the process by which semantic interpretation is derived in

a compositional way. In Steedman’s view, the semantic representation is understood as the

goal of the syntactic process. The application of CCG to music thus needs to define what is

regarded as the semantics of harmony. Steedman (1996) chooses paths in the Tonnetz (Euler,

1739; Cohn, 1997; Gollin, 2006; Moss, 2019) as the semantic representation of chord sequences,

as proposed by Longuet-Higgins (1962, 1979) and Longuet-Higgins and Lisle (1989). This se-

mantics postulates that musically coherent chord sequences are chord sequences whose roots

progress in small steps on the Tonnetz. The formalism therefore focuses on cadential chord
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progressions. For example, a simple chord sequence II V I progresses in minimal steps on the

Tonnetz. More advanced examples which are generated using substitutions are analyzed as

non-substituted chords, for instance the tritone-substituted progression II bII I is analyzed as

the same root progression as II V I.

The third and last version of the model to date is an extension of the second version to more

general Jazz chord sequences (Granroth-Wilding, 2013; Granroth-Wilding and Steedman,

2014). The semantic representation is adopted from the second version and now in the third

version fully formalized: “The harmonic interpretation of a piece is the path through the tonal

space traced by the roots of the chords” (Granroth-Wilding and Steedman, 2014). The third

version of the grammar increases the lexicon of musical rules and makes use of additional

domain-general combination principles such as coordination. The coordination rule is used

to combine two unresolved cadences into a single unresolved cadence. It does therefore

not distinguish double-preparations of tonics from prolonged dominant preparations. For

example, a chord sequence V V I could be grouped either ((V V) I) or (V (V I)), and both are

understood as coordination of the fifth scale degree.

The harmonic dependency structures considered in this study are similar to the semantic

representations used by Granroth-Wilding and Steedman (2014). For example, neither ap-

proach uses the grammar rules to restrict the set of possible modulations, regularities are

instead captured by the statistical models. One difference is that the semantic representa-

tions focus on cadential chord progressions and do not model high-level organization of Jazz

tunes such as hierarchical phrase structure and form: “[...] a piece of music is analysed as a

sequence of expectation-resolution structures and no structure is analysed between these

fragments” (Granroth-Wilding and Steedman, 2014). Large-scale harmonic dependencies

such as dominant-tonic relations between B and A sections in an AABA from (e.g., in Take

the “A” train) or between B and C in an ABAC form (e.g., in All of me) are thus not modeled

explicitly. Other differences are that this study jointly models harmony and rhythm and also

tackles the task of grammar induction.

3.4 Linear and local models of musical sequences

Local models of sequential structure such as n-gram models are different from context-free

grammars in that they cannot represent dependencies over long distances. Linear models

such as Hidden-Markov-Models (HMMs) and artificial recurrent neural networks such as Long

Short-Term Memory (LSTM) are additionally able to represent non-local dependencies in

principle. In practice however, there is a limit to which extent such non-local dependencies

are learnable. Probabilistic context-free grammars can suffer from the opposite problem that

long-range dependencies are found which do not describe the music well, as shown in the

supervised computational experiments in Chapter 9.

The focus of this study are hierarchical analyses of chord sequences. Since these structures

are not straight-forward to study with local and linear models, such models are rather loosely
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related to this study. A more natural application of local or linear models is the task of

predicting the next note with which a sequence of notes most likely progresses (Pearce and

Wiggins, 2006). The following paragraphs give a brief overview of local and linear models for

harmony used in previous research. See for example Rohrmeier and Pearce (2018) and Pearce

and Rohrmeier (2018) for a more detailed review and Rohrmeier and Graepel (2012) for an

empirical study comparing different model classes.

The simplest n-gram models are unigram models (n = 1). They are also called bag-of-notes

models (or bag-of-chords), because they completely abstract from temporal order in which

musical events occur. Recently, Yust (2019) studies historical developments in musical style

using a unigram model of pitch classes for beginnings, endings, and whole pieces. Temperley

(2018) and Temperley and de Clercq (2013) used unigram models to analyse harmony and

melody in Rock and Pop music.

Bigram models (i.e., 2-gram models), also called Markov models or Markov chains, can be used

to describe relations between two successive musical events. They are for example used to

describe statistical regularities of chord transitions to study Jazz improvisation (Pfleiderer et al.,

2017; Frieler, 2014, 2019, 2020), harmonic schemata in Jazz standards (Shanahan and Broze,

2012), harmony in Rock music (De Clercq and Temperley, 2011), harmony of Western popular

music (Shaffer et al., 2020), harmony in Beethoven’s string quartets (Moss et al., 2019; Moss,

2019), harmony in Bach’s chorals (Rohrmeier and Cross, 2008), and the stylistic evolution of

Western classical music (Rodriguez Zivic et al., 2013). A music-theoretic predecessor to bigram

models is the table of usual root progressions in Bach’s chorals proposed proposed by Piston

(1948), in which he presented his qualitative estimation which chord progression occurs how

often. Tymoczko (2006, 2011) also uses local models to study chord progressions as linear

motions in multidimensional, non-Euclidean geometric spaces.

n-gram models are commonly used to describe a single musical dimension such as melody,

harmony, or rhythm. Multiple viewpoint models extend n-gram models by taking more than

one musical dimension in account (Conklin and Cleary, 1988; Conklin and Witten, 1995;

Pearce, 2005a; Pearce et al., 2005; Whorley et al., 2013; Cherla et al., 2013). The Information

Dynamics Of Music (IDyOM) model extends multiple-viewpoint models further to model both

long-term memory and online learning (Pearce, 2005b, 2018) Skipgram models are another

generalization of n-gram models orthogonal the the multiple-viewpoint idea. They allow

for discharging some elements of a sequence such as errors or ornamentation to consider

non-contiguous constituents. Skipgram models were recently used to study voice-leading

schemata (Sears et al., 2017; Finkensiep et al., 2018; Sears and Widmer, 2020)

Hidden-Markov models are linear models that use a latent state to predict continuations

of sequences. They were for example used for chord segmentation (Sheh and Ellis, 2003),

chord recognition (Lee and Slaney, 2006; Khadkevich and Omologo, 2009), and key estimation

(Peeters, 2006; Lee and Slaney, 2008). More recent models use artificial recurrent neural

networks and, specifically, long short-term memory (LSTM) models for chord recognition,
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music generation, and transcription tasks (Boulanger-Lewandowski et al., 2012, 2013; Sigtia

et al., 2015; Zhou and Lerch, 2015; Hadjeres et al., 2017; Korzeniowski and Widmer, 2016, 2018;

Korzeniowski et al., 2018). However, a recent study by Wu and Yang (2020) shows that also

modern attention-based artificial neural networks fall short on modeling idiomatic high-level

structures of Jazz tunes, providing another motivation for this study.
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4 The Jazz harmony treebank1

A critical resource for building and evaluating grammatical models of harmony is a ground-

truth database of syntax trees that encode hierarchical analyses of chord sequences. This

chapter introduces the Jazz Harmony Treebank (JHT), a dataset of hierarchical analyses

of complete Jazz standards. The analyses were created and checked by experts, based on

lead sheets from the open iRealPro collection2. We report on the creation of the treebank,

elaborate on the musical interpretation of the syntax trees, and explain the decisions that were

made to meet the challenges of the annotation procedure. The JHT is publicly available in

JavaScript Object Notation (JSON), a human-understandable and machine-readable format

for structured data.3 Additionally, statistical properties of the corpus are summarized and a

simple open-source web application for the graphical creation and editing of trees is presented

which was developed during the creation of the dataset.

The major challenge of the JHT’s creation process lies in the many individual decisions analysts

have to take to address the ambiguity of music. That is, some chord sequences can be heard in

multiple ways, and the analyst has to decide which way describes the harmonic dependency

structure of the tune best. Importantly, the goal is not to create uniform syntax trees of Jazz

chord sequences, but to describe individual and subjective listening experiences in an unam-

biguous formal representation. Harmonic relations in sufficiently long chord sequences can

be perceived in several ways, without one interpretation being clearly preferable. Therefore,

the syntax trees of the JHT are best understood as proposals with a clear interpretation. The

trees provide a basis for further analytical discussions, for education, and for training and

evaluation of the grammar models in the computational experiments presented later in the

1This chapter is based on a peer-reviewed article which was accepted for publication: Harasim, D., Finkensiep,
C., Ericson, P., O’Donnell, T. J., and Rohrmeier, M. (2020). The Jazz Harmony Treebank. Proceedings of the 21th
International Society for Music Information Retrieval Conference (ISMIR). Author contributions: DH created most
of the initial tree analyses and wrote the first draft of the paper. The remaining tree analyses were initially created
by a student assistant. DH, CF, & PE revised the initial tree analyses. DH and CF designed and implemented the
tree creation app. DH and PE created the plots and calculated the summary statistics. All authors contributed to
the conceptualization of the research and the writing of the text.

2https://irealpro.com/
3The treebank is available at https://github.com/DCMLab/JazzHarmonyTreebank.
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third part of this thesis.

The scope of the treebank is limited to tonal Jazz, including Swing, Bossa Nova, Jazz Blues,

Bebop, Cool Jazz, and Hard Bop, and excluding parts of traditional Blues, Modal Jazz, Free Jazz,

and Modern Jazz. Tunes such as Groovin’ high and Out of nowhere whose harmonic structure

requires even more expressive representations than trees are excluded.4 The general idea of

harmonic syntax is, however, also applicable to other musical styles such as Western classical

music (Rohrmeier, 2011; Rohrmeier and Neuwirth, 2015).

4.1 Related datasets

Treebanks are of particular importance for the study of hierarchical models and their applica-

tions. For example in linguistics, they have been and remain instrumental for many natural

language processing tasks. The well-known Penn Treebank(Marcus et al., 1993), first published

in the early nineties, is an instructive example since it has been used as an object of study

in and of itself (Gaizauskas, 1995), as a basis for publishing additional treebanks with differ-

ent paradigms (Hockenmaier and Steedman, 2007) and for different languages (Maamouri

et al., 2004), and–most prominently–as a dataset for training and evaluating machine-learning

methods (Katz-Brown et al., 2011; Sarkar, 2001; Melis et al., 2017).

Many existing collections of symbolic data about chord sequences concentrate on providing

chord labels for harmonic entities. Harte et al. (2005) proposed a structured representation

of chord symbols that they applied to label the audio data of the complete Beatles collection

with time alignment. Burgoyne et al. (2011) provide an extended dataset of time-aligned chord

symbols in a similar format for songs of popular music. These two datasets were primarily

created to study automatic chord transcription from audio. Neuwirth et al. (2018) and Moss

et al. (2019) take a more music-theoretically motivated approach by proposing a chord-symbol

representation for Western classical music and apply it to scale degree analyses of Beethoven’s

string quartets. Chen and Su (2018) and Devaney et al. (2015) similarly label excerpts of

sonatas, madrigals, chorals, preludes, and songs from common-practice tonality. Micchi et al.

Micchi et al. (2020) combine existing Roman numeral analyses into a meta-dataset.

The datasets just mentioned use chord labels to analyze music given as audio data or in a

symbolic representation. Since this study analyzes the relations between the chords of such

sequences, it is located at a higher level of abstraction. Only a few datasets of hierarchical

analyses of sequential musical data are available in divergent formats (Rizo and Marsden,

2016). Hamanaka et al. (2014) and Kirlin (2014) created two datasets of tree analyses of

melodies of Western Classical Music based on the Generative Theory of Tonal Music (GTTM;

Lerdahl and Jackendoff, 1983). Gotham and Ireland (2019) study musical form by the creation

of datasets in a hierarchical representation. Moss et al. (2020) study Brazilian Choro using

a dataset with hierarchical form encoding. Granroth-Wilding and Steedman (2014) provide

4Groovin’ high exhibits crossing harmonic dependencies between a tonic prolongation from m1 to m5 and a
dominant preparation from m4 to m7. Out of nowhere has a similar structure.
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a dataset of 76 sub-sequences of Jazz standards with partial harmonic grouping labels. In

contrast to previous research that analyzed snippets of musical pieces, the JHT consists of 150

full chord sequences of Jazz standards with complete harmonic syntax trees.

4.2 Complete constituents and open constituents

Constituents formalize the notion of a musical unit such as a chord or a phrase. In all derivation

trees shown in the first chapter, the complete constituents are exactly the subsequences that

are leafs of single subtrees. For instance, the A part of the tune Take the A Train — the

chord sequence C D7]11 Dm7 G7 C — is a complete constituent. Its subsequence D7]11 Dm7

G7 is a complete constituent as well, but the subsequence C D7]11 Dm7 is not. Formally, a

subsequence is called a complete constituent if it contains a chord, called the head, that is

transitively referred to by all other chords of the sequence. For instance, the chord G7is the

head of the phrase D7]11 Dm7 G7 and C is the head of the whole sequence C D7]11 Dm7 G7

C. In cases in which a constituent is embraced by a strong prolongation (e.g., for the whole

sequence), the convention is used that the head is the right chord symbol. Since only the head

of a complete constituent is allowed to refer to a chord outside the constituent, the concept

of harmonic reference is generalizable to complete constituents: A complete constituent is

defined to refer to a chord X if its head refers to X .

In addition to complete constituents, one other constituent type is used in the JHT analyses.

Consider for example the first four measures of the Jazz standard Why Don’t You Do Right?,

| Dm7 B;7/C | Bb7 A7 | Dm7 B;7/C | Bb7 A7 |,

where B;7/C denotes a half-diminished seventh chord with root B and a C in the bass. The

first two measures constitute a phrase following the Lamento schema (a step-wise descending

movement of the bass from scale degree I to scale degree V (Caplin, 2014)) that is repeated

multiple times in the song. Since the transition from A7 to Dm7 does not sound like a resolution

but more like a jump or an interruption (partly because of the repetition of the first two

measures), A7 is assumed to not resolve into the following tonic Dm7, but into a tonic later in

the song. Therefore, the phrase Dm7 B;7/C Bb7 A7 does constitute some kind of unit as

shown in Figure 4.1a.

Since Dm7 and A7 both refer to a chord outside the phrase (see Figure 4.1b), the phrase does

not have a head. It is therefore not a complete constituent. Such constituents, in which

multiple chords refer to a chord outside of the phrase, are called open constituents. The chords

of an open constituent that refer to a chord outside of the constituent are called chords with

open references. In the example of Why Don’t You Do Right?, the chords Dm7 and A7 are the

chords with open references of the open constituent Dm7 B;7/C Bb7 A7. Both chords Dm7

and A7 refer to the same tonic chord Dm7.
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Dm7

Dm7A7*

A7

A7Bb7

Bb7B;7/C

Dm7

(a) Syntax tree using an open constituent that is marked with an asterisk.

Dm7 B;7/C Bb7 A7 Dm7

(b) Harmonic dependency structure of the syntax tree in (a). Since that syntax tree contains an open
constituent, the syntax tree and the dependency structure do not stand in 1-to-1 relation.

Dm7

Dm7

Dm7A7

A7Bb7

Bb7B;7/C

Dm7

(c) Resolution of the open constituent in the syntax tree shown in (a). This tree stands in 1-to-1 relation
to the dependency structure in (b).

Figure 4.1 – Hierarchical analysis of the initial chords of the Jazz standard Why Don’t You Do
Right? using open constituents (marked with asterisks). The last tonic chord Dm7 represents
the end of a chorus. The conversion of the open constituents into a pure prolongation-
preparation structure is shown in 4.1c.
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Am7

Am7

Am7

Am7

Am7E7

E7B;7

C4

Am7C4

C4G7

G7D7

Am7

Am7

Am7E7

Am7

Am7Am7

E7*

E7

E7

E7

E7B7

F7

Dm7

Dm7A7

Am7

Am7

Am7

Am7Am7

E7

Am7

Am7Am7

Figure 4.2 – Complete syntax tree of the Jazz standard Summertime (turnaround omitted). The
top levels of the tree reflect the ABAC form the song using an open constituent governing the
first two section AB.

The JHT allows a single type of open constituent, called restricted open constituent, which

consists of two adjacent constituents that refer to the same chord later in the sequence. Since

all constituents considered in the JHT are restricted in that way, they are simply referred to

as open constituents. The restriction enables a further generalization of harmonic reference

to open constituents: an open constituent is defined to refer to the chord to which all of its

chords with open references refer. As shown in Figure 4.1a, the topmost node of an open

constituent is labeled by the chord symbol of the right child of the node and additionally

marked with an asterisk.

Other examples of open constituents are (i) I-VI-II-V-like phrases in I Got Rhythm and I Can’t

Give You Anything But Love and, in particular, (ii) Jazz standards of form ABAC in which the

B-part ends in a half cadence such as All of Me, How High the Moon, and A Fine Romance. The

standard Summertime, shown in Figure 4.2, is a prototypical example of a song with a ABAC

form and a half cadence at the end of the B section. The interruption after the half cadence is

supported by the movement from scale degree 3 to scale degree 2 in the melody and denoted

using an open constituent.

4.2.1 Interpretation of open constituents as prolongation-preparation structures

Syntax trees containing open constituents are interpretable as harmonic dependency struc-

tures as shown in Figure 4.1. The interpretation procedure transforms a syntax tree that

contains open constituents (e.g., Figure 4.1a) in to a tree that only represents prolongation

and preparation operations (e.g., Figure 4.1c). This transformed tree then characterizes the

dependency structure (e.g., Figure 4.1b). Since open constituents are explicitly marked with

asterisks, their interpretation is unambiguous.

To formalize the interpretation of open constituents, let Y ∗ be the chord symbol labeling an

open constituent consisting of two constituents labeled with chord symbols X and Y . Let

further be Z the chord symbol that is referenced by both X and Y . The reference is expressed
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by Z being the right sibling of the open constituent. The conversion then transforms

Z

ZY*

YX

Z

Z

ZY

Xinto

In the more general case of nested open constituents, the conversion is recursively applied

from the root to the leaves of the tree (i.e., top-down).

Note that the definition of open constituents given above guarantees that both Z −→ X Z

and Z −→ Y Z are rules of the harmony grammar. The transformation therefore always

creates valid prolongation-preparation structures. The converse is not true in general. Since

open constituents encode information about phrase structure, the transformation is lossy. A

transformation of prolongation-preparation structures to constituent structures that describe

the phrase structure of a sequence thus needs to take additional information into account

such as the the tune’s melody and harmonic rhythm.

4.3 Tree Annotation Tool

The trees of the JHT are created using a graphical interface implemented as a simple web

application, which was developed during the creation of the treebank. The source code of the

application is written in ClojureScript (which compiles to JavaScript) and is publicly available

on GitHub. The application itself is hosted on GitHub pages and can be used independently of

this dataset.5 A screenshot of the application is shown in Figure 4.3c. The main part of the user

interface displays a syntax tree that is represented by a hierarchical button layout. The user

interface also contains an input-output section, a preview of the annotated tree, and buttons

for creating, deleting, and deselecting tree nodes.

To create a syntax tree, the user inputs a sequence of space-separated strings such as chord

symbols. To create an inner node of the tree, the nodes that become the child nodes of the new

inner node are selected and combined by pressing a button or a key shortcut. Since the trees

are mostly right-headed, the label of the rightmost child is used for the new node by default,

but the label of a node can be changed arbitrarily. The output of the application is given as a

string representation of the tree in tikz-qtree format6 as shown in Figure 4.3d. Existing trees

can be edited by loading them in tikz-qtree or JSON format. Since the application is designed

to be agnostic to annotation conventions, it allows arbitrary labels and rule arities.

5https://dcmlab.github.io/tree-annotation-code/
6https://www.ctan.org/pkg/tikz-qtree
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Fm6

Fm6

Fm6C7

C7

C7G%7

Db7

Db7Abm7

Fm6

(a) Part of the harmonic syntax tree of Birks’s Works from the treebank (first part of a 5-part subfigure
over 2 pages).

Fm6 Abm7 Db7 G%7 C7 Fm6

(b) Harmonic dependency structure. This graph stands in 1-to-1 relation to the syntax tree shown in
(a). Directed and undirected edges denote preparations and prolongations, respectively.

(c) Screenshot of tree annotation app. Each button represents a tree node. The user is selecting the
green buttons to combine them to the full tree.
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[.Fm6
Fm6
[.Fm6

[.C7
[.Db7

Abm7
Db7 ]

[.C7
G\%7
C7 ] ]

Fm6 ] ]

(d) String representation of the syntax tree in tikz-qtree format. This string is created using the tree
annotation app shown in (d). The tree plot is shown in (a).

{"label": Fm6, "children": [
{"label": "Fm6", "children": []},
{"label": "Fm6", "children": [

{"label": "C7", "children": [
{"label": "Db7", "children": [

{"label": "Abm7", "children": []},
{"label": "Db7", "children": []}]},

{"label: "C7", "children": [
{"label: "G%7", "children": []},
{"label: "C7", "children": []}]}]},

{"label": "Fm6", "children": []}]}]}

(e) Tree string in JSON format, automatically converted from tikz-qtree format shown in (c). The JHT
stores trees in this format.

Figure 4.3 – Syntax tree of the final chords of the Jazz standard Birk’s works in different repre-
sentations.

58



4.4. Annotation Procedure

4.4 Annotation Procedure

All analyses in the dataset begin from chord sequences drawn from the iRealPro collection of

Jazz standards. This collection was created by the user community of the iRealPro app7 and

transferred into kern format by Shanahan and Broze (2012).8 The data was transformed into

a JSON-like format; individual chord symbols were occasionally corrected when significant

differences between the iRealPro data and publicly available Real Books were noticed. Anno-

tations of bass notes and optional chord tones such as ninths and elevenths were excluded

from the chord symbols. 150 Jazz standards were selected for analysis (i) by filtering pieces

that are within the scope of the treebank described at the beginning of this chapter and (ii) by

preferring shorter pieces. If applicable, turnarounds at the end of lead sheets were deleted or a

final tonic chord not contained in the lead sheet was added. All repetitions were unfolded and

codas were appended at the positions indicated in the lead sheet. The selected Jazz standards

were initially analyzed by Daniel Harasim and a student assistant. The analyses were then

reviewed by Christoph Finkensiep and Petter Ericson, discussed in the group, and edited

accordingly.

Every hierarchical analysis denotes at least one author’s mental representation of the harmonic

structure of a Jazz standard. Each analysis is therefore also influenced by other musical

features such as harmonic rhythm, phrasing, musical form, and melody. In ambiguous cases,

the analyst chose the option that he deemed most important. These choices were necessary,

because a single syntax tree can only encode one harmonic function for each chord. For

example, a C major triad can as a scale degree I act as a tonic in C major or as a scale degree

V/IV act as the preparation of a following IV. The latter is more common in middle sections.

Since the iRealPro lead sheets were created and collected by the community of the application,

the chord symbol usage is not fully consistent across the pieces. For instance, a Fm6 chord

symbol can denote a tonic chord in F minor over a Dorian scale or a Bb9 chord with omitted

root and fifth in the bass. Another example is that fourth-voicings are commonly denoted

as suspension chords while actual suspensions of the scale degree V (e.g., G C E suspending

G B D) are sometimes denoted as chords over the scale degree I (with or without explicitly

mentioning the second inversion).

Furthermore, some chords do not have a proper harmonic function, but are better explained

as voice-leading connections between two chords. The chords C C]◦7 G/D at the beginning

of the final 8 measures of Bill Bailey are an example of such a voice-leading connection (see

Figure 4.4). The final measures of the Jazz standard Bill Bailey are moreover an example of

a common closing pattern. This pattern starts on the scale degree IV in its first measure,

then transitions to a suspension of the scale degree V in measure 3, jumps away, and finally

approaches the tonic through the cycle of fifths.

7https://irealpro.com/
8The iRealPro dataset is available in kern format at http://doi.org/10.5281/zenodo.3546040.
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G

GD7

D7

D7A7

A7E7

G/D

G/DC]◦7

C]◦7C

Figure 4.4 – Syntax tree of the final 8 measures of the Jazz standards Bill Bailey as analysed in
the JHT (turnaround omitted).

4.5 Dataset Summary

The JHT is provided as a single file in JavaScript Object Notation (JSON) format. For each Jazz

standard, this file contains the chord sequence with rhythmical information (measures and

beats), metadata about title, composer(s), year of composition, time signature, and key9 as

well as the harmonic syntax trees as shown in Figure 4.2.

In addition to the hierarchical analyses, some pieces contain a turnaround annotation repre-

sented as an integer. A value of zero means that the Jazz standard ends with a tonic chord. A

positive value n means that the lead sheet of the piece ends with a turnaround of length n. For

example, the chord sequence of I love Paris is in C major and ends with the chords Dm7 G7

C6 D;7 G7. It therefore has a turnaround length of n = 2. A negative turnaround annotation

means that the tonic of the piece is not at the end of the piece, but at the beginning. A value

of −1 indicates, for example, that the first chord of the chord sequence is the tonic of the

piece, like in Solar. In rare cases, the tonic is not the first chord but the n-th chord which is

represented by a turnaround annotation of −n.

The 150 chord sequences analysed in the treebank have an average length of 27.75 and consist

of 11697 chords in total with 92 unique chord symbols. The syntax trees consist in total of 3899

binary rule applications with 512 unique rules and 268 open constituents. The average tree

height is 7.57.

Further descriptive statistics of the JHT are visualized in Figures 4.5–4.9. Figure 4.5 shows

that the subset of the analyzed pieces is chosen relatively independently from the year of

composition. Figure 4.6 shows the bias for short pieces in this subset. Figure 4.7 shows that

the length of turnarounds, if present, usually ranges between 1 and 3.

Figures 4.8 and 4.9 show separately for major and minor keys how often a context-free grammar

rule is used in the hierarchical analyses. For these plots, all chord sequences were transposed

to C major or to C minor, respectively. Prolongations of the tonic, preparations of the tonic by

the fifth scale degree, and preparations of the fifth scale degree by the second are by far the

most common rules.

9This data and metadata was copied from the iRealPro dataset in kern format.
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Figure 4.5 – Number of Jazz standards by year of composition as written in the iRealPro dataset.
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Figure 4.6 – Number of Jazz standards by chord sequence length. Sequences with more than
100 chords are omitted.
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Figure 4.7 – Positive values indicate annotated turnaround lengths. A negative value of -1
indicates tunes with missing final tonic.

61



Chapter 4. The Jazz harmony treebank

0 20 40 60 80 100 120
count

Ab^7 -> Eb7 Ab^7
G7* -> Cm7 G7
Cm -> Db7 Cm

Eb7 -> Bbm7 Eb7
G7 -> D7 G7

G7 -> Fm7 G7
G7 -> G7 G7

Eb^7 -> Bb7 Eb^7
Bb7 -> Fm7 Bb7
Fm7 -> C7 Fm7

Fm7 -> Fm7 Fm7
Cm6 -> G7 Cm6
G7 -> Ab^7 G7

G7 -> Ab7 G7
Cm -> G7 Cm

Cm6 -> Cm6 Cm6
Cm7 -> G7 Cm7

G7 -> D%7 G7
Cm -> Cm Cm

Cm7 -> Cm7 Cm7

Figure 4.8 – 20 most frequent rules used to analyze tunes in minor keys. All minor tunes were
transposed to C minor for this plot.

0 50 100 150 200 250
count

Dm7 -> Dm7 Dm7
E7 -> B%7 E7
C6 -> C^7 C6

G7 -> D%7 G7
F^7 -> C7 F^7

C^ -> C^ C^
Am7 -> E7 Am7

D7 -> Am7 D7
D7 -> A7 D7

G7* -> C^7 G7
D7 -> D7 D7

A7 -> Em7 A7
G7 -> G7 G7

Dm7 -> A7 Dm7
C^7 -> G7 C^7

G7 -> D7 G7
C6 -> G7 C6
C6 -> C6 C6

C^7 -> C^7 C^7
G7 -> Dm7 G7

Figure 4.9 – 20 most frequent rules used to analyze tunes in major keys. All major tunes were
transposed to C major for this plot.
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This chapter presents Abstract Context-Free Grammars (ACFGs), a generalization of context-

free grammars which allows for more flexible probabilistic modeling. The idea of ACFGs is

crucial to this study since it enables the implementation of grammar models for harmony that

go beyond the current state of the art and learn grammatical systems from the observation of

chord sequences.

The chapter starts by giving a motivating example for what ACFGs will be used in the compu-

tational experiments. ACFGs and their derivation trees are then formally defined before the

probabilistic version of an ACFGs, Probabilistic Abstract Context-Free Grammars (PACFGs)

are presented. Afterwards, a construction of the product of two PACFGs is presented. Such

product grammars are used in the computational experiments to implement joint grammar

models for harmony and rhythm. The last section of this chapter finally gives an overview

over related grammar formalisms and illustrates the formal expressiveness of ACFGs using an

example.

5.1 Motivation: a grammar model for rhythm

Harmonic dependency structures are closely linked with harmonic rhythm, the rhythm in

which the chords change in a sequence (Salley and Shanahan, 2016). Consider for example

the harmonic derivation tree of the chord sequence of Take the “A” train shown in Figure 5.1.

Additional to the chord symbols and scale degrees, this tree also shows the durations of its

constituents (subtrees) as subscripts. The divisions of durations by binary rules correspond

to simple split ratios. To concretize this fact, the (left-)split ratio of a binary rule application

is defined as the proportion of the left child’s duration relative to the parent’s duration. For

1Abstract context-free grammars were originally proposed in a peer-reviewed article: Harasim, D., Rohrmeier,
M., and O’Donnell, T. J. (2018). A Generalized Parsing Framework for Generative Models of Harmonic Syntax.
Proceedings of the 19th International Society for Music Information Retrieval Conference. In a following article, the
product grammar construction was introduced and two grammar models for rhythm were implemented: Harasim,
D., O’Donnell, T. J., and Rohrmeier, M. (2019). Harmonic Syntax in Time: Rhythm Improves Grammatical Models
of Harmony. Proceedings of the 20th International Society for Music Information Retrieval Conference.
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Figure 5.1 – Harmonic derivation tree of Take the “A” train including durations in measures as
subscripts. The scale degrees are shown relative to C major. The circled fractions show two
examples of left-split ratios.
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Figure 5.2 – Harmonic derivation tree of Take the “A” train including durations as subscripts.
The scale degrees are shown relative to C major and the durations are given relative to the
duration of the whole chord sequence which is normalized to one.
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instance, the split ratio of the root of the derivation tree is 16
32 = 1

2 and the split ratio of the

root of the A part is 2
8 = 1

4 . These split ratios are shown in the circles of Figure 5.1. The whole

derivation tree uses 12 times the split ratio 1
2 , 3 times 1

4 , and 3 times 2
3 . Note that in particular

the high levels of the tree, which describe the phrase structure of the sequence, use only the

simplest split ratio 1
2 .

Since many harmonic phrases of Jazz standards are rhythmically regular, the modeling of

rhythm improves the tree predictions of harmony grammars. It does so by resolving ambigui-

ties that cannot be resolved from the chord symbols of a harmonic sequence alone. This is in

particular shown in the computational experiments described in Chapters 9 and 9.

The C major chords in measures 7, 8, 9, and 10 of Take the “A” train (at the end of the first

and the beginning of the second A part) represents a particularly ambiguous case. Without

considering the first 8 measures a phrase of the tune, the C major triads in measures 7 to 10

could equally plausibly constitute a tonic prolongation. In the computational experiments of

this study, joint grammar models for harmony and rhythm employed that are created using

two separate component grammars, one grammar for harmony and one for rhythm. The

following definition describes a naive formulation of the component grammar for rhythm as a

probabilistic context-free grammar.

Naive probabilistic rhythm grammar The rhythm grammar uses positive rational numbers

0 < u ≤ 1 as terminals to represent chord durations relative to the entire chord sequence,

T = {u ∈Q | 0 < u ≤ 1} . (5.1)

The duration of the full sequence is normalized to one, which abstracts from the unit in

which chord durations are measured. A derivation tree of Take the “A” train with normalized

durations is shown in Figure 5.2. The set of nonterminals N essentially establishes a one-

to-one correspondence between terminals and nonterminals. More precisely, N comprises

one nonterminal for each terminal and an additional start symbol Start. Therefore, there is a

bijection between the sets N and T ] {Start}, denoted by N ∼= T ] {Start}. The sets T and N

are kept disjoint to determine the termination of the grammar’s generative process.

The set of rules R consists of one start rule Start −→ 1, one terminal rule u −→ u for each u ∈ N

where the underline indicates a terminal, and one split rule u −→ (su) (u − su) for for each

u ∈ N and finitely many split ratios s ∈ S ⊂ { s ∈Q | 0 < s < 1}. For each nonterminal u ∈ N , the

set of applicable rules is thus:

Ru =
{Start −→ 1} , if u = Start

{u −→ u }] {u −→ (su) (u − su) | s ∈ S } , otherwise
(5.2)

The probability of a rule r ∈ Ru being applied to a duration u is given by a categorical distribu-

tion over Ru whose parameters can be specified by hand or learned from data. Note that the

65



Chapter 5. Abstract context-free grammars

usage of categorical distributions requires the finiteness of split ratios.

This naive formulation of the rhythm grammar has two problems. The first problem is less

serious; It concerns the infinitely large sets of terminals and nonterminals. In practice, finite

sets which contain all relevant — or if known all occurring — chord durations could be used

instead. The second and more relevant problem is that the probability of a duration split

depends on both the split ratio and the duration that is to be split. Music-theoretically, it

makes, however, more sense to parameterize the probability independent from the actual

duration so that it only depends on the split ratio, because the split ratio is independent of the

lead-sheet notation of the tune. In the derivation of Take the “A” train shown in Figure 5.1 for

example, the split ratio 1
2 is commonly used both at the very top and the very bottom of the

tree where it is applied to both the largest and the smallest constituent duration, respectively.

A parameterization independent of the parent’s duration increases moreover the robustness

of the grammar model against uncommon durations.

To solve the described parameterization problem, this study proposes abstract context-free

grammars which use partial functions as rules. A partial function f : X 7→ Y is not required to

be defined for all elements of X , but only for a subset dom( f ) ⊆ X that is called the domain of

f .2 All binary rules of the rhythm grammar that have a common split ratio s can be “grouped”

into a partial function

SPLITs : N 7→ N 2, SPLITs(u) = (su) (u − su) (5.3)

for which dom(SPLITs) = N \ {Start}. The terminal rules are expressed by a single partial

function

TERMINATE : N 7→ T, TERMINATE(u) = u (5.4)

for which dom(TERMINATE) = N \ {Start}. The start rule Start −→ 1 can also be expressed as a

partial function

START : N 7→ N , START(Start) = 1 (5.5)

with a singleton domain dom(START) = {Start}.

With these partial rewrite functions, the set Ru of rewrite functions that are applicable to a

chord duration u ∈ N does not depend on the value of u, but only on the fact whether u is the

start symbol or not,

Ru =
{ START } , if u = Start

{ TERMINATE }] { SPLITs | s ∈ S } , otherwise
(5.6)

2In a strictly typed programming language such as Haskell, partial functions f : X 7→ Y are expressed by the
typing f :: X -> Maybe Y.
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To denote this independence, the function φ : N → {Start, NOTSTART }, called nonterminal

feature projection, is used that checks whether a nonterminal is the start symbol or not:

φ(u) =
Start, if u = Start

NOTSTART, otherwise
(5.7)

Since φ(u) =φ(v) implies Ru = Rv for all u, v ∈ N , all nonterminals u that are projected onto

the same feature φ(u) can now share a categorical distribution over the rewrite functions Ru .

In particular, this allows to parameterize the probabilities of split rules independent from the

chord duration those rules are applied to. Moreover, the implication φ(u) =φ(v) =⇒ Ru = Rv

necessarily requires the set of nonterminals to be infinitely large.

5.2 Definition of abstract context-free grammars

Before the definition of abstract context-free grammars is stated, the following paragraphs

introduce preliminary concepts and notation. The image of a partial function f : X 7→ Y is

defined as the set of all values y ∈ Y that are covered by f ,

image( f ) = { y ∈ Y | ∃x ∈ dom( f ) : f (x) = y } . (5.8)

The composition g ◦ f : X 7→ Z of two partial functions f : X 7→ Y and g : Y 7→ Z is defined by

(g ◦ f )(x) =
g ( f (x)), if x ∈ dom( f ) and f (x) ∈ dom(g )

UNDEFINED, otherwise.
(5.9)

In particular, dom(g ◦ f ) = { x ∈ dom( f ) | f (x) ∈ dom(g ) }. A partial function f : X 7→ Y is a

partial bijection if there exists a function f −1 : image( f ) → dom( f ) such that f −1( f (x)) = x for

all x ∈ dom( f ) and f ( f −1(y)) = y for all y ∈ image( f ).

The set of sequences consisting of elements from a set X is denoted by X ∗ =⊎
n∈N X n , where

X 0 = {ε } and ε denotes the empty sequence. The symbol ] denotes the union of disjoint sets.

The set of sequences excluding the empty list is denoted by X + = X ∗ \ {ε }. Sequences and

vectors are usually written in bold font if they potentially contain more than one element.

The length of a sequence α ∈ X ∗ is denoted by |α|, the k-th element of α is denoted by αk for

k ∈ {1, . . . , |α| }, and the subsequence from index k to index l is denoted by αk:l . The set of

sequences X ∗ is additionally equipped with the algebraic structure of a monoid.

Monoid Let X be a set. A function ? : X ×X → X is called an associative binary operation if

for all x, y, z ∈ X , x? (y ? z) = (x? y)? z. An element x ∈ X is called the identity element of ?

if for all y ∈ X , x? y = y = y ? x. A monoid (X ,?,1) consists of a set X , an associative binary

operation ? : X ×X → X , and an identity element 1 ∈ X .
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The set of sequences X ∗ forms a monoid (X ∗,?,ε) with the empty sequence as the identity

element and concatenation as the binary operation,

(α?β)k =
αk , if k ≤ |α|
βk−|α|, if k > |α|

(5.10)

for sequences α,β ∈ X ∗ and indices k ∈ {1, . . . , |α|+ |β| }. In the following, sequence concate-

nation is also denoted by αβ=α?β.3

Abstract context-free grammar An abstract context-free grammar G = (T, N ,Start,R) con-

sists of a set T of terminals, a set N of nonterminals disjoint to T , an initial nonterminal

Start ∈ N , and a finite set R of partial bijections that map nonterminals to lists of terminals

and nonterminals.4 For each individual rule, those lists are additionally required to have equal

length,

R ⊂ {r : N 7→ (T ]N )∗ | r bijective and ∃n ∈N : r : N 7→ (T ]N )n } . (5.11)

The elements of R are called the rewrite rules or rewrite functions of the grammar G . Let A ∈ N

denote an arbitrary nonterminal. The set of rules that are applicable to A is denoted by RA ,

r ∈ RA ⇐⇒ A ∈ dom(r ). (5.12)

For each rewrite rule r ∈ RA , the constant length of r (A) is called the arity of r and denoted by

ar( f ). In the following, Abstract Context-Free Grammar is abbreviated by ACFG.

