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Abstract
Microturbulence driven by plasma instabilities is in most cases the dominant cause
of heat and particle loss from the core of magnetic confinement fusion devices and
therefore presents a major challenge in achieving burning plasma conditions. The role of
passing electron dynamics in turbulent transport driven by ion-scale microinstabilities,
in particular Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM)
instabilities, has been given relatively little attention. In first approximation, these
particles, which are highly mobile along the confining magnetic field, are assumed to
respond adiabatically to the low frequency ion-scale modes. However, near mode rational
surfaces (MRSs), the non-adiabatic response of passing electrons becomes important
and can no longer be neglected. This non-adiabatic electron response actually has a
destabilising effect and leads to generation of fine-structures located at the MRSs of
each eigenmode. This thesis focuses on the effects of non-adiabatic response of passing
electrons in tokamak core turbulence.
One such effect of non-adiabatic passing electrons that is of particular interest to this work
is the self-interaction mechanism. It is essentially a process by which a microinstability
eigenmode that is extended along the direction parallel to the magnetic field interacts
non-linearly with itself, in turn generating E ×B zonal flows. Unlike the usual picture
of zonal flow drive in which microinstability eigenmodes coherently amplify the flow via
modulational instabilities, the self-interaction drive of zonal flows from these eigenmodes
are uncorrelated with each other. In the case of ITG driven turbulence, using novel
statistical diagnostic methods, it is shown that the associated shearing rate of the
fluctuating zonal flows therefore reduces as more toroidal modes are resolved in the
simulation. In simulations accounting for the full toroidal domain, such an increase in the
density of toroidal modes corresponds in fact to an increase in the system size, leading to
a finite system size effect that is distinct from the other better known system size effects
such as profile shearing or finite radial extent of the unstable region.
The study of non-adiabatic passing electron dynamics is pursued further to include more
reactor relevant conditions such as collisions and background shear flow. It is found
that, with increasing collisionality, electrons behave more adiabatic-like, especially the
trapped electrons away from MRSs, thereby leading to a decrease in the growth rate of
ITG eigenmodes. Furthermore, the shortened electron mean free path in presence of
collisions leads to a radial broadening of the fine-structures at the MRS of corresponding
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eigenmodes. In nonlinear simulations, the turbulent flux levels decrease with increasing
collisionality, as a result of the reduced drive from the less unstable ITG eigenmodes. The
radial width of the fine structures at MRSs is found to reduce with increasing collisionality
as a result of reduced nonlinear modification of the eigenmodes in turbulence simulations.
A study of the effect of collisions on the self-interaction mechanism reveals that for
physically relevant values of collisionality, the effect of self-interaction is still significant.
A preliminary study of the effect of background E ×B flow shear shows that the fine-
structures associated with the non-adiabatic passing electron response persist even with
finite background flow shearing rates. The turbulent flux-levels decrease with increasing
values of background shearing rate, and radially propagating soliton-like structures are
seen, similar to the results obtained with adiabatic electrons in previous studies.
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Résumé
La micro-turbulence, qui est provoquée par les instabilités dans le plasma, est dans la
plupart des cas la cause principale de la perte de chaleur et de particules du centre des
dispositifs de fusion par confinement magnétique, et présente donc un défi majeur pour
obtenir des conditions de plasma brûlant. Le rôle de la dynamique des électrons passant
dans le transport turbulent provoqué par des micro-instabilités à l’échelle ionique - en
particulier les instabilités causées par des gradients de température ionique (ITG) et
des modes dûs aux électrons piégés (TEM) - a reçu que peu d’attention. En première
approximation, les électrons qui sont très mobiles dans la direction le long du champ
magnétique de confinement, sont supposés répondre de manière dite adiabatique aux
modes de basse fréquence à l’échelle ionique. Cependant, pour les surfaces rationnelles
relatif à des modes de bas ordre (MRS), la réponse non-adiabatique des électrons passant
devient alors importante et ne peut donc plus être négligée. Cette réponse électronique
a en effet un effet déstabilisant et conduit à des structures fines situées au niveau des
MRS de chaque mode propre. Cette thèse se concentre sur les effets de la réponse
non-adiabatique des électrons passant sur la turbulence dans le centre d’un tokamak.
L’un de ces effets qui présente un intérêt particulier pour cette thèse est le mécanisme
d’auto-interaction : un processus par lequel un mode propre de micro-instabilité, alongé
le long de la direction du champ magnétique, interagit de manière non-linéaire avec
lui-même, générant ainsi, à son tour, un flux zonal de type E×B. Contrairement à l’image
habituelle selon laquelle des modes propres de micro-instabilités amplifient de manière
cohérente ces flux zonaux à travers les instabilités de modulation, les contributions via
l’auto-interaction produisant ces flux zonaux de ces modes propres ne sont pas corrélés les
uns aux autres. Dans le cas de la turbulence générée par l’ITG, en utilisant de nouvelles
méthodes de diagnostique statistique, il est montré que le taux de cisaillement associé aux
flux zonaux fluctuants diminue à mesure que le nombre de modes toroïdaux résolus dans
les simulations augmente. Dans les simulations prenant en compte le domaine toroïdal
complet, une telle augmentation de la densité des modes toroïdaux correspond à une
augmentation de la taille du système, conduisant à un effet de taille de système fini qui
est distinct des autres effets mieux connus de ce type, tels que l’effet de cisaillement de
profil ou l’extension radiale finie de la région instable.
L’étude de la dynamique des électrons passant non-adiabatiques est poursuivie pour
inclure davantage de conditions pertinentes aux conditions d’un réacteur telles que les
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collisions et les flux de cisaillement macroscopiques. On constate qu’avec l’augmentation
de la collisionalité, les électrons se comportent de manière plus adiabatique, en particulier
les électrons piégés loin des MRS, conduisant ainsi à une diminution du taux de croissance
des modes propres ITG. De plus, le libre parcours moyen des électrons est raccourci
en présence de collisions et conduit à un élargissement radial des structures fines au
niveau des MRS correspondantes. Dans les simulations non-linéaires, les niveaux de
flux turbulents diminuent avec l’augmentation de la collisionalité, en raison des modes
propres ITG qui sont moins instables. On constate aussi que la largeur radiale des
structures fines au niveau des MRS diminue avec l’augmentation de la collisionalité en
raison de la modification non-linéaire réduite des modes propres. Une étude de l’effet des
collisions sur le mécanisme d’auto-interaction révèle que, pour les valeurs de collisionalités
pertinentes, l’effet de l’auto-interaction est toujours significatif. Une étude préliminaire
de l’effet du cisaillement de flux E ×B macroscopique montre que les structures fines
associées à la réponse non-adiabatique des electrons passants persistent même avec des
taux de cisaillement fini. Les niveaux de flux turbulents diminuent avec des valeurs
croissantes du taux de cisaillement macroscopique, et des structures de type soliton se
propageant radialement sont observées, similaires aux résultats obtenus avec des électrons
adiabatiques dans des études précédentes.
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1 Introduction

Given the inherent curiosity in us, if not for other reasons, we are a space-faring species
by choice. For setting up inter-planetary/galactic journeys, and to establish and sustain
human civilisations beyond Earth, it is necessary to have an abundant and robust source
of energy. To put the time scales and energy needs being considered into perspective,
one can look at the Kardashev scale [Kardashev, 1964] which classifies the advancement
of human civilisation based on its energy consumption into three types: The type 1
civilisation uses the equivalent of all the radiant energy falling on a planet from its parent
star, which is approximately 1.7× 1017 watts for the Earth-Sun system. At present (year
2020 in Gregorian calender), the energy consumption of the world is roughly 2× 1013

watts. Type 2 civilization uses the equivalent of the total energy radiated by the parent
star, which is about 4 × 1026 watts. And type 3 civilisation have access to the power
comparable to the luminosity of the host galaxy, about 4× 1037 watts for the Milky Way.

Let us take a look at the already available technologies that can satisfy our terrestrial
and extra-terrestrial energy needs in the future. Combustion of hydrocarbon fuels is
not a good option given that they have relatively very low energy densities and are
found in limited quantities, that too on very select places such as Earth (for all the fossil
fuels), Titan (for methane) etc. Power generation via nuclear fission is a good option
but the low availability of heavy fissile elements in the universe [Cameron, 1973] is a
reason against it. Harvesting the solar/stellar energy using photovoltaic cells becomes
less practical with greater energy needs, as the surface area of the cells will have to
increase proportionally. In addition, the radiation flux from the star decreases as one
moves farther away from it, as the inverse of the square of distance from the star. A
promising alternative is a nuclear fusion based power plant. Hydrogen, the fuel for such
a reactor, is the most abundant element in the universe, making up 74% of the baryonic
matter. Various designs of possible fusion reactors exist that are inherently safe with no
possibility of meltdowns. Furthermore, the fusion process itself involves no radio-active
fuel and waste as such; the reactor walls can get activated but the constituent materials
have low enough half-lives to be recycled within a hundred years.
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Chapter 1. Introduction

In this thesis, we focus on nuclear fusion as a viable means of energy production. A
small summary of the processes involved in typical nuclear fusion reactions of interest
are given in section 1.1. There are two broad pathways considered to fusion, either via
inertial confinement or via magnetic confinement. The former involves compressing and
heating a pellet of fusion fuel via a shock wave produced by multiple high energy laser
or ion beams. The latter, of interest to this work, involves confining the fusion fuel in
plasma state using magnetic fields. In section 1.2, a description of magnetic confinement
is given, wherein the problem of heat and particle leakage from the core of such devices,
in particular through turbulence, is introduced. Finally, in section 1.3, the focus and
outline of the thesis are presented.

1.1 Nuclear fusion

Nuclear fusion is the process by which two lighter nuclei combine to form a heavier
nucleus while releasing energy. The net loss of mass ∆m in the reaction is converted to
energy following the mass-energy equivalence relation E = ∆m c2, where c is the speed
of light [Einstein, 1905]. It is interesting to note that nuclear fusion is the primary source
of power in active stars. For instance, in the Sun, the proton-proton chain reaction which
occurs in the solar core at a temperature of 14 million degrees Kelvin involves a net
reaction that converts four hydrogen nuclei into one helium nucleus, with the release
of two positrons, two neutrinos and energy [Kane, 1987]. The most probable nuclear
reaction that can be exploited in a fusion power plant, i.e. the one having the highest
cross-section to be precise, is the deuterium-tritium fusion, producing a helium nucleus,
a neutron and energy [Bosch and Hale, 1992], summarised by:

2
1D +3

1 T→4
2 He + n + 17.6MeV. (1.1)

Following the mass ratio of the products in relation (1.1), 4/5th of the energy released,
i.e. 14.1 MeV, manifests as the kinetic energy of the neutrons, which can be captured by
a blanket of lithium surrounding the reactor. Lithium then undergoes the reaction:

6
3Li + n→4

2 He +3
1 T + 4.8MeV, (1.2)

producing helium, tritium and more energy. The blanket gets heated up in the process,
which can then be used to boil water to produce steam, run turbines and produce
electricity. The main purpose of the lithium blanket is to produce tritium which does
not occur in nature in quantities that can be considered sufficient for reactor operations
[Rubel, 2019]. Note that unlike hydrogen and deuterium, tritium is an unstable isotope,
with a half-life of only 12.32 years [Tetsuo, 2017].

Given that the strong force that binds the nucleons together in a nucleus is a short
range force acting in distances of the order of a femtometer (10−15m), it is necessary
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1.2. Magnetic confinement

for the reactants to come within such short distances of each other for fusion to occur.
However due to Coulomb repulsion between the two positively charged reactants, which
is inversely proportional to the square of the distance between them, they must start with
very high kinetic energies to come close enough for fusion to occur. The kinetic energy of
the reactants or the associated temperature thus required is well beyond the ionization
energy of the corresponding atoms, and hence they exist in the plasma state, as a gas of
ions and electrons. A simple estimate for the minimum condition necessary for fusion to
be sustained in a reactor with a positive energy balance is given by the so-called Lawson
criteria [Lawson, 1957], which states that the triple product of density n, temperature
T and the confinement time τE (time scale on which energy can be retained within the
plasma from being lost to the surrounding) must exceed a critical value:

nTτE ≥ 3× 1021keV s m−3. (1.3)

In magnetic fusion, the typical values of density, temperature and confinement times are
of the order of n ∼ 1019m−3, T ∼ 108K (' 10 keV) and τE ∼ 100s respectively. Note that
the temperature is about 100 times greater than that in the core of the Sun, where the
density n ∼ 1031m−3 is many orders of magnitude higher, made possible by the immense
gravitational force involved. In inertial fusion, densities n ∼ 1030m−3 more comparable
to that in the core of the Sun are reached by concentrating multiple high power laser
beams on a small pellet of fusion fuel for a very short amount of time. In this case, the
plasma is confined by the inertia of its own mass, with a confinement time of he order of
τE ∼ 10−9s. In the following section, magnetic fusion is described in greater details.

1.2 Magnetic confinement

To ensure that a high temperature (T ∼ 108K) necessary for fusion is achieved, it is
essential for the plasma to be isolated from the walls of the reactor so that heat loss via
conduction onto the walls can be minimised. In addition, when coming into contact with
plasma, the walls can get damaged and/or release impurities into the plasma, both of
which are undesired. Therefore, it is essential for the plasma to be suspended in near
vacuum within the reactor walls. Given that the plasma is composed of charged particles,
magnetic fields can be used to manipulate them. A particle of mass m and charge q,
having a thermal velocity vth = (T/m)1/2 [where T is defined in units of energy] in a
magnetic field B (with field strength B = |B|) and zero electric field gyrates around the
magnetic field line with a (Larmor/gyro) frequency Ω = qB/m and a (Larmor/gyro)
radius ρ = vth/Ω according to the equation of motion:

m
dv
dt

= q v×B. (1.4)

By increasing the magnetic field strength, the Larmor radius decreases and the particles
adhere more closely to the field lines. Furthermore, in case the particles in a magnetic
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Chapter 1. Introduction

Figure 1.1: Schematic illustration of (a) a tokamak and (b) a stellarator. Source: Max
Planck Institute for Plasma Physics.

field B are subject to an external force F, it can also undergo drifts in the direction
perpendicular to B, with a drift velocity vF = F×B/qB2.

In magnetic fusion reactors where the particles are confined by magnetic fields that touch
the reactor walls, the particles having high velocities (∼ vth) parallel to the magnetic fields
may stream along the field lines and get lost on the walls. In early linear devices, such a loss
of particles was minimized by using inhomogeneous magnetic field configurations working
as magnetic mirrors. But the confinement offered by these devices were unsatisfactory
especially for high energy particles. Hence, toroidal devices were introduced, where the
particles are confined to field lines that wrap around toroidally on magnetic surfaces that
do not touch the walls. However in such toroidal geometry, the inherent curvature and
the inhomogeneity in the magnetic field strength lead respectively to centrifugal force
FC = −mv2

‖b · (∇b) and force Fµ = −µ∇B related to magnetic moment µ = mv2
⊥/2B

associated to the gyromotion of the particle; b = B/B and, v‖ and v⊥ are particle
velocities parallel and perpendicular to the field line respectively. The corresponding
drifts (vF = F×B/qB2) lead to a curvature drift velocity vC = −mv2

‖(b ·(∇b)×B)/qB2

and a ∇B drift velocity v∇B = −mv2
⊥(∇B ×B)/2qB3. As a rough estimate, one has

|vC | ∼ vthρ/R and |v∇B| ∼ vthρ/LB, where R is the radius of curvature and LB is the
characteristic gradient length of the background magnetic field. As a result of these drifts,
the particles can drift out of the plasma volume. Furthermore, these drift velocities
being dependent on the sign of the charge q, lead to a separation of ions and electrons
in the plasma. To counter these drifts, a poloidal component of the magnetic field is
introduced, resulting in helically twisted field lines. Two such designs of toroidal devices
are widely used today: the stellarator and the tokamak. See figure 1.1 for illustration of
the magnetic coil geometry, and field directions in a stellarator and a tokamak.

In a stellarator, complex magnetic coils are used to generate the helically twisted field
lines. Whereas in a tokamak, the poloidal component of the magnetic field is created

4



1.2. Magnetic confinement

by a toroidal current in the plasma itself, which in turn is induced via the transformer
principle, with the plasma being the secondary winding. Note that a stellarator has
no plasma current and can be operated continuously, while the tokamak operates a
priori in a pulsed mode, limited by the transformer principle. However, with additional
current driving mechanisms, such as that via the bootstrap mechanism and neutral beam
injection, it is possible to operate tokamaks in a continuous mode as well. While both
these designs are being researched upon at the moment, this thesis primarily focuses on
tokamaks.

1.2.1 The transport problem

One of the main problems with achieving the Lawson criterion for fusion is the radial
transport (loss) of heat and particles from the core of the plasma to the edge. Depending
on the origin of such transport processes, they are classified into three, namely classical,
neo-classical and turbulent/anomalous transport.

In classical transport, collisions between the particles lead to their diffusion across
magnetic field lines. Collisions are equally probable in all directions, but given that the
plasma density is maximum at the core, a net radial outward diffusive flux is observed. A
random walk model given by D = (∆x)2/τ can be used to estimate the diffusivity D of
this process, where ∆x is the characteristic step size of a particle over the characteristic
time τ . The classical diffusivity takes the form Dclass = ρ2νc, where the step size ∆x
is of the order of the Larmor radius ρ and 1/τ is of the order of the Coulomb collision
frequency νc. However experimentally measured diffusivities were found to be about 3
orders of magnitude higher than the classical diffusivity.

Neo-classical transport [Hinton and Hazeltine, 1976, Helander and Sigmar, 2002] results
from the toroidicity of the magnetic confinement device. In a circular large aspect ratio
(ε = r0/R0 � 1, where r0 is the minor radius and R0 is the major radius) tokamak for
instance, to first order in ε, the magnetic field strength, mostly comprising of its toroidal
component, can be expressed as a function of the poloidal angle θ as:

B(θ) ∼ 1
R

= 1
R0

(1− ε cosθ), (1.5)

where R measures the distance from the center of the torus (see section 2.1 for greater
details on the magnetic equilibrium, in particular, figure 2.1). Using conservation
of kinetic energy E = mv2/2 and the adiabatic invariance of the magnetic moment
µ = mv2

⊥/2B, one can show that particles starting at any poloidal angle θ with low
enough parallel velocities can get reflected as they move towards the inboard side where
the magnetic field strength is higher. That is, due to this magnetic mirroring, these
particles get trapped on the outboard side of the tokamak, whereas particles with high
enough starting parallel velocities can overcome the mirroring effect and complete full
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Chapter 1. Introduction

orbits in the poloidal plane. It can be shown that a particle following a given magnetic
field line will be trapped if

v‖(θ)
v⊥(θ) <

√
Bmax
B(θ) − 1, (1.6)

where v‖(θ) and v⊥(θ) are the starting parallel and perpendicular velocities of the particle
at any poloidal angle θ where the magnetic field amplitude is B(θ), and Bmax is the
maximum magnetic field strength, typically at the inboard midplane θ = −π. This is
illustrated in figure 1.2(a). The trapped-passing boundary in velocity space specified by
the angle φv is defined such that tan(φv) = v‖(θ)/v⊥(θ), as given by equation (1.6). The
corresponding fraction αt of trapped particle for a Maxwellian or any isotropic velocity
distribution is given by the relation

αt =
√

1− B(θ)
Bmax

. (1.7)

Note that, as a result of the curvature and ∇B drifts, the orbits of the trapped particles
projected on a poloidal plane resemble the shape of a banana as shown in figure 1.2(b).
Considering the marginally trapped condition, one can find that the starting velocities
v‖,0 and v⊥,0 at the outboard midplane θ = 0 follow the relation v‖,0 ∼

√
2 ε v⊥,0, and for

a large aspect ratio, i.e. ε� 1, one thus obtains v‖,0 ∼
√
ε vth for trapped particles. The

time to complete half an orbit can thus be estimated as tb ∼ Rqs/v‖,0 ∼ Rqs/
√
εvth, where

qs is the safety factor measuring the pitch of the magnetic field. Furthermore, the width
of the banana orbit can be estimated as δb ∼ |vd|tb ∼ qsρ/

√
ε, where vd = v∇B + vC ,

|vd| ∼ vthρ/L⊥ and L⊥(' R ' LB) is the characteristic gradient length of equilibrium
quantities. One can see that, as a result of a collision kicking a particle from one trapped
trajectory to another, the particle can radially migrate by a distance ∼ δb. This is the
fundamental process behind neo-classical transport. Moreover, while in classical diffusion,
collision frequencies are computed for 90o scattering events, in neo-classical diffusion
much smaller scattering angles (φv ∼ tanφv ∼

√
ε) in velocity space can lead to significant

changes in the trajectory. Therefore an effective collision frequency defined as νeff = ν/ε

is introduced. One can now estimate the neo-classical diffusion as Dneo−class = αt(δb)2νeff ,
which is greater than Dclass by up to two orders of magnitude. However it is typically
still one or two orders of magnitudes less than most experimentally observed diffusivities.

Turbulent transport (also referred to as anomalous transport), resulting from plasma
microturbulence, explains the high diffusivities observed in experiments. The large
radial gradients in density and temperature necessary to maintain fusion conditions in
the core act a source of free energy to various small scale instabilities on scales of the
Larmor radius. For example, instabilities such as Ion Temperature Gradient (ITG) or
the Trapped Electron Mode (TEM) appear at ion-scales, while Electron Temperature
Gradient (ETG) mode appear at electron-scales. In this thesis, particular focus is given
to ITG driven turbulence. These microinstability modes compete and interact with each
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1.2. Magnetic confinement

Figure 1.2: (a) Illustration of the trapped-passing boundary in v⊥ − v‖ velocity space.
(b) Illustration of a banana orbit in a tokamak. 1© The gyro-motion of an ion around the
magnetic field line 2© The banana orbit in 3D 3© Banana orbit of an ion [blue] and an
electron [green] projected on the poloidal plane. Also shown is the separatrix referring to
the boundary between closed and open field lines, the x-point and the divertor plates.
Source: Euro-Fusion

other, leading to small scale fluctuations in density, temperature and electromagnetic
fields, which in turn lead to radial drifts that carry heat and particles from the core
of the device towards the walls. The statistically steady-state level of this turbulent
transport depends not only on its drive from the various instabilities but also on the
turbulence saturation mechanism such as that via the zonal flow shearing mechanism
[Diamond et al., 2005], via damped modes [Hatch et al., 2011], perpendicular particle
diffusion [Merz and Jenko, 2008], etc. Zonal flows, which result from electrostatic field
perturbations that are constant on the magnetic surface but vary in the radial direction,
is studied in greater detail in this thesis as it is a dominant saturation mechanism in the
considered ITG turbulence regime.

One can obtain a rough estimate of the turbulent diffusivity Dturb using the so-called
mixing length estimate, which in turn is based on the random walk model. Given that the
typical length of turbulent eddies perpendicular to the magnetic field line is of the order of
Larmor radius, and considering the characteristic frequency in the random walk model to
be the frequency of the instability mode ωd, one obtains Dturb ∼ ρ2ωd. An approximate
estimate for the frequency of the instability modes is given by ωd ∼ |vd|k⊥ ∼ vthρ k⊥/L⊥,
where k⊥ ∼ 1/ρ is the perpendicular wavenumber associated to the instability mode.
One thus obtains Dturb ∼ ρ2vth/L⊥. This Dturb ∝ ρ∗ scaling, where ρ∗ = ρ/L⊥ measures
the system size, is called gyro-Bohm scaling [Cowley et al., 1991]. Note that this is
only a very rough estimate, one of the many scaling laws that have been observed in
experiments and simulations [Garbet and Waltz, 1996, Petty et al., 1995, Shirai et al.,
1995, Lin et al., 2002].
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Chapter 1. Introduction

In the next subsection, the subjects of particular focus of this thesis are introduced, along
with an outline of how the thesis is organised.

1.3 Focus and outline of the Thesis

Exploiting the difference in time scales between the fast gyromotion of particles and the
time scale associated with typical microinstability modes, gyrokinetic simulations that
model the particle trajectories averaged over the gyromotion are widely used to study
microturbulence. In such simulations, the 6 dimensional phase space is effectively reduced
to 5 dimensions and furthermore, the fast cyclotron time scale does not have to be evolved,
thereby reducing the computational costs to levels that can be handled by present day
supercomputers. The two main numerical methods used in gyrokinetics are the Particle
In Cell (PIC) method and the Eulerian method. In the former, a Lagrangian description
of the plasma is considered, and a statistical sampling of the particles distribution in
phase space is performed, whose trajectories are then evolved in time. In the latter
method, the gyrokinetic equation is discretized on a fixed grid in phase space and the
resulting system of ordinary differential equations are solved numerically. Each method
has its own advantages and disadvantages.

In this thesis, an Eulerian gyrokinetic code called GENE [Jenko et al., 2000, Merz,
2008, Görler et al., 2011] is used to study the role of passing electron dynamics in
turbulent transport driven by ion-scale microinstabilities, in particular Ion Temperature
Gradient (ITG) instability. In first approximation, these particles, which are highly
mobile along the confining magnetic field, are assumed to respond adiabatically to the low
frequency ion-scale modes. However, near mode rational surfaces (MRSs), non-adiabatic
response of passing electrons becomes important and can no longer be neglected. One
such effect of non-adiabatic passing electrons that is of particular interest to this work is
the self-interaction mechanism, which is essentially a process by which a microturbulence
eigenmode that is extended along the direction parallel to the magnetic field interacts
with itself non-linearly. This process is known to drive zonal flows, in particular generate
stationary zonal flow shear layers at radial locations near low order mode rational surfaces
[Waltz et al., 2006, Dominski et al., 2015, Weikl et al., 2018].

The work done as part of this thesis can be broadly classified into two parts:

1. Effect of self-interaction on zonal flows and convergence of tokamak core turbulence
with toroidal system size.
In this part, the self-interaction mechanism is studied in detail. The self-interaction
mechanism is found to also play a significant role in generating fluctuating zonal
flows, which is critical to regulating transport throughout the radial extent. Using
novel statistical diagnostic methods, it is found that, unlike the usual picture of
zonal flow drive where the various microturbulence eigenmodes coherently amplify
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the flow via the modulational instability mechanism, the self-interaction drive of
zonal flows from each of these eigenmodes are uncorrelated with each other in
time. The associated shearing rate of the fluctuating zonal flows therefore reduces
as more toroidal modes are resolved in the simulation. In flux- tube simulations
accounting for the full toroidal domain, such an increase in the density of toroidal
modes corresponds to an increase in the system size, leading to a finite system
size effect that is distinct from the well-known profile shearing effects [Waltz et al.,
1998, Waltz et al., 2002, McMillan et al., 2010].

2. Effect of collisions and background shear flow on the non-adiabatic passing electron
dynamics.
In this part, the study of non-adiabatic passing electrons dynamics is pursued
further to include more reactor relevant conditions. In particular, the effects of
collisions and background shear flow are studied, since a priori, they were considered
as potential factors might disrupt the self-interaction mechanism. It is found that,
with increasing collisionality, electrons behave more adiabatic-like, especially the
trapped electrons away from MRSs, thereby leading to a decrease in the growth
rate of ITG eigenmodes. The shortened electron mean free path in presence of
collisions also leads to a radial broadening of the fine-structures at the MRSs of
corresponding linear eigenmodes. In nonlinear simulations, the turbulent flux levels
decrease with increasing collisionality, as a result of the reduced drive from the
less unstable ITG eigenmodes. Furthermore, the radial width of the fine structures
at MRSs is found to reduce with increasing collisionality as a result of reduced
nonlinear modification of the eigenmodes. A study of the effect of collisions on the
self-interaction mechanism reveals that for physically relevant values of collisionality,
the effect of self-interaction is still significant. A preliminary study on the effect
of background E × B flow shear shows that the fine-structures associated with
the non-adiabatic passing electron response persist even with finite background
flow shearing rates. The turbulent flux-levels decrease with increasing values of
background shearing rate, and radially propagating soliton-like structures are seen,
similar to the results obtained with adiabatic electrons in previous studies.

The rest of the thesis is organised as follows. First, a brief theoretical background on
simulating microturbulence using gyrokinetic codes is provided in chapter 2, including
discussions on the magnetic equilibrium, the gyrokinetic framework, the physics behind
the various instabilities and the relevant details of the GENE code. In chapter 3, the
effect of self-interaction on zonal flows and convergence of tokamak core turbulence with
toroidal system size is discussed. In chapter 4, the effect of collisions and background
shear flow on the non-adiabatic passing electron dynamics in Ion Temperature Gradient
driven microturbulence is discussed. The conclusions are presented in chapter 5.
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2 Theoretical Background

In this chapter, the basic theoretical background necessary for modelling microturbulence
in a tokamak is discussed.

This chapter is organised as follows. In section 2.1, a brief description of the magnetic
equilibrium in a tokamak is given. In particular, the ad-hoc circular geometry considered
in the simulations studied in later chapters is presented. In section 2.2, the most general
set of equations modelling plasma, namely the Vlasov-Maxwell system of equations is
presented. Given that modelling the full Valsov-Maxwell system in a magnetic fusion
device is computationally very costly, various reduced models such as the fluid, drift
kinetic, gyrokinetic etc. are widely used depending on the physics of interest. In this thesis,
the gyrokinetic model is used to simulate microturbulence. In section 2.3, the gyrokinetic
model is presented including an outline of the derivation of gyrokinetic equations. This
is followed by a brief description of collision operators in section 2.4. In section 2.5, the
basic mechanisms behind the various microinstabilities such as Ion Temperature Gradient
(ITG), Trapped Electron Mode (TEM) etc. are introduced. And finally, in section 2.6,
the relevant details of the GENE code used to simulate microturbulence in this thesis
are given.

2.1 Magnetic equilibrium

In cylindrical coordinates (R,Z, ϕ), illustrated in figure 2.1, the magnetic field can be
written as B = Bp+Bϕ, where Bp = BReR+BZeZ and Bϕ = Bϕeϕ are the poloidal and
toroidal components of the magnetic field respectively. Given the toroidal axisymmetry
of any equilibrium quantity A in a tokamak, which implies that ∂A/∂ϕ = 0, one can
write ∇ ·B = 0 as

1
R

∂(RBR)
∂R

+ ∂BZ
∂Z

+
�
�
�
�>

0
1
R

∂Bϕ
∂ϕ

= 0. (2.1)
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Chapter 2. Theoretical Background

Defining
Bz = 1

R

∂ψ

∂R
and BR = − 1

R

∂ψ

∂Z
, (2.2)

lets one express the poloidal magnetic field as Bp = ∇ϕ×∇ψ = ∇× (ψ∇ϕ), where ψ is
called the stream function. Since ∇ψ ·B = 0, ψ = const represent magnetic surfaces on
which magnetic field lines lie. The magnetic equilibrium in a tokamak is characterised by
these magnetic flux surfaces, the inner-most of which reduces to a toroidal line called the
magnetic axis. ψ is also a measure of the poloidal magnetic flux Φ =

∫
S Bp · d̄S through

a surface S that takes the form of a ribbon enclosed by two toroidal lines, one of which
is on the magnetic surface of interest and the other chosen to be the magnetic axis:

Φ =
∫
S

Bp · d̄S =
∫
l
ψ∇ϕ · d̄l = 2πψ (2.3)

having made use of the Stoke’s theorem, d̄l = ∇ϕ/|∇ϕ|, |∇ϕ| = 1/R and the fact that
poloidal magnetic flux on the magnetic axis is zero. Hence, ψ is also called the poloidal
flux function.

The plasma equilibrium in a tokamak is described by the pressure P , current J and
magnetic field B profiles. Given the equilibrium pressure and current profiles, the
corresponding magnetic profile can be found using the Grad-Shafranov equation. One
can derive the Grad-Shafranov equation using the ideal Magnetohydrodynamics (MHD)
equations which at equilibrium become

∇P =J×B [force balance], (2.4)
∇×B =µ0J [Ampère′s law], (2.5)
∇ ·B =0. (2.6)

Defining F (ψ) = RBϕ, one can express the magnetic field as

B = ∇ϕ×∇ψ + F∇ϕ. (2.7)

Similarly, one can also express current as

J = 1
µo
∇ϕ×∇F + Jϕ∇ϕ, (2.8)

where Jp = µ−1
o ∇ϕ×∇F is the poloidal current. One can in fact show that the function

F (ψ) measures the total poloidal current flowing through a surface S extending between
the magnetic axis and the magnetic surface labelled by ψ, i.e.

