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ABSTRACT: Developing algorithmic approaches for the rational design and discovery of materials can enable us to systematically
find novel materials, which can have huge technological and social impact. However, such rational design requires a holistic
perspective over the full multistage design process, which involves exploring immense materials spaces, their properties, and process
design and engineering as well as a techno-economic assessment. The complexity of exploring all of these options using conventional
scientific approaches seems intractable. Instead, novel tools from the field of machine learning can potentially solve some of our
challenges on the way to rational materials design. Here we review some of the chief advancements of these methods and their
applications in rational materials design, followed by a discussion on some of the main challenges and opportunities we currently face
together with our perspective on the future of rational materials design and discovery.

■ INTRODUCTION
Over the last few decades, materials chemistry research has
shifted toward more rational design. There are now many
examples, such as metal−organic frameworks (MOFs),1

polymers,2 and DNA nanostructures,3 in which we have such
control over the chemistry that we can move away from the
traditional trial and error. If we think about rational design, we
quickly realize that we are dealing with large numbers: a large
number of materials, a large number of applications, and a
large number of options. Here we argue that the conventional
scientific approach for materials design based on fundamental
laws, computational modeling, and experimentation is
challenged when encountering these large numbers. Therefore,
we are now developing new tools that work on the basis of
large data, which might allow us to overcome some of these
challenges. The development of modern big-data science
methodologies, often called machine learning, will allow us to
pursue our aim of understanding and designing of materials in
a new way.
Machine learning models try to use the underlying patterns

and relationships in data to make new predictions. A classical
example is image recognition. We know that there exists a
complex relationship between the pixels of an image and their
labels (e.g., dog or cat). However, trying to find this complex
relationship by writing an equation that takes the images as an
input and outputs whether it is an image of a cat or dog is not
only extremely challenging but also does not lead to a scalable
solution, as we need to develop a new equation for every label.
Instead, machine learning methods try to infer this mapping
between pixels and labels from observing many examples. The
underlying idea of machine learning is to use a training set of
many images of all different types of cats and dogs to infer the
underlying patterns in order to predict whether an unseen
image shows a dog or cat. Similarly, if presented with enough
examples, machine learning methods can extract relationships

between chemical systems and their properties and perform-
ances that would otherwise require solving equations that are
too complex.
In this Perspective, we do not deal with the question of

“how” to do machine learning. We refer the readers to the
comprehensive review articles and books on the topic of how
to implement a machine learning project. In specific, excellent
resources are available for overviews of the fundamentals of
machine learning4−6 and deep learning7−10 and their
applications in materials design,11 chemical synthesis,12−14

and molecular simulation15 for different classes of materials or
applications, e.g., battery materials16 and nanoporous materi-
als.17

Instead, we focus on challenges in the rational design and
discovery of materials and how we can use machine learning to
address them. Here we use as an example a topic of our
research: materials for energy-related applications. We aim to
systematically design or discover materials that lead to the
optimal energy efficiency for any given application. Typically,
we are given some external parameters or constraints that
define the problem, for example, the source and sink for carbon
capture, the operational pressure for methane and hydrogen
storage, or the light spectral distribution and irradiance for
solar cells. To systematically find the optimal solution, we
typically follow a multistage design process (Figure 1) that
starts with identifying the materials search space, followed by
predicting or measuring materials properties and evaluating or
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testing their performance for the target application. We then
aim to search the design space using the knowledge we obtain
from our observations to find the best-performing setup,
considering materials and process. Practically, solving “exactly”
the governing equations of the physical laws for all of these
stages is far too complex; therefore, we need fundamentally
different approaches to become able to deliver solutions for the
technological challenges of our time.
The use of machine learning in materials design and

discovery is a natural consequence of the problem we try to
solve: finding needles in a haystack of materials for any given
application. The complexity of this search requires extracting
patterns in the form of design rules and/or fast methods for
exploring these vast spaces for optimization of processes and
materials properties. One can perceive that here machine
learning is not the object of the research but the tool for doing
better science. Doubtless, our research on materials has
progressed so much that we can produce large amounts of
high-quality data, which make the field of materials science
ready for abrupt growth if correct tools are used.
This new approach in the design and discovery of materials

brings us to a new era of materials design and discovery that
intrinsically has new opportunities and challenges. We can now
effortlessly solve some of the classic problems, and as a
consequence, we can focus on more challenging and
sometimes new problems. In this Perspective, we review
some of the major advancements in materials understanding
and design that have been made possible by machine learning.
We argue that current progress in machine learning for
materials science has been stunning but that breakthroughs are
still to come. Hence, we discuss some of the challenges to
overcome and our vision for the future direction of research on
this topic.

■ MATERIALS DESIGN AND DISCOVERY

Chemical Space and Databases. Often, finding an
optimal material for a given application is presented as inverse
design. One starts with the application and systematically
narrows down the options to find the holy grail of materials
design, the optimal material to synthesize. In the Introduction,
we argued that such an approach will be fundamentally limited
if we always rely on solving equations, either because of their

complexity or our limited understanding of how to simulate
certain phenomena. Therefore, we explore here the other
extreme, which is using machine learning to infer solutions on
the basis of many observations and guide us through the design
process. Since this approach is based on having many
observations, our starting point is collecting a large amount
of data, which can be observations from our materials search
space, training data for our models, or simply the data with
which we compare our findings. Typically, such large amounts
of data are accessible from large databases of materials and
properties.
In the past decades, crystal structures of synthesized

compounds have been collected in several databases, including
the Inorganic Crystal Structure Database (ICSD),18 the
Crystallographic Open Database (COD),19 the International
Centre for Diffraction Data (ICDD),20 and the Cambridge
Structural Database (CSD).21 In parallel, significant progress
has been made in the development of databases of hypothetical
materials, i.e., structures generated in silico, making it possible
to study materials even before they have ever been synthesized.
For instance, in the field of nanoporous materials, this effort
has led to the development several hypothetical databases22 of
metal−organic frameworks (MOFs),23−27 covalent organic
frameworks (COFs),28,29 and zeolites.30,31 These databases
altogether contain millions of chemical compounds.
These databases have constituted the starting point for

computational high-throughput screening studies. The compu-
tational predictions of these studies have been compiled in
repositories and databases that are mainly focused on
managing materials properties data. For instance, the Materials
Project,32 the Pauling File,33 Novel Materials Discovery
(NOMAD),34 and Materials Cloud35 contain computational
materials data. Additionally, databases like the ones from the
National Institute of Standards and Technology (NIST) store
experimental properties of materials, including adsorption
properties of porous materials36 and thermophysical properties
of alloy materials.37,38