This definition is a generalization of the standard formulation of context-free grammars which

can be recovered as a special case by requiring T and N to be finite sets and all domains of the

rewrite functions to be sets containing exactly one element, |dom(r )| = 1 for all r ∈ R. Every

statement presented for ACFGs therefore also applies to context-free grammars which are also

referred to as standard context-free grammars in the following. While ACFGs do not require

the set of terminals and nonterminal to be finite, the set of rules is, however, still required to

be finite.

Abstract context-free grammars are called abstract, because their rewrite functions can ex-

plicitly represent abstract concepts such as prolongation or different kinds of preparation.

To illustrate the definition and the notation of abstract context-free grammars, consider the

following simplified harmony grammar with the seventh-chords of C major as terminals,

T = {C4,Dm7,Em7,F4,G7,Am7,B;7 } , (5.13)

3The sequence monoid (X∗,?,ε) is also called the list monoid or the free monoid.
4The bijection requirement might be too strong in general. It is used in this thesis because it simplifies the

definition of parsing algorithms by making use of the reversed rewrite functions.
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scale degrees as nonterminals (represented as integers modulo 7),

N = {Start, I, II, III, IV,V,VI,VII} , (5.14)

and rules R = { START, PREPARE, PROLONG, TERMINATE } for

START(X ) =
I, if X = Start

undefined, otherwise
(5.15)

PREPARE(X ) = X +7 4 X (5.16)

PROLONG(X ) = X X (5.17)

TERMINATE(X ) =



C4, if X = I

Dm7, if X = II

Em7, if X = III

F4, if X = IV

G7, if X = V

Am7, if X = VI

B;7, if X = VII

(5.18)

where the symbol +7 denotes the addition modulo 7.

Note that this abstract context-free grammar has four rewrite functions whereas the corre-

sponding standard context-free grammar has 22 rewrite rules. The derivation tree of the chord

sequence C4 Am7 Dm7 G7 C4 is shown in Figure 5.3.
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Figure 5.3 – Harmonic syntax tree using a simplified grammar.

Start −→START I

−→PROLONG I I

−→TERMINATE C4 I

−→PREPARE C4 V I

−→PREPARE C4 II V I

−→PREPARE C4 VI II V I

−→TERMINATE C4 Am7 II V I

−→TERMINATE C4 Am7 Dm7 V I

−→TERMINATE C4 Am7 Dm7 G7 I

−→TERMINATE C4 Am7 Dm7 G7 C4

Figure 5.4 – Sequence of rule applications that generates the tree shown in Figure 5.3.
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5.3 Trees as leftmost derivations and partial functions

This section describes a mathematical representation of derivation trees as rule sequences.

This representation is then in particular used to characterize the language of an abstract

context-free grammar G , that is the set of terminal sequences that G generates.

A rewrite rule is defined as a partial function r : N 7→ (T ]N )∗. Each rewrite function can

thus be extended to a partial function r : (T ]N )∗ 7→ (T ]N )∗ by applying r to the leftmost

nonterminal of any input sequence α ∈ (T ]N )∗,

r (α) =
α′r (A)α′′, if ∃α′ ∈ T ∗, A ∈ dom(r ),α′′ ∈ (T ]N )∗ : α=α′Aα′′

UNDEFINED, otherwise
(5.19)

Note that this extension uses a slight overloading of notation for partial function application.

This should not be confusing, because nonterminals can always be interpreted as singleton

lists of nonterminals. With the proposed extension, sequences of rules r = r1 . . .rn ∈ R∗ (n ∈N)

are considered partial functions from (T ]N )∗ to (T ]N )∗ by partial function composition,

r (α) = (rn ◦ . . .◦ r1)(α). (5.20)

As a special case, the empty rule sequence ε is applicable to all sequences α ∈ (T ]N )∗ by

ε(α) =α.

Leftmost derivation A sequence of rules r ∈ R∗ is called a (leftmost) derivation of β ∈
(T ] N )∗ from α ∈ (T ] N )∗ if r (α) = β. Since only leftmost derivations are considered in

this study, they are simply referred to as derivations. The set of all derivations of β from α

is denoted by DER(α,β). The shorthand notation DER(β) := DER(Start,β) is used to refer to

derivations from the start symbol.

For example, a derivation of the chord sequence C4 Am7 Dm7 G7 C4 is shown in Figure 5.4.

If the the rewrite rules do not overlap, each derivation tree of a terminal sequences has

exactly one corresponding leftmost derivation. In contrast, a derivation tree with one or more

nonterminal symbols at the leafs might not have a corresponding leftmost derivation. This is

for example the case for sequences that start with a nonterminal and end with a terminal.

The language of the grammar G is the set of terminal sequences that have a derivation from its

start symbol,

LANGUAGE(G) = {α ∈ T ∗ | DER(α) 6= ; } . (5.21)
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5.4 Probabilistic abstract context-free grammars

Given a sequence of chords and a grammar that is able to generate this sequence, the task

of inferring a derivation tree of the sequence is highly ambiguous in practice. Probabilistic

grammars address this problem by assigning a probability to each rule. The product of the

rule probabilities of a derivation is then interpreted as the derivation’s plausibility.

Probabilistic abstract context-free grammar A Probabilistic Abstract Context-Free Gram-

mar (PACFG), or short probabilistic grammar is an abstract context-free grammar where each

nonterminal A ∈ N is associated with a distribution over rewrite rules such that the probability

of a rule r ∈ R is positive if and only if r can be applied to A,

p A(r ) > 0 ⇐⇒ A ∈ dom(r ). (5.22)

The probability pα(r ) of applying a rule r ∈ R to a sequence α ∈ (T ]N )∗ is defined as the

probability of r being applied to the leftmost nonterminal of α,

pα(r ) = pLEFTMOST(α)(r ), (5.23)

where

LEFTMOST(α) =
A, if ∃α′ ∈ T ∗, A ∈ dom(r ),α′′ ∈ (T ]N )∗ :α=α′Aα′′

UNDEFINED, otherwise
(5.24)

and pUNDEFINED(r ) = 0. A probabilistic grammar is called consistent if the probability of its

language is one,

∑
α∈T ∗

∑
r∈DER(α)

|r |∏
k=1

pr1:k−1(Start)(rk ) = 1. (5.25)

For clarification, the product over rewrite probabilities can also be written as

|r |∏
k=1

pr1:k−1(Start)(rk ) = pStart(r1) ·pr1(Start)(r2) ·pr2(r1(Start))(r3) · . . . ·pr1:|r |−1(Start)(r|r |). (5.26)

Probabilistic grammars can be used to randomly generate derivations and sequences of

terminals as described in Algorithm 1. Naively, one might think that all probabilistic grammars

are consistent. Why should they not be? The reason is that it is in general not guarantied

that the while loop in Algorithm 1 terminates. If this is the case, then the output of the

algorithm can intuitively be understood as an infinitely long derivation. Then the grammar

puts probability mass on infinite sequences of terminals and the probability of the grammar’s

language is strictly smaller than one.
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Algorithm 1 Sample sequence from probabilistic grammar

Input: probabilistic abstract context-free grammar G = (T, N ,Start,R)
Output: sequence α ∈ T ∗, derivation r ∈ DER(α) ⊂ R∗

1: α← Start ∈ (T ]N )∗

2: r ← ε ∈ R∗

3: while α ∉ T ∗ do .while α contains nonterminals
4: A ← leftmost nonterminal of α
5: sample rule r according to p A(r )
6: α← r (α)
7: r ← r r . append rule r to derivation r
8: end while

A simple example of a grammar for which Algorithm 1 does not always terminate is the

standard context-free grammar with only one terminal, T = { a }, two nonterminals N =
{Start, A }, and three rules Start −→ A, A −→ A A, and A −→ a such that p(Start −→ A) = 1,

p(A −→ A A) = q , and p(A −→ a) = 1−q for some probability q > 0.5.5 In fact, the probability

that Algorithm 1 terminates for this particular grammar is given by the probability of the

grammar’s language,

∑
α∈T +

∑
r∈DER(α)

|r |∏
k=1

pr1:k−1(Start)(rk ) =
∑
α∈T +

C|α|−1q |α|−1(1−q)|α| (5.27)

=
∞∑

n=1
Cn−1qn−1(1−q)n (5.28)

=
1, if 0 < q ≤ 0.5

1−q
q , if 0.5 < q ≤ 1

(5.29)

where Cn−1 = 1
n

(2n−2
n−1

)
is the n −1-th Catalan number, i.e. the number of binary trees with

n leafs. Equation 5.27 uses the fact that a sequence of length n must be generated by n −1

applications of the rule A −→ A A and n applications of the rule A −→ a. Equation 5.28 uses

the characterization of sequences over one symbol by their lengths — the unary encoding

of natural numbers. The calculation of the infinite series in Equation 5.29 was verified using

WolframAlpha.6 For q = 2
3 , the probability of termination is 0.5. Therefore, one half of the

probability mass is assigned to finite sequences and the other half is assigned to the infinite

sequence of terminals a.

The presented example is particularly relevant for musical grammars because of the general

principle of prolongation. If the rule probabilities of a grammar are assigned by hand, the

issue of potential inconsistency should be considered; All prolongation rules should have a

probability of less than 0.5.

5For probabilities of standard context-free rules, the notation p(A −→α) := p A(A −→α) is used.
6The series

∑∞
n=0 Cn (q −q2)n = q−1 for 0.5 < q < 1 was calculated on https://www.wolframalpha.com.
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Booth and Thompson (1973) presented a general criterion to test a probabilistic standard

context-free grammar for consistency (see Wetherell (1980) for a review of stochastic properties

of probabilistic standard context-free grammars). One considers the square matrix E ∈Rn×n

of expected nonterminal counts of right-hand sides of rules,

EB ,A = E [#(B ∈ r (A))] =
∑

r∈RA

p A(r ) #(B ∈ r (A)) =
∑

r∈RA

p A(r )
|r (A)|∑

j=1
1
(
B = r (A) j

)
, (5.30)

and calculates the spectral radius of E , which is in the case of a finite number of nonterminals

equal to the maximal absolute value of the Eigenvalues of E . If the spectral radius is less

than one, then the grammar is consistent. If it is greater than or equal to one, it could be

either consistent or not. In practice however, probabilistic grammars induced from data are

found to be consistent. Chi and Geman (1998) proved moreover that the special case of the

maximum-likelihood estimate of a standard context-free grammar always yields a consistent

grammar.

In the case of an infinite number of nonterminals, the matrix of expected values can be

substituted by a continuous linear mapping

E : `1 → `1, E(x)B =
∑

A∈N
E [#(B ∈ r (A))] x(A), (5.31)

where `1 = { x : N→R |∑A∈N | x(A)| <∞ }. We conjecture that the grammar is then consistent

if the spectral radius of the mapping E is less than one. The spectral radius might, however, be

more difficult to compute than in the finite case, because it is not characterized by Eigenvalues.

The proof of this sufficient condition of consistency is left for future research.

In the rest of this study, all probabilistic grammars are assumed to be consistent. Then, the

probability of the application of a derivation r ∈ R∗ to a sequence α ∈ (T ]N )∗ is the product

of the derivations rule applications,

pα(r ) =
|r |∏

k=1
pr1:k−1(α)(rk ), (5.32)

and p(r ) = pStart(r ). The probability that a sequence of terminals β ∈ T ∗ is derived from a

sequence α ∈ (T ]N )∗ is the sum of the derivations’ probabilities,

pα(β) =
∑

r∈DER(β)
pα(r ), (5.33)

and p(β) = pStart(β).
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5.5 Product grammars

This study uses joint grammar models of harmony and rhythm called product grammars.

These product grammars are constructed from two component grammars: a grammar for

harmony and a grammar for rhythm. Intuitively speaking, the derivation trees of the product

grammar are the tree structures that have derivations in both component grammars. The

product of the probabilities of these component-grammar derivations then defines the proba-

bility of the corresponding product-grammar derivation. The mathematical idea of product

grammars is similar to the idea of coupled-context-free grammars (Pitsch, 1994; Hotz and

Pitsch, 1996).

Product grammar Let G = (T, N ,Start,R) and G ′ = (T ′, N ′,Start′,R ′) be two PACFGs, called

component grammars. The product grammar

G ./G ′ = (T ×T ′, N ×N ′, (Start,Start′),R ./R ′) (5.34)

is constructed from the Cartesian products of the sets of terminals and nonterminals, and the

pair of the start symbols. The rewrite functions of G ./G ′ are the pairs of rewrite functions of

equal arity,

R ./R ′ = { (r,r ′) ∈ R ×R ′ | ar(r ) = ar(r ′) } . (5.35)

The application of a product rule (r,r ′) ∈ R ×R ′ to a product nonterminal (A, A′) ∈ N ×N ′ is

defined component-wise,

(r,r ′)(A, A′) = ZIP(r (A),r ′(A′)), (5.36)

where ZIP is the canonical transformation of a pair of sequences into a sequence of pairs,

ZIP : { (x , y) ∈ X ∗×Y ∗ | | x | = |y | } → (X ×Y )∗, (ZIP(x , y)) j = (x j , y j ). (5.37)

The probability of a product rule application is proportional to the product of the probabilities

of the rule application components,

p(A,A′)((r,r ′)) ∝ p A(r ) p A′(r ′). (5.38)

The reason why the product of the component probabilities does not yield a normalized

probability distribution is that only rules of equal arity form valid product rules. Because

of this requirement, the component rules r and r ′ cannot be sampled independently. For

example, if G and G ′ are probabilistic standard context-free grammars with RA = { A −→ A A }

and R ′
A′ = { A′ −→ A′ A′, A′ −→ a′ } as the sets of rules applicable to A and A′, respectively, then

(A −→ A A, A′ −→ A′ A′) is the only product rule applicable to (A, A′). However, the product of
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the probabilities of applying A −→ A A to A and A′ −→ A′ A′ to A′ does not equal 1:

p A(A −→ A A) p A′(A′ −→ A′ A′)

< p A(A −→ A A) p A′(A′ −→ A′ A′)+p A(A −→ A A) p A′(A′ −→ a′) (5.39)

= p A(A −→ A A)
(
p A′(A′ −→ A′ A′)+p A′(A′ −→ a′)

)
(5.40)

= 1 (5.41)

The grammar-learning methods used in the computational experiments presented in the third

part of this thesis do not require normalizing constants of rule distributions to be calculated

explicitly. Instead, only computations of expected values are needed which are approximated

via Monte-Carlo methods.

5.6 Expressive power of ACFGs and grammatical formalisms

This section gives an overview over related grammar formalisms and illustrates the expressive

power of ACFGs using the example of the copy language. It is, however, not essential for this

study’s argumentation.

Since the syntax of natural language exhibits richer structure than standard context-free

grammars can express, much research on grammatical formalisms focused on extending the

expressiveness of standard context-free grammars. Such formalisms are called mildly context-

sensitive, because they require some but not all of the power of the much more expressive

class of context-sensitive grammars. This restriction is desireable, because less expressive

formalisms generally enable asymptotically faster computation algorithms. Examples of

mildly context-sensitive formalisms are tree-adjoining grammars (Joshi et al., 1975; Joshi,

1985; Joshi and Schabes, 1997), linear context-free rewriting systems (Vijay-Shanker et al.,

1987), multiple context-free grammars (Seki et al., 1991), and derivational minimalism (Stabler,

1996, 2011). Some of these grammatical frameworks are weakly equivalent; they are capable

of expressing the same class of languages, but possibly with differently structured derivations

(Weir, 1988; Joshi et al., 1991; Vijay-Shanker and Weir, 1994; Michaelis, 1998).

The structure of ACFGs is similar to the structure of definite clause grammars, another re-

lated formalism which allows structured and infinitely many nonterminals, but does not

use bijective rewrite functions (Colmerauer, 1978; Pereira and Warren, 1980; Have, 2009).

Instead, definite clause grammars use deduction rules from first-order predicate logic which

are somewhat comparable to inverse rewrite functions and are commonly implemented in

logic programming languages such as PROLOG and PRISM (Bratko, 1986; Sato and Kameya,

1997). The approach of PACFGs is in spirit also similar to adaptor grammars (Johnson et al.,

2007a) which describe the same languages as standard context-free grammars and extend

their probability model to increase the probability of frequently occurring derivation trees.
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If no additional restrictions are put on the rules of ACFGs, then the class of languages generat-

able by ACFGs is the class of recursively enumerable languages, because all computation can

be performed in unary rules. With the restriction of ACFGs in a Chomsky-normal form (see

Section 6.1), languages beyond context-free complexity are still generatable. This expressivity

is demonstrated by the following ACFG which generates the copy language { w w | w ∈ T + }

over an alphabet T = { a,b }. The construction uses stacks of terminals as nonterminals and is

as such similar to linear indexed grammars (Aho, 1968; Vijay-Shanker and Weir, 1993). The

copy language is the language of the ACFG G = (T, N ,Start,R) with letters a and b as terminals,

and two kinds of lists as nonterminals — one kind for generating a sequence w ∈ T + and

pushing its elements onto a stack and one kind for generating its copy by popping from the

stack,

N = { MEMWRITE(w ) | w ∈ T ∗ }] { MEMREAD(w ) | w ∈ T ∗ } . (5.42)

The names MEMWRITE(w ) and MEMREAD(w ) are chosen to indicate that rewrite rules are

only allowed to write (push) terminals to MEMWRITE(w ) and to read (pop) terminals from

MEMREAD(w ). The grammar then essentially works in two phases. In the first phase, a se-

quence is generated and written to the memory. In the second phase, the sequence generated

so far is again generated (copied) by reading from memory.

The start symbol of the grammar is the empty list onto which elements can be pushed, Start =
MEMWRITE(ε). The set of rules R consists of four partial functions:

PUSHA(A) =
MEMREAD(a) MEMWRITE(w a), if A = MEMWRITE(w )

UNDEFINED, otherwise
(5.43)

PUSHB(A) =
MEMREAD(b) MEMWRITE(wb), if A = MEMWRITE(w )

UNDEFINED, otherwise
(5.44)

POP(A) =
MEMREAD(w1:|w |−1) MEMREAD(w|w |), if w stored in A and |w | > 1

UNDEFINED, otherwise

(5.45)

TERMINATE(A) =
w1, if w stored in A and |w | = 1

UNDEFINED, otherwise
(5.46)

Here, the term “w stored in A” denotes the fact that either A = MEMREAD(w ) or A = MEMWRITE(w ).

To illustrate the mechanics of this grammar, the leftmost derivation of the sequence abbabb ∈
T + is for example shown in Figure 5.5 The corresponding derivation tree is shown in Figure 5.6.
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MEMWRITE(ε) −→PUSHA MEMREAD(a) MEMWRITE(a)

−→TERMINATE a MEMWRITE(a)

−→PUSHB a MEMREAD(b) MEMWRITE(ab)

−→TERMINATE a b MEMWRITE(ab)

−→PUSHB a b MEMREAD(b) MEMWRITE(abb)

−→TERMINATE a b b MEMWRITE(abb)

−→POP a b b MEMREAD(ab) MEMREAD(b)

−→POP a b b MEMREAD(a) MEMREAD(b) MEMREAD(b)

−→TERMINATE a b b a MEMREAD(b) MEMREAD(b)

−→TERMINATE a b b a b MEMREAD(b)

−→TERMINATE a b b a b b

Figure 5.5 – Derivation of the sequence abbabb from the copy language.

MEMWRITE(ε)

MEMWRITE(a)

MEMWRITE(ab)

MEMWRITE(abb)

MEMREAD(b)

b

MEMREAD(ab)

MEMREAD(b)

b

MEMREAD(a)

a

MEMREAD(b)

b

MEMREAD(b)

b

MEMREAD(a)

a

Figure 5.6 – Parse tree of the sequence abbabb from the copy language.
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6 Semiring Parsing

The Cocke–Younger–Kasami (CYK) algorithm was originally formulated to answer the ques-

tions how many parse trees a sequence has according to a given standard context-free gram-

mar, and what this parse forest looks like (Younger, 1967). The algorithm thereby solved

the recognition problem for standard context-free grammars; that is, to find out whether a

given sequence is generatable by a given grammar. Following research adopted the idea of

the CYK algorithm to probabilistic context-free grammars of various forms (Earley, 1970),

developing what is known as the inside-outside algorithm (Baker, 1979; Lari and Young, 1990;

Stolcke, 1995). Modern parsing approaches generalize those algorithms to put them in the

coherent algebraic framework of semiring parsing that decouples the parsing algorithm from

the different quantities one might be interested about the parse forest (Goodman, 1998, 1999).

The description and implementation of parsing algorithms can then be done in analogy to

logic deduction systems — known as parsing as deduction (Shieber et al., 1995) — or in the

framework of hypergraph parsing (Klein and Manning, 2004).

The essence of semiring parsing is to use a simple abstract representation to efficiently com-

pute various quantities one might be interested about parse forests. In particular, this has the

advantage that a parsing algorithm only needs to be implemented and tested once and can be

reused to answer multiple queries.

This chapter starts by stating a probabilistic version of the CYK algorithm for abstract context-

free grammars that calculates sequence probabilities. The algorithm is subsequently general-

ized to compute both the best derivation of a sequence and an efficient representation of the

distribution over parse trees of a sequence. The representation of the parse-tree distribution

as a mathematical object is novel and contributes to the research on parsing methods and

grammar-learning algorithms. It is used later in the next chapter to learn a grammar’s rewrite

probabilities from sequential data. In particular, this chapter shows how to efficiently com-

pute expected values of functions g : R∗ → Rd with respect to the distribution p(r | w ) over
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derivations r ∈ DER(w ) that yield an observed terminal sequence w ∈ T +,

Ep(r |w )
[
g (r )

]= ∑
r∈DER(w )

p(r | w )g (r ), (6.1)

where

p(r | w ) ∝ p(w | r ) p(r ) = 1 (r (Start) = w )) p(r ). (6.2)

Here, the term 1 (r (Start) = w ) p(r ) stands for the indicator function which maps a statement

to its truth value:

1 (r (Start) = w ) =
1, if r (Start) = w

0, if r (Start) 6= w
(6.3)

6.1 Parsing for PACFGs in Chomsky-normal form

The classic CYK algorithm assumes a grammar to be in Chomsky normal-form. That is, each

rule r ∈ R is either a unary rule which rewrites nonterminals into a terminals, r : N 7→ T , or a

binary rule which rewrites nonterminals into sequences of two nonterminals, r : N 7→ N 2. Each

standard context-free grammar can be converted in Chomsky-normal form in polynomial

time by increasing the number of nonterminals and adjusting the rule set (Jurafsky and Martin,

2000). This section presents an adaptation of the CYK algorithm for abstract context-free

grammars to calculate the probability p A(w ) =∑
r∈DER(A,w ) p A(r ) that a non-empty sequence

of terminals w ∈ T + is generated from a nonterminal A ∈ N .

Let G = (T, N ,Start,R) be a PACFG in Chomsky-normal form. The CYK algorithm uses dynamic

programming to calculate p A(w ) via the following two recursive equations:

p A(w ) =
∑

r∈RA
r (A)=w

p A(r ) for |w | = 1 (6.4)

p A(w ) =
|w |−1∑

j=1

∑
r∈RA

ar(r )=2

p A(r ) pr (A)1 (w1: j ) pr (A)2 (w j+1:|w |) for |w | ≥ 2 (6.5)

A

r (A)1

w1: j

r (A)2

w j+1:|w |

Figure 6.1 – Illustration of the computation of p A(w ) in Equation 6.5.
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The right-hand side of the second equation sums over the probabilities of all binary splits of w ;

the computation is illustrated in Figure 6.1. The calculation is correct, because all derivation

trees from a grammar in Chomsky-normal from are constructed either by exactly one unary

termination rule or by an initial binary rule. The CYK algorithm uses the recursive equations

to calculate p A(v) first for all of w ’s subsequences v of length 1, then of length 2, and so on.

This bottom-up calculation can be performed efficiently, because the rewrite functions are

bijective and thus invertible.

6.2 Semiring scores

The parsing algorithm presented in the last section is generalized in this section for using

scoring functions instead of just probabilities. As it is shown later in this chapter, scoring

functions can be used to perform various computations such as “Compute the most probable

derivation of a given sequence” or “Sample a derivation which yields a given sequence”.

A structural observation of the computation described by the Equations 6.4 and 6.5 reveals

that the algorithm is based on the function

p : N ×R →R≥0, (A,r ) 7→ p A(r ) (6.6)

which assigns a probability to a pair of a nonterminal and a rule. Such pairs are also called

rule application in the following. The computation moreover works for all scoring functions

σ : N ×R →S, (A,r ) 7→σA(r ). (6.7)

that map every rule application (A,r ) to a score σA(r ) in a spaceSwhich has a sensible notion

of addition and multiplication, such that

σA(r ) 6= 0 ⇐⇒ A ∈ dom(r ). (6.8)

Equations 6.4 and 6.5 are then generalized to scoring functions by:

σA(w ) =
∑

r∈RA
r (A)=w

σA(r ) for |w | = 1 (6.9)

σA(w ) =
|w |−1∑

j=1

∑
r∈RA

ar(r )=2

σA(r ) σr (A)1 (w1: j ) σr (A)2 (w j+1:|w |) for |w | ≥ 2 (6.10)

Analogous to probability scores, the continuation of the function σA : R → S from rules to

derivations is given by

σA(r ) =
|r |∏

k=1
σr1:k−1(A)(rk ) (6.11)
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for derivations r ∈ R∗. The score of a sequence of terminals w ∈ T + is defined as

σA(w ) =
∑

r∈DER(A,w )
σA(r ). (6.12)

The precise meaning of a "sensible notion of addition and multiplication" will be defined

later by referring to the well-known theory of semirings. First, however, a simple example of a

scoring that is different from the probability scoring considered above is described.

As a first simple example, consider the scoring function that maps a nonterminal A ∈ N and a

rule r ∈ R to the natural number 1 if r is applicable to A and to 0 otherwise,

σ : N ×R →N, σA(r ) = 1 (A ∈ dom(r )) . (6.13)

For this scoring function, the Equations 6.9 and 6.10 simplify to:

σA(w ) =
∑

r∈RA
r (A)=w

1 (A ∈ dom(r )) =
∑

r∈RA
r (A)=w

1 = |DER(A, w )| for |w | = 1 (6.14)

σA(w ) =
|w |−1∑

j=1

∑
r∈RA

ar(r )=2

σr (A)1 (w1: j )

︸ ︷︷ ︸
# derivations

left child

σr (A)2 (w j+1:|w |)

︸ ︷︷ ︸
# derivations

right child

for |w | ≥ 2 (6.15)

Therefore, it is easily proven by induction over the length of w that for this scoring function,

σA(w ) computes the number of derivations of w from A: For the base case |w | = 1, this

follows directly from Equation 6.14. For the induction step, let n be a natural number such

that σA(w ) = |DER(A, w )| for all w ∈ T + with |w | ≤ n and let v ∈ T n+1 and j ∈ {1, . . . ,n }. Since

|v1: j | ≤ n and |v j+1:n+1| ≤ n, σB (v1: j ) = |DER(B , v1: j )| andσB (v j+1:n+1) = |DER(B , v j+1:n+1)| for

all nonterminals B ∈ N by the induction hypothesis. Since the grammar is assumed to be in

Chomsky-normal form and |v | > 1, all derivations of v from A must start with a binary rule.

Therefore, Equation 6.15 completes the proof.

The above example can be generalized to establish an intuition for the interpretation of

addition and multiplication in parsing. Addition stands for a choice from two options. In the

counting example, addition is the usual addition, because the interest is to calculate the total

number of all possible derivations. Multiplication stands for the combination of possibilities.

In Equation 6.15, the number of derivations of the left child of A, denoted by r (A)1, and the

number of derivations of the right child of r (A)1 are multiplied, because each combination

can be used to construct a valid derivation of w from A. These two intuitions will be also

helpful to understand the more complex semirings described below.
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Semiring A semiring S= (S,+, ·,0,1) consists of two monoids (S,+,0) and (S, ·,1) (see Sec-

tion 5.2 for the definition of a monoid) such that for all s, t ,u ∈ S:

s + t = t + s (commutativity of addition) (6.16)

s ·0 = 0 = 0 · s (absorption by zero) (6.17)

u · (s + t ) = u · s +u · t (left distributivity) (6.18)

(s + t ) ·u = s ·u + t ·u (right distributivity) (6.19)

The set S is called the carrier set of the semiring. Usually, s · t is abbreviated by st like it is the

case with the usual multiplication.

The semirings of the probability scoring and the count scoring are (R≥0,+, ·,0,1) and (N,+, ·,0,1),

respectively, both with the usual addition and multiplication. The carrier set of the semiring of

the probability scoring is the set of all non-negative real numbers, to ensure that the addition

of two numbers always stays in the semiring. During parsing with a probabilistic grammar,

numbers greater than one are, however, never reached.

A more advanced example is the semiring BESTR of the scoring function

σ : N ×R → BESTR , σA(r ) = (r, p A(r )) (6.20)

for which σA(w ) is the pair of the most probable derivation of w from A and its probability.

The semiring BESTR is defined by:

BESTR = ((R∗×R≥0),+, ·, (ε,0), (ε,1)) (6.21)

(r , q)+ (r ′, q ′) =
(r , q), if q > q ′ or (q = q ′ and r > r ′)

(r ′, q ′), otherwise
(6.22)

(r , q) · (r ′, q ′) = (r r ′, qq ′) (6.23)

where r > r ′ denotes that r is lexicographically greater than r ′ with respect to any arbitrarily

chosen total order on the finite set of rules R. This technicality is needed to satisfy the

commutativity of the semiring’s addition. The addition of this semiring selects the best of two

derivations, and the multiplication concatenates derivations and multiplies their probabilities.

Therefore, the zero element must have probability zero and the identity element must have

probability one.

The semiring BESTR is an example of a non-commutative semiring. That is, a semiring in

which the multiplication is not commutative. The reason why the multiplication of BESTR

is not commutative is that in Equation 6.23, the derivations r and r ′, which are represented

as lists of rules, are concatenated and the concatenation of lists is not commutative. It is

important to acknowledge that not all useful semirings are commutative, because it implies

that the order of the factors in Equation 6.10 matters.
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To summarize, the generalization of the CYK algorithm (also known as the inside algorithm)

to arbitrary semiring scoring functions enables the usage of one generic parsing algorithm for

various queries about the parse forest such as the total probability or the most probable tree

of the parse forest. The semiring theory combines the explicit mathematical formalization of

these query calculations with a concise computational implementation. This theory is even

more powerful. The following sections first generalize the CYK algorithm to a broader class

of PACFGs and then present a scoring function that calculates a compact representation of

the distribution of a sequence’s derivations. More examples of what can be calculated in the

semiring-parsing framework are, the number of parse trees, the probability of the best parse

tree, the list of all parse trees, and the list of the best k parse trees for any number k (Goodman,

1999).

6.3 Parsing for PACFGs with unary rules

Grammars in Chomsky-normal from are modeling tools with the unnecessary limitation

that only binary-branching rules and unary terminal rules are allowed. This section shows

how the semiring version of the inside algorithm described in the last section is extended to

grammars that allow arbitrary unary and binary loops. Unary rules can, for instance, be used to

emulate multiple start symbols or to model reinterpretations of chord symbols. An important

example of reinterpretation in the context of musical grammar is modulation as formalized

by Rohrmeier (2011) and implemented by Harasim et al. (2018). In that formalization, scale

degrees can be reinterpreted as a first scale degree in the corresponding key. The scale degree

IV in they of C major can, for example, be reinterpreted as scale degree I in the key of F

major. On one hand, such a reinterpretation is necessarily a cognitive computation which

is beneficial to be includeable in a cognitively motivated grammar framework, on the other

hand, reinterpretations introduce ambiguities that might be difficult to handle in practice

(Harasim et al., 2018).

As mentioned above, this section proposes a generalization of the Chomsky-normal form

which permits arbitrary rules of arity 1 and 2. Rules of arity 3 and higher must be split into

multiple rules, similar to the conversion of standard context-free grammars into Chomsky-

normal form. Consider for example a rule r : N 7→ N 3 of arity 3 and let A ∈ dom(r ). This rule

can be split into two rules r ′ : N 7→ N ×X and r ′′ : X → N ×N such that r ′(A) = r (A)1 X A and

r ′′(X A) = r (A)2 r (A)3, where X = { X A | A ∈ dom(r ) } is a new set of additional nonterminals.

This conversion can be performed automatically if the set of nonterminals is finite. If otherwise

the grammar comprises infinitely many nonterminals, then there is no automatic conversion

known that works for all abstract context-free grammars. For an overview over normal forms

of standard context-free grammars and their application to parsing see for example Lange and

Leiß (2009).

Parsing is more complicated for grammars that allow arbitrary unary rules than for grammars

in Chomsky-normal form. The reason is that it might be possible that some rules can be
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applied in a loop. This happens for example if two distinct nonterminals A and B are derivable

from each other (e.g., DER(A,B) 6= ; 6= DER(B , A)). In that case, there are infinitely many

derivations of A from B and vice versa. To control that only finitely many of such loops occur,

a notation is introduced that describes the set of nonterminals A′ that are traversed by unary

derivations (e.g., sequences of unary rules) of a nonterminal B ∈ N from a nonterminal A ∈ N :

TRAV(A,B) = { A′ ∈ N | ∃r ,r ′ ∈ R∗ : r (A) = A′ and r ′(A′) = B } (6.24)

Note that since r or r ′ can be chosen as the empty derivation, A,B ∈ TRAV(A,B) for all A,B ∈ N .

1-2-normal form An abstract context-free grammar is in 1-2-normal form if all rules have

arity 1 or 2, {ar(r ) | r ∈ R } ⊆ {1,2}, and if TRAV(A,B) is finite for all A,B ∈ N .

The main difference between the Chomsky-normal form and its proposed generalization is

that the former forbids unary derivations of nonterminals (e.g., DER(A,B) =; for all A,B ∈
N ) while the latter allows infinitely many unary derivations and therefore infinitely many

derivations of a sequence of terminals. The finite cardinality of TRAV(A,B), however, restricts

the kind of infinity that is allowed. It implies that the set of derivations DER(A,B) can only be

infinitely large if there is a nonterminal A′ ∈ TRAV(A,B) which has a nontrivial derivation from

itself. That is, there exists a derivation r ∈ DER(A′, A′) such that |r | > 0. Such a derivation is

called a unary loop at the nonterminal A′. A simple academic example of a standard context-

free grammar that has a unary loop at the start symbol is

G = ({ a } , {Start, A } ,Start, {Start −→ A, A −→ Start, A −→ a }). (6.25)

This grammar is in 1-2-normal form, but not in Chomsky-normal form. In fact, all ACFGs with

rules of arity 1 and 2 are in 1-2-normal form if the set of nonterminals is finite, which is in

particular the case for standard context-free grammars. Also, each ACFG in Chomsky-normal

form is in 1-2-normal form.

Let now G = (T, N ,Start,R) be an abstract context-free grammar in 1-2-normal form and let

σ(−)(=) : N ×R →S be a scoring function. For all nonterminals A ∈ N and terminal sequences

w ∈ T ∗, the score σA(w ) can then be calculated using the following recursive equations

σA(w ) =
∑

r∈DER(A,w )
σA(r ) for |w | = 1

σA(w ) =
∑

B∈N

( ∑
r∈DER(A,B)

σA(r )

)
︸ ︷︷ ︸

unary derivations

|w |−1∑
j=1

∑
r∈RB

ar(r )=2

σB (r ) σr (B)1 (w1: j ) σr (B)2 (w j+1:|w |)

︸ ︷︷ ︸
binary splits

for |w | ≥ 2

(6.26)

where σr (B)i (v ) = 1 (r (B)i = v ) if r (B)i is a terminal (r (B)i ∈ T ). These equations are a natural

extension of the Equations 6.9 and 6.10 with unary derivations; The term that sums over the
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A

B

r

r (B)1

w1: j

r (B)2

w j+1:|w |

Figure 6.2 – Illustration of the computation of p A(w ) in Equation 6.26.

binary splits is equivalent to the right-hand side of equation 6.10. The extended calculation

is illustrated in Figure 6.2. To calculate the scores
∑

r∈DER(A,B)σA(r ) of infinite sets of unary

derivations, the concept of a closed semiring is used.

Closed semiring A closed semiring (also called star semiring) is an algebraic structure

(S,+, ·,∗ ,0,1) for which (S,+, ·,0,1) is a semiring and (−)∗ : S → S, s 7→ s∗ is a unary opera-

tion that satisfies the equalities

s∗ = 1+ s · s∗ = 1+ s∗ · s (6.27)

for all s ∈ S. The value s∗ is called the closure of s, and (−)∗ is called the closure operation.

The intuition behind the closure operation is that

s∗ = 1+ ss∗ = 1+ s(1+ ss∗) = 1+ s + sss∗ = 1+ s + ss + sss + . . . (6.28)

formalizes the geometric series in a closed semiring. For parsing with a PACFG, addition and

multiplication are used to express choice and concatenation of derivations, respectively. The

closure operation expresses iterated application of, for example, unary rules. The strength of

closed semirings is their wide applicability; A closure operation can be defined for important

semirings (as shown in the next section) which do not support the calculation of arbitrary

infinite sums. The usage of closed semirings constitutes a slight generalization to the semiring-

parsing framework proposed by Goodman (1999) who assumes semirings to be complete, that

is all infinite sums are always calculable within the semiring.

Using the usual addition and multiplication of numbers, the semirings (R≥0 ∪ {∞ } ,+, ·,0,1)

and (N∪ {∞ } ,+, ·,0,1) form closed semirings with x∗ = (1−x)−1 for x < 1 and x∗ =∞ for x ≥ 1.

In this case, the closure of an element is an actual geometric series. The semiring

BESTR = ((R∗×R≥0),+, ·, (ε,0), (ε,1)) (6.29)
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6.3. Parsing for PACFGs with unary rules

can be extended with an element (ε,∞) to form a closed semiring with

(r , q)∗ =
(ε,1), if q < 1

(ε,∞), otherwise.
(6.30)

The second case does, however, not occur during parsing with probabilistic context-free

grammars. The first case reflects in particular that the most probable derivation never has

unary loops.