∫
S Jp · d̄S = 2πF (ψ).

Combining equations (2.7) and (2.8) with (2.4) and projecting the resulting equation in
the direction normal to the magnetic surface, one obtains the Grad-Shafranov equation:

∆∗ψ ≡ R2∇ ·
( 1
R2∇ψ

)
= −µ0R

2∂P

∂ψ
− F ∂F

∂ψ
. (2.9)
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2.1. Magnetic equilibrium

Figure 2.1: Schematic representation of the cylindrical (R,Z, ϕ) and toroidal (r, θ, ϕ)
coordinates.

Provided the pressure P and current F profiles, the solution to the Grad-Shafranov
equation gives the magnetic field equilibrium in a tokamak. Equilibrium codes such as
CHEASE [Lütjens et al., 1996] solve the Grad-Shafranov equation and outputs all the
magnetic field quantities including the safety factor profile, Jacobian, metric coefficients
etc. which are then used as inputs by microturbulence simulations.

Note that the safety factor qs(ψ) measures the number of toroidal turns taken by a
magnetic field line to cover one poloidal turn on the magnetic surface labelled by ψ.
More specifically, it is defined as

q(ψ) = 1
2π

∫ 2π

0

dϕ

dθ

∣∣∣∣
along B0

= 1
2π

∫ 2π

0

B · ∇ϕ
B · ∇θ

dθ, (2.10)

where θ is the geometric poloidal angle (see figure 2.1).

For many applications, it proves useful to consider simple analytic models such as the
so-called circular ad-hoc, s−α model, etc., to set the equilibrium magnetic configuration.
In the following, a brief description of the circular ad-hoc model is provided. This analytic
model is used in the simulations that are studied in this thesis.

Circular ad-hoc geometry

Circular ad-hoc geometry [Lapillonne et al., 2009] represents circular concentric flux-
surfaces centered at the magnetic axis. The poloidal flux function ψ = ψ(r) is therefore
only a function of r, which is the radial coordinate in the toroidal coordinate system
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Chapter 2. Theoretical Background

(r, θ, ϕ) [see figure 2.1]. The following equation defines the circular ad-hoc geometry:

dψ

dr
= rB0
q̄s(r)

, (2.11)

where q̄s(r) is a pseudo-safety factor related to the true safety factor qs(r) as shown in
equation (2.12). Note that this is only an approximate solution to the Grad-Shafranov
equation. The magnetic field can now be expressed as B = R0B0/R[eϕ + r/(R0q̄(r))eθ]
and the safety factor qs(r) defined in equation (2.10) becomes

qs(r) = 1
2π q̄s(r)

∫ 2π

0

1
1 + ε cos θ′dθ

′

= q̄s√
1− ε2

, (2.12)

having used the relation R = R0(1 + ε cos θ), where ε = r/R0 is the inverse aspect ratio
of the magnetic surface being considered.

The straight field line poloidal angle χ is defined such that (B · ∇ϕ)/(B · ∇χ) = q(r),
leading to the relation dχ/dθ = B · ∇ϕ/(q(r)B · ∇θ). Integrating along θ, one obtains

χ(r, θ) = 1
q(r)

∫ θ

0

B · ∇ϕ
B · ∇θ′dθ

′ = 2 tan−1
[√

1− ε
1 + ε

tan
(
θ

2

)]
. (2.13)

The corresponding metric tensors gνµ = ∇ν · ∇µ for ν, µ ∈ {ψ, χ, ϕ} are

gψψ = B2
0r

2

q̄2 , gψχ = −B0ε

q̄

sinχ
(1− ε2) , gψ,ϕ = 0,

gχχ = 1
r2

[
R2

0q̄
2

R2q2 + ε2 sin2 χ

(1− ε2)2

]
, gχϕ = 0, gϕϕ = 1

R2 .

(2.14)

2.2 Vlasov-Maxwell system

While it is possible to evolve individual motion of each plasma particle using the Lorentz
equation of motion, it proves advantageous in many cases to treat the plasma as a
continuous distribution fs(x,v, t) in phase space and then evolve fs using the Vlasov
equation. Physically, fs(x,v, t) measures the number of particles of species s in the
infinitesimally small phase space volume d3x, d3v at the position (x,v), at time t. The
corresponding Vlasov equation is:

dfs
dt

= ∂fs
∂t

+ ẋ · ∂fs
∂x + v̇ · ∂fs

∂v = 0, (2.15)

where ẋ = v and v̇ = (qs/ms)[E(x, t)+v×B(x, t)]. The operator d/dt in equation (2.15)
represents the total time derivative along the unperturbed trajectories in phase space.
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2.3. The gyrokinetic framework

The electric and magnetic fields can be obtained from Maxwell’s equations:

∇ ·E = 1
ε0

∑
s

%s, ∇×E = −∂B
∂t
,

∇ ·B = 0, ∇×B = µ0
∑
s

Js + µ0ε0
∂E
∂t
,

(2.16)

where the self-consistent charge density is given by %s = qs
∫
fsdv + %s,ext and the current

density by Js = qs
∫
fsvdv + Js,ext, with %s,ext and Js,ext being the possible external

density and current sources respectively.

Equation (2.15) along with (2.16), solved self-consistently, is called the Vlasov-Maxwell
system of equations and is one of the most fundamental descriptions of plasma. Note
that this system of nonlinear integro-differential equations in 6-dimensional phase space
cannot be solved analytically except for some simplified cases, and in general will require
numerical computation to solve them. Since tokamak plasma dynamics contain vastly
different time scales from the fast electron gyromotion (∼ 10−11s) to confinement times
∼ 100s and vastly different spatial scales from the Debye length (∼ 10−4m) to machine
size (∼ 100m), it is computationally too costly to resolve all these scales. Hence, based
on the physical phenomenon of interest, various approximations are made to the Vlasov-
Maxwell system of equations. The fluid description is one of the most widely used
approaches where the velocity moments of the Vlasov equation leads to time evolution
equations for a finite number of moments (such as density, average velocity, pressure
and possibly more depending on the considered approximations), essentially reducing
the Valsov-Maxwell system in 6-dimensional phase space to a problem in 3-dimensional
configuration space, while ignoring the ’kinetic’ dynamics in the velocity space. In cases
where the plasma collisionality (more on collisionality discussed in section 2.4) is high,
the fluid description proves to be a good model (e.g. the set of Braginskii equations
[Braginskii, 1965]). However to model microturbulence in a tokamak core where the
collisionality is very low and the kinetic effects are relevant, the gyrokinetic model is
the most appropriate. In simple terms, this model involves an average over the fast
gyromotion of the particles, eliminating the gyroangle dependence and reducing the
problem to an effective 5-dimensional phase space. In the next section, an outline of the
approximations and the derivation involved in the gyrokinetic model are discussed.

2.3 The gyrokinetic framework

The aim of gyrokinetics is to reduce the dimensionality of the Vlasov-Maxwell system
from 6 to 5 by averaging out the fast gyromotion of particles. As a result, the fast
cyclotron time scale is also removed. Therefore, gyrokinetic equations are appropriate
for representing the low frequency microinstabilities and associated turbulence. In this
section, an outline of the modern gyrokinetic theory is given, based on the main original
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references [Littlejohn, 1982, Hahm, 1988, Brizard and Hahm, 2007, Cary and Brizard,
2009] and the citations therein. The theses [Görler, 2009, Lapillone, 2010, Dominski,
2016, Merlo, 2016] have been used as immediate references for writing this section.

2.3.1 The gyrokinetic ordering

In the gyrokinetic formalism, the high frequency cyclotron time scales associated with
the fast gyromotion is eliminated, i.e. the phase of the gyromotion is not resolved, while
retaining only the motion of the center of the gyromotion (called the guiding center)
along with its finite Larmor radius effect. An essential factor that enables such an
approach is the scale separation between Larmor radius (∼ perpendicular scale length
of fluctuations) and the background equilibrium scale lengths. In fact all the scale
separations that motivate/justify the gyrokinetic approach have been experimentally
observed in magnetically confined high temperature plasma in the tokamak core, and
are listed below.

1. Spatial scale separation between fluctuations and equilibrium quantities: In the
direction perpendicular to the magnetic field, the spatial extension of the fluctua-
tions is typically of the order of the Larmor radius ρi. Whereas, the characteristic
gradient lengths LN and LT of the equilibrium density and temperature profiles
respectively are of the order of the minor radius a, which is typically much larger
than the Larmor radius of any species. Furthermore, the characteristic gradient
length LB of the background magnetic field strength is of the order of the major
radius R. Since a ∼ R, with the inverse aspect ratio often ε = a/R ∼ 0.2− 0.4, one
has ρi � Lg, where Lg(' LN ' LT ' LB) is any characteristic equilibrium length
scale.

2. Time-scale separation: The small scale fluctuations in the plasma, typically resulting
from drift-wave type instabilities have a characteristic frequency ω of the order
of the diamagnetic frequency ωD ' Tk⊥/qB0LN , where LN is the characteristic
length scale of equilibrium density gradient. These frequencies are much smaller
than the gyro-frequency Ω associated to the fast gyromotion of the particles, i.e.
ω � Ω.

3. Anisotropy of the fluctuations: As already mentioned in the previous point, the
fluctuations are constrained in the perpendicular direction by the Larmor radius
and the corresponding wavenumber follows k⊥ρi ∼ 1. Whereas no such constraint
is observed in the parallel direction. The fluctuations therefore extend signifi-
cantly more along the direction parallel to the magnetic field as compared to the
perpendicular direction, i.e. k‖/k⊥ � 1.

4. Small relative fluctuation levels: δf/f0 � 1, where δf and f0 are the fluctuating
and equilibrium parts of distribution function respectively. The same ordering
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2.3. The gyrokinetic framework

holds for the field quantities, i.e. eΦ1/T0 � 1 and δB/B0 � 1, where Φ1 and δB
are the fluctuating scalar potential and magnetic field respectively.

In the gyrokinetic framework, all the above mentioned scale-separations are assumed to
follow the ordering:

ρi
Lg
∼ ω

Ω ∼
k‖
k⊥
∼ δf

f0
∼ eΦ1

T0
∼ δB

B0
∼ ε, (2.17)

where ε� 1 is a small parameter.

2.3.2 The modern gyrokinetic derivation

The modern derivation of the gyrokinetic model can be broadly divided into two steps.
Using the gyrokinetic ordering mentioned in the previous subsection and the scale
separations involved, one can change the coordinate system from the original particle
phase space variables to a new coordinate system called the guiding center coordinate
system where it is possible to easily average out the gyroangle dependence from the Vlasov
equation in the absence of fluctuations. This change of coordinates from the particle to
guiding center variables is essentially the first step in the gyrokinetic derivation. However it
turns out that the gyroangle dependence in the Vlasov equation accounting for fluctuations
cannot be removed as easily. Hence, towards this goal, in the second step, a further
change of coordinates to the so-called gyrocenter coordinates is carried out using Lie
transformations. These two steps have been illustrated in subsections 2.3.2.1 and 2.3.2.2,
followed by obtaining the final form of the gyrocenter equation in subsection 2.3.2.3.

2.3.2.1 Particle coordinates - Guiding center transformation

For a charged particle in electromagnetic field, the Lagrangian in the particle coordinates
(x,v) is given by L = p ·v−

[
1
2mv

2 + qΦ(x, t)
]
, where p = mv+qA(x, t) is the canonical

momentum. The corresponding one-form γ is then defined as

γ ≡ Ldt = [mv + qA(x, t)] · dx−
[1

2mv
2 + qΦ(x, t)

]
dt. (2.18)

Let, A(x, t) = A0(x, t) + A1(x, t) and Φ(x, t) = Φ1(x, t), where fields have been split
into the equilibrium and perturbed parts, with B0 = ∇ ×A0 and assuming that the
equilibrium electrostatic field Φ0(x, t) ≡ 0. The one-form can be similarly split into the
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equilibrium and perturbed part as

γ =γ0 + γ1 where (2.19)

γ0 = [mv + qA0(x)] · dx− 1
2mv

2dt and (2.20)

γ1 =qA(x, t) · dx− qΦ1(x, t)dt. (2.21)

As mentioned earlier, the objective of the first step in the gyrokinetic derivation is
the transformation from the particle to the guiding center coordinate system where
the fast gyromotion can be averaged out for the equilibrium dynamics. The guiding
center coordinates are defined by the variables (Xg, v‖,g, µg, αg), where Xg is the guiding
center position, v‖,g = v · b0 is the velocity parallel to the equilibrium magnetic field,
µg = (mv2

⊥,g)/(2B0) is the magnetic moment and αg is the gyroangle. v⊥,g = v− v‖,gb0,
b0 = B0/B0 and B0 = |B0|. Based on the gyrokinetic ordering, in particular that
the magnetic field varies slowly over spatial distances of the order of Larmor radius
(ρi/LB ∼ ε� 1), one can approximate the fast gyromotion of the particles as a circle in
the plane perpendicular to the magnetic field to zeroth order in ε. The transformation
from particles to guiding center coordinates can then be expressed as

x = Xg + r and v = v‖,gb0 + v⊥,gc(αg), (2.22)

where

r = v⊥,g
Ω(Xg)

a(αg), (2.23)

and a(αg) = cosαge1 + sinαge2 and c(αg) = − sinαge1 + cosαge2 are unit vectors along
the radial and tangential directions to a (gyro)circle in the local Cartesian coordinate
system spanned by (e1, e2,b0).

Now in order to express the one-form in guiding center coordinates, one can make use
of the following relation. Under a coordinate transformation (z) → (Z), the one-form
Γ in the new coordinates (Z) can be expressed in terms of the one-form γ in the old
coordinates (z) as

γµdz
µ = γν

∂zν

∂Zµ
dZµ = ΓµdZµ, (2.24)

where zµ = (z, t), Zµ = (Z, t) and Einstein’s summation convention is implied. Further-
more, using the first order expansion A0(Xg +r) ' A0(Xg)+r ·∇A0|Xg , and performing
an appropriate phase space gauge transformation (equivalent to applying the gyroaverage
operator G = 1

2π
∫
dαg), the unperturbed one-form in guiding center coordinates to zeroth
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order in ε becomes

Γ0,g(Xg, v‖,g, µg) =
[
mv‖,gb0(Xg) + qA0(Xg)

]
· dXg + m

q
µgdαg −

[1
2mv

2
‖,g + µgB0(Xg)

]
dt.

(2.25)

Note that Γ0,g is independent of αg, implying that αg is a cyclic variable. Furthermore,
the associated canonical momentum is the magnetic moment µg which is therefore an
invariant of motion of the unperturbed trajectories.

Similarly, the perturbed part of the one-form to first order in ε can be obtained as

Γ1,g(Xg, v‖,g, µg, αg) =

qA1(Xg + r, t) ·
[
dXg + 1

qv⊥(Xg)
a(αg)dµg + mv⊥(Xg)

qB0(Xg)
c(αg)dαg

]
− qΦ1(Xg + r, t)dt.

(2.26)

Note that the dependence of r, a and c on αg in the above equation reflects that αg is
not a cyclic variable in presence of fluctuations. Since the fluctuating fields vary strongly
with spatial distances of the order of |r|(∼ gyroradius ρ), a simple gyroaveraging is not
applicable. Hence another coordinate change to the gyro-center coordinates is required
to systematically eliminate the gyroangle dependence.

2.3.2.2 Guiding center - Gyrocenter transformation

The guiding center Zg = (Xg, v‖,g, µg, αg) to gyrocenter Z = (X, v‖, µ, α) coordinate
transformation is done via Lie transforms which is a continuous, near identity coordinate
transformation:

Z(Zg, ε) = T−1Zg, (2.27)

where Z(Zg, 0) = Zg and the Lie transform can be expressed as

T = e−εL. (2.28)

L is the Lie derivative operator which acts on a scalar function Fg as

LFg = gν
∂Fg
∂Zνg

, (2.29)

and on the one-form Γg = Γg,µdZµg as

(LΓg)µ = gν
(
∂Γg,µ
∂Zνg

− ∂Γg,ν
∂Zµg

)
, (2.30)
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with the indices µ, ν running over all the coordinates in (Zg, t), and the sum over ν is
implied following Einstein’s convention. The generators gν associated to the Lie transform
are defined by

gν = ∂Zg
∂ε

. (2.31)

A general coordinate transformation can now be expressed as

Γ = TΓg + dS, (2.32)

where S represents a possible phase space gauge and the overall transform T is composed
of indivual Lie transforms as

T = · · ·T2 · T1 (2.33)

with each transform Tn = e−ε
nLn . Expanding each term in equation (2.32) in terms of ε,

the one-form can be written as Γ = Γ0 + Γ1 + · · ·, with

Γ0 =Γg,0 + dS0, (2.34)
Γ1 =Γg,1 − L1Γg0 + dS1 (2.35)

Now, by specifying appropriate generators and phase space gauge terms at each order in
ε, the gyroangle dependence can be removed from Γ, thus ensuring that the transformed
gyroangle α remains cyclic in presence of fluctuations. Since, we are interested in a
transformation to first order in ε, the corresponding generators (see reference [Dannert,
2005] for details) are

gX
1 = Ã1 ×

b0
B∗0,‖

− 1
m

B∗0,‖
B∗0,‖

∂S1
∂v‖

+ 1
q
∇S1 ×

b0
B∗0,‖

,

g
v‖
1 = 1

m

B∗0,‖
B∗0,‖

·
(
qÃ1 +∇S1

)
,

gµ1 = q
v⊥
B0

A1 · c + q

m

∂S1
∂α

,

gα1 = − q

m

( 1
v⊥

A1 · a + ∂S1
∂µ

)
,

gt1 = 0,

(2.36)

and the correpsonding gauge S1 is

S1 = 1
Ω

∫ α
(
qΦ̃1 + 1

B∗0,‖
(b0 × Ã1) · µ∇B0 − qv‖

B∗0
B∗0,‖

· Ã1 − qv⊥Ã · c
)
dα′, (2.37)

where B∗0 = B0 + (m/q)v‖∇× b0 and F̃(X, µ, α) = F(X + r)− F̄(X, µ), with F̄(X, µ)
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2.3. The gyrokinetic framework

denoting the gyroaverage of the quantity F as:

F̄(X, µ) = 1
2π

∫
F(X + r(X, µ, α))dα. (2.38)

The one-form in gyrocenter coordinates now becomes

Γ = Γ0 + Γ1,

=
(
mv‖b0 + qA0 + qĀ1,‖b0

)
· dX + m

q
µ dα−

(1
2mv

2
‖ + qΦ̄1 + µ(B0 + B̄1,‖)

)
dt.

(2.39)

Note that in the above equations, the equilibrium quantities have been evaluated at the
gyrocenter X. The perturbed fields are evaluated at the particle position x = X + r
and furthermore gyroaveraged, so that Γ is independent of the gyroangle α, which is
therefore cyclic as intended.

The particle distribution function in gyrocenter variables f(Z) can be expressed in guiding
center variables fg(Zg) using the operator T−1 as:

fg(Zg) = (T−1f)(Zg), (2.40)

where T−1 is now also called the pull-back operator.

Note that, from this point on in this chapter, only the magnetic fluctuations related to
A1,‖ are considered while the parallel magnetic fluctuations B1,‖ are neglected.

Using equations (2.28), (2.29), (2.33) and (2.40), the perturbed part of the distribution
function for a species denoted by index j in guiding center variables can be expressed in
terms of gyrocenter variables as

fg,1,j = f1,j + 1
B0

[(
Ωj
∂f0,j
∂v‖

− qjv‖
∂f0,j
∂µ

)
Ã1,‖ + qjΦ̃1

∂f0,j
∂µ

]
. (2.41)

2.3.2.3 The gyrokinetic equation

For a given one-form Γ in coordinates (Z, t), the corresponding Euler-Lagrange equations
of motion are given by:

ωµν
dZν

dt
= 0, where ωµν = ∂Γν

∂Zµ
− ∂Γµ
∂Zν

. (2.42)

Using the above relation for the one-form in gyrocenter coordinates obtained in equation
(2.39), and the approximation ∇(Ā1,‖b0) ' ∇Ā1,‖ × b0 + O(ε), the corresponding
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equations of motion reduce to:

Ẋ = v‖b0 + B0
B∗0,‖

(vE + v∇B + vC), (2.43a)

v̇‖ = − 1
mjv‖

Ẋ · (qj∇Φ̄1 + qjb0
˙̄A1,‖ + µ∇B0), (2.43b)

µ̇ = 0, (2.43c)

α̇ = Ωj +
q2
j

mj

(
∂Φ̄1
∂µ
− v‖

∂Ā1,‖
∂µ

)
, (2.43d)

where the generalised E ×B velocity is given by

vE = −
∇(Φ̄1 − v‖Ā1,‖)×B0

B2
0

, (2.44)

the grad-B drift velocity by

v∇B = µ

mjΩjB0
B0 ×∇B0, (2.45)

and the curvature drift velocity by

vC =
v2
‖

Ωj
(∇× b0) =

µ0v
2
‖

ΩjB2
0
b0 ×∇

(
P0 + B2

0
2µ0

)
, (2.46)

having used the equilibrium ideal MHD equations (2.4) and (2.5).

Now, the Vlasov equation (2.15) in gyrocenter coordinates can be written as:

dfj
dt

= ∂fj
∂t

+ Ẋ · ∂fj
∂X + v̇‖

∂fj
∂v‖

+ µ̇
∂fj
∂µ

+ α̇
∂fj
∂α

= 0. (2.47)

Given the invariance of µ in equation (2.43c), the fourth term in the above equation
vanishes. Furthermore, given that the gyroangle α is now a cyclic variable, gyroaveraging
the above equation (the term α̇∂fj/∂α which averages out to zero given that fj is 2π
periodic in α) leads to the gyrokinetic equation

∂f̄j
∂t

+ Ẋ · ∂f̄j
∂X + v̇‖

∂f̄j
∂v‖

= 0, (2.48)

also called specifically the ’full-f’ gyrokinetic equation. In the rest of this chapter, one
reassigns f̄ → f .

Now, the gyrokinetic equation can be split into an equilibrium and a perturbed (to first
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2.3. The gyrokinetic framework

order in ε) part as

fj = f0,j + f1,j . (2.49)

This is also called the ’delta-f’ splitting. One of the advantages of performing this splitting
is that it enables one to obtain a linearized Vlasov-Maxwell system for the perturbed
part, which can then be conveniently used for basic stability analysis. Using equations
(2.47), (2.49), (2.43a) and (2.43b), the unperturbed part of the gyrokinetic equation
becomes:

df0,j
dt

∣∣∣∣
u.t.

=
[
v‖b0 + B0

B∗0,‖
(v∇B + vC)

]
·
(
∇f0,j −

1
mjv‖

µ∇B0
∂f0,j
∂v‖

)
= 0, (2.50)

where d/dt|u.t. stands for the total time derivative along the unperturbed trajectories and
the equilibrium part f0,j of the distribution function is assumed to be a stationary solution,
i.e. f0,j = f0,j(X, v‖, µ) 6= fct(t). Now, the gyrokinetic equation of the perturbed part
becomes:

∂g1,j
∂t

+ B0
B∗0,‖

vE ·
(
∇f0,j −

µ

mjv‖
∇B0

∂f0,j
∂v‖

)

+ B0
B∗0,‖

(vE + v∇B + vC) ·
(
∇f1,j −

qj
mjv‖

∇Φ̄1
∂f0,j
∂v‖

)
+ v‖b0 ·

(
∇f1,j −

qj
mjv‖

∇Φ̄1
∂f0,j
∂v‖

)

− µ

mj

(
b0 + B0

v‖B
∗
0,‖

vC

)
· ∇B0

∂f1,j
∂v‖

= 0, (2.51)

having defined

g1,j = f1,j −
qj
mj

Ā1,‖
∂f0,j
∂v‖

. (2.52)

Note that, consistent with the GENE code used in this work, the parallel non-linearity [∝
Ẋ ·∇Φ1∂f1,j/∂v‖] has been neglected. In general, the parallel nonlinearity is necessary for
phase space volume conservation (of particle number), and its effect could be particularly
significant in ’full-f’ codes with evolving backgrounds [Idomura et al., 2007]. However
in reference [Candy et al., 2006], it is shown that for ’delta-f’ codes (such as GENE)
where only the perturbation [i.e. equation (2.51)] is evolved in time, the effect of parallel
nonlinearity is negligible.

2.3.3 Background distribution

The background distribution f0,j can in general be any function of the constants of motion
of the unperturbed gyrokinetic equation (2.50), namely the kinetic energy E = mv2

‖/2 +
µB0, magnetic moment µ and the toroidal canonical momentum ψ0 = ψ + v‖mRBϕ/B.
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Usually one assumes a Maxwellian distribution of the form [Angelino et al., 2006]:

f0,CM (E , µ,Ψ) = Neq(Ψ)
[2πT0(Ψ)/m]3/2

e−E/T0(Ψ), (2.53)

where Ψ(ψ0, E , µ) = ψ0 + ψ0corr and

ψ0corr = −sign(v‖)
q

m
R0

√
2(E − µBmax)H(E − µBmax), (2.54)

with H being the heaviside function.

Another common choice for the background distribution is the so-called local Maxwellian

f0,LM (E , µ, ψ) = Neq(ψ)
[2πT0(ψ)/m]3/2

e−E/T0(ψ), (2.55)

which is a function of the magnetic flux-surface label ψ. Note that f0,LM is not an
exact solution of the unperturbed gyrokinetic equation. It in fact becomes a solution
if the curvature and grad-B drifts are neglected in equation (2.50), and therefore can
be considered as a canonical Maxwellian in the limit of zero finite orbit width. A study
on the consequence of choosing local Maxwellian over the canonical Maxwellian can be
found in reference [Angelino et al., 2006]. Note that, in the flux-tube model (discussed
in section 2.6.2) used in simulations studied in this thesis, the perturbed gyrokinetic
equation (2.51) is solved with the local Maxwellian f0,LM as the background distribution
function.

2.3.4 Moments and fluxes

Macroscopic observables such as density, temperature, heat and particle fluxes etc. involve
taking the velocity moments of the distribution function. One is usually interested in
obtaining these physical quantities at fixed particle position x. Therefore, it is necessary
to first transform the distribution function from gyrocenter to particle coordinates. This
is done in two steps: First, the transformation from gyrocenter coordinates to guiding
center coordinates is done using the pull back operator T−1, done in equations (2.40)
and (2.41), followed by the transformation from guiding center to particle coordinates
using an appropriate delta function, as shown below:

A[a](x) =
∫
dXdv‖dµdα

B∗0,‖
mj

δ(X + r− x)a(X, v‖, µ)T−1f1,j(X, v‖, µ), (2.56)

where A[a](x) is the perturbed part of an observable in particle coordinates x, which,
depending on the choice of a, gives different physical quantities of interest, some of which
are listed below:
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2.3. The gyrokinetic framework

1. Density, n1,j = A[1]

2. Parallel fluid velocity, u1,‖,j = A[v‖]/n0,j

3. Parallel temperature, T1,‖,j = A[(v‖ − u1,‖,j)2]− T0,jn1,j/n0,j

4. Perpendicular temperature, T1,⊥,j = A[v2
⊥/2]− T0,jn1,j/n0,j

5. Turbulent particle flux, Γj = A[vE ]

6. Turbulent heat flux, Qj = A[vEmjv
2/2]

As a result of the coordinate transformation from gyrocenter to guiding center [essentially
equation (2.41) for f1,j ], each of these quantities can in fact be split into two parts, one
containing the perturbed distribution function f1,j , and the second one referred to as the
polarisation term, containing Φ1 but not f1,j . For instance, the perturbed density can be
expressed as:

n1,j(x) = 2π
mj

∫
B∗0,‖f̄1,jdv‖dµ︸ ︷︷ ︸
n1gj

− qjn0,j
T0,j

[
Φ1 −

B0
T0,j

∫
¯̄Φ1e
−µB0/T0,jdµ

]
︸ ︷︷ ︸

n1pj

, (2.57)

where the first term n1gj is the so-called gyro-density and the second term n1pj is the
polarisation density. ¯̄F represents the double gyroaverage of any scalar quantity F ,
defined as

¯̄F = 1
(2π)2

∫
dαdα′F(X− r− r′). (2.58)

Similarly, the parallel fluid velocity can be expressed as:

u1,‖,j(x) = 2π
mj

∫
B∗0,‖v‖f̄1,jdv‖dµ−

n0,jµ0j0,‖
B2

0

[
Φ1 −

B0
T0,j

∫
¯̄Φ1e
−µB0/T0,jdµ

]
(2.59)

where j0,‖ = j0 · b0 = (∇×B0/µ0) · b0.

2.3.5 Field Equations

Using Maxwell’s equations (2.16), one can relate the scalar and vector potentials Φ and
A of the self-consistent electromagnetic fields with moments of the distribution function,
which can then be used to solve the gyrokinetic equation. To solve the perturbed part of
the gyrokinetic equation (2.51) in particular, one needs to evaluate Φ1 and A1,‖ using
the Poisson equation and Ampere’s law respectively, as illustrated below.
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Poisson equation

Noting that the unperturbed scalar potential Φ0 is assumed to be zero, the Poisson
equation becomes:

∇2Φ1(x) = − 1
ε0

∑
j

%1,j(x) (2.60)

where the perturbed charge density %1,j(x) = qj
∫
f1,j(x)dv = qjn1,j(x). Using the

assumption of anisotropy of fluctuations (k‖/k⊥ � 1) in the gyrokinetic ordering, one can
already express ∇2 ' ∇2

⊥. Furthermore, in ion scale turbulence, the Debye length λD,i
of ions is much smaller than the perpendicular scale length λ⊥ ∼ 1/k⊥ of fluctuations ,
i.e. λD,i � λ⊥, and in this limit, the Poisson equation reduces to the quasi-neutrality
equation: ∑

j

qjn1,j(x) = 0. (2.61)

Using the above quasi-neutrality equation, and with n1,j(x) already found in equation
(2.57), one can now express the field Φ1 in terms of f1,j .

Ampere’s law

Using the same assumption as has been made to evaluate the Poisson equation and
neglecting the displacement current, the Ampere’s law provides an equation for the
perturbed parallel component A1,‖ of the vector potential:

∇2
⊥A1,‖(x) = −µ0

∑
j

j1,‖(x). (2.62)

Given that the perturbed parallel current component is defined by j1,‖(x) = qju1,‖,j(x)
where u1,‖,j(x) has already been defined in equation (2.59), one can now express A1,‖ in
terms of f1,j .

2.4 Collisions

Collisions provide the physical link between macroscopic plasma heating and microtur-
bulence, through dissipation of small-scale structures, thereby enabling the system to
reach a statistical steady state [Abel et al., 2008]. Note that in collisionless simulations,
numerical dissipation such as hyperdiffusion is essential towards achieving a steady state
[Krommes, 1999], however these effects are not physical in the true sense. Therefore,
to realistically model the plasma behaviour, proper treatment of the discrete particle
interactions via collisions is required. Furthermore, collisions can stabilise microinstability
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modes such as ITG [Mikkelsen and Dorland, 2008] and TEM [Connor et al., 2006], and
also play a crucial role in zonal flow damping [Hinton and Rosenbluth, 1999].