The size of these databases sounds enormous, yet they
represent only a fraction of all possible chemical structures.
Since we rely on observations to infer solutions, a primary step
is to make sure that we have sufficient diversity in our
observations in a database. The underlying fundamental

Figure 1. Algorithmic approach for holistic rational material design. We start with a problem for which we have conceptualized a solution (e.g., an
adsorption process or device) with some requirements. For this concept, we try to find the best materials in the materials search space to maximize
the performance indicators. Because of the complexity of performance evaluation, we usually select surrogate parameters (e.g., material properties)
that we hope are reasonable surrogates for the performance in the real world.
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question is how to make sense of the structure of a database
without knowing the relation between the material and the
performance. In machine learning this question is studied using
unsupervised learning, which deals with unlabeled data to infer
patterns, for example, classifying materials into different
clusters or detecting outliers in a database. We can use
unsupervised learning to visualize the current chemical space
and analyze the underlying distribution of databases.39,40

To illustrate this, we can look at an example of unsupervised
learning on MOF databases, several of which are often used as
the starting point for materials discovery via high-throughput
computational screenings or machine learning. For this reason,
it is important to understand how well those databases cover
the chemical space of MOFs and how redundant they are.41

The first step is to map MOF structures onto descriptors to
quantify their similarities.17,42,43 Moosavi et al.41 used an
approach that closely follows the MOF chemistry, in which a
MOF is described by four sets of descriptors, for the metal
nodes, linkers, functional groups, and pore geometry. The idea
is that chemically similar MOFs have similar descriptors, which
allows us to quantify this similarity as a distance in descriptor
space. One has to note that similarity depends on the
application: If we are interested in gas separation, all
nonporous MOFs are useless, and hence, for that application
they are all the same. However, if we look at optical properties,
pore shape is most likely not very relevant.
For an application for which porosity is important, Figure 2

makes a comparison of how the characteristics of pore size and
shape are covered by the different databases. While one would
like to have a database that has representative samples of all
possible geometries, we note a clear difference in the
distributions of the geometric properties of the databases.

For example, experimental MOFs (CoRE-2019 database44) are
mainly in the small-pore region, and in silico ones (ToBaCCo
database25) are mainly in the large-pore region. Indeed, if for a
particular application a specific type of pores is desired, the
chance of discovering such a material is different in each
database. Similar analysis of the chemistry of materials showed
a lack of diversity in the metal chemistry of the hypothetical
databases. Notably, a lack of diversity can lead to wrong
conclusions. For example, Moosavi et al. showed that the
importance of metals for carbon capture was underrated in the
past studies because of the lack of metal diversity in the
analyzed databases. In addition, once we have carried out such
an analysis, we can also see whether a new material has a well-
known chemistry or pore geometry or whether this material is
completely new. As we are dealing with over 90 000
experimental structures, answering this question without such
a big-data approach to quantify the similarities of materials is
difficult.41,45−47

At this point, it is clear that a systematic data management
plan is inevitable. Such a plan must cover the full spectrum of
data management and curation from discovery to integration
and cleaning of data. Interestingly, we can use machine
learning methods for data management and curation. For
example, we lack tabulated data for many interesting
applications and properties. While large amounts of data and
scientific knowledge are available through the literature, the
challenge is to discover and transform such raw, unstructured
data embedded in text into contextualized and structured data.
In the context of data discovery and mining, machine learning
methods from natural language processing (NLP) can help us
to extract data from the literature. For example, to address the
lack of data for material synthesis, Kim et al.48,49 performed

Figure 2.Maps of the pore geometry of MOFs. The descriptors of pore geometry of MOFs were mapped to two dimensions using the t-distributed
stochastic neighbor embedding (t-SNE) method. The t-SNE method preserves local similarities such that materials similar to each other are located
close to each other in the 2D map. Each dot shows one material, and the structures from different databases are overlaid on top of the collective
map structures from all databases. The experimental structures are from the CoRE-2019 database,44 and the hypothetical structures are from the
ToBaCCo25 and BW-DB24 databases. From ref 41. CC BY 4.0.
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text mining of more than 640 000 articles and provided a data
set of synthesis parameters for 30 different oxide materials in a
structured data format.
An outstanding example is a recent work showing that a

method called word embedding can encode knowledge from
past publications.50 Word embeddings are representations of
words as high-dimensional vectors such that they preserve
relationships between words. For example, the distance
between similar words (e.g., “cathode” and “battery”) will be
smaller in the word embedding space than the distance
between dissimilar words (e.g., “ascorbic acid” and “battery”).
Tshitoyan et al.50 analyzed 3.3 million abstracts of materials-
science-related articles, containing around 500 000 words, to
develop a word embedding that preserves word appearance in
the context proximity of the words. Remarkably, this word
embedding can capture materials science concepts such as the
periodic table and structure−property relationships. For
example, they used the word embedding to make predictions
of new thermoelectric materials (Figure 3). To find potential
materials for thermoelectric applications, they investigated the
proximity of the word “thermoelectric” in the word embedding
space. A density functional theory prediction of the properties
of the materials that were found in this area is shown in Figure
3. The word embedding not only recovered known thermo-
electric materials but also discovered several new promising
candidates. Interestingly, similar to chemists, the model used
common chemical knowledge and intuition, such as similarities
in crystal structure or applications, or phrases that describe
materials properties for the predictions (see Figure 3c for a
depiction of how three of the new potential thermoelectric
materials are connected to the word “thermoelectric”). Indeed,
dealing with millions of articles to develop such a
comprehensive view over the chemical literature is a difficult
task to address without machine learning.
Besides data discovery, data curation and cleaning can