In the following paragraphs, the sum
∑

r∈DER(A,B)σA(r ) is calculated by the usage of matrices

over closed semirings. This sum is the only term whose computation was left unexplained so

far in Equation 6.10. The calculation is efficiently performable since for every closed semiring

S and positive natural number n ∈N>0, the square matricesSn×n form again a closed semiring

with the usual addition and multiplication of matrices (based on the operations of S). The

closure M∗ of a matrix M can be calculated recursively via an equation for block matrices

M =
(

A B

C D

)
(6.31)

where A ∈ Sn′×n′
, B ∈ Sn−n′×n′

, C ∈ Sn′×n−n′
, and D ∈ Sn−n′×n−n′

, for some 0 < n′ < n.

Lehmann (1977) showed that M satisfies the equality

M∗ =
(

A∗+B ′E∗C ′ B ′E∗

E∗C ′ E∗

)
(6.32)

where B ′ = A∗B , C ′ =C A′, and E = D +C A∗B . The algorithm which calculates the closure of

a matrix M splits it into the blocks A = M1,1 ∈S1×1, B = M2:n,1 ∈Sn−1×1, C = M1,2:n ∈S1×n−1,

and D = M2:n,2:n ∈Sn−1×n−1 and uses the fact that the closure of a singleton matrix reduces to

the closure of its single element, A∗ = a∗ for some a ∈S. The underlying calculations of this

algorithm are similar to the Floyd-Warshall algorithm for all-pairs shortest paths (Dolan, 2013;

Floyd, 1962)

To calculate
∑

r∈DER(A,B)σA(r ) for A ∈ N and B ∈ T ]N , set n = |TRAV(A,B)| ∈N to the finite

number of traversed nonterminals and define the score matrix M ∈ Sn×n of single unary

transitions as

MC ,D =
∑

r∈RC
r (C )=D

σC (r ) (6.33)

for nonterminals C ,D ∈ TRAV(A,B). To simplify the notation, the arbitrary bijection that

converts nonterminals from TRAV(A,B) into natural numbers from 1 to n is omitted.

For all C ,D ∈ TRAV(A,B), the value MC ,D is the sum of the scores of all unary rules that

rewrite C into D . The k-th power of M contains at the position C ,D the summed scores of all
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derivations of D from C with length k (Dolan, 2013),

M k
C ,D =

∑
r∈DER(C ,D)

|r |=k

σC (r ). (6.34)

The interpretation of the closure M∗ as a geometric series therefore computes the searched

value, ∑
r∈DER(A,B)

σA(r ) = M∗
A,B . (6.35)

6.4 The semiring of derivation distributions

Semiring parsing cannot only be used to calculate probabilities or best derivations, but also

to compactly represent the full distribution of derivations for a given sequence of terminals

w . To the best of our knowledge, this is the first proposal for representing a distribution of

parse trees as a single mathematical object in the semiring parsing framework. From this

representation, derivations r 1, . . . ,r n ∈ DER(w ) can be sampled efficiently to approximate

expected values

Ep(r |w )
[
g (r )

]≈ 1

n

n∑
i=1

g (r i ) (6.36)

for functions g : R∗ →Rd (d ∈N+). This stochastic approximation is called the Monte-Carlo

estimate of the expected value. It is used in the next chapter to learn the parameters of a

probabilistic grammar from sequential data. The more traditional calculation method for

the expected value Ep(r |w )
[
g (r )

]
is the inside-outside algorithm (Baker, 1979; Lari and Young,

1990). That algorithm was originally formulated for grammars in Chomsky-normal form

and its generalization to arbitrary unary rules is not straight-forward (Stolcke, 1995). The

Monte-Carlo estimate is used in this study, because of its simplicity and easy generalizability

to grammars of various forms.

The values of the closed semiring DISTR of distributions over derivations r ∈ R∗ are based on

abstract syntax trees enriched with probabilities. The carrier set of DISTR is based on a set D

which is recursively defined by

D ={ ZERO, ONE, VAL(r, q), ADD(d ,d ′, q), MUL(d ,d ′, q), STAR(d , q) (6.37)

|r ∈ R, d ,d ′ ∈ D, q ∈R≥0 ] {∞ } }.

Thereby, ZERO, ONE, VAL, ADD, MUL, and STAR are best understood as tags of the abstract syn-

tax tree without semantic meaning (they are also interpretable as injective value constructors).
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6.4. The semiring of derivation distributions

The operations are based on

0 = ZERO (6.38)

1 = ONE (6.39)

d +d ′ = ADD(d ,d ′, PROBD (d)+ PROBD (d ′)) (6.40)

d ·d ′ = MUL(d ,d ′, PROBD (d) · PROBD (d ′)) (6.41)

d∗ = STAR(d , PROBD (d)∗) (6.42)

for d ,d ′ ∈ D and the probability-selecting function PROBD : D →R≥0 ] {∞ } with:

PROBD (ZERO) = 0 (6.43)

PROBD (ONE) = 1 (6.44)

PROBD (VAL(r, q)) = q (6.45)

PROBD (ADD(d ,d ′, q)) = q (6.46)

PROBD (MUL(d ,d ′, q)) = q (6.47)

PROBD (STAR(d , q)) = q (6.48)

The set D and the operations defined on it are not yet a semiring, because the defining

equations (i.e., the semiring axioms; e.g., distributivity) are not yet satisfied. The carrier set

of DISTR is therefore defined as coarsest partition on D for which all required equalities of a

closed semiring hold. The partition (i.e., the set of equivalence classes) is denoted by [D] and

the equivalence class of any d ∈ D is denoted by [d ]. This construction is analogous to the

standard construction of free algebras (Ihringer and Gumm, 2003; Burris and Sankappanavar,

2012). For example, let r ∈ R be a rule, let A ∈ dom(r ) be a nonterminal in r ’s domain, and

let q := p A(r ). Then VAL(r, q) and ADD(VAL(r, q), ZERO) are in the same equivalence class

because ZERO is the neutral element of the addition, ADD(VAL(r, q), ZERO) ∈ [VAL(r, q)]. This

equivalence also contains element such as ADD(ZEROVAL(r, q)) as MUL(VAL(r, q), ONE). All

these values are distinct in D , but identified in [D]. Furthermore, all equivalence classes are

infinitely large.

It is easy to show by induction over the definition of D (Equation 6.37) that all elements of an

equivalence class map to the same value under the probability-selecting function PROBD ,

∀d ,d ′ ∈ D : [d ] = [d ′] =⇒ PROBD (d) = PROBD (d ′). (6.49)

The probability function on [D] can therefore be defined on representatives of equivalence

classes,

PROB : [D] →R≥0 ] {∞ } , PROB([d ]) = PROBD (d). (6.50)
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Algorithm 2 Sample derivation from an element of DISTR

Input: [d ] ∈ DISTR such that 0 < PROB([d ]) <∞
Output: derivation r ∈ R∗

1: function SAMPLE_DERIVATION(d)
2: if d match ONE then
3: return ε . empty derivation
4: else if d match VAL(r, q) then
5: return r . singleton derivation
6: else if d match ADD(d ′,d ′′, q) then
7: go_left ← sample from Bernoulli(PROB(d ′)/q)
8: if go_left then
9: SAMPLE_DERIVATION(d ′)

10: else
11: SAMPLE_DERIVATION(d ′′)
12: end if
13: else if d match MUL(d ′,d ′′, q) then
14: r ′ ← SAMPLE_DERIVATION(d ′)
15: r ′′ ← SAMPLE_DERIVATION(d ′′)
16: return r ′r ′′ . sequence concatenation
17: else if d match STAR(d ′, q) then
18: iterate ← sample from Bernoulli(PROB(d ′))
19: if iterate then
20: r ′ ← SAMPLE_DERIVATION(d ′) . sample from distribution which is iterated
21: r ′′ ← SAMPLE_DERIVATION(d) . iterate sampling
22: return r ′r ′′ . sequence concatenation
23: else
24: return ε . empty derivation
25: end if
26: end match
27: end function
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The closed semiring DISTR of distributions over derivations is now given by

DISTR = ([D],+, ·,∗ , [ZERO], [ONE]) (6.51)

where all operations are defined on representatives (d ,d ′ ∈ D):

[d ]+ [d ′] = [d +d ′] (6.52)

[d ] · [d ′] = [d ·d ′] (6.53)

[d ]∗ = [d∗] (6.54)

The respective scoring function is

σ : N ×R → DISTR , σA(r ) = [VAL(r, p A(r ))]. (6.55)

Note that because all operations are defined on representatives, implementations of DISTR

can simply work with the elements of D. From all d ∈ D with 0 < PROBD (d) <∞, derivations

r ∈ R∗ can be sampled as described by the recursive procedure shown in Algorithm 2. The

samples can be used to approximate expected values as shown in Equation 6.36.

6.5 Efficient parsing of product grammars

The definition of product grammars given in Section 5.5 is precise and simple, but not efficient

for parsing. A naive approach to parsing against a product grammar with finitely many symbols

would enumerate all product nonterminals (e.g., the full Cartesian product) and memoize the

inverted rewrite rules on these nonterminals. This section shows how the inefficient quadratic

blow-up in the number of nonterminals can be avoided for grammars in Chomsky-normal

form. The main idea is thereby to generalize the independence assumption of Equation 5.38,

p(A,A′)((r,r ′)) ∝ p A(r ) p A′(r ′) (6.56)

for product rules (r,r ′) and product nonterminals (A, A′).

Let G ./G ′ be the product of the grammars G = (T, N ,Start,R) and G ′ = (T ′, N ′,Start′,R ′) with

scoring functions σ : N ×R →S and σ′ : N ′×R ′ →S′, respectively. Since σ and σ′ generally

map into different semirings, an operation ¦ is assumed that combines scores σA(r ) and

σA′(r ′) into a semiring S′′. Using this operation, the product scoring function is defined by

σ./σ′ : (N ×N ′)× (R ./R ′) →S′′, σ./σ′
(A,A′)((r,r ′)) =σA(r ) ¦ σ′

A′(r ′). (6.57)

In the example where both σ and σ′ yield the bare rewrite probabilities, the operation ¦ can be

chosen as the usual product followed by a renormalization. In the example where σ : N ×R →
BESTR and σ′ : N ′×R ′ → BESTR ′ , the combining operation which pairs the component rules
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and calculates their product-rule probability can be chosen,

σA(r ) ¦ σ′
A′(r ′) = (r, p A(r )) ¦ (r ′, p A′(r ′)) = ((r,r ′), p(A,A′)((r,r ′))). (6.58)

If ar(r ) = ar(r ′), then ((r,r ′), p(A,A′)((r,r ′))) ∈ BESTR./R ′ . The condition of equal arity will always

be met in the proposed parsing computation below.

The generic Equations 6.9 and 6.10 specialize for the scoring function σ./σ′ of the product

grammar to

σ./σ′
(A,A′)(w ) =

∑
(r,r ′)∈RA./RA′

r (A)=v
r ′(A′)=v ′

σA(r )¦σ′
A′(r ′) for |w | = 1

(6.59)

σ./σ′
(A,A′)(w ) =

|w |−1∑
j=1

∑
r∈RA

ar(r )=2

∑
r∈RA′

ar(r ′)=2

(σA(r )¦σ′
A′(r ′)) for |w | ≥ 2

(6.60)

σ./σ′
(r (A)1,r ′(A′)1)(w1: j ) σ./σ′

(r (A)2,r ′(A′)2)(w j+1:|w |)

where w = ZIP(v , v ′) (i.e., w j = (v j , v ′
j )). It is therefore sufficient to parse the component

grammars individually at each step. In other words, the combined grammar is computed

on-the-fly to achieve efficiency.
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The core idea of Bayesian statistics is to consider unknown model parameters as random

variables. The distribution of the parameters then quantifies the plausibility of a parameter

instantiation. For a generative grammar model, this implies that the rewrite probabilities are

considered as random variables. Depending on the concrete grammar model, the rewrite

probabilities are either directly modeled as parameters — such as for probabilistic standard

context-free grammars — or are calculated from more sophisticated parameterizations — as

proposed in this chapter.

This chapter first proposes a finite dimensional parameterization for PACFGs. Subsequently, a

prior distribution over the parameter space with good mathematical properties is presented.

Then Coordinate Ascent Variational Inference (CAVI) is described and applied to derive it-

erative update equations for the inference of a PACFG’s parameters. Finally, the last section

summarizes the proposed model and the inference procedure of its parameters from sequen-

tial data.

The models and algorithms constructed in this chapter are generalizations of the variational

Bayesian inference procedure for probabilistic standard context-free grammars by Kurihara

and Sato (2004). The terminology and the derivation of CAVI is based on Blei et al. (2017).

7.1 A finite-dimensional parameterization of PACFGs

This section starts by describing the latent probabilistic grammar and a dataset of observed

terminal sequences with latent derivations in one uniform probabilistic model. Such a model

is simply given by the specification of the joint probability of the latent variables and the

observations. In the proposed model, there are no cyclic dependencies between random

variables. The model is therefore an instance of a generative probabilistic model as described

in Section 2.5. According to generative modeling, the observed sequential data is analyzed

by reconstruction of plausible PACFGs and derivations that yield the observed terminal se-

quences.

93



Chapter 7. Bayesian Inference

The process of (re-)generating a dataset of terminal sequences according to a grammar model

with fixed rule set consists of three steps. First, the parameters of the grammar are sampled

and the rewrite probabilities are calculated. The probabilistic grammar thus generated is

then used to sample a set of derivation trees from which, finally, the terminal sequences are

calculated as the leafs of the trees. This three-step process is described by the factorization

of the joint probability of the grammar parameters θ ∈Θ, the derivations r̄ = (r 1, . . . ,r I ) ∈R I ,

and the terminal sequences w̄ = (w 1, . . . , w I ) ∈ (T ∗)I into three terms,

p(θ, r̄ , w̄ ) = p(θ) p(r̄ | θ) p(w̄ | r̄ ), (7.1)

where I ∈N is the size of the dataset, R ⊆ R∗ is the set of all derivations,

R = {r ∈ R∗ | ∃w ∈ T ∗ : r (Start) = w } , (7.2)

and the parameter spaceΘ is left unspecified for now. The factorization can be rewritten to

compute the posterior distribution of the parameters which models the plausibilities of the

parameter settings after the observation of the data,

p(θ | w̄ ) =
∑

r̄∈(R∗)I

p(θ, r̄ | w̄ ) ∝
∑

r̄∈(R∗)I

p(θ) p(r̄ | θ) p(w̄ | r̄ ). (7.3)

Since the exact calculation of the normalizing constant of the posterior is intractable (for

all parameterizations considered in this study), variational Bayesian inference is used to

approximate it as described later in Section 7.4. The following paragraphs first describe the

distributions p(w̄ | r̄ ) and p(r̄ | θ) in greater detail before the prior distribution over the

parameters p(θ) is explained in the next section.

The factorization (e.g., the generation process) encodes the statistical dependencies and

independencies of the observed data w̄ and the latent variables θ and r̄ . For example, the

sequences w̄ are independent from the grammar parameters θ when the derivations r̄ are

known. In fact, the distribution p(w̄ | r̄ ) puts all of its probability mass on a single point which

is the leaf sequence of the derivation tree,

p(w̄ | r̄ ) =
I∏

i=1
1
(
r i (Start) = w i

)
. (7.4)

The facts that the derivations are sampled independently from the grammar and that each

terminal sequence only depends on its respective derivation is not yet encoded in Equation 7.1.

They can be incorporated by explicitly writing-out the probabilities p(r̄ | θ) and p(w̄ | r̄ ) as
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products,

p(θ, r̄ , w̄ ) = p(θ)
I∏

i=1
p(r i | θ) p(w i | r i ) (7.5)

= p(θ)
I∏

i=1
p(r i | θ) 1

(
r i (Start) = w i

)
. (7.6)

The explicit denotation of the independencies between the derivations further illustrates a

distinction of the latent variables that is important for parameter inference (Blei et al., 2017):

The grammar parameters θ are global variables of the model, that is they are the same for

all derivations. In contrast, the derivations r̄ are local variables, since there is a one-to-one

relationship between derivations and terminal sequences.

A more detailed description of the distributions p(θ) and p(r i | θ) requires a parameterization

of the rewrite probabilities p A(r ) for A ∈ N and r ∈ R . The most direct parameterization would

be p A(r ) = θA
r for

θ ∈Θ=
{
θ ∈R|N |×|R|

≥0

∣∣∣∣∣∀A ∈ N :
∑
r∈R

θA
r = 1 and ∀r ∈ R : θA

r > 0 ⇐⇒ A ∈ dom(r )

}
. (7.7)

The term
∑

r∈R θ
A
r = 1 ensures the normalization of p A(r ) for all A ∈ N and θA

r > 0 if and

only if A ∈ dom(r ) for all A ∈ N and r ∈ R is required to satisfy the axiom of a PACFG from

Equation 5.22. Because of the potentially infinite cardinality of N , there is, however, no

canonical choice of a distribution overΘ. In fact, any nontrivial distribution needs to exploit

structural properties of the set of nonterminals N .

To overcome the problem of the direct parameterization, this study proposes to assume a

surjective feature projection φ : N →Φ that projects nonterminals into a finite set of features

Φ. According to such a feature projection, nonterminals that are projected to the same feature

are assumed to share a distribution over rewrite functions. That is

φ(A) =φ(B) =⇒ p A(r ) = pB (r ) (7.8)

for all nonterminals A,B ∈ N and rules r ∈ R . Consequently, A and B then also share their sets

of applicable rewrite function, RA = RB . This justifies the following notation of the set of rules

that are applicable to nonterminals of a given feature f ∈Φ:

R f = {r ∈ R | ∃A ∈ dom(r ) : φ(A) = f } (7.9)

Nonterminal feature projections are a useful modeling tool to specify probability distributions

using coarsened representations of nonterminals. A feature projection is for example used in

the rhythm grammar described in Section 5.1. There, Equation 5.7 defines a rather extreme

case in which the set of nonterminals is infinite (essentially the set of all positive rational

numbers less or equal to 1) and φ simply classifies nonterminals as being the unique start
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symbol or not. This feature projection thus enables that the splitting of a chord duration

does not depend on the duration but only on the split ratio. The opposite extreme of a

feature projection that is the identity function φ : N → N (φ(A) = A). This is a possible choice

for all grammars with a finite number of nonterminals. In particular, all standard context-

free grammars fall into this class. Another kind of feature projection is presented later for

the computational experiments to define a harmony grammar whose probability model is

transpositionally independent. In that harmony grammar, chords of the same chord form

share an identical distribution over rewrite functions. The rewrite probabilities are therefore

independent of the chord root.

Let now G = (T, N ,Start,R) be a PACFG with a nonterminal feature projection φ : N →Φ. In

this case, the rewrite probabilities can be parameterized by p A(r ) = θφ(A)
r for

θ ∈Θ=
{
θ ∈R|Φ|×|R|

≥0

∣∣∣∣∣∀ f ∈Φ :
∑
r∈R

θ
f
r = 1 and ∀r ∈ R : θ f

r > 0 ⇐⇒ r ∈ R f

}
. (7.10)

This definition ofΘ is analogues to its counterpart for the direct parameterization shown in

Equation 7.7. In contrast to the direct parameterization, this choice ofΘ has the mathematical

advantage of being finite, which is used in the next sections to define a distribution over Θ

that allows for efficient parameter inference.

Using the parameterization p A(r ) = θφ(A)
r , the probability of a derivation is given by

p(r i | θ) =
|r i |∏
k=1

θ
φ(Ai

k )

r i
k

(7.11)

where Ai
k denotes the leftmost nonterminal in the k-th step of the derivation r i ,

Ai
k = LEFTMOST(r i

1:k−1(Start)) (7.12)

as defined in Equation 5.24. In other words, Ai
k is the nonterminal to which the rule r i

k is

applied.

Every part of the probabilistic model but the prior distribution p(θ) is now specified,

p(θ, r̄ , w̄ ) = p(θ) p(r̄ | θ) p(w̄ | r̄ ) (7.13)

= p(θ)
I∏

i=1

|r i |∏
k=1

θ
φ(Ai

k )

r i
k

1
(
r i (Start) = w i

)
. (7.14)

One more generic assumption is put on the distribution of the parameters p(θ): The rewrite

probabilities of the grammar are generated independently for each feature. That is

p(θ) =
∏
f ∈Φ

p(θ f ). (7.15)
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Therefore,

p(θ, r̄ , w̄ ) =
( ∏

f ∈Φ
p(θ f )

)
I∏

i=1

|r i |∏
k=1

θ
φ(Ai

k )

r i
k

1(r i (Start) = w i ). (7.16)

A visualization of the model as a Bayesian network is shown in Figure 7.1. The next two

sections present and discuss the choice of p(θ f ).

α f

θ f

Ai
k

r i
k

Ai
k+1

Ai
k+� · · · Ai

k+�

r i
k+1

r i
k+� · · · r i

k+�

w i

f

k

i

sample rule probabilities

sample rule

sample derivation tree

Figure 7.1 – Bayesian generative model of rule probabilitiesθ, derivations r i , and sequences w i

(i ∈ {1, . . . , I }). Circles denote random choices and squares denote deterministic calculations
from random choices. The arrows show the dependencies between the random variables.
The left plate shows that for each feature f ∈Φ, the probabilities θ f of a rule being applied
to a nonterminal A ∈ N with feature φ(A) = f are drawn independently. The inner right plate
shows a recursive cell of the tree sampling process in which the rule r i

k is applied to the

nonterminal Ai
k (Ai

1 = Start, r i
k denotes the k-th rule of derivation r i , k ∈ {1, . . . , | r i | }). The

grey nodes show how the recursive cells are connected. The placeholder � is used to denote
indices that depend on random choices of their left siblings. The outer right plate shows that
the observed sequence w i is deterministically calculated from r i .
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7.2 The choice of the prior distribution

The rational belief about the grammar parameters prior to the observation is represented

by the distribution p(θ). Since the concrete value of θ is unknown, the rational belief about

θ changes with the observation of derivations r̄ = (r 1, . . . ,r I ). The full model does observe

terminal sequences, not their derivations, but in this section it is assumed that the derivations

themselves are observed to discuss the construction of the model. Bayes’ rule formalizes the

observation of derivations by

p(θ | r̄ ) ∝ p(r̄ | θ) p(θ), (7.17)

where the distribution p(θ) represents the prior belief about θ, the term p(r̄ | θ) represents the

model for (re-)generating the observed data, and the distribution p(θ | r̄ ) represents the belief

about θ as changed after the observation (the posterior belief). The observation process is thus

modeled as a multiplication of the prior belief about θ with the probability that the observed

data is generated using θ. The function θ 7→ p(r̄ | θ) is also called the likelihood function and

the value p(r̄ | θ) is called the likelihood of θ given the data r̄ . The terms likelihood function

and data-generating distribution or sample distribution are often used interchangeably.

Before the full observation process is described, we focus on how the observation of a single

rule r ∈ R f being applied to a nonterminal with feature f changes the rational belief about

θ. Using the parameterization p A(r ) = θ
φ(A)
r proposed in the last section, the observation

only changes the belief about the part of θ that represents the distribution of rules that are

applied to nonterminals with feature f — the categorical distribution represented by θ f . The

observation of the rule r is therefore fully described by

p(θ f | r ) ∝ p(r | θ f ) p(θ f ) = θ f
r p(θ f ). (7.18)

The random variable θ f ∈R|Rr |
>0 is a |R f |-dimensional vector of positive real numbers that sum

to one. Such vectors and categorical distributions p(r | θ f ) stand in a one-to-one relation. The

choice of a distribution over θ f is therefore a choice of a distribution over distributions. In

Bayesian statistics, the default choice for a distribution over categorical distributions θ f is the

Dirichlet distribution. Its density function is:

p(θ f ) = 1

B(α f )

∏
r∈R f

(θ f
r )α

f
r −1 (7.19)

The parameter vector α f ∈R|R f |
>0 stores a positive real number α f

r for each rule r ∈ R f .1 The

term B(α f ) is the normalizing constant of the distribution represented by the multivariate

1Note that the notation of such parameter vectors clashes with the notation of sequences consisting of terminals
and nonterminals. This is not expected to be a problem, because of the rather diverse nature of those objects.
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beta function B:

B(α f ) =
∫
α f ∈R|R f |

>0

∏
r∈R f

(θ f
r )α

f
r −1 (7.20)

The modeling power of the Dirichlet distribution results from the fact that the observation

of data is representable by a simple change of the distribution’s parameter vector. More con-

cretely, if α f denotes the parameter vector of the prior distribution p(θ f ), then the parameter

vector of the posterior distribution p(θ f | r ) is α̂ f where

α̂
f
r ′ =α f

r ′ + 1(r = r ′) (7.21)

for all r ′ ∈ R f , because:

p(θ f | r ) ∝ θ
f
r p(θ f ) (7.22)

∝ θ
f
r

∏
r ′∈R f

(θ f
r ′)

α
f

r ′−1 (7.23)

=
∏

r ′∈Rr

(θ f
r ′)

1(r=r ′)(θ f
r ′)

α
f

r ′−1 (7.24)

=
∏

r ′∈Rr

(θ f
r ′)

α
f

r ′+1(r=r ′)−1 (7.25)

Equation 7.21 suggests an intuitive interpretation of the parameter vector α f of the Dirichlet

distribution p(θ f ). This vector essentially stores the number of how often each rule was

observed. It is thus also called a pseudocount vector. With this intuition, the definition of the

Dirichlet distribution in Equation 7.19 implies in particular that higher rewrite probabilities

θ
f
r become more plausible as more applications of the rule r to nonterminals with feature f

are observed.

Using the notation θ f ∼ Dir(α f ) for the fact that θ f is Dirichlet distributed with pseudocount

vector α f , the observation of the rule r leads to the implication

θ f ∼ Dir(α f ) =⇒ θ f | r ∼ Dir(α̂ f ). (7.26)

Such prior distributions p(θ f ) for which the posterior p(θ f | r ) is in the same distribution

family are called conjugate priors for their data-generating distributions p(r | θ f ) (Bishop,

2006; Berger, 2013). The presented argumentation thus proves that Dirichlet distributions are

conjugate priors for categorical distributions.
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Now by assuming θ f to be Dirichlet distributed with parameter vectorα f for all features f ∈Φ,

the prior distribution p(θ) has the form

p(θ) =
∏
f ∈Φ

1

B(α f )

∏
r∈R f

(θ f
r )α

f
r −1. (7.27)

Extending Equation 7.16, the full generative model of the parameters θ, derivations r̄ , and

terminal sequences w̄ is thus completely specified by the factorization

p(θ, r̄ , w̄ ) =
( ∏

f ∈Φ

1

B(α f )

∏
r∈R f

(θ f
r )α

f
r −1

)
I∏

i=1

|r i |∏
k=1

θ
φ(Ai

k )

r i
k

1
(
r i (Start) = w i

)
. (7.28)

The next section shows that the choice of the prior distribution in Equation 7.27 makes p(θ) a

conjugate prior for p(r̄ | θ).

7.3 Exponential families

Conjugate priors are in general neither unique nor do they exist for all data-generating dis-

tributions (likelihood functions). The key point in the proof from the last section — that

Dirichlet distributions are conjugate priors for categorical distributions — is the rewriting

trick in Equation 7.24:

θ
f
r =

∏
r ′∈Rr

(θ f
r ′)

1(r=r ′) (7.29)

This identity reduces the multiplication of the likelihood function with the prior probability

to a summation in the exponent of the parameter. The trick is generalizable to a class of

distributions called exponential families. In particular, likelihood functions in this class are

proven to always have a conjugate prior.

Exponential family Let x be a random variable with sample space X , letΛ be the parameter

space of its distribution family and let λ ∈Λ be the parameter of the distribution of x. The

distribution family of x is called an exponential family if its sample space does not change

with different parameters and if its density function2 has the form

p(x) = h(x) exp
[〈
η(λ), t (x)

〉−a(λ)
]

(7.30)

2The term density function is meant here as a general concept to refer to both probability density functions of
continuous random variables and probability mass functions of discrete random variables.
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for functions

h : X →R>0 (base measure) (7.31)

a : Λ→R (log-partition function) (7.32)

η : Λ→Rd (natural parameter) (7.33)

t : X →Rd (sufficient statistics) (7.34)

where
〈
η(λ), t (x)

〉=∑d
j=1η(λ) j t(x) j denotes the Euclidean scalar product of Rd (also called

dot product or inner product).

One core idea of exponential families is the separability of the density function into terms

that only depend either on the value of x or the parameter λ. Maybe surprisingly at first,

this separation is possible for most of the common distribution families such as binomial,

categorical, multinomial, Gaussian, and Dirichlet distributions. The derivation-generating

distribution p(r̄ | θ) is also of this from for

h(r̄ ) = 1 (7.35)

a(θ) = 0 (7.36)

η(θ) f
r = logθ f

r (7.37)

t (r̄ ) f
r =

I∑
i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
r = r i

k

)
(7.38)

where r̄ ∈ R I (defined in Equation 7.2), θ ∈ Θ (defined in Equation 7.10), f ∈ Φ, and r ∈ R,

because the sample space R I does not depend on θ and

p(r̄ | θ) = exp

[
log

I∏
i=1

|r i |∏
k=1

θ
φ(Ai

k )

r i
k

]
(7.39)

= exp

 ∑
f ∈Φ
r∈R

logθ f
r

I∑
i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
r = r i

k

) (7.40)

= exp 〈 η(θ) , t (r̄ ) 〉. (7.41)

Note the similarity of Equation 7.40 and the rewrite trick for single categorical distributions in

Equation 7.24.

The sufficient statistics t (x) of an exponential family have a very intuitive interpretation. They

project a value x to exactly the information that is needed to calculate the probability p(x).

For instance, the sufficient statistics of p(r̄ | θ) give the total number of how many times a

rule r ∈ R is applied to a nonterminal with a feature f ∈ Φ in the derivations r 1, . . . ,r I ∈ R.

Since the probability of a derivation does not depend on the order of the rules, the sufficient

statistics abstract from this order by returning only the number of each rule application type.

This abstraction is, however, only possible because the sample space is restricted to sequences
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of rules that are derivations of some sequence.

The roles of the other three functions from the definition of exponential families are rather

technical. The base measure h can constantly weigh some values x higher than others, the

natural parameter is the parameter transformation that enables the separation from the

sufficient statistics, and the log-partition function is simply the logarithm of the normalizing

constant of the distribution,

a(λ) = log
∫

x∈X
h(x)exp

〈
η(λ), t (x)

〉
. (7.42)

The prior distribution p(θ) belongs also to an exponential family with

h(θ) = 1 (7.43)

a(α) =
∑
f ∈Φ

logB(α f ) (7.44)

η(α) f
r =α f

r −1 (7.45)

t (θ) f
r = logθ f

r (7.46)

where θ ∈ Θ (defined in Equation 7.10), α ∈ R|Φ|×|R|
>0 , f ∈ Φ, and r ∈ R, because the sample

spaceΘ does not depend on α and

p(θ) = exp

[
log

∏
f ∈Φ

1

B(α f )

∏
r∈R f

(θ f
r )α

f
r −1

]
(7.47)

= exp

[ ∑
f ∈Φ

∑
r∈R

(α f
r −1)logθ f

r −
∑
f ∈Φ

logB(α f )

]
(7.48)

= exp
[〈 η(α) , t (θ) 〉−a(α)

]
. (7.49)

A comparison of the exponential forms of the likelihood p(r̄ | θ) and the prior p(θ) reveals

that the natural parameter of the likelihood is equal to the sufficient statistics of the prior,

η(θ) = t (θ). This prior is therefore a conjugate prior, because

p(θ | r̄ ) ∝ p(r̄ | θ) p(θ) (7.50)

∝ exp
[〈
η(θ), t (r̄ )

〉+〈
η(α), t (θ)

〉]
(7.51)

= exp
〈
η(α)+ t (r̄ ), t (θ)

〉
(7.52)

= exp
〈
η(α+ t (r̄ )), t (θ)

〉
(7.53)

by symmetry and linearity in the first component of the scalar product. Since the distri-

bution family of p(θ | r̄ ) is known, its density can be computed exactly in exponential and
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conventional form,

p(θ | r̄ ) = exp
[〈
η(α̂), t (θ)

〉−a(α̂)
]= ∏

f ∈Φ

1

B(α̂ f )

∏
r∈R f

(θ̂ f
r )α̂

f
r −1, (7.54)

where α̂ f
r =α f

r +∑I
i=1

∑|r i |
k=1 1

(
f =φ(Ai

k )
)
1
(
r = r i

k

)
.

7.4 Coordinate ascent variational inference (CAVI)

The full model is specified as a factorization of the joint distribution of parameters θ, deriva-

tions r̄ , and terminal sequences w̄ in Equation 7.28. The conditional distribution p(θ, r̄ | w̄ )

of parameters θ and derivations r̄ given the dataset of observed sequences w̄ inherits all

information that can be learned from this observation under assumptions of the model. For

instance, the marginal distribution p(θ | w̄ ) =∑
r̄∈R I p(θ, r̄ | w̄ ) can be used to compute the

probability of a new unseen sequence v ∈ T ∗,

p(v | w̄ ) =
∫
θ∈Θ

p(v ,θ | w̄ ) =
∫
θ∈Θ

p(v | θ, w̄ ) p(θ | w̄ ). (7.55)

The calculation of the normalizing constant p(w̄ ) of the posterior distribution

p(θ, r̄ | w̄ ) = p(θ, r̄ , w̄ )

p(w̄ )
(7.56)

is, however, intractable. This section thus presents an approximation method to compute

p(θ, r̄ | w̄ ) based on variational Bayesian inference.

The idea of variational Bayesian inference is to approximate the distribution p(θ, r̄ | w̄ ) with

a distribution q(θ, r̄ ) from a simpler family. The family of the considered approximations is

thereby chosen to closely resemble the original distribution specified by the generative model.

This study approximates p(θ, r̄ | w̄ ) by assuming independence between the parameters θ

and the derivations r̄ ,

p(θ, r̄ | w̄ ) ≈ q(θ, r̄ ) = q(θ) q(r̄ ), (7.57)

where the distributions q(θ) and q(r̄ ) are chosen to be in the same class as p(θ) and p(r̄ | θ),

respectively. That is, q(θ) is a product of Dirichlet distributions with pseudocount vectors α̃ f

over features f ∈Φ,

q(θ) =
∏
f ∈Φ

1

B(α̃ f )

∏
r∈R f

(θ f
r )α̃

f
r , (7.58)

103



Chapter 7. Bayesian Inference

and q(r̄ ) is a distribution over derivations with parameters θ̃,

q(r̄ ) =
I∏

i=1

|r i |∏
k=1

θ̃
φ(Ai

k )

r i
k

. (7.59)

This kind of approximation that only assumes independence of a model’s latent variables by

keeping the distribution families for each variable, is called a mean-field assumption in the

literature (Blei et al., 2017).

The goal of inference is to find a distribution q(θ, r̄ ) in the family of considered approximations

that is as similar to the approximated distribution p(θ, r̄ | w̄ ). The similarity between the

distributions q(θ, r̄ ) and p(θ, r̄ | w̄ ) is measured by their Kullback-Leibler divergence (KL

divergence),

KL
(
q(θ, r̄ )

∥∥ p(θ, r̄ | w̄ )
)= Eq(θ,r̄ )

[
log q(θ, r̄ )− log p(θ, r̄ | w̄ )

]
, (7.60)

which is the expected logarithmic difference. This KL divergence cannot be computed directly,

because it requires the computation of the probability p(θ, r̄ | w̄ ). Fortunately, the unknown

normalizing constant p(w̄ ) of the distribution p(θ, r̄ | w̄ ), also called the evidence for the

model, can be moved out of the expectation,

Eq(θ,r̄ )
[
log q(θ, r̄ )− log p(θ, r̄ | w̄ )

]= Eq(θ,r̄ )
[
log q(θ, r̄ )− log p(θ, r̄ , w̄ )

]+ log p(w̄ ), (7.61)

which implies

KL
(
q(θ, r̄ )

∥∥ p(θ, r̄ | w̄ )
)+Eq(θ,r̄ )

[
log p(θ, r̄ , w̄ )− log q(θ, r̄ )

]= log p(w̄ ). (7.62)

Since the KL divergence is always positive or equal to zero (Kullback and Leibler, 1951), the

term

Eq(θ,r̄ )
[
log p(θ, r̄ , w̄ )− log q(θ, r̄ )

]
(7.63)

is called the Evidence Lower BOund (ELBO). Minimizing the KL divergence is therefore equiva-

lent to maximizing the ELBO.

The ELBO can be iteratively improved by maximization with respect to one latent variable

at a time. This procedure is called Coordinate Ascent Variational Inference (CAVI; see e.g.,

Bishop, 2006). The optimal coordinate ascent update with respect to θ is derived analytically

104



7.4. Coordinate ascent variational inference (CAVI)

by rewriting the ELBO with constant r̄ :

Eq(θ,r̄ )
[
log p(θ, r̄ , w̄ )− log q(θ, r̄ )

]
= Eq(θ)

[
Eq(r̄ )

[
log p(θ, r̄ , w̄ )

]−Eq(r̄ )
[
log q(θ)+ log q(r̄ )

]]
(7.64)

= Eq(θ)
[
Eq(r̄ )

[
log p(θ, r̄ , w̄ )

]− log q(θ)
]−Eq(r̄ )

[
log q(r̄ )

]
(7.65)

= Eq(θ)
[
Eq(r̄ )

[
log p(θ | r̄ , w̄ )

]− log q(θ)
]+Eq(r̄ )

[
log p(r̄ , w̄ )− log q(r̄ )

]︸ ︷︷ ︸
constant

(7.66)

Here, Equation 7.64 iterates the expectation and applies the mean-field assumption (Equa-

tion 7.59). Equations 7.65 and 7.66 use the linearity of the expected value and the definition of

conditional probability. The next step is the creative part of the mathematical derivation. It is

easy to understand that it works, but it might look like magic first. By setting

q∗(θ) ∝ exp Eq(r̄ )
[
log p(θ | r̄ , w̄ )

]
, (7.67)

it follows that the ELBO is equal to the negative KL divergence between q(θ) and q∗(θ) plus

an additive constant,

Eq(θ,r̄ )
[
log p(θ, r̄ , w̄ )− log q(θ, r̄ )

]=−KL
(
q(θ)

∥∥ q∗(θ)
)+constant term. (7.68)

Maximizing the ELBO with respect to θ is thus equivalent to minimizing KL
(
q(θ)

∥∥ q∗(θ)
)
.