Note that the Vlasov equation and the gyrokinetic equation derived from it consider the
collisionless limit. Collisions can be modelled via an additional term C(fj) in the Vlasov
equation (2.15), called the collision operator, as given by the Fokker-Planck Equation:

dfj
dt

= ∂fj
∂t

+ ẋ · fj
∂x + v̇ · ∂fj

∂v = C(fj), (2.63)

A typical form of collision operator that is used in gyrokinetic codes is the Landau
collision operator, which in turn is based on the Fokker-Plank collision model. Either
linear or nonlinear versions of the Landau collision operator are used, depending on the
type of the code and the plasma conditions being simulated. For instance, in full-f codes
such as XGC [Ku et al., 2009] which aims to simulate turbulence in the edge of plasmas,
the full nonlinear Landau operator is used [Hager et al., 2016]. In the edge of tokamak
plasma, the length scale of variation of the plasma background is comparable to the ion
Larmor radius and turbulence correlation widths. Furthermore, in the scape-off layer
region and around the magnetic separatrix surface, there is particle loss to the material
wall, radiative energy loss, charge-exchange processes, etc. These lead to the perturbation
f1 being comparable to the background distribution f0, making the assumptions for
linearising the collision operator invalid. However, in the plasma core where f1 � f0,
it is justified to use linearised collision operators which are also computationally less
costly. In delta-f codes such as GENE, the linearised landau collision operator can be
used, taking the form of the perturbed distribution scattering off the background, and a
back reaction term that is used to conserve momentum and energy.

In the following, a summary of the Fokker-Plank collision model and the Landau form of
the collision operator is presented.

2.4.1 Landau collision operator

In typical tokamak plasmas, which are weakly coupled, small angle scattering of a charged
particle off the Debye spheres of other charge particles dominate the collision processes.
Fokker-Planck collision operators can be used to model such small angle collisions.

An outline of the derivation of the Fokker-Planck collision operator is provided here,
following references [Rosenbluth et al., 1957, Hazeltine and Waelbroeck, 1998]. The
collision process is assumed to be such that the time-scale tcoll associated with a collisional
event is much less than the time-scale t associated with other collisionless dynamics in
the plasma. This lets one model the effect of collisions of species a off of species b by a
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probability distribution such that:

fa(x,v, t) =
∫
fa(x,v−∆v, t−∆t)P (v−∆v,∆v,∆t)d3∆v (2.64)

where fa is the distribution function of a species a and P (v−∆v,∆v,∆t) is the probability,
that in time ∆t, a particle will change its velocity from v−∆v by ∆v. Now assuming
that ∆t is small with respect to collisionless plasma dynamics (but still larger than tcoll),
one can Taylor expand equation (2.64) to first order in ∆t. Further, since ∆t is small and
only small angle collisions are being modelled, one can also perform a Taylor expansion
in ∆v, but now to second order. This gives

fa(x,v, t) =
∫
{fa(x,v, t)P (v,∆v,∆t)− ∂fa

∂t
∆tP (v,∆v,∆t)

−∆v · ∂
∂v (P (v,∆v,∆t)fa(x,v, t))

+ 1
2∆v · ∂2

∂v∂v (P (v,∆v,∆t)fa(x,v, t)) ·∆v}d3∆v

Since,
∫
d3∆vP (v,∆v,∆t) = 1, the term on the LHS and the first term on the RHS in

the above equation cancels out. Further, since only collisions are considered here, one
can identify the term ∂fa/∂t as the collision operator Cab(fa, fb), giving

Cab(fa, fb) = − ∂

∂v · (Γabfa) + ∂2

∂v∂v · (Dabfa) (2.65)

where

Γab = 1
∆t

∫
d3∆vP (v,∆v,∆t)∆v,

Dab = 1
2∆t

∫
d3∆vP (v,∆v,∆t)∆v∆v,

stand for the drag term and diffusion tensor respectively.

The particular case of the Landau operator is discussed in the following. See refer-
ence [Rosenbluth et al., 1957] for a detailed derivation. The drag and diffusion coefficients
in the Landau form can be written in terms of the distribution function fb as:

Γab = q2
aq

2
b lnΛ

8πε20maµab

∫
U(u) · ∂fb

∂vb
d3vb , (2.66)

Dab = q2
aq

2
b lnΛ

8πε20m2
a

∫
U(u)fbd3vb . (2.67)
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lnΛ is the Coulomb logarithm, ε0 is the permittivity of free space, µab = mamb/(ma+mb)
is the reduced mass, u = va − vb is the relative velocity of collision, and tensor U(u) =
(I − ûû)/u, where û = u/u. At this point, one can note that the collision operator
Cab(fa, fb) is a nonlinear (quadratic) operator in the distribution functions.

The drag vector can also be written as

Γab = − q2
aq

2
b lnΛ

4πε20maµab

∫
fb

u
u3d

3vb .

having used the relation

∂

∂vb
· U(u) = 2 u

u3 .

Now, the drag vector and diffusion tensor can be expressed in terms of the Rosenbluth
potentials hb and gb, where

hb(va) =
∫
fb

1
u
d3vb and gb(va) =

∫
fb u d

3vb. (2.68)

Using the relations
∫

(ufb/u3)d3vb = −∂hb/∂u = −∂hb/∂va, U(u) = ∂2u/∂u∂u and∫
U(u)fbd3vb =

∫
(∂2u/∂u∂ufb)d3vb = ∂2gb/∂va∂va, one obtains

Γab = q2
aq

2
b lnΛ

4πε20maµab

∂hb
∂va

, (2.69)

Dab = q2
aq

2
b lnΛ

8πε20m2
a

∂2gb
∂va∂va

. (2.70)

Note that so far the collision operator has been expressed in particle coordinates and
cannot as such be added to the RHS of the gyrokinetic equation (2.48) which is expressed
in gyrocenter variables. Hence, similar to the transformation of the Vlasov equation in
particle coordinates to the gyrokinetic equation in gyrocenter coordinates, the collision
operator should also undergo the same transformation so as to systematically eliminate
its gyroangle dependence. For instance in the Landau collision operator, the velocity
gradient ∂/∂v evaluated at a fixed particle position should now be evaluated at a fixed
gyrocenter position. This leads to additional Finite Larmor Radius (FLR) terms [and
polarization terms, which are neglected by almost all gyrokinetic codes at the level of
collision dynamics] in the collision operator, with the FLR correction appearing as spatial
diffusion terms in gyrocenter coordinates [Abel et al., 2008].
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Linearising the collision operator

For use in a delta-f code, one typically linearises the collision operator. Making use of
the gyrokinetic ordering |f1/f0| � 1, one can write using the bi-linearity of the collision
operator:

Cab(fa, fb) =Cab(f0,a, f0,b) + Cab(f1,a, f0,b) + Cab(f0,a, f1,b) + Cab(f1,a, f1,b)
'Cab(f1,a, f0,b) + Cab(f0,a, f1,b). (2.71)

The term Cab(f0,a, f0,b) denotes the thermalisation of the background distribution
functions which happens at much longer time-scales as compared to microturbulence
timescales, and hence can be ignored. Furthermore, the nonlinear term Cab(f1,a, f1,b)
denotes the scattering of the perturbed distribution functions of species a and b off of
each other, and can be neglected since being of order ε2. One thus obtains the collision
operator correct to order ε.

The (non-linear and linearised) collision operator should follow certain local conservation
laws, namely the conservation of particles, momentum, energy and the H-theorem for
entropy production [Brunner et al., 2010]. However, the linearised Landau operator, or
any linearised Fokker Planck operator in general, does not satisfy the H-theorem for
non-isothermal (T0,a 6= T0,b) cases. This problem has been corrected in the so-called
Sugama collision operator [Sugama et al., 2009].

2.5 Microinstabilities

Microinstabilities are characterised by fluctuations having perpendicular length scales of
the order of Larmor radius, that grow exponentially in time (initially, and later saturating
to quasi-stationary amplitudes as a result of various saturation mechanisms). The
associated radial drifts carry heat and particles from the core to the edge of the plasma,
thereby limiting the ability of a tokamak to reach confinement conditions necessary for
ignition. These instabilities can be driven by a variety of factors. For instance, the
equilibrium radial pressure gradients can lead to instabilities such as the drift wave,
Ion Temperature Gradient (ITG), Electron Temperature Gradient (ETG) instability
etc. The presence of trapped particles in a tokamak and their particular dynamics can
lead to associated instabilities such as the Trapped Electron Mode (TEM) instability.
While all the examples mentioned so far are electrostatic instabilities, having a higher
beta (=pressure/magnetic pressure) can lead to electromagnetic instabilities such as for
example, the Kinetic Ballooning Modes (KBM) and the microtearing mode instabilities.
Furthermore, depending on the length scale of the fluctuations, the various instabilities
can be classified into ion-scale or electron-scale instabilities. For instance, while the ETG
instability is an electron-scale instability leading to fluctuations that have a perpendicular
length scale of the order of the electron Larmor radius, ITG and TEM are ion-scale
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instabilities having perpendicular length scales of the order of the ion Larmor radius.

In this thesis, a turbulence regime dominated by ITG instability is studied. Hence
in section 2.5.1, a brief review of the ITG instability is provided. While the basic
ITG instability already exists in slab geometry, here the interchange-like toroidal ITG
instability is considered. In addition, short descriptions of ETG, TEM and some other
common instabilities are provided in subsections 2.5.4, 2.5.2 and 2.5.5 respectively.

2.5.1 Toroidal ITG instability

The toroidal ITG instability, first identified in reference [Horton et al., 1981], is an
interchange instability driven by the combined effect of equilibrium ion temperature
gradient as well as grad-B and curvature drifts. It is one of the most common instability
driving turbulent transport in the core of most of today’s tokamaks.

The essential physical mechanisms behind the toroidal ITG instability can be explained
as follows, with the help of figure 2.2. First, one can look at the outboard side of the
tokamak, where the gradient of the equilibrium magnetic field ∇B and pressure ∇P
(' n∇T + T∇n) are both pointed in the same direction. Assuming an initial pressure
perturbation δP , a charge separation develops as a result of the curvature and grad-B
drifts in the vertical direction [both these drifts are charge dependent velocities, see
equations (2.45) and (2.46)]. At the outer midplane, the resulting electric field in turn
leads to an E ×B drift with velocity vE [charge independent, see equation (2.44)] that
amplifies the initial perturbation, thereby leading to an instability. However, at the
inboard midplane, where ∇B and ∇P are pointed in opposite directions, the resulting
E ×B drift is such that it negates any initial perturbation and charge separations. ITG
is therefore an ’interchange instability’, meaning that it is unstable on the outboard side
but stable on the inboard side of the tokamak.

As already mentioned in section 2.3.5, under the subsection on the Poisson equation,
quasi-neutrality is a good approximation for studying ion-scale microturbulence. However
in reality, a slight deviation from quasi-neutrality exists, leading to a small charge
separation and the consequent generation of an electric field, as explained in the physical
picture of the ITG instability presented above.

A local dispersion relation for the ITG instability can be obtained from the gyrokinetic
equation (2.51) together with the quasi-neutrality equation (2.61). In the linear, electro-
static limit, assuming a local Maxwellian background distribution function [f0 = f0,LM ,
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Chapter 2. Theoretical Background

Figure 2.2: Illustration of a toroidal ITG instability mechansim on the outboard side of a
tokamak. δP ↑ and δP ↓ denote respectively regions with higher and lower pressure. The
grad-B and curvature drifts lead to charge separations that then result in generation of
electric fields. The associated E ×B drift velocity vE then reinforces the initial pressure
perturbation, by bringing high pressure plasma from the center of the tokamak to the
δP ↑ regions, and by taking low pressure plasma from the edge to δP ↓ regions.

see equation (2.55)], one obtains:

dh1,i
dt

∣∣∣∣
u.t.

= ∇Φ̄× b0
B∗0,‖

· ∇ψ
[
∂

∂ψ
log(n0,i) + ∂

∂ψ
log(T0,i)

(
E
T0,i
− 3

2

)]
f0,i + qjf0,i

T0,i

∂Φ̄
∂t
,

(2.72)

where d/dt|u.t. represents the total derivative along the unperturbed trajectory and
h1,j = f1,j − qjΦ̄f0,j/T0,j is the non-adiabatic part of the perturbed ion distribution
function.

Assuming a response of the form h1,j = ∑
ω,k ĥ1,j(ω,k)e−i(ωt−k·X) and

Φ = ∑
ω,k Φ̂(ω,k)e−i(ωt−k·X), and integrating along the unperturbed trajectory, one finds:

ĥ1,i(ω,k) = qi
T0,i

Φ̂ J0

(
k⊥v⊥

Ωi

)
ω − ω∗i

ω − k‖v‖ − ωD,i
f0,i, (2.73)

where

ω∗i = ωN,i[1 + ηiTi(∂/∂T0,i)] (2.74)

is an operator acting on f0,i, with ωN,i = −kyT0,i/qiB0LN being the drift frequency
related to the density gradient. LN = 1/|∇ logn0,i| and LT,i = 1/|∇ log T0,i| are the
characteristic gradient lengths related to density and temperature respectively. ηi =
LN/LT,i, ωD,i = −ky(v2

‖ + v2
⊥/2)/ΩB0LB is the drift frequency related to curvature
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and grad-B drifts, LB = 1/|∇ logB0|, ky is the wavenumber in the binormal direction
y = b0×∇ψ/|∇ψ| and J0 is the zeroth order Bessel function of the first kind accounting
for FLR effects. More details on the derivation can be found in reference [Brunner, 2014].

Assuming adiabatic electrons, the quasi-neutrality equation (n0,e = Zin0,i) leads to the
following dispersion relation

ε(k, ω) = 1
(kλD,e)2 + 1

(kλD,i)2

[
1−

∫
d3v J2

0

(
k⊥v⊥

Ωi

)
ω − ω∗i

ω − k‖v‖ − ωD,i
f0,i
n0,i

]
= 0,

(2.75)

where ε(ω,k) is the plasma dielectric function, λD,e/i are the electron or ion Debye
lengths and k = |k|. By ignoring the term ωD,i, the effects of toroidicity can be removed,
and one can obatin the dispersion relation for the slab ITG instability.

Making certain approximations and assumptions on the above dispersion relation, it is
possible to find that ITG modes are essentially ion acoustic like waves, and show the
interchange nature of the mode [Brunner, 2014]. In the fluid limit |ω/(k‖vth,i)| � 1,
assuming slow guiding center drifts |ω/ωD,i| ' |ω∗/ωD,i| � 1, and keeping the FLR
effects to second order J0(k⊥v⊥/Ωi) ' 1− (k⊥v⊥/Ωi)2/2, one obtains

T0,i
T0,eZi

+ ωN,i
ω

+
[
1− ωN

ω
(1 + ηi)

] [
(k⊥ρi)2 − 〈ωD,i〉

ω
−
(
k‖vth,i

ω

)2]
= 0, (2.76)

where 〈ωD,i〉 =
∫
d3v ωD,if0,i/n0,i = −2T0,ik⊥/qiB0LB. In the case of homogeneous

equilibrium where ω∗ = 0, and ωD,i = 0, the dispersion relation reduces to

ω2 =
(k‖cs)2

1 + (k⊥ρs)2 , (2.77)

where cs =
√
ZiT0,e/mi is the ion sound speed, essentially showing the ion-acoustic

like wave nature of ITG modes. To show the interchange nature of the mode, one can
consider the case of field aligned fluctuation k‖ ' 0, toroidal geometry ωD,i 6= 0, no
density gradient ωN,i = 0 and identify ωT,i = ωN,iηi = −kyT0,i/qiB0LT,i. In these limits,
one obtains

ω2
(

1 + T0,i
T0,eZi

)
− ω(ωT,ik2

⊥ρ
2
i − 〈ωD,i〉) + ωT,iωD,i = 0. (2.78)

For the above dispersion relation, which is quadratic in ω, to have an unstable branch (to
have solutions with Im[ω] > 0), a necessary condition is to have a negative discriminant,
i.e. ωT,i〈ωD,i〉 > 0. Since ωT,i〈ωD,i〉 ∼ ∇B · ∇Ti, this demonstrates the interchange
nature of the mode.
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2.5.2 TEM instability

The Trapped Electron Mode (TEM) instability arises from the resonance between the
slow (as compared to fast bounce motion along the banana trajectory) precessional drift
of trapped electrons and electrostatic perturbations. Apart from ITG, TEM is another
one of the most common instabilities in present day tokamaks.

In order to obtain a local dispersion relation for TEM instability, following reference [Brun-
ner, 1997], one can consider an adiabatic response for passing electrons and a bounce
averaged kinetic description for the trapped electrons as given below:

n1,e,trap
n0,e

= αt
eΦ
T0,e

[
1 +

(
1− ω∗e

ω

)
z2
beW (zbe)

]
, (2.79)

where αt is the fraction of trapped electrons, ω∗e is the electron equivalent of equation
(2.74), zbe = sign(ωϕe)

√
2ω/ωϕe, ωϕe = n〈ϕ̇〉v2

th,e/E ' 1, E = (v2
⊥+v2

‖)/2 is the kinetic en-
ergy, n〈ϕ̇〉 is the toroidal precession drift frequency andW (z) = (2π)−1 ∫ dx e−x2/2x/(x−
z) is the dispersion function.

Considering the same kinetic ion response as for the toroidal ITG case [see equation
(2.75)], the local dispersion relation can be obtained from the quasi-neutrality equation:

Zi
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T0,e
− Zi

T0,i
T0,e

∫
d3vJ2

0
ω − ω∗i

ω − k‖v‖ − ωD,i
f0,i
n0,i

+ 1 +
(

1− ω∗e
ω

)
αtz

2
beW (zbe). (2.80)

TEM instability can be driven by a gradient in either the background electron temperature
or density. Typically, the TEM growth rate γ ∼ ω∗e and the real frequency range is similar
to that of ITG, but with an opposite sign. Also, the TEM perpendicular wavelength is
approximately the same as that of typical ITG perpendicular wavelengths, and hence
TEM instability is often coupled with ITG instability [Romanelli and Briguglio, 1990].
Furthermore, TEM instability can be strongly stabilised by collisions [Connor et al.,
2006, Camenen et al., 2007] and therefore increasing collisionality often leads to a
transition from TEM to ITG dominant turbulence [Ryter et al., 2005]. It is worth noting
that, while ITG is mainly responsible for ion heat transport, TEM mainly gives rise to
electron heat and particle transport.

2.5.3 Zonal flows

Zonal flows are toroidally symmetric electrostatic potential fluctuations with finite radial
wavenumber. The resulting radial electric field consequently leads to an E ×B rotation
of the plasma. In tokamaks, zonal flows are ubiquitous features in all geometries, present
both in the core and edge.
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2.5. Microinstabilities

The shearing of turbulent eddies by zonal flows is one of the primary mechanisms by which
microturbulence saturates [Diamond et al., 2005]. Zonal flows are not driven linearly,
but nonlinearly by the unstable drift waves, for example via secondary instabilities such
as modulational instability [Hasegawa and Mima, 1978, Hasegawa et al., 1979, Chen
et al., 2000], as well as the self-interaction mechanism [Weikl et al., 2018] (described in
detail in chapter 3). Once zonal flows grow beyond a critical level, it can then damp via
tertiary instabilities such as Kelvin-Helmholtz instability [Rogers et al., 2000, Idomura
et al., 2000]. The self-regulation of turbulence by zonal flows therefore can be explained
via a predator-prey model [Diamond et al., 2005].

The efficacy of the zonal flow turbulence saturation mechanism depends in general on the
type of the dominant instability. For instance, while it is one of the primary saturation
mechanisms in ITG turbulence [Lin et al., 1998], in TEM turbulence, it is dominant only
in certain parameter regimes [Lang et al., 2008].

As is most frequently done, poloidal E × B zonal flow is studied in this thesis. Given
the toroidicity of a tokamak, this flow gets compressed as it moves from the outboard
side to the inboard side. For stationary zonal flows, a flow v‖ parallel to the magnetic
field can compensate this compression without any density oscillations, as can be seen
in the continuity equation ∂n/∂t = −∇ · (nv) ' −∇ · (nvE×B)−∇‖(nv‖), assumed to
have no source terms. In cases the parallel flow is not able to cancel the divergence
of nvE×B, a pressure perturbation builds up, that eventually leads to an inversion of
the flow which then becomes oscillatory. Such finite frequency zonal flows having an
associated oscillating density perturbation with an m = 1 poloidal (and n = 0 toroidal)
dependence are called Geodesic Acoustic Modes (GAMs) [Winsor et al., 1968]. Given
that the frequency of the GAMs and the residual level of zero frequency zonal flows can
be analytically obtained [Rosenbluth and Hinton, 1998], these results (referred to as the
Rosenbluth-Hinton test) are often used to validate gyrokinetic codes, as discussed in
more detail in section B.2.

2.5.4 ETG instability

The mechanism behind Electron Temperature Gradient (ETG) instability is essentially
the same as that of ITG but with the electrons playing the role of ions. ETG turbulent
eddies, also called ETG streamers, have been observed to be significantly elongated in
the radial direction, allowing for significant transport of heat radially out of the plasma
[Dorland et al., 2000]. Compared to ion-scale turbulence, it is more difficult to measure
these fluctuations in experiments [Mazzucato et al., 2008, Smith et al., 2009]. Hence,
studies of ETG turbulence have largely been restricted to numerical simulations.

Given that ions over their gyromotion perpendicular to the magnetic field can respond
rapidly to any perturbations at the small electron Larmor scale length, their reponse can
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be considered to be adiabatic-like, allowing one in first approximation to perform purely
electron scale simulations to obtain the ETG turbulent flux levels. Making use of this
scale separation between electron and ion scale turbulence, the sum of the fluxes from two
separate single scale simulations, one for electron and the other for ion scale turbulence,
provides an estimate for the total flux level. However various recent works [Görler
and Jenko, 2008, Maeyama et al., 2015, Howard et al., 2016] show that such a simple
superposition of fluxes is flawed and that various cross-scale effects play a dominant role.
For instance, the long wavelength eddies generated by ion scale turbulence have been
shown to shear the ETG streamers and suppress the electron scale turbulence. Studies
such as [Maeyama et al., 2017] also show that short wavelength zonal flows produced
by non-adiabatic passing electron dynamics (including possibly the fine-structures at
low order mode rational surfaces [Dominski et al., 2015], which is the main focus of this
thesis), which play a role in reducing ion-scale turbulence, can be affected by electron
scale turbulence.

It is also worth noting that the ITG turbulence is more efficient in driving zonal flows as
compared to ETG turbulence, and moreover, the saturation via the zonal flow shearing
mechanism is much more significant in ITG turbulence than in ETG turbulence [Dorland
et al., 2000].

2.5.5 Other Instabilities

Among the many different types of microinstabilities, the two most common electro-
magnetic instabilities are the Kinetic Ballooning Mode (KBM) and microtearing modes.
Given the topic of this thesis, it is interesting to note that fine radial structures on the field
profiles are present at MRSs of KBM eigenmodes as well [Falchetto et al., 2003], similar
to that observed in ITG and TEM eigenmodes. Microtearing modes, driven mainly by
electron temperature gradient, lead to small-scale magnetic islands that ‘stochasticize’
the magnetic field [Doerk et al., 2011]. They are essentially the gyrokinetic equivalent to
MHD tearing modes. These modes are particularly unstable at very low wavelengths
kyρi ∼ 0.1. A feature of electromagnetic simulations in general is the so-called non-zonal
transition limit, a limit on β beyond which the simulations tend not to converge [Pueschel
et al., 2013]. This is explained to result from the suppression of E × B zonal flows
by the currents generated by electrons that ‘peel off’ radially from the flux surface as
they travel along the magnetic field lines perturbed by the electromagnetic fluctuations.
Furthermore, in reference [Pueschel and Jenko, 2010], it has been shown that finite β
can lead to a critical gradient upshift of ITG turbulence. Resistive Ballooning modes
[Bourdelle et al., 2012], Parallel Velocity Gradient (PVG) [Barnes et al., 2011, Ball et al.,
2019] modes etc. are further examples of other types of microinstabilities.
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2.6 The GENE code

GENE (Gyrokinetic Electromagnetic Numerical Experiment) is an Eulerian gyrokinetic
code that solves the time evolution of the perturbed (delta-f) part of the distribution
function on a fixed phase space grid [Jenko et al., 2000, Görler et al., 2011]. It has the
ability to handle electromagnetic fluctuations, multiple species, collisions with different
collision operators [Merz, 2008, Goerk, 2012, Crandall, 2019], background shear flow
[Told, 2012, McMillan et al., 2019, Ball et al., 2019] etc. While a global version of the
code [Görler, 2009, Lapillone, 2010] is available, in this thesis, the local (flux-tube) version
is used.

In this section, first the field aligned coordinate system used in GENE is described
in subsection 2.6.1, followed by a detailed description of the flux-tube model and the
boundary conditions involved in subsection 2.6.2. The numerical schemes employed in
GENE are then briefly discussed in subsection 2.6.4.

2.6.1 Coordinate system

GENE uses a non-orthogonal, curvilinear, field-aligned coordinate system (x, y, z) defined
in terms of the magnetic coordinates (ψ, χ, ϕ) as follows [Beer et al., 1995] :

x = x(ψ) : radial coordinate, (2.81)
y = Cy[qs(ψ)χ− ϕ] : binormal coordinate, (2.82)
z = χ : parallel coordinate. (2.83)

ψ, χ and ϕ represent the poloidal magnetic flux, straight field line poloidal angle [defined
by equation (2.13] for the case of circular geometry) and the toroidal angle, respectively.
The function x(ψ) is a function of ψ with units of length. Cy = r0/q0 is a constant defined
such that y also has units of length, where q0 is the safety factor at r = r0 denoting the
radial position of the flux-tube; r(ψ) is in general an estimate of the (average) geometric
minor radius of the magnetic surface labelled by ψ. The inverse aspect ratio of the
flux-tube is defined as ε = r0/R, where R is the major radius of the tokamak.

In these coordinates, the magnetic field [defined by equation (2.7)] can be expressed as:

B = C ∇x×∇y, (2.84)

where C = 1/[(d x(ψ)/dψ)Cy]. One can note that on a given flux surface defined by
x =const., the coordinate y is essentially a magnetic field line label. Furthermore, for a
given magnetic field line labelled by (x =const.,y =const.), one moves along the field line
as the coordinate z is varied, explaining why it is called the parallel coordinate.

While the radial x coordinate is treated in real space in the global version of GENE, in
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the flux-tube model, a Fourier representation is used, as will be discussed in detail in the
next subsection. The binormal y and parallel z coordinates are treated in Fourier and
real space respectively, in both versions of the code.

The discretisation of the coordinates is discussed in the following. In real space, the
simulation volume Lx×Ly×Lz is discretised by Nx×Ny×Nz equidistant grid points. In
the ky Fourier space related to the y direction, one considers Nky Fourier modes such that
Ny = 2Nky−1. Note that by invoking the reality condition, only modes ky ≥ 0 are evolved
in GENE. The parallel coordinate extends over z ∈ [−Lz/2,+Lz/2[. For the parallel
velocity coordinate one considers v‖ ∈ [−v‖,max,+v‖,max] with a discretisation involving
Nv‖ equidistant grid points, while for the µ coordinate one considers µ ∈ [0, µmax] with a
discretisation involving Nµ grid points following the Gauss-Laguerre integration scheme.

2.6.2 Flux-tube model and boundary conditions

In the flux-tube model, the simulation domain is assumed to be a box spanning a
tiny radial extent of the plasma volume and extending along the magnetic field line.
See figure 2.3 where an illustration of the flux-tube box is shown. It assumes a scale
separation between the radial correlation length of turbulent eddies (∼ 10ρi) and the
radial length scale of variation of equilibrium (∼ a), thus corresponding to the limit
ρ∗ = ρi/a � 1. Consistent with this scale separation, the background density and
temperature profiles and their gradients, as well as the magnetic equilibrium quantities,
are considered constant across the radial extension Lx of the flux-tube, and are evaluated
at r0. An exception is the safety factor appearing in the parallel boundary condition,
discussed in detail later in this section. The background density and temperature of
a species j are, respectively, nj,0 = nj,0(r0) and Tj,0 = Tj,0(r0) and their inverse radial
gradients lengths are 1/LNj = −d log nj,0/dr|r=r0 and 1/LTj = −d log Tj,0/dr|r=r0 .
The magnetic field amplitude B0 = B0(z), Jacobian J xyz = J xyz(z) and the metric
coefficients gµν(z) = ∇µ · ∇ν where µ and ν stand for the flux-tube coordinates (x, y, z),
depend only on the parallel coordinate. Furthermore, given the toroidal axisymmetry,
the equilibrium quantities are independent of the coordinate y.

The flux-tube coordinates (x, y, z) satisfy the double periodic boundary condition in
a tokamak as follows. The ∆ϕ-periodicity of any physical quantity A, in particular
fluctuations, along the toroidal direction ϕ reads:

A(ψ, χ, ϕ+ ∆ϕ) = A(ψ, χ, ϕ),

and translates in (x, y, z) coordinates to an Ly-periodicity along y:

A(x, y + Ly, z) = A(x, y, z). (2.85)

where Ly = Cy∆ϕ. If the flux-tube covers the full flux-surface, ∆ϕ = 2π, else ∆ϕ is only
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Figure 2.3: (a) An illustration of a flux-tube box (blue and purple lines) that is one
poloidal turn long. The black rectangle indicates the cross-sectional shape of the flux-tube
at the outboard midplane and the black parallelograms indicate the cross-sections at
the inboard midplane. The transparent yellow surface indicates the central flux-surface
with a toroidal wedge removed for visual clarity. (b) The toroidal cross-section of the
flux-tubes at the inboard midplane, illustrating the "twist and shift" parallel boundary
condition. The solid thin parallelogram represents one end of the flux-tube shown in the
subfigure (a) on the left. The parallel boundary condition involves shifting the other end
of the flux-tube (represented by thick solid parallelogram in this plot) toroidally until
it is centred on the other end, and then making periodic copies offset in the toroidal
direction (as shown by two thick dashed parallelograms). The flux-surfaces are shown
with thin solid grey lines. Source: [Ball et al., 2020]
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a fraction of 2π. The 2π-periodicity in the poloidal direction χ reads:

A(ψ, χ+ 2π, ϕ) = A(ψ, χ, ϕ),

and translates in (x, y, z) coordinates to a pseudo-periodic condition (also called the
"twist and shift" method [Scott, 1998]) along z:

A(x, y + Cyqs(x)2π, z + 2π) = A(x, y, z). (2.86)

This boundary condition is referred to as the parallel boundary condition [Scott, 1998].

The effect of these boundary conditions on the flux-tube simulation box can be seen
in figure 2.3(a). The flux-tube box follows the background magnetic field lines. The
cross-section is a rectangle at the ouboard midplane (at z = 0) which then twists as a
result of finite shear, becoming parallelograms at the inboard midplane. The "twist and
shift" parallel boundary condition essentially involves shifting one end of the flux-tube at
the inboard midplane toroidally until it is centred on the other end, and then making
periodic copies offset in the toroidal direction, as shown in figure 2.3(b). For a more
detailed explanation with illustrations, see [Ball et al., 2020]. Note that in the flux-tube
model in general, one can consider a periodicity in z that is larger than 2π as well [Beer
et al., 1995, Ball et al., 2020]. However, typically the 2π-periodicity is considered, as in
this work.

Furthermore, the radial scale separation ρ∗ � 1 justifies periodic boundary conditions
along x:

A(x+ Lx, y, z) = A(x, y, z). (2.87)

Given the periodicity along x and y expressed by equations (2.87) and (2.85), a Fourier
series decomposition in these directions is a practical representation of fluctuation fields
as it naturally satisfies these boundary conditions. Such a Fourier representation reads:

A(x, y, z) =
∑
kx,ky

Âkx,ky(z) exp[i(kxx+ kyy)], (2.88)

with kx and ky spanning in general all harmonics of the minimum wave numbers kx,min =
2π/Lx and ky,min = 2π/Ly, respectively.

