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Abstract

A computationally affordable approach is presented for the quantum-mechanical calculation

of thermo-elastic moduli of molecular crystals. The methodology relies on the description of the

thermal expansion of the material, as obtained from quasi-harmonic lattice-dynamics. The thermo-

elastic response of the metal-organic copper(II) acetylacetonate molecular crystal is investigated.

Comparison with experimental data at room temperature shows how the mechanical properties

obtained from standard static calculations at the absolute zero of temperature can be off by up to

100%. Moreover, present results show how the anisotropy of the elastic moduli can be significantly

affected by the thermal expansion.
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Thermo-elasticity represents the dependence of elastic mechanical properties of materials

on temperature. In particular, the thermo-elastic response of crystalline materials is de-

scribed by the thermal dependence of all the isothermal or adiabatic elastic constants defin-

ing the fourth-rank elastic tensor, which provides the formal description of the anisotropic

mechanical properties of the material in the elastic regime [1].

The accurate description of thermo-elasticity is relevant to many areas of research in-

cluding i) geophysics, where the elastic properties of minerals at temperatures of the Earth

mantle determine the velocity of propagation of seismic waves [2–5]; ii) refractory materials,

whose mechanical stiffness must not be deteriorated at high temperature [6–9]; iii) pharma-

cology, where most potential drugs are synthesized in the form of molecular crystals, whose

mechanical stability at room temperature is crucial for an effective tableting process [10–15];

iv) catalysis, where the mechanical instability of porous frameworks poses serious limitations

to their effective use, as for metal-organic frameworks [16–18].

There is great interest in the possibility of describing the thermo-elasticity of materials

from quantum-mechanical simulations. While calculations based on the density functional

theory (DFT) have proved reliable in the prediction of many static properties of materials

in the last decades, the effective inclusion of thermal effects still represents a challenge

to state-of-the-art methodologies, particularly so when one needs to go beyond the usual

harmonic approximation in the description of the lattice dynamics [19–21]. For instance,

this is the case when i) cubic interatomic force constants are needed to compute phonon

lifetimes and the thermal lattice conductivity; and ii) the free energy dependence on volume

and strain is needed to determine thermal expansion and thermo-elasticity. While the former

class of physical properties above requires the explicit evaluation of anharmonic terms of

the nuclear potential [22–28], the latter has often been tackled within the so-called quasi-

harmonic approximation (QHA), as long as inorganic solids were considered [29–32].

Owing to the progresses made in the inclusion of dispersive interactions into the DFT and

in the exploitation of parallel computing, only very recently the QHA could be effectively

applied to organic molecular crystals and mixed organic-inorganic materials such as metal-

organic frameworks to determine their thermal expansion [33–40]. Let us stress that while

the evaluation of the thermal expansion of the system requires the calculation of the depen-

dence of the free-energy on volume, the evaluation of the thermo-elasticity involves the extra

dependence of the free-energy on strain, which makes the corresponding lattice dynamical
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calculations much more demanding and challenging, particularly so for soft materials with

low-frequency phonon modes.

In this Letter, we introduce an affordable quasi-harmonic computational protocol for the

description of the thermo-elasticity of molecular crystals within the framework of dispersion-

corrected DFT calculations. We apply our scheme to the investigation of the thermo-

elasticity of the metal-organic copper(II) acetylacetonate molecular crystal: a system that

has recently attracted a lot of attention because of its unusual high flexibility [41]. The

present quantum-mechanical calculations allow to report the first complete characterization

of the 3D anisotropic elastic response of this system, as well as its thermal evolution. Inclu-

sion of thermal effects up to room temperature results in dramatic changes of the statically

computed values. Comparison with the experimentally measured values of the Young mod-

ulus along two crystallographic directions confirms the reliability of the description to an

unexpected degree.