Since the KL divergence cannot be negative, it is minimized if its arguments are equal. The

optimal coordinate ascent update with respect to θ by fixed r̄ is therefore achieved by setting

q(θ) := q∗(θ). The analogue update with respect to r̄ is given by

q∗(r̄ ) ∝ exp Eq(θ)
[
log p(r̄ | θ, w̄ )

]
. (7.69)

Equations 7.67 and 7.69 state the optimal updates of the distributions. The following calcula-

tion derives the update equations for the variational parameters (e.g., the parameters of the

approximating distributions q(θ) and q(r̄ )). Since

p(θ | r̄ , w̄ ) ∝ exp
〈
η(α)+ t (r̄ ), t (θ)

〉
(7.70)

by Equation 7.53, the updated distribution q∗(θ) is in the same exponential family as q(θ),

q∗(θ) ∝ exp Eq(r̄ )
[〈
η(α)+ t (r̄ ), t (θ)

〉]
(7.71)

= exp
〈
η(α)+Eq(r̄ ) [t (r̄ )] , t (θ)

〉
. (7.72)

The coordinate ascent parameter update for the distribution q(θ) is therefore

α̃
f
r :=α f

r +Eq(r̄ )

[
I∑

i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
r = r i

k

)]
, (7.73)

where the expected value is approximated using the Monte-Carlo estimate in Equation 6.36.
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Note that α denotes the parameter of the prior distribution p(θ) and α̃ denotes the parameter

of the approximation distribution q(θ).

Analogously to Equation 7.70,

p(r̄ | θ, w̄ ) ∝
(

I∏
i=1

1
(
r i (Start) = w i

))
exp

〈
η(θ), t (r̄ )

〉
(7.74)

by Equation 7.41. The updated distribution q∗(r̄ ) is thus in the same exponential family as

q(r̄ ),

q∗(r̄ ) ∝ exp Eq(θ)

[
log

I∏
i=1

1
(
r i (Start) = w i

)
+〈η(θ), t (r̄ )〉

]
(7.75)

=
(

I∏
i=1

1
(
r i (Start) = w i

))
exp

〈
Eq(θ)

[
η(θ)

]
, t (r̄ )

〉
. (7.76)

The coordinate ascent parameter update for the distribution q(r̄ ) is therefore

θ̃
f
r := expEq(θ)

[
logθ f

r

]
=

expγ
(
α̃

f
r

)
expγ

(∑
r∈R f

α̃
f
r

) , (7.77)

where

γ : R>0 →R>0, γ(x) = d

d x
logΓ(x), (7.78)

denotes the digamma function.3 Thereby, Equation 7.77 follows from the fact that q(θ f ) is a

Dirichlet distribution with pseudocount vector α̃ f .

The alternating CAVI updates of the variational parameters α̃ and θ̃ given by Equations 7.73

and 7.77 converge to a local minimum of the KL divergence in Equation 7.60. The inference

procedure should therefore be performed multiple times with different start values. CAVI is

furthermore easily generalizable to stochastic variational inference that uses batch updates

instead of the whole dataset to calculate the expected value in Equation 7.73 (Hoffman et al.,

2013).

7.5 Summary

Given an ACFG G = (T, N ,Start,R) with a feature projectionφ : N →Φ and a dataset of terminal

sequences w̄ = (w 1, . . . , w I ) ∈ (T ∗)I , this study proposes to assume that nonterminals with

equal features share a distribution over applicable rewrite functions. The full generative model

3The digamma function is usually denoted by ψ in the literature. In this study, it is denoted by γ to avoid
unnecessary notation overloading.
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of the grammar’s parameters

Θ=
{
θ ∈R|Φ|×|R|

≥0

∣∣∣∣∣∀ f ∈Φ :
∑
r∈R

θ
f
r = 1 and ∀r ∈ R : θ f

r > 0 ⇐⇒ r ∈ R f

}
, (7.79)

and the derivations

R = {r ∈ R∗ | ∃w ∈ T ∗ : r (Start) = w } (7.80)

of the observed sequences w̄ is defined by the joint distribution

p(θ, r̄ , w̄ ) = p(θ) p(r̄ | θ) p(w̄ | r̄ ) (7.81)

=
( ∏

f ∈Φ
p(θ f )

)
I∏

i=1

|r i |∏
k=1

θ
φ(Ai

k )

r i
k

1(r i (Start) = w i ), (7.82)

where p A(r ) = θφ(A)
r .

The distribution p(θ, r̄ | w̄ ) represents the information that the model can learn from the

observed sequences w̄ . Since the computation of the normalizing constant of this distribution

is intractable to compute, the distribution is approximated by a distribution from a simpler

family which assumes independence of θ and r̄ ,

p(θ, r̄ | w̄ ) ≈ q(θ, r̄ ) = q(θ) q(r̄ ), (7.83)

where:

q(θ) =
∏
f ∈Φ

1

B(α̃ f )

∏
r∈R f

(θ f
r )α̃

f
r (7.84)

q(r̄ ) =
I∏

i=1

|r i |∏
k=1

θ̃
φ(Ai

k )

r i
k

. (7.85)

The optimal parameters α̃ and θ̃ of the approximation q(θ, r̄ ) are computed by alternating

coordinate ascent updates

α̃
f
r :=α f

r +Eq(r̄ )

[
I∑

i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
r = r i

k

)]
(7.86)

θ̃
f
r :=

expγ
(
α̃

f
r

)
expγ

(∑
r∈R f

α̃
f
r

) (7.87)

where the expected value is approximated using the Monte-Carlo estimate in Equation 6.36

and γ denotes the digamma function. These iterative updates lead to a locally optimal approx-

imation. The inference procedure is therefore performed multiple times with varying start

values.
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8 Grammar models for harmony and
rhythm

The computational experiments described in the following two chapters use three grammar

models for harmony and one for rhythm. Those models are applied both as product grammar

models and as single-component models of either harmony or rhythm. This chapter describes

the four component grammars in detail. All of them are in a (weakly) generalized Chomsky-

normal form where each rule r ∈ R is classified into one of three types:

Start rules which rewrite the start symbol into a nonterminal, r : N 7→ N with

dom(r ) = {Start},

Terminal rules which rewrite nonterminals into terminals, r : N 7→ T , and

Binary rules which rewrite nonterminals into sequences of two nonterminals,

r : N 7→ N 2.

The binary rules can be further broken down into three types:

Duplication rules for which r (A) = A A for all A ∈ dom(r ),

Left-headed rules for which r (A) = A B for all A ∈ dom(r ) and some B ∈ N and,

Right-headed rules for which r (A) = B A for all A ∈ dom(r ) and some B ∈ N ,

where the nonterminal B depends on A. Rules that are either left- or right-headed are simply

referred to as headed. As described in Chapters 1 and 4, duplication rules and headed rules

are of particular importance for music modeling, because they formalize the music-theoretic

concepts of prolongation and elaboration.1

All of the proposed grammars essentially allow for all possible headed rules and duplication

rules. The inference of the rewrite probabilities from data then leads to grammars in which

1Duplication rules correspond to strong prolongations. A weak prolongation is either a left- or a right-headed
rule.
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Chapter 8. Grammar models for harmony and rhythm

most of the probability mass is shared by only a few rules. In other words, instead of strictly

excluding certain grammar rules, smoothed grammars are used in which those rules that

would have been excluded in expert-created rule sets have a very low but positive probability

in the grammars inferred from data. Smoothed grammars are preferred over expert-created

grammars, because the main interest of this study is grammar learning. By using large sets

of rules which are possible prior to any observation, grammar learning can be simulated as

inference of rewrite probabilities as described in the previous chapter. Chapter 9 considers

supervised learning, for which the observations are the expert-created trees of the Jazz har-

mony treebank (see Chapter 4). Chapter 10 considers unsupervised learning, in which only

chord sequences are observed and the derivation trees are inferred together with the rewrite

probabilities.

For each grammar, a feature projection φ : N →Φ is used to define the parameterization of

its probability model. As introduced in Section 7.1 with Equation 7.8, a feature projection is

a surjective mapping from the set of nonterminals N to a set of feature values Φ such that

all nonterminals which are projected onto the same feature share a distribution over rewrite

rules. That is, for all nonterminals A,B ∈ N and rules r ∈ R,

φ(A) =φ(B) =⇒ p A(r ) = pB (r ). (8.1)

The sharing of probability distributions does improve the learnability of the grammars as

shown in the computational experiments presented in the following chapters.

8.1 Grammar models of harmony

Before describing the particular grammars, the representation of chord symbols such as Dm7,

G7, and Cm is introduced. These chords are formalized as pairs consisting of a chord form

and a chord root. The form of the chord, such as minor seventh �m7, dominant seventh �7,

and minor �m, describes its interval structure relative to the root.2 The (finite) set of all chord

forms is denoted FORMS. The root of the chord, such as D, G, or C, is specified in one of two

ways. To represent roots that distinguish spellings such that C]m7 6≡ D[m7, Tonal Pitch Classes

(TPCs) are used which consist of an integer from zero to seven representing the diatonic

scale (C ≡ 0, D ≡ 1, . . . ), plus an additional feature representing alterations such as ], [, [[, or \

(Temperley, 2000). In one of the grammars below, Pitch Classes (PCs) are used, a representation

on the chromatic scale which does not distinguish spellings. In the following, pitch classes

are always denoted in square brackets (C ≡ [0], C]≡ [1] ≡ D[, . . . ). The combination of a chord

form and a root specification using a (tonal) pitch class is called a (T)PC-chord symbol. All

observed chords and all terminal symbols of harmony grammars are modeled as TPC-chord

symbols in the computational experiments.

2The square � stands for an arbitrary root.
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8.1. Grammar models of harmony

8.1.1 TPC-chord grammar

The first grammar type, the TPC-chord grammar, is the simplest. It is a standard context-free

grammar which identifies both terminals and nonterminals as TPC-chord symbols. The set of

terminals is exactly the set of TPC-chord symbols. The set of nonterminals consists of the set

of TPC-chord symbols plus a distinguished start symbol. The set of rules consists of a start

rule Start −→ A for each TPC-chord symbol A ∈ N , a terminal rule A −→ A for each TPC-chord

symbol A where the underline indicates a terminal, and all possible duplication rules and

headed rules. The chord sequence G7 C4 could, for example, be derived by:

Start −→ C4

−→ G7 C4

−→ G7 C4

−→ G7 C4

The feature projection of the TPC-chord grammar is the identity,

φ : N → N , φ(A) = A. (8.2)

8.1.2 PC-chord grammar

Music theory describes the harmonic system of Jazz as chromatic and enharmonic. This

is amongst others reflected in the fact that chord symbols are commonly written using en-

harmonic equivalent spellings if the correct pitch spelling has two or more accidentals. For

instance in the lead sheet of the Jazz standard Blue moon printed in the New Real Book Vol-

ume III in the key of E[ minor, a chord A[m7 is prepared by a tritone-substituted dominant

A7 (Sher, 1995). The correct pitch-spelling of the dominant would, however, be B[[7. For

critics who argue that this is just an example of notational convenience, not a reflection of

the properties of the harmonic space, Blue moon provides a second and more fundamental

example of enharmonic-equivalent pitch spelling — a sequence of dominant-seventh chords

descending by half steps, denoted by D[7 C7 B7 B[7. A correct pitch-spelling of the sequences

would be E[[[7 D[[7 C[7 B[7, highlighting the stepwise descent. However, this spelling does

not account for the fact that Db7 can also act as a dominant in Eb major — the [VII chord

known as the backdoor dominant (e.g., Granroth-Wilding and Steedman, 2014). This example

thus highlights the importance of pitch spelling, but also the limitations and ambiguity of

chord spellings as used in Jazz lead sheets.

To model the enharmonic equivalence of the harmonic system of Jazz, this study proposes the

second kind of harmony grammar, the PC-chord grammar, which ignores spelling distinctions

in nonterminal chords. In addition to modeling enharmonic equivalence, this allows also a

simple kind of transpositional invariance in the rule system.
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Chapter 8. Grammar models for harmony and rhythm

The set of terminals of a PC-chord grammar is the set of TPC-chord symbols. The set of

nonterminals consists of the start symbol and all PC-chord symbols. A PC-chord with root

X and chord form F ∈ FORMS is denoted by XF. The set of rules consists of a start rule

Start −→ XF for each PC-chord symbol XF, a terminal rule for each distinct spelling of a PC

into a corresponding TPC (e.g., [1] 7→ C] and [1] 7→ D[), a duplication rule DUPL : N 7→ N 2 with

dom(DUPL) = N \ {Start}, and the following headed rules where ι ∈ { [0], . . . , [11]} denotes an

interval on the chromatic scale and the root Y equals X + ι mod 12:

LEFTι,F’(XF) = XF YF’ dom(LEFTι,F’) = { XF | XF 6= YF’ } (8.3)

RIGHTι,F’(XF) = YF’ XF dom(RIGHTι,F’) = { XF | XF 6= YF’ } (8.4)

These rules elaborate the chord XF by chords with chord form F’ whose roots are ι semitones

higher than X , for example, LEFT9,m7 ([0]4) = [0]4 [9]7 and RIGHT7,m7 ([7]7) = [2]7 [7]7. The

domain restrictions ensure that duplication rules and headed rules do not overlap. The chord

sequence G7 C4 could for example be derived by:

Start −→ [0]4

−→ [7]7 [0]4

−→ G7 [0]4

−→ G7 C4

On one hand, the representation of chord roots as PCs instead of TPCs loses information, for

instance, about the key. Consider for example the dominant-seventh chords B7and C[7; they

both have the pitch class 11 as root, but convey different information about the key in which

they appear. The first chord B7is the fifth scale degree in the keys E major and E minor and is

thus likely to appear in these keys. The second chord C[7would be the scale degree [[VI in the

key E major and [VI in E minor. It is therefore not likely to appear in these keys. Instead, it is

for example more likely to appear as tritone-substituted dominant in the key B[major — as

scale degree [II — or as tritone-substituted double dominant in the key E[major — as scale

degree [II/V.

On the other hand, the representation of chord roots as PCs enables a simple transpositionally

invariant parametrization of the grammar where all chords of the same form share a rewrite

distribution. This is accomplished using the feature projection

φ : N → FORMS] {Start} (8.5)

that maps the start symbol to itself, φ(Start) = Start, and a PC-chord to its chord form, φ(XF) =
F. The probability of rewriting a PC-chord XF with a rule r ∈ R is therefore given by

pXF (r ) = pφ(XF)(r ) = pF (r ). (8.6)
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This parametrization makes the PC-chord grammar robust to different keys of chord sequences

and properly handles local modulations.

8.1.3 Unsupervised harmony grammar with induced nonterminal categories

Fully unsupervised grammar induction is the task to infer the nonterminals, the rules, and the

rewrite probabilities of a grammar from the observation of only sequential data. Since the TPC-

chord and the PC-chord grammars use predefined nonterminal representations, grammar

induction using these models could be considered to be weakly supervised. To investigate

which nonterminal representations are learnable from a dataset of Jazz chord sequences, a

grammar model with induced nonterminal categories is introduced in the following.

This grammar uses M ∈N+ unstructured nonterminals; it is a standard context-free grammar

whose set of nonterminals comprises the start symbols and the natural numbers from 1 to

M . The set of rules consists of a start rule Start −→ m for each m ∈ {1, . . . , M }, a terminal

rule m −→ a for each combination of m ∈ {1, . . . , M } and TPC-chords a ∈ T , and all possible

duplication rules and headed rules. The feature projection of the unsupervised harmony

grammar is the identity. The chord sequence G7 C4 could for example be derived as shown

below. Note that the nonterminal numbers are completely arbitrary in this grammar and in

this example. Their meaning arises in the way that the model learns to use these symbols to

(re-)generate observed data. This is why the nonterminals of the unsupervised grammar are

called induced categories.

Start −→ 4

−→ 1 4

−→ G7 4

−→ G7 C4

8.2 A joint grammar model of rhythm

To improve the learning of the harmony grammars, all models of harmonic structure are paired

with a model of rhythmic structure using the product construction described in Section 5.5.

The feature projection of a product grammar is thereby defined as the function that maps

a pair of nonterminals component-wise to the pair of their features. The proposition of

product-grammar models is a core contribution of this thesis. The PACFG framework allows

to formalize product grammars in the same way as individual grammars, allowing for simple

model architectures.

The rhythm grammar was already motivated and introduced in Section 5.1; this paragraph

gives a brief summary. The rhythm grammar uses rational numbers 0 < u ≤ 1 as terminals

that represent chord durations relative to the entire chord sequence. The set of nonterminals

N ∼= T ]{Start} establishes a one-to-one correspondence between terminals and nonterminals,
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analogous to the TPC-chord grammar. The set of rules consists of one start rule Start −→ 1,

one terminal rule that maps nonterminals to their respective terminals, and binary split rules

SPLITs : N \ {Start} → N 2, SPLITs(u) = (su) (u − su) (8.7)

for finitely many split ratios s ∈Q,0 < s < 1. To parameterize the rewrite probabilities indepen-

dently from the chord durations, the feature projection

φ : N → {0,1} , φ(A) = 1 (A = Start) (8.8)

is used that checks whether a nonterminal is the start symbol or not. The rewrite probabilities

therefore do not depend on the particular duration of a chord somewhere in a derivation, but

only on the split ratios of the rules that will be applied to the chord.

To illustrate the generative mechanics of product grammars, the following example shows

a derivation of the chord sequence G7 C4 with durations 1/2 and 1/2 using the product of

the PC-chord grammar with the rhythm grammar. The product rules (e.g., pairs of rules from

the component grammars) used in the derivation steps are indicated as subscripts on the

derivation arrows.

Start −→(START[0]4 ,START) ([0]4,1)

−→(RIGHT7,�7 ,SPLIT1/2) ([7]7 ,1/2) ([0]4,1/2)

−→(TERMINATE[,TERMINATE) (G7 ,1/2) ([0]4,1/2)

−→(TERMINATE[,TERMINATE) (G7 ,1/2) (C4 ,1/2)

Here, the rule TERMINATE[ denotes the terminal rule of the PC-chord grammar that corre-

sponds to the pitch-spelling which uses flats. However, it would be the same if the spelling

which uses sharps would have been used.
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9 Supervised grammar learning1

This chapter presents computational experiments in which the rewrite probabilities of har-

mony grammars are learned from the expert-created tree analysis of the Jazz Harmony Tree-

bank (JHT, see Chapter 4). The rule sets of the grammars include all possible headed rules and

duplication rules. Prior to learning from the treebank, all rewrite probabilities are considered

equal. The large amount of rewrite rules both smooths the grammar models and makes them

robust against chord symbols not seen during training, at the cost of increasing parsing time.

However, the parsing speed of the models were not a problem in practice. All models ran

(including training and prediction, excluding plotting and bootstrapping) in under 20 seconds

on a MacBook Pro (15-inch, 2019) with a 2.6 GHz 6-Core Intel Core i7 processor and 16GB

memory.2

The basic question studied in the supervised experiments is: which grammar models gen-

eralize best from the observation of example tree analyses. These experiments are called

supervised, because the observed tree analyses guide the learning of the models. In con-

trast, the next chapter presents unsupervised experiments in which harmony grammars are

learned from the observation of the chord sequences alone (without observing any tree analy-

ses). The function of the supervised experiments is therefore also to set expectations for the

unsupervised experiments.

The TPC-chord grammar model (transpositionally dependent parameterization) and the PC-

chord grammar model (transpositionally independent parameterization) are tested with and

without a joint grammar model of rhythm, see Chapter 8 for more details. The results of the

experiments are analysed quantitatively and qualitatively to study the following two main

hypotheses:

1Parts of the results presented in this chapter are already published in a peer-reviewed article: Harasim, D.,
O’Donnell, T. J., and Rohrmeier, M. (2019). Harmonic Syntax in Time: Rhythm Improves Grammatical Models of
Harmony. Proceedings of the 20th International Society for Music Information Retrieval Conference

2All models are implemented in Haskell. The code is planed to be published in the form of a grammar inference
library in the future.
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1. Jointly modeling rhythm improves grammar models of harmony.

2. A transpositionally invariant parameterization improves garmmar models of harmony.

Jointly modeling rhythm is likely to improve grammar models for Jazz harmony, because of the

rhythmic regularity of harmonic phrases described in Sections 1.5 and 5.1. A transpositionally

invariant parameterization of harmonic rewrite rules is likely to improve harmonic grammar

models, because of human’s relative pitch perception. Therefore, it makes sense to assume a

learning mechanism which focuses on the relation between chords instead of absolute pitches.

This key invariance of harmonic relations is applicable to Jazz but has been questioned for

other styles such as Western classical music (Quinn and White, 2017). Furthermore, the usage

of transpositional invariant rules decreases the size of the grammar, which could either be

beneficial because it increases the learning speed, or disadvantageous if too much information

is lost.

The experiments provide strong evidence for both hypotheses. In fact, jointly modeling

rhythm improves the (unlabeled) accuracy of the predicted derivations (defined below in

detail) by about 15%. In contrast, the effect size of transpositional invariance is much lower.

Transpositional invariance improves the accuracy of the predictions by about 2%. Additional

findings and insights are presented and discussed later with the results.

Supervised learning of rewrite probabilities by observation of derivation trees is much easier

than unsupervised learning from the observation of bare chord sequences. Such supervised

learning can be performed by simple counting of the rewrite rules used in the derivations;

it does not require variational Bayesian approximations. Using the notation developed and

the equations derived in Chapter 7, the probability of a grammar’s rewrite probabilities θ

conditioned on observed derivations r̄ is given in closed form as a product of Dirichlet

distributions (see Equation 7.54),

p(θ | r̄ ) =
∏
f ∈Φ

1

B(α̂ f )

∏
r∈R f

(θ̂ f
r )α̂

f
r −1, (9.1)

where

α̂
f
r =α f

r +
I∑

i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
r = r i

k

)
(9.2)

for features f ∈ Φ and rules r ∈ R f . The notation is chosen such that r denotes a rule, r

denotes a sequence of rules that represent a derivation tree, r̄ denotes a dataset of derivations,

r i denotes the i -th derivation in the dataset r̄ , and r i
k denotes the k-th rule of the i -th

derivation. The form of p(θ | r̄ ) results from the fact that the rewrite-rule distributions are

sampled independently from Dirichlet distributions for each feature. For the experiments,

all hyperparameters α f
r are set to 0.1. The resulting prior distribution p(θ) does not favor

any particular rewrite rule, but encodes that the rewrite-rule distributions are expected to
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have rather low entropy for all features.3 Furthermore, the learning of product grammars

is performed by propagating the rule counts to the rule distributions of the component

grammars.

The treebank analyses which apply open constituents are used for supervised learning. The

asterisks that mark the roots of open constituents as introduced in Chaper 4 are, however, not

used in order to enhance the compatibility with the unsupervised grammar models in the next

chapter.

9.1 Quantitative evaluation measures

All model evaluation is performed by leave-one-out cross-validation. That is, each model

is trained (by rule counting) on 149 derivation trees of the JHT and evaluated on the chord

sequence of the left-out tune. Leave-one-out cross-validation thus has the advantage that

the models can be trained and evaluated on all data without evaluating any model on a tune

that it was trained on. It therefore avoids overfitting. Leave-one-out cross-validation is of

particular importance for the presented experiments, because the JHT is too small to be split

in fixed subsets for training and evaluation.

9.1.1 Tree prediction assessment

The trained grammars are used to predict derivation trees for chord sequences. The tree

prediction is defined as the most probable derivation of the respective chord sequence. The

most probable derivation (also called maximum a posteriori estimation) of a sequence w ∈ T ∗

is the derivation r ∈ DER(w ) which maximizes the probability p(r | r̄ ), where r̄ denotes the

dataset of observed trees during training. It is given by

argmax
r∈DER(w )

p(r | r̄ ) = argmax
r∈DER(w )

∫
θ

p(r | θ) p(θ | r̄ ) (9.3)

and can be computed in the semiring parsing framework as described in Section 6.2 near

Equation 6.20.

The tree predictions of the models are evaluated using two quantitative measures which

assess the similarity between the predictions and the JHT trees. Both measures yield rational

numbers between 0 and 1, where 0 stands for minimal and 1 for maximal similarity. Since the

aim is to also evaluate models which use different nonterminals than used in the JHT (e.g.,

nonterminals that are not TPC chords), nonterminal-agnostic measures are chosen. Such

measures are called unlabeled similarity measures. In the following, the term accuracy is used

for a similarity measure which compares a tree prediction to a JHT tree.

3The (Shannon) entropy of a discrete random variable’s distribution p(x) is defined as −∑
x∈X p(x) log p(x),

where X denotes the set of all possible values the random variable can take. It can be interpreted as a measure for
how unpredictable the distribution p(x) is. See for instance MacKay (2003) for more explanation.
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Step 1: collapse unary rules

C4

C4

C4G7

G7Dm7

Dm7Am7

C4

C4

C4

C4G7

G7Dm7

C4

Am7C4

Step 2: relabel with indices and subtree ranges

(1,5)

(2,5)

5(2,4)

4(2,3)

32

1

(1,5)

(3,5)

5(3,4)

43

(1,2)

21

Step 3: collect subtree ranges (labels of internal nodes) into sets

X = { (1,5), (2,5), (2,4), (2,3)} Y = { (1,5), (1,2), (3,5), (3,4)}

Step 4: calculate proportion of common subtree ranges

|X ∩Y | / |X | = 1/4

Figure 9.1 – (Unlabeled) tree accuracy calculation in 4 steps. The two columns represent the
simultaneous computations for the two input trees. See the main text for more details.
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Step 1: collapse unary rules
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Step 2: create reference graph

C4 Am7 Dm7 G7 C4 C4 Am7 Dm7 G7 C4

Step 3: relabel with indices

1 2 3 4 5 1 2 3 4 5

Step 4: collect directed edges into a set

X = { (1,5), (2,3), (3,4), (4,5)} Y = { (1,5), (2,1), (3,4), (4,5)}

Step 5: calculate proportion of common directed edges

|X ∩Y | / |X | = 3/4

Figure 9.2 – (Unlabeled) dependency accuracy calculation in 5 steps. The two columns
represent the simultaneous computations for the two input trees. See the main text for more
details.
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The first measure is called (unlabeled) tree accuracy; it is defined as the proportion of correctly

predicted constituents that comprise at least two symbols. In this definition, a constituent

refers to a subsequence whose chord symbols are the leafs of a subtree. A constituent can

therefore be represented by its start and end index in the full chord sequence that describe

its range. The following presents a definition that is well-defined for all derivation trees

constructed from unary and binary rules. The tree-accuracy calculation is visualized in

Figure 9.1 in 4 steps. The first step collapses the unary rule applications of the trees to be

compared, yielding two binary trees. Unary rule applications are irrelevant to the proposed

measure because only constituents that comprise at least two terminals are considered and

nonterminal labels are ignored. The second step relabels the leafs (the elements of the chord

sequence) with their sequence indices and the internal tree nodes with the index range they

span over. Such a range is defined as a pair of two indices, the index of the leftmost and the

index of the rightmost leaf. Since each internal tree node uniquely represents the subtree

whose root it is, the range of an internal tree node can also be considered the range of the

corresponding subtree and its corresponding constituent. The third step collects the ranges of

the trees into two sets and the final step yields the tree accuracy as the proportion of common

subtree ranges.

The second measure is called (unlabeled) dependency accuracy; it is defined as the proportion

of correctly predicted harmonic references. Dependency accuracy is, like tree accuracy, an

evaluation measure used in computational linguistics. This paragraph presents a definition of

dependency accuracy that is well-defined for derivation trees constructed from duplication

rules, headed rules, and unary start and terminal rules. The dependency accuracy calculation

is visualized in Figure 9.2 in 5 steps. The first step is equivalent to the tree-accuracy calcu-

lation; it collapses the unary rule applications. The second step transforms the tree into its

corresponding reference graph by mapping left-headed rule application to leftwards-directed

reference arrows and right-headed as well as duplication rule applications to rightwards-

directed reference arrows (see Chapter 1 for more details). The third step relabels the vertices

of the reference graph (the chord symbols) with the indices of the sequence. The fourth step

then collects the edges of the resulting graphs (represented by ordered pairs of sequence

indices) into two sets. The order of the pair thereby represents the direction of the arrow. The

fifth and last step finally yields the dependency accuracy as the proportion of common chord

references.

Tree accuracy and dependency accuracy are correlated, but not deterministically dependent.

In some cases the former is higher, in other cases the latter. However, dependency accuracy is

in practice usually higher than tree accuracy, because it punishes a wrong decision only once.

Figure 9.3 shows trees and reference graphs for an imaginary treebank tree and three tree pre-

dictions to illustrate the relation between tree accuracy and dependency accuracy. The chord

sequence derived by all trees is the exemplary cadential progression C4 Am7 Dm7 G7 C4.

The first tree prediction shows an example in which the wrong attachment of the chord Am7

is punished 3 times by the tree accuracy measure, but only once by dependency accuracy.

The word wrong is here of course understood in relation to the treebank, not as a normative
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Figure 9.3 – Comparison of tree accuracy and dependency accuracy for three examples.
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term. The second example is a derivation tree which is in its unlabeled structure similar to

the treebank tree, but whose labels introduce a quiet different reference graph. This example

is complementary to the first example in the sense that the tree accuracy is here three times

higher than the dependency accuracy. The third and last example shows a tree prediction in

which the Dm7chord does not refer to the G7chord, but directly to C4. Both tree accuracy and

dependency accuracy yield the same value of 3/4 in this case.

9.1.2 Treebank-independent evaluation

Additional to the accuracy evaluation of the tree predictions, which depends on the treebank

analyses, all models are also evaluated with a treebank-independent measure. Note that the

training of the models still depends on the treebank, only the evaluation of a trained model is

treebank-independent. An evaluation measure based on the predictive probabilities of the

chord sequences is used,

p(w | r̄ ) =
∑

r∈DER(w )
p(r | r̄ ) =

∑
r∈DER(w )

∫
θ∈Θ

p(r | θ) p(θ | r̄ ), (9.4)

where r̄ denotes the dataset of observed trees during training and w ∈ T + denotes the pre-

dicted sequence of terminals. The probability of all I ∈N sequences w̄ is the product

p(w̄ | r̄ ) =
I∏

i=1
p(w i | r̄ ¬i ), (9.5)

where r̄ ¬i denotes the set of all observed trees except for the i -th one. Note that in this

equation, a derivation r i is the treebank derivation of the sequence w i , but the product is

calculated using leave-one-out cross-validation as described above.

The so called Mean Log Predictive (MLP) of the sequence dataset w̄ is used as treebank-

independent evaluation measure,

MLP(w̄ ) = 1

I

I∑
i=1

log p(w i | r̄ ¬i ) (9.6)

where log denotes the natural logarithm. The MLP is only reported for single-component

grammars to avoid the explicit calculation of normalizing constants for product grammars

(see Section 5.5). One property of the MLP is that it equals the logarithm of the probability of

the dataset divided by its size,

1

I

I∑
i=1

log p(w i | r̄ ) = 1

I
log

I∏
i=1

p(w i | r̄ ) = 1

I
log p(w̄ | r̄ ). (9.7)

It is therefore a measure of the data’s probability per sequence. Logarithms of the probabilities

are used to improve their readability, because the sequence probabilities are very small.
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9.2. Bayesian bootstrap

Additional to reporting the MLPs, Bayes factors are reported for pairwise model comparison.

The term grammar model describes an ACFG with a parameterization and a prior distribution

over parameters. In this understanding, a grammar model is not a particular PACFG, but

characterized by a family of PACFGs of which the parameters might be inferred from datasets.

Given two grammars models M1 and M2 with the same set of terminals, the Bayes factor is

defined as

BF(M1, M2) = p(w̄ | r̄ , M1)

p(w̄ | r̄ , M2)
, (9.8)

again computed via cross-validation. Under the assumption that both grammar models are

equally probable a priori, their Bayes factor is equal to the posterior odds in favor of the model

M1. That is, the Bayes factor indicates how much better model M1 fits to the data than model

M2. According to Kass and Raftery (1995), Bayes factors from 20 to 150 provide strong evidence

and Bayes factors from over 150 very strong evidence for the model M1.

The advantages of using Bayes factors instead of using frequentist methods such as classical

significance tests are numerous (Halsey et al., 2015; Wagenmakers et al., 2018; Ho et al., 2019).

The first advantage is that is calculates directly what scientists are interested in, since the

goal of scientific investigation is usually to quantify the evidence for a theory or a model,

not against it. The interpretation of Bayes factors is therefore straight-forward. In contrast,

p-values of frequentist hypothesis tests are hard to interpret correctly and have a high risk

of being misunderstood, for example as posterior probabilities that the null hypothesis is

correct. Instead, a p-value is defined as the relative frequency of how often the null hypothesis

is rejected by mistake. Furthermore, if multiple tests are performed in a study, which is usually

the case, then the threshold under which null hypotheses are rejected needs to be adjusted,

because the more tests the greater the probability of rejecting a null hypothesis by mistake.

One important drawback of Bayes factors is that they are only interpretable if the prior distri-

butions of the models are closely related (Lavine and Schervish, 1999). This is for example the

case if uninformative “flat” priors are used. However, Bayes factors can not be applied to com-

pare models whose priors are used for regularization purposes as in the second unsupervised

experiment presented in the next chapter.

9.2 Bayesian bootstrap

The usage of Bayes factors to compare grammar models leaves at least one question unan-

swered: How much does the Bayes factor depend on the concrete dataset of chord sequences

at hand? Theoretically, this question could be studied by 1) repeatedly sampling an equally

sized dataset of Jazz standards (150 tunes), 2) derivation-tree analysis of the tunes by experts,

and 3) training and evaluation of the models to compute the Bayes factor with respect to the

newly sampled dataset. The values created in this manner directly represent the uncertainty

of the Bayes factor with respect to the dataset. Since the described procedure is, however, not
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feasible in practice, the Bayesian bootstrap is used to approximate it as described by Rubin

(1981).

As in the theoretical scenario, the Bayesian bootstrap considers the dataset a random variable.

The Bayes factor is consequently also a random variable from which samples can be obtained

in order to determine its uncertainty with respect to the dataset. The Bayesian bootstrap

approximates the sampling of new datasets by resampling the one and only dataset given.

The resampling is done by the following generative procedure in two steps. First, a vector of

weights is sampled from a symmetric Dirichlet distribution with a concentration parameter of

2 (this choice is explained in the next paragraph). The length of the weight vector equals the

size of the dataset; this vector thus assigns a positive weight to every element of the dataset

and all weights sum up to 1. In the second step, the dataset is resampled by sampling from a

multinomial distribution according to the weight vector sampled in the first step.

The choice of the symmetric Dirichlet distribution with a concentration parameter of 2 in the

first step is explained as follows. A priori, each weight vector is modeled equally probable.

The prior distribution over weight vectors is thus a symmetric Dirichlet distribution with a

concentration parameter of 1. The observation of each element of the dataset (each tune)

exactly once implies that the posterior distribution is a symmetric Dirichlet distribution with a

concentration parameter of 2. This follows directly from the fact that the Dirichlet distribution

is a conjugate prior for the multinomial distribution (see Equation 7.26).

The Bayesian bootstrap is closely related to the nonparametric bootstrap used in frequentist

statistics where the resampling is performed as simple sampling with replacement. The

crucial difference is not how the resampling is performed, but for what it is used and how it is

interpreted. While in frequentist statistics the boostrap is commonly used for a test statistic,

the Bayesian bootstrap is applied to sample from the posterior distribution of a random

variable.

Note that there is a conflict when the bootstrap is jointly used with leave-one-out cross-

validation. When the latter is applied to a resampled dataset in order to train a model and

evaluate it on a left-out data point, then the model is likely to be evaluated on data it was

trained on because resampling is performed with replacement. In this study, leave-one-

out cross-validation is therefore applied to the original dataset to obtain a set of evaluation

measures per chord sequence (e.g., sequence probabilities or tree accuracies). That set

of evaluation measures is then resampled to estimate the uncertainty associated with the

dataset’s random variable.

By applying the Bayesian bootstrap for estimating the uncertainty of the Bayes factors, each

chord sequence of the musical idiom of Jazz standards considered in this study is assumed to

be similar to a chord sequence of the treebank. The results are therefore at least valid with

respect to the idiom that the treebank represents.
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Figure 9.4 – Baseline examples in comparison to one imaginary treebank tree. All baseline
predictions are unlabeled and strictly right-headed.
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9.3 Baselines

The grammar models are compared to three baselines: a strictly left-branching, a strictly

right-branching, and a random baseline. Figure 9.4 shows one example tree for each baseline

in comparison to an exemplary treebank tree. Each rule application of every baseline is

furthermore assumed to be right-headed. This strict right-headedness is assumed, because

most of the rule applications in the JHT are right-headed. For the strictly left-branching

baseline, strict right-headedness implies a reference structure in which each chord is directly

referencing the last chord of the sequence. For the strictly right-branching baseline, it implies

that each chord is referencing its successor. The reference structure of the strictly right-

branching baseline is therefore equivalent to the reference structure of a bigram model. The

tree prediction of the random baseline samples a binary tree uniformly at random from the

set of all binary trees which have as many leafs as the sequence that is to be predicted has

chord symbols.

Note that all baselines model only unlabeled tree and reference structures. Therefore, they

serve as baselines for tree accuracy and dependency accuracy, but not for MLP.

9.4 Quantitative results and discussion

The results of the supervised-grammar-learning experiments are summarized in Table 9.1.

The averages of the evaluation measures tree accuracy and dependency accuracy are reported

along with the mean log predictive for the grammar models and three baselines. The average

tree heights are additionally reported to assess the balancedness of the tree predictions. The

balancedness of a model’s predictions can be quantified by the average tree height, because

the lengths of the treebank sequences are constant throughout the experiments.

Dependency accuracy is constantly higher as tree accuracy for both product grammars and

both single-component grammars for harmony. One explanation for this is that tree accuracy

commonly punishes wrong predictions multiple times, as mentioned in Section 9.3. Because

of the similarity of the accuracy measures, only one of them, namely tree accuracy, is discussed

in detail in the following.

