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Abstract—This paper focuses on the design and application
of low power and low-frequency localization system using
received signal strength indication (RSSI). The receiver will
wake up from sleeping mode by a modulated magnetic
field emitted from a transmitter module. Then it will send
messages containing the Received Signal Strength Indication
(RSSI) via WiFi with Message Quest Telemetry Transport
(MQTT) protocol to an MQTT broker. Using the magnetic
coupling effect and RSSI ranging, the system is a unique
candidate for low power security-positioning purposes.

Index Terms—Radio Frequency (RF), low power, magnetic
coupling, Received Signal Strength Indication (RSSI), Posi-
tioning Systems (PS), Message Quest Telemetry Transport
(MQTT)

I. INTRODUCTION

With ever-growing applications of wireless internet
access and Bluetooth, the ubiquity of information and
communication network is inevitable. This reflects the
penetration of the Internet of Things (IoT) in daily aspects
of life [1]. In the network of connecting devices, knowl-
edge of the exact position of each node in the network is
critical. [1]

In the majority of positioning systems, an estimate of
the unknown position is based on range measurements
between transmitters and a receiver. These values are
obtained by extracting the information contained in the
received signal, such as Received Signal Strength Indi-
cation (RSSI) or Time of Arrival (ToA) systems, etc.
Received Signal Strength (RSS) as a non-timing base
ranging system, does not contain a common offset (or
bias). Even though the relationship between the RSSI
value and distance for far-field applications is well known,
near field antennas barely studied for RSSI based local-
ization. Recently, the advent of electrically small antennas
for low-frequency applications, made the research feasible
for developing positioning systems based on this property
(2], [3].

RFID is an automatic identification process that uses RF
wireless communication technology based on electromag-
netic transmission between RFID readers and RFID tags

for tracking purposes [4], [5]. The RFID tags are classified
as passive and active. An active RFID tag that is powered
by a battery, that will usually provide a relatively wide
transmission range. While the passive tag has a usually
a shorter range and it responds to the reader signal after
being activated by one. This system is capable of tracking
and determining the position of the tag via radio waves
[6]. Nowadays, the passive tags are part of daily lives that
are used in many bank cards or road toll tags and in portals
for monitoring the cargo goods.

We are introducing a new low-frequency active RFID
system that suits complex and semi-enclosed environment
positioning. Benefiting from 125kHz, this tag enables new
applications. This low frequency has substantial advan-
tages such as enhanced diffraction around environmental
clutters (i.e., corners), less vulnerability to multi-path
confusion, superior penetration depth, and low probability
of intercept (LPI) [7]. As a result, this system is a can-
didate for short-range positioning purposes with relatively
accurate results.

In this paper, we are presenting a low radio frequency
(RF) positioning system integrated with WiFi for real-time
localization application. First, we will define the principles
of the RF positioning system. Latter will explain about
the communication protocol. Finally, we will apply the
presented system in a real positioning scenario.

II. THE POSITIONING SYSTEM AND
COMMUNICATION

The system is consists of several receivers (tags) and
three 125kHz coils (transmitter) to generate a modulated
magnetic field. This field will wake up an integrated chip
(AS3933) on the tags as soon as the tags are in close
proximity to the generated field. The tag is integrated with
a small three dimensional coils which will be coupled with
the generated magnetic field of the transmitter once the
chip is active. The tag then starts sending an indication of
the strength of it’s received signal at each channel (RSSI)
of the chip through wifi to an MQTT broker.



Once the AS3933 chip is awake, the tag will connect to
a Mosqitto server with the MQTT protocol to communi-
cate. The latter will send the RSSI to a PC for calculations
to determine its position. The sensitivity of the AS3933
chip is to be adjusted due to the application properties.
The system is using an area of 80 cm width, 80 cm length
and 2.5 m height. 2 Three 125 kHz coils are used as a
low-frequency transmitter for each node.

The settings on the receiver side can be adjusted due to
the desired range of application, environmental properties
of the test area, and power consumption. The damping
factor and the gain of the AS3933 can be changed to
results in a linear relationship between the RSSI and the
distance from coils. The previous publication of our group
completely discussed the optimal required settings for the
goal of this paper. Hence, we are using a —12dB gain
reduction and 3k€2 damping factor for the 3D coil on the
tag.