potentially benefit from machine learning. In specific, we can
exploit the statistical nature of machine learning methods to
clean the input data itself. Since machine learning models infer
the underlying pattern and relationships from many examples,
we can use them to identify anomalous cases, i.e., suspicious
data points that are different from the majority of similar data

points. In structural and materials properties databases, various
kinds of errors might occur, such as wrong units for properties,
spelling mistakes, data transfer and storage issues, or duplicate
structures. An illustrative example is a recent work on the
oxidation states of MOFs. The oxidation states of metal centers
are determined and reported by chemists for the materials in
the CSD. Jablonka et al.51 developed machine learning models
trained on this collection of knowledge that can predict the
oxidation states with high accuracy. Coupling uncertainty
metrics with these predictions, they were able to identify many
incorrect assignments in the CSD. Therefore, their model
could be used to flag potential mistakes in a large database
such as the CSD with more than a million entries.
A complementary and effective approach is to perform

quality control of data at the early stage of data generation.
Often the production of big data involves large-scale execution
of computational or experimental workflows, for which we
would like to have careful control over the quality of data
generation as well as resource management to avoid spending
valuable resources on fallacious results. Indeed, manual
inspection is intractable in these cases, and automation is
needed. Using machine learning to control the data generation
process is a promising choice in this area of research. An
excellent example is the control of time-consuming first-
principles calculations on open-shell transition metal com-
plexes.52 These calculations can frequently fail; for instance,
the structure might fall apart during the geometry optimiza-
tion. To aid automatic detection of these cases, a machine
learning classifier model was used to predict simulation
outcomes on the sole basis of the chemical composition.
Moreover, a complementary classifier model was used to
monitor the trajectory/convergence of the calculations,
aborting those that had a high chance of failure. Using such
models for autonomous job control can avoid generating data
that later might be hard to classify into valid and invalid results,
enhancing the quality of data generation.

From Structure to Properties. The next step is to be able
to predict structural properties reliably and with sufficient
accuracy. In principle, we can use molecular simulation and
quantum mechanics to predict material properties. However,
these techniques are limited to an accuracy−efficiency trade-off

Figure 3. Prediction of new materials for thermoelectric applications using data mining of the literature. (a) Materials that are found close to the
word “thermoelectric” in the word-embedding space. (b) The power factors of the materials were computed using density functional theory,
resulting in the discovery of many new potential materials for the thermoelectric applications. (c) Connecting words between the newly discovered
materials and the word “thermoelectric”. The figure was redrawn based on ref 50.
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and might become computationally prohibitive depending on
the system size, the time scales of the physical phenomena of
interest, and the number of systems to be investigated.
Moreover, some properties like synthesizability are so complex
that we still do not have methods to predict them using
computer simulations. Machine learning methods hold the
promise to shift the paradigm of accuracy and efficiency,
enabling exploration of large databases with high accuracy.
Broadly speaking, machine learning is used in two main ways
in this context: to directly map structures to their properties or
to facilitate the development of new modeling methodologies.
Indeed, in recent years several materials properties have

been predicted by machine learning methods. Examples
include gas adsorption,41,53−56 catalytic,42,57−59 thermal,60,61

thermoelectric,62,63 bulk mechanical,64−68 and optical and
electronic67,69,70 properties.
In principle, not solving the complex equations and inferring

solutions only from observing many examples allows us to
tackle problems that even state-of-the-art theory is limited to
answer. In particular, finding solutions for fuzzy problems such
as materials synthesis, synthesizability, and oxidation state, for
which we do not have a reliable theory, are the areas of
research in which data-driven methods can play a significant
role. Here, machine learning gives us extremely flexible and
elaborate empirical models that can fit the knowledge of
individuals or experimental observations and turn them into
powerful tools. Interestingly, this flexibility does not necessarily
mean that we cannot extract physical insights from these
models; it is used only to circumvent the limitations of
conventional analytical equations that sometimes are not
complex enough to fully capture the behavior of chemical
systems. For example, in the case of oxidation states, empirical
models that use pairwise distances between atoms to describe
local geometries (e.g., the bond valence sum) are not
sufficiently elaborate to capture subtle geometric dissimilar-
ities.51 Moreover, using machine learning can even help us to
develop new theories and extract physical insights from the
model.71 For example, Cranmer et al.72 proposed an approach
with which symbolic equations can be derived from a neural
network. They used this technique to find a new equation that
describes the concentration of dark matter, but one can
envision that a similar approach could reveal design rules for
materials.
One important area of research for machine learning is to

formulate new modeling methods for quantum and statistical
mechanics problems. Machine learning approaches for
molecular simulation are emerging to solve complex and
time-consuming calculations that we typically encounter in
modeling of chemical systems. These methods have already
had a significant impact on the way that we compute
configuration energies and forces and simulate thermody-
namic,73,74 kinetic,75 electronic,76 and excited-state77,78 proper-
ties and phenomena.
One of the most significant and earliest applications of

machine learning in this area is the development of high-
dimensional neural network potentials to extract the potential
energy surface of chemical systems from quantum mechanical
calculations.79−81 The underlying assumption here is that the
potential energy can be decomposed into a sum of
contributions of local environments. Hence, a machine
learning model that is trained to map these local atom-
centered environments to an energy can be used as a “force
field” for simulating chemical systems. Behler and Parrinello79

introduced a symmetry function formalism that is by design
differentiable and encodes the required physical invariances,
i.e., the energy of a system is invariant with respect to
translation, rotation, and permutation of atoms. Another
seminal approach is the Gaussian Approximation Potential
(GAP) formalism based on the smooth overlap of atomic
positions (SOAP) representation of an atomic environ-
ment.82,83 These potentials provide quantum-mechanical
accuracy with the cost of analytical force fields, allowing
accurate simulation of large systems on long time scales.
Recently, attempts to extend them to different elements of the
periodic table have been carried out,84 and several classes of
materials have been successfully modeled using these frame-
works.61,85−87