The results confirm both hypotheses described at the beginning of this chapter:

1. Jointly modeling rhythm improves grammar models of harmony.

2. A transpositionally invariant parameterization improves garmmar models of harmony.

Moreover, the effect size of jointly modeling rhythm is higher than of transpositional invari-

ance. The following section first discusses the evidence for the second and then for the first

hypothesis.
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Model Tree Acc. Dep. Acc. MLP Tree Height

TPC chord 46.2 57.9 -96.12 12.7
PC chord 48.1 59.8 -82.57 12.4

TPC chord & rhythm 61.7 71.8 – 7.1
PC chord & rhythm 63.1 74.2 – 7.3

only rhythm 57.7 – -54.94 6.5

random baseline 19.3 35.6 – 14.2
left-branching baseline 13.7 58.6 – 26.0

right-branching baseline 17.5 4.7 – 26.0

Table 9.1 – Supervised-grammar-learning results. Mean tree accuracy, mean dependency
accuracy, mean log predictive, and mean tree height are reported for each model. Higher is
better for all evaluation measures. Tree accuracy and dependency accuracy are reported in
percent. The tested models are the TPC-chord grammar and the PC-chord grammar, with
and without a joint rhythm grammar. For comparison, all applicable evaluation measures
are also reported for the single-component rhythm grammar and 3 baselines; the single-
component rhythm grammar does not predict dependency relations and the baselines do
not predict terminal symbols. Both with and without jointly modeling rhythm, the PC-chord
grammar significantly outperforms all other models with respect to all evaluation measures
(see Figures 9.5–9.7 for evidence quantification).

9.4.1 Transpositional invariance

Both with and without jointly modeling rhythm, the transpositionally invariant PC-chord

grammar outperforms its respective TPC-chord grammar and all baselines with respect to all

evaluation measures. The effect of transpositional invariance is, with an improvement of about

2% in both tree and dependency accuracy, subtle but consistent. The question of whether

this improvement is significant is studied by taking a closer look at the mean tree-accuracy

differences of the PC-chord and the TPC-chord grammar models. The results are analogous for

dependency-accuracy differences. The question of significance is a question about how much

the measured accuracy difference depends on the considered dataset. In other words: How

certain should one be that the mean tree accuracy is higher for PC-chord grammars than for

TPC-chord grammars? The mean tree-accuracy difference between two models, denoted by ∆,

is therefore considered a random variable and the Bayesian bootstrap is applied to estimate

its distribution.

Figure 9.5 shows the distributions of mean tree-accuracy differences for the single-component

grammars and the random baseline. The black line at 0 marks the point where the models

are not distinguishable by tree accuracy. In this and the following figures, the difference is

calculated by subtraction of the mean tree accuracy of the model named at the left side from

the column model named at the top.
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Figure 9.5 – Mean tree-accuracy difference (∆) estimation for single-component models
of harmony and rhythm (100,000 bootstrap samples each). The x-axes show the accuracy
differences and the y-axes show the number of re-sampled datasets. All plots are barplots with
150 bins. Each plot shows how much higher the mean tree accuracy of the column model
(indicated at the top) is.
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The plot in the first row shows the improvement in tree accuracy of the PC-chord grammar

in comparison to the TPC-chord grammar — the improvement caused by transpositional

invariance. The expected improvement is with 2.2% not very high, but since the variance of

the distribution is small, the probability that the PC-chord grammar yields a higher mean tree

accuracy than the TPC-grammar is greater than 97%. In odds this means that the PC-grammar

is over 40 times more likely to yield higher tree accuracies than the TPC-grammar. This is

strong evidence for the PC-chord grammar model (Kass and Raftery, 1995). The plots in the

third and the fourth row show the very strong evidence for the facts that both PC-chord and

TPC-chord grammar models yield lower tree accuracies than the single-component model for

rhythm and higher accuracies than the random baseline.

Analogously to Figure 9.5, Figure 9.6 shows the distributions of mean tree-accuracy differences

between product grammars and between product grammars and their components. The

following first focuses on the plot in the first row. With the joint rhythm model, the expected

improvement in tree accuracy caused by the transpositional-invariant parameterization is with

1.4% lower than the expected improvement without jointly modeling rhythm. The evidence

for a positive effect of transpositional invariance is weaker than for the single-component

grammars of harmony, but the PC-chord product grammar is still more than 15 times more

likely to yield higher tree accuracies than the TPC-product grammar.

The accuracy measures compare the tree predictions of the models to the treebank trees.

Bootstrapped Bayes factors are additionally reported to compare the PC-chord and the TPC-

chord grammar models with and without jointly modeling rhythm. Those Bayes factors

quantify how much more likely the PC-chord grammar is than the TPC-chord grammar, with

respect to the chord sequences (not the trees) of the treebank tunes. Figure 9.7 shows the

common logarithms of the Bayes factors. Since the probability that both Bayes factors are

greater than 10400 is nearly equal to 1, the results provide very strong evidence in favor of the

transpositionally invariant PC-chord grammar.

9.4.2 Jointly modeling rhythm

The evidence for the first hypothesis, that jointly modeling rhythm improves grammar models

of harmony, is discussed in the following. Since MLP and Bayes factors cannot be used to

compare grammar models with different terminals, only tree accuracy is used to compare the

PC-chord and TPC-chord product grammars to their harmony components. The results are

again analogous for dependency accuracy.

Figure 9.6 shows mean tree-accuracy differences to compare the PC-chord and TPC-chord

product grammars to their components and to the random baseline. For both PC-chord

and TPC-chord nonterminals, the evidence that the corresponding product grammar yields

higher tree accuracies than both of its component grammars is very strong. The expected

improvement in tree accuracy by jointly modeling rhythm is larger than 15%. Notably, the

component grammar for rhythm outperforms the component grammar for harmony as shown
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Figure 9.6 – Mean tree-accuracy difference (∆) estimation for joint models of harmony and
rhythm. See the caption of Figure 9.5 and the main text for more details.
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in Figure 9.5. The product grammars, however, outperform the single-component rhythm

grammar by about 4%–5%.

Why does jointly modeling rhythm improve the tree predictions so much? As described

in Section 5.1, product grammars can exploit the regular rhythm of harmonic phrases in

Jazz standards. Since the rhythm grammar favors simple split-ratios of chord durations, its

predictions are balanced trees. For instance, Figure 9.14 shows the tree prediction of the

rhythm grammar for the Jazz standard Summertime. All branches of this tree split chord

durations with the same split ratio of 1/2.

As a result, product grammars also favor balanced trees. Since the lengths of the treebank

sequences are constant, the balancedness of a model’s tree predictions can be quantified

by the average tree height of a prediction. Table 9.1 shows the average tree heights for all

models and baselines. The average tree height of single-component grammars for harmony

is with about 12.5 almost twice as large than for the corresponding product grammars with

an average tree height of about 7. In contrast, the single-component grammar for rhythm

yields slightly smaller trees than the product grammars. Its average tree height is 6.5. Since

the average tree height of the treebank is about 7.5, the heights of the tree predictions of the

product grammars are closed to the heights of the treebank trees. The impact of balancedness

on phrase prediction is qualitatively discussed in the next section.
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Figure 9.7 – Logarithms of Bayes factors in favor of PC-chord single-component and product
grammars, respectively. See the caption of Figure 9.5 and the main text for more details. Note
that the plot at the bottom shows only a rough approximation of the Bayes factors because
rewrite probabilities of product rules are not represented exactly.
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9.5 Qualitative analysis of tree predictions

9.5.1 Model comparison using the example of Summertime

Figures 9.9–9.14 show the treebank tree and the tree predictions of all models for the Jazz

standard Summertime. A lead sheet of this tune is shown in Figure 9.8; the chords are from the

iRealPro dataset and the melody is based on the version of the Real Bool Volume II (no credits

or date existent). Summertime was chosen to illustrate the models and their predictions,

because it is a short tune that has compound form. The formal structure of the tune is that of

a period; it is a common structure in Jazz standards and, for example, also in Western classical

music of the common practice period (Caplin, 1998). Furthermore, the harmonic complexity

of Summertime is at a medium level. It is not too complex, but includes applied dominants

such as A7and a tonicization to the relative key C major. All tree predictions of all models can

be accessed online.4

The treebank analysis is considered briefly before the tree predictions are discussed. Figure 9.9

shows the expert analysis of the Summertime. The syntax tree structures the tune into four

phrases which correspond to the subtrees whose roots are generated at the second tree level

(counting top-down where the root of the tree is on level 0). Each phrase corresponds to

one form part. The formal structure of the tune is an ABAC structure in which AB forms an

antecedent and AC a consequent phrase of a period. Since the antecedent phrase ends in a

half cadence, it is denoted by an open constituent. The harmonic structure of the A part is

simple. The harmony changes from the tonic Am7to the dominant E7and back to the tonic.

The A part thus constitutes a tonic phrase. In contrast, the B part is a dominant phrase. It

starts with an applied dominant to the chord on the fourth scale degree Dm7. Since Dm7is on

a hypermetrically strong position, the rhythmic structure of its applied dominant A7is that of

a harmonic upbeat. After Dm7, the phrase proceeds via more applied dominants to the fifth

scale degree — the chord E7. Then, the tune restarts with a repetition of the A part and closes

with the C part. The C part starts with a tonicization of the relative key C major. The rhythm of

the chords D7and G7is thereby that of a harmonic upbeat, analogous to the first chord A7of

the B part. After the C4chord, the harmony changes back to the key of A minor and the tune

closes with a II-V-I progression. Note that this is the only occurrence of a II-V-I progression in

the tonic key.

The tree prediction of the single-component TPC-chord grammar is shown in Figure 9.10.

Since this grammar does not model rhythm, the tree is unbalanced and appears to be chaotic.

The grammar correctly identifies the I II V I progression at the end of the tune, but overly

emphasizes the importance of the chords D7and G7. In fact, it analyses the tune to be in

C major despite the many occurrences of the chord Am7. The reason for this could be that

11 tunes analysed in the treebank have C4as a tonic chord and only 2 tunes have Am7as

tonic.5 From the 4 phrases which correspond to the formal parts A, B, A, and C, the TPC-chord

4https://github.com/dharasim/LearnabilityJazzGrammar
5These low numbers result from the fact the treebank tunes in C major commonly end with a C6chord. Also, the
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grammar only analyses the B part as a constituent. As a consequence, the high-level structure

of the prediction is badly shaped.

The tree prediction of the single-component PC-chord grammar is shown in Figure 9.11. This

tree is already less chaotic than the TPC-chord grammar’s prediction. The PC-chord grammar

recognizes the final I II V I progression and identifies the first A phrase as a constituent.

However, it does not recognize the remaining phrases and also analyses the tonic of the tune

as C4.

The tree predictions of the TPC-chord and the PC-chord grammar with the joint rhythm model

are shown in Figures 9.12 and 9.13. Since these trees are very similar, they are discussed in

direct comparison. First of all, both grammars recognize the tune’s key and its high-level

structure consisting of two phrases. This is enabled by the joint rhythm model, because those

phrases are of equal length and the rhythm model favors simple splits of chord durations. The

analysis of the first half of the tune as a constituent implies that the product grammars are

able to successfully learn and apply the concept of open constituents. In fact, the product

grammars overgeneralize this concept. For instance the first three chords are predicted to form

an open constituent which does not correspond to the structure of Summertime; the melody

of the tune clearly indicates that the first E7chord resolves immediately into the following Am7.

The usage and overgeneralization of open constituents in Summertime is characteristic for

the product grammar models; it happens similarly in the prediction of other tunes such as All

of me, Struttin’ with some Barbeque, and A beautiful friendship.

One notable difference between the two tree predictions is the analysis of the A7chord. The

PC-chord product grammar correctly identifies it as an applied dominant of Dm7while the

TPC-chord product grammar relates it to the tonic chord Am7. This mistake of the TPC-chord

model results from the fact that the grammars do not explicitly represent which chords are

tonic chords — while a prolongation of a minor chord with a dominant-seventh chord would

be very uncommon for tonics, it is more plausible for second scale degrees which change from

a minor to a double-dominant chord.

The tree prediction of the single-component rhythm grammar is shown in Figure 9.14. Since it

only uses chord duration split ratios of 1/2, it shows rather the metrical and hypermetrical

structure of the tune instead of its harmonic rhythm. The shape of the rhythm grammar’s tree

prediction is very similar to the prediction of the TPC-chord product grammar. This suggests

that the PC-chord product grammar is not confident enough to overrule the rhythm grammar.

In contrast, the PC-chord grammar occasionally overrules the rhythm grammar, for example

to identify A7as an applied dominant or to correctly identify the second A part of the tune as a

constituent.

key of C minor if for example more common as A minor.
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� ��� A7� �� ��Am
7��� � � Am

7
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Figure 9.8 – Lead-sheet transcription of the Jazz standard Summertime in the key of A minor.
The transcription was created using LilyPond (http://lilypond.org/) with LilyJAZZ fonts (https:
//github.com/OpenLilyPondFonts/lilyjazz). The chords are from the iRealPro dataset and the
melody is based on the version of the Real Bool Volume II.
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9.5. Qualitative analysis of tree predictions

9.5.2 Prediction of initial tonics and turnarounds

Since none of the applied grammar models has explicit representations for keys or tonic

chords, some tonic prolongations are confused as preparations. This is particularly common

for initial tonic chords which prolong tonics far apart. Consider for example the Jazz standard

Broadway in the key of B[ major. It is a tune with an AABA structure whose A part follows

the chord progression B[4 E[7 Cm7 F7 B[4. Figure 9.15 shows the full tree prediction of the

TPC-chord product grammar (the PC-chord product grammar’s prediction is identical, but

harder to read). Because of the the fifth relationship between the roots of the two initial chords,

the product grammars analyse B[4 as a preparation of E[7. They fail to identify the first chord

as a tonic. Interestingly, the single-component grammars for harmony correctly identify the

initial chord as a tonic, but are unable to identify the formal (deep-level) structure of the tune.

Similar misinterpretations happen for example in My melancholy baby, The good life, and Take

the A train.

A second mistake common in product grammar predictions is the wrong attachment of

turnarounds. For instance in the tree analysis of the tune Broadway shown in Figure 9.15, the

turnaround G7Cm7F7which leads to the second A part is not attached to the second but to the

first A part. The first A part is consequently analyzed as an open constituent which is, however,

neither supported by the harmonic rhythm nor the melody of the tune. In fact, the doubling of

the harmonic rhythm after the arrival on the tonic in measure seven of an 8-measure phrase is

a strong indicator of a turnaround. The melody plays the tonic note over the tonic chord and

the chords of the turnaround. This is also evidence against an open constituent for which a

melody note on the second scale degree is for example more common. However, the melodic

information is not accessible by the grammar models. Because of the harmonic rhythm and

the melody, the turnaround constitutes a harmonic upbeat to the second A part. Similar

misattachments happen for example in I love Paris, Remember, and Take the “A” train.
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Figure 9.15 – Tree prediction of the TPC-chord product grammar (jointly modeling rhythm, supervised) for the tune Broadway. A
larger version of this tree is available online at https://github.com/dharasim/LearnabilityJazzGrammar/blob/master/supervised-learning/
tpc-supervised-product.pdf on page 112.
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9.5. Qualitative analysis of tree predictions

9.5.3 Tunes in ternary form

The single-component grammar for rhythm is already able to correctly detect ternary forms.

This is surprising, because chord duration splits of 1 : 1 (1 to 1) are far more common than

splits of 2 : 1. Still, the rhythm grammar correctly predicts the 3 parts of tunes in ternary form

without consideration of the chord symbols. This is for example the case in the Jazz standard

Song for my father. Its treebank analysis is shown in Figure 9.16, and the prediction of the

rhythm grammar is shown in Figure 9.17. The tune is presented in the key of F minor; its

formal structure is AAB.

The reason why the rhythm grammar analyzes Song for my father as having a ternary instead

of a binary form (in contrast to most tunes analyzed in the treebank that have binary forms)

is surprisingly simple. Since 3 is a divisor of 24, the number of the tune’s measures, and

each chord is either a half, one, or two measures long, the rhythm grammar must split the

constituent durations 1 : 2 or 2 : 1 at least once. Since 1 : 1 duration splits are most common,

the tree that uses a spit 1 : 2 or 2 : 1 only once is the most probably analysis. A analysis which

structures the tune into a binary structure has lower probability, because then a duration split

of 1 : 2 or 2 : 1 would have to be applied twice — in both parts of the binary form.

Other Jazz standards in the treebank which have a ternary form are for instance Why don’t you

do right?, Mr. P.C., and Footprints.
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Figure 9.16 – Treebank tree analysis of the tune Song for my father.

146



9.5.
Q

u
alitative

an
alysis

o
ftree

p
red

ictio
n

s

1
1

1
3

1
6

1
12

1
24

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
48

1
48

1
48

1
48

1
6

1
12

1
24

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
24

2
3

1
3

1
6

1
12

1
24

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
24

1
6

1
12

1
24

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
24

1
3

1
6

1
12

1
24

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
24

1
6

1
12

1
24

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
24

Figure 9.17 – Tree prediction of the rhythm grammar (single-component, supervised) for the tune Song for my father.
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10 Unsupervised grammar learning

The central research question studied in the unsupervised grammar-learning experiments

presented in this chapter is:

What prior knowledge enables an ideal learner to induce a harmony grammar of

high quality from the observation of chord sequences?

By using computational learning simulations, one can only study what prior knowledge is

sufficient for learning a harmony grammar. That is, an upper bound of the required prior

knowledge is determined. The goal of the experiments is to find minimal prior knowledge that

is cognitively plausible in order to increase the strength of the learnability argument. Before

the execution of the experiments, it was hypothesized that it is possible to learn a grammar of

similar quality to the grammar obtained in the supervised experiments presented in Chapter 9

by using the domain-general assumption of headedness and by jointly modeling harmony

and rhythm. Furthermore, the assumption of goal-directedness, which reduces the size of the

space of possible grammars, was hypothesized to ease learnability and preserve quality.

The task of inferring a grammar, including all symbols, rules, and probabilities, from the mere

observation of sequential data is known as grammar induction. Computational grammar

induction is a challenging task that originated from the study of natural language; it has been

considered in computational linguistics for over 30 years where it is still an active research

topic (e.g., Kim et al., 2019; Golland et al., 2012; Johnson et al., 2007b; Klein and Manning,

2002; Lari and Young, 1990). Grammar induction is also studied in formal language theory

(e.g., Clark, 2013a; Yoshinaka, 2011; Cohn et al., 2010; López et al., 2004). For music there are,

however, only few studies known that consider grammar induction. Tsushima et al. (2017)

induce a PCFG with up to 20 induced nonterminal symbols for chord-symbol harmonization

of melodies. Their results are a proof of concept, but the quality of the induced grammar is

much worse than those of grammars learned from expert tree analyses. Tsushima et al. (2018)

performed grammar induction without modeling rhythm, similar to Tsushima et al. (2017),

and showed that grammar induction can benefit from an initialization using a hidden-Markov

model. Their results crucially rely on a reduction of the number of terminals to 10, 20, and
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Chapter 10. Unsupervised grammar learning

50 by grouping rare terminals into one artificial terminal. In contrast, this study induces

grammars without a pre-grouping of terminals or hidden-Markov initialization by jointly

modeling harmony and rhythm and constraining the form of rules to duplication and headed

rules. Déguernel et al. (2019) use a PCFG to model musical form on multiple levels — such

as chord transitions, harmonic phrases, and formal sections — with the goal of automatic

improvisation. They learn a grammar by iteratively grouping correlated nonterminals and

evaluate their results qualitatively with professional musicians. In contrast, this study applies

variational Bayesian inference to approximate a distribution over probabilistic grammars of

harmonic syntax.

Two experiments are presented in this chapter, Experiment A and Experiment B. In Experiment

A, multiple models are tested for their grammar induction capabilities. In addition to the

grammar models used for supervised learning in Chapter 9, we test alternative versions that

can make use of prior knowledge such as the goal-directedness of functional harmony. Such

prior knowledge guides the learning agent by reducing the space of possible grammars. The

results of Experiment A show that the goal-directed, transpositionally invariant grammar that

jointly models rhythm performs best. However, the rhythm grammar heavily overuses the

chord-duration-split ratio 1/2 and constantly overrules the component grammar for harmony

— the rhythm grammar is very confident that it is right but it actually is wrong, stuck in a bad

local optimum.

The goal of Experiment B is to balance the grammar components and to find a cognitively

plausible prior distribution that regularizes the grammar component for rhythm. Such a

prior distribution is successfully found: with additional prior preference for simple duration-

split ratios, harmonic grammars of good quality are learnable from the observation of chord

sequences. Only goal-directed grammars that jointly model rhythm were considered in

Experiment B, because they performed best in Experiment A.

10.1 Inference and evaluation

For both experiments and each grammar model, learning is performed by starting with a

large set of equally probable rules representing all structural possibilities for that model. This

initialization represents the space of grammars the learner is able to acquire. The rewrite-rule

probabilities are then learned using variational Bayesian inference. After learning, the set

of rules can be thought of as partitioned into a subset of actual grammar rules (rules with

relatively high probability) and rules with very low probability whose function it is to make

the grammar robust against sequences of uncommon structure. This reduces the problem of

learning the rules of a grammar to a parameter-estimation problem. The partition of the rules

is, however, not explicitly considered in this study.

The unsupervised learning of the rewrite probabilities is described in detail in Chapter 7

and summarized in Section 7.4. The 150 trees of the Jazz harmony treebank (test set in the

following) were used to evaluate the trained grammar models. For learning, each model
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10.1. Inference and evaluation

observed 300 Jazz chord sequences of tunes contained in the iRealPro dataset but not analyzed

in the Jazz harmony treebank (training set in the following). Using the notation introduced in

the previous chapters, the probability of a grammar’s rewrite probabilities θ conditioned on

the terminal sequences w̄ of the training set is given by marginalization of the derivation trees

r̄ ,

p(θ | w̄ ) =
∑

r̄∈R I

p(θ, r̄ | w̄ ), (10.1)

where I denotes the number of observed sequences. Since an exact computation of the proba-

bility p(θ, r̄ | w̄ ) is not tractable, the distribution p(θ, r̄ | w̄ ) is approximated by a distribution

q(θ, r̄ ) from a simpler family which assumes independence of rewrite probabilities θ and

derivations r̄ ,

p(θ, r̄ | w̄ ) ≈ q(θ, r̄ ) = q(θ) q(r̄ ). (10.2)

The optimal parameters of the approximating distributions q(θ) and q(r̄ ) are then obtained

iteratively by minimizing the KL-divergence

KL
(
q(θ, r̄ )

∥∥ p(θ, r̄ | w̄ )
)

(10.3)

using coordinate ascent variational inference (CAVI).

A generalization of CAVI to stochastic variational inference was adopted that uses batch

updates instead of the whole training set in the iterative optimization steps (Hoffman et al.,

2013). The batch size was chosen as 30. Since CAVI only converges to a local optimum, the

parameter inference was performed 10 times for each model and the parameter setting was

chosen that yielded the maximal predictive probability of the training set. Since CAVI is

much more efficient than more general optimization algorithms based on stochastic gradient

descent, convergence was always obtained within the first five epochs as prior experiments

showed. In fact, most of the learning happens already in the first epoch (i.e., during the first 10

batches). Each trial was therefore run for 5 epochs. Similarly to the supervised experiments,

the learning of product grammars was performed by propagating the expected rule counts to

the rule distributions of the component grammars.

The tree prediction of the grammar models and the quantitative evaluation is analogous to

the supervised experiments presented in Chapter 9. For a chord sequence v from the test

set, each grammar model predicts a derivation tree r ∈ DER(v) by maximizing the posterior

probability p(r | w̄ ),

argmax
r∈DER(v )

p(r | w̄ ) = argmax
r∈DER(v )

∫
θ

p(r | θ) p(θ | w̄ ) ≈ argmax
r∈DER(v )

∫
θ

p(r | θ) q(θ). (10.4)
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Chapter 10. Unsupervised grammar learning

The Mean Log Predictive (MLP) of the terminal sequences v̄ of the test set is given by

MLP(v̄ ) = 1

I

I∑
i=1

log p(v i | w̄ ) (10.5)

where I = 150 is the size of the test set (the number of tree-annotated chord sequences) and

p(v i | w̄ ) =
∫
θ

p(v i | θ) p(θ | w̄ ) ≈
∫
θ

p(v i | θ) q(θ) =
∫
θ

q(θ)
∑

r i∈DER(v i )

p(r i | θ). (10.6)

10.2 Experiment A: model comparison for grammar induction

Experiment A investigates the grammar-inference capabilities of multiple grammar models.

The models tested in the experiments vary along three dimensions: the choice of the harmony

grammar’s nonterminals, the form of allowed rules, and whether harmony is modeled jointly

with rhythm or not.

Three types of nonterminals are tested for the harmony component of the grammar models:

Tonal-Pitch-Class (TPC) chords, Pitch-Class (PC) chords, and Induced Categories (IC). The

corresponding grammar models are described in detail in Chapter 8. The most important

properties of the models are that 1) the TPC-chord and PC-chord grammars use chord symbols

as nonterminals, 2) the fully unsupervised grammar learns nonterminals from the data that

do not correspond to chord symbols 1-to-1, and 3) the probability parameterization of the PC-

chord grammar is transpositionally invariant. As for the supervised experiments, symmetric

Dirichlet distributions are chosen as uninformative priors for the harmony grammar’s rewrite-

rule distributions. The corresponding hyperparameters were set to α f
r = 0.1 to encode a slight

preference for low entropy. Fully unsupervised grammar models that use induced categories

are tested, because they constitute the original grammar induction task from computational

linguistics. Such models are, however, expected to perform rather poorly.

Additionally, to allow for both left-headed and right-headed rules (either-headed rules, EH),

two restricted versions of each harmony grammar were tested that allow for either only Left-

Headed rules (LH) or only Right-Headed rules (RH). In the following, the corresponding

grammars are called strictly left-headed and strictly right-headed, respectively. Duplication

rules are included in all grammar models. The restricted grammars are tested, because they

significantly reduce the amount of possible grammars, which reduces the complexity of

the learning task. Furthermore, grammar models that only allow for right-headed rules are

hypothesized to perform as well as unrestricted grammar models, because right-headed rules

encode goal-directedness. This hypothesis stems from the characterization of functional

harmony in music theory. Indeed, Chapter 11 presents computational experiments in which

the goal-directedness of functional harmony in Jazz is inferred from chord sequences. The

results of this experiment already indicate a weak tendency of right-headedness as shown

below.
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Tree Accuracy Dependency Accuracy Mean Log Predictive Tree Height

Model EH LH RH EH LH RH EH LH RH EH LH RH

TPC 36.80 29.59 43.04 38.26 16.00 55.82 -93.97 -90.08 -86.67 13.64 14.09 12.54
PC 42.37 32.68 45.56 46.00 18.68 58.67 -85.43 -86.37 -83.02 13.29 14.35 12.27
IC 18.73 25.35 26.16 16.54 36.48 27.88 -112.50 -107.11 -109.79 16.36 16.55 15.13

R 57.62 – – – – – -40.29 – – 6.49 – –

TPC-R 55.79 51.07 57.47 46.31 23.27 64.48 – – – 6.76 7.25 7.41
PC-R 56.59 54.28 57.95 53.37 23.73 64.55 – – – 6.58 6.86 6.86
IC-R 57.53 57.00 57.34 36.23 42.16 39.86 – – – 6.51 6.50 6.51

Table 10.1 – Unsupervised-grammar-learning results calculated on the test set. Mean accuracies, mean log predictive (MLP), and mean
tree height are reported for each grammar model. Tree accuracy and dependency accuracy are reported in percent. The best values are
indicated in bold font for each model group. The grammar models vary along three dimensions: 1) harmonic nonterminal representation,
2) headedness restriction of binary rules, and 3) jointly modeling rhythm or not. The tested harmonic nonterminal representations are
tonal pitch-class chords (TPC), pitch-class chords (PC), and induced categories (IC). If the headedness is restricted, it allows either only for
left-headedness (LH) or right-headedness (RH). If headedness is not restricted, the grammar is called either-headed (EH). Grammars which
model rhythm are indicated with the letter R. For instance, TPC-R is the product of the TPC-chord grammar and the rhythm grammar and R is
the single-component grammar for rhythm. Note that despite the fact that the rules of the single-component grammar for rhythm are not
headed, the measures for that grammar are shown in the either-headed column.
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Chapter 10. Unsupervised grammar learning

All grammar models for harmony are tested once with jointly modeling rhythm (indicated

by the capital letter R) and once as single-component models. Jointly modeling harmony

and rhythm is formalized using the product grammar construction; it is expected to signifi-

cantly improve grammar induction. The single-component model for rhythm is reported for

comparison.

10.2.1 Quantitative results and discussion

The results of Experiment A are summarized in Table 10.1. Average tree accuracy, dependency

accuracy, MLP, and tree height are reported for each grammar model and each headedness

restriction. As in the supervised-learning experiments, jointly modeling rhythm improves the

performance of all harmony grammars according to both accuracy measures. The heights

of the tree predictions indicate that jointly modeling rhythm leads to more balanced tree

predictions.

According to all three evaluation measures, the strictly right-headed PC-chord grammar

(PC-RH) is the best single-component grammar for harmony. This is as expected since the PC-

chord grammar was the best single-component model for harmony in the supervised-learning

experiments and the rules used to analyze the treebank have a strong bias towards right-

headedness. About 28% of the binary rules which constitute the treebank are duplications,

70% are right-headed, and 2% are left-headed rules. The most frequent rules of the treebank

are shown in Figures 4.8 and 4.9.

Interestingly, the strictly-right headed variants of the single-component PC-chord and TPC-

chord grammars perform even better than their corresponding either-headed variants. This

finding is remarkable, because all rules of strictly right-headed grammars are also contained

in their respective either-headed grammar models. It suggests that the inference procedure

gets stuck in local optima for the either-headed models, which is plausible because the space

of possible either-headed grammars is much larger than the space of strictly right-headed

grammars. Therefore, right-headedness, which encodes the goal-directedness of functional

harmony, is shown to be advantageous prior knowledge. The either-headed model performs

worse than the strictly right-headed model, because it has to learn the right-headed bias

from the data. The performance differences in tree accuracy become smaller, however, when

rhythm is jointly modeled.
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10.2. Experiment A: model comparison for grammar induction

The expected rule-type proportions for the either-headed grammar models that use chord

symbols as nonterminals are shown in Table 10.2. Right-headed rules are between 1.2 and 1.6

times more likely than left-headed rules. These results indicate a weak but general tendency

for right-headedness. One reason why this tendency is weak is that the grammar models do

not explicitly represent the concept of headedness; the grammar models only allow for headed

rules and duplication rules, but the relation between two right-headed rules is a priori the

same as the relation between a left-headed and a right-headed rule. Headedness induction is

studied in greater detail in Chapter 11.

The grammar models that use induced categories as nonterminals (IC and IC-R) perform

overall much worse than the corresponding models that use chord symbols as nonterminals.

To interpret the categories learned during inference, Table 10.3 shows the 10 most common

chord-symbol terminations for each category of the strictly right-headed product grammar

(IC-R-RH). The terminations suggest that the induced categories neither correspond to scale

degrees nor to more general chord functions such as tonic or dominant. Instead, they are

rather loosely related to keys. For example, the three most common chords to which the

category 4 terminates are the scale degrees II, V, and I of a B[ major key and category 3

can be understood as a mixture of the keys D minor and C minor. Figure10.1 shows the

derivation tree of Summertime, predicted by the strictly right-headed product grammar that

uses induced categories (IC-R-RH). Compared to derivation trees predicted by grammar

models that use chord symbols as nonterminals, this tree uses more duplication rules. The

increase of duplication rules supports the interpretation of induced categories as keys, because

keys change slower than chord functions.

The similarity in tree accuracy between the PC-chord product grammar and the single-

component grammar for rhythm suggests that inside the product grammar, the component

grammar for harmony is often overruled by the component grammar for rhythm. This is

indeed the case as shown in the qualitative analyses presented in the next section.

model duplications left-headed rules right-headed rules

TPC 21.77 35.22 43.02
PC 26.70 28.08 45.22

TPC-R 25.00 33.60 41.41
PC-R 27.91 32.68 39.41

Table 10.2 – Expected rule-type proportions for either-headed grammar models. All values are
shown in percent.
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category

1 C7 (25.48) D7 (12.75) C6 (12.74) F6 (9.75) G7 (9.07) F^7 (7.79) A7 (5.71) Gm (4.29) G^(2.18) F7 (2.05)
2 C7 (18.32) Eb7 (16.77) G7 (11.83) F7 (9.97) Bb7 (7.78) D7 (4.99) Ab6 (4.59) Fm (4.21) Cm7 (3.85) Bo7 (2.82)
3 A7 (25.73) E%7 (12.76) D%7 (11.60) G7 (10.05) Dm7 (9.91) Db7 (7.36) Gb7 (3.06) C#m7 (2.95) Abm7 (2.86) D^7 (2.70)
4 Cm7 (33.38) F7 (21.82) Bb^7 (14.06) F^7 (5.47) F^(5.31) Am7 (3.78) Abo7 (2.94) Fm7 (2.38) B^7 (1.57) Bb7 (1.44)
5 Gm7 (30.93) F^7 (14.84) Eb7 (9.90) Ab^7 (9.84) Bbm7 (7.61) Db^7 (6.71) Em7 (5.82) Cm (3.81) C^7 (3.76) D7 (2.82)
6 Fm7 (24.68) Bb7 (23.35) Db7 (11.79) C^(8.66) C7 (6.82) Dm (6.43) A7 (6.06) Ab^7 (4.40) Eb^7 (1.48) C#o7 (1.39)
7 Bbm7 (15.14) Fm7 (11.86) G%7 (11.69) Eb^7 (10.43) Bb6 (9.61) Bb^7 (8.86) Ab^7 (6.26) Dm (6.05) Eb7 (4.81) Gm7 (2.85)
8 Dm7 (27.68) G7 (23.19) C^7 (15.33) Fm6 (7.83) G^7 (7.39) F^7 (5.79) A%7 (4.35) D7 (2.08) Bm7 (2.04) Ebo7 (0.94)
9 Ab7 (19.11) Em7 (12.50) B7 (12.50) Ebm7 (10.87) B%7 (10.12) Eb^(6.56) Gm6 (4.44) C%7 (3.81) F#m7 (3.60) F#%7 (2.66)
10 D7 (26.91) Am7 (19.12) E7 (16.45) Cm6 (9.25) G6 (7.86) G7 (5.53) Bb6 (4.08) C7 (1.30) F7 (1.23) Cm^7, 1.09)

Table 10.3 – Most probable chord-symbol terminals for each induced category of the strictly right-headed product grammar (IC-R-RH). The
probability of each chord is shown in percent.
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10.2. Experiment A: model comparison for grammar induction

10.2.2 Qualitative analysis of tree predictions

Figures 10.2, 10.3, and 10.4, show the derivation trees of the Jazz standard Summertime,

predicted by the strictly right-headed (PC-RH), strictly left-headed (PC-LH), and either-headed

(PC-EH) versions of the single-component PC-chord grammar model, respectively. The tree

prediction of the PC-RH model, shown in Figure 10.2, is similar to the prediction of the PC-

EH model, shown in Figure 10.4, and to that of the supervised PC-chord grammar shown

in Figure 9.11. The similarity of the predictions by the PC-RH model and its corresponding

supervised grammar is explained by the fact that most of the supervised harmony grammars’

rules are right-headed. Analogous statements hold for the TPC-chord grammar models. All

tree predictions of all models can be found online.1

The similarity of the PC-RH and PC-EH predictions reflects that the either-headed grammar

variant prefers to use more right-headed than left-headed rules as shown in Table 10.2 and

discussed above. The tree predicted by the PC-LH model, shown in Figure 10.3, is higher than

the tree predicted by the PC-RH model. It also has some bias for right branchings. A music-

theoretical interpretation of left-headed right-branchings is, however, not straight-forward.

Figure 10.5 shows the tree prediction of the strictly right-headed PC-chord product grammar

(PC-R-RH). The only split ratio used in that tree is 1/2. This indicates that the rhythm grammar

overuses the simplest split ratio 1/2 and futhermore overrules the harmony grammar. The

same can be observed for the tree predictions of the other treebank tunes. The constant

overruling of the harmony grammar by the rhythm grammar implies that successive grammar

induction requires better balancing of the product grammar components, which is discussed

in Experiment B presented in the next section.

1https://github.com/dharasim/LearnabilityJazzGrammar
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Figure 10.1 – Tree prediction of the strictly right-headed product grammar which uses induced categories (jointly modeling rhythm, unsuper-
vised) for the tune Summertime.
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Figure 10.2 – Tree prediction of the strictly right-headed PC-chord grammar (single-component, unsupervised) for the tune Summertime.
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Figure 10.3 – Tree prediction of the strictly left-headed PC-chord grammar (single-component, unsupervised) for the tune Summertime.
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Figure 10.4 – Tree prediction of the either-headed PC-chord grammar (single-component, unsupervised) for the tune Summertime.
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Figure 10.5 – Tree prediction of the strictly right-headed PC-chord product grammar (jointly modeling rhythm, unsupervised) for the tune
Summertime.
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10.3 Experiment B: Prior preference for simple duration splits

Experiment B investigates the regularization of the grammar component for rhythm. The goal

is to find a prior distribution that 1) increases the entropy of the split-ratio distribution and

2) balances the rhythm-grammar against the harmony-grammar component of the product

grammar. The strictly right-headed PC-chord and TPC-chord product grammars are con-

sidered in this experiment. The prior for the rhythm component used in Experiment A (the

unregularized version of the rhythm model) is compared to two regularized versions. As in

Experiment A, the priors are variants of Dirichlet distributions, only the hyperparameters

differ between versions. The first regularization symmetrically increases the prior probability

of all split ratios. The second regularization increases the prior probabilities of simple split

ratios more than that of complex split ratios.

The results show that the prior that favors simple split ratios performs best. A brief qualitative

analysis of the regularized grammar’s tree predictions confirms that the inferred grammar is of

high quality. Despite the fact that the parameters of the regularizations are set by hand in this

study, the results do show that a prior preference for simple split ratios is beneficial. What they

do not show is that the optimal strength of the regularization can be inferred automatically

from the data.

10.3.1 Regularizing priors for the split-ratio distribution

The approach of using prior distributions for regularization is common in Bayesian statistics.

In Experiment A, the split-ratio distributions obtained by unregularized learning do not have

enough entropy — they put too much probability mass on the single value 1
2 . Therefore,

Experiment B applies priors that increase the probabilities of distributions which use many

different split-ratios. Since the split ratio 1
2 is still most common in the derivation trees of the

regularized rhythm grammars, the probabilities of the derivation trees for rhythm decrease

with increasing entropy of the split ratio distribution. This indirectly increases the influence of

the grammar component for harmony on tree predictions, and thus balances the components.