The underlying axisymmetry of a tokamak corresponds to an invariance of the unperturbed
system with respect to ϕ in (ψ, χ, ϕ) coordinates. This translates to an invariance with
respect to y in (x, y, z) coordinates. Consequently, any fluctuating field related to a linear
eigenmode of the toroidal system is thus composed of a single ky Fourier mode. Note
that a given ky wave number is equivalent to a toroidal wave number n according to the
relation

n = −kyCy. (2.89)
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The pseudo-periodic boundary condition (2.86) remains to be expressed in the Fourier
representation (2.88). In doing so, one considers the x-dependence of the safety factor
profile qs(x). This is essential to ensure that the flux-tube model contains the information
on the radial position of MRSs related to a ky mode and thus accounts for the particular
dynamics, in particular resonances, that can take place at such surfaces. This is of key
importance to the study carried out in this thesis. Accounting for the x-dependence of the
safety factor in these boundary conditions is thus an exception in the flux-tube framework,
as all other background and magnetic geometry coefficients, as already mentioned, are
assumed x-independent. Only a linearised safety factor profile of the form:

qs(x) = q0[1 + ŝ(x− x0)/r0], (2.90)

is in fact compatible with the Fourier representation along x. ŝ is the magnetic shear at
the center of the flux-tube, defined as

ŝ = r

qs

dqs
dr
|r0 .

For a given ky Fourier mode, inserting (2.88) and (2.90) into (2.86) leads to∑
kx

Âkx,ky(z + 2π) exp[2πi kyCyqs(x = 0)] exp[i(kx + 2πky ŝ)x] =
∑
kx

Âkx,ky(z) exp(ikxx).

(2.91)

For convenience and without further loss of generality, one assumes here that the origin
of the x coordinate corresponds to the lowest order MRS (LMRS), i.e. a MRS related to
ky,min. This condition reads:

ky,minCyqs(x = 0) = nminqs(x = 0) = nminq0(1− ŝx0/r0) ∈ Z,

with nmin the toroidal wave number associated to ky,min according to equation (2.89).
Note that this relation provides an equation for the shift in x0 and ensures that the phase
factor exp[2πi kyCyqs(x = 0)] = 1 for all ky modes. Also note that such a shift in in x0 is
valid only in the case of finite magnetic shear. Based on (2.91), the boundary condition
in z then finally translates for a given ky Fourier mode to the following coupling between
kx Fourier modes:

Âkx,ky(z + 2π) = Âkx+2πky ŝ, ky(z). (2.92)

The coupling between kx Fourier modes can also be understood as follows. In a sheared
toroidal system, the wave vector associated to a Fourier mode (kx, ky) is given by

~k = kx∇x+ ky∇y = (kx + ky ŝ z)∇x− nqs∇χ+ n∇ϕ, (2.93)

having used relations (2.82) and (2.89). After one poloidal turn (z → z + 2π), the wave
vector (2.93) obviously becomes the one associated to the Fourier mode (kx + 2πky ŝ, ky),
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thus explaining the coupling of kx modes.

One should emphasize that this coupling resulting from the parallel boundary condition
applies to any fluctuating field and in particular already to linear eigenmodes of the system
and is thus of different physical nature than the three Fourier mode (∼ 3-wave) interaction
discussed later on in sections 3.4.2 and 3.4.3, resulting from non-linear dynamics.

A linear eigenmode with fixed ky thus couples to a set of kx = kx0 + p 2πky ŝ, p ∈ Z,
modes and is of the form:

A(x, y, z) = exp(ikyy)
+∞∑
p=−∞

Âkx0+p2πky ŝ, ky(z) exp[i(kx0 + p 2πky ŝ)x]. (2.94)

One can show that this form is equivalent to the so-called ballooning representation
[Connor et al., 1978, Hazeltine and Newcomb, 1990]:

A(ψ, χ, ϕ) =
+∞∑
p=−∞

Âb(χ+ p 2π) exp[in(ϕ− qs(ψ)(χ+ p 2π − χ0))], (2.95)

noting in this relation the ballooning envelope Âb(χ), defined over the extended ballooning
space χ ∈]−∞,+∞[, as well as the field-aligned phase factor including the ballooning
angle χ0. The relation between the two representations (2.94) and (2.95), for χ ∈ [−π, π[,
is given by [Merlo et al., 2016]

Âb(χ+ p 2π) = Âkx0+p2πky ŝ, ky(χ) (2.96)

χ0 = −kx0/(ky ŝ), (2.97)

In a flux-tube of radial extension Lx, all coupled Fourier modes kx + p 2πky ŝ relative to
this direction must be harmonics of kx,min. This must hold for all ky and in particular
for the lowest harmonic ky,min:

2πky,minŝ = M kx,min = M
2π
Lx
,

with M ∈ N? a strictly positive integer. This relation can be rewritten:

Lx = M

ky,minŝ
= M ∆xLMRS = M

2πŝ Ly, (2.98)

thus imposing a constraint between the extensions Lx and Ly of the flux tube along the
directions x and y respectively. In practice, the integer M must be chosen such that Lx
is larger then the radial correlation length of turbulent eddies.
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Relation (2.98) also implies that Lx must be an integer multiple of ∆xLMRS = 1/(ky,minŝ),
identified as the distance between lowest order MRSs. Indeed, considering the linearised
safety factor profile (2.90), the distance ∆xMRS between MRSs corresponding to a given
ky 6= 0 mode is constant and given by

1 = ∆[nqs(x)] = ky ŝ∆xMRS =⇒ ∆xMRS(ky) = 1/(ky ŝ),

having invoked (2.89). One thus in particular has ∆xLMRS = ∆xMRS(ky,min) = 1/(ky,minŝ).
For a given ky 6= 0 mode, the radial positions of corresponding MRSs are thus

xMRS = m∆xMRS = m
ky,min
ky

∆xLMRS, m ∈ Z.

Note that the positions of lowest order MRSs, xLMRS = m∆xLMRS, are MRSs to all
ky 6= 0 modes. More generally, there tends to be an alignment of the radial positions
of MRSs corresponding to the different ky around the lower order MRSs (second order
MRSs are common to every second ky, third order MRSs to every third ky, etc.) and
a misalignment around the higher order MRSs, as shown in figure 3.4(a). This level of
(mis)alignment of MRSs can be measured by their radial density, as shown in figure 12
in [Dominski et al., 2017].

2.6.3 Collision frequency

In GENE, collision frequency is set via the normalised quantity νc defined as

νc = πlnΛe4nrefLref
23/2T 2

ref
, (2.99)

where nref , Lref and Tref are the reference density, length and temperature respectively.
For the simulations considered in this thesis, one has nref = n0,i = n0,e, Lref = R and
Tref = T0,i = T0,e. νc is related to the electron-ion collision rate νei [Hinton and Hazeltine,
1976] as

νei(v) =
√

2πZ2e4n0,ilnΛ
√
meT

3/2
0,e

v3
T,e

v3 = 4Z2 n0,i
nref

T 2
ref
T 2

0,e

v3
T,e

v3
vth,e
Lref

νc, (2.100)

where vT,e =
√

2T0,e/me. A physically more illustrative measure of collision frequency is
the normalised collisionality ν∗e , which estimates the average number of times a trapped
electron is scattered to become passing before completing a banana orbit. Naturally, the
banana regime for electrons is therefore characterised by ν∗e < 1 [Hinton and Hazeltine,
1976]. For a general geometry, ν∗e is defined as

ν∗e =
√

2aB0
Bp0vT,eε3/2τe

, (2.101)
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where Bp0 is the poloidal component of the background magnetic field strength and
τe = 3m2

ev
2
T,e/16

√
πZ2e4n0,ilnΛ is the electron-ion momentum exchange time, also called

the electron collision time. For the circular ad-hoc geometry considered in this thesis,
one has

ν∗e = 16
3
√
π

q0Z
2

ε3/2
R

Lref

ni
nref

T 2
ref
T 2

0,e
νc. (2.102)

The corresponding ion collisionality ν∗i is given by

ν∗i = 8
3
√
π

q0Z
2

ε3/2
R

Lref

ni
nref

T 2
ref
T 2

0,i
νc. (2.103)

2.6.4 Numerical details

The gyrokinetic equation for the perturbed part of the distribution function can be
expressed as

df1
dt

= L[f1] +N [f1],

where L and N represent the linear and non-linear operators respectively. GENE
discretisation of the gyrokinetic equation is based on the method of lines, i.e. one starts
discretising the phase space, leading (after solving the Maxwell’s equations for Φ1 and
A1,‖ in terms of f1 and inserting in the gyrokinetic equation) to a system of ordinary
differential equations for the perturbed distribution.

Time evolution and time step adaptation

In linear simulations, the linearised gyrokinetic equation can be solved either by using
an eigenvalue solver to obtain a spectrum of eigenvalues (whose real and imaginary parts
gives the growth rate and real frequency of the linear modes respectively) or by using
an initial value solver to obtain the most unstable mode asymptotically in time. In
turbulence simulations, the nonlinear gyrokinetic equation is evolved using the initial
value solver. An explicit time stepping scheme, typically the Runge-Kutta scheme of
order 4, is used in the initial value solver for the time evolution, which in turn needs to
obey the Courant-Friedrich-Lewy (CFL) condition. The CFL condition demands that
the time step ∆t must be less than a certain limit to ensure the numerical stability of the
scheme. In linear simulations using an initial value solver, the maximum time step ∆tlin
is set such that ωmax∆tlin < α, with α ' 1; the eigenvalue solver is used to find for the
considered phase space grid, the discretized eigenmode with the highest real frequency
ωmax. In nonlinear simulations, the E ×B advection velocity evolves in time and hence
the time step needs to be periodically adapted such that it is less than both ∆tlin and
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∆tnl where ∆tnl is the maximum possible time step associated with the E ×B velocity
[Dannert, 2005].

Derivatives, numerical hyperdiffusion and anti-aliasing

In case the Fourier representation is used for any coordinate u (always true for the
binormal coordinate y, and only true for the radial coordinate x in the flux-tube version),
the derivates can be obtained by ∂f/∂u → ikuf̂ku without any loss of accuracy. For
other coordinates, mostly the fourth-order centered finite difference scheme is used:

∂f

∂x

∣∣∣∣
x=xi

→ fi−2 − 8fi−1 + 8fi+1 − fi+2
12∆x . (2.104)

A drawback associated with this particular scheme is that it tends to decouple the
neighbouring gridpoints, i.e. between the gridpoints having odd and even indices. This
can further lead to a divergence of the two subsets. To avoid this, i.e. to couple the odd
and even gridpoint subsets, a fourth order hyperdiffusion term is added to the right hand
side of the gyrokinetic equation (2.51), as given by:

−νx
∂4f

∂x4

∣∣∣∣∣
x=xi

→ hx
−fi−2 + 4fi−1 − 6fi + 4fi+1 − fi+2

16 , (2.105)

where hx = νx/∆x4 is the damping coefficient [Püschel, 2009].

The quadratic E ×B term in the gyrokinetic equation will lead to coupling of the two
Fourier modes with wavenumber k1 and k2 to a third Fourier mode k3 = k1 + k2 (and
also k3 = k1 − k2). In case k3 is such that it lies outside the Nyquist limit, i.e. k3 > N/2
where N is the number of gridpoints, then aliasing takes place, leading to the generation
of unphysical mode couplings in the system. To avoid this, the so-called 3/2 rule is used,
whereby a buffer of N/4 Fourier gridpoints are added to either side of the spectrum
before the nonlinear term is evaluated, and once the nonlinear term is evaluated, the
buffer is simply removed.
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3 How eigenmode self-interaction
affects zonal flows and conver-
gence of turbulence levels with
toroidal system size

3.1 Introduction

The role of passing electron dynamics in turbulent transport driven by ion-scale microin-
stabilities, in particular Ion Temperature Gradient (ITG) and Trapped Electron Mode
(TEM) instabilities, has been given relatively little attention. In first approximation,
these particles, which are highly mobile along the confining magnetic field, are assumed
to respond adiabatically to the low frequency ion-scale modes. However, in a tokamak
geometry, the phase velocity parallel to the magnetic field of a perturbation with fixed
mode numbers m and n in the poloidal and toroidal directions, respectively, becomes
infinite at the radial position rm,n of the corresponding Mode Rational Surface (MRS),
where the magnetic safety factor profile qs(r) is such that qs(rm,n) = m/n. Consequently,
on these surfaces, the condition for passing electrons to respond adiabatically gets violated
and their non-adiabatic response becomes important. One notes that, given the toroidal
axisymmetry of a tokamak, each linear microturbulence eigenmode has a fixed toroidal
mode number n, but is in general a superposition of many poloidal Fourier modes m, so
that associated MRSs are the positions rm,n for the different values of m.

In fact, as a result of the non-adiabatic passing electron dynamics, linear ITG and TEM
eigenmodes can become significantly extended along the magnetic field lines [Hallatschek
and Dorland, 2005], producing fine radial structures at corresponding MRSs [Falchetto
et al., 2003, Chowdhury et al., 2008]. These fine structures on the eigenmodes persist in
corresponding turbulence simulations, and via non-linear couplings lead to stationary
corrugations on the radial profiles of density, temperature and in particular E ×B zonal
shear flows, aligned with low order MRSs, which effectively appear as fine-scale transport
barriers [Waltz et al., 2006, Dominski et al., 2015, Dominski et al., 2017]. Given that
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shearing and decorrelation of turbulent eddies by zonal flows is a primary mechanism
by which turbulence saturates [Biglari et al., 1990, Waltz et al., 1994, Rosenbluth and
Hinton, 1998, Lin et al., 1998], it is clearly of interest to understand the generation of
these fine scale zonal flow structures in detail.

The generation of the fine zonal flow structures at low order MRSs, via a process called
self-interaction, has in fact already been discussed to some length in the work by [Weikl
et al., 2018]. The general motivation for the work presented in this chapter has been to
further investigate the properties of zonal flow drive from this self-interaction mechanism.
This process essentially involves each individual microturbulence eigenmode interacting
non-linearly with itself to produce a Reynolds stress contribution to the zonal flow drive,
which turns out to be located around its corresponding MRSs. Key to this self-interaction
is the fact that an eigenmode which is significantly extended along the magnetic field line
‘bites its tail’ after one poloidal turn. For each eigenmode, self-interaction will therefore
be particularly significant at its MRSs, given that the radially fine structures located at
these positions, resulting from the non-adiabatic passing electron response, are elongated
along the magnetic field lines. At low order MRSs (in practice implying mainly integer
and half-integer qs-surfaces), these self-interaction contributions to Reynolds stress from
the different eigenmodes radially align and add up constructively to drive the stationary
E ×B zonal shear flows. Clear illustrations of these fine stationary zonal flow structures
can be seen for example in figure 2 of Ref. [Waltz et al., 2006], figure 12 of Ref. [Dominski
et al., 2017], figure 3 of Ref. [Weikl et al., 2018], and figure 3.4 of this chapter.

It is important to point out that in the core of a tokamak, low order MRSs are in fact
few and far apart, whereas the radial domains between them occupy the majority of the
plasma volume. Therefore, at least as important as understanding how self-interaction
generates the above-mentioned stationary structures at lowest order MRSs, clearly visible
on any flux surface-averaged field, is to address how the same self-interaction mechanism
might affect zonal flow drive and therefore turbulent transport in the radial regions
between low order MRSs. Addressing this question is the main focus of this chapter.

While lowest order MRSs are common to all eigenmodes, between them, the MRSs
related to the various microturbulence modes tend to be radially misaligned. Hence,
in these radial regions, the self-interaction contributions to Reynolds stress from these
modes tend to cancel each other out when averaged over time, thus resulting in a nearly
zero stationary component of the zonal flows. But, given that in the turbulent phase
amplitudes of the various microinstability eigenmodes vary in time and furthermore are
decorrelated with each other, this cancellation is not ensured at each time instant but
only on average over time. As a result, self-interaction drives a non-zero fluctuating zonal
flow component between low order MRSs.

An important observation resulting from our study is that in simulations accounting for
non-adiabatic passing electron dynamics, self-interaction contributions to Reynolds stress
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from the various microturbulence modes can indeed be significant in the radial regions
between lowest order MRSs and in fact act as random decorrelated kicks that can in some
cases actually disrupt what is usually considered the main drive mechanism of zonal
flows - modulational instability [Hasegawa and Mima, 1978, Hasegawa et al., 1979, Chen
et al., 2000]. The modulational instability mechanism involves the resonant decays of
microinstability modes into zonal modes via secondary microinstability daughter modes.
Unlike self-interaction, it is a coherent process, leading to a correlated contribution from
the various microinstability modes to the Reynolds stress drive of zonal modes.

In order to quantify the relative importance of these two alternative, possibly competing
mechanisms driving zonal flows, i.e. self-interaction and modulational instability, we have
studied the statistical properties of the Reynolds stress contributions from the various
microturbulence modes. Given the different nature of the two driving processes, one
can identify high correlation levels between the mode contributions to conditions where
modulational instability drive dominates, while lower correlation levels are characteristic
of a significant effect from self-interaction. Central to this statistical analysis has been
a series of gyrokinetic simulations obtained for identical driving conditions but varying
the number of significant toroidal modes participating in the turbulence. Varying the
number of toroidal modes changes in particular the number of associated random kicks
from self-interaction to the zonal flow drive at each radial position.

Varying the number of significant toroidal modes is in fact related to varying the system
size, typically measured by ρ? = ρi/a, i.e. the ratio of the thermal ion Larmor radius ρi
to the minor radius a of the tokamak. Indeed, invoking the fact that the unstable modes
driving ion-scale microturbulence are such that k⊥ρi . 1, where k⊥ is the wave vector
component perpendicular to the magnetic field, and furthermore noticing that for a given
eigenmode with toroidal mode number n an estimate for k⊥ is given by the poloidal wave
vector component, which in turn can be evaluated as kχ ' m/r0 ' nqs(r0)/r0 [r0 is the
average radial position of the eigenmode and m its characteristic poloidal mode number
estimated as m ' nqs(r0), given that fluctuations are nearly field-aligned], one obtains
that k⊥ρi ' nqs(r0)ρi/r0 = (qsa/r0)nρ? ∼ nρ?, so that the number Nϕ of toroidal modes
contributing to the turbulence scales as Nϕ ∼ 1/ρ?.

In view of what has just been said, it may at first sight appear surprising that the study
presented in this chapter is in fact based on simulations carried out in the framework
of the flux-tube model [Beer et al., 1995], whose underlying assumption is the scale
separation between the characteristic length of microturbulence (∼ Larmor radius ρ)
and the characteristic length of equilibrium (∼ minor radius a), hence a priori achieved
by taking the strict limit ρ? → 0 of the gyrokinetic equations. In this limit, the radial
dependence of all equilibrium profiles and their gradients appearing in the gyrokinetic
equations are constant over the flux-tube volume. There is however one exception to this
in the standard flux tube model [Scott, 1998]: a linearised radial dependence of the safety
factor profile qs(r) (∼ constant magnetic shear approximation) is kept in the twist and
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shift boundary condition applied after usually following the magnetic field line a single
turn in the poloidal direction. Through this parallel boundary condition, an eigenmode
’bites its tail’ and in particular correctly accounts for the possible resonances that may
develop at its associated MRSs. The fact that the eigenmodes correctly “feel” their
associated MRSs is obviously key to the development of the fine radial structures and
related non-linear self-interaction which is the focus of our study. Also, close agreement
between flux-tube [Dominski et al., 2015] and global [Dominski et al., 2017] gyrokinetic
simulations regarding the characteristics of the fine stationary zonal flow structures at
lowest order MRSs clearly confirm that the dynamics of the self-interaction mechanism
can indeed be correctly accounted for using such a local model.

Let us already briefly provide here some further insight into how the toroidal spectral
density is varied in a flux-tube code (all details are given in §2.6). The flux-tube version
of the GENE code [Jenko et al., 2000, Merz, 2008] which we have applied for the present
study, considers the field aligned coordinate system defined [in equations (2.81-2.83)] by
the variables (x, y, z) which are respectively the radial, binormal and parallel coordinates.
Note that the binormal coordinate y is the only one of the three coordinates (x, y, z)
which actually depends on the toroidal angle ϕ. The length Ly of the flux-tube in this
direction can thus be associated with its angular extent ∆ϕ along ϕ: Ly = Cy∆ϕ, where
the constant Cy = r0/q0 ensures that y has units of length, r0 being the radial position at
which the flux-tube is positioned and q0 = qs(r0). Also, as a linear eigenmode has a fixed
toroidal mode number n, it consequently has a fixed Fourier mode number ky with respect
to y when represented in field-aligned coordinates, given by ky = n/Cy = nq0/r0, i.e. ky is
actually equivalent to the previously mentioned poloidal mode number estimate kχ. The
significant ky modes contributing to ion-scale turbulence are therefore such that kyρi . 1,
and given that the minimum mode number for a flux-tube box with length Ly is given by
ky,min = 2π/Ly, the number of toroidal modes contributing to the turbulence is estimated
as Nϕ ' 1/ky,minρi = (1/2π)Ly/ρi. Hence, when studying microturbulence using flux-
tube simulations, carrying out a scan in ky,minρi (or equivalently Ly/ρi) corresponds to
varying the toroidal spectral density.

In view of the above, it is therefore possible to realistically study the importance of
the self-interaction mechanism via a flux-tube simulation for a given size tokamak,
characterized by a finite ρ? value, by considering the appropriate toroidal spectral density,
i.e. by setting ky,minρi = ρi/Cy = (q0a/r0)ρ? corresponding to the toroidal mode number
n = 1 (one naturally recovers here that the number of modes contributing to turbulence
scales as Nϕ ' 1/ky,minρi ∼ 1/ρ?). This is clearly equivalent to setting Ly = 2πCy, i.e.
∆ϕ = 2π, which along with parallel box length Lz = 2π implies having the flux-tube
cover the full magnetic surface once. Therefore, considering a finite ky,minρi value in a
flux-tube simulation effectively corresponds to accounting for a finite ρ? effect. All other
finite ρ? effects such as profile shearing [Waltz et al., 1998, Waltz et al., 2002], or finite
radial extent of the unstable region [McMillan et al., 2010], are however obviously absent
in a flux-tube.
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Given that kyminρi ∼ ρ?, the true flux-tube model would require considering the limit of
kyminρi → 0. In numerical simulations however, for obvious practical reasons, kyminρi ∼
ρi/Ly is always finite, so that if turbulence actually converges for kyminρi → 0, this
limit can at best be approximately approached in the limit of large box length Ly/ρi,
which may become numerically prohibitive. Thus, carrying out the above mentioned
ky,minρi scan also enables us to investigate whether/how the flux-tube simulation results
converge as ky,minρi → 0, a problem that was already addressed in [Ball et al., 2020]. It
is remarkable that, to our knowledge, the convergence of flux-tube gyrokinetic turbulence
simulations with respect to kyminρi seems not to have been given more attention in the
literature, at least not considering fully kinetic electron dynamics. Our simulations of
ITG-driven turbulence indeed illustrate that for practical values of ky,minρi, typically
chosen in the range 10−2− 10−1, convergence of turbulent fluxes is in many cases not yet
reached. Particularly in the case of strong background temperature gradients, i.e. away
from marginal stability, the gyro-Bohm normalised ion heat flux Qi keeps on increasing
with a nearly algebraic scaling Qi ∼ (ky,minρi)−α, α > 0, when decreasing ky,minρi, thus
showing no apparent sign of convergence within this range of values. In the particular
strong gradient case considered, corresponding to parameters near to the Cyclone Base
Case (CBC) [Dimits et al., 2000], one has α ' 0.45 (see Fig. 3.7 in this chapter), so
that Qi increases by nearly a factor of 3 over the range ky,minρi = 10−2 − 10−1. In
agreement with related work by one of our co-authors [Ball et al., 2020], for sufficiently
small values of ky,minρi, the algebraic scaling is ultimately broken and convergence of the
fluxes is finally approached within ∼ 5% for ky,minρi ' 5 · 10−3 (see Fig. 3.19). But this
corresponds to a value of ky,minρi one order of magnitude smaller than usually considered.
For gradients closer to marginal stability, this dependence of Qi on ky,minρi appears to
be weakened and convergence approached already for somewhat larger, numerically more
affordable values. This can be seen as good news, as gradients near marginal stability
may be considered as the physically most relevant cases. It nonetheless appears essential
that one keeps in mind this potentially significant dependence of the fluxes on ky,minρi in
the range of typically considered values, which seems to have very often been overlooked
or at least not been given sufficient attention in past studies.

In conjunction with the observed increase in fluxes with system size over the considered
range of ky,minρi=10−2−10−1, a decrease in the shearing rate associated with fluctuating
zonal flows is also observed [see Fig. 3.6(c)]. Via a simple “back-of-the-envelope” estimate,
this decrease in the shearing rate associated with fluctuating zonal flows is shown to result
from the fact that the self-interaction drive of zonal flows from the various microturbulence
modes are decorrelated with each other.

The remainder of this chapter is organized as follows.

A brief summary of a set of previous studies [Dominski et al., 2015, Dominski et al.,
2017], addressing the role of non-adiabatic passing electron dynamics and which provided
the starting point for the main work presented in this chapter, is given in §3.2. The same
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ITG-driven turbulence case as in [Dominski et al., 2015] will in fact also be considered
as a reference case here. Its parameters are recalled as well as the linear frequency
and growth rate spectra. Also pointed out are the fine radial structures that develop
on the linear eigenmodes as a result of the non-adiabatic passing electron dynamics.
Furthermore summarized is how these fine structures on the eigenmodes act as channels
for electron heat and particle transport, and, through non-linear coupling, are observed
to lead to corrugations at low order MRSs of the time-averaged density and temperature
profiles as well as E ×B zonal flow shear layers.

The main results for the present study, consisting of non-linear flux-tube simulations of
ITG-driven turbulence are presented in §3.3. Sets of simulations have been obtained by
scanning ky,minρi over the typical range of values considered in practice, i.e. ky,minρi =
10−2 − 10−1. These scans were repeated considering ion temperature gradients both
near and far from marginal stability. Furthermore, to clearly illustrate how the fine
radial structures resulting from the non-adiabatic passing electron dynamics lead to
particularly strong contributions to zonal flow drive from the self-interaction mechanism,
simulations with two different electron models were carried out: either considering fully
kinetic electron dynamics or enforcing their fully adiabatic response (fine radial structures
being absent with the latter model). First analysis of results are carried out in this
same section, showing that especially in the case of fully kinetic electrons and far from
marginal stability, heat fluxes Qi have not yet converged over the considered range of
typical ky,minρi values. Given its key role in saturating ITG-driven turbulence, the level
of zonal flow shearing rate, ωE×B, is carefully diagnosed. It is shown how in all cases
this shearing rate decreases with decreasing ky,minρi (see figure 3.6). Also analysed is
the radial correlation length of the turbulence. An important observation is that for
sufficiently small ky,minρi, the radial extent of turbulent eddies presents a clearly shorter
scale length than the distance between lowest order MRSs (figure 3.8). From this one
concludes that, for these lower values of ky,minρi, the turbulence is mostly sheared by
the zonal flows between lowest order MRSs, where ωE×B is essentially composed of
its fluctuating component, rather than sheared by the stationary component of ωE×B
located at the lowest order MRSs.

Section 3.4 is dedicated to understanding why fluctuating zonal shear flow level decreases
with ky,minρi. To this end, the different zonal flow driving mechanisms are analysed in
detail. After showing in §3.4.1 that Reynolds stress can be considered as a proxy for
measuring the drive of zonal flows, we review the two basic zonal flow driving mechanisms:
modulational instability in §3.4.2 and self-interaction in §3.4.3. To illustrate these two
basic mechanisms, reduced non-linear simulations are presented in §3.4.4, where the drive
of zonal modes via the decay of an initially single finite amplitude ITG eigenmode is
studied. These simulations are carried out with both adiabatic and kinetic electrons to
demonstrate the dominant role of modulational instability in the former case and the
significant role of self-interaction in the latter.
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Evidence of the self-interaction and the modulational instability mechanisms in fully
developed turbulence is then addressed in §3.4.5 and §3.4.6, respectively. A comparison
between simulations with adiabatic and kinetic electrons is done here as well. It is
shown that the self-interaction mechanism is persistent in the turbulence simulations
accounting for fully kinetic electrons, while it is weak in simulations with adiabatic
electrons, consistent with the reduced nonlinear simulations. Using statistical methods
such as bicoherence and Reynolds stress correlation analysis diagnostics, we show that
the self-interaction contributions to Reynolds stress from the various microturbulence
modes are decorrelated in time, and essentially act as random kicks on the zonal modes,
while the contributions from modulational instability, which is a coherent process, are
correlated with each other. In the case of adiabatic electron simulations, strong correlation
between Reynolds stress contributions from different modes as well as large bicoherence
levels are measured, reflecting that self-interaction is indeed weak and zonal flow drive
is dominated by the modulational instability. In the case of kinetic electrons however,
self-interaction may disrupt the zonal flow drive from modulational instability and,
consequently, correlation between Reynolds stress contributions as well as bicoherence
levels are found to be relatively weak (see figures 3.16 and 3.17).

Based on the study carried out in §3.4, providing evidence of the decorrelated nature of the
self-interaction contributions to zonal flow drive from the various microturbulence modes,
we carry out a “back-of-the-envelope” derivation, using simple statistical arguments,
to predict the scaling observed in simulations with kinetic electrons of the zonal flow
shearing rate ωE×B with ky,minρi. This derivation is presented in §3.5.

Final discussion and conclusions are provided in §3.6.

Two appendices are also part of this chapter. In appendix A, the possibility of local
flattening of effective gradients between Lowest order Mode Rational Surfaces (LMRSs)
as a means to explain the increase in flux levels with decreasing ky,minρi observed for
the kinetic electron runs (see figure 3.7), is explored. In appendix B, an approximate
evolution equation for the shearing rate ωE×B associated with E × B zonal flows is
derived so as to identify the nonlinear driving terms, and in particular justify Reynolds
stress as a proxy for the zonal flow drive.

3.2 Non-adiabatic passing electron dynamics leading to
stationary zonal structures

This section presents a summary of relevant results from the articles [Dominski et al.,
2015, Dominski et al., 2017], which addressed certain effects of non-adiabatic passing
electron dynamics on turbulent transport.

Non-adiabatic passing electron response leads to generation of fine-structures at MRSs
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Figure 3.1: Linear eigenmode with kx0 = 0 and kyρi = 0.28, in the case of (a) adiabatic,
(b) kinetic electron response. Shown is the (x, z)-dependence of the electrostatic potential
Φ in absolute value, weighted by the Jacobian, J |Φ|.

which can be first studied in linear simulations. Figure 3.1 shows the envelope in the
(x, z) plane of the electrostatic potential Φ of the unstable linear ITG eigenmode with
kyρi = 0.28, considering either adiabatic or kinetic electron response, and for the set
of physical parameters given in Table 3.1. This is the same ITG case as considered in
reference [Dominski et al., 2015] and same numerical grid resolutions have been used here.
While in both cases the modes are ballooned at z = 0, one observes a fine radial structure
at the corresponding MRS (positioned at the center x = 0 of the radial domain) only in
the latter case. This is the result of the non-adiabatic passing electron response taking
place at MRSs where the parallel wavenumber k‖ → 0 [Chowdhury et al., 2008, Dominski
et al., 2015]. In the vicinity of MRSs, the condition for adiabatic electron response is
violated as the phase velocity of the eigenmode parallel to the magnetic field becomes
greater than the electron thermal velocity: |ω/k‖| > vth,e. These fine structures along
the x direction translate to a broad range of significant kx Fourier modes, i.e. to a broad
ballooning structure according to equation (2.96), which is referred to as the “giant
electron tails” in [Hallatschek and Dorland, 2005]; see figure 3.2. No such broad tails in
the ballooning structure are observed with adiabatic electrons. Figure 3.3 plots the ky
spectrum of linear growth rates γ and real frequencies ωR of most unstable eigenmodes
for the cases considered here. Note that ωR > 0 corresponds in GENE convention to a
mode propagating in the ion-diamagnetic direction, as expected for ITG instabilities.