One of the main bottlenecks in statistical mechanics is the
simulation of rare events: events that take place on a time scale
that is short for experiments but is extremely long for a
simulation. To simulate rare events in complex systems, which
possess potential energy surfaces with multiple minima
separated by large energy barriers, it is a challenge to
adequately sample the configuration space to reach good
statistics. This is the case because the simulation might get
trapped in metastable states. For this reason, simulation of
these systems requires advanced sampling techniques such as
umbrella sampling or replica exchange,88−91 which try to push
the system to move from one minimum configuration to
another. In a remarkable recent development,92 a machine
learning model, i.e., an invertible neural network model, was
used to map the complex and hard-to-sample configurational
space of a chemical system to a distribution that is easy to
sample (Figure 4). Such a machine learning model can

generate unbiased equilibrium samples, following the Boltz-
mann distribution, in one shot. These machine learning
models, which were named Boltzmann generators, are
illustrative examples of the kind of new science that we can
do using machine learning that we could not do otherwise.
They are conceptually different from other established
enhanced sampling techniques in that they do not use any
collective variable.

From Materials Properties to Performance and
Application. Even if we know all of the thermodynamic
and transport properties of all of our materials, we still need to
understand the techno-economic and engineering require-
ments of the application in order to develop performance
metrics to objectively rank materials.94 While this step crucially
impacts our materials design strategy, it is so challenging that

Figure 4. Boltzmann generators. An invertible neural network is used
to generate independent samples that follow the desired Boltzmann
distribution of a molecular system. First, a sample point is chosen
from a simple distribution pz(z), e.g., a Gaussian distribution. Then
the neural network transforms this sample to a configuration x that
follows px(x), which is a Boltzmann distribution similar to the one of
the system. Lastly, to compute the thermodynamic properties, the
samples are reweighted to their Boltzmann weight. The figure was
redrawn based on refs 92 and 93.
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we often avoid confronting it. In particular, if we are carrying
out research on novel materials, a complete techno-economic
metric will be nearly impossible. For example, in many
applications the costs will be an important factor.95 However,
how can we estimate the cost of a material that has not yet
been synthesized? In the case of MOFs, the abundance of the
metal and the complexity of the ligand can be good indications.
However, one also has to factor in whether the synthesis can
be scaled up easily.96 Moreover, the engineering design might
be totally constrained by nonscientific factors. For example, the
adsorption pressure for the vehicular natural gas storage
application was set to 65 bar by the Advanced Research Project
AgencyEnergy (ARPA-E), such that the process could be
executed at home, while the minimum discharge pressure was
set to 5.8 bar.97 If one would select a lower minimum discharge
pressure, materials with stronger adsorption sites for methane
would become more favorable. As a consequence, if these
metrics are not well-defined by external agencies, the metrics
often become subjective and controversial; each material can
be shown to be exceptionally good for one particular property.
Therefore, only if we have an understanding of the relative
importance of all properties in the context of the full
engineering design of an application can we realistically
evaluate whether a material will make a real impact. We also
need to keep in mind that such metrics might give us the
illusion that optimization of only one property will lead us to
breakthrough materials. However, because of the complexity of
the real-world application and the multistage design process,
this is usually not the case.
One step toward unraveling this complexity is to establish an

understanding of how materials properties influence the
performance in an industrial process. For example, the
overwhelming complexity of the evolution of the coupled
ordinary/partial differential equations (ODEs/PDEs) under-
pinning mass and energy balance98,99 often makes process
modeling and optimization be seen as a black box. Using
machine learning, we might be able to shine some light on how
systems operate. Despite its significance, this topic has not
been widely explored to date.100 In one recent exceptional
example, the effect of adsorbent properties on the carbon
capture performance was analyzed by Burns et al.101

Interestingly, they found that the common shortcut metrics

for evaluation of materials are insufficient to predict the
process-level performance evaluation of materials.
Besides, measuring or computing the performance metric

can become a bottleneck in the case of complex processes and
applications. An illustrative example is the lifetime estimation
of battery cells.102 The typical lifetime of lithium iron
phosphate/graphite cell batteries varies over the range of 150
to 2300 cycles (Figure 5). However, since the battery capacity
degradation undergoes a nonlinear process, it is challenging to
predict the cycle life from early cycles. For instance, the
capacity increases after 100 cycles for more than 81% of cells
(see Figure 5a). Therefore, one needs to perform long cycle
experiments, which often take months to years to execute.
Previously, voltage curves were used for degradation
diagnosis.103 Hence, a machine learning model that monitors
the voltage curves from early cycles was developed that can
accurately (<4.9% test error) classify cells into long and short
cycle life using only the first five cycles (Figure 5b−d). By
aborting the long experiments of often hundreds or thousands
of cycles for batteries that are not promising, the authors could
save huge experimentation costs and time, allowing screening
of a large number of candidates.