The first regularization uses a symmetric Dirichlet prior like in Experiment A, but increases

the concentration parameter from 0.1 to 400. Experiments with different concentration

parameters found that the value of 400 works well. The high concentration parameter implies

that the split-ratio distribution is likely to distribute the probability mass more equally between

the split ratios. However, this leads to rhythm grammars that use unusual duration splits such

as 3
32 , as shown below.

The second regularization also increases the entropy of the split-ratio distribution, but does

so by favoring simple split ratios. It therefore relies on a mathematically precise definition of

what is meant by a simple ratio. This study proposes to use the Calkin-Wilf tree (Calkin and

Wilf, 2000), a mathematical object from number theory, to measure a ratio’s simplicity. The

upper levels of the tree are shown in Figure 10.6. The Calkin-Wilf tree is an infinitely large
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Figure 10.6 – First three levels of the infinitely large Calkin-Wilf tree. All positive rational
numbers are represented exactly once. This tree is used to formalize the simplicity of a ratio;
the higher a ratio is in the Calkin-Wilf tree the simpler it is.

binary tree that contains each positive rational number exactly once. It is defined recursively

as follows: the root of the tree (e.g., the topmost node in Figure 10.6) is the number 1. The

two children of a rational number a
b , where a and b are positive natural numbers such that

their greatest common divisor is 1, are a
a+b and a+b

b . The simplicity of a rational number is

operationalized as the level on which it occurs in the Calkin-Wilf tree. The level of a ratio s

is denoted by λ(s), and the level of the root of the tree is set to zero, λ(1) = 0. For example,
1
2 is simpler than 1

3 since λ( 1
2 ) = 1 < 2 = λ( 1

3 ), 2
3 is simpler than 3

5 since λ( 2
3 ) = 2 < 3 = λ( 3

5 ),

and 1
4 is as simple as 3

5 since λ( 1
4 ) = 3 =λ( 3

5 ). This operationalization is certainly not the only

reasonable one, but one based on a well-established mathematical object. The Calkin-Wilf

tree is closely related to but simpler than the more popular Stern-Brocot tree (Stern, 1858;

Brocot, 1860). Since the levels on which the numbers occur are equal for both trees, they are

equivalent for the purpose of this study.

The Calkin-Wilf prior over split-ratio distributions is based on a Dirichlet distribution. The

parameter of that Dirichlet distribution is a vector that assigns each split ratio a pseudocount

as described in Section 7.2 following Equation 7.19. The pseudocount of a split ratio is

proportional to the expected prior probability of that split ratio. Denote the pseudocount

vector by α and the pseudocount of a split ratio 0 < s < 1 by αs . The Calkin-Wilf prior sets the

pseudocounts to

αs = D(L−λ(s)) (10.7)

where L is the maximal level of the split ratios allowed by the grammar and D is a free parameter

(a positive integer). The parameter D describes the pseudocount difference between the levels,

for example

α 1
2
−α 1

3
= DL−Dλ

(
1

2

)
−DL+Dλ

(
1

3

)
=−D ·1+D ·2 = D. (10.8)

The maximal level L = 8 was chosen, which allows the split ratio 1
8 . The difference parameter

164



10.3. Experiment B: Prior preference for simple duration splits

was set to D = 300, which was found to work best. This choice leads for example to α 1
2
= 2100,

α 1
3
= 1800, and α 1

8
= 300.

10.3.2 Results and discussion

The results of Experiment B are summarized in Table 10.4. According to tree accuracy and

dependency accuracy, the Calkin-Wilf regularization performs best, followed by the symmetric

regularization, which is still slightly better than no regularization. The PC-chord model can

benefit more from the regularization than the TPC-chord model and achieves a tree accuracy

similar to that from the supervised experiments (see Table 9.1). The average heights of the

tree predictions increase slightly under the regularization. This makes sense, because the tree

predictions of the unregularized versions are almost maximally balanced. The MLPs of the PC-

chord model are better than the MLPs of the TPC-chord model for all regularization variants,

confirming the positive effect of a transpositional invariant parameterization. The MLPs

are not comparable across regularization variants, because strong regularization generally

decreases predictive probabilities.

The tree predictions of the tune Summertime are qualitatively compared in this paragraph for
the PC-chord model. The results are analogous for the TPC model. Figure 10.7 and Figure 10.8
show the tree predictions of the PC-chord product grammar with symmetric regularization
and Calkin-Wilf regularization, respectively. The symmetric regularization leads to unusual
split ratios such as 3

32 , 4
7 , and 1

29 . The corresponding tree prediction is not able to identify
much of the hierarchical phrase structure of the tune. The tree prediction is not better than the
prediction of the single-component grammar for harmony shown in Figure 10.2. In contrast,
the prediction of the grammar inferred with the Calkin-Wilf regularization is much better.
Except for the unconventional open constituent which closes on Dm7, the tree describes the
harmonic and formal structure of the tune well. Similar observations were made for the tree
predictions of the other treebank tunes which can be found online.2

Model Regularization Tree Acc. Dep. Acc. Tree Height

TPC-R-RH none 57.47 64.48 7.41
TPC-R-RH symmetric 58.06 65.80 8.19
TPC-R-RH Calkin-Wilf 60.23 67.48 7.88

PC-R-RH none 57.95 64.55 6.86
PC-R-RH symmetric 59.55 66.46 7.83
PC-R-RH Calkin-Wilf 62.34 69.61 7.79

Table 10.4 – Effect of duration-split ratio regularization on grammar learning. Symmetric
and Calkin-Wilf regularization are tested for two product grammar models, the strictly right-
headed TPC-chord product grammar (TPC-R-RH) and the strictly right-headed PC-chord
product grammar (PC-R-RH).
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Figure 10.7 – Tree prediction of the strictly right-headed PC-chord product grammar with symmetric regularization of duration-split ratios
(jointly modeling rhythm, unsupervised) for the tune Summertime.
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Figure 10.8 – Tree prediction of the strictly right-headed PC-chord product grammar with Calkin-Wilf regularization of duration-split ratios
(jointly modeling rhythm, unsupervised) for the tune Summertime.
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10.3.3 Comparison to supervised grammar models

Table 10.5 compares the best unsupervised grammar model (PC-R-RH with Calkin-Wilf reg-

ularization) to the best supervised model as described in the previous chapter (PC-R). The

tree accuracies of the models differ only by about one percent. However, the supervised

model achieves an about five percent higher dependency accuracy. The tree predictions of

the supervised grammar are on average higher than those of the unsupervised grammar, but

they are both close to the average height of the treebank trees which amounts to 7.5. This is

explained by the facts that rhythmic regularization generally increases the height of the tree

predictions and that the supervised grammar models are not regularized.

With respect to tree accuracy, the performance of the best unsupervised model is similar

to that of the best supervised model. This is confirmed by qualitative analyses of the tree

predictions. In computational linguistics, it is unusual that unsupervised grammar models

perform as similarly as supervised models (e.g., Kim et al., 2019). The similarity obtained

in this thesis can be explained by two main reasons for why the supervised model does not

perform better. The first reason is that state-of-the-art parsers for natural language are much

more sophisticated than the supervised grammar models presented in Capter 9. Since the

focus of this thesis lies on grammar induction, the supervised grammar models were chosen to

be as similar as possible to the unsupervised models in order to facilitate direct comparisons.

Because of the simple structure of the supervised models, there is room for improvement

expected for future research. Furthermore, the parameters of the rhythmic regularizations

were set by hand in this thesis. The unsupervised models most probably do not perform so

well when they have to learn those parameters from data. Also, the supervised models are

expected to perform better with a rhythmic regularization. The second reason is that other

factors such as melody and meter must be taken into account in order to accurately describe

harmonic dependency structures. Without that additional information, chord sequences

might be too ambiguous to accurately predict the treebank trees.

Model Tree Acc. Dep. Acc. Tree Height

best unsupervised 62.3 69.6 7.8
best supervised 63.1 74.2 7.3

Table 10.5 – Comparison of the best unsupervised grammar model (PC-R-RH with Calkin-Wilf
regularization) to the best supervised model (PC-R). Both grammars jointly model harmony
and rhythm.
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11 The learnability of goal-directedness

Functional harmony as presented in Chapter 1 postulates the goal-directedness of harmonic

dependencies that is represented in formal grammar models by right-headed rules. The unsu-

pervised experiments reported in the previous chapter show that the prior assumption of goal-

directedness improves the learning capability of grammar models for harmony. Furthermore,

grammars models (called either-headed) that could freely chose from left- and right-headed

rules to represent syntactic structure learned a slight tendency for right-headedness. However,

the facts that strictly right-headed grammars perform at least as well as either-headed gram-

mars and that left-headed grammars perform significantly worse stand in discrepancy to the

result that the either either-headed grammar models did not learn to use more right-headed

rules. One reason is that the space of all either-headed grammars is very large; almost each

grammar rule corresponds to one dimension. The grammar space is therefore likely to contain

various local optima. Since either-headed grammar models do not represent the abstract

concept of headedness, they do not distinguish grammars that use as much left- as right-

headed rules from grammars that use only one headedness direction. Intuitively, a grammar

is simpler if it only contains (mostly) one headedness direction. Applying Occam’s razor (see

e.g., MacKay, 2003, chapter 28), such a grammar should be preferred over a grammar with

balanced headedness directions if both grammars perform equally well.

This chapter presents a computational grammar model that explicitly represents the abstract

concept of headedness and induces the headedness proportions from Jazz chord sequences.

To only encode domain-general prior knowledge, the model is based on the TPC-chord

grammar without jointly modeling rhythm. The results show that the induced grammar uses

only right-headed rules. The goal-directedness of functional harmony is thus demonstrated

to be learnable without any music-specific prior knowledge.

A second experiment using artificial data is used to verify the correct functionality of the

headedness induction. In that experiment, the model was able to correctly distinguish vari-

ous degrees of left- and right-headedness from sequential datasets that were automatically

generated using grammars whose headedness usage was set by hand.
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Chapter 11. The learnability of goal-directedness

11.1 A grammar model for headedness induction

The grammar model for headedness induction is based on the TPC-chord grammar model

described in Section 8.1.1. A TPC-chord grammar is a probabilistic context-free grammar that

uses chord symbols both as terminals and nonterminals. The chord symbols are character-

ized by a root represented by a Tonal-Pitch Class (TPC) and a chord form represented by a

string. The difference between TPC-chord grammar models used before and the headedness-

induction model presented in this chapter is the parameterization of the rewrite probabilities.

This paragraph briefly summarizes the notation of rewrite-rule probabilities. All nonterminals

that are projected onto the same feature f ∈ Φ under the nonterminal feature projection

φ : N →Φ (whereΦ denotes the set of all feature instantiations) share a distribution θ f over

rewrite probabilities (as described in Section 7.1). The probability that a rule r ∈ R rewrites a

nonterminal with feature f is denoted by θ f
r . The collection of all rewrite-rule distributions is

denoted by θ. For the TPC-chord grammar, the set of feature instantiations equals the set of

nonterminals,Φ= N , and the feature projection is the identity. In the following, however, the

model is presented with respect to an arbitrary feature projection to show that the general idea

of the headedness induction is applicable to arbitrary PACFGs. This also achieves a notation

consistent with the rest of this thesis.

Previous grammar models directly parameterized the rewrite-rule distributions θ f as indepen-

dent Dirichlet distributions (see Section 7.2). In contrast, the idea of the headedness-induction

model is to link the probabilities of rewrite rules that have a common rule type. In the experi-

ments, the set of rule types consists of values for unary rules, duplications, left-headed, and

right-headed rules. The linked probabilities then enable the model to abstractly learn about

rule types in general and headedness in particular.

The set of rule types is denoted byΨ, and the function that maps a rule r ∈ R to its rule type

ψ(r ) is denoted by ψ : R → Ψ. The process of sampling a rule r to rewrite a nonterminal

with feature f is a two-step generation process. First, a rule type ρ ∈Ψ (e.g., for a left- or

right-headed rule) is drawn from a distribution of rule types conditioned on the feature f .

That distribution is denoted by ξ f and the probability that ρ is sampled from ξ f is denoted

by ξ f
ρ . To ensure the consistency of the model, the probability ξ f

ρ is required to be positive

if and only if there is a rule r ∈ R f that has type ρ, ψ(r ) = ρ. In the second step, a rule r ∈ R f

is drawn from a distribution of rules that have type ρ. That distribution is denoted by ζ f ,ρ

and the probability that r is sampled from ζ f ,ρ is denoted by ζ f ,ρ
r . By taking the generation

step together, the probability of a rule r rewriting a nonterminal with feature f is given as the

product

θ
f
r = ξ f

ψ(r ) ζ
f ,ψ(r )
r . (11.1)

As an example, consider the process of sampling a rule to rewrite the TPC-chord C4. Since

the feature projection of the TPC-chord grammar is the identity, φ(C4) = C4. In the first
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11.1. A grammar model for headedness induction

step, a rule type, say RHR for a right-headed rule, is sampled from the distribution of rule

types ξφ(C4) = ξC4
. The rule type RHR can be sampled, because there are right-headed rules

that are applicable to C4. In the second step, a right-headed rule with C4 on its left-hand

side is sampled from the distribution ζC4,RHR, say C4 −→G7 C4. That rule can be sampled,

because it has rule type RHR, ψ(C4 −→G7 C4) = RHR. The probability of applying the rule

C4 −→G7 C4 to the TPC-chord symbol C4 is the product

θC4
C4−→G7 C4 = ξC4

RHR ζ
C4,RHR
C4−→G7 C4 . (11.2)

Since the rule-type distributions ξ f and the rule distributions ζ f ,ρ are unknown, they are

modeled as random variables. The distribution over rule-type distributions ξ f is chosen as a

Dirichlet distribution with pseudocount vectorµ f , and the distribution over rule distributions

ζ f ,ρ is chosen as a Dirichlet distribution with pseudocount vector ν f ,ρ . All distributions ξ f

and ζ f ,ρ are furthermore assumed to be independent.

The full probabilistic model is given by the following factorization of the joint distribution of

rewrite probabilities θ, derivations r̄ , and chord sequences w̄ :

p(θ, r̄ , w̄ ) = p(θ)
I∏

i=1
p(w i | r i ) p(r i | θ) (11.3)

= p(θ)
I∏

i=1
1
(
r i (Start) = w i

) |r i |∏
k=1

θ
φ(Ai

k )

r i
k

(11.4)

= p(ξ) p(ζ)
I∏

i=1
1
(
r i (Start) = w i

) |r i |∏
k=1

ξ
φ(Ai

k )

ψ(r i
k )
ζ
φ(Ai

k ),ψ(r i
k )

r i
k

(11.5)

=
( ∏

f ∈Φ
p(ξ f )

)( ∏
f ∈Φ

∏
ρ∈Ψ

p(ζ f ,ρ)

)
I∏

i=1
1
(
r i (Start) = w i

) |r i |∏
k=1

ξ
φ(Ai

k )

ψ(r i
k )
ζ
φ(Ai

k ),ψ(r i
k )

r i
k

(11.6)

where I denotes the number of chord sequences and Ai
k denotes the leftmost nonterminal of

the sequence r i
1:k−1(Start) — the nonterminal to which the rule r i

k is applied in the derivation

of the terminal sequence w i .

The posterior distribution p(ξ,ζ, r̄ | w̄ ) is approximated using Coordinate Ascent Variational

Inference (CAVI) analogous to the approximation described in Section 7.4. The posterior is

approximated using a distribution which assumes independence of the random variables ξ, ζ,

and r̄ ,

p(ξ,ζ, r̄ | w̄ ) ≈ q(ξ,ζ, r̄ ) = q(ξ) q(ζ) q(r̄ ), (11.7)

where the variational approximations are in the same class as the conditional distributions

of the model, q(ξ f ) = Dir(µ̃ f ), q(ζ f ,ρ) = Dir(ν̃ f ,ρ), and q(r̄ ) =∏I
i=1

∏|r i |
k=1 θ̃

φ(Ai
k )

r i
k

. As before, the

parameters of the variational approximation are denoted using a tilde.
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The CAVI parameter updates that lead to a locally optimal approximation of the posterior are

given as:

µ̃
f
ρ :=µ f

ρ +Eq(r̄ )

[
I∑

i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
ρ =ψ(r i

k )
)]

(11.8)

ν̃
f ,ρ
r :=ν f ,ρ

r +Eq(r̄ )

[
I∑

i=1

|r i |∑
k=1

1
(

f =φ(Ai
k )

)
1
(
ρ =ψ(r i

k )
)
1
(
r = r i

k

)]
(11.9)

θ̃
f
r := exp Eq(θ)

[
logθ f

r

]
=

exp γ
(
µ̃

f
ψ(r )

)
exp γ

(∑
ρ∈Ψ f

µ̃
f
ρ

) exp γ
(
ν̃

f ,ψ(r )
r

)
exp γ

(∑
r ′∈R f : φ(r ′)=φ(r ) ν̃

f ,ψ(r ′)
r ′

) (11.10)

where γ denotes the digamma function. The updates are derived analogous to the derivation

described in Section 7.4.

11.2 Experiment A: Learning the goal-directedness of Jazz harmony

The first Experiment shows that the goal-directedness of functional harmony is learnable

from the observation of Jazz chord sequences. The headedness-induction model described in

the previous section was used to induce 10 grammars from the observation of 300 Jazz chord

sequences. As in the unsupervised grammar-learning experiments presented in Chapter 10,

stochastic variational inference (Hoffman et al., 2013) was used with a batch size of 30 chord

sequences. One epoch thus consists of 10 batches. The induction algorithm was run 10 times,

because it is only guaranteed to converge to a local optimum. Each of the 10 trials observed

the same chord sequences; the differences between the trials result from the randomness of

stochastic variational inference.

The expected probability of right-headedness is shown in Figure 11.1 for each of the 10 trials

and 100 batch updates (10 epochs). The convergence is slower than in the experiments

presented in Chapter 10, but the inference procedure converges in each trial after at most 80

batch updates (8 epochs). Additional to start rules, duplication rules, and terminal rules, all 10

induced grammars use only right-headed rules instead of mixing right- and left-headed rules.

During learning, the model was free to choose any proportion of left- to right-headed rules.

Therefore, the fact that all grammars induced by the headedness-induction model only use

right headed rules shows that the goal-directedness of functional harmony is learnable from

the observation of chord sequences without domain-specific prior knowledge. This can be

seen as a data-driven confirmation of music-theoretical descriptions of functional harmony.

The results also confirm the findings of the unsupervised grammar-learning experiments

presented in Chapter 10. There, the either-headed grammars (that use both left- and right-

headed rules) exhibit a slight tendency for right-headedness. Moreover, strictly right-headed

grammars (that use only right-headed rules) perform better than either-headed grammars.

More generally, the results suggest that goal-directedness is an example of an abstract principle
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Figure 11.1 – Expected probability of right-headedness for each batch update during varia-
tional Bayesian grammar induction. Each line represents the headedness learning of one trial
(10 trials in total).

that can be acquired by statistical learning. Therefore, it is plausible that Jazz musicians

and listeners learned the goal-directedness of Jazz harmony from the interaction with Jazz

standards.

11.3 Experiment B: Model verification using artificial data

To verify that the headedness-induction model is able to induce correct ratios of left-headed

to right-headed rules, the model is applied to artificial terminal sequences generated from

grammars with fixed ratios of left-headed to right-headed rules. The artificial grammars are

similar to TPC-chord grammars; the structure of their rules is the same, and the parameteriza-

tion of their rewrite probabilities is that of the headedness-induction model, but the artificial

grammars use 30 symbols without internal structure as terminals and nonterminals instead of

TPC-chords.

Each grammar is drawn from one of 15 grammar templates (i.e., distributions over grammars)

that vary along two dimensions, 1) the Odds of Right-Headedness (ORH), and 2) the concen-

tration of the Dirichlet prior over rule distributions ζ f ,ρ . The values 1 : 1, 2 : 1, 3 : 1, 5 : 1, and

10 : 1 are tested as ORH. For example, ORH of 10 : 1 mean that right-headed rules are 10 times

as likely as left-headed rules. The tested concentration parameters of the Dirichlet prior are

0.1, 1.0, and 10.0. The higher the concentration parameter is, the more different rules are

applied to each nonterminal.
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10 grammars are drawn for each template to generate 10 datasets of 300 terminal sequences.

Each sequence consists of 20 artificial terminal symbols. Then, stochastic variational grammar

inference is run for 5 epochs with a batch size of 30 sequences to recover the headedness of

the grammar, using the headedness-induction model.

The results of the experiment are shown in Table 11.1. Because of the symmetric definition

of the grammar model, the results are the same when left-headedness is switched with right-

headedness. For the concentration parameter 0.1, the model is able to induce ORH close to

the true ORH. The accuracy of the predictions increases and the variance of the predictions

decreases when the ORH are closer to 1 : 1, that is when left-headed and right-headed rules are

more balanced. The high accuracy verifies that the right-headedness induced in Experiment

A reflects a property of Jazz chord sequences. The increasing uncertainty for increasingly

unbalanced headedness might indicate why in Experiment A, the induced grammars do not

use any left-headed rules, although a small percentage of left-headed rules would be more

plausible: the headedness-inductions is less accurate when right-headed rules are used much

more than left-headed rules.

For the concentration parameter 1.0, the model only infers the correct tendency of the correct

headedness proportions. For a concentration of 10.0, it is not able to infer anything. These

results suggest that grammar induction relies on low entropies of rule distributions. In other

words, when the number of different rules that are applied to each nonterminal is low, then

grammar induction is possible. If otherwise many different rules are applied to each nontermi-

nal, then terminal sequences contain less information about the grammar they are generated

from. This provides an explanation why rule distributions (for example those of the treebank

shown in Figures 4.8 and 4.9) have low entropy. Otherwise, information about the grammar

might not be encodable in the chord sequences and the grammar might not be learnable.
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11.3. Experiment B: Model verification using artificial data

concentration true ORH predicted ORH

mean std

0.1 1 0.98 0.08
0.1 2 2.03 0.13
0.1 3 3.02 0.21
0.1 5 4.94 0.54
0.1 10 8.56 0.87

1.0 1 0.98 0.11
1.0 2 1.18 0.10
1.0 3 1.32 0.17
1.0 5 1.24 0.16
1.0 10 1.25 0.16

10.0 1 0.97 0.10
10.0 2 1.05 0.12
10.0 3 1.07 0.12
10.0 5 1.05 0.10
10.0 10 0.98 0.05

Table 11.1 – Results for learning headedness proportions from artificial data. The first column
shows the concentration parameter of the symmetric Dirichlet distributions that were used to
sample the rule distributions ζr,ρ . The second column shows the Odds of Right-Headedness
(ORH; as opposed to left-headedness) that were used to create the grammar from which the
artificial terminal sequences were sampled. The third and the fourth columns show the mean
and standard derivation of the odds of right-headedness learned from the artificial dataset.
The results are analogous when right-headedness and left-headedness are swapped.
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12 Contributions and conclusions

12.1 Original contributions

12.1.1 Theoretical contributions

This thesis presented and applied an integrated theory of music cognition, hierarchical music

analysis, and artificial intelligence using the Bayesian interpretation of probability. The core

feature of this theoretical framework is that it puts the individual in the center as an ideal

learner or ideal listener. All probabilities calculated in this thesis are interpretable with respect

to an ideal learner as the degrees of her rational belief. The theory emphasizes the role of

musical background (as prior knowledge), and enables musicologists to quantitatively study

subjective listening experiences of complex musical structure, with mathematical rigour.

Probabilistic Abstract Context-Free Grammar (PACFG) was presented as a flexible tool for

cognitive modeling in general and grammar induction for Jazz harmony in particular. The

formalization of grammar rules as partial rewrite functions lead to a concise description of the

underlying mathematical theory in which derivation trees are represented as partial functions

composed of rewrite rules. PACFG allows for a wide range of probabilistic models that are

more powerful than conventional probabilistic context-free grammars. The utility of PACFG

was demonstrated in the computational experiments in which it enabled, for instance, the

usage of joint models of harmony and rhythm for grammar induction.

Parsing and inference for PACFG for was presented in the frameworks of semiring parsing and

variational Bayesian inference. The thesis thereby bridges those theories by using semiring

parsing to approximate expected values that are used for variational Bayesian inference. In

particular, a semiring was defined which represents the distribution of all possible derivations

of a sequence as a compact mathematical object. The combination of the theories as well as

the semiring of derivation-tree distributions is expected to be useful for the implementation

of prospective grammar models and the communication of inference procedures.
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12.1.2 Empirical contributions

A dataset of hierarchical analyses of 150 complete Jazz standards, the Jazz Harmony Treebank

(JHT), was created as a ground-truth database for model training and evaluation. Musical

form was taken into account by proposing open constituents to create the analyses of the

treebank. To ensure the interpretability of open constituents, an interface between a subset of

musical form and functional harmony was defined and implemented. The JHT is an important

step towards the development of an annotation standard for hierarchical structures of music.

It is expected to be useful for future research and technology to train and evaluate grammar

models, to scientifically study the details of Jazz harmony, and to provide a basis of examples

useful for music education.

This study proposed two cognitively motivated probabilistic models that improved the state

of the art for grammar models of harmony. The first model significantly improved the perfor-

mance of harmony grammars by jointly modeling harmony and rhythm. Hence, it provides

evidence that the interaction of several musical dimensions can significantly improve the

acquisition of musical grammar. To implement such joint models, a product-grammar con-

struction was proposed that is not tied to the specific musical dimensions of harmony and

rhythm, but has the potential to integrate further dimensions such as meter, melody, and

repetition structure as well.

The second model used a transpositionally invariant parameterization of rewrite probabilities

to further improve the performance as well as the robustness of the grammar. The musical

interpretation of that result is that a relative root representation and the possibility of modula-

tion is beneficial for learning Jazz harmony. That in itself is not new for harmony theory, but it

underpins the relevance of relative pitch relations for computational models and enables the

quantification of their added value. In contrast to machine-learning approaches that augment

data to obtain transpositionally invariant models (e.g, the training data is transposed to all 12

pitch classes), the approach presented in this thesis encodes transpositional invariance into

the model’s architecture. This leads to a cognitively more plausible model that is at the same

time more efficient to train.

Two unsupervised grammar-learning experiments are reported in this thesis. The first experi-

ment identified a model that is able to induce a grammar of Jazz harmony which performs

nearly as well as the best grammar obtained via supervised learning (i.e., by observing the

JHT). That model induces joint grammars of harmony and rhythm using a prior preference for

simple rhythm and prior knowledge about the goal-directedness of functional harmony. There-

fore, the first model shows that no style-specific knowledge is needed to induce a grammar for

harmony from the observation of Jazz chord sequences. The second unsupervised experiment

proposes a model for the induction of the directionality of harmonic dependencies. That

model shows that the goal-directedness of Jazz harmony is learnable from the observation of

Jazz chord sequences without domain-specific prior knowledge.
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12.2 Directions for future research

One of the shortcomings is that the evaluation metrics tree accuracy and dependency accuracy

are rough measure that do not reflect the ambiguity of music. The best grammar model

achieves a tree accuracy of about 63% and a dependency accuracy of about 74%. From the

viewpoint of natural language processing, these accuracy numbers might look like the model

performs poorly, but its tree predictions are of high quality. Because of the high ambiguity

of music, it is not plausible that any model which does not overfit the data would be able

to achieve accuracies over 90%. The actual upper bound is, however, unknown and might

be lower. Furthermore, the ground-truth data of the JHT was created by taking melody into

account, and it is unknown how well a harmony grammar can predict a dependency structure

without considering melody. It is therefore an interesting yet challenging topic for future

research to jointly study the subjectivity of harmonic analyses as well as the interaction of

harmony and melody together with the development of evaluation metrics. Current research

studied related questions for chord labeling (Koops et al., 2019) that might be extendable

to functional harmony. The study of the subjectivity of harmonic analyses is, however, very

time-consuming and expensive, because multiple analyses of the same music have to created

by different music experts.

A promising direction for future research is the explicit modeling of meter and harmonic

upbeats in the rhythm grammar. The strength of the rhythm grammar as presented in this

thesis is its simplicity; it is a simple yet powerful model that significantly improves the per-

formance of harmonic grammars. The integration of meter and harmonic upbeats into this

model has the potential to improve the performance further as the qualitative analyses of

the tree predictions show. Grammar models of meter have already been implemented (e.g.,

McLeod and Steedman, 2017) and formal descriptions of integrated models are a topic of

current research (Harasim et al., 2019b; Rohrmeier, 2020b).

For further improvements of the grammar models, the balancing and interaction of grammar

components that individually model single musical dimensions can be optimized. In this study,

the balancing of the grammar components was performed by hand, because an automatic

balancing was not implementable with the current methodology. Future research can work

on integrating more dimensions such as melody, key, and repetition structure and apply

differential programming and stochastic gradient descent to train and balance the grammar

components. Such approaches can then, for instance, incorporate artificial neural networks

to learn complex parameterizations of probabilistic grammars (Kim et al., 2019).

A third idea for future research is the application of grammar induction to comparatively study

Jazz and other styles such as Rock and Metal, Brazilian Choro, and Western Classical music.

Particularly interesting would be the application of the headedness-induction model to Rock

music, a style whose harmony is theorized to be not goal-directed. Further promising ideas

for the application of grammar induction are discussed below.
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12.3 Conclusion and prospects

This thesis has demonstrated that harmonic grammar can be induced from chord sequences

without the need for music-specific predispositions. While music-specific predispositions

are not required, joint consideration of harmony and rhythm was shown to be crucial to

accurately acquire musical grammar. This underpins that harmony and rhythm are dependent;

a consideration of rhythm reduces the number of plausible harmonic dependency structures.

Similar dependencies are expected for other musical dimensions, for instance for melody

which influences the harmonic function of a chord (e.g., whether a chord is a tonic). Indeed,

music theorists have argued that considering musical dimensions in isolation as well as in

interaction is essential to understand musical structure. The present thesis strongly supports

this notion.

The goal-directedness of functional harmony was found to be beneficial for learning. Moreover,

goal-directedness itself was learnable in the computational simulations. The importance of

goal-directedness is (at least unconsciously) known to most improvising Jazz musicians. In

my personal experience, good Jazz-improvisation teachers reinforce students to play towards

a goal such as a tonic chord, instead of starting somewhere and playing away from it. For

teaching improvisation to students, I made the observation that an advice to play towards

a goal can help them a lot to transition from a rather meaningless playing of scales to an

interesting story telling. It is astonishing to see such a close relation between practical music

education and computational models of cognition; it affirms the importance of goal-directed

thinking.

The computational models developed in this thesis offer a solid and resilient interface between

music theory and empirical music research. Many of the modeling decisions taken in this

thesis are based on music theory. Music-theoretical insights are operationalized and the

“intuitive statistics” as well as the “folk psychology” of music theory are rigorously quantified

(Cross, 1998; Neuwirth and Rohrmeier, 2016). Formal and computational modeling thus

relies on music theory and, in converse, commonly confirms its statements as it is the case in

this thesis. Furthermore, computational music theory has the advantage that all models are

specified explicitly, transparently, and concisely in only a couple of paragraphs. This facilitates

the scientific discussion about the model’s implications as well as the usage of the model in

computational applications. Moreover, various models can be compared to quantitatively

investigate the importance of a musical property or relation. For instance, the importance of

considering rhythm for learning harmonic grammar might be underestimated in qualitative

studies but was corroborated in the present learning simulations. This thesis shows that it

can be surprising how much musical structure is explainable via few simple assumptions and

domain-general quantitative methodology such as provided by probability theory.
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The computational cognitive models presented in this thesis complement traditional music

theory in that they go beyond the question of how a piece might be heard to the question of

how a way of hearing can be learned. Moreover, these models make the expressivity of music

theory and music analysis available to study musicological questions quantitatively. Such

questions could concern for instance comparative style analyses and historical developments.

Computational cognitive models are therefore expected to play a major role in the rising field

of musical corpus research.

Another interesting application of the grammar models developed in this thesis would be to

apply the models in order to compare musical styles according to the learning difficulty of

their respective grammars. The regularity of Jazz tunes facilitates an unsupervised learning of

their structure and provides a grid-like fundament on which improvisation can be based. In

contrast, most of Western classical music is composed and thus exhibits more complex and

irregular structures than found in Jazz standards. Therefore, it would be plausible if grammar

acquisition for Western classical music would benefit more from supervision during learning.

Two of the main criticisms of using context-free grammars for music analysis are that they

might overstate the importance of recursion for musical structure and that one derivation tree

is only able to represent a very limited set of relations between musical events. Clearly, genera-

tive models in general and context-free grammars in particular are modeling frameworks that

make specific assumptions and are thus limited in their expressivity. However, probabilistic

(abstract) context-free grammars constitute a local optimum in the spectrum between detailed

music analysis and computational tractability. It is hard to represent dependencies over long

time spans in simpler model classes such as linear models, and the computational complexity

of more sophisticated model classes such as graph grammars is of a higher order of magnitude

than context-free grammars. Future research can expand on the work presented in this thesis

by taking additional systems of musical relations into account in order to further broaden the

horizon of computational models of musical structure.

The question remains how a human mind benefits from making the effort to learn musical

grammar. In natural language, grammatical structure is essential, because it is used to con-

vey semantic meaning (Steedman, 2000). A child naturally acquires grammatical rules by

communication with relatives and friends. The situation is less obvious for music: What is

the advantage of understanding and interpreting hierarchical structure in music? Such an

understanding facilitates, for example, the orientation in the music as well as a coordination

between musicians. Knowledge about hierarchical phrase structure and musical form gener-

ally aids the orientation in the music. For example, it is easier to think about a chord as the

last chord of the second A part in an AABA form than to think about it as a chord in the 15-th

measure of a tune or as its 12-th chord. The AABA structure further implies that such a chord

is likely to be a tonic chord, which is different for other structures such as ABAC. Orientation

is of particular importance for improvisation, because an improvising musician cannot just

memorize a tune note by note or chord by chord if she aims to embellish, reduce, or substitute

the musical material. It is instead plausible that musicians use an abstract representation of a
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tune for improvisation which enables them to freely explore the musical space by keeping the

connection to other musicians at the same time. Musical grammar describes the construction

of such abstract representations. The goal-directedness of functional harmony further helps

to coordinate collective improvisation, because how musicians prepare a chord is not as

important as that they prepare the same chord when playing together. The same holds for

collectively achieving closure. Hence, the regular formal structure of Jazz standards and the

goal-directedness of functional harmony can be explained by their facilitation of individual

and collective improvisation. Moreover, improvising dancers use musical grammar similarly

to improvising musicians in order to anticipate the music and plan their moves.

The plausibility that musical grammar is learned instead of being innate is further supported

by the present finding that it is relatively easy to acquire musical grammar through statistical

learning. The experiments showed that a grammar of high quality was inducible from a

small sample of only 300 Jazz standards. Moreover, the quick convergence of the inference

procedure suggests that the sample can be further reduced without compromising the quality

of the grammar. The findings of this thesis therefore indicate that the poverty of the stimulus

argument is not applicable to music. However, direct comparisons between language and

music (e.g., Katz and Pesetsky, 2011) need to be treated with caution since the rules of musical

grammar appear to be more subtle and less strict than those of language.

One explanation why musical grammars might be easier to learn than grammars for natural

language is the massively reduced lexicon. The PC-chord grammar used a vocabulary of

144 chord symbols. In contrast, native-speakers of English use a vocabulary of more than

10,000 words. The role of chord symbols might thus be more similar to the role of parts of

speech than to words. In that understanding, chord symbols categorize chords; no additional

categorization might be required to learn musical grammar. This can be studied in the future

by the application of formal grammar models on the note level.

Bayesian models of cognition provide a powerful coherent toolbox for interdisciplinary re-

search on music. Their theoretical strengths are to favor interpretability and explicit repre-

sentation of symbolic knowledge over ad-hoc black-box modeling. I expect future research to

further push the boundaries of which musical structures can be characterized by computa-

tional models. The study of music is a great opportunity to simultaneously explore the details

of musical structure, technology for artificial intelligence, and concepts applicable to music

education, and to gain insights into the human mind.

182



A Appendix: related published articles

183



A GENERALIZED PARSING FRAMEWORK FOR GENERATIVE MODELS
OF HARMONIC SYNTAX

Daniel Harasim1,2 Martin Rohrmeier1,2 Timothy J. O’Donnell3
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ABSTRACT

Modeling the structure of musical pieces constitutes a cen-
tral research problem for music information retrieval, mu-
sic generation, and musicology. At the present, models of
harmonic syntax face challenges on the tasks of detecting
local and higher-level modulations (most previous models
assume a priori knowledge of key), computing connected
parse trees for long sequences, and parsing sequences that
do not end with tonic chords, but in turnarounds. This pa-
per addresses those problems by proposing a new genera-
tive formalism Probabilistic Abstract Context-Free Gram-
mars (PACFGs) to address these issues, and presents vari-
ants of standard parsing algorithms that efficiently enumer-
ate all possible parses of long chord sequences and to es-
timate their probabilities. PACFGs specifically allow for
structured non-terminal symbols in rich and highly flex-
ible feature spaces. The inference procedure moreover
takes advantage of these abstractions by sharing probabil-
ity mass between grammar rules over joint features. The
paper presents a model of the harmonic syntax of Jazz
using this formalism together with stochastic variational
inference to learn the probabilistic parameters of a gram-
mar from a corpus of Jazz-standards. The PACFG model
outperforms the standard context-free approach while re-
ducing the number of free parameters and performing key
finding on the fly.

1. INTRODUCTION

The modeling of non-local relations between musical ob-
jects such as notes and chords constitutes a central re-
search problem for music information retrieval, music gen-
eration, and music analysis. Hierarchical models express
these relations by assuming a latent hierarchical structure
[19,22–24,30,31]. Consider for example the Jazz chord se-
quence Am7 D7 G7 C4 where C4 denotes a major-seventh
chord. Since the first three chords form a II V I sequence

c� Daniel Harasim, Martin Rohrmeier, Timothy J.
O’Donnell. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Daniel Harasim, Martin
Rohrmeier, Timothy J. O’Donnell. “A Generalized Parsing Framework
for Generative Models of Harmonic Syntax”, 19th International Society
for Music Information Retrieval Conference, Paris, France, 2018.

with reference to G7 which is the dominant in C major,
they form a dominant phrase [24]. The dominant phrase as
a whole then refers to the tonic chord C4. All four chords
together thus form a tonic phrase.