The radial structures related to the non-adiabatic passing electron dynamics have been
shown to persist in the non-linear turbulent regime, as discussed in references [Waltz
et al., 2006, Dominski et al., 2015, Dominski et al., 2017]. Studies by [Dominski et al.,
2015, Dominski et al., 2017], based on both local (flux-tube) and global gyrokinetic
simulations, have furthermore shown that, for each fluctuation mode with mode number
ky, the corresponding MRSs act as radially localized transport channels. This is illustrated
in figures 3.4(a,b). Radial regions with high (resp. low) density of MRSs thus tend to
lead to high (resp. low) particle and heat diffusivities. Consequently, to ensure radially
constant time-averaged total particle and heat fluxes, density and temperature gradients
(driving the turbulence) become corrugated, steepening in regions with low density of
MRSs and flattening in regions with high density of MRSs. See figures 3.4(c,d) where
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Figure 3.2: Ballooning representation |Φ̂b(χ)| of the electrostatic potential Φ for the same
linear eigenmode as in figure 3.1, showing both the case of kinetic (blue) and adiabatic
(red) electrons. Inset figure shows the zoom near χ = 0.
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a function of kyρi. Adiabatic electron simulations with R/LT,i = 6 and 15 are plotted
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plotted in green and blue respectively.
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Figure 3.4: (a) Radial position of MRSs for each ky mode, (b) radial dependence of con-
tribution to time-averaged particle flux Γ in gyro-Bohm units ΓGB = N0vth,i(ρi/R)2 from
each ky mode, (c) radial gradient of flux-surface and time-averaged density fluctuation
δn normalised with respect to N0/LN (positive/negative values correspond respectively
to flattening/steepening of profiles), and (d) radial profile of time-averaged total particle
flux (summed over all ky). All subplots correspond to kinetic electron simulation for
the parameter set given in table 3.1, with ky,minρi = 0.035 and R/LT,i = 6. Ticks
x/∆xLMRS = {−2,−1, 0, 1, 2} on the top axes denote the lowest order MRSs (LMRSs).

the time-averaged density gradient and particle flux are shown as a function x.

Stationary E × B shear flow layers associated with the time-averaged radial electric
field are also observed (see figure 3.5 where the corresponding effective shearing rate as
defined in (3.2) is plotted). This electric field component ensures the radial force balance
with the pressure gradients related to the corrugation of density and temperature profiles
[Waltz et al., 2006]. In sections 3.4.3 - 3.4.5, it is shown that these stationary shear
structures are actually driven by a contribution to the Reynolds Stress coming from the
so-called self-interaction mechanism [Weikl et al., 2018].

3.3 ky,minρi scan in ITG-driven turbulence. Role of station-
ary and fluctuating components of zonal shear flows

Non-linear simulations have been carried out considering conditions of ITG-driven
turbulence. Reference physical and numerical parameters for these simulations are
summarized in table 3.1. The physical parameters are close to the Cyclone Base Case
(CBC) [Dimits et al., 2000], with background gradients slightly modified to eliminate
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Figure 3.5: (a) Effective shearing rate ωeff(x, t) plotted as a function of the radial position
x and time t, for the kinetic electron simulation with parameters as given in table 3.1,
ky,minρi = 0.035 and R/LT,i = 6. (b) Solid blue line indicates the associated time-
averaged component 〈ωeff〉t, normalised by the corresponding maximum linear growth
rate γmax, at each radial position x. Dashed blue line indicates the standard deviation
SDt(ωeff)(x) =

[
〈 (ωeff − 〈ωeff〉t)2 〉t

]1/2
in time, normalised by γmax. For comparison,

results for ky,minρi = 0.0175 have been added in magenta.
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Geometry: Ad-hoc concentric circular geometry[Lapillonne et al., 2009]
ε = 0.18 q0 = 1.4 ŝ = 0.8 β = 0.001

mi/me = 400 Te/Ti = 1.0 R/LN = 2.0 R/LTi = 6.0 R/LTe = 2.0

Lx = 142.9 ρi L∗y = 179.5 ρi Lz = 2π v‖,max = 3
√

2 vth,i µmax = 9T0,i/B0,axis

M∗ = 4 Nkx ×N∗ky
×Nz ×Nv‖ ×Nµ = 512× 128× 16× 64× 9

Table 3.1: Parameter set for non-linear simulations. The parameter ky,min = 2π/Ly
is scanned and takes the values ky,minρi ∈ {0.14, 0.07, 0.035, 0.0175}, while ky,max =
ky,minNy/2 and Lx = M/ŝky,min are kept constant. The values indicated in the table
correspond to the particular case ky,minρi = 0.035. Asterisks indicate variables which
vary during the ky,minρi scan. vth,i =

√
Ti/mi stands for the ion thermal velocity and

B0,axis for the magnetic field on axis.

unstable TEM and ETG modes. Compared to typical flux-tube runs, a high radial
resolution is chosen (with radial grid-points Nx = 512) in order to ensure that the
dynamics at MRSs (separated by a radial distance ∆xMRS = 1/ŝky for a given ky) is
very well resolved, as discussed in detail in Ref. [Dominski et al., 2015]. In our work, this
high x-resolution is all the more critical since the fine-structures forming at the MRSs
play an important role in the self-interaction mechanism, which is crucial to our study.

A scan in ky,minρi is performed while keeping both ky,maxρi and Lx/ρi fixed. Successively
halving ky,minρi, the values ky,minρi = 0.14, 0.07, 0.035, and 0.0175 have been considered.
Note that these values for ky,minρi span the typical range 10−2 − 10−1 considered in
practice when carrying out ion-scale flux-tube simulations. To keep ky,maxρi fixed, the
total number Ny of ky modes must thus be doubled between consecutive runs, whereas to
keep Lx/ρi fixed, the number M of lowest order MRSs contained in the simulation box is
halved. The parameter M thus takes on the respective values M = 16, 8, 4 and 2. The
case ky,minρi = 0.07 is in fact equivalent to the ITG case already studied by [Dominski
et al., 2015].

Based on the relation ky,minρi = (q0a/r0)ρ∗ (assuming that all toroidal modes are
accounted for, so that nmin = 1) and for the typical mid-radius value r0/a = 0.5 and here
considered q0 = 1.4, one obtains ρ∗ = 5.0 · 10−2, 2.5 · 10−2, 1.25 · 10−2, 6.25 · 10−3. Note
for reference that typical values for this parameter are ρ? ' 1 · 10−2 in a smaller-size
machine such as the TCV tokamak, ρ? ' 3 · 10−3 in the DIII-D tokamak[Waltz, 2005],
while the projected values for ITER are still an order of magnitude smaller.

In order to address how the results from the ky,minρi scan depend on whether one is near
or far from marginal stability, the scan was repeated for a second ion temperature gradient
in both the adiabatic and kinetic electron cases. To this end, carrying out preliminary
R/LTi scans for ky,minρi = 0.035, the non-linear (Dimits-shifted) critical temperature
gradients R/LTi,crit were first identified. For adiabatic electrons, R/LTi,crit = 5.5 was
found, so that the reference case temperature gradient R/LTi = 6 (Qi/QGB,i = 28.8) is
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relatively near marginal stability and the second ky,minρi scan was therefore performed
for R/LT i = 15 (Qi/QGB,i = 258.9) in this case, i.e. farther from marginal stability.
For kinetic electrons, R/LTi,crit = 3.5, so that the reference case temperature gradient
R/LTi = 6 (Qi/QGB,i = 262.4) is relatively far from marginal stability and the second
ky,minρi scan was therefore performed for R/LT i = 4 (Qi/QGB,i = 87.1) in this case, i.e.
nearer marginal stability.

To ensure that the simulations results are sound, convergence tests with respect to
radial box size Lx and the numerical resolutions Nz, Nv‖ and Nµ were carried out.
Convergence test on Nx had already been addressed in [Dominski et al., 2015]. Based
on these tests, the turbulent heat and particle fluxes, as well as statistical properties
of E × B shearing rates are estimated to be within ∼ 10% of their converged value.
Benchmarking of the GENE results with the gyrokinetic code GS2 [Dorland et al., 2000]
was furthermore performed for a limited number of simulations. Although a reduced
mass ratio is considered here, similar results have been obtained with the physical mass
ratio of hydrogen mi/me = 1836.

First results from the ky,minρi scan will now be discussed. Given their importance in
saturating ITG turbulence, particular attention will be given to the statistical properties
of the shearing rate ωE×B associated with the zonal E×B flows. We will in fact consider
the effective shearing rate ωeff , inspired by the definitions in [Dominski et al., 2015]. This
rate is estimated as follows. One first defines the zonal E ×B shearing rate experienced
by the ions, which are the dominant instability drivers in the case of ITG turbulence
considered here:

ωE×B,ion(x, t) = 1
B0

∂2〈Φ̄〉y,z
∂x2 , (3.1)

where the flux-surface average 〈Φ̄〉y,z provides the zonal component of Φ̄ and involves
both an average over y, 〈·〉y = (1/Ly)

∫ Ly
0 · dy, and an average over z,

〈·〉z =
∫+π
−π · Jxyzdz/

∫+π
−π J

xyzdz. Φ̄ is the scalar potential gyroaveraged over the Maxwellian
ion background velocity distribution, i.e. Φ̄ = GiΦ where the gyroaveraging operator Gi
itself involves averaging over the Maxwellian background distribution, given in Fourier
space by

Ĝ = B0
T0,i

∫ ∞
0

dµ exp(µB0
T0,i

) J0(k⊥v⊥Ωi
) = e−(k⊥v⊥)2/4.

Since the effective electric field felt by the ions is a gyro-averaged one, it is justified
to consider the gyro-average of the scalar potential. It also helps to eliminate the
non-vanishing tail in the kx-spectra of ωE×B at large when a non-gyroaveraged scalar
potential is considered.

The shearing rate ωE×B,ion is then furthermore averaged over a small time window of width
τ , given that fluctuations that are very short-lived in time do not contribute effectively
towards the zonal flow saturation mechanism [Hahm et al., 1999], thus providing the
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effective shearing rate:

ωeff(x, t) = 1
τ

∫ t+τ/2

t−τ/2
ωE×B,ion(x, t′) dt′. (3.2)

Here, τ = 1/γmax is considered, where γmax is the growth rate of the most unstable linear
mode.

As an illustration, the effective shearing ωeff(x, t) has been plotted in figure 3.5(a) as a
function of x over the full flux-tube width Lx and as a function of t over the simulation
time slice 50 < t vth,i/R < 180. Shown is the case with kinetic electrons, R/LTi = 6 and
ky,minρi = 0.035. The radial profile for the time-averaged component 〈ωeff〉t(x), is shown
in figure 3.5(b). For comparison, the same profile is also shown for the same physical
parameters except for ky,minρi = 0.0175.

The system average of the total effective shearing rate is plotted in figure 3.6(a) as a
function of ky,minρi, considering a log-log scale. This average value is provided by the
Root Mean Square (RMS) estimate:

RMSx,t(ωeff) =
(
〈ω2

eff 〉x,t
)1/2

, (3.3)

involving both a radial average, 〈·〉x = (1/Lx)
∫ Lx

0 · dx, and an average over the whole
simulation time tsim, 〈·〉t = (1/tsim)

∫ tsim
0 · dt. Figure 3.6(a) shows results for the scans

carried out for the two respective temperature gradients R/LTi considered for both
adiabatic and kinetic electrons. The shearing rates have been normalised with respect to
the value of γmax, which takes on different values for the four considered datasets (see
figure 3.3). Normalised shearing values ωeff/γmax & 1 can be considered as significant for
saturating ITG-driven turbulence. Note that a straight system average 〈ωeff(x, t)〉x,t of
the shearing rate would converge to zero over sufficiently long simulation time, which is
why the RMS estimate (3.3) is considered. One notes that, over the considered range
10−2 − 10−1 in ky,minρi values, the total effective shearing rate RMSx,t(ωeff) decreases in
all cases with decreasing ky,minρi, i.e. with increasing machine size. However, significantly
stronger scaling is observed for the scans with kinetic compared to adiabatic electrons.
As can be seen from the log-log plot, the shearing rate appears to roughly scale as
∼ (ky,minρi)α, α > 0. This scaling is particularly evident for the kinetic electron case
far from marginal stability (R/LTi = 6), for which α ' 0.34. Similar scaling is observed
nearer marginal stability (R/LTi = 4) as well. The adiabatic electron scans however
show a weaker scaling with α ' 0.08 for both R/LTi = 6 and R/LTi = 15.

Figure 3.7(a) plots in log-log scale, the time and flux-tube -averaged radial ion heat
flux Qi as a function of ky,minρi. Heat fluxes have been normalised to gyro-Bohm units
QGB,i = n0,iTivth,i(ρi/R)2. Results for all four considered datasets are again presented.
Over the considered range of ky,minρi, fluxes appear not to be converged with respect
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Figure 3.6: Effective shearing rate ωeff associated with the zonal E×B flows, normalised
to corresponding maximum linear growth rate γmax, as a function of ky,minρi. Solid lines
denote kinetic electron simulations for R/LT,i = 4 (green squares) and 6 (blue circles)
respectively. Dashed lines denote adiabatic electron simulations for R/LT,i = 6 (red
triangles) and 15 (black stars) respectively. Other parameters remain the same as in
table 3.1. (a) System average of total shearing rate RMSx,t(ωeff) =

(
〈ω2

eff 〉x,t
)1/2. (b)

Contribution from the stationary component, RMSx(〈ωeff〉t) =
[
〈 ( 〈ωeff〉t )2 〉x

]1/2
. (c)

Contribution from fluctuation component, SDx,t(ωeff) =
[
〈 (ωeff − 〈ωeff〉t)2 〉x,t

]1/2
. All

plots in log-log scale.
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Figure 3.7: (a) Log-log plot of the time-averaged and gyro-Bohm normalised ion heat
flux Qi as a function of ky,minρi. Same cases as considered in figure 3.6. (b) Log-log
plot of ky spectra of ion heat flux Qi for the kinetic electron runs with R/LT,i = 6 and
ky,minρi = 0.0175 (magenta), 0.035 (blue), 0.07 (red) and 0.14 (green). Inset figure shows
lin-lin plot of the zoom near the peaks.

to this parameter. This non-convergence is particularly striking for both adiabatic
and kinetic electron simulations for the respective ion temperature gradients far from
marginal stability. As can be seen from the log-log plot, in these cases one observes
a scaling Qi/QGB,i ∼ (ky,minρi)−α, α > 0, with α = 0.45 (kin.e.,R/LT i = 6) and 0.24
(ad.e.,R/LT i = 15).

To provide insight into which wavelengths mainly contribute to the increasing heat flux
as ky,minρi decreases, the heat flux ky-spectra is plotted in figure 3.7(b) for the set of
simulations corresponding to the ky,minρi scan with kinetic electrons and R/LTi = 6.
Qi,ky is defined such that total heat flux Qi = ∑

ky Qi,kydky, where dky = ky,min. One
observes that all spectra present a peak at kyρi ' 0.2 and that the increase in heat flux
as ky,minρi → 0 is not carried by the ever smaller minimum wavenumbers but by the
contributions of modes 0.07 ≤ kyρi ≤ 0.35 in the vicinity of the peak (contributing to at
least 90% of the heat flux), range fully covered by all simulations, except for the largest
considered ky,minρi = 0.14. Note that the inertial range (kyρi & 0.35) remains essentially
identical over all runs.

In appendix A, the possibility of E × B zonal shear flows acting as mini transport
barriers at LMRSs, leading to local flattening of effective gradients between LMRSs,
is explored. For simulations with lower ky, minρi, the density of these mini transport
barriers would decrease, and potentially explain the increase in flux levels with decreasing
ky,minρi observed in kinetic electron runs. However this analysis concludes that the local
flattening of effective gradients between LMRSs at most plays a minor role in explaining
the observed increase in flux levels.

A priori, a straightforward explanation for the decreasing E ×B shearing rate leading
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to increased heat fluxes as ky,minρi decreases, is the reduction in the radial density of
stationary shear layers at LMRSs. Let us indeed recall that the distance between LMRSs
is given by ∆xLMRS = 1/(ky,minŝ). Note as well the remarkable fact that the radial
width and amplitude of the shear layers at LMRSs remains essentially invariant when
varying ky,minρi, as illustrated in figure 3.5(b). The contribution to the total shearing
rate estimate (3.3) from the stationary component of the shearing rate profile 〈ωeff〉t(x)
can be calculated by:

RMSx(〈ωeff〉t) =
[
〈 ( 〈ωeff〉t )2 〉x

]1/2
, (3.4)

and has been plotted in log-log scale as a function of ky,minρi in figure 3.6(b). As expected,
this system average of the stationary shearing rate profile decreases algebraically for
kinetic electron simulations with decreasing ky,min, while for the adiabatic electron
simulations there is no obvious dependence on ky,minρi as the mechanism developing the
prominent fine stationary structures on 〈ωeff〉t(x) is absent in this case.

This explanation for the increase of turbulent fluxes as a result of the decrease in the
radial density of stationary zonal E × B shear layers is however not satisfactory at
closer scrutiny. This is made clear by the results presented in figure 3.8, where the
radial correlation length of turbulent eddies λx is plotted as a function of ky,minρi for
the case with kinetic electrons and R/LT i = 6. The radial correlation length is defined
as λx = 〈λx(y)〉y, with λx(y) estimated as that smallest value of ∆x for which the auto-
correlation function R(∆x, y) =

∫
Φ′∗(x −∆x, y)Φ′(x, y)dx is 1/e times its maximum

value (this maximum is reached for ∆x = 0 and e is the base of the natural logarithm).
Φ′(x, y) is the scalar potential evaluated at the outboard midplane, with the zonal
(ky = 0) component removed: Φ′(x, y) = Φ(x, y, z = 0)− 〈Φ(x, y, z = 0)〉y. This radial
correlation length increases as ky,minρi decreases, but with a much weaker scaling (fit
provides λx/ρi ∼ ky,minρ

−0.27
i over the considered range ky,minρi = 10−2− 10−1) than the

increase of the distance ∆xLMRS/ρi ∼ (ky,minρi)−1 between the main stationary shear
layers located at LMRSs. Below a sufficiently small value of ky,minρi, one thus clearly
has λx � ∆xLMRS. That is, the turbulent eddies are getting actively sheared and broken
in between low order MRSs where the stationary zonal shear flows are insignificant. The
stationary shear layers are therefore not expected to play a major role in the saturation
of turbulence as ky,minρi → 0. We therefore conclude that as ky,minρi → 0, the saturation
of turbulence through the break-up of turbulent eddies is mainly to be attributed to the
fluctuating component of zonal flows. This is discussed in detail in the following.

The time dependent component (as opposed to the stationary component) of the E ×B
zonal flow and associated shearing rate thus appears to control the saturation of turbulence
and related flux levels between LMRSs. An estimate for the amplitude of this fluctuating
part of the shearing rate is provided by computing the radial profile of the Standard
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Figure 3.8: Blue circles denote the radial correlation length λx of turbulent eddies in
units of ρi as a function of ky,minρi for kinetic electron simulations and R/LT,i = 6 (all
parameters as given in table 3.1). Magenta asterisks correspond to results obtained
with the same parameters except for a decreased radial resolution (by a factor 4), which
enabled to carry out runs with ky,minρi values as low as ∼ 5 · 10−3 (these simulations
are discussed in more detail in relation with Fig. 3.19). Distance ∆xLMRS = 1/(ky,minŝ)
between LMRSs is plotted with black squares.

Deviation SDt(ωeff) of ωeff around the stationary component 〈ωeff〉t:

SDt(ωeff)(x) =
[
〈 (ωeff − 〈ωeff〉t)2 〉t

]1/2
The radial dependence of SDt(ωeff) has been added to figure 3.5(b) for the cases with
kinetic electrons, R/LTi = 6 and both ky,minρi = 0.035 and ky,minρi = 0.0175. Based on
figure 3.5(b), it appears that the fluctuating part of the shearing rate remains essentially
constant across the radial extent of the system. Furthermore, its amplitude for the
considered values of ky,minρi still remains significant, i.e. larger than γmax, and of the
same order as the maximum amplitude of the time-averaged 〈ωE×B〉t structures. A
decrease of the fluctuating component with decreasing ky,minρi is also observed. This
is summarized in figure 3.6(c), where the radial average of the fluctuating component,
estimated by

SDx,t(ωeff) =
[
〈 (ωeff − 〈ωeff〉t)2 〉x,t

]1/2
, (3.5)

has been plotted. While SDx,t(ωeff) decreases with ky,minρi in both adiabatic and kinetic
electron simulations, the scaling is much stronger in the latter case. For instance, in the
considered range of ky,minρi, SDx,t(ωeff) ∼ (ky,minρi)α, where α = 0.08 for the case with
adiabatic electrons at R/LT i = 15 while α = 0.32 for the case with kinetic electrons at
R/LT i = 6.

Note that according to the definitions (3.3), (3.4) and (3.5), one has

[RMSx,t(ωeff)]2 = [RMSx(〈ωeff〉t)]2 + [SDx,t(ωeff)]2 . (3.6)
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The decrease of both the fluctuation level of the shearing rate, shown in figure 3.6(c),
along with the decrease in the density of stationary shearing layers at LMRSs, reflected
by figure 3.6(b), thus provides a more complete picture of the decrease in the total system
average of the shearing rate ωeff as ky,minρi decreases, shown in figure 3.6(a). While the
reason for the decrease in the contribution to the shearing rate from stationary zonal
flows has already been discussed and is relatively obvious, the reason for the decrease of
the contribution from fluctuating zonal flows is not. To explain the latter, it is necessary
to understand and analyse the different mechanisms driving the zonal flows. This is done
in the following section.

3.4 Analysing zonal flow drive

In this section, the drive of zonal flows via the two main mechanisms, the modulational
instability and self-interaction, are studied. In particular, the statistical properties of
these different zonal flow drives are analysed using various diagnostics techniques, with
the primary objective of understanding why the fluctuating zonal flow levels decrease
with decreasing ky,minρi as seen in figure 3.6(c).

In order to ensure a systematic study, this section has been organised as follows. To
start, it is essential to identify the physical quantity(ies) representing the drive of zonal
flows (∼ modes kyρi = 0) by the microinstability modes (∼ modes kyρi 6= 0). In § 3.4.1,
it is found that Reynolds stress can be used as a convenient proxy for quantifying the
drive of zonal flows. The two main mechanisms driving zonal flows are then discussed in
the following two subsections: a summary of the well known modulational instability
mechanism is given in § 3.4.2, followed by a detailed description of the self-interaction
mechanism in § 3.4.3. These two mechanisms and the nature of their drives are illustrated
first in a simple nonlinear set-up, referred to as the “reduced simulations”, in § 3.4.4.

This is followed by providing the evidence for self-interaction and modulational instability
in full turbulence simulations, discussed in § 3.4.5 and § 3.4.6 respectively. In the latter
subsection, using a bicoherence-like analysis and an estimate of the correlation between
the different ky contributions to Reynolds stress, it is shown that the drive of zonal flows
via self-interaction from each ky are essentially incoherent and decorrelated, unlike that
via modulational instability. This result will then be used in the following § 3.5, to show
how such a decorrelated drive could explain the observed decrease in fluctuating zonal
flow levels with decreasing ky,minρi.

3.4.1 Reynolds stress as a proxy for the drive of zonal flows

Zonal flows are linearly stable and are driven by turbulence through the quadratic E×B
non-linearity appearing in the gyrokinetic equation. To better understand their evolution,
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we will analyse the properties of Reynolds stress [Diamond et al., 2005], more exactly
the off-diagonal component 〈ṼxṼχ〉 of the Reynolds stress tensor resulting from the
combination of fluctuating E ×B flow components in the radial and poloidal directions.
We will justify in the following that this Reynolds stress can be considered as a valid
proxy of the zonal flow drive [Weikl et al., 2018] . By analyzing Reynolds stress we will
be able to identify the different possible mechanisms driving zonal flows, their statistical
properties, and relative importance.

We start by considering an approximate evolution equation for the shearing rate ωE×B
associated with the E × B zonal flows. As shown in references [Parra and Catto,
2009, Abiteboul et al., 2011, Abiteboul, 2012], such an equation can be obtained from
the radial conservation equation for the total gyrocenter charge density, which in turn
is derived by taking the appropriate velocity moment and flux-surface -average of the
gyrokinetic equation. The approach in reference [Abiteboul, 2012] has been considered
here, but starting from the gyrokinetic equation in the limit of the local (flux-tube) delta-f
model rather than the global full-f model considered by [Abiteboul, 2012] . Furthermore,
assuming the electrostatic limit, invoking me/mi � 1, and making use of the quasi-
neutrality equation in the long wavelength approximation (final result thus valid only
to second order in k⊥ρi), leads to a relation that can be interpreted as a generalized
vorticity equation:

∂

∂t
(Ω + Π) = ∂2

∂x2 (R+ P) + ∂

∂x
N . (3.7)

See appendix B for the full derivation. One identifies on the left hand side of equation (3.7)
the generalized vorticity term Ω + Π, composed of the actual vorticity associated with
zonal flows and closely related to the zonal flow shearing rate ωE×B (by neglecting the z
dependence of B0 and gxx ' 1):

Ω = n0,imi
∂2

∂x2

〈
gxx

B2
0

Φ
〉
yz

' n0,imi

B0
ωE×B,

as well as a perpendicular pressure term, related to lowest order finite ion Larmor radius
effects:

Π = mi

2qi
∂2

∂x2

〈
gxx

B2
0
P⊥,i

〉
yz

,

with the fluctuating part of the perpendicular ion gyrocenter pressure P⊥,i expressed in
terms of the corresponding gyrocenter distribution fluctuation δfi:

P⊥,i =
∫
µB0 δfi d

3v.

On the right hand side of equation (3.7) one identifies the second radial derivative of
a term R = (n0,imi/C) RS, proportional to the Reynolds stress component RS driving
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zonal flows:
RS =

〈 1
B2

0

∂Φ
∂y

(
gxx

∂Φ
∂x

+ gxy
∂Φ
∂y

)〉
yz

. (3.8)

This Reynolds stress term also has a finite Larmor radius correction term P, again
expressed in terms of P⊥,i:

P = mi

2qi C

〈 1
B2

0

(
gxx

∂Φ
∂x

∂P⊥,i
∂y

+ 2 gxy ∂Φ
∂y

∂P⊥,i
∂y

+ gxx
∂Φ
∂y

∂P⊥,i
∂x

)〉
yz

.

The last contribution on the right hand side of equation (3.7) is the radial derivative of
the so-called neoclassical term N , related to both curvature and ∇B drifts:

N = −
∑

species

2π C
m

〈
γ2
∂B0
∂z

∫
dv‖dµ

mv2
‖ + µB0

B2
0

(
δf + q Φ̄

T0
f0

)〉
yz

,

with f0 the Maxwellian background distribution, γ2=gxxgyz − gxygxz and the constant
C=B0/|∇x×∇y|.

The different terms appearing in (3.7) can be monitored as a diagnostic along a gyrokinetic
simulation. For the purpose of verification, this diagnostic was first applied to simple test
cases, including the Rosenbluth-Hinton problem [Rosenbluth and Hinton, 1998] addressing
the linear dynamics of zonal fluctuations [in this case only the linear neoclassical term
contributes on the RHS of (3.7); see section B.2 in appendix B for a detailed analysis],
as well as the non-linear decay of an initially single unstable eigenmode (as discussed in
§3.4.4). For these simple tests, only longer wavelength modes were considered, so as to
stay well within the limit k⊥ρi � 1 assumed for the derivation of relation (3.7).

After this successful initial verification phase, the terms appearing in equation (3.7)
were monitored and compared for the fully developed turbulence simulations studied in
this chapter, considering the reference gradient case R/LT,i = 6. In order to validate
Reynolds stress as a good proxy for the drive of zonal flows, the correlation between
Ω ∼ ωE×B and the two non-linear driving terms ∂2R/∂x2 and ∂2P/∂x2 in (3.7) was
estimated over these simulations. To this end, the following correlation estimator between
two observables a and b, functions of the radial variable x and time t, was applied:

Corr(a, b) = σx,t(a, b)
σx,t(a)σx,t(b)

= 〈 (a− 〈a〉x,t) (b− 〈b〉x,t) 〉x,t√
〈 (a− 〈a〉x,t)2 〉x,t

√
〈 (b− 〈b〉x,t)2 〉x,t

. (3.9)

Significant correlation estimates were obtained in this way between Ω and the Reynolds
stress drive term ∂2R/∂x2. Correlation values were found to increase further by con-
sidering only the longer wavelength contributions, achieved by filtering out |kx|ρi > 0.5
and |ky|ρi > 0.5 Fourier modes from the signals. This is in agreement with the long
wavelength approximation assumed for deriving equation (3.7). The positive correlation
values Corr = 0.77 and 0.37 were obtained in this way between Ω and ∂2R/∂x2 for the
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adiabatic and kinetic electron turbulence simulations respectively, while the correlation
between Ω and ∂2P/∂x2 provided the values Corr = 0.75 and 0.40 respectively. These
results validate considering the Reynolds stress term ∂2RS/∂x2 as a proxy for the drive
of zonal flow shear ωE×B. A more detailed analysis on this can be found in appendix B,
in section B.3.

In the following, it will be insightful to consider the contributions from different ky Fourier
modes components of the fluctuating fields to the Reynolds stress term RS. Relation
(3.8) for RS can indeed be written as a sum over ky:

RS(x, t) =
∑
ky>0

R̂Sky(x, t), (3.10)

with the contribution from the ky Fourier mode Φ̂ky(x, z, t) = 1
Ly

∫ Ly
0 Φ exp(−ikyy) dy

given by

R̂Sky(x, t) = 2Re

 〈 1
B2

0
kyΦ̂ky

gxxi
∂Φ̂?

ky

∂x
+ gxykyΦ̂?

ky

〉
z

 , (3.11)

having invoked the reality condition Φ̂−ky = Φ̂?
ky
. Considering as well the kx Fourier

mode decomposition of Φ, each of these ky contributions can also be written as follows:

R̂Sky(x, t) = 2Re{
∑
kx,k′′x

〈 1
B2

0
ky
(
gxxk′′x + gxyky

)
Φ̂kx,ky Φ̂?

k′′x ,ky

〉
z

exp[i(kx − k′′x)x] },

(3.12)
illustrating the drive of zonal modes (k′x = kx − k′′x, 0) through non-linear interaction
between Fourier modes (kx, ky) and (k′′x, ky), extensively discussed in sections §3.4.2 and
§3.4.3.

For the study carried out in this chapter, it is essential to understand how different drift
modes may non-linearly interact to drive zonal flows via Reynolds stress. To start, we
recall in the next subsection the basic mechanism underlying the drive of zonal flows in a
simple shearless slab system before considering the more complex case of direct interest
to us, i.e. of a sheared toroidal system.

3.4.2 Modulational instability in shearless slab system

The drive of zonal flows by microturbulence has been extensively studied in the literature
considering a simple slab-like plasma confined by a uniform, shearless magnetic field. Such
a system was in particular addressed in the original work by [Hasegawa and Mima, 1978],
where a cold fluid model was assumed for ions and an adiabatic response for electrons. In
this model, choosing an orthogonal Cartesian coordinate system (x, y, z), the magnetic
field is aligned along z, B = Bez and the background density inhomogeneities along x,

68



3.4. Analysing zonal flow drive

∇n0 = (dn0/dx)ex. The corresponding well-known model equation for the non-linear
evolution of the electrostatic potential Φ associated with the fluctuating fields describes
the essentially two-dimensional drift wave turbulence in the (x, y) plane perpendicular to
the magnetic field. This model equation led to a first understanding of the generation of
zonal flows along y, i.e. in the direction both perpendicular to B and the direction of
inhomogeneity. The emergence of such large scale flows can in particular be explained
as the result of an anisotropic inverse cascade of energy related to the conservation of
energy and enstrophy in the 2-dimensional turbulence. The emergence of zonal flows
can also be understood at the level of elementary non-linear processes as recalled in the
following.