Exploring the Design Space. The final step is to explore
the chemical space to find the best-performing candidates. We
know that it is not feasible to exhaustively search the chemical
space simply because of the exploding number of possible
structures. For example, the number of theoretically feasible
small drug molecules was estimated to exceed 1060.104

Ultimately, screening only the known materials or hypothetical
structures is not a solution, as these approaches cover only a
limited part of the chemical space and specifically can be
biased because of human choices or algorithmic limitations in
structure generation.14,41 Therefore, other search methods are
desired to efficiently explore the enormous chemical
space.11,105−107 Crucial in these algorithmic searches is the
need to balance between exploration, the process of probing
the unseen regions of search space, and exploitation, the
process of probing the promising regions.
A very popular class of discrete optimization methods is that

of evolutionary algorithms, in particular genetic algorithms
(GAs). These methods explore the space by evolving a
population of structures through a set of iterative nature-
inspired operations to optimize an objective (fitness) function

Figure 5. Prediction of battery life cycle from early stages. (a) The cycle life is shown with respect to cell capacity at cycle 100. (b, c)
Characteristics of the voltage curves of the first cycles were used as features to develop the machine learning models. Q100 − Q10 is change in
discharge capacity between cycle 10 and 100. (d) Predictions of the machine learning model for two test sets. The secondary set was generated
after model development. The vertical dashed line shows the 100th cycle, where the predictions were made. The figure was redrawn based on data
from ref 102.
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(Figure 6a). Since the operations can be tailored and guided by
chemical rules, it is a popular choice for chemical design.108

The idea is that the samples with higher fitness scores have a
better chance of survival and are selected more often to pass
their genes to new samples. The mutation and permutation of
genes, which could be functional groups of a ligand, control the
ratio of exploration and exploitation in search. High mutation
allows for searching of unexplored regions, while higher
permutation ensures local searching. Machine learning can be
used to quickly evaluate the fitness of generated samples,
accelerating the search for materials discovery. Coupling GA
with machine learning has been successfully used for materials
synthesis,109 discovery of transition metal complexes,105 and
organic molecules.110 In addition, active learning approaches,
which use uncertainty estimation in machine learning
predictions, allow exploration of regions of space that were
not in the training set by adding new data points to the training
set on the fly when the model is uncertain.
Alternatively, one can use machine learning methods for the

generation of structures.111 In particular, in the area of organic
molecules that follow basic valence rules of Simplified
Molecular Input Line Entry System (SMILES) strings,
recurrent neural networks (RNNs) or transformers are
powerful in completing or generating new sequences of strings.
RNNs and transformers have been developed to treat data
sequences such as data in natural language processing or voice
recognition. To guide and control the generation toward the
properties of interest, one powerful approach is Monte Carlo
tree search (MCTS). MCTS is used in reinforcement tasks,
which involve real-time decision-making for the next moves,
e.g., in playing games112 or control, with a large, complex, and
open-ended solution space. In analogy, we can think of the
completion of a SMILES string as an open-ended process with
a target: we win if the properties of interest improve (see
Figure 6c). This approach has been found to be effective for
exploring chemical space for different applications, such as

MOFs for gas adsorption,113 synthesis planning,114,115 and the
design of drug molecules.116

A desired property to circumvent the expensive optimization
in discrete, enormous chemical space is to develop continuous
and differentiable representations of chemical structures. If we
couple these continuous representations with a generative
model that converts a point in the continuous space to a
chemical structure, we can perform direct gradient-based
optimization of properties. Variational autoencoders (VAEs)
are machine learning models that try to do this by learning a
lower-dimensional representation of the data that is sufficient
to regenerate the original data (Figure 6b). The chief
component of a VAE is the lower-dimensional representation,
which is called the latent space. By mapping data points to
their probability distribution functions in the latent space, we
can reach the continuous representation of chemical structures.
This approach has recently been applied to organic
molecules,117,118 small molecular graphs,119 solid-state materi-
als,120 and porous materials.121

An alternative method is generative adversarial networks
(GANs). One neural network (the generator) generates new
samples, and another one (the discriminator) tries to classify
the generated data and some training data as fake or real
(Figure 6d). The generator and the discriminator compete
until the generator is so good that the discriminator does not
have a better chance than 50% in distinguishing fake from real.
GANs are finding their position in molecular and materials
design,111 as exemplified by the generation of molecular graphs
in MolGAN106 and an energy grid of guest molecules and
zeolite structures in ZeoGAN.122

Synthesis and Autonomous Experimentation. To
practically realize the aim of materials development, we need
to be able to synthesize the promising candidates discovered in
the previous steps. However, chemical synthesis is a complex,
fuzzy process, and our theories are still too limited to guide us
through it. Therefore, chemical synthesis mainly rests on

Figure 6. Methods for exploring chemical space. (a) Genetic algorithms use genetic operations to generate new samples that can quickly be
evaluated by a machine learning model to maximize the fitness score. (b) Variational autoencoders (VAEs) learn a continuous lower-dimensional
representation (the latent space) that can be used for gradient-based optimization of properties and recover the optimal chemicals by decoder. (c)
Reinforcement-learning-based approach that incorporates Monte Carlo tree search (MCTS) to complete SMILES strings to generate new
molecules, maximizing a reward function. (d) In a generative adversarial model, the generator and discriminator compete until the discriminator
cannot distinguish generated samples from real empirical samples. By generating new samples, one can explore chemical space to maximize the
properties of interest. The figure was redrawn based on ref 11.
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unwritten heuristic rules that experienced chemists gain over
the course of many experiments. Data-driven approaches are
promising alternatives for inferring such chemical intuition if
they are presented with a sufficient number of failed and
successful experiments. This concept was demonstrated for the
synthesis of organic,123,124 inorganic,125−128 and MOF109

materials. Notably, these data-driven methods have the
privilege that their predictive performance improves upon
provision of more data.
Coupling artificial intelligence with robotic synthesis plat-

forms has taken the idea of autonomous laboratories and
experimentation far.14,129−131 The process of finding, optimiz-
ing, and executing synthesis is not only tedious and resource-
intensive but also prone to bias and error. One can instead use
robotic platforms to reduce the synthesis costs and errors
simultaneously, while using artificial intelligence to control the
robots. This approach has attracted tremendous attention
recently and has led to the development of software like
ChemOS132,133 and hardware like the Chemputer134 to
perform experiments. Various methods have been used to
guide these robots, from conventional farthest-point sampling
and genetic algorithms109 to Bayesian optimization,135−137

again trying to balance exploration and exploitation of
chemical synthesis space. The recent work of Burger et al.137

introducing a mobile robotic chemist (Figure 7) demonstrates
how fast this topic of research is growing, and it will be
interesting to see whether it leads to the discovery of novel
chemistries.
Another promising application of machine learning is in

synthesis planning. The challenge here is to identify a feasible
route (i.e., the reaction steps, conditions, and reactants) for the
synthesis of chemical compounds starting from available
chemicals. Ideally, we want a program that takes a target
structure as input and provides a list of detailed feasible

reaction steps, simultaneously minimizing the number of steps
and complexity of the process. Data-driven approaches have
recently been explored and shown to be promising for finding
the synthesis steps in organic retrosynthesis,12,114,138,139

suggesting organic directing agents for the synthesis of
zeolites,140 and identifying new phases of inorganic com-
pounds.127