Figure 1 presents a syntactic analysis of the A-part
of the Jazz-standard Afternoon in Paris following the ap-
proach from [22]. It illustrates the idea of how pieces can
be decomposed into hierarchically-structured constituents
which stand in part-whole relationship with one another.
Subdominant, dominant, and tonic phrases are denoted by
the scale degrees II, V, and I, respectively. Note that the
subsequence Cm7 F7 B[4 is both a tonic progression in
B[ major and a dominant progression in E[ major. It forms
a dominant phrase in A[ major together with B[m7 and
E[7.

IC

IC

IC
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IIC
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Figure 1. Hierarchical analysis of the A-part of the Jazz-
standard Afternoon in Paris.

Models of harmonic syntax similar to Figure 1 have
been successfully applied to melody harmonization [16],
chord inference from audio [5, 6], and harmonic similarity
[7]. There is also some empirical evidence for the psycho-
logical reality of hierarchical structures in music [15, 25].
While earlier theoretical and psychological work on hierar-
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chical models has provided important insight about musi-
cal structure, computational implementation of these mod-
els to date has been limited to relatively small datasets.
Earlier work includes applications to monophonic melodic
data [21], a corpus of 39 blues chord progressions with a
maximum of 24 chords per progression [12], or a dataset
of 76 chord progressions (avg. length 40) from Jazz-
standards that was restricted to subsequences of pieces that
did not change key [4]. All these earlier approaches as-
sume the knowledge of the key of the pieces a priori.

In computational linguistics, Context-Free Grammars
(CFGs) are a standard way of modeling hierarchical con-
stituent structure. They formalize constituent structures us-
ing rewrite rules denoted by long right arrows. The rule
X �! Y Z for example states that the constituent X con-
sists of the two constituents Y and Z. The existence of
natural language treebanks makes it possible to read off the
grammatical rewrite rules including their frequencies from
syntactical analyses by experts. At present, there are mu-
sic databases of simplified Schenkerian analyses [13], syn-
tactic analyses of melodies based on the generative theory
of tonal music [8], and annotated harmonic functions [4].
However, to the best of our knowledge there is currently
no dataset of hierarchically analyzed chord sequences by
human experts that could serve for the training or the eval-
uation of models of harmonic syntax. As a consequence,
there exist no comparisons of models of harmonic syntax
against expert analyses.

In the following, we introduce Abstract Context-Free
Grammars (ACFGs), a generalization of the CFG frame-
work designed to account for feature structures charac-
teristic of musical categories. A first model of Jazz har-
mony is proposed in this framework that covers full pieces
by incorporating modulations (i.e., changes in key). We
train the model in a semi-supervised fashion on a dataset
of Jazz-standards and evaluate it on a small set of hand-
annotated hierarchical analyses. We further propose a so-
lution for handling sequences that do not end with tonic
chords, but in turnarounds. Simulations demonstrate that
the ACFG model is able to outperform a PCFG model of
the dataset. The implementation of the algorithms devel-
oped in this study are publicly available as a package of the
Julia programming language [1]. 1

2. OVERVIEW OF THE APPROACH

While the CFG framework has proven invaluable in com-
putational linguistics, categories and part-whole relations
between musical constituents have properties not pos-
sessed by linguistic structures. Musical categories such as
scale degrees, for example, are equipped with an arithmetic
structure that corresponds to musical transposition.

In the following, we refer to context-free rules of the
form X �! Y X as a preparation of X by Y . The prepa-
ration of the scale degree VB[ by IIB[ in Afternoon in Paris
(see Figure 1) for example is a concrete realization of the
general principle that any category x

k

consisting of a scale

1 https://github.com/dharasim/GeneralizedChartParsing.jl

degree x and a key k can be prepared by an ascending dia-
tonic fifth (x+4 mod 7)

k

. [24]. In addition to facts such as
these, a framework for modeling musical structure has to
account for the fact that the musical categories and rewrite
rules are grouped into key-independent classes. For exam-
ple, both VB[ and VA[

are fifth scale degrees. The prob-
abilities of the application a rule to VB[ and VA[

should
therefore be related.

This paper introduces Abstract Context-free Grammars
(ACFGs), a modeling framework with a greater flexibility
than CFGs. In particular, in ACFGs constituent categories
are allowed to be of any data type and the rules are general-
ized partial functions. Unlike standard context-free rules,
ACFG rules can therefore take advantage of the algebraic
structure of categories. Probabilistic ACFGs extend prob-
abilistic CFGs with the ability to express a wider range of
probability distributions over rules.

3. ABSTRACT CONTEXT-FREE GRAMMARS

3.1 Definitions

Definition 1. A (non-probabilistic) Abstract Context-free
Grammar (ACFG) G = (T,C,C0,�) consists of a set T
of terminal symbols, a set C of constituent categories, a set
of start categories C0 ✓ C, and a set of partial functions

� := { r | r : C 7! (T [ C)

⇤ } ,

called rewrite rules or rewrite functions. The arrow 7! is
used throughout the paper to denote partial functions. A
sequence � 2 (T [ C)

⇤ can be generated in one step
from a sequence ↵ 2 (T [ C)

⇤ by the application of
a rewrite function r 2 �, denoted by ↵ �!

r

�, if
there exist ↵1,↵2 2 (T [ C)

⇤ and A 2 C such that
↵ = ↵1A↵2 and � = ↵1r(A)↵2. A sequence of rewrite
rules r1 . . . rn is called a derivation of a sequence of termi-
nals ↵ 2 T

⇤ if there exists a start category ↵1 2 C0, and
↵2, . . . ,↵n

2 (C [ T )

⇤ such that

↵1 �!
r1 ↵2 �!

r2 · · · �!
rn ↵,

where r

i

is always applied to the leftmost category of ↵
i

for i 2 { 1, . . . , n� 1 }. The set of derivations of ↵ is
denoted by D(↵). The language of the grammar G is the
set of terminal sequences that have a derivation in G.

Note that if C is finite, the languages that can be de-
scribed by ACFGs are exactly the languages that can be
described by standard context-free grammars (CFGs). For
each ACFG with finite C, a CFG with rule set R can be
constructed by dividing each rewrite function with domain
cardinality k into k standard context-free rewrite rules,

R :=

[

r2�

{ (A,↵) 2 C ⇥ (T [ C)

⇤ | r(A) = ↵ } .

Definition 2. A Probabilistic Abstract Context-free Gram-
mar (PACFG) is an ACFG where each category A 2 C is
associated with a random variable X

A

over rewrite func-
tions r such that P(X

A

= r) is positive if and only if r(A)
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is defined, that is A is in the domain of r, A 2 dom(A).
The probability p(d) of a derivation d = r1 . . . rn of a se-
quence of terminal symbols ↵ 2 T

⇤ is defined as the prod-
uct

Q
n

i=1 P(XAi = r

i

) where in each step r

i

is applied to
a category A

i

2 C. The probability of ↵ is then defined as
p(↵) =

P
d2D(↵) p(d).

Note that PACFG categories can share the same proba-
bility distribution over rewrite functions without rewriting
to exactly the same right-hand sites. This important prop-
erty allows us to model the structural relations between
musical keys. We use this property in Section 4 to build
a model that abstract chords sequences from their concrete
scale by defining the probability that a rewrite function is
applied to a scale degree independently of its key. The
sharing of probability mass between rules additionally re-
duces the number of free parameters of a PACFG model.

To illustrate the different learning capabilities of PCFG
and PACFG models, consider a toy PCFG with nonter-
minal symbols C = {S,A,B }, start symbol S, ter-
minal symbols T = { a, b }, and rules S �! A | B,
A �! A A | a, and B �! B B | b. The grammar thus
generates sequences that solely consist either of as or bs.
In a classical PCFG setting, no probability mass is shared
between rules, but each rule has its separate probability.
However, in the process of inferring the probabilities of
the rules from data, it might be desirable to generalize the
rules A �! AA and B �! B B to a meta rule x �! x x

where x 2 {A,B } and to put probability mass on this ab-
stract entity. In that way, the grammar can learn something
about A �! A A when it observes B �! B B and vice
versa. The PACFG version of the PCFG presented above
addresses the problem by replacing the classical context-
free rules by the partial functions r1, r2, r3, r4, and r5 with
r1(S) = A, r2(S) = B, r3(x) = x x for x 2 {A,B },
r4(A) = a, and r5(B) = b. Analogously, a PACFG of
Jazz chord sequences can generalize classical rewrite rules
so that their probabilities do not depend on the keys of their
left-hand sides to model transpositional invariance.

3.2 Parsing

Parsing a sequence of terminal symbols with respect to a
formal grammar is the task of computing the distribution
of parse trees conditioned on this sequence. Many parsers
are based on versions of the CYK algorithm that assumes
grammars to be given in Chomsky normal form. Since
grammar transformations into Chomsky normal form con-
siderably blow up the grammar, the here presented parser
transforms grammars on the fly during parsing, similar
to the transformation presented in [18]. Each rule of the
form A �! B1 . . . Bk

is transformed into a set of states
s

i

= B1 . . . Bi

for 1  i  k, a transition function

tran : S ⇥ (T [ C) ! S, tran(s

i

, B

i+1) = s

i+1

and a completion function comp : S ! 2

C such that
{A } ✓ comp(s

k

), where S denotes the set of all states.
Note that the states and the transition function form a
search trie where the completion function checks if there

items: edges [s, i, j] for s 2 S

constituents [A, i, j] for A 2 C

for and i, j 2 {1, . . . , |↵|+ 1}

goal items: [A, 1, |↵|+ 1] for A 2 S

axioms:
[↵

i

, i, i+ 1]

for i 2 {1, . . . , |↵|}

introduce edge:
[A, i, j]

[s, i, j]

s = tran(s0, A)

complete edge:
[s, i, j]

[A, i, j]

A 2 comp(s)

fundamental rule:
[s, i, j] [A, j, k]

[s

0
, i, k]

tran(s,A) = s

0

Figure 2. Description of the parsing algorithm in the pars-
ing as deduction framework. Existing Constituents can
start the parser to read a sequence of terminal symbols and
categories by the introduce edge rule. The fundamental
rule is then recursively applied to extend these sequences.
The complete edge rule eventually merges sequences to
single constituents if they are the right-hand side of a gram-
mar rule.

is a rewrite rule that has a sequence of terminal symbols
and categories as its right-hand side. This trie data struc-
ture leads to a compact representation of the forest of all
trees for a given input sequence. More generally, the parser
can handle any transition and completion functions derived
from finite-state automata, see [14].

In the following, a generic bottom-up parsing algorithm
for abstract grammars is presented in the parsing as de-
duction framework using the above defined transition and
completion functions [3, 29]. The parsing as deduction
framework is a meta-formalism to state and compare dif-
ferent parsing algorithms. It views the parses of a sequence
as logical deductions of goals from axioms by using con-
stituents as atomic logical formulas. The formula [IB[, 2, 5]

for example states the existence of a constituent with cate-
gory IB[ that spans over the second, third, and fourth termi-
nal symbol. This formula is true in the analysis presented
in Figure 1 because that analysis contains a constituent
with label IB[ over the span from the second to the forth
leaf chord. The goals are constituents that span the full
sequence and come from the set of start categories. The
axioms are formulas of the form [t

i

, i, i + 1] for each ter-
minal in the input sequence t1 . . . tn. The parsing strategy
such as bottom-up parsing or Earley parsing is encoded in
the deduction rules. These rules are denoted by a set of
atomic formulas over a horizontal line, an atomic formula
under this line, and an optional side condition (see Figure
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2). The formula under the line can be deduced from the
formulas above if the side condition holds.

The proposed algorithm makes use of two different
kinds of atomic formulas: edges (not yet completed con-
stituents) and constituents. A state s 2 S together with a
start index i and an end index j is called an edge and de-
noted by [s, i, j]. Analogously, a category A 2 C together
with start and end indices i and j is called a constituent
and denoted by [A, i, j]. Figure 2 shows the axioms, goal
items, and the deduction rules of our algorithm.

3.3 Inference of Rule Probabilities

In this section, we give an overview of an inference algo-
rithm for the rule probabilities P(X

A

= r). Let �
A

=

{ r 2 � | A 2 dom(r) } be the set of rewrite functions
whose domain contains the constituent category A. We
place a Dirichlet distribution on the probability vector de-
scribing the distribution over �

A

, ~✓�A ⇠ Dirichlet(~↵�A)

for pseudocount vector ~↵�A . The inference problem is to
compute the posterior distribution over this set of probabil-
ity vectors, given the data D and pseudocounts {~↵�A},

p({~✓�A} | D, {~↵�A}) / p(D | {~✓�A})p({~✓�A} | {~↵�A}),

where { ~

✓�A} is an abbreviation for { ~

✓�A}A2C

, etc. Varia-
tional Bayesian inference (VB) is used to approximate this
posterior distribution [2, 11, 32]. We introduce an approx-
imating variational distribution q({~✓�A} | {~⌫�A}) with
variational parameters {~⌫�A} over our target hidden vari-
ables (rule weights) and minimize the Kullback-Leibler di-
vergence between this approximation and the true poste-
rior,

DKL(q({~✓�A} | {~⌫�A}) || p({~✓�A} | D, {~↵�A})),

by adjusting the variational parameters {~⌫�A}.
Following [17], we approximate the distribution over

each probability vector with a Dirichlet distribution
~

✓�A | ~⌫�A ⇠ Dirichlet(~⌫�A), and make use of the mean-
field approximation

q({~✓�A} | {~⌫�A}) =
Y

A2C

p(

~

✓�A | ~⌫�A).

We minimize the Kullback-Leibler divergence with a
coordinate descent algorithm similar to the expectation-
maximization algorithm. First, we compute the expec-
tation of the counts of rule usages in the data under our
current setting of the variational parameters, E

q

[#(r,D)]

where #(r,D) is the number of times that rule r was used
to generate the data D, and then we update our varia-
tional parameters based on these expectations. Since all
of our distributions are in the exponential family, it can
be shown that the optimal update is given by the equation
ˆ

~⌫�A = ~↵�A + E
q

[#(r,D)] [2]. In other words, we set the
pseudocounts of our variational distributions equal to the
expected number of rule usages plus the pseudocount for
each rule in the prior distribution.

Under the standard coordinate-ascent algorithm given
in [17], expected counts must be computed for the whole

corpus before updating using the equation above. Hoff-
man et al. [9] propose a stochastic variant of the standard
variational (inspired by stochastic gradient descent) where
updates are computed with respect to randomly sampled
minibatches of the data. We make use of this stochastic
variational Bayes algorithm in the results reported below.

4. A GENERATIVE MODEL OF JAZZ HARMONY

This section presents a PACFG G = (T,C,C0,�) that
models the syntax of Jazz harmony following the pro-
posal in [24]. That work addressed the problem of find-
ing a restrictive grammar that describes the full variety of
syntactic relations in the musical idiom of Jazz-standards.
The set of terminal symbols T is a set of pairs describing
chords each of which consists of the root of the chord and
a string describing the chord form—one of: a major triad,
a major-seventh chord, a major sixth chord, a dominant-
seventh chord, a minor triad, a minor-seventh chord, a half-
diminished-seventh chord, a diminished seventh-chord, an
augmented triad, or a suspended chord.

In the following, Z
n

denotes the ring of integers mod-
ulo n 2 N. The categories are modeled as pairs of scale
degrees and keys, C = Z7 ⇥ K, where a key consists of
a pitch class representing its root and a string describing
its mode, K = Z12 ⇥ {major,min }. Scale degrees are
denoted by roman numerals from I to VII. All categories
with scale degree I are start symbols, C0 = { I }⇥K. Let
k 2 K denote an arbitrary key. The set of rewrite functions
� consists of prolongation,

PROLONG(hx, ki) = hx, ki hx, ki

for x 2 Z7, diatonic preparation,

DIAT-PREP(hx, ki) = hx+ 4 mod 7, ki hx, ki

for x 2 Z7 \ { IV }, dominant preparation,

DOM-PREP(hx, ki) = hV, µ(x, k)i hx, ki

for x 2 Z7 \ { I } where µ(x, k) denotes the modulation
from k into the key of scale degree x (e.g. µ(II, (0,maj)) =
(2,min), the key of the second scale degree of C major is
D minor), plagal preparation,

PLAGAL-PREP(hI, ki) = hIV, ki hI, ki,

modulation,

MODULATION(hx, ki) = hI, µ(x, k)i,

mode change,

MODE-CHANGE(hI, (r,m)i) =
(
hI, (r,min)i, if m = maj
hI, (r,maj)i, if m = min,

for r 2 Z12,m 2 {maj,min }, diatonic substitution,

DIAT-SUBST(hx, (r,m)i) =

8
>>><

>>>:

hVI, (r,m)i, if x = I,m = maj
hIII, (r,m)i, if x = I,m = min
hIV, (r,m)i, if x = II
hVII, (r,m)i, if x = V
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Figure 3. Parsing the turnaround of All of me

for x 2 { I, II,V } , r 2 Z12,m 2 {maj,min }, and domi-
nant substitution,

DOM-SUBST
i

(hV, (r,m)i) = hV, (r + i mod 12,m)i

for r 2 Z12, m 2 {maj,min }, and i 2 { 3, 6, 9 }.
Additionally, � contains appropriate termination rules
C 7! T according to standard Jazz harmony theory (e.g.
seventh-chord-termination(h4, (0,maj)i) = G7, see [20]
for further explanation). The distribution of Xhx,ki over
rules rewriting the category hx, ki is defined as a categori-
cal distribution such that P(Xhx,ki = r) = P(Xhx,k0i = r)

for all scale degrees x, rules r, and keys k, k0 that have the
same mode. That is, the probability of r rewriting hx, ki
does not depend on the root of k which enables the model
to learn the parameters of its probability distributions key-
independently.

These grammar rules can be grouped into three classes:
the prolongation rule, preparation rules, and substitution
rules. Preparation rules create categories that for the lis-
tener generate the expectation to hear the prepared chord.
Substitution rules substitute chords for other chords that
fulfill an equivalent function inside the sequence such as
tritone substitutions of dominants in Jazz.

5. THE TURNAROUND PROBLEM

A lead-sheet of a Jazz-standard consists of a melody to-
gether with a chord sequence describing the fundamental
harmonic structure of the piece. The chord sequence is re-
peated multiple times in a performance. While some lead-
sheets end with tonic chords, others include harmonic up-
beats to the first chord of the piece at the end of the sheet,
called turnarounds. The final chord of a performances is
nevertheless usually a tonic chord. The lead-sheet of the
Jazz-standard All of me starts for example with a C4 chord
and ends with the turnaround E[�7 Dm7 G7.

The grammar of Jazz harmony proposed above assumes
that pieces end with a tonic chord. Therefore, a simple im-
plementation of this grammar would not able to parse lead-
sheets that end in turnarounds. We solve this problem by
cyclic parsing, meaning that we assume that constituents
can have spans from the end of a piece back to the begin-
ning, see Figure 3.

Figure 4. Tree accuracy plot

6. EXPERIMENTS

6.1 Dataset

The model is evaluated using the iRealPro dataset of Jazz-
standards. 2 This dataset consists of 1173 chord sequences
electronically-encoded by the Jazz musician community
including metadata such as the titles, composers, and keys.
The sequences were collected and converted into the Hum-
drum format [10] by Daniel Shanahan and Yuri Broze [28],
and are available online. 3 For other research that uses
this dataset see [26, 27]. The chord forms in the iRealPro
dataset include information about nineths and elevenths
that are not considered in this study.

The subset of 394 Jazz-standards that consist of at most
40 chords was considered to train the models. 34.52%
(136) of these pieces were parsable using the standard
approach and 90.61% (357) pieces were parsable using
the cyclic parsing approach described above. Less then
55% of the considered Jazz-standards therefore end in
turnarounds.

6.2 Tree Accuracy Evaluation

We compare four models: (i) the proposed PACFG model
that uses a representation of rules independent of key,
(ii) its PCFG counterpart the rules of which are not in-
dependent of key, (iii) a baseline of randomly generated
trees, and (iv) a right-branching baseline in which all con-
stituents split into a constituent on the left and a terminal
symbol on the right.

The models are trained on the 357 cyclic parsable se-
quences using minibatches of 8 sequences. They are eval-
uated on 13 pieces hand-annotated by the authors. We re-
port the predicted tree accuracy. That is the precision of
correctly predicted spans of internal tree nodes. A span of
a tree node is defined as the start index of its leftmost leaf
together with the end index of its rightmost leaf.

Figure 4 shows the means of the tree accuracies includ-
ing 95% confidence intervals as error bars. The right-
branching baseline performs at an accuracy level under
10%. The random baseline performs slightly better at an

2 https://irealpro.com
3 https://musiccog.ohio-state.edu/home/index.php/iRb Jazz Corpus
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Figure 5. Predicted tree accuracy for each minibatch up-
date. Note that the y-axis displays only values between
33% and 50%.

accuracy level of 15.35% Under a uniform prior, both the
PACFG and the PCFG model perform at an accuracy level
of 36.30% a priori of the data. As opposed to the trained
PCFG model that only improves its performance by about
3% (in comparison to the uniform prior) reaching an ac-
curacy of 39.43%, the trained PACFG model improves by
about 10% (in comparison to the uniform prior) reaching
an accuracy of 45.95%. The PACFG model was thus able
to learn more from the data than the PCFG model. Note
that since the PCFG model does not abstract the grammar
rules from the concrete key wherein they are applied, the
number of free parameters of the PCFG model is approxi-
mately 12 times higher than the number of free parameters
of the APCFG model.

Despite the fact that the PACFG model learns key-
independently, it is still much simpler than models that
produce state-of-the-art parsing results in computational
linguistics. In particular, state-of-the-art models in com-
putational linguistics typically make use of conditioning
information beyond the parent constituent categories used
in the PACFG model—such as larger tree fragments, con-
ditioning on heads and/or adjacent elements in the string,
state-splitting, and other richer contextual information. We
anticipate that the inclusion of similar structures into mu-
sical parsing models will lead to similar improvements in
performance.

Figure 5 shows the mean predicted tree accuracies of
the PACFG and the PCFG models for each minibatch up-
date. Note that this figure is produced using a stochastic
algorithm and is therefore inherently noisy. We see that
the stochasticity of the inference algorithm leads to ran-
dom jumps of the accuracy up to 0.5%. The models appear
to do most of their learning in the first 10 minibatches.

6.3 Performance Diagnosis using Scale Degree
Frequencies

Figure 6 shows the expected frequency of scale-degree use
in the whole corpus. The scale degrees VI in major and
III in minor are more frequently used by the model than
expected. Because these scale degrees are substitutions for
the first scale degrees and because they enable modulations

Figure 6. Expected usage of scale degrees to parse the full
training dataset

into the relative key (e.g. from C major to A minor and vice
versa), the model may be using them to alternate between
relative keys. The prominence of the VII in minor keys is
probably related to the fact that it has a dominant-seventh
chord form. The model may be interpreting a I in major as
a III in the relative minor key that is then prepared by the
VII in minor. For example, the simple chord transition G7

C4 would in this case be derived by

I
a

�! III
a

�! VII
a

III
a

�! G7 III
a

�! G7 C4
.

7. CONCLUSION AND FUTURE RESEARCH

The research presented here introduced a new general
grammar and parsing framework tailored to the needs of
music and showed how to perform inference for such a
model.

Experiments show that in contrast to standard context-
free models, the proposed model is able to learn character-
istic structures of the observed data. To the best of our
knowledge, this is the first computational approach that
automatically performs hierarchical analyses of chord se-
quences and evaluates them on analyses by human experts.

This paper lays the groundwork for more advanced
models of harmonic syntax. Our future research will
in particular focus on expanding the dataset of hand-
annotated expert analyses to provide significance tests of
the performance comparison of different models, for ex-
ample. Further studies can use the tools developed here
to build models of unsupervised grammar induction, joint
models of multiple musical levels of musical structure like
harmony and rhythm, and models of musical structure that
have more complex dependencies than those representable
in simple tree structures.

8. ACKNOWLEDGEMENTS

Financial support for the research presented in this article
has in part been provided by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) and the
Zukunftskonzept at TU Dresden funded by the Exzellen-
zinitiative of the Deutsche Forschungsgemeinschaft.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 157



9. REFERENCES

[1] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and
Viral B. Shah. Julia: A Fresh Approach to Numerical
Computing. SIAM review, 59(1):65–98, 2017.

[2] David M Blei, Alp Kucukelbir, and Jon D McAuliffe.
Variational Inference: A Review for Statisticians.
arXiv, (arXiv:1601.00670), 2017.

[3] Joshua T Goodman. Parsing inside-out. PhD thesis,
1998.

[4] Mark Granroth-Wilding and Mark Steedman. A Robust
Parser-Interpreter for Jazz Chord Sequences. Journal
of New Music Research, 43(4):355–374, 10 2014.

[5] W Bas De Haas. Music information retrieval based on
tonal harmony. PhD thesis, 2012.

[6] W Bas De Haas, Jos Pedro Magalhães, and Frans Wier-
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ABSTRACT

Music is hierarchically structured, both in how it is per-
ceived by listeners and how it is composed. Such struc-
ture can be elegantly captured using probabilistic gram-
matical models similar to those used to study natural lan-
guage. They address the complexity of the structure us-
ing abstract categories in a recursive formalism. Most
existing grammatical models of musical structure focus
on one single dimension of music–such as melody, har-
mony, or rhythm. While these grammar models often work
well on short musical excerpts, accurate analysis of longer
pieces requires taking into account the constraints from
multiple domains of structure. The present paper pro-
poses abstract product grammars–a formalism which in-
tegrates multiple dimensions of musical structure into a
single grammatical model–along with efficient parsing and
inference algorithms for this formalism. We use this model
to study the combination of hierarchically-structured har-
monic syntax and hierarchically-structured rhythmic in-
formation. The latter is modeled by a novel grammar of
rhythm that is capable of expressing temporal regularities
in musical phrases. It integrates grouping structure and
meter. The combined model of harmony and rhythm out-
performs both single-dimension models in computational
experiments. All models are trained and evaluated on a
treebank of hand-annotated Jazz standards.

1. INTRODUCTION

Music is hierarchically organized, which is probably most
evident in the structure of harmonic sequences. Grammat-
ical models of music describe both local and non-local re-
lations between musical objects such as notes or chords
by assuming a latent hierarchical structure. Originally
inspired by Schenkerian analysis and generative linguis-
tics [9], grammatical models have been used in music the-
ory [14, 19, 24, 25], computational musicology [1, 5, 6, 13,
16, 27], music information retrieval [3, 4, 12, 18, 26], and
increasingly also music psychology [7, 20]. Consider for

c© Daniel Harasim, Timothy J. O’Donnell, Martin
Rohrmeier . Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Daniel Harasim, Timothy J.
O’Donnell, Martin Rohrmeier . “Harmonic Syntax in Time Rhythm Im-
proves Grammatical Models of Harmony”, 20th International Society for
Music Information Retrieval Conference, Delft, The Netherlands, 2019.

example the Jazz chord sequence C6 D7 Dm7 G7 C6 of the
A-part of the Jazz standard Take the A-Train. A hierarchi-
cal analysis of this sequence is shown in Figure 1a. The
progression D7 Dm7 G7 forms a dominant phrase inside
the tonic phrase C6 D7 Dm7 G7 C6, exhibiting a non-local
harmonic relationship between the chords D7 and G7. The
nesting of the phrases moreover illustrates the idea of how
pieces can be decomposed into hierarchically-structured
constituents (subtrees) which stand in part-whole relation-
ship with one another [6]. Figure 2 displays a typical case
of a non-local harmonic relation in Jazz harmony.

To analyze hierarchical harmonic structures, music the-
orists make use of many additional structural features such
as melody, rhythm, voice-leading, and form, for disam-
biguation. From this perspective, the latent harmonic
structure of a piece cannot be fully inferred from sequences
of chord symbols alone. Most existing grammatical mod-
els of harmony, however, do not take these other domains
of musical structure in account. In this paper, we propose
a novel formalism that combines models of different musi-
cal features. The mathematical idea is similar to Coupled-
context-free Grammars [17]. We extend that approach by
a probabilistic model and apply the general construction to
improve models of harmonic syntax by incorporating har-
monic rhythm.

1.1 Problem Setting

Existing grammatical models of harmony typically do not
capture how harmonic structure is laid out in time [21],
as shown in Figure 1a. This analysis captures informa-
tion such as the dependencies between different kinds of
musical phrase (tonic, dominant, subdominant), ordering,
and hierarchical constituency, but contains no information
on the duration of chords. This paper extends models of
harmonic syntax to include rhythmic structure illustrated
in Figure 1b. This figure shows how the musical phrases
in Figure 1a are laid out in time by progressively assign-
ing constituents to a metrical grid consisting of eight mea-
sures. The inclusion of the metrical domain reveals previ-
ously hidden structure. In the first step, the root of the har-
monic tree is assigned to the entire eight bars. In the sec-
ond step, the tonic phrase is split into equal halves which
are assigned to bars 1-4 and bars 5-8 of the metrical grid.
In the third step, the second half of the piece is split into
equal halves, introducing a V in the first part of the split
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and limiting the tonic scale degree to the second part. The
fourth step, in contrast, splits the first half (measures 1–
4) into two and assigns the second half of this split to the
second half of the progression (measures 5–8). Measures
3 and 4 are said to be a harmonic upbeat to measures 5
and 6. In the following, we present an integrated model
of harmony and phrase rhythm [22] that accounts for the
structural differences of the steps three and four. Note that
we therefore assume the existence of hypermeter, the ex-
tension of metrical structures within a single measure to
relations between measures [11].

We propose an approach that models the upbeat and the
downbeat of harmonic constituents separately. Figure 1c
shows a hierarchical analysis integrating harmonic syntax
and harmonic rhythm. In this notation, the durations of
upbeats are separated from the durations of downbeats by
the symbol ⊕. The symbol 	 is used to indicate the “time
stealing” from generation step 3 in Figure 1b.

2. GRAMMATICAL MODELS

2.1 Abstract Context-Free Grammars

The following two definitions are adopted from [6], where
further explanation and examples can be found.

A (non-probabilistic) Abstract Context-free Grammar
G = (T,C,C0,Γ) consists of a set T of terminal symbols,
a set C of constituent categories, a set of start categories
C0 ⊆ C, and a set of partial functions

Γ := { r | r : C 7→ (T ∪ C)∗ } , (1)

called rewrite rules or rewrite functions. The arrow 7→ is
used throughout the paper to denote partial functions and
dom(r) denotes the set of arguments for which a partial
function r is defined. A sequence β ∈ (T ∪ C)∗ can be
generated from a sequence α ∈ (T∪C)∗ by one rule appli-
cation of a rewrite function r ∈ Γ, denoted by α −→r β,
if there exist α1, α2 ∈ (T ∪ C)∗ and A ∈ C such that
α = α1Aα2 and β = α1r(A)α2. A sequence of rewrite
rules r1 . . . rn is called a derivation of a sequence of termi-
nals α ∈ T ∗ if there exists a start category α1 ∈ C0, and
α2, . . . , αn ∈ (C ∪ T )∗ such that

α1 −→r1 α2 −→r2 · · · −→rn α, (2)

where ri is always applied to the leftmost category of αi
for i ∈ { 1, . . . , n− 1 }. The set of derivations of α is
denoted by D(α). The language of the grammar G is the
set of terminal sequences that have a derivation in G.

A Probabilistic Abstract Context-free Grammar is an
Abstract Context-free Grammar where each category A ∈
C is associated with a random variable XA over rewrite
functions r such that the probability P(XA = r) is positive
if and only if r(A) is defined, that is A ∈ dom(r). In the
following, we also use the notation p(r | A) = P(XA = r)
and p(A −→r α) = P(XA = r) 1(r(A) = α). The prob-
ability p(d) of a derivation d = r1 . . . rn of a sequence
of terminal symbols α ∈ T ∗ is defined as the product∏n
i=1 P(ri | Ai) where in each step ri is applied to a cat-

egory Ai ∈ C. The probability of α is then defined as
p(α) =

∑
d∈D(α) p(d).

I

I

I

C6

V

V

V

G7

II

Dm7

V/V

D7

I

C6

(a) Generative syntax tree of the harmonic structure. The leafs of
the tree are the chord symbols of the A-part. The internal nodes
show scale degrees with respect to C major as latent categories.
Subtrees form harmonic constituents. The nested structure of the
subtrees shows how complex constituents are build from simpler
constituents [6].

1: | I | | | | | | | |

2: | I | | | | I | | | |

3: | I | | | | V | | I | |

4: | I | |V/V | | V | | I | |

5: | I | |V/V | | II | V | I | |

6: |C6 | |D7 | |Dm7 |G7 |C6 | |
(b) Schematic generation of the chord sequence including their
metrical positions. Each row consists of 8 measures and shows
one step in the generation process. Chords are tied over follow-
ing “empty” measures. The third and the fourth step show the
two basic kinds of harmonic preparation with respect to their
metrical placement. In step three, the preparation of the I by
the V pushed the I back by two measures while in step four, the
preparation of V by V/V protrudes into the time domain of the
preceding I.

I(1)

I
(

1
4 ⊕

1
2

)
I
(

1
4

)

C6
(

2
8

)

V
(

1
4 ⊕

1
4

)
V
(

1
4

)
V
(

1
8

)
G7
(

1
8

)II
(

1
8

)
Dm7

(
1
8

)
V/V

(
1
4

)

D7
(

2
8

)

I
(

1
2 	

1
4

)

C6
(

2
8

)
(c) Generative syntax tree of the harmonic structure with inte-
grated rhythmic information. The numbers in parentheses de-
note the duration of the constituents relative to the whole pro-
gression. The branch I(1) −→ I( 1

2
	 1

4
) I( 1

4
⊕ 1

2
) is an in-

stance of a split that anticipates the upbeat preparation of G7 by
D7. Because of a 2 measures long upbeat, the left child is 2 mea-
sures shorter and the right child is 2 measures longer than in a
preparation without an upbeat.

Figure 1: Hierarchical analysis of the A-part of the Jazz
standard Take the A-Train in C major, considering the
structural domains of harmony and rhythm.
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I(16)

I(2⊕8)

I(2)

C4(2)

V(2⊕6)

V(2⊕2)

V(2)

V

G7(1)

II

Dm7(1)

V/V(2)

V/V(1)

D7(1)

II/V(1)

Am7(1)

[II/V(2⊕2)

[II/V(2)

A[4(2)

V/[II/V(2)

Bm7 E7 B[m7 E[7

I(8	2)

I(2⊕2)

I(2)

C4(2)

[VII(2)

[VII(1)

B[7(1)

IV(1)

Fm7(1)

I(2	2)

C4(2)

Figure 2: Hierarchical analysis of the Jazz standard Half Nelson, integrating harmonic and rhythmic structure. In this tree,
a duration of 1 corresponds to one measure for the sake of readability (the whole tune spans 16 measures). The non-local
dependency between the chords A[4 and G7 constitutes a characteristic harmonic relation of the tune.

2.2 Product Grammars

This paper proposes to improve generative grammar mod-
els of harmony by forming a product of a harmony gram-
mar and a rhythm grammar.

Let G = (T,C,C0,Γ) and G′ = (T ′, C ′, C ′0,Γ
′) be

two PACFGs and let ar(r) denote the arity of a rule r,
which is defined as the length of its right-hand side. The
product grammar

G ./ G′ = (T × T ′, C × C ′, C0 × C ′0,Γ ./ Γ′) (3)

is constructed from the Cartesian products of the sets of ter-
minals, categories, and start categories. The rewrite func-
tions of G ./ G′ are all pairs of functions of equal arity,

Γ ./ Γ′ = { (r, r′) ∈ Γ× Γ′ | ar(r) = ar(r′) } . (4)

For a product category (A,A′) ∈ C×C ′ and rewrite func-
tions r ∈ Γ and r′ ∈ Γ′ of equal arity, the application of
(r, r′) to (A,A′) is defined component-wise,

(r, r′)(A,A′) = (r(A), r′(A′)). (5)

By abuse of notation, the right-hand side of this equation
does not stand for a pair of sequences, but a sequence of
pairs. The probability of a product rule application is de-
fined as the product of the probabilities of the rule applica-
tion components,

p((r, r′) | (A,A′)) = p(r | A) p(r′ | A′). (6)

That is, the choice of rule r is set to be independent of A′

and r′, and the choice of r′ is independent of A and r in
the generative process.

A helpful intuition of product grammars is that they
compute the intersection of two sets of derivation trees for
a sequence. The derivation trees of the grammar G ./ G′

are exactly those which are derivations in both G and G′

if the labels of the trees (terminals and categories) are ig-
nored. The probability of a derivation in G ./ G′ is then
also equal to the product of its corresponding derivations
in G and G′.

2.3 Rhythm Grammar

2.3.1 Full Rhythm Grammar

A rhythmic category a ⊕ b consists of two rational num-
bers a ∈ Q and b ∈ Q such that 0 ≤ a, 0 < b, and
a+ b ≤ 1. The first number a is called the upbeat and the
second number b is called the downbeat of the category.
The intuition behind the symbol ⊕ is that the total length
of a rhythmic category equals the sum of its two compo-
nents, λ(a ⊕ b) := a + b, where λ is the function that
denotes the length of the rhythmic constituent as a pro-
portion of the overall piece, which is fixed to be the unit
1 ∈ Q. The condition 0 ≤ a forbids negative upbeat parts,
0 < b ensures positive category lengths, and a + b ≤ 1
ensures that no category is longer than the whole piece.
For convenience, we use two additional short-hand nota-
tions: a category with no upbeat is denoted by the length
of its downbeat, b = 0 ⊕ b. The category of a rhythmic
constituent that loses a portion c of its downbeat (formerly
with length b) to the upbeat of the following rhythmic con-
stituent is denoted by b 	 c := 0 ⊕ (b − c). In this case
λ(b	 c) = b− c, too.

The start category of the rhythmic grammar is 1, the
length of the piece, and any category with zero upbeat
is allowed to be a terminal (leaf node). The essential
grammar rules are given by two families of rewrite func-
tions, one family of partial functions for splitting the up-
beat components of categories usplitv : C 7→ C∗ and
one family of total functions for splitting the downbeats
dsplituv : C → C∗,

usplitu(a⊕ b) := ((1− u)a⊕ ua) (0⊕ b)
(7)

dsplitvw(a⊕ b) := (a⊕ (1− v − vw)b) (vwb⊕ wb),

where u, v, w ∈ Q such that 1
2 < u ≤ 1 and a > 0 in

the first equation, and 0 ≤ v < 1 and 0 < w < 1 in the
second equation. The parameter u represents the downbeat
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proportion of the upbeat, v is the upbeat proportion of the
second category of a downbeat split, andw is the downbeat
proportion of the second category of a downbeat split.