In a shearless slab system, the spatial dependence of linear eigenmodes is given by a single
Fourier mode Φ(x, y) ∼ Φk exp(ik · x), with x = x ex + y ey and k = kxex + kyey. The
corresponding time dependence is of the form ∼ exp(−iωkt), with ωk the eigenfrequency
of the mode. In the simple Hasegawa-Mima model, one has ωk = ky vd/(1 + k2), with
vd = −(Te/eB)(d logn0/dx) ey these eigenmodes result from the quadratic non-linearity
in the Hasegawa-Mima equation, related to the vE×B = (−∇Φ × B)/B2 drift. The
elementary non-linear interaction thus involves a triplet of Fourier modes k, k′, k′′

satisfying the wave vector matching condition k = k′ + k′′, where each of the modes, e.g.
k, is coupled to the two others, k′ and k′′ in this case. In case of frequency matching
ωk ' ωk′ + ωk′′ and under the condition k′ < k < k′′, one can have a resonant decay of
mode k, i.e. a transfer of energy from this mode, into the daughter modes k′ and k′′.
This basic process is referred to as the resonant 3-wave interaction mechanism. One can
furthermore show that in the case where mode k represents a drift wave, i.e. typically
with |ky| � |kx|, the decay happens preferentially (meaning with a higher growth rate
of decay) if one of the daughter wave vectors, e.g. k′, is (nearly-) aligned along the
x direction, |k′x| � |k′y| [Hasegawa et al., 1979]. The E × B flow associated with the
daughter mode k′ is then obviously along y, thus explaining the emergence of zonal flows
in this direction. Such a mode with vector aligned along the direction of inhomogeneity
ex is thus referred to as a zonal mode. See figure 3.9 for an illustration of the three
Fourier modes involved in such a resonant 3-wave interaction.

Let us still further consider the decay of a pump drift wave k = (kx, ky), ky 6= 0, into
a zonal mode k′ = (k′x, 0) and the second daughter wave k′′ = k − k′ = (kx − k′x, ky),
itself a drift wave. The non-linear interaction between the two drift waves k and k′′

thus provides the drive to the zonal mode k′ via the Reynolds stress RS discussed in
§3.4.1, while the non-linear coupling between the original drift wave k and zonal mode
k′, leading to the growth of the daughter drift wave k′′, actually represents the shearing
of the drift mode k by the zonal flows associated with k′.

Variations to the simple Hasegawa-Mima model have been considered in the literature.
In particular, the Enhanced Hasegawa-Mima model [Krommes and Kim, 2000, Gallagher
et al., 2012] accounts for the fact that the adiabatic electron response is inhibited for
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0

0

Figure 3.9: Illustration of the 3 Fourier modes involved in resonant 3-wave interaction
under wave vector mtaching condition.

magnetic surface-averaged fluctuations, i.e. modes k with ky = 0, in other words zonal
modes, which leads them to having a reduced effective inertia compared to standard
drift waves with ky 6= 0. This effect results in an amplification of the decay rates of drift
waves into zonal modes and thus to an enhancement of corresponding energy transfer.

A further refinement to the basic driving mechanism of zonal flows is obtained by
accounting for the fact that given an initial large amplitude drift mode k, decaying into a
zonal mode k′, both triplet interactions [k,k′,k′′ = k−k′] and [k,−k′,k′′′ = k + k′] may
be simultaneously resonant, i.e. ωk ' ωk′ + ωk′′ and ωk ' −ωk′ + ωk′′′ . This coupled
pair of 3-wave interactions leads to an effective 4-wave interaction involving modes k,
k′, k′′ and k′′′, referred to as the modulational instability mechanism [Gallagher et al.,
2012].

An important point to emphasize is that, in both the case of the simple resonant 3-wave
interaction or the more specific modulational instability, resonant coupling between
the initial large amplitude (pump) drift mode k = (kx, ky 6= 0) and a zonal mode
k′ = (k′x, k′y = 0) is established via either one sideband k′′ = k− k′, or respectively two
sidebands k′′ and k′′′ = k + k′, where all these Fourier modes are linearly decoupled
from each other. As a result, in the situation where in addition to the pump drift mode
k, the zonal mode k′ itself already has a finite initial amplitude and a well defined
phase, the other daughter waves k′′ (and k′′′) are free to adapt their phases to ensure a
resonant interaction and thus an efficient energy transfer from the pump to the zonal
mode, resulting in the further amplification of this zonal mode. In fact, a finite amplitude
zonal mode can stimulate the decay of multiple non-zonal modes, thus leading to coherent
(as a result of the frequency matching involved) and therefore correlated contributions
from these non-zonal modes to the Reynolds stress drive of the zonal mode.

One should note here that, while modulational instability leads to an efficient tranfer
of energy to the zonal modes, in general, any 3-wave interactions involving two Fourier
modes having the same ky(6= 0) can drive the wave-vector matched zonal mode. Under
realistic conditions, multiple such 3-wave interactions happen both simultaneously and
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successively in time, leading to an expanding set of Fourier modes, and ultimately to a
fully developed turbulent spectrum.

3.4.3 Self-interaction mechanism in sheared toroidal system

As in the shearless slab geometry, in the case of a tokamak system, i.e. based on a
sheared axisymmetric toroidal magnetic geometry, which is of main interest to our study,
the modulational instability involving resonant 3-wave interactions remains an essential
driving mechanism of zonal flows [Chen et al., 2000]. In a tokamak however, one must
distinguish another form of the non-linear interaction leading to the drive of zonal modes.
This mechanism, referred to as self-interaction, is specific to systems presenting magnetic
shear and is explained in the following.

As already discussed in §2.6, parallel boundary conditions lead to the linear coupling of
kx Fourier modes. In particular, according to equation (2.94), the electrostatic potential
field ΦL of a linear microinstability eigenmode with fixed kx0 and ky 6= 0 is composed
of Fourier modes Φ̂kx0+p 2πky ŝ, ky , p ∈ Z. The spatial dependence of the corresponding
eigenmode structure is thus given by:

ΦL(x, y, z) = Φ̃kx0,ky(x, z) exp(ikyy) + c.c., (3.13)

where c.c. stands for the complex conjugate [considered here to ensure that ΦL is
real-valued, essential for computing the quasi-linear estimate in (3.15)], and with the
complex-valued (x, z)-dependent envelope given by:

Φ̃kx0,ky(x, z) =
+∞∑
p=−∞

Φ̂kx0+p2πky ŝ, ky(z) exp[i(kx0 + p 2πky ŝ)x]. (3.14)

These linearly coupled kx Fourier modes, all having same ky, drive the zonal modes
(k′x, 0), with k′x = p′ 2πky ŝ, p′ ∈ Z, forming a set of harmonics. Indeed, any two
Fourier modes Φ̂kx0+p 2πky ŝ, ky and Φ̂kx0+p′′ 2πky ŝ, ky composing the physical eigenmode
will drive, via three Fourier mode coupling, the zonal mode Φ̂p′ 2πky ŝ, 0 with p′ = p− p′′

[see equation (3.12)]. Note that this drive of zonal modes is via the same quadratic
non-linearity in the gyrokinetic equation related to E ×B drifts as the one driving zonal
modes through the modulational instability, but in this case involving Fourier modes
which are already linearly coupled to each other.

Assuming that the relative phases between the Fourier modes Φ̂kx,0+p 2πky ŝ, ky remains
set by the linear coupling, even during the non-linear turbulent evolution (to what extent
this assumption holds is validated in §3.4.5), the phases of the associated contributions
to Reynolds stress driving the zonal modes is fixed. This translates in direct space to an
essentially fixed periodic radial dependence (with period ∆xMRS = 1/ky ŝ corresponding
to the distance between MRSs) of the contribution to Reynolds stress through this
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self-interaction mechanism from a given ky eigenmode. The overall magnitude of this
contribution obviously varies in time as the amplitude of the eigenmode evolves. This is
a critical difference compared to the drive of zonal modes k′ through the modulational
instability discussed in §3.4.2, where the relative phases between the pump mode k and
sidebands k′′, k′′′ are free to adapt to enable a coherent (i.e. in phase) drive of a given
zonal mode.

Figure 3.10 plots the quasi-linear estimates of this self-interaction contribution to the
Reynolds stress drive term ∂2RS/∂x2 from the linear eigenmode with kx0 = 0, kyρi = 0.28,
and R/LTi = 6, whose ballooning structures are given in figure 3.2, considering both the
case of kinetic and adiabatic electron response. These results are obtained by inserting
the corresponding eigenmode structure (3.13) into relations (3.11) and (3.12), leading to
the Reynolds stress contribution denoted R̃Skx0,ky(x):

R̃Skx0,ky(x) = RS[ΦL] = R̂Sky [Φ̃kx0,ky ]

= 2Re
[ 〈

1
B2

0
kyΦ̃kx0,ky

(
gxxi

∂Φ̃?
kx0,ky

∂x
+ gxykyΦ̃?

kx0,ky

)〉
z

]

= 2Re

 +∞∑
p′=−∞

eip′2πky ŝx
+∞∑
p=−∞

〈 1
B2

0
ky
(
gxxk′′x + gxyky

)
Φ̂kx,ky Φ̂?

k′′x ,ky

〉
z

 .
(3.15)

In the last equality of relation (3.15), kx = kx0 + p 2πky ŝ, k′′x = kx0 + p′′ 2πky ŝ and p′′ =
p− p′. This relation also clearly points out how this contribution to Reynolds stress from
a given ky eigenmode through self-interaction is periodic with period ∆xMRS = 1/ky ŝ.

The overall amplitude of the quasi-linear estimates shown in figure 3.10 are naturally
irrelevant. Furthermore, as these contributions to Reynolds stress have period ∆xMRS =
1/ky ŝ, only one such period is shown. Note how the radial profile of the quasi-linear
estimate of ∂2R̂Sky/∂x2 is narrow in the case of kinetic electrons and localized around
the MRS at x = 0, clearly related to the fine structures of the eigenmode at MRSs and
the associated broad tail in ballooning representation. As expected, the corresponding
radial profile is much broader in the case of adiabatic electrons, as fine structures at
MRSs are essentially absent in this case.

3.4.4 Evidence of zonal flow drive by modulational instability and self-
interaction in reduced simulations

In this subsection, we consider reduced non-linear simulation setups in tokamak geometry
to clearly illustrate the two basic mechanisms driving zonal flows discussed in §3.4.2
and §3.4.3. For these reduced simulations, the same physical parameters as summarized
in Table 3.1 is considered, however with particular initial conditions defined as follows:
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x/∆xMRS = x ky ŝ
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Figure 3.10: Solid lines indicate the quasi-linear estimate of ∂2R̃Skx0,ky/∂x
2 normalised to

its maximum value as a function of x for the linear eigenmode with kx0 = 0, kyρi = 0.28
and either kinetic (blue) or adiabatic (red) electrons. Dashed lines denote the time-average
〈∂2R̂Ssi

ky/∂x
2〉t normalised with respect to the RMS in time of the total contribution

∂2R̂Sky/∂x2, for kyρi = 0.28, in turbulence simulations considering either kinetic (blue)
or adiabatic (red) electrons. ky,minρi = 0.035, R/LTi = 6 and other parameters are given
in table 3.1.

An unstable linear eigenmode (hereby called the pump mode with ky = ky,pump 6= 0) is
initialized with an amplitude a few times (∼ 5) less than the corresponding one in the fully
saturated turbulence simulation discussed in §3.4.5. The purpose of the simulation is to
study how this single eigenmode drives zonal modes via either the modulational instability
or self-interaction. The eigenmode with kx0 = 0 and kyρi = 0.28 was chosen for this pump
mode, as it is among the most linearly unstable ones and also contributes significantly
to the non-linear fluctuation spectra in the fully developed turbulence simulations (see
figures 3.3 and 3.7(b)). In addition, zonal Fourier modes (with ky = 0) are initialized to
amplitudes 10− 12 orders of magnitude less than the pump mode to provide a necessary
seed for possible modulational instabilities. All Fourier modes not part of the pump
and zonal modes are initialized to zero. With this initial setup, only ky modes which
are harmonics of ky,pump can possibly develop non-linearly (ky = p ky,pump, p ∈ N). For
these reduced simulations we therefore set ky,min = ky,pump and actually only considered
Nky = 8 Fourier modes. The flux-tube width in the x direction was set to Lx = M/ŝky,min
with M = 32, so that it remains the same as in full turbulence simulations and the
resulting fine kx-spectrum allows for a detailed analysis of kx−dependence of zonal mode
growth. The remaining numerical resolutions are kept the same as in Table 3.1. This
system is then let to evolve until higher ky Fourier harmonics start to develop amplitudes
similar to the fundamental ky,pump. These steps ensure that the dominant non-linear
interactions mainly involve only ky = 0 and ky,pump. This reduced non-linear setup thus
clearly isolates the contribution to the drive of zonal modes from a single ky mode, while
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Figure 3.11: Lin-log plots. Coloured lines represent the time evolution of the z-averaged
amplitudes 〈|Φ̂kx,ky=0|〉z of zonal modes in reduced non-linear simulations initialized with
a single large amplitude ky,pump 6= 0 eigenmode, considering either (a) adiabatic or (b)
kinetic electrons. The colourbar maps the value of kx in units of 2πky,pumpŝ. Zonal
modes with kx = p′ 2πky,pumpŝ, p′ ∈ N, are plotted with dashed lines. The solid black
line represents the time trace of the pump Fourier mode amplitude 〈|Φ̂kx=0,ky,pump |〉z.
The dotted black line represents an evolution proportional to (e2γt − 1), where γ is the
linear growth rate of the pump mode.

in the much more complex case of a standard fully developed turbulence simulation,
multiple ky contributions may act simultaneously.

Figure 3.11 plots the evolution of the pump mode and the zonal modes driven by it. Solid
black line represents the time trace of the z-averaged amplitude of the most dominant
Fourier mode 〈|Φ̂kx0,ky,pump |〉z(t) composing the pump mode. Note that the other linearly
coupled Fourier modes composing the pump mode are not shown. Coloured lines represent
the zonal mode amplitude 〈|Φ̂kx,ky=0(t)|〉z for each kx. These results are shown for reduced
non-linear simulations considering either adiabatic electrons (figure 3.11(a)) or kinetic
electrons (figure 3.11(b)).

In the initial stage, the pump eigenmode grows exponentially with corresponding linear
growth rates, i.e. γR/vth,i = 0.25 in the case of adiabatic electrons and γR/vth,i = 0.47
in the case of kinetic electrons.

Zonal Fourier modes Φ̂k′x,ky=0 with k′x = p′ 2πky,pumpŝ, p′ ∈ Z, (see dashed coloured time
traces in figure 3.11) are driven by the large amplitude pump eigenmode through the
self-interaction mechanism, i.e. are driven by multiple quadratic non-linearities, each
involving two exponentially growing kx Fourier components of the pump , Φ̂kx,ky,pump(t),
Φ̂k′′x ,ky,pump(t) ∼ eγt, where k(′′)

x = kx0 + p(′′)2πky,pumpŝ, p(′′) ∈ Z, and p − p′′ = p′. One
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Figure 3.12: Effective zonal flow shearing rate ωeff as a function of radial position x and
time t for the same reduced non-linear simulations as in figure 3.11. Cases with either
(a) adiabatic or (b) kinetic electrons are shown.

thus has for k′x = p′ 2πky,pumpŝ:

Φ̂k′x,ky=0(t)− Φ̂k′x,ky=0(0) ∼
∫ t

0
Φ̂kx,ky,pump(t′) Φ̂∗k′′x ,ky,pump(t′) dt′ ∼

∫ t

0
e2γt′dt′

∼ (e2γt − 1).

Note that for t� 1/γ these modes thus start by growing linearly in time. In the initial
stage of the simulations shown in figures 3.11(a) and 3.11(b), i.e. for t . 28R/vth,i and
t . 15R/vth,i in the case of adiabatic and kinetic electrons respectively, the Fourier modes
driven by self-interaction, Φ̂p′ 2πky,pumpŝ,ky=0, therefore dominate the zonal kx-spectrum.
Black dotted lines in these figures indicate the time evolution ∼ (e2γt − 1), providing a
good fit to the initial evolution of these particular zonal modes. As discussed in §3.4.3,
these modes are driven by the Reynolds stress resulting from the self-interaction of
the eigenmode with ky = ky,pump, which in direct space is periodic in x with period
∆xMRS = 1/ky,pumpŝ and aligned with corresponding MRSs. This is clearly reflected
in Figures 3.12(a) and 3.12(b), plotting the effective zonal flow shearing rate ωeff as a
function of x and time t, again for simulations with either adiabatic or kinetic electrons.
At least in the initial stage of the simulations, these plots indeed present a periodic radial
variation of ωeff with period 1/ky,pumpŝ and perfectly aligned with the MRSs of the pump
mode.

Zonal Fourier modes Φ̂k′x,ky=0 with k′x 6= p′ 2πky,pumpŝ, p′ ∈ Z, (see solid coloured time
traces in figure 3.11) are however driven by the pump eigenmode via the modulational
instability mechanism, i.e. mainly through the quadratic non-linearities involving the
large amplitude Fourier component Φ̂kx0,ky,pump of the pump and either one of the initially
low amplitude sideband modes Φ̂kx0±k′x,ky,pump . As a result, these particular zonal modes
grow as ∼ eγmodt, where γmod stands for the growth rate of the modulational instability.
Given that γmod ∼ |Φpump| [Hasegawa et al., 1979] and that the pump amplitude
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itself grows exponentially, |Φpump| ∼ eγt, these zonal modes effectively end up growing
super-exponentially.

One can also see in figure 3.11(b) that all plotted zonal modes driven by self-interaction,
Φ̂p′2πky,pumpŝ,ky=0, p′ = 1, . . . , 7, are from the start driven up to similarly large amplitudes
in the case of kinetic electrons, as opposed to the adiabatic case in figure 3.11(a), where
these same modes are driven more weakly. This is explained by the different eigenmode
structures of the pump in the adiabatic and kinetic electron cases (see corresponding
ballooning representations in figure 3.2). With kinetic electrons, the Fourier mode
components Φ̂kx,ky,pump(z), where kx = kx0 + p 2πky,pumpŝ and p ∈ Z∗ (set of integers
excluding 0), which compose the tail of the ballooning representation, have much higher
relative amplitudes compared to the main Fourier component Φ̂kx0,ky,pump(z) than in the
case with adiabatic electrons. As a result, the self-interaction drive of a zonal mode
Φ̂p′2πky,pumpŝ,ky=0, p′ ∈ Z∗, dominated by the non-linear interaction between Φ̂kx0,ky,pump(z)
and Φ̂kx0+p′2πky,pumpŝ,ky,pump(z), is stronger with kinetic than with adiabatic electrons.

The weaker drive of the zonal modes by the self-interaction mechanism in the case
with adiabatic electrons also explains why these particular zonal modes end up getting
overwhelmed by the ones driven by the modulational instability mechanism (reflected by
the absence of fine structures at MRSs on ωeff in figure 3.12(a) for t & 28R/vth,i), while
they remain significant in the case with kinetic electrons even after saturation of the
modes driven by the modulational instability (reflected by the persistent fine structures
on ωeff in figure 3.12(b) even for t & 15R/vth,i).

In the following two subsections, evidence of the self-interaction and modulational
instability mechanisms are provided in the case of fully developed turbulence simulations.
The relative importance of these two mechanisms is compared between simulations
with adiabatic and kinetic electron response. Such simulations involve a fully saturated
spectrum of multiple ky modes, unlike the case in the just considered reduced non-linear
simulations. We find that the results obtained in the reduced non-linear simulations
follow in general to the full turbulence scenarios, but with certain differences.

3.4.5 Evidence of self-interaction in turbulence simulations

In this subsection, the self-interaction mechanism is analysed in fully developed turbulence
simulations with physical and numerical parameters given in Table 3.1. We first test
if in this non-linear system, the relative phase differences between the linearly coupled
kx−Fourier modes remain the same as in corresponding linear eigenmode, as was assumed
earlier in §3.4.3. It is found that the relative phase difference is only partially preserved,
and the consequent effect on the Reynolds stress driving zonal flows via self-interaction
is illustrated.

To find the non-linear modification of an eigenmode, first the absolute value of the time-
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averaged ballooning structure of the electrostatic potential |〈Φ̂b,nl(χ, t)/Φ̂b,nl(χ0 = 0, t)〉t|
for an eigenmode with kx0 = 0 and kyρi = 0.28 in the full turbulence simulation is plotted
along with the corresponding linear ballooning structure |Φ̂b,lin(χ)/Φ̂b,lin(χ0 = 0)|, in
figure 3.13(a). See equation (2.96) for the definition of the ballooning structure Φ̂b(χ).
The non-linear result with kinetic electrons starts significantly deviating from the linear
result for |χ| & π. That is, the ’giant tails’ in the ballooning structure are reduced
compared to the linear case. Nonetheless, the non-linear ballooning structure with kinetic
electrons retain more significant tails compared to the case with adiabatic electrons.
One also finds that, with kinetic electrons, the relative phase along the ballooning
structure δφnl(χ, t) = φ[Φ̂b,nl(χ, t)/Φ̂b,nl(χ0 = 0, t)] remains approximately constant in
time (contrary to adiabatic electron results) and equal to its linear value δφlin(χ) =
φ[Φ̂b,lin(χ)/Φ̂b,lin(χ0 = 0)]; Here, φ[A]=arg(A) stands for the phase or argument of the
complex number A. This is true in particular for |χ| . 4π, as demonstrated by the solid
blue line in figure 3.13(b) representing ∆φ(χ, t) = δφnl(χ, t)− δφlin(χ) for χ = 2π in the
kinetic electron case. While there are jumps of 2π, the line closely adheres to the linear
phase difference. To be quantitative, one considers the estimate MOD(∆φ(χ, t)), where

MOD(A) = (〈|mod2π(A)|2〉t)1/2, (3.16)

mod2π(A) ≡ A− 2π× round(A/2π), A ∈ R, and the function round provides the nearest
integer. One notes that, lower the value of MOD(∆φ), more strongly is the relative
phase fixed by the linear coupling. Further, for uniform random values of ∆φ between
−π and π, one gets MOD(∆φ) = 0.58π. It is found that, for the case with kinetic
electrons, MOD(∆φ(χ = 2π, t)) = 0.34π. At χ = 4π, as illustrated by the dotted blue
line in figure 3.13(b), the phase imposed by linear coupling appears to be weakened but
still present, giving MOD(∆φ(χ, t)) = 0.50π. The corresponding results with adiabatic
electrons, denoted by the solid and dashed red lines for χ = 2π and 4π respectively,
clearly do not retain constant phase differences. The respective values of MOD(∆φ(χ, t))
are 0.57π and 0.61π.

In other words, in a full turbulence simulation with adiabatic electrons, for a linearly
unstable eigenmode with given kx0 and ky, linear coupling between the Fourier modes
(kx = kx0 + 2πpky ŝ, ky) where p ∈ Z have become subdominant compared to non-linear
coupling effects. Thus, each (kx, ky) Fourier mode can be considered linearly decoupled
as in a shearless slab system and hence, modulational instability is the only driving
mechanism of zonal flows in turbulent simulations with adiabatic electrons. On the other
hand, with kinetic electrons, for a linearly unstable physical mode with given kx0 and
ky, linear coupling of Fourier modes is preserved to some extent but reduced to only
the three Fourier modes with kx = kx0 + 2πpky ŝ and |p| = 0,±1. Only these Fourier
modes have their relative phases largely fixed by their linear dynamics (and not for
all p ∈ Z, as assumed in §3.4.3). Hence the self-interaction mechanism is effectively
reduced to driving the zonal Fourier modes with k′x = ±2πky ŝ. Furthermore, the self-
interacting contribution to Reynolds stress R̃Skx0,ky(x) (defined in equation (3.15)) from
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Figure 3.13: (a) Solid lines denote the absolute value of the time-averaged ballooning
structure of the electrostatic potential |〈Φ̂b,nl(χ, t)/Φ̂b,nl(χ0 = 0, t)〉t| for kx0 = 0 and
kyρi = 0.28 in the non-linear simulation described in table 3.1, with ky,minρi = 0.035 and
R/LT,i = 6. Dotted lines denote the corresponding ballooning representation in linear
simulations (same as in figure 3.2). Inset figure shows the zoom near χ = 0. Red and
blue colours represent adiabatic and kinetic electron simulations respectively. (b) Phase
difference ∆φ(χ, t) = (φ[(Φ̂b,nl(χ, t)/Φ̂b,nl(χ0 = 0, t))(Φ̂b,lin(χ0 = 0)/Φ̂b,lin(χ))]) plotted
as a function of time. Here, Φ̂b,nl and Φ̂b,lin denote the ballooning representation of the
electrostatic potential for the same eigenmode considered in subplot (a), in non-linear
and linear simulations respectively. Solid and dotted lines represent χ = 2π and 4π
respectively.

the particular physical eigenmode, becomes essentially sinusoidal in x, spanning the
full distance between corresponding MRSs with a period of ∆xMRS = 1/ky ŝ, and with
fixed phase/sign in time. Note that the radial width of the fine-structures do not have
a dependence on electron-ion mass ratio in turbulence simulations as they are already
broadened to span the distance between MRSs as a result of non-linear coupling effects.
This is unlike in linear simulations where such a dependence exists [Dominski et al.,
2015].

The net contribution RSsi from the self-interaction mechanism to Reynolds stress can be
obtained by summing R̃Skx0,ky(x) over all ky’s and all ballooning angles (measured by
kx0; see (2.97)):

RSsi(x) =
∑
ky>0

R̂Ssi
ky(x) (3.17)

where

R̂Ssi
ky =

πky ŝ∑
kx0=−πky ŝ

R̃Skx0,ky(x). (3.18)

In figure 3.10, the self-interaction contribution ∂2RSsi/∂x2 from a particular ky in full
turbulence simulation is plotted. The dashed lines denote the time average of ∂2R̂Ssi

ky/∂x
2

for kyρi = 0.28, normalised by the RMS in time of total ∂2R̂Sky/∂x2, in simulations
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with kinetic (blue) and adiabatic (red) electrons; the total Reynolds stress contribution
R̂Sky from a given ky being defined in (3.12). This diagnostic simultaneously measures
the relative importance of self-interaction drive of zonal flows with respect to the total
contribution to Reynolds stress drive from the considered ky, as well as how good its
phase/sign is fixed in time. One notes that, since for a given ky, eigenmode with kx0 = 0 is
the most unstable/dominant, similar results are obtained for R̃Skx0=0,ky(x) as well, instead
of R̂Ssi

ky in this diagnostic. From figure 3.10, one can conclude that, in full turbulence
simulations with kinetic electrons, each ky contribution ∂2R̂Ssi

ky/∂x
2 from self-interaction

is significant. Furthermore, it is a sinusoidal with a period of 1/ky ŝ and maintains the
same sign at each radial position (although with randomly varying amplitude in time, as
will be shown at the end of §3.4.6). In particular, ∂2R̂Ssi

ky/∂x
2 is zero at MRSs, negative

to the left and positive to the right. Whereas with adiabatic electrons, the self-interaction
contribution is weak, does not have a fixed sign, and essentially averages out to zero
over time. Further, with kinetic electrons, these significant time-averaged self-interaction
contributions, localized at MRSs of each ky, align at LMRSs, driving time-averaged
zonal flows at these radial positions. Whereas, away from LMRSs, the time-averaged
self-interaction contributions ∂2R̂Ssi

ky/∂x
2 from each ky are spatially misaligned and

cancel each other out, resulting in relatively negligible time averaged zonal flow levels.

In figure 3.14, the time average of the total ∂2R̂Sky/∂x2 is plotted as a function of both
position x and wavenumber ky. While between LMRSs, ∂2R̂Sky/∂x2 follows essentially
the same spatial orientation (phase) as ∂2R̂Ssi

ky/∂x
2 in figure 3.10, near LMRSs, there is

a reversal of spatial phase. We suspect this to be a result of the back reaction of zonal
modes driven by self-interaction on turbulence. At the moment, we postpone further
analysis on this to a later time.

Recall from earlier in this subsection that in kinetic electron turbulence simulations, the
self-interaction contribution from a given ky 6= 0 is effectively reduced to driving the
zonal Fourier modes with k′x = ±2πky ŝ. The combined self-interacting contributions
from the various ky’s therefore drive zonal Fourier modes with kx = 2πpŝky,min, where
p ∈ Z. This can be seen as peaks in the kx-spectra of the time-averaged shearing rate
〈ωeff〉t, shown with blue dashed line in figure 3.15 and correspond to the time-constant
structures at LMRSs separated by ∆xLMRS = 1/ŝky,min in figure 3.5. Given that, in the
case of the reference turbulence simulation with kinetic electrons, the highest contribution
to heat flux (see figure 3.7(b)) and the |Φ|2 amplitude spectra is at kyρi ∼ 0.21 and that
for a given ky, eigenmodes with kx0 = 0 are the most dominant, the zonal mode with
kxρi ∼ 2πŝ × 0.21 ∼ 1.06 are driven strongly via the self-interaction mechanism and
hence has the highest value in the kx-spectra of shearing rate. Similarly, those ky’s with
lower heat flux and amplitude contributions, contribute lesser towards the self-interaction
mechanism and thereby explains the number and position of peaks in the kx-spectra of
shearing rate with kinetic electrons in figure 3.15.
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ky,minρi = 0.035, R/LT,i = 6 and kinetic electrons.

kxρi
0 0.5 1 1.5 2 2.5

|ω
eff
|/
γ

m
a
x

0

50

100

150

200

250

(〈|fftx[ωeff ]|
2〉t)

1/2/γmax

|fftx[〈ωeff〉t]|/γmax

Kin. e.

Ad. e.

Figure 3.15: kx spectra of the effective shearing rate ωeff in turbulence simulations with
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Solid red line in figure 3.15 denotes the kx-spectra of ωeff in the simulation with adiabatic
electron response. These zonal Fourier modes are driven predominantly by modulational
instability. In the next subsection, we test, if consequently, as a result of the frequency
matching involved in the modulational instability mechanism, those zonal modes having
high shearing rate amplitudes end up playing a major role in pacing the dynamics of
much of the (kx, ky 6= 0) Fourier modes in adiabatic electron simulations.

3.4.6 Evidence of modulational instability in turbulence simulations.
Bicoherence and correlation analysis.

In this subsection, we verify in fully developed turbulence simulations, that indeed
with adiabatic electron response, zonal flows are driven predominantly via modulational
instability, as found in reduced simulations in §3.4.4 and as discussed in §3.4.5. We test
this by doing a bicoherence-like analysis. We simultaneously show that, as a consequence,
this leads to correlated contributions from the various ky’s to the Reynolds stress drive
of zonal modes. We furthermore show that in kinetic electron simulations, the self-
interaction contributions to Reynolds stress from the various ky’s are random in time
and decorrelated with each other.

As already discussed earlier, modulational instability mechanism involves resonant 3-wave
interactions which require frequency matching. The strength of a particular resonant
interaction between the 3 Fourier modes, k = (kx, ky), the zonal mode k′ = (k′x, 0) and
daughter mode k′′ = k−k′ = (kx− k′x, ky), can thus be measured via a bicoherence-type
analysis, essentially involving the time-average of the triplet product

T (k ; +k′) = Φ̂k(t)Φ̂∗k′(t)Φ̂∗k′′(t) (3.19)

where Φ̂q(t) ∼ exp[−i(ωqt + φq)] is the complex time dependent amplitude of the
electrostatic field with any Fourier mode q, having a frequency ωq, initial phase φq, and
evaluated at z=0. If the Fourier modes [k,k′,k′′ = k− k′] are frequency matched in the
simulation time, i.e. ωk = ωk′ + ωk′′ , then 〈T (k ; +k′)〉t 6= 0, where 〈.〉t stands for the
time-average over the simulation time.

Here, we remark that, for a given set of Fourier modes [k,k′,k′′ = k−k′] under frequency
matching condition, different resonant decay mechanisms could be possible, each with
a specific phase difference ∆φ = φk − φk′ − φk′′ associated with it. Hence, a non-zero
time average 〈T (k ; +k′)〉t over the simulation time is indicative of a particular resonant
decay mechanism being persistent throughout the simulation.