■ CHALLENGES AND OPPORTUNITIES
1. Data. An Ecosystem with Standards. The most

elementary part of machine learning studies is data. The
basic standards for data management have been explained in
terms of the findable, accessible, interoperable, and reusable
(FAIR) guiding principles.141 In essence, the FAIR principles
require (meta)data to be openly retrievable by a unique global
and persistent identifier as well as provided with the usage
license and detailed provenance. To fully meet the FAIR
principles, we must not only develop and use standardized
ways of reporting data but also provide ways to access the
tools, protocols, codes, and input parameters so that the data
can be reproduced. Consequently, developing user-friendly,
encouraging ecosystems for sharing and programmatically
accessing FAIR data is a fundamental step and a key challenge
to unlock the true power of data-driven approaches in the
chemical sciences. In addition, it is now common that funding
agencies ask for data management plans and require that all
data be made publicly available. However, systematically doing
these tasks requires a complete rethinking of the way we do
research, in which reproducibility and data sharing are the
starting point rather than an afterthought to meet the
requirements of a journal or funding agency.

Collection of Experimental Data. While machine learning
using failed experiments can be expected to be one of the most
important areas in chemistry,109,128,142 a large body of these

Figure 7. A mobile robotic chemist. The robot was used to perform an autonomous search to find a photocatalyst for hydrogen production from
water. The robot improved the photocatalytic activity of the initial formulations (indicated by the baseline) by a factor of 6 over 8 days of searching
the experimental space, performing 688 experiments. The photograph of the robot was provided by Andrew I. Cooper and Benjamin Burger
(University of Liverpool). The figure was redrawn based on ref 137.
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failed experiments remains unreported. It is too demanding to
expect researchers to spend a considerable fraction of their
time on documenting failed experiments. Instead, since data
are routinely generated over the course of a research project,
solutions that are fully integrated with experimental instru-
ments are needed in order to collect data while the user is
performing the experiments. Such platforms have remained
underdeveloped in chemical sciences. For example, electronic
lab notebooks (ELNs),143−145 allow sharing of protocols,
postprocessing scripts, and measurement techniques in a
collaborative fashion as well as real-time data acquisition. More
importantly, ELNs can allow all of the data (failed and
successful) to be published in standard formats with little or no
additional effort on the part of the researcher. However, it is
essential for the chemistry community to embrace the
development of such an open science infrastructure.
Reproducibility. Anyone who has tried to reproduce results

from the literature can testify that in many cases the articles do
not provide all of the information needed to reproduce the
results. In the case of computational results for example, often
there are unreported parameters (e.g., default parameters in a
code), and the reader of the article may be unaware of their
importance. However, if these parameters change over time or
different ones are used in different groups, it becomes
impossible to reproduce the results. The most simple solution
is to publish all input files and all scripts along with the article.
However, managing this for large-scale calculations using
multiple codes becomes intractable, and therefore, one needs a
special infrastructure to be able to do this systematically.
Recent development of infrastructures in this area, such as
Materials Cloud and AiiDA,35,146−148 and FireWorks149 are
opening promising paths toward addressing these issues.
Automation and workflow development and execution tools
for machine learning in materials science are also under
development, e.g., ChemML150 and Automatminer.151 Creat-
ing, maintaining, and encouraging the use of these open
science infrastructures require the support of the computa-
tional chemistry community.
Data Curation. As important as they are, data management

and curation are among the least enjoyable, time-consuming,
tedious, and error-prone tasks. Specifically, since we deal with a
large number of data points, e.g., a large number of structures
in databases like the CSD, manual inspection is out of
question, and the development of new methods is inevitable.
Exploring machine learning methods for improving or even
building new innovative ways of data curation is an
opportunity for future research in chemistry and materials
science. Such methods for automatic data curation have
recently received attention in many disciplines, including the
chemical sciences.152−155 For instance, by coupling uncertainty
estimation methods exploiting the statistical nature of machine
learning methods, one can identify mistakes and anomalies in
big data. For example, in cases where the machine learning
model is confident in its predictions but large discrepancies are
observed with the reported data, the user can be warned to
double-check the entry to avoid mistakes in databases.
Data in the Literature. There is a large body of data stored

in the literature. Natural language processing for extracting
data from text and image and sequence processing techniques
for analyzing spectra would be potentially interesting.
Unfortunately, a major obstacle to overcome here is to convert
Portable Document Format (PDF) to compatible formats
(e.g., plain text). In the future, it might be beneficial for the

scientific community to consider reporting in other formats
that are better suitable for machine interpretation.

2. Bias and Uncertainty in the Design Process.
Novelty, Bias, and Diversity. Most scientific efforts have
been focused on incremental improvements of some shortcut
performance indicators, for example, the adsorption capacity
and selectivity of MOFs for carbon capture. However, if we
consider the full scope of the design process, we realize that
such materials properties are only inputs for the next stage of
the design (see Figure 1). Therefore, the approach based on
incremental improvement of properties is not only limited in
finding the true optimal solutions for the full design process
but also introduces a strong bias by providing only limited
options for the next stage of the design process. For example,
for most real-world applications we need a trade-off between
multiple properties, and the optimization of only one objective
will exclude many solutions that might perform much better in
the real problem. If we now also consider that the properties
we optimize are not necessarily good surrogates for the
practical application, we realize that focusing on the
optimization of these metrics will limit our ability to discover
novel materials, for which the application might be based on a
mechanism of which we are not yet even aware. For this
reason, we argue that for a broader perspective over the
materials design process, enhancing novelty in each stage will
be a better path to success than the optimization of single
metrics. Essential here is the development of metrics that allow
measurement of such novelty in the evaluation of scientific
discoveries. Careful quantification of diversity by extending
and developing new metrics in all stages of materials design can
help us to reduce such bias.41,156