A. THE COMMUNICATION PROTOCOL

The tag (red box in figure 3) publishes a message to
the broker. The data to be processed consists of the RSSI
values of three antennas in three positions as described
in figure 3. For each antenna in the receiver, we receive
three RSSI values in three channels. As a result, for a
single position of the tag, we receive 9 values of RSSIL

All the information about the position of the card and its
identity, battery state are sent to a docker engine. Docker
is a set of the platform as a service (PaaS) [8] products that
use OS-level virtualization to deliver software in packages
called containers. Containers are isolated from one another
and bundle their own software, libraries, and configuration
files; they can communicate with each other through
well-defined channels. All containers are run by a single
operating-system kernel and are thus more lightweight
than virtual machines.

Using PostgreSQL [9] as an open-source object-
relational database system, provide a reliable environment
to safely store and scale the complicated data workloads.
PostgreSQL has earned a strong reputation for its proven
architecture, reliability, data integrity, robust feature set,
extensively, and the dedication of the open-source com-
munity behind the software to consistently deliver perfor-
mance and innovative solutions.

We are using Eclipse Mosquitto [10] which is a
lightweight open-source (EPL/EDL licensed) message
broker that implements the MQTT protocol versions 5.0,
3.1.1 and 3.1. Mosquitto is suitable for use on all devices
from low power single board computers to full servers.
The MQTT protocol provides a lightweight method of
carrying out messaging using a publish/subscribe model.
This makes it suitable for Internet of Things messaging
especially for embedded computers or microprocessors
with low power consumption. Mosiquitto also provides a
C library for implementing MQTT clients.

Each physical node (tag) in the system consists of a
125 kHz receiver integrated with an ESP32 chip benefiting
from a large physical WiFi range and direct connection

through a WiFi router while using Bluetooth for conve-
nient broadcast. Using the 125 kHz receiver brings the
possibility of sleep and wake-up mode for the system,
while the nodes are woken up by a modulated magnetic
field of three 125 kHz transmitters 1. The system enables
the possibility of 3D localization.
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Fig. 1. Schematic of building blocks of each physical node (the receivef)
in the network.

By adjusting the settings of transmitter and receiver for
the desired range, an empirical relationship between the
RSSI value and the distance was extracted.
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Fig. 2. Schematic of building blocks of each physical node (the receiver)
in the network.

ITII. POSITIONING ALGORITHM

For real-time tests and device validation, a frame was
made to fix the antennas and to accurately collect data. A
frame as described in figure 2 was used to move the card
within the area and measure the RSSI value in the card.
The antennas were set at fixed position 3 at the height of
Im above the ground.
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Fig. 3. A simplified 2D view of Antenna positions in the 80 x 80cm
test area

As it was demonstrated in our last paper, the RSSI dis-
tance relation of this system obeys the following equation



1. so that RSST = 10lg(Prx) then the measured data
by the AMS3933 enables us to find a relatively linear
relationship between the recorded RSSI value and the
position of the card. This relationship is modeled by:

RSSI = —10nlg(d/do) + A + X, (1)

Where d is the distance between the receiver and the
transmitter, n is a parameter related to the specific wireless
transmission environment. A is the RSSI value in the
position of dy and the final term (X,), is a Gaussian
distributed random variable with the O mean and variance
of o2.

Using the trilateration algorithm, and least mean square
for a given node with more than 3 anchors with the coordi-
nates of (z1,y1), (22,y2),...(xm,ym) and an unknown
location of a blind node we have:

(r1—2)’ 4+ —y)?’ =d}
(2 —2)? + (y2 —y)* = d3 .

(Tm —2)* + (ym —y)* = dj,
Subtracting the m-th equation from the first m — 1

equation in 2, the linear equation is obtained as Ax = b.
Where A and b are:

2(371 - wm) 2(y1 - ym>
2z — T 2(Ys — Y
A ($2:$ ) (y2:y) 3)
2(.’15771_1 - xm) 2(ym—1 - ym)

a3 — a2 +yi -yl +di - d2,
a3 — a2 +y3 —yp, +dj — d2,

4
al o —xk tyh o —ye +da, o —dy,

and Finally, by solving the equation due to linear algebra
for X we have:

X = (ATA)~tATy 5)

The RSSI-distance equation is inherently non-linear
especially in shorter ranges (below 1m). As a result, using
non-linear estimation can be considered to be an alterna-
tive solution to this problem. However, linear estimation
can serve as a benchmark for further analysis. Regarding
the fluctuations of the RSSI value in real-time, we propose
an algorithm to estimate the position based on the recorded
RSSI (figure 4).

A. Neural Network Application

The RSSI distance loss model is well known to be a
nonlinear model which makes it difficult to map directly
the RSSI value to the distance. In this section, the Mul-
tilayer Perceptrons (MLP) algorithm is used which is the
best trade-off between accuracy and memory requirements
among other types of neural networks [11], different
architectures and activation functions were tested.