Isothermal elastic constants are second free-energy density derivatives with respect to

pairs of strain types:

CT
vu(T ) =

1

V (T )

[
∂2F

∂ηv∂ηu

]
η=0

, (1)

where V (T ) is the equilibrium volume of the system at temperature T , F is the Helmholtz

free energy, ηv is one of the six independent components of the strain tensor η, and

v, u = 1, . . . , 6 are Voigt indices [42]. The calculation of thermo-elastic coefficients from

Eq. (1) is a formidable computational task for systems with more than a few atoms per cell

and characterized by a low crystallographic symmetry [32]. Indeed, it requires the explicit

knowledge of how the free energy depends on strain. Here, we introduce a different strategy

where thermo-elastic constants are obtained from:

CT
vu(T ) ' 1

V (T )

[
∂2E

∂ηv∂ηu

]
η=0

. (2)

While Eq. (2) still relies on the quasi-harmonic determination of V (T ), now the second

energy derivatives with respect to strain are evaluated on the static internal energy E and

not on the free energy F , and this dramatically simplifies the corresponding calculations.

Our methodology consists of the following steps:

1. The structure is fully relaxed in the athermal limit by minimizing the static internal

energy E;
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2. The thermal expansion V (T ) of the system is computed from a standard quasi-

harmonic procedure, where harmonic vibration frequencies are computed at different

volumes. At each volume, the structure is relaxed by means of a volume-constrained

optimization on the static energy E, which allows to take into account most anisotropic

effects on the structure;

3. At each desired temperature T , the thermo-elastic constants are computed from Eq.

(2) starting from the corresponding equilibrium structure determined at the previous

point.

We stress that the algorithm we just sketched introduces some further approximations with

respect to the full quasi-harmonic treatment. In particular, the structural anisotropy of

the thermal expansion is obtained from static energy minimizations, as well as the energy

dependence on strain. A more explicit description of the structural anisotropy is possible,

based on free energy minimizations instead [43, 44]. These simplifications prove essential for

the applicability of the quasi-harmonic methodology to organic and metal-organic materials.

FIG. 1: a) Atomic structure and P21/n lattice cell of copper(II) acetylacetonate crystals; b)

atomic structure of copper(II) acetylacetonate crystals in the ac crystallographic plane. The two

directions along which the elastic Young modulus of the system has been experimentally determined

are identified by green arrows.

Calculations are performed with the Crystal program for quantum-mechanical simula-

tions of the condensed matter [45, 46]. The hybrid PBE0 exchange-correlation functional is

used [47] as corrected for missing dispersive interactions with Grimme’s D3scheme [48, 49]:
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PBE0-D3. A basis set of triple-zeta quality plus polarization is used [50]. Reciprocal space

is sampled on a Monkhorst-Pack mesh with a shrinking factor of 2.

The copper(II) acetylacetonate molecules are planar and crystallize in a monoclinic lattice

that can be described with different cells. Figure 1 a) shows the stacking of the molecules

in the lattice along the b lattice vector, and the shape of the P21/n lattice cell used in Ref.

[41]. Figure 1 b) shows the structure of the crystal in the ac crystallographic plane. Green

dashed arrows identify the two crystallographic directions along which the Young modulus

has been measured experimentally by Worthy et al. [41]. The two directions are [101] and

[101] and are expressed in terms of the a and c lattice vectors of the P21/n cell in the left.

The figure also shows how the two directions are oriented relative to the P21/c cell used

instead in our calculations, in the right.

The first step of our methodology consists in a standard QHA calculation to determine

the thermal expansion of the system. Harmonic vibration frequencies have been computed

at four volumes, from a -2.5% compression to a +5% expansion relative to the static op-

timized equilibrium volume. Harmonic frequencies as a function of volume are then fitted

to a quadratic polynomial function and the fitting coefficients used to set up the canonical

vibrational partition function and compute the Helmholtz free energy F (V ;T ) on a dense

FIG. 2: Volumetric thermal expansion of copper(II) acetylacetonate crystals in the 0-310 K tem-

perature range. Available experimental data (red squares) are from Ref. [41]. The black line is the

expansion obtained from our QHA calculations.
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FIG. 3: 2D plots of the Young modulus (in GPa) of copper(II) acetylacetonate crystals in three

planes (XY , Y Z and XZ) and at four temperatures (0, 100, 200 and 300 K). The directional Young

modulus at 0 K is computed both without and with inclusion of the zero-point energy (ZPE). The

XZ plane is the one displayed in Figure 1 b). The table in the bottom-right corner of the figure

reports the thermal evolution of the computed Young modulus along the two crystallographic

directions, [101] and [101], probed in the experiments in Ref. [41].

grid of volumes at each desired temperature. The V (T ) relation is obtained by minimizing

the free energy with respect to volume at several temperatures [51–54]. The computed volu-

metric thermal expansion V (T ) is reported in Figure 2 (black line) where it is compared with

available experimental data (red squares) from Ref. [41]. The agreement between the two

sets is remarkable, which proves that the QHA provides a reliable description of the thermal

expansion in this case. The metal-organic molecular crystal of copper(II) acetylacetonate is

found to expand by 1.7% just by inclusion of zero-point motion effects at the absolute zero,

which is followed by a further thermal expansion of about 4% when temperature is raised

from 0 to 310 K.