Uncertainty Quantification and Error Propagation. Since
we are not using physical laws in machine learning models, it is
crucially important to be able to identify the domain of
applicability of the models for predictions of new systems.
However, quantifying uncertainty can be challenging and
costly, and this topic has only recently received some attention
in the chemical sciences. Several methods have been proposed
for quantifying uncertainty,51,157,158 such as measuring the
distance of a new sample to the training data or using ensemble
models. Further studies are needed to provide an under-
standing of the limitation of current methods, to develop more
reliable and cheap methods, and to provide guidelines on
choosing the method for quantification of uncertainty.
In addition, the error we make in a design process is not

limited only to machine learning predictions, as any simulation
or experiment also has a level of accuracy. It is therefore
important to know how errors propagate through the entire
design process. Statistical methods can be used to analyze the
sensitivity of the outcomes to the inputs, providing insight on
the reliability and relevance of the entire process.

3. Structure−Property−Performance. Featurization.
Further developments are required to apply machine learning
for those materials properties that require a tensorial
representation, are highly dependent on long-range inter-
actions, or involve dynamics. For example, we are still limited
in featurization of materials for those material properties that
require tensorial representation, including the stiffness tensor
for mechanical properties, the heat conduction tensor for heat
transport, and the susceptibility tensor for magnetic/electronic
properties. In addition, current representations are limited for
properties that rely on structural dynamics. For example, we
are aware of the role of flexibility on adsorption properties of
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soft porous materials (e.g., in MOFs), yet the commonly used
representations do not capture these subtleties.
Additional developments are needed for generative models.

For example, sequence-based generative models based on
SMILES strings, which have been the main method for
generative design of chemicals, cannot generalize to chem-
istries that do not follow valence-based rules.11 Also, using
generative models with SMILES strings can generate problems
since many SMILES strings do not correspond to valid
molecules. For this reason, novel representations that are based
on a formal grammar have been developed.159 We note that
graph-theoretical descriptors ignore any information related to
geometry. Therefore, for any materials and molecular proper-
ties that are sensitive to the details of atomic coordinates and
geometry, current generative models are limited.
Molecular Simulation. The different angles of machine

learning techniques for molecular simulation have advanced
independently. Examples of these techniques include “machine
learned” potentials,79,83 enhanced sampling methods such as
Boltzmann generators,92 and methods for analysis of molecular
dynamics trajectories.160 The next step is to merge these
methods into a toolbox that can be used for different systems
at scale. Since these methods work hand in hand with
conventional quantum and classical molecular simulation
methods, it is of great value to implement and couple them
in the existing simulation packages.161,162

The development of new modeling techniques will remain
fundamentally important for the future of the application of
machine learning methods. One of the main pillars of the fast
development of data-driven methods in recent years has been
the abundance of data, mainly simulated big data due to
growing computational power. Hence, it will be continuously
important to improve the simulation methods and their
accuracy, especially for challenging problems such as nonlinear
and noncontinuous phenomena (e.g., instability and regime
change), where we still rely heavily on simulation.
Modeling Complex and Dynamic Processes. An interest-

ing field of research that has barely been explored for process
modeling is the use of machine learning to efficiently solve
(nonlinear) partial differential equations.163,164 These methods
have shown great performance for solving complex Navier−
Stokes equations in fluid mechanics, e.g., for turbulence
applications.165 Adapting these for process modeling will not
only drop the computational costs but also allow the addition
of more levels of complexity in modeling by including nonideal
effects that are often ignored in such modeling.
Making Machine Learning Comparable. The field of

machine learning for the design of materials would strongly
benefit from establishing reporting standards and using
benchmark sets for model comparison and evaluation.
Tracking the successful path paved by the researcher in the
field of small organic molecules teaches us that using
benchmark data sets of molecules and their corresponding
properties (labels) allowed them to move fast by enabling
them to build on top of previous studies. Without a reference
benchmark set of materials and labels, one cannot compare the
performance of different featurizations and model architec-
tures, as differences might originate in inhomogeneity in data,
such as differences in computational methodologies, or the
underlying distribution of structural databases and lack of
diversity. Hence, benchmark materials sets with consistent
properties need to be developed. Furthermore, since it is not
trivial to compare models, agreement on standard reporting

methods is needed. A valuable step forward was taken in this
direction by Wang et al.166 who provided guidelines for best
practices of machine learning for materials scientists.

New Learning Algorithms. Future research on exploring
state-of-the-art machine learning methods and expanding them
for the chemical sciences is a significant opportunity. In
particular, methods like transfer learning, multitask learning,
and one-shot learning, which try to facilitate the learning
process by transferring parameters or features and/or sharing
contextual information, are attractive for cases in which we
have little data for one materials class.

4. Causal and Interpretable Machine Learning.
Explainable machine learning is opening a path toward
obtaining fresh insights and developing novel theories. In
contrast to the general perception of machine learning models
as black boxes, interpreting explainable models can shine some
light on the connections between the underlying structure and
the corresponding property and performance. For example,
machine learning models can be seen as extremely flexible
empirical models that, similar to conventional empirical
models, can uncover profound novel understanding and
knowledge and inspire new theories if interpreted correctly.
However, one needs to be cautious to not fall into the trap of
correlation versus causation. For example, the number of
sunburn cases is correlated with the amount of ice cream sold
in a city, which happens obviously because of the dry, hot,
sunny days in summer. However, not all cases are that obvious,
and further fundamental research is required to find methods
to measure the trustworthiness of explanations.167,168