MLP is a feed-forward artificial neural network for
supervised learning (or backpropagation training). MLP
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Fig. 4. The estimated position of the card in 80cm by 80cm frame of
the test area by trilateration method

composed of an input layer to receive the signal, an output
layer that makes a decision or prediction about the input,
and in between, an arbitrary number of hidden layers
that are the true computational engine of the MLP. It
is common for the performance of this type of systems
to be evaluated by varying their architecture. In this
work, networks with two types of activation function were
evaluated, the linear function and the Elliot symmetric
sigmoid function. Similarly, the number of neurons in each
hidden layer varied between 25, 30, 35, 40 and the number
of layers was 5, 6, and 7. In total, 24 different neural
networks were trained. The purpose of the evaluation is to
observe the variation of the error, not always increasing
the size of the network improves its performance. In
general, MLP with non-linear activation functions are
expected to have minor errors, however the training time
is considerably longer.

The training sample input value is RSSI =
{RSSIlANTl, RSSIQANTl, ey RSSI?)ANTg} plus the
bias, the training sample output is D = {d,,d,}. As
shown in the figure 5 wy; is defined as a weight form
the input layer to the hidden layers, while 6 is defined
as the threshold value of the hidden layer and w;;, is the
weight from the hidden layers to the output layer and
is the threshold for the output.



Fig. 5. Neural network structure

Figure 6, 7 presents the results of the MLP algorithm
by using a linear neural function and Elliot symmetric sig-
moid function. The red stars are the actual (real) position
of the card. The blue stars are the estimated position by
the network with an error of less than 3 cm. It is evident
that the estimation in the center of the region is better and
that a greater number of samples have errors of less than
3 cm when the non-linear function is used than when the
linear one is used.
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Fig. 6. Estimated position with linear function
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Fig. 7. Estimated position with Elliot symmetric sigmoid function

As presented in figure 6, 7 the average error for y
direction is less than the same in = direction as a result
of having twice as many antennas at y direction in
comparison to z. Sometimes the absolute error, or the
mean square error does not reflect, or does not allow us
to observe particular conditions. In this particular case,
there are variations due to phenomena such as reflection
on the walls and therefore the uncertainty is greater next
to them, this problem extends to the estimation that neural
networks try to make.

Finally, Table I presents the percentage of estimates
within each of the ranges described in the columns for
some of the architectures tested, that is, the values, 3, 5,
10, 15, 20, indicate that the percentage of hit within that
corresponding range. In the description of architectures,
LI is linear, LX is the number of layers, and HX is the
number of neurons in each hidden layer. The results are
in percentage, the best result is the NL_L.6_H40 network,
which has 6 layers and 40 neurons in each hidden layer.

TABLE I
HITS IN SPECIFIC RANGES

Maximum error [cm]

Architecture 3 5 10 15 20

LI_L7_H25 26 4.6 174 294 425
LI_L7_H30 2.8 4.7 185 29.1 426
LI_L7_H35 2.7 4.7 17.6  28.8 42.7
LI_L7_H40 29 47 18.6 293 424
NL_L6_H25 | 48 104 272 420 569
NL_L6_H30 | 53 109 304 463 5838
NL_L6_H35 | 44 11.3 303 500 620
NL_L6_H40 | 83 214 436 579 677

IV. CONCLUSION

As it is presented in the 6 and 7, using a non-linear
neural network to estimate the unknown position of a
tag in the area can lead us to more accurate answers.
Using traditional trilateration techniques with least square
method will results in an average error of 27 and 30cm
in directions y and x respectively. Moreover, the absolute
error of estimation for z and y direction for least square
method is below 5¢m, 3cm. Note that having two antennae



at y direction is the reason for more accuracy in the y-
direction in comparison to z. Using a non-linear neural
network can increase the estimation percentage for error
of 10cm up to 60% in compression with linear network.

This study depicts the possibility of applying low-
frequency active RFID systems for short-range and semi-
enclosed environment. Even though the higher frequency
RFIDs are widely used for positioning assets in longer
ranges, fewer scholars have dedicated themselves to study
the effects of low-frequency active RFIDs. This frequency
has the superiority of not being prone to multipath fading
and improved diffraction around the corners and complex
structures especially in compression to MHz and GHz
frequency spectrum.

Moreover, using the intrinsic properties of this fre-
quency, and benefiting from the magnetic coupling effect,
this system can reduce the power consumption because
it will go to the sleep mode if it is outside the range of
the transmitter’s magnetic field. This feature also creates
another advantage. Because it reveals the presence of the
tag as soon as it is in the area. This feature alone can be
a marker for checking the absence or the presence of tags
in a defined area.
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