Starting from the thermal expansion determined by the QHA, isothermal elastic constants

have been computed through Eq. (2) at four different temperatures: 0, 100, 200 and 300 K.
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At the absolute zero, two sets of elastic constants have been evaluated, one corresponding

to the equilibrium volume obtained from the standard static geometry optimization, and

one corresponding to the equilibrium volume at 0 K upon inclusion of zero-point motion

effects. Once the full set of elastic constants is obtained, a variety of mechanical features

of the material can be derived such as the bulk modulus, the shear modulus, the Young

modulus, Poisson’s ratio, the velocity of propagation of directional elastic waves, etc. In

particular, the directional Young modulus can be determined, which measures the stiffness

of the material along any direction in space [42, 55]. The thermal evolution of the Young

modulus of copper(II) acetylacetonate crystals is shown in Figure 3 where it is reported in

2D maps in three Cartesian planes (XY , Y Z and XZ). The following can be observed: i)

as expected, the mechanical stiffness decreases with temperature (i.e. the Young modulus

decreases); ii) the Young modulus does not shrink isotropically with temperature and rather

the anisotropy of the mechanical response significantly evolves as temperature changes. For

instance, let us have a closer look at the spatial dependence of the Young modulus in

the Y Z plane. While the Young modulus almost does not change along the Y axis (with

values close to 6 GPa at 0 K and 300 K), its value passes from 27 GPa to 11 GPa in the

same temperature range in the diagonal Y Z direction. A more quantitative analysis on the

thermal evolution of the computed Young modulus is provided in the table in the bottom

right corner of Figure 3, where the two crystallographic directions in the ab plane, [101]

and [101], are considered, which were graphically marked by the green arrows in Figure

1 b). These are the only two directions along which the Young modulus of copper(II)

acetylacetonate crystals has been experimentally measured [41]. Also in this case, along one

direction, [101], the Young modulus shows little thermal evolution while along the second

one, [101], it changes from 25.3 GPa at 0 K in the static limit to 11.3 GPa at 300 K. The

comparison with the experimental values shows that it is absolutely mandatory to take into

account thermal effects to accurately reproduce the room temperature mechanical features

of this class of metal-organic molecular crystals and, at the same time, that the simplified

quasi-harmonic scheme introduced here provides a feasible way to do so.

The evolution with temperature of the mechanical stiffness of copper(II) acetylacetonate

crystals is shown even more explicitly in Figure 4, where a 3D representation of the spatial

dependence of the Young modulus is reported. The figure clearly shows how, still down to the
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FIG. 4: 3D plots of the spatial distribution of the Young modulus of copper(II) acetylacetonate

crystals as a function of temperature. Data are in GPa.

absolute zero of temperature, the large expansion of about 1.7% due to the lattice-dynamical

zero-point motions produces a sizable modification to the elastic mechanical response of the

system. Both the magnitude of the stiffness and the anisotropy of its spatial distribution are

significantly affected by the expansion. As temperature increases from 0 to 300 K a further

volume expansion by about 4% is observed, which is again reflected in the thermo-elastic

features of the crystals.

In conclusion, we have shown how sensitive to temperature the mechanical response of

metal-organic molecular crystals is. In particular, the thermo-elastic behavior of the mon-

oclinic crystals of copper(II) acetylacetonate does not reduce to an isotropic shrinking of

the Young modulus, and is instead characterized by a rather anisotropic evolution. Further-

more, we introduce a simplified quasi-harmonic approach, based on the explicit description

of the lattice dynamics as a function of volume, which makes this type of thermo-elastic

simulations feasible on metal-organic materials from quantum-mechanical calculations.
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