In other words: The upbeat split rule usplitu sepa-
rates the upbeat from the downbeat and optionally splits
the upbeat again into a new upbeat and downbeat. For ex-
ample for u = 1 and u = 2

3 :

1
4 ⊕

2
4

2
4

1
4

3
8 ⊕

4
8

4
8

1
8 ⊕

2
8

and

In contrast, the downbeat split dsplitvw ignores the up-
beat and splits the downbeat. It optionally introduces a
new upbeat preparation. For example for v, w = 0, 1

2 and
v, w = 1

2 ,
1
2 :

1
4 ⊕

2
4

1
4

1
4 ⊕

1
4

1
4 ⊕

2
4

1
8 ⊕

1
4

1
4 ⊕

1
8

and

One rule unary(a⊕b) := a⊕b is added to the grammar
to ensure compatability with grammars that use rewrite
rules of arity one.

The probability of a rhythmic rewrite functions does not
depend on the particular rhythmic category that it rewrites,
but only on whether or not the category has an upbeat of
length zero. This enables a maximal sharing of probability
mass by preserving consistency with the constraints of the
rewrite rules. More precisely,

1 = p(unary | a⊕ b) (8)

+
∑

1
2<u≤1

p(usplitu | a⊕ b)

+
∑

0≤v<1

∑
0<w<1

p(dsplitvw | a⊕ b)

for a > 0 and

1 = p(unary | 0⊕ b) (9)

+
∑

0≤v<1

∑
0<w<1

p(dsplitvw | 0⊕ b).

For practical applications, the parameters u, v, and w are
limited to a finite set of rational numbers to put a proper
normalized prior on the rule distributions.

2.3.2 Simplified Rhythm Grammar

For comparison, we additionally consider a simplified ver-
sion of the rhythm grammar presented above which does
not explicitly model upbeats. The rhythmic categories
and the terminals of this grammar are rational numbers
0 < a ≤ 1 representing constituent durations relative to
the full piece. Apart from the technical unary rule, the rules
of the grammar form a family of total rewrite functions

splits(a) := (sa) (a− sa). (10)

The parameter 0 < s < 1 is called the temporal split ratio
of the rule. The probabilities of the rewrite rules are set to

be independent from the category they rewrite. Therefore,

1 = p(unary) +
∑
a∈Q

p(splita). (11)

2.4 Harmony Grammar

The harmony grammar used in this paper is a standard
probabilistic context-free grammar (Σ, N, S,R) in Chom-
sky normal form. It consists of a set Σ of chord sym-
bols as terminal symbols, a set of copies of chord symbols
N as non-terminal symbols, a distinguished start symbol
S ∈ N , and a set of standard rewrite rules

R ⊆ {A −→ B1 B2 | Bk ∈ N,A = B1 or A = B2 } .

In particular, rules of the form A −→ A A are included by
this definition. Each non-terminal symbol A is also asso-
ciated with a random variable XA over rewrite rules that
have A as their left-hand side. The symbols, rules, and
parameters of the grammar are read from dataset of tree
annotations described in the next section.

Note that since every rewrite rule of a standard context-
free grammar can be interpreted as a partial function with
a singleton domain,

dom(A −→ α) = {A } for all α ∈ (Σ ∪N)∗, (12)

every standard context-free grammar is also an Abstract
Context-free Grammar and can be used in the product
grammar construction.

3. DATASET

This study uses a dataset of 75 hand-annotated tree analy-
ses of Jazz chord sequences from the iRealPro dataset [23].
The tree annotations were performed by the authors and a
student assistant. Each chord sequence is annotated with a
single binary tree that spans the whole piece. In contrast to
the introductory examples of this paper, the internal nodes
of each tree in the data are not labeled by scale degrees
but chord symbols. depth one subtrees corresponds to a
rule of the grammar described in the previous section. Fig-
ure 3 shows the absolute frequencies of the 20 most fre-
quent harmonic rewrite rules from the dataset, after each
sequence was transposed to the root of C. Rules of the
form A −→ A A, called prolongation rules, and rules
of the form A −→ B A for A 6= B, called preparation
rules, are the most used rule schemes.

The dataset additionally includes the length of each
chord in quarter notes. The chord durations of each piece
are divided by the total duration of the piece. From
the chord durations and the harmonic tree annotations,
the duration of each constituent (subtree) can be calcu-
lated automatically as shown in Figure 4. The temporal
split ratios of the rule applications–as introduced in Equa-
tion 10–are then in turn calculated from the durations of
the constituents. Consider for example the rule application
G7( 5

32 ) −→ F4( 2
32 ) G7( 3

32 ) from Figure 4. Its temporal
split ratio is 2

5 .
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Figure 3: Absolute frequencies of the 20 most frequent
harmonic rewrite rules of the tree annotations. All se-
quences are transposed to the common root C. Major-
seventh chords are denotes as Cˆ7 and A[ˆ7.

C6( 8
32 )

C6( 7
32 )

C6( 2
32 )G7( 5

32 )

G7( 3
32 )

G7( 2
32 )F]∅7( 1

32 )

F4( 2
32 )

F4( 1
32 )C7( 1

32 )

C4( 1
32 )

Figure 4: Tree annotation of the last chords of St. Thomas.
Chord durations are shown relative to the total duration of
the tune, 2

32 corresponds to one measure. The durations of
the inner nodes are calculated automatically.

Figure 5: Absolute frequencies of the 10 most frequent
split ratios of annotated tree constituents. The split ratio
of a binary rewrite rule is defined as the time proportion
of the left child. The y-axis is plotted using a logarithmic
scale.

The 10 most frequent temporal split ratios are shown in
Figure 5. The split ratio 1

2 is by far the most frequent one.
Most of the remaining ratios can be expressed either as
n−1
n or as 1

n for some n ∈ N. The former arise for example
from chains of descending fifths or applied dominants that
accumulate time step by step in the temporal order of the
piece. The latter arise from upbeat preparations that can
be understood using the rhythmic categories described in
Section 2.3.1. Two rhythmic rewrite rules that explain a
split ratio of 1

n are
(
n
m

)
−→

(
n
2

m 	
n
2−1

m

) (
n
2−1

m ⊕
n
2

m

)
and

(
1
m ⊕

n−1
m

)
−→

(
1
m

) (
n−1
m

)
, where m ∈ N. The

former results from a downbeat split with w = 1
2 and the

latter results from an upbeat split with u = 1.

4. PARSING WITH PRODUCT GRAMMARS

A naive approach to parsing against a product grammar
would enumerate all product categories and memoize the
inverted rewrite rules on these categories. In this section,
we show how the inefficient blow-up of the number of cat-
egories can be avoided using the independence assumption
of Equation 6.

Consider an Abstract Context-Free Grammar in Chom-
sky normal form. The standard CYK algorithm–here used
to calculate the probability of a sequence of terminals
w ∈ T ∗ of length n, indexed from 0 to n − 1–can be for-
mulated recursively by the equations

p(A, i, i) =
∑
r∈Γ

p(A −→r wi) (13)

and

p(A, i, j) (14)

=

j−1∑
k=i

∑
r∈Γ

p(A −→r B1 B2)p(B1, i, k) p(B2, k + 1, j)

where A,B1, B2 ∈ C and i, j ∈ N such that 0 ≤ i < j ≤
n − 1. The probability of the sequence is then given by
p(w) =

∑
A∈C0

p(A, 0, n− 1).
Given a product grammar G ./ G′, a sequence of prod-

uct terminals can be parsed utilizing Equation 6,

p((A,A′), i, i) =
∑

(r,r′)∈Γ./Γ′

p(A −→r wi) p(A
′ −→r′ w

′
i)

(15)

and

p((A,A′), i, j) =

j−1∑
k=i

∑
(r,r′)∈Γ./Γ′

p(A −→r B1 B2)

(16)

p(A′ −→r′ B
′
1 B
′
2)p((B1, B

′
1), i, k) p((B2, B

′
2), k + 1, j)

It is therefore sufficient to parse the component grammars
individually at each step. In other words, the combined
grammar is computed on-the-fly to achieve efficiency.
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5. EXPERIMENTS

We compare four product grammars that integrate har-
monic and rhythmic structure. Additionally, we report the
performances of their single-domain components and of
a random baseline. As first component, we consider the
harmony grammar presented in Section 2.4, trained either
on the annotations in the original keys of the tunes or on
the annotations after each tune was transposed to C ma-
jor. As second component, we consider the full rhythm
grammar presented in Section 2.3.1 that distinguishes up-
beats and downbeats of constituents, and its simplification
that uses the total length of the constituents, presented in
Section 2.3.2. All models are trained and evaluated on
the dataset described in Section 3. Apart from the full
rhythm grammar, all models are trained by counting the
harmonic rewrite rules or the temporal split ratios present
in the dataset. The full rhythm grammar is trained using
variational Bayesian inference [8]. Every model predicts
the latent tree structure of a given sequence using the max-
imum a posteriori tree. One-fold cross validation was ap-
plied to avoid overfitting to the data: 75 times the model
was trained on 74 sequences and evaluated on the remain-
ing sequence.

5.1 Evaluation Metric and Baseline

The similarity of two trees is calculated as the unlabeled
tree accuracy, defined as follows. Let α be a sequence of
n terminals, left-to-right indexed from 0 to n − 1, let t be
a tree with α as leafs, and let s be a subtree of t. The
span of s is defined as the pair of the index of its left-most
child and the index of its right-most child. The set of spans
of t consists of the spans of all subtrees of t that are not
leafs. The unlabeled tree accuracy of a tree prediction t to
the respective Goldstandard tree t∗ is then defined as the
cardinality of the correctly predicted spans, divided by the
total amount of spans of t∗.

Given a chord sequence of length n, the random base-
line uniformly samples one tree from the set of all binary
trees with n leafs.

5.2 Results and Discussion

The results of the computational experiments are shown in
Figure 6. All combined models of harmony and rhythm
perform significantly better than the single-domain har-
mony grammars and all models perform significantly bet-
ter than the random baseline (p < 0.01 using 2-sample
bootstrap tests). There is no statistical difference observ-
able between the not transposed and the transposed har-
mony models. Surprisingly, the single-domain rhythm
grammars perform much better than the single-domain har-
mony grammars. This is, however, only possible because
we consider the unlabeled tree accuracy. Other measures
such as perplexity would reveal the obvious incapability of
the rhythm grammars to predict chord sequences.

Both rhythm grammars improve the harmony models
similarly. As discussed in Section 3, the simplified ver-
sion of the proposed rhythm grammar is also able to cap-

Figure 6: One-fold cross-validated tree accuracies of the
tested models and the random baseline. The error bars
show 95% bootstrap confidence intervals. The combined
models of harmony and rhythm perform significantly bet-
ter than the plain harmony grammars.

ture some complex rhythmical structures. The music-
theoretically more sophisticated formalism, however, fa-
cilitates the interpretation and explanation of the observed
split ratios.

6. CONCLUSION

The usage of rhythmical information is shown to signifi-
cantly improve the performance of harmonic syntax mod-
els. The empirical comparison between a music-theoretical
motivated model and its simplified version shows that both
models improve the harmony grammar equally well. The
simplified model can therefore be used as an algorithmic
proxy of the more expressive model. This might, how-
ever, only be true for rhythmically regular structures such
as the harmonic rhythm of chord sequences from Jazz stan-
dards. It is, moreover, surprising how much information is
already contained in the rhythm of the sequences, which
underpins the importance of the rhythmic dimension of
music [10]. In these sequences, both the harmonic syn-
tax and the phrase rhythm work together to strengthen the
intentionality of the music.

The here proposed model of interaction between har-
mony and rhythm is also capable to describe the interaction
of pitch and rhythm in melodies. A rewrite function for
syncopation could be added for future applications, since
syncopation is an essential part of melodic rhythm.

The general product grammar construction presented in
this paper integrates multiple domains of structure using
strong independence assumptions. Future research can ex-
tent the formalism, explicitly modeling inter-domain de-
pendencies. We hope that the presented approach will
prove to be useful for applications such as rhythm quanti-
zation [2], the definition of similarity metrics [5], and com-
putational composition assistance [15].
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ABSTRACT

Grammatical models which represent the hierarchical
structure of chord sequences have proven very useful in
recent analyses of Jazz harmony. A critical resource for
building and evaluating such models is a ground-truth
database of syntax trees that encode hierarchical anal-
yses of chord sequences. In this paper, we introduce
the Jazz Harmony Treebank (JHT), a dataset of hierar-
chical analyses of complete Jazz standards. The analy-
ses were created and checked by experts, based on lead
sheets from the open iRealPro collection. The JHT is
publicly available in JavaScript Object Notation (JSON),
a human-understandable and machine-readable format for
structured data. We additionally discuss statistical proper-
ties of the corpus and present a simple open-source web
application for the graphical creation and editing of trees
which was developed during the creation of the dataset.

1. INTRODUCTION

Jazz music exhibits hierarchical relations between chords.
This is particularly apparent in the fact that virtually any
chord of a Jazz standard can be prepared by an applied
dominant or subdominant. In fact, many chord sequences
can be explained as the recursive application of such prepa-
rations [40]. Chords that are far apart in time can therefore
be directly related, establishing long-range dependencies
that can span whole formal sections of pieces. Such hi-
erarchical structures also correlate with empirical findings
from music perception research [25]. This is by no means
to say that hierarchies are the only relevant relations be-
tween chords. Hierarchical chord relations are, however,
underrepresented in computational models of harmony to
date; the here presented dataset is intended to ease the de-
velopment of hierarchical models.

Inspired by Schenkerian theory [3, 44] and genera-
tive syntax formalisms for natural language, generative
theories of harmonic syntax model the hierarchical rela-
tions in chord sequences based on formal grammatical

c© Daniel Harasim, Christoph Finkensiep, Petter Ericson,
Timothy J. O’Donnell, Martin Rohrmeier. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Daniel Harasim, Christoph Finkensiep, Petter Ericson, Timothy
J. O’Donnell, Martin Rohrmeier. “The Jazz Harmony Treebank”, 21st
International Society for Music Information Retrieval Conference, Mon-
tréal, Canada, 2020.

devices such as context-free grammars. Recent research
uses formal grammars to represent hierarchical relations in
melodies [1,9,12,15,24,33], chord sequences [14,19,42],
and rhythms [18,29]. The fields of application include mu-
sic theory [36, 39], music psychology [25, 41], automatic
harmonic analysis [7, 16], and automatic music transcrip-
tion [10, 30, 34].

The aim of this article is to present the Jazz Har-
mony Treebank (JHT), a dataset of hierarchical harmonic
analyses of Jazz standards by music experts in a human-
understandable and machine-readable format. We report
on the creation of the treebank, describe the musical in-
terpretation of the syntax trees, and explain the decisions
that were made to meet the challenges of the annotation
procedure. The dataset is available on GitHub. 1

Treebanks are of particular importance for the study of
hierarchical models and their applications. In linguistics,
they have been and remain instrumental for many natural
language processing tasks. The well-known Penn Tree-
bank [28], first published in the early nineties, is an instruc-
tive example since it has been used as an object of study in
and of itself [11], as a basis for publishing additional tree-
banks with different paradigms [21] and for different lan-
guages [27], and–most prominently–as a dataset for train-
ing and evaluating machine-learning methods [22, 31, 43].

The present article describes the creation process of the
JHT. We take this as an opportunity to study the details of
harmonic syntax using several concrete examples of Jazz
standards. The major challenge of this application lies in
the many individual decisions analysts have to take to ad-
dress the ambiguity of music. Importantly, our goal is not
to create uniform syntax trees of Jazz chord sequences, but
to describe individual and subjective listening experiences
in an unambiguous formal representation. Harmonic rela-
tions in sufficiently long chord sequences can be perceived
in several ways, without one interpretation being clearly
preferable. Therefore, the syntax trees of the JHT are best
understood as proposals with a clear interpretation. The
trees provide a basis for further analytical discussions, so-
phisticated computational models, and for education.

1.1 Related Symbolic Datasets

Many existing collections of symbolic data about chord
sequences concentrate on providing chord labels for har-
monic entities. Two prominent datasets of time-aligned

1 https://github.com/DCMLab/JazzHarmonyTreebank



chord symbols were created by Harte et al. [20] and Bur-
goyne et al. [2] to study automatic chord transcription from
audio. Neuwirth et al. [35] take a more music-theoretically
motivated approach by proposing a chord-symbol repre-
sentation for Western classical music and apply it to scale
degree analyses of Beethoven’s string quartets. Chen and
Su [5] and Devaney et al. [8] similarly label excerpts
of sonatas, madrigals, chorals, preludes, and songs from
common-practice tonality. Micchi et al. [32] combine ex-
isting Roman numeral analyses into a meta-dataset.

The datasets just mentioned use chord labels to analyze
music given as audio data or in a symbolic representa-
tion. Since we analyze the relations between the chords
of such sequences, this study is located at a higher level
of abstraction. Only a few datasets of hierarchical anal-
yses of sequential musical data are available in divergent
formats [38]. Hamanaka et al. [17] and Kirlin [23] created
two datasets of tree analyses of melodies of Western Clas-
sical Music. Gotham and Ireland [13] study musical form
by the creation of datasets in a hierarchical representation.
Granroth-Wilding and Steedman [14] provide a dataset of
76 sub-sequences of Jazz standards with partial harmonic
grouping labels. In contrast to previous research that ana-
lyzed snippets of musical pieces, the JHT consists of 150
full chord sequences of Jazz standards with complete har-
monic syntax trees.

2. HARMONIC SYNTAX

A harmonic syntax tree, as shown in Figure 1a, denotes a
mental representation of a musical piece as a whole. Un-
like sequential models that describe how, for instance, a
sequence of chord symbols is generated chord by chord
from the start to the end, hierarchical models describe how
the skeleton of a piece is generated and recursively elabo-
rated [42]. In Jazz, the most prominent of those elaboration
operations are the duplication of chords and the prepara-
tion of a chord by an applied dominant. Each application
of an operation establishes a direct relation between two
chords. A syntax tree consists exactly of the sum of all
those relations. It is therefore not directly a model for first-
time listening of a musical piece, but rather for the abstract
representation of musicians or listeners who are (implic-
itly or explicitly) aware of a piece’s harmonic relations.
This usage of the word syntax is closely related to genera-
tive syntax formalisms of natural language that address the
question of which relations between words a listener must
notice to understand the meaning of a sentence [6].

The scope of this paper is limited to tonal Jazz, includ-
ing Swing, Bossa Nova, Jazz Blues, Bebop, Cool Jazz,
and Hard Bop, and excluding parts of traditional Blues,
Modal Jazz, Free Jazz, and Modern Jazz. We further-
more excluded tunes such as Groovin’ High whose har-
monic structure requires even more expressive representa-
tions than trees. 2 The general idea of harmonic syntax
is, however, also applicable to other musical styles such as
Western classical music.

2 Groovin’ High exhibits crossing harmonic dependencies between a
tonic prolongation from m1 to m5 and a dominant preparation from m4
to m7. A similar tune is Out of Nowhere.

2.1 Prolongation and Preparation as Fundamental
Principles

In the following, we present the syntactic formalism with
a particular emphasis on its musical interpretation. The
concept of functional harmony describes an expectation-
realization structure between musical objects such as
notes, chords, and keys. Consider for example the chords
of the final cadence of the Jazz standard Birk’s Works, Fm6
Abm7 Db7 G%7 C7 Fm6, where G%7 denotes a half-
diminished seventh chord with root G. Figure 1b shows the
expectation-realization structure of this chord sequence.
The first Fm6 establishes the tonic and as such creates
the expectation that the progression ends with Fm6. The
chords Abm7 and Db7 function as the tritone-substituted
subdominant and dominant of C7, respectively. They
therefore create expectation that resolves in the (tempo-
rally distant) chord C7. The chord G%7 functions as a sub-
dominant chord in F minor. It therefore creates expectation
that resolves with the dominant chord C7 which itself re-
solves into the last tonic chord Fm6. We say that the tonic
chords constitute a prolongation. The subdominant chords
prepare the dominant chords and the dominant chords pre-
pare the tonic chord. Abstractly, we say that a chord X
refers to a chord Y if X either prolongs or prepares Y . 3

Prolongation and preparation are the two fundamental
principles of functional harmonic syntax [40]. They can be
formalized as rules of a context-free grammar with chord
symbols both as terminals and nonterminals. In the for-
malization, strong prolongations that prolong chords of the
same root and chord form are distinguished from weak pro-
longations that prolong a chord with a functionally equiv-
alent chord (e.g., prolongation of C with Am). Note that
this concept of weak prolongation is more general than in
the GTTM where prolonging chords are for instance re-
quired to have the same root [26]. Strong prolongation is
represented by rules of the form X −→ X X for chord
symbols X (e.g., Fm6 −→ Fm6 Fm6). For chord symbols
X and Y , rules of the form X −→ Y X and X −→ X Y
represent weak prolongations if X and Y are functionally
equivalent (e.g., Fm6 −→ Ab Fm6). If otherwise X and
Y are not functionally equivalent, X −→ Y X represents
a preparation (e.g., Fm6 −→ C7 Fm6).

The practise of having no separate alphabet of nonter-
minal symbols, and requiring each binary rule to have a
left-hand side symbol also on the right-hand side, is re-
lated to dependency grammars [37] and categorical gram-
mars [46] which are well-known in computational linguis-
tics and natural language processing. The symbol that ap-
pears both on the left-hand side and the right-hand side is
called the head of the rule. In our setting of prolongation
and preparation, the prolonged (resp. prepared) chord is
the head. Therefore, weak prolongation rules may be left-
or right-headed, while preparation rules are always right-
headed. In sum, our harmony grammar consists of the fol-
lowing rules which model strong prolongation, weak pro-

3 In contrast to models based on the Generative Theory of Tonal Music
[26], we exclude the concept of departure as a primitive relation, because
it is not consistent with our formalization of the expectation-realization
structure.



longation, and preparation, respectively,

X −→ X X for any chord X (strong prol.)

X −→ Y X | X Y for any chord X and a (weak prol.)

functionally equivalent

chord Y

X −→ Y X for any chord X and a (preparation)

chord Y that prepares X

The tree in Figure 1a is a parse tree of the chord se-
quence Fm6 Abm7 Db7 G%7 C7 Fm6 under such a gram-
mar of harmonic structure. Those parse trees represent
exactly the same information as expectation-realization
structures such as shown in Figure 1b: Undirected edges
correspond to strong prolongations and directed edges cor-
respond to either weak prolongations or preparations. This
short example is unambiguous–it has only one plausible
syntactic structure. In general, however, there are many
syntax trees possible for a chord sequence. Grammar rules
and syntax trees can then be weighted by probabilities that
capture the plausibility of an analysis [1, 19, 24]. To iden-
tify the syntax tree that most accurately describes one’s
perception of the harmonic structure, other dimensions
such as rhythm, form, and melody must also be taken into
account. Even the artistic interpretation of a musical per-
formance and the individual musical background of listen-
ers have the potential to influence the perceived harmonic
structure of a piece. A formal grammar that purely mod-
els chord symbols can therefore only answer the question
“Is this a plausible syntax tree for a Jazz standard?”, but
not the question “Is this tree a good analysis of that par-
ticular tune in a particular context?”. Until more complete
models of musical structure are developed that integrate all
relevant musical dimensions, the second question can only
be answered by humans.

2.2 Complete Constituents and Open Constituents

Constituents formalize the notion of a musical unit such
as a chord or a phrase. In the syntax tree shown in Fig-
ure 1a, the complete constituents are exactly the subse-
quences that are leafs of single subtrees, such as the sub-
sequence Abm7 Db7 G%7 C7. Formally, we call a subse-
quence a complete constituent if it contains a chord, called
the head, that is transitively referred to by all other chords
of the sequence. 4 For instance, the chord C7 is the head
of the phrase Abm7 Db7 G%7 C7 and Fm6 is the head
of the whole sequence Fm6 Abm7 Db7 G%7 C7 Fm6.
In cases in which a constituent is constituted by a strong
prolongation (e.g., for the whole sequence of this exam-
ple), we use the convention that the head is the right chord
symbol. Since only the head of a complete constituent
is allowed to refer to a chord outside the constituent, the
concept of expectation-realization references is generaliz-
able to complete constituents: we say that a complete con-
stituent refers to a chord X if its head refers to X .

4 Note that the word head is used both for rules and constituents. This
is not a problem since the head of a constituent is always the head of the
top-most rule of its (sub-)tree analysis.

Fm6

Fm6

Fm6C7

C7

C7G%7

Db7

Db7Abm7

Fm6

(a) Part of the harmonic syntax tree of Birks’s Works from the
treebank.

Fm6 Abm7 Db7 G%7 C7 Fm6

(b) Harmonic expectation-realization structure. This graph
stands in 1-to-1 relation to the syntax tree shown in (a). Directed
and undirected edges denote preparations and prolongations, re-
spectively.

[.Fm6
Fm6
[.Fm6

[.C7
[.Db7

Abm7
Db7 ]

[.C7
G\%7
C7 ] ]

Fm6 ] ]

(c) String representation of the syntax tree in tikz-qtree format.
This string is created using the tree annotation app shown in (d).
The tree plot is shown in (a).

(d) Screenshot of tree annotation app. Each button represents a
tree node. The user is selecting the green buttons to combine
them to the full tree.

{"label": Fm6, "children": [
{"label": "Fm6", "children": []},
{"label": "Fm6", "children": [
{"label": "C7", "children": [

{"label": "Db7", "children": [
{"label": "Abm7", "children": []},
{"label": "Db7", "children": []}]},

{"label: "C7", "children": [
{"label: "G%7", "children": []},
{"label: "C7", "children": []}]}]},

{"label": "Fm6", "children": []}]}]}

(e) Tree string in JSON format, automatically converted from
tikz-qtree format shown in (c).

Figure 1: Syntax tree of the final chords of the Jazz stan-
dard Birk’s works in different representations.



Dm7

Dm7A7*

A7

A7Bb7

Bb7B%7/C

Dm7

(a) Syntax tree using an open constituent that is marked with an
asterisk.

Dm7 B%7/C Bb7 A7 Dm7

(b) Harmonic expectation-realization structure of the syntax tree
in (a). Since that tree contains an open constituent, the syntax
tree and the expectation structure do not stand in 1-to-1 relation.

Dm7

Dm7

Dm7A7

A7Bb7

Bb7B%7/C

Dm7

(c) Resolution of the open constituent in the syntax tree shown
in (a). This tree stands in 1-to-1 relation to the expectation-
realization structure in (b).

Figure 2: Hierarchical analysis of the initial chords of the
Jazz standard Why Don’t You Do Right? using open con-
stituents (marked with asterisks).

In addition to complete constituents, one other con-
stituent type is used in the JHT analyses. Consider for
example the first four measures of the Jazz standard Why
Don’t You Do Right?,

| Dm7 B%7/C | Bb7 A7 | Dm7 B%7/C | Bb7 A7 |,

where B%7/C denotes a half-diminished seventh chord
with root B and a C in the bass. The first two measures
constitute a phrase following the Lamento schema (a step-
wise descending movement of the bass from scale degree
I to scale degree V [4]) that is repeated multiple times in
the song. Since the transition from A7 to Dm7 does not
sound like a resolution but more like a jump or an interrup-
tion (partly because of the repetition of the first two mea-
sures), we assume that A7 does not resolve into the follow-
ing tonic Dm7, but into a tonic later in the song. Therefore,
the phrase Dm7 B%7/C Bb7 A7 does constitute some kind
of unit as shown in Figure 2a.

Since Dm7 and A7 both refer to a chord outside the
phrase (see Figure 2b), the phrase does not have a head. It
is therefore not a complete constituent. We call such con-
stituents, in which multiple chords refer to a chord outside
of the phrase, open constituents. The chords of an open
constituent that refer to a chord outside of the constituent
are called chords with open references. In the example of

Why Don’t You Do Right?, the chords Dm7 and A7 are the
chords with open references of the open constituent Dm7
B%7/C Bb7 A7. Both chords Dm7 and A7 refer to the
same tonic chord Dm7.

The JHT allows a single type of open constituent, called
restricted open constituent, which consists of two adja-
cent constituents that refer to the same chord later in the
piece. Since all constituents considered in the JHT are re-
stricted in that way, we simple refer to them as open con-
stituents. The restriction enables a further generalization
of expectation-realization references to open constituents:
We say that an open constituent refers to the chord to which
all of its chords with open references refer. As shown in
Figure 2a, the topmost node of an open constituent is la-
beled by the chord symbol of the right child of the node
and additionally marked with an asterisk.

Other examples of open constituents are (i) I-VI-II-V-
like phrases in I Got Rhythm and I Can’t Give You Anything
But Love and, in particular, (ii) tunes of form ABAC in
which the B-part ends in a half cadence such as All of Me,
How High the Moon, and A Fine Romance. Summertime,
shown in Figure 3, is a prototypical example of a song with
a ABAC form and a half cadence at the end of the B sec-
tion. The interruption after the half cadence is supported
by the movement from scale degree 3 to scale degree 2 in
the melody and denoted using an open constituent.

2.3 Interpretation of Open Constituents as
Prolongation-Preparation Structures

Syntax trees containing open constituents are interpretable
as expectation-realization structures as shown in Figure 2.
The interpretation procedure transforms a syntax tree that
contains open constituents (e.g., Figure 2a) in to a tree
that only represents prolongation and preparation opera-
tions (e.g., Figure 2c). This transformed tree then char-
acterizes the expectation-realization structure (e.g., Figure
2b). Since open constituents are explicitly marked with
asterisks, their interpretation is unambiguous.

To formalize the interpretation of open constituents, let
Y ∗ be the chord symbol labeling an open constituent con-
sisting of two constituents labeled with chord symbols X
and Y . Let further be Z the chord symbol that is referenced
by both X and Y . The reference is expressed by Z being
the right sibling of the open constituent. The conversion
then transforms

Z

ZY*

YX

Z

Z

ZY

Xinto

In the more general case of nested open constituents, the
conversion is recursively applied from the root to the leaves
of the tree (i.e., top-down).

The JHT contains trees for both representations, with
open subtrees and in pure preparation-prolongation form.
A python script was used to automatically transform the
former into the letter. The script and additional utilities
such as for tree traversal and drawing are provided with
the treebank.
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Am7E7
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E7
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Figure 3: Complete syntax tree of the Jazz standard Summertime (turnaround omitted). The top levels of the tree reflect
the ABAC form the song using an open constituent.

3. TREE ANNOTATION TOOL

The trees of the JHT are created using a graphical inter-
face implemented as a simple web application, which was
developed during the creation of the treebank. The source
code of the application is written in ClojureScript (which
compiles to JavaScript) and publicly available on GitHub.
The application itself is hosted on GitHub pages and can
be used independently of this dataset. 5 A screenshot of
the application is shown in Figure 1d. The main part of the
user interface displays a syntax tree that is represented by a
hierarchical button layout. The user interface also contains
an input-output section and buttons for creating, deleting,
and deselecting tree nodes.

To create a syntax tree, the user inputs a sequence of
space-separated strings such as chord symbols. To create
an inner node of the tree, the nodes that become the child
nodes of the new inner node are selected and combined
by pressing a button or a key shortcut. Since the trees are
mostly right-headed, the label of the rightmost child is used
for the new node by default, but the label of a node can be
changed arbitrarily. The output of the application is given
as a string representation of the tree in tikz-qtree format
as shown in Figure 1c and in JSON format as shown in
Figure 1e. 6 Existing trees can be edited by loading them in
any of these two formats. Since the application is designed
to be agnostic to annotation conventions, it allows arbitrary
labels and rule arities.

4. ANNOTATION PROCEDURE

All analyses in the dataset begin from chord sequences
drawn from the iRealPro collection of Jazz standards. This
collection was created by the user community of the iReal-
Pro app 7 and transferred into kern format by Shanahan et
al. [45]. 8 We transformed the data into a JSON-like for-
mat and occasionally corrected individual chord symbols
when we noticed serious differences between the iRealPro
data and publicly available Real Books (i.e., collections of
lead sheets.). Annotations of bass notes and optional chord

5 Link to tree annotation app: https://dcmlab.github.io/
tree-annotation-code/

6 https://www.ctan.org/pkg/tikz-qtree
7 https://irealpro.com/
8 The iRealPro dataset is available in kern format at http://doi.

org/10.5281/zenodo.3546040.

tones such as ninths and elevenths were excluded from the
chord symbols. Chord symbols with a duration of more
than one measure were split into multiple chord symbols.
150 Jazz standards were selected for analysis (i) by filter-
ing pieces that are within the scope of the theory of har-
monic syntax described in Section 2 and (ii) by preferring
shorter pieces. If applicable, turnarounds at the end of a
lead sheet were deleted or a final tonic chord not contained
in the lead sheet was added. All repetitions were unfolded
and codas were appended at the positions indicated in the
lead sheet. The selected Jazz standards were initially ana-
lyzed by the first author and a student assistant. The analy-
ses were then reviewed by the second and the third author
and discussed in the group. To ensure consistent analy-
ses across all 150 Jazz standards, all final tree editing was
performed by the first author.

Every hierarchical analysis denotes at least one author’s
mental representation of the harmonic structure of a Jazz
standard. Each analysis is therefore also influenced by
other musical features such as harmonic rhythm, phras-
ing, musical form, and melody. In ambiguous cases, the
analyst chose the option that he seemed most important.
These choices were necessary, because a single syntax tree
can only encode one harmonic function for each chord. For
example in the key C major, a C major triad can act as a
tonic or as a preparation of a following F major chord. For
five particularly ambiguous tunes, we provide alternative
analyses in the treebank.

Since the iRealPro lead sheets were created and col-
lected by the community of the application, the chord sym-
bol usage is not fully consistent across the pieces. For
instance, a Fm6 chord symbol can denote a tonic chord
in F minor over a Dorian scale or a Bb9 chord with
omitted root and fifth in the bass. Another example is
that fourth-voicings are commonly denoted as suspension
chords while actual suspensions of the scale degree V (e.g.,
suspension of C and E by B and D in a G major triad) are
sometimes denoted as chords over the scale degree I (with
or without explicitly mentioning the second inversion).

Furthermore, some chords do not have a proper har-
monic function, but are better explained as voice-leading
connections between two chords. The chords C C#o7 G/D
at the beginning of the final 8 measures of Bill Bailey are
an example of such a voice-leading connection (see Fig-
ure 4). Moreover, these final measures are an example of
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Figure 4: Syntax tree of the final 8 measures of Bill Bailey
(turnaround omitted).

a common closing pattern. This pattern starts on the scale
degree IV in its first measure, then transitions to a suspen-
sion of the scale degree V in measure 3, jumps away, and
finally approaches the tonic through the cycle of fifths.

5. DATASET SUMMARY

The JHT is provided as a single file in JavaScript Object
Notation (JSON) format. For each Jazz standard, this file
contains the chord sequence with rhythmical information
(measures and beats), metadata about title, composer(s),
year of composition, time signature, and key (root & ma-
jor/minor) as well as the tree analyses. 9

In addition to the hierarchical analyses, some pieces
contain a turnaround annotation represented as an integer.
A value of zero means that the Jazz standard ends with a
tonic chord. A positive value n means that the lead sheet
of the piece ends with a turnaround of length n. For ex-
ample, the chord sequence of I love Paris (in C major) has
a turnaround length of n = 2, because it ends with the
chords Dm7 G7 C6 D%7 G7. A negative turnaround an-
notation means that the tonic of the piece is not at the end
of the piece, but at the beginning. A value of −1 indicates,
for example, that the first chord of the chord sequence is
the tonic of the piece, like in Solar. In rare cases, the tonic
is not the first chord but the n-th chord which is represented
by a turnaround annotation of −n.

The 150 chord sequences analysed in the treebank have
an average length of 27.75 and consist of 11697 chords
in total with 92 unique chord symbols. The syntax trees
consist in total of 3899 binary rule applications with 512
unique rules and 268 open constituents. The average tree
height is 7.57.

Further descriptive statistics of the JHT are visualized
in Figure 5. The first plot shows that the subset of the an-
alyzed pieces is chosen relatively independently from the
year of composition. The second plot shows the bias for
short pieces in this subset. The third plot shows that the
length of turnarounds, if present, usually ranges between
1 and 3. The two last plots show separately for major and
minor keys how often a context-free grammar rule is used
in the hierarchical analyses. For these plots, all chord se-
quences were transposed to C major or to C minor, respec-
tively. Prolongations of the tonic, preparations of the tonic
by the fifth scale degree, and preparations of the fifth scale
degree by the second are by far the most common rules.

9 The metadata was copied from the iRealPro dataset without detailed
validity checking. It is provided for convenience.

Figure 5: Plots of summary statistics of the tree analyses.
See the main text for further explanation.
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Montréal, Canada

A Data-Driven History of Major and Minor 02.07.2019
Corpus Research as a Means of Unlocking Musical Grammar
International Research Workshop
Tel-Aviv, Israel

Distant Neighbors and Interscalar Contiguities 19.06.2019
Mathematics and Computation in Music Conference
Madrid, Spain

Unsupervised Grammar Induction of Jazz Harmony 25.03.2019
SEMPRE Graduate Conference 2019
Cambridge, UK

Unsupervised Grammar Induction of Jazz Harmony 22.02.2019
First Swiss Digital Humanities Student Exchange (DHX2019)
Basel, Switzerland

A Generalized Parsing Framework for 24.09.2018
Generative Models of Harmonic Syntax
19th International Society for Music Information Retrieval Conference
Paris, France

Computational Inference of Syntactic Structures in Music 11.06.2018
European Research Music Conference
Barcelona, Spain

A Brief History of Tonality 23.01.2018
Applied Machine Learning Days
Lausanne, Switzerland

239



Analyzing the Syntax of Double-Plagal and 18.11.2017
Blues Progressions in Rock, Pop, and Jazz
17. Jahreskongress der Gesellschaft für Musiktheorie (GMTH) and
27. Arbeitstagung der Gesellschaft für Popularmusikforschung (GfPM)
Graz, Austria

Beethoven’s String Quartets: Introducing an XML-Based 17.05.2017
Corpus of Harmonic Labels Using a New Annotation System
Music Encoding Conference
Tours, France

Musical Syntax 28.03.2017
Music Perception and Cognition Laboratory
Schulich School of Music, McGill University
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