In particular, explainable machine learning methods can
potentially change the way we study phenomena for which we
still have limited theories. In a typical physical system, one can
assume that there are a few important terms, such as
dimensionless numbers in fluid mechanics, that govern the
behavior of the system. Therefore, using machine learning and
symbolic equations, one can try to extract the governing
equations from large data.71,72

5. Synthesizability. Perhaps the greatest challenge for
computational and data-driven material design and discovery is
the synthesizability of discovered structures. Because of the
great progress in methods for inverse design, we can maneuver
chemical space to find the optimal materials and molecules.
However, the full use of this approach is hampered by our
ignorance of the synthesizability of the discovered structures.
Even if we restrict our search to theoretically valid structures,
the discovered structures would often seem impossible to
synthesize. Therefore, developing universal solutions for
biasing the search for chemicals toward the synthetically
accessible parts of chemical space will be an important research
direction in the future. An interesting solution is to design
structural motifsthat can be incorporated into chemically
synthesizable structuresinstead of the full structure. For
example, instead of discovering a MOF that is optimal for CO2
capture in the presence of water, Boyd et al.24 discovered a set
of adsorption sites, named adsorbaphores. In the next step,
they generated a new set of hypothetical structures that contain
those adsorbaphores and are also water-repellent. However, in
this step, they restricted their search to a set that was guided by
experimentalists to be synthesizable. This supervised search
relied on the intuition of expert chemists. Indeed, machine
learning can help us here in inferring and capturing this
intuition. Further research in this direction needs to explore
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the extent to which we can encode synthesizability into
computational and data-driven materials design.

■ OUTLOOK

Machine learning is transforming the way that we approach
rational materials design. The inherent complexity of searching
the vast spaces of options we face in the process of material
design, from materials to processes and applications, requires
the development of methods that work best in the limit of large
numbers. Machine learning methods provide us this toolbox.
Using these methods, we can conceptualize a new way of
approaching materials design. The remarkable advancements
that we have reviewed in this Perspective are shown as proofs
of principle for the components of such an approach. By
advancing and merging these components, we can fully exploit
all of these advances and realize the power of data-assisted
materials design. Indeed, there are still significant challenges on
the way, some of which have been mentioned here. However,
considering the fast progress in recent years, we can envision
that machine learning will be integrated into almost all
components of materials design and discovery in the near
future.
A pillar of success for the future of this approach is data.

When we rely on data to infer the solutions for our problems,
the generation of large-scale accurate and reproducible data is
vital. Nevertheless, we admit that it is one of the grand
challenges for the future of the field. In particular, overcoming
some of the challenges on this topic requires introducing new
research cultures and collaboration among multiple disciplines
from sciences and engineering, including both theoreticians
and experimentalists. Therefore, only through an open,
disciplined, and collaborative environment based on agree-
ments on data reporting and protocols we will be able to move
fast and use the real power of data-driven methods for
materials design.
Most of the discoveries in the history of science were not

purely rational but relied on the intuition of scientists. Here
one can see the scientists as black boxes who have bright
intuitions in decision-making. The interesting fact about
machine learning models is that once we have a discovery or
prediction, we can trace back the paths of decision-making to
uncover new insights. Therefore, we can now focus on tailoring
the future of materials design using the opportunities that
machine learning can bring to us for doing better science.
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M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A.
Crystallography Open Databasean open-access collection of crystal
structures. J. Appl. Crystallogr. 2009, 42, 726−729.
(20) Gates-Rector, S.; Blanton, T. The Powder Diffraction File: a
quality materials characterization database. Powder Diffr. 2019, 34,
352−360.
(21) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The
Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci.,
Cryst. Eng. Mater. 2016, 72, 171−179.
(22) Boyd, P. G.; Lee, Y.; Smit, B. Computational development of
the nanoporous materials genome. Nat. Rev. Mater. 2017, 2, 17037.
(23) Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.;
Hupp, J. T.; Snurr, R. Q. Large-scale screening of hypothetical metal−
organic frameworks. Nat. Chem. 2012, 4, 83.
(24) Boyd, P. G.; et al. Data-driven design of metal−organic
frameworks for wet flue gas CO2 capture. Nature 2019, 576, 253−
256.
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variational autoencoder. arXiv (Statistics.Machine Learning), March 6,
2017, 1703.01925, ver. 1. https://arxiv.org/abs/1703.01925 (accessed
2020-08-24).
(119) Simonovsky, M.; Komodakis, N. GraphVAE: Towards
generation of small graphs using variational autoencoders. Lect.
Notes Comput. Sci. 2018, 11139, 412−422.
(120) Noh, J.; Kim, J.; Stein, H. S.; Sanchez-Lengeling, B.; Gregoire,
J. M.; Aspuru-Guzik, A.; Jung, Y. Inverse design of solid-state
materials via a continuous representation. Matter 2019, 1, 1370−
1384.
(121) Yao, Z.; Sanchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.;
Kumar, S. G. H.; Collins, S. P.; Burns, T.; Woo, T. K.; Farha, O.;
Snurr, R. Q.; Aspuru-Guzik, A. Inverse Design of Nanoporous
Crystalline Reticular Materials with Deep Generative Models.
ChemRxiv 2020, DOI: 10.26434/chemrxiv.12186681.v1.
(122) Kim, B.; Lee, S.; Kim, J. Inverse design of porous materials
using artificial neural networks. Sci. Adv. 2020, 6, No. eaax9324.
(123) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M.
Organic synthesis: march of the machines. Angew. Chem., Int. Ed.
2015, 54, 3449−3464.
(124) de Almeida, A. F.; Moreira, R.; Rodrigues, T. Synthetic
organic chemistry driven by artificial intelligence. Nat. Rev. Chem.
2019, 3, 589−604.
(125) Muraoka, K.; Sada, Y.; Miyazaki, D.; Chaikittisilp, W.; Okubo,
T. Linking synthesis and structure descriptors from a large collection
of synthetic records of zeolite materials. Nat. Commun. 2019, 10,
4459.
(126) Corma, A.; Moliner, M.; Serra, J. M.; Serna, P.; Díaz-Cabañas,
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