Now, a normalised measure of the strength of the resonant 3-wave interaction can be
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calculated by the following estimate:

bN (k ; +k′) = |〈T (k ; +k′)〉t|
〈|T (k ; +k′)|〉t

, (3.20)

defined as the bicoherence between the Fourier triplet [k,k′,k′′ = k−k′]. Note 0 ≤ bN ≤ 1.
Further, bN (k ; +k′) ' 1 indicates a fully resonant 3-wave interaction between k, k′′ and
the zonal mode k′, while bN ' 0 indicates a non-resonant process. Since modulational
instability is a simultaneous resonant interaction between both triplets [k,k′,k′′ = k−k′]
and [k,−k′,k′′′ = k + k′], we define total bicoherence

BN (k ; k′) = (bN (k ; +k′) + bN (k ;−k′))/2, (3.21)

such that a value of BN ' 1 indicates a fully resonant modulational instability mechanism.
In general, values of BN closer to zero are indicative of non-resonant interactions while
larger values of BN are characteristic of modulational instability mechanisms.

Note that, while the resonant 3-wave interaction is defined for the case of a single
pump mode with a well defined frequency decaying into a zonal mode via a daughter
mode while ensuring frequency matching, in a turbulent system many such pump modes
are present. The frequencies of these pump modes may not be the same as their
original linear eigenmodes, especially in the case of strong turbulence where they undergo
significant nonlinear frequency shifts. The bicoherence analysis, in the strict sense,
therefore measures the level of a more general resonant 3-wave interaction mechanism
(or a more general modulational instabilty mechanism) where frequency matching is
satisfied. However, in the analysis presented here, we assume that the frequencies of the
pump modes remain the same as their corresponding linear eigenmodes, and hence, the
bicoherence analysis can be said to measure the level of modulational instability in the
system.

Figure 3.16(a) shows BN (k ; k′) as a function of k = (kx, ky), in the reference simulation
with adiabatic electrons, for the fixed zonal mode with k′ = (k′x = 0.13ρ−1

i , 0) which
has the highest contribution to the zonal shearing rate kx-spectra (see solid red line in
figure 3.15). One can see that most k = (kx, ky) have high values of BN & 0.3, reflecting
the dominance of resonant 3-wave interaction processes. Whereas in figure 3.16(b),
corresponding kinetic electron simulation result for the zonal mode with k′ = (k′x =
0.26ρ−1

i , 0) having highest contribution to the shearing rate kx-spectra shows much
smaller values of BN , indicating much weaker resonant 3-wave interactions. Similar
differences are seen between adiabatic and kinetic electron results for other zonal modes
k′ = (k′x, 0) as well.

Note that, for a given zonal mode k′ = (k′x, 0), under wave vector matching condition,
one has the following approximate estimate between associated triple products and the
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Figure 3.16: The bicoherence level BN , as defined by equation (3.21), in (a) adiabatic
and (b) kinetic electron turbulence simulations, for the zonal modes with k′xρi = 0.13
and 0.26 respectively. Results correspond to simulations with parameters as given in
table 3.1, with ky,minρi = 0.035 and R/LTi = 6.

Reynolds stress contributions driving the particular zonal mode:∑
kx

T (k ; k′) ∼ Φ̂∗k′R̂Sky , (3.22)

where R̂Sky has been defined in equation (3.12). Now, if 〈T (k ; k′)〉t (and the corre-
sponding total bicoherence BN (k ; k′)) for multiple Fourier modes k = (kx, ky) are
simultaneously significant for the same dominant zonal mode k′ (as is the case in fig-
ure 3.16(a) for adiabatic electron simulation), then based on (3.22) one can conclude that
the Reynolds stress contributions R̂Sky from the various ky’s tend to be in phase with
the particular zonal mode. This implies a coherent and thus correlated contributions
(drives) from these various R̂Sky (∂2R̂Sky/∂x2). To verify this explicitly, we define an
effective correlation function CRS measuring the average correlation between all pairs of
[∂2R̂Sky,1/∂x2, ∂2R̂Sky,2/∂x2] for ky,1 6= ky,2:

CRS[f ] =
∑

ky,i, ky,j
ky,j>ky,i

Cov[f̂ky,i , f̂ky,j ]
σ[f̂ky,i ]σ[f̂ky,j ]

/ ∑
ky,i, ky,j
ky,j>ky,i

1 . (3.23)

f = ∂2RS/∂x2, f̂ky= ∂2R̂Sky(x)/∂x2, covariance Cov[a, b] = (σ2[a+ b]− σ2[a]− σ2[b])/2,
and variance σ2[a] = 〈|a− 〈a〉t|2〉t, with 〈.〉t representing average over simulation time.
Note that CRS ∈ [0, 1], with 1 corresponding to perfect correlation between Reynolds
stress drive from all ky’s and 0 corresponding to total decorrelation between them. In
figure 3.17, CRS is plotted as a function of the radial position x, for adiabatic and kinetic
electron turbulence simulations. We can find that CRS[∂2RS/∂x2] for adiabatic electron
case (solid red line) only shows ∼ 7% correlation. However the important point to note is
that this is roughly an order of magnitude higher than that for kinetic electron simulation
(solid blue line). Thus, this diagnostic verifies that in adiabatic electron turbulence
simulations where modulational instability mechanism is stronger, Reynolds stress drive
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Figure 3.17: Correlation between the ky modes of ∂2RS/∂x2, as defined by equation (3.23),
as a function of x in turbulence simulations with kinetic (solid blue line) and adiabatic
(solid red line) electrons. Corresponding parameters are given in table 3.1, with ky,minρi =
0.035 and R/LT,i = 6. Correlation between the ky modes of self-interacting contribution
∂2RSsi/∂x2 in the simulation with kinetic electrons is shown with dashed blue line.

∂2R̂Sky/∂x2 from the various ky’s are indeed more correlated with each other, when
compared to kinetic electron simulations where modulational instability mechanism is
weaker.

The same correlation diagnostic is now performed on the self-interacting part of Reynolds
stress in kinetic electron simulations. In figure 3.17, the correlation between the ky
contributions to ∂2RSsi/∂x2, measured by CRS[∂2RSsi/∂x2], is found to be nearly zero.
This implies that, each ky contribution to ∂2RSsi/∂x2 at a given radial position (while
in general having a fixed sign) has an amplitude that is completely independent and
uncorrelated with the other ky contributions. The self-interaction drive of zonal modes
from each ky thus acts like random kicks. Consequently, if the decorrelated (incoherent)
contributions from the self-interaction mechanism becomes significant, it may disrupt
the (coherent) modulational instability interactions. We interpret this as being the
cause for lower bicoherence values of BN in figure 3.16(b), as well as the lower level of
CRS[∂2RS/∂x2] in figure 3.17 with kinetic electrons as compared to adiabatic electrons.

To summarise, in this section 3.4, various zonal flow driving mechanisms have been
discusssed. Given the quadratic E × B nonlinearity, the zonal modes can in fact be
driven via any 3-Fourier mode interaction process verifying the wave-vector matching
condition. In this section, the two main such mechanisms have been studied in detail,
namely the modulational instability and the self-interaction meachanism. We have shown
that, as a result of the stronger linear kx-couplings within an eigenmode in kinetic
electron simulations, the associated drive of zonal flows via self-interaction is much more
significant, than in the case of adiabatic electron simulations. This has been illustrated
in both reduced and full turbulence simulations. Furthermore, in turbulence simulations,
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decreasing ky,minρi

it was shown that the contributions to zonal flow drive from each ky mode, via the
self-interaction mechanism, are random and decorrelated with each other in time. In
the next section, we explain how such a decorrelated drive can lead to a decrease in the
fluctuating zonal flow levels with decreasing ky,minρi.

3.5 Estimating the reduction in zonal flow drive from self-
interaction with decreasing ky,minρi

The low temporal correlation between the various ky contributions to the Reynolds stress
drive ∂2RS/∂x2 of zonal flows in kinetic electron simulations, which is a result of strong
self-interaction mechanism, could explain the decrease in the level of shearing rate ωeff
associated with fluctuating E ×B zonal flows with increasing toroidal system size, over
the range of ky,minρi considered in figure 3.6(c). This explanation is based on simple
statistical arguments described as follows.

To start with, let us assume that the fluctuation energy density, proportional to amplitude
density |Φ|2 of the fluctuating electrostatic field Φ, remains the same across the simulations
with different ky,mins. Consequently the amplitude |Φ̂ky |2 of each ky Fourier component
of the electrostatic field scales as 1/Ny where Ny is the number of participating modes,
according to the following estimate based on Parseval’s identity:

1
Ly

∫ Ly

0
|Φ|2dy =

Ny∑
ky=0
|Φ̂ky |2 = constant =⇒ |Φ̂ky |2 ∼

1
Ny

. (3.24)

Here, Φ̂ky is defined as per the relation

Φ(x, y, z) =
∑
ky

Φ̂ky(x, z)eikyy. (3.25)

Since Reynolds stress is a quadratic quantity in Φ, the scaling in relation (3.24) also
implies that each ky contribution to the Reynolds stress drive scales as ∂2R̂Sky/∂x2 ∼
|Φ̂ky |2 ∼ 1/Ny. Since Ny = ky,max/ky,min and ky,max remains the same across simulations
in the ky,min scan, one also has 1/Ny ∼ ky,min.

Now, further assuming the various ky contributions to Reynolds stress drive ∂2R̂Sky/∂x2

to be nearly fully decorrelated (characteristic of kinetic electron simulations; see fig-
ure 3.17), the variance of the total Reynolds stress drive ∂2RS/∂x2 = ∑

ky ∂
2R̂Sky/∂x2

becomes the sum of variances of all ky contributions:

Var

∑
ky

∂2

∂x2 R̂Sky

 '∑
ky

Var
(
∂2

∂x2 R̂Sky

)
∼ Ny

1
Ny

2 ∼
1
Ny
∼ ky,min, (3.26)
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Figure 3.18: Triangles: Standard deviation 〈SD(∂2RS/∂x2)〉x,t of Reynolds stress drive
plotted as a function of ky,min in log-log scale, in turbulence simulations with kinetic
electrons. Corresponding parameters are given in table 3.1, with R/LT,i = 6. Fit (dashed-
dotted line) shows scaling ∼ (ky,minρi)0.22. Squares: 〈|Φ̂|2〉x,z,t(kyρi = 0.28) plotted as
a function of ky,min, in the same set of simulations. Fit (dashed line) shows scaling
∼ (ky,minρi)0.73

.

having made use of Var(∂2R̂Sky/∂x2) ∼ 1/N2
y , given that ∂2R̂Sky/∂x2 ∼ 1/Ny. We

therefore expect the standard deviation SD of the Reynolds stress drive ∂2RS/∂x2 to
scale as SD = Var0.5 ∼ k0.5

y,min. Further, since ∂2RS/∂x2 is a proxy for the drive of zonal
flows, this explains a decrease in the standard deviation of ωeff with decreasing ky,min.

From the ky,min scan performed with kinetic electrons, R/LT,i = 6 and other param-
eters as given in Table 3.1, we find that the x and time-averaged standard deviation
〈SD(∂2RS/∂x2)〉x,t of the Reynolds stress drive actually scales as k0.22

y,min, as shown in
figure 3.18. This mismatch between the expected and observed scalings pushes us to
reconsider the assumptions made that led to the estimate SD ∼ k0.5

y,min.

The small but non-zero value of the correlation between the ky contributions of ∂2RS/∂x2

in these simulations (see solid blue line in figure 3.17) may account for a small part of the
discrepancy. However, the primary cause seems to arise from the faulty assumption of
constant fluctuation energy density across simulations with different ky,mins. As the zonal
flow shearing rate decreases with decreasing ky,min, the energy density in the system tends
to increase, so that the estimate made in relation (3.24) has to be reconsidered. This is
confirmed in figure 3.18 where the same set of simulations show 〈|Φ̂ky |2〉x,z,t ∼ k0.73

y,min, for
kyρi = 0.28 having a significant amplitude in the ky-spectra of |Φ|2 and heat flux. Using
this scaling ∂2R̂Sky/∂x2 ∼ |Φ̂ky |2 ∼ k0.73

y,min in place of ∼ k1
y,min in (3.26), we get

Var

∑
ky

∂2

∂x2 R̂Sky

 '∑
ky

Var
(
∂2

∂x2 R̂Sky

)
∼ 1
ky,min

(k0.73
y,min)2 ∼ k0.46

y,min, (3.27)
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i.e. the standard deviation of ∂2RS/∂x2 scales as SD = Var0.5 ∼ k0.23
y,min, which is very

close to the observed trend of 〈SD(∂2RS/∂x2)〉x,t ∼ k0.22
y,min.

3.6 Conclusions

In this chapter, we have addressed the self-interaction mechanism and how it affects
the drive of zonal flows in ion-scale gyrokinetic turbulence simulations. The basic
mechanism of self-interaction is the process by which a microinstability eigenmode non-
linearly interacts with itself, generating a Reynolds stress contribution localised at its
corresponding MRS (figure 3.10). Compared to adiabatic electron simulations, this
effect is more prominent in kinetic electron simulations. The origin of this increased
self-interaction in kinetic electron simulations is the result of the non-adiabatic passing
electron response at MRSs leading to fine slab-like structures at these radial positions,
reflected as well by broadened ballooning structures of the eigenmodes (figure 3.2).

These self-interacting contributions from various eigenmodes to Reynolds stress radially
align at low order MRSs to generate significant stationary zonal flow shear layers at these
positions. However, given that low order MRSs occupy only a tiny radial fraction of core
tokamak plasmas, we have focused primarily on how self-interaction affects the drive of
zonal flows between the low order MRSs. We have found that self-interaction plays an
important role in generating fluctuating zonal flows, in fact throughout the full radial
extent. These fluctuating components of zonal flows are furthermore found to be critical
to regulating transport levels.

These findings were obtained by studying the self-interaction contributions to Reynolds
stress drive from the various microturbulence modes by focusing on their statistical
properties. Critical to this approach has been to vary the number of significant toroidal
modes participating in our turbulence simulations by performing scans over ky,minρi.

In these turbulence simulations, using correlation analysis (see figure 3.17), we have
in particular shown that the amplitude of the Reynolds stress contributions from self-
interaction of each microturbulence mode are essentially random and decorrelated with
each other. In the case of kinetic electron simulations, the significant self-interaction
mechanism can in this way disrupt the coherent contributions from the alternative zonal
flow drive process provided by the modulational instability mechanism, as reflected by the
corresponding weak bicoherence analysis estimates presented in figure 3.16. In simulations
with adiabatic electrons however, for which self-interaction is weak, bicoherence estimates
reflect strong resonant 3 wave interactions, characteristic of the modulational instability
process being dominant in this case.

Using simple statistical scaling arguments we have then demonstrated how such a
decorrelated drive from the self-interaction of various microturbulence modes could in
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turn lead to a decrease in shearing rate associated with fluctuating zonal flows with
decreasing ky,minρi [see kinetic electron results in figure 3.6(c)]. Assuming that the
zonal flow shearing mechanism is the dominant saturation mechanism at play, this in
turn would lead to an increase in gyro-Bohm normalised heat and particle flux levels as
ky,minρi decreases.

For the range ky,minρi = 10−2 − 10−1 considered in section 3.3, the kinetic electron
simulations far from marginal stability [blue circles in figure 3.7(a)] indeed show such an
increase in ion heat flux, presenting a power law scaling of the form (ky,minρi)α, with
α < 0. It is important to note that, as one continues to decrease ky,minρi, this scaling
ultimately breaks and the simulation results do finally converge; in other words, the true
ρ∗ → 0 limit of the flux-tube model can be reached, as already reported in the work
by [Ball et al., 2020]. To demonstrate this for the particular case far from marginal
stability (R/LT,i = 6), the original scan was extended to lower values of ky,minρi, but
with a quarter of the resolution in the radial direction to make the runs computationally
feasible. The corresponding ion heat flux plot is shown in figure 3.19(a), where the
power law scaling finally breaks for ky,minρi . 10−2, and a convergence within 5% is
observed at ky,minρi ∼ 5× 10−3. The corresponding estimates of the effective shearing
rate, namely RMSx,t(ωeff), SDx,t(ωeff) and RMSx(〈ωeff〉t), are plotted in figure 3.19(b).
As had been discussed in §3.3, the most interesting quantity to us is the shearing
rate of fluctuating zonal flows measured by SDx,t(ωeff), which is also seen to deviate
from its the power law scaling for values of ky,minρi . 10−2, hinting towards a near
convergence for ky,minρi ∼ 5× 10−3. Furthermore, in figure 3.8, corresponding results of
the radial correlation length of turbulent eddies is given, also showing a convergence for
ky,minρi ∼ 5× 10−3.

Closer to marginal stability [green line in figure 3.7(a)], the gyro-Bohm normalised flux
levels in kinetic electrons simulations appear to be already essentially converged for
ky,minρi ∼ 10−2. The convergence of fluxes observed for this particular case is despite a
decrease in the shearing rate associated with zonal flows (seen in RMSx,t(ωeff), SDx,t(ωeff)
and RMSx(〈ωeff〉t), shown with green lines in figure 3.6(a-c)). One possible explanation
for this could be that, as the various estimates of normalised shearing rate decrease below
ωeff/γmax ' 1, the zonal flow saturation mechanism becomes less effective in regulating
flux levels. Other saturation mechanisms such as that via damped eigenmodes [Hatch
et al., 2011] could then be taking over.

Since ky,minρi ∼ ρ∗, one can interpret the decrease in zonal flow shearing rates and the
possible associated increase in heat and particle flux levels in any particular range in
ky,minρi as a finite toroidal system size effect still present in the flux-tube simulations.
One may deal in practice with this system size dependence of flux-tube simulations in
two ways:

1. One approach has the intent of correctly resolving this physical finite ρ∗ effect,
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Figure 3.19: (a) Ion heat flux plotted as a function of ky,minρi. (b) Asterisks, squares
and circles represent RMSx,t(ωeff), SDx,t(ωeff) and RMSx(〈ωeff〉t) respectively, plotted
as a function of ky,minρi. In both sub-plots, blue colour represents the kinetic electron
reference simulations whose parameters are given in table 3.1 [the case far from marginal
stability (R/LT,i = 6)]; these are the same plots as those shown with blue colour in
figure 3.7(a) and figure 3.6. Magenta colour represent simulations with a quarter of the
resolution in the radial coordinate.

but to be accurate, this requires considering the physical ky,minρi = nmin(q0a/r0)ρ∗
value of the tokamak plasma conditions one is studying, which corresponds to the
flux-tube covering the full reference flux-surface in both the poloidal (with Lz = 2π)
and toroidal (with nmin = 1) directions. In this chapter, only this approach has
been considered.
This can however be quite challenging in practice, even for flux-tube simulations
relevant for a medium-sized tokamak. A scan in ky,min, even when limited to ion
scale turbulence, is numerically quite costly, as it involves computations of larger
and larger systems along y as ky,min is decreased. For DIII-D for example, with
ρ? ' 1/300, for a full flux-surface located at mid-radius of the plasma (r0/a = 0.5),
for q0 = 1.4 considered here, the value of ky,minρi = (q0a/r0)ρ∗ ' 1.4 · 10−2 is
approximately equal to the value ky,minρi = 0.0175 considered in our scan. Large
machines such as JET (ρ∗ ' 1/600) and ITER (ρ∗ ' 1/1000) has corresponding
values of ky,minρi ' 4.7 · 10−3 and 2.8 · 10−3 respectively.
Therefore in practice, if the simulation results (including heat and particle fluxes,
shearing rate associated with zonal flows, radial correlation length of turbulent
eddies etc.) are found to be converged for values of ky,minρi larger than that
corresponding to the machine one is interested in, then one obviously does not
need to simulate the full physical flux-surface, as the system size effect of self-
interaction has also saturated. However, if no such convergence is observed as
ky,minρi approaches the physical value corresponding to the machine, then one should
use that physical ky,minρi and correctly account for the effect of self-interaction
[Ball et al., 2020].
Note that, with this approach of using flux-tube simulations to physically resolve

89



Chapter 3. How eigenmode self-interaction affects zonal flows and
convergence of turbulence levels with toroidal system size

the particular finite system size effect resulting from the self-interaction mechanism,
the other finite ρ∗ effects, such as profile shearing [Waltz et al., 1998, Waltz et al.,
2002], effect of finite radial extent of the unstable region [McMillan et al., 2010] etc.,
are missing. Therefore, if one wants to study how self-interaction competes with
other finite ρ∗ effects, either global simulations should be used, or local simulations
that treat these other finite ρ∗ effects explicitly such as [Candy et al., 2020]. Note
that even in global simulations, the full flux-surface will have to be modelled
to accurately account for self-interaction, in the sense that a simulation volume
covering only a toroidal wedge, corresponding to considering nmin > 1, is in general
insufficient.

2. As a second approach, one can deliberately remove the effects of self-interaction, as
suggested by [Beer et al., 1995, Faber et al., 2018, Ball et al., 2020], by increasing the
parallel length of the simulation volume along the magnetic field until convergence
is observed. In practice, this is achieved by having the flux-tube undergo multiple
poloidal turns before it connects back onto itself, i.e. by increasing Lz = Npol · 2π
with Npol > 1, instead of Lz = 2π usually considered. Given that self-interaction is
a result of microinstability eigenmodes ‘biting their tails’ after one poloidal turn at
corresponding MRSs, this approach weakens the self-interaction mechanism.

90



4 Effect of collisions and back-
ground shear flows on non-
adiabatic passing electron dy-
namics

In this chapter, the study of non-adiabatic passing electrons dynamics is pursued further
to include more reactor relevant conditions. In particular, the effects of collisions and
background shear flows are studied in sections 4.1 and 4.2 respectively.

4.1 Effect of collisions on non-adiabatic passing electron
dynamics

The temperatures and densities typical of tokamak cores lead to plasmas with very
low collisionalities, with collision frequencies lower than that of typical frequencies of
microinstabilities. Hence these plasmas are often approximated as collisionless and
modelled without collisions in gyrokinetic simulations. However, it is important to model
collisions properly for various reasons. For instance, collisions are necessary to smoothen
the small-scale structures in velocity space, which have been observed in gyrokinetic
simulations [Watanabe and Sugama, 2004, Tatsuno et al., 2009], and playing an important
role in the energy transfer mechanism [Schekochihin et al., 2008]. In fact collisions provide
the physical link between macroscopic plasma heating and microturbulence, through
dissipation of small-scale structures in both position and velocity space, thereby enabling
the system to reach the right statistical steady state [Krommes, 1999, Abel et al.,
2008]. Collisions can affect the steady-state turbulence levels either by affecting the
linear microinstability drive of turbulence or by affecting the saturation mechanism. An
example of the former case is the collisional stabilisation of TEM microinstability, which
in experiments has been shown to lead to the transition of TEM dominant turbulence to
ITG dominant one with increasing collisionality [Ryter et al., 2005, Camenen et al., 2007].
And an example of collisions affecting turbulence saturation is the collisional damping
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of zonal flows which in turn can lead to larger heat and particle steady-state flux levels
[Hinton and Rosenbluth, 1999].

In this section, the effect of collisions on ITG driven turbulence is studied using gyrokinetic
simulations. In linear simulations with adiabatic electrons, collisions (i.e. ion-ion
collisions) do not significantly alter ITG linear eigenmodes [Kauffmann et al., 2010, Vernay,
2013]. However this is not found to be true when non-adiabatic passing electron response
is considered [Mikkelsen and Dorland, 2008]. This study is followed up by exploring
the effects of collisions, in particular on the fine-structures associated to non-adiabatic
passing electrons and the self-interaction mechanism discussed in chapter 3.

Using linear simulations, through a scan in collisionality, two preliminary results are
obtained: One, growth rate of ITG eigenmode decreases with increasing collisionality
in collisionality regimes typical of the core, and two, the radial width of fine-structure
associated to non-adiabatic passing electron response broadens with increasing colli-
sionality. While the first result has already been reported in reference [Mikkelsen and
Dorland, 2008], its fundamental reason has not been illustrated in detail. Through a
detailed velocity space analysis of the distribution function, in this chapter, it is shown
that collisions lead to a more adiabatic-like response of electrons away from MRS, which
in turn explains the decrease in growth rates with increasing collisionality. Furthermore
it is shown that collisionality sets the characteristic parallel length scale associated to
the ballooning envelope tail of eigenmodes, which in turn explains the radial broadening
of the fine-structures.

In turbulence simulations, the eigenmodes can get deformed by the various nonlinear
mechanisms [C.J.,Ajay et al., 2020]. Furthermore, as already mentioned, collisions can
affect the nonlinear turbulence saturation mechanism through damping of zonal flows.
Of particular interest to this work is investigating how collisions affect the nonlinear
drive of zonal flows via the self-interaction mechanism. Therefore it is important to
study the effects of collisions in nonlinear simulations as well. In this chapter, it is
found that the steady-state heat flux decreases with increasing collisionality which is
then illustrated to be the consequence of the corresponding decrease in the growth rate
of linear eigenmodes. The width of the fine-structures in nonlinear simulations is not
found to show an increase with increasing collisionality. This is because of the nonlinear
broadening of these fine structures, discussed in section 3.4.5. Motivated by the finding
in the linear simulations study, that the parallel length scale of eigenmodes associated to
their ballooning representation tails are determined by collisionality, the effect of collisions
on the parallel correlation length of turbulent eddies is explored. No obvious dependence
of parallel correlation length on collisionality is found, possibly again due to nonlinear
effects. Finally the effect of collisions on the self-interaction mechanism is studied using
some of the diagnostics already presented in chapter 3, more specifically, by computing
the normalised self-interaction contribution to Reynolds stress, the bicoherence estimate
and the correlation between the various ky contributions to Reynolds stress.
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These studies are organised in this section as follows. In section 4.1.1, the linear simulation
study is presented, in two parts: in section 4.1.1.1, the analysis on the dependence of
growth rate on collisionality is dicussed, and in section 4.1.1.2 the analysis on the increase
in the radial width of fine-structures with collisionality is dicussed. The results on the
effect of collisions in nonlinear simulations is presented in four subsections which are
as follows. The effect of collisions on the heat flux and the shearing rate associated
to zonal flows is discussed in section 4.1.2.1, followed by its effect on the radial width
of fine-structures in section 4.1.2.2. In section 4.1.2.3, the effect of collisions on the
parallel correlation length of turbulent eddies is shown, and in section 4.1.2.4, the
effect of collisions on the self-interaction mechanism is studied using the the diagnostic
methods already mentioned in the previous paragraph. The conclusions are presented in
section 4.1.3.

Furthermore, in appendix C, an analysis based on a local dispersion relation is presented,
studying the effects of collisions. This study extends the analysis presented in reference
[Dominski et al., 2015] to include the effects of collisions, using a BGK-like collision
operator [Bhatnagar et al., 1954, Angus and Krasheninnikov, 2012].

4.1.1 Effect of collisions in linear simulations

In this subsection, the effects of collisions on ITG eigenmodes with kinetic electrons
are explored by analysing linear simulation results with different collisionalities. The
parameters of simulations performed here are given in table 4.1. The physical and
geometric parameters remain the same as in the case considered in chapter 3, with
the exceptions of a larger logarithmic ion temperature gradient (R/LT,i = 8) and an
electron-ion mass ratio (me/mi = 1/1836) corresponding to hydrogen. With R/LT,i = 6
(considered in chapter 3), corresponding nonlinear simulation with adiabatic electrons is
found to be very close to marginal stability and tends to show very long intermittency
intervals. Hence, a steeper logarithmic temperature gradient of R/LT,i = 8 is chosen for
both linear and nonlinear runs. However, note that the results discussed in the following
qualitatively remain the same for both cases, near and far from marginal stability. The
numerical resolutions Nz, Nv‖ and Nµ along the coordinates z, v‖ and µ respectively
have been chosen after performing convergence scans on these parameters.

Collisions are modelled with the Landau collision operator, and a scan in collisionality
is carried out over the range 0 ≤ ν∗e ≤ 2.758. Note that the background densities n0
and temperatures T0 typical of tokamak cores lead to collisionalities (ν∗ ∝ n0/T

2
0 ) that

fall within the banana regime characterised by ν∗ < 1, while those at the plasma edge
can extend towards the plateau regime characterised by 1 < ν∗ < ε−3/2 [Hinton and
Hazeltine, 1976]. The FLR corrections to the collision operator appearing as spatial
diffusion terms in gyrocenter coordinates [Abel et al., 2008] (as already mentioned in
section 2.4.1) are absent in the standard ’Landau’ collision operator available in GENE,
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Geometry: Ad-hoc concentric circular geometry [Lapillonne et al., 2009]
ε = 0.18 q0 = 1.4 ŝ = 0.8 β = 0.001

mi/me = 1836 Te/Ti = 1.0 R/LN = 2.0 R/LTi = 8.0 R/LTe = 2.0

Lx = 142.9 ρi Ly = 17.95 ρi (179.5 ρi) Lz = 2π v‖,max = 3
√

2 vth,i µmax = 9T0i/B0,axis

M = 1 (4) Nkx×N∗ky
×Nz×Nv‖×Nµ = 96 (256)×1 (64)×24×48×16 ky,minρi = 0.35 (0.035)

Table 4.1: Parameter set for linear simulations. In parenthesis, parameters for non-linear
simulations are given if they differ from those in the linear case.

which has been used in the simulations shown in this chapter. However, in the most
recent version of GENE, the option to account for the FLR correction terms has been
implemented. Using this option, it has been verified that the FLR terms in the collision
operator leads to an insignificant change in the results shown for the linear simulations
in this section, for the considered range of collisionality.

4.1.1.1 Decrease in growth rate with increasing collisionality. Adiabatic like
electron response away from MRS.

In the collisionless case, non-adiabatic electron dynamics is known to strengthen the ITG
instability drive [Rewoldt and Tang, 1990, Mikkelsen and Dorland, 2008, Dominski et al.,
2015]. With the introduction of collisions, the instability drive is found to weaken. In
figure 4.1, the growth rate of ITG microinstability with kinetic electrons and kyρi = 0.35
(most unstable) is shown to decrease with increasing collisionality for ν∗e < 1, and
approaching the growth rate of the modes with adiabatic electrons for ν∗e ∼ 1. The
growth rate of the eigenmode with adiabatic electrons, by itself, presents a weak increase
as collisionality is increased. In this subsection, a velocity space analysis of the electron
distribution function is done to explain the weakening of the non-adiabatic electron
instability drive with collisions. In appendix C (see figure C.6), the local dispersion
relation based analysis is found to lead to a decrease in the growth rate of ITG eigenmodes
with increasing collisionality. However these results do not match quantitatively with
the results obtained with linear GENE simulations.

In figure 4.2, the real value of the perturbed electron distribution function f1,e at the
outboard midplane (z = 0) for radial locations at (x = 0) and away (x = −Lx/2)
from MRS is plotted as a function of (v‖, µ) for three cases, with collisionalities ν∗e =
0, 0.276 and 2.758. v‖ in these plots is normalised by vT,e =

√
2T0,e/me (not to be

confused with vth,e =
√
T0,e/me). Magenta circles in the plots represent the boundary

between the trapped and passing electron velocity space domains, defined by the relation
v2
‖ = (2/me)[B0(z = −π) − B0(z = 0)]µ. Recollect from section 2.6.2, that in the
flux-tube model, B0 represents the equilibrium magnetic field strength on the flux-surface
considered, and is independent of the radial coordinate x. Furthermore, z = −π and z = 0
denote the inboard midplane and outboard midplane where the magnetic field strength
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Figure 4.1: (a) Growth rate γ and (b) real frequency ωR, both in units of vth,i/R, of
ITG eigenmodes obtained for kyρi = 0.35, plotted as a function of effective electron
collisionality ν∗e in linear simulations with either adiabatic (red) or kinetic (blue) electrons.
Other simulation parameters are given in table 4.1. Axes with corresponding ion
collisionality ν∗i and GENE collisionality νc are also shown for comparison.
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Figure 4.2: (v||, µ) velocity space colour plot of the real value of the perturbed electron
distribution function f1,e of the eigenmodes in linear simulations with three different
collisionalities ν∗e = 0, 0.276 and 2.758 (from left to right). The distribution function
at the outboard mid-plane z = 0 is plotted for all the subfigures, with those at the top
corresponding to radial location x = 0, i.e. at the corresponding MRS, and those at the
bottom corresponding to x = −Lx/2, i.e. mid-point between MRSs. Magenta circles
indicate the boundary between trapped and passing regions. White dashed line indicate
the constant energy curve mev

2
‖ +B0µ = const.

is maximum and minimum respectively, in the considered circular ad-hoc equilibrium.

In the collisionless case, using local dispersion relation, trapped electron response can be
shown to have little effect on the growth rate of ITG eigenmodes, and hence the trapped
electron response is considered to be passive [Dominski et al., 2015]. This is illustrated
in appendix C as well, in particular in figure C.4 where it is shown that the simplified
slab like passing electron kinetic response SimPassKinE result closely matches that
including kinetic trapped electron response SimPassKinE + TrapKinE. In figure 4.2(a,d),
while there is a non-negligible contribution to the electron distribution function in the
trapped region, much of the contribution is indeed localised in the passing electron
velocity space, verifying that the passive response of trapped electrons in the collisionless
case is partly true. One may also note here that, in linear simulations, in absence of
collisions, passing and trapped electrons do no mix with each other. With collisions, i.e.
in figures 4.2(b,c,e,f), the contribution to the electron distribution function in the trapped
region can be found to increase. This is a result of the collisional trapping-detrapping of
electrons.

At MRS, in the collisionless case, i.e. in figure 4.2(a), one can observe large relative
amplitude of the perturbed electron distribution function at v‖ ' ±vT,e in the passing
electron domain of the velocity space. These structures are in fact characteristic of the
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Figure 4.3: (v||, µ) velocity space contour plot of the non-adiabatic part of the perturbed
electron distribution function f1,e,na = f1,e − f1,e,ad normalised by the adiabatic part
f1,e,ad, in absolute value, i.e. |f1,e,na/f1,e,ad|, of the eigenmodes in linear simulations
presented in figures 4.5 and 4.2. Cases with three different collisionalities ν∗e = 0, 0.276
and 2.758 are shown, from left to right. The outboard mid-plane z = 0 slice is plotted
for all the subfigures, with those at the top corresponding to radial location x = 0, i.e.
at the corresponding MRS, and those at the bottom corresponding to x = −Lx/2, i.e.
mid-point between MRSs. Magenta circles indicate the boundary between trapped and
passing regions.

non-adiabatic passing electron dynamics, as evident from the corresponding dominant
structures in figure 4.3(a), where the non-adiabatic part of the perturbed electron
distribution function f1,e,na = f − f1,e,ad normalised by the adiabatic part f1,e,ad =
eΦf0,e/T0 is plotted. Recollect that f0,e is the local Maxwellian already defined in
equation (2.55). With collisions, the passing electrons get trapped and vice-versa, leading
to a ’smearing’ of these structures associated to non-adiabatic passing electrons in
figure 4.2(a) into the trapped electron domain of the velocity space as seen more so in
figure 4.2(c). In fact in figure 4.2(c), one could clearly observe that the ’smeared’ velocity
space distribution of the electron distribution function follows the constant energy curve
(mev

2
‖ + B0µ = const., denoted by the dashed white line), indicating that electron-ion

pitch angle-scattering is the dominant collision mechanism at play.

Away from MRS, in the collisionless case, passing electrons behave adiabatically, as
evident in figure 4.3(d). As collisionality increases, the collisional trapping-detrapping
of electrons becomes more frequent and as one moves away from the banana regime
there is less distinction between trapped and passing electrons. The trapped electrons
as well therefore begin to respond adiabatically as can be seen in figure 4.3(e,f). The
more adiabatic-like electron response away from MRS with increasing collisionality is also
evident in figure 4.4 which plots the v‖ and µ profiles of the perturbed electron distribution
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Figure 4.4: Velocity space profiles of the real value of the perturbed electron distribution
function f1,e, normalised by its max value, of the eigenmodes in the same set of linear
simulations presented in figure 4.2, with collisionality ν∗e = 0 (brown), 0.278 (blue) and
2.758 (green). In (a), the v‖ profile is shown at µ = 0 and in (b), the µ velocity profile
is shown at v|| = 0, both at the outboard midplane z = 0 and at the radial position
x = −Lx/2 away from MRS. Dashed black line represent the normalised Maxwellian
distribution.

function f1,e normalised by its maximum value, at µ = 0 and v‖ = 0 respectively, at
x = −Lx/2, at the outboard midplane. That is, with collisions, the distribution function
becomes proportional to a Maxwellian, characteristic of adiabatic electron response. This
is observed to a lesser extent at MRS as well. Naturally with increasing collisionality,
as a greater fraction of electrons behave adiabatic-like, the growth rate decreases and
approaches that for the fully adiabatic electron model.

4.1.1.2 Increase in radial width of fine structures with increasing collision-
ality

With non-adiabatic passing electron dynamics, ITG (and TEM) linear eigenmodes can
become significantly extended along the magnetic field lines [Hallatschek and Dorland,
2005], producing fine radial structures at corresponding MRSs [Waltz et al., 2006,
Chowdhury et al., 2008, Dominski et al., 2015, Dominski et al., 2017, C.J.,Ajay et al.,
2020]. Collisions are found to increase the radial width of these fine-structures. This
is evident in figure 4.5(a-c) which shows the (x, z) dependence of the absolute value of
the electrostatic potential |Φ| for the same eigenmodes considered in figures 4.2, with
different collisionalities. The corresponding z-averaged electrostatic potential subtracted
by its minimum value, i.e. 〈|Φ|〉z - min[〈|Φ|〉z] is also plotted as a function of x in
figures 4.5(d-f). To quantify the radial broadening of the fine-structures, the full width at
half maximum FWHM of 〈|Φ|〉z is plotted as a function of collisionality in figure 4.6. In
appendix C (see figure C.7), the local dispersion relation based analysis shows an increase
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Figure 4.5: Top: (x, z) colour plot of the absolute value of the electrostatic potential,
(normalised by its maximum value and) weighted by the Jacobian, i.e. J |Φ|, for the
eigenmodes in the same set of linear simulations in figure 4.2, with collisionalities (a)
ν∗e = 0, (b) ν∗e = 0.276 and (c) ν∗e = 2.758. Bottom: The corresponding z-average of the
absolute value of the electrostatic potential, subtracted by its minimum value, i.e. 〈|Φ|〉z
- min[〈|Φ|〉z], plotted as a function of x.

in the radial width of fine-structures at the MRS of corresponding ITG eigenmodes, with
increasing collisionality. However these results do not match quantitatively with the
results obtained with linear GENE simulations. In the following, this radial broadening
of fine-structures is explained as the consequence of a decrease in the characteristic
parallel length associated to the tail of ballooning representation of the eigenmodes with
increasing collisionality.

In the ballooning representation, the radial Fourier (kx) and the parallel (z) dependence
of the linear mode profile is mapped to a purely parallel (extended ballooning space χ)
dependence. See section 2.6.2 for a detailed review of the ballooning space representation.
In figure 4.7(a), the ballooning representation of the electrostatic potential |Φ̂b| is plotted
as a function of the extended ballooning space angle χ, for ITG eigenmodes with different
collisionalities. It can be seen that, the tail of each of these ballooning structures
presents essentially an exponential decay. A fit of the form Ae−χ/∆χ is therefore made,
as indicated by the thicker lines in figure 4.7(a); A is a constant and ∆χ measures a
characteristic parallel ’angular’ extension of the mode in the extended ballooning space
χ. The angular width ∆χ can be related to a characteristic length scale λ‖, in the
considered circular ad-hoc geometry, by the relation λ‖ = Rq0∆χ. In figure 4.7(b), the
characteristic parallel length λ‖ is shown to scale linearly with the electron-ion mean free
path λe/imfp = vth,e/νei, where νei is the electron-ion collision frequency [relation between
νei and ν∗e can be obtained from equations (2.100) and (2.101)]. That is, the electron-ion
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Figure 4.6: Full radial width at half maximum FWHM of the z-averaged electrostatic
potential 〈|Φ|〉z of the eigenmodes for the same set of linear simulations with kinetic
electrons presented in figure 4.1.

mean fee path λe/imfp (or collisionality ν∗e ∝ 1/λe/imfp) sets the characteristic parallel length
λ‖ of the eigenmodes.

To summarize, increasing collisionality leads to an increasing exponential decay rate
1/∆χ (∝ 1/λ‖) of the tail of the ballooning envelope. Given that a narrower tail, i.e.
with larger decay rate, is associated to broader radial fine-structures, one can therefore
see how collisions lead to broadening of the fine-structures in real space.

4.1.2 Effect of collisions in nonlinear simulations

In this subsection, the effects of collisions in nonlinear turbulence ITG simulations are
studied, in particular on the fine-structures associated to non-adiabatic passing electrons
and the self-interaction mechanism which are the primary interests of this work. Towards
this goal, a scan in collisionality ν∗e ∈ {0, 0.028, 0.276, 2.758} is performed, with the
physical parameters as given in table 4.1, modelling the same ITG dominant turbulent
regime as considered for the linear study. In this table, numerical parameters wherever
different from that in linear simulations have been given within parenthesis. The results
are presented in the following four subsections.

4.1.2.1 Effect of collisions on heat flux

In this subsection, the dependence of ion heat flux on collisionality, in nonlinear simulations
with kinetic and adiabatic electron response, is discussed.

In simulations with kinetic electrons, the gyro-Bohm normalised ion heat flux is found to
decrease with increasing collisionality, as shown in figure 4.8. In reference [Mikkelsen and
Dorland, 2008], this drop in heat flux with collisionality is attributed to the corresponding
reduction in the linear growth rates (discussed in section 4.1.1.1, see figure 4.1). In the
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Figure 4.7: (a) Ballooning envelope |Φ̂b(χ)| of the electrostatic potential Φ for the linear
eigenmodes considered in figure 4.1, with collisionality ν∗e = 0 (brown), 0.028(magenta),
0.276 (blue), 1.103 (red) and 2.758 (green). Thick lines indicate the respective best fits of
the form Ae−χ/∆χ. Zoom near χ = 0 is shown in the subset. (b) Inverse of characteristic
parallel scale length λ‖ = Rq0∆χ plotted as a function of the inverse of electron-ion mean
free path λmfp,e, both normalised by 1/qoR.

following, this statement is further justified by an analysis on the shearing rate associated
to E ×B zonal flows and a quasi-linear estimate on flux levels.

Shearing of turbulent eddies by zonal flows is a primary mechanism by which ITG
driven turbulence saturates [Biglari et al., 1990, Rosenbluth and Hinton, 1998, Lin et al.,
1998, Waltz et al., 1994]. The shearing rate associated to zonal flows for the consid-
ered nonlinear simulation scan on collisionality, is shown in figures 4.9(a-c). Following
the analysis in section 3.3, three different estimates of the effective shearing rate ωeff
(defined in Eq 3.2) have been defined: (a) time and system average of total shearing
rate RMSx,t(ωeff) =

(
〈ω2

eff 〉x,t
)1/2, (b) contribution from the stationary components,

RMSx(〈ωeff〉t) =
[
〈 ( 〈ωeff〉t )2 〉x

]1/2
and (c) contribution from fluctuating components

SDx,t(ωeff) =
[
〈 (ωeff − 〈ωeff〉t)2 〉x,t

]1/2
, all normalised by their corresponding maximum

linear growth rates. One can also recollect the relation (3.6) between the three estimates.
The plot of the shearing rate contribution from stationary structures for the case with
kinetic electrons in figure 4.9(b) shows an increase of 19% as collisionality increase from
ν∗e = 0 to 0.276, which then drops to an increase of only 13% between ν∗e = 0 and 2.758.
The corresponding ion heat flux plot in figure 4.8, on the other hand shows a monotonic
decrease over the full considered range of collisionality from ν∗e = 0 to 2.758. The
fluctuating zonal flows, which also play an important role in the saturation mechanism
(see the discussion on figure 3.8 in section 3.3), is found to show a negligible maximum
change of only 6% in figure 4.9(c). The total shearing rate estimate in figure 4.9(a) also
shows only a 5% maximum change over the considered range of collisionalities. These
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Figure 4.8: Time-averaged gyro-Bohm normalised ion heat flux Qi/QGB,i as a function of
collisionality ν∗e in simulations with kinetic (blue asterisks) and adiabatic (red asterisks)
electrons.

results suggest that turbulence saturation via zonal flows is less likely to be the primary
factor determining the steady state flux levels. The decrease in linear drive of turbulence
with increasing collisionality is therefore more likely to be the reason for the observed
decrease in turbulent fluxes.

To further verify that the decrease in linear growth rates with collisionality is indeed the
primary cause for the decrease in nonlinear heat and particle fluxes in kinetic electron
simulations, a rough quasi-linear estimate of the relative change in flux levels is performed.
Following the quasi-linear model in [Fable et al., 2009, Lapillonne et al., 2011], one has
the quasi-linear ion heat flux QQL,k⊥ ' A(γ/k⊥)ξ for each perpendicular wavenumber k⊥;
A is a constant, γ is the linear growth rate and ξ = 2 is a fitted parameter found from
comparisons with nonlinear fluxes (Note that, in various other quasi-linear estimates
[Jenko et al., 2005, Casati et al., 2009, Mariani et al., 2018], ξ typically ranges between 1
and 3. The following conclusions however still hold for ξ 6= 2). In the simplified estimate
performed here, one only considers that k⊥ρi ∼ kyρi ' 0.35 where the growth rate
γ = γmax, corresponding to the most unstable eigenmode, is observed (other choices of
ky and γ can be made for better quasi-linear estimates [Jenko et al., 2005, Casati et al.,
2009]). Furthermore, one assumes that A remains the same for different collisionalities.
In our turbulence simulations, one finds that the relative decrease in ion heat flux
from ν∗e = 0 to 0.276, i.e. [Qi(ν∗e = 0.276) − Qi(ν∗e = 0)]/Qi(ν∗e = 0) = −0.45 is
approximately the same as the corresponding decrease in the simplified quasi-linear
estimate [γ2

max(ν∗e = 0.276) − γ2
max(ν∗e = 0)]/γ2

max(ν∗e = 0) = −0.47. One can therefore
attribute the decrease in flux levels with increasing collisionality as a direct consequence
of the decrease in linear growth rates.

In simulations with adiabatic electrons, ion heat flux increases with increasing collisionality
as shown in figure 4.8. In this case, the relative increase in ion heat flux [Qi(ν∗e =
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Figure 4.9: Effective shearing rate ωeff associated to the zonal E ×B flows, normalised
to corresponding maximum linear growth rate γmax, as a function of collisionality ν∗e .
Blue asterisks denote kinetic electron simulations and red asterisks denote adiabatic
electron simulations. (a) Time and system average of total shearing rate estimated
with RMSx,t(ωeff) =

(
〈ω2

eff 〉x,t
)1/2. (b) Contribution from the stationary component,

RMSx(〈ωeff〉t) =
[
〈 ( 〈ωeff〉t )2 〉x

]1/2
. (c) Contribution from fluctuation component,

SDx,t(ωeff) =
[
〈 (ωeff − 〈ωeff〉t)2 〉x,t

]1/2
.

0.276) − Qi(ν∗e = 0)]/Qi(ν∗e = 0) = 0.13 is an order of magnitude higher than the
corresponding increase in the quasi-linear estimate [γ2

max(ν∗e = 0.276) − γ2
max(ν∗e =

0)]/γ2
max(ν∗e = 0) = 0.02. That is, the increase in the linear instability drive alone

cannot account for the increase in ion heat flux in nonlinear simulations. In fact, such
an increase in flux levels in nonlinear adiabatic electron simulations is attributed to an
increased zonal flow damping by collisions [Hinton and Rosenbluth, 1999, Lin et al.,
2000]. However, surprisingly, this expected monotonic decrease in zonal flow levels with
increasing collisionality is not reflected clearly in any of the shearing rate estimates of
ωeff shown in figure 4.9. While the shearing rate estimates at ν∗e = 2.758 in figures 4.9(a
and c) is approximately 10% smaller than that at ν∗e = 0, the intermediate values of
collisionality have shearing rate values larger than that at ν∗e = 0. Given that stationary
fine-structures are absent in adiabatic electron simulations, the non-zero shearing rates
associated to the stationary zonal flows seen in figure 4.9(b) are essentially the result of
statistical fluctuations, and will aproach zero if the simulations are run for longer times.

4.1.2.2 Effect of collisions on radial width of fine-structures

The increase in the radial width of fine-structures on linear kinetic electron ITG mi-
croinstability eigenmodes with increasing collisionality have already been discussed in
section 4.1.1.2. In this subsection, the effect of collisionality on the width of these
structures in the turbulent steady state of nonlinear simulations is explored.

A broader tail of the ballooning representation of an eigenmode reflects a radially narrower
fine structure in real space. It is therefore also possible to study the effect of collisionality
on the width of fine-structures associated to an eigenmode in nonlinear simulation by

103



Chapter 4. Effect of collisions and background shear flows on
non-adiabatic passing electron dynamics

χ/π
-6 -4 -2 0 2 4 6

|〈
Φ̂

b
〉 t
|

10-3

10-2

10-1

100

ν
∗

e = 0

ν
∗

e = 0.028
ν
∗

e = 0.276
ν
∗

e = 2.758

(a)

0 5 10 15 20 25 30

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

(b)

Figure 4.10: (a)Absolute value of the time-averaged ballooning structure of the elec-
trostatic potential normalised by its value at χ = 0, i.e. |〈Φ̂b(χ, t)/Φ̂b(χ0 = 0, t)〉t|, for
kx0 = 0 and kyρi = 0.35 in turbulence simulations with collisionalities ν∗e = 0 (brown),
0.028 (magenta), 0.276 (blue) and 2.758 (green). (b) Time and z averaged electrostatic
potential 〈|Φ̂ky |〉z,t plotted as a function of the radial coordinate x, for the same set of
simulations in sub-plot (a), and with the same colour labels.

comparing its ballooning representations across simulations with different collisionalities.
In fact, this analysis is analogous to the study on the nonlinear broadening of eigenmodes,
discussed in section 3.4.5. In figure 4.10(a), the absolute value of the time-averaged
ballooning representation of the electrostatic potential for kx0 = 0 and kyρi = 0.35 (same
as in figure 4.7), normalised by its value at χ = 0, i.e. |〈Φ̂b(χ, t)/Φ̂b(χ0 = 0, t)〉t|, is
plotted for the four different values of collisionalities considered. Contrary to the linear
result, a narrowing of the ballooning tails, corresponding to a radial broadening in real
space, is not observed with increasing collisionality. In fact a slight decrease in the
radial width is observed. This mismatch is a consequence of the linear coupling between
kx = kx0 + p2πŝky, p ∈ Z, in an eigenmode being significantly disrupted and dominated
by nonlinear couplings in a turbulent system for |p| ≥ 2.

To understand this further, one can study how good the linear phase difference along
the ballooning structure of an eigenmode is retained in a nonlinear simulation. Such an
analysis had already been done in section 3.4.5, in particular in figure 3.13, where the
quantity ∆φ(χ, t) = δφnl(χ, t)− δφlin(χ) measuring the deviation of the relative phase, at
the extended ballooning space coordinate χ, between the nonlinear and linear simulations
[see section 3.4.5 for the definition of δφnl(χ, t) and δφlin(χ)], was plotted as a function of
time for χ = 2π and 4π. In figure 4.11(a), similar plots are made for the eigenmode with
kx0 = 0 and kyρi = 0.35 in two nonlinear simulations corresponding to the two extreme
values of collisionalities considered here, i.e. ν∗e = 0 and ν∗e = 2.758. In this figure, one
can observe that the relative phase along the ballooning structure remains nearer to its
linear value in the case with ν∗e = 2.758 (as indicated by the corresponding plots more
closely adhering to one of the horizontal dashed lines representing phase differences that
are multiples of 2π), than in the case with no collisions. To quantitatively measure the
extend to which the linear phase difference along the ballooning structure is retained
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Figure 4.11: Phase difference ∆φ(χ, t) = (φ[(Φ̂b,nl(χ, t)/Φ̂b,nl(χ0 = 0, t))(Φ̂b,lin(χ0 =
0)/Φ̂b,lin(χ))]) plotted as a function of time. Here, Φ̂b,nl and Φ̂b,lin denote the ballooning
representation of the electrostatic potential in non-linear and linear simulations respec-
tively, for the eigenmode with kx,0 = 0 and ky,ρi = 0.35. Brown and green colours
represent simulations with collisionality ν∗e = 0 and 2.758 respectively, while thick and
thin lines represent χ = 2π and 4π respectively. (b) MOD(∆φ(χ, t)) plotted as a function
of collisionality ν∗e . Thick and thin lines represent χ = 2π and 4π respectively.

in nonlinear simulations, one can use the quantity MOD(∆φ(χ, t)), defined in equation
(3.16). To recall, smaller the value of MOD(∆φ(χ, t)), more strongly is the relative phase
difference fixed by the linear couplings, and for uniform random values of ∆Φ between −π
and π, one obtains MOD(∆φ(χ, t)) = 0.58π. In figure 4.11(b), MOD(∆φ(χ, t)) is plotted
as a function of collisionality ν∗e , for χ = 2π and 4π. From this figure, in general (with
the exception of the ν∗e = 2.758 data point for the case with χ = 2π), one could conclude
that the linear relative phase difference along the ballooning structure of an eigenmode
is more religiously maintained in turbulence simulations with larger collisionalities.

In figure 4.11(a and b) collisions have been shown to affect the nonlinear modification of
the eigenmodes, in particular leading to a decrease in the width of the fine-structures
with increasing collisionality. This can also be seen in figure 4.10(b), where the time
and z averaged absolute value of the electrostatic potential 〈|Φ̂ky |〉z,t for kyρi = 0.35 [see
equation (3.25) for the definition of Φ̂ky ] is plotted as a function of x. Only a part of the
radial domain is shown for better visualization. Each of the peaks is located at the radial
positions of the corresponding MRSs. For the collisionless case, these fine-structures
can be seen to be flatter, which then become more peaked as collisionality increases,
indicating a (slight) narrowing of the fine-structures with collisions.

A slight decrease in the width of fine-structures with increasing collisionality can be
further observed on the shearing rate associated to zonal flows, as seen in figure 4.12,
where the effective shearing rate ωeff is plotted as a function of the radial coordinate x
for different collisionalities.
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Figure 4.12: (a) Radial profile of the time-averaged effective shearing rate 〈ωeff〉t in
simulations with collisionalities ν∗e = 0 (brown), 0.028 (magenta), 0.276 (blue) and 2.758
(green). (b) Zoom of the same plot near x = 0.

4.1.2.3 Effect of collisions on parallel correlation

In section 4.1.1.2, it was shown that the characteristic parallel length scale λ‖ associated
to the ballooning representation in linear microinstability modes is predominantly de-
termined by the electron-ion mean free path λe/imfp [see figure 4.7(b)]. From figure 4.10
it is already clear that such a conclusion does not hold in turbulence simulations as
nonlinear mode couplings dominate and deform the linear mode structure, in fact leading
to a slight decrease in the exponential decay rate (increase in λ‖) of the tails of the
ballooning structure with increasing collisionality ν∗e (decreasing 1/λe/imfp). However it still
remains to be explored if the parallel correlation length of turbulent eddies in nonlinear
simulations, which is not necessarily measured by λ‖, is set by the electron mean free
path, i.e. collisionality. This is addressed in this subsection.

In reference [Ball et al., 2020] it was shown that turbulence feedback at low order MRSs
(turbulent eddies ’biting their tails’) can lead to greater correlation of turbulent eddies
along the magnetic field line compared to radial locations away from low order MRSs.
A two point correlation function C‖ measuring the degree of correlation between the
parallel coordinates z1 and z2 on the same field line (i.e. for fixed x and y) was defined
as

C‖(x, y, z1, z2) = 〈ΦNZ(x, y, z1, t)ΦNZ(x, y, z2, t)〉t√
〈Φ2

NZ(x, y, z1, t)〉t〈Φ2
NZ(x, y, z1, t)〉t

(4.1)

where the subscript NZ signifies the non-zonal component such that ΦNZ = Φ−〈Φ〉y,z. In
figure 4.13(a), 〈C‖(x = 0, y, z1 = 0, z2)〉y denoting the y-averaged correlation between the
outboard midplane z1 = 0 and z2, at the lowest order MRS x = 0, is plotted as a function
of z2, for nonlinear simulations with different collisionalities. One can observe that the
width of the correlation function along z decreases with increasing collisionality. To
quantify this dependence, let ∆z be the width along the parallel coordinate z defined such
that 〈C‖(x = 0, y, z1 = 0, z2 = ∆z)〉y is 0.8 times its max value at z2 = 0, approximately
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Figure 4.13: (a) y-averaged parallel correlation 〈C||(x = 0, y, z1 = 0, z2)〉y of turbulent
eddies between the outboard midplane at z1 = 0 and z2, as a function of z2, at the
radial position x = 0 corresponding to lowest order MRS. Simulations with collisionalities
ν∗e = 0 (brown), 0.028 (magenta), 0.276 (blue) and 2.758 (green) are shown. ∆zC||
measures the width along z where 〈C||(x = 0, y, z1 = 0, z2, t)〉y,t = 0.8. (b) Inverse of
the parallel correlation length LC‖ = q0R∆zC‖ plotted as a function of inverse of the
electron-ion mean free path λe/imfp, both normalised by q0R.

measuring the full width at half maximum. To convert this angular width to a parallel
length scale LC‖ , one can again (as in section 4.1.1.2) multiply it with q0R to get
LC‖ = q0R∆zC‖ . In figure 4.13(b), it is shown that LC‖ does not scale linearly with
the electron mean free path. In fact, it is found that LC‖ scales weakly with λe/imfp, as
LC‖ ∼ (λe/imfp)0.05, implying that the parallel correlation length of turbulent eddies is not
predominantly set by collisionality. The same conclusion holds for radial locations away
from LMRSs as well.

4.1.2.4 Effect of collisions on self-interaction mechanism

In this subsection, the effects of collisions on the self-interaction mechanism in nonlinear
simulations is explored using some of the diagnostics presented in chapter 3, namely the
normalised self-interaction contribution to Reynolds stress, the bicoherence analysis and
the correlation analysis between the various ky contributions to Reynolds stress.

Recalling from section 3.4.5, ∂2 ˆRSsi
ky/∂x

2 defined in equation (3.18), measures the self-
interaction contribution to Reynolds stress from a given ky. The time average of the self
interaction contribution to Reynolds stress normalised by the RMS over time of the total
Reynolds stress contribution, i.e. 〈∂2R̂Ssi

ky/∂x
2〉t/RMS(∂2R̂Sky/∂x2), simultaneously

measures the relative importance of the self-interaction drive of zonal flows with respect
to the total contribution to Reynolds stress drive from the considered ky, as well as how
good its sign is fixed at each radial position over time, which is a characteristic feature of
the self-interaction mechanism. In figure 4.14(a), R = 〈∂2R̂Ssi

ky/∂x
2〉t/RMS(∂2R̂Sky/∂x2)
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Figure 4.14: (a) Time-average of the self-interacting contribution to Reynolds stress
normalised with respect to the RMS in time of the total contribution, i.e. R =
〈∂2R̂Ssi

ky/∂x
2〉t/RMS(∂2R̂Sky/∂x2), plotted as a function of the radial coordinate x

for kyρi = 0.21. (b) Maximum of R along the radial coordinate x, plotted as a function
of kyρi. Results in turbulence simulations with collisionalities ν∗e = 0 (brown), 0.028
(magenta), 0.276 (blue) and 2.758 (green) are shown.

for kyρi = 0.21 (related to a significant contribution to the electrostatic field energy |Φ|2
and ion heat flux ky-spectra) in turbulence simulations with the different considered
collisionalities is plotted as a function of the radial coordinate x over the distance
∆xMRS = 1/ky ŝ between MRSs, with x = 0 the position of a corresponding MRS. As
already discussed in section 3.4.5, the nonlinear broadening mechanism radially widens
these structures to essentially a sinusoid with a period ∆xMRS. It is found that the
normalised measure R becomes more significant with increasing collisionality, with the
exception of the collisionless case, for the case of kyρi = 0.21 considered in figure 4.14(a).
To study the dependence of R on all kys, its maximum in x is plotted as a function
of ky in figure 4.14(b). The peak of these plots, measuring the maximum ’intensity’ of
self-interaction as measured by the normalised self-interaction contribution to Reynolds
stress R, is found to increase with increasing collisionality.

The bicoherence estimate BN (k; k′) defined in equation (3.21) in section 3.4.6 measures
the strength of the resonant interaction between any turbulence Fourier mode k = (kx, ky)
with the zonal mode k′ = (k′x, 0) via the wave-vector matched daughter modes k′′ = k−k
and k′′′ = k + k. In figure 4.15(a) and (b), BN (k; k′) is plotted as a function of kx and
ky, for the zonal mode k′ = (k′xρi = 0.31, 0) [having a significant contribution to the
kx-spectra of effective zonal shearing rate ωeff ] in turbulence simulations with (a) no
collisions and (b) collisionality ν∗e = 2.758. Clearly, with collisions, the bicoherence levels
are higher. To quantify the increase in the bicoherence levels with collisions, the average
of BN (k; k′) over kx and ky, i.e. 〈BN (k; k′)〉kx,ky is plotted in figure 4.15(c) as a function
of ν∗e . Recollect from section 3.4.6 that higher bicoherence levels are characteristic
of increased zonal flow drive from the modulational instability mechanism, while the
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Figure 4.15: The bicorence level BN (k = (kx, ky),k′) plotted as a function of kx and
ky, for the zonal mode k′ = (k′x, 0) with k′xρi = 0.31, in turbulence simulation with (a)
no collisions and (b) collisionality ν∗e = 2.758. (c) Average bicoherence level 〈BN 〉kx,ky
plotted as a function of collisionality ν∗e .

self-interaction contribution to Reynolds stress from the different kys are uncorrelated
with each other and random in time, leading to lower levels of bicoherence. Hence, the
increase in 〈BN (k; k′)〉kx,ky with collisionality suggests that collisions weaken the self-
interaction mechanism, contrary to the conclusion of the analysis based on the normalised
self-interaction contribution to Reynolds stress discussed in the previous paragraph.

In figure 4.16(a), the normalised correlation CRS[∂2RS/∂x2] between the ky modes of
Reynolds stress contributions as defined in equation (3.23) is plotted as a function
of x for turbulence simulations with different collisionalities. And in figure 4.16(b),
the corresponding radial average 〈CRS[∂2RS/∂x2]〉x is plotted as a function of ν∗e . It
is found that the normalised correlation between the ky modes of Reynolds stress
contributions, as measured by CRS[∂2RS/∂x2], increases with increasing collisionality.
This is consistent with the conclusion based on the bicoherence analysis, that collisions
weaken the (incoherent) self-interaction drive mechanism and lead to a relative dominance
of the (coherent) modulational instability mechanism.

Note that the diagnostic based on the normalised self-interaction contribution to Reynolds
stress (in figure 4.14) estimates the relative self-interaction contribution independently
for a single ky. The analysis based on the time-averaged ballooning structure (in
figure 4.10(a)) and the relative phase evolution (in figure 4.11) also provide insight
related to key properties (see section 3.4.5) ensuring a strong self-interaction contribution
independently for each ky. The results from these three diagnostics (referred to as the
first set) suggest that with increasing collisionality, the eigenmodes retain more of their
linear characteristics in turbulence simulations. Given that higher RMS amplitudes of
physical quantities (|Φ|2 for instance) in turbulence simulations is indicative of a system
being more nonlinear, it is natural to expect simulations with higher collisionalities
having less unstable linear eigenmodes, and therefore less RMS amplitudes of physical
quantities, to be less nonlinear.

109



Chapter 4. Effect of collisions and background shear flows on
non-adiabatic passing electron dynamics

x/ρi
-60 -40 -20 0 20 40 60

C
R
S
[∂

2
R
S
/∂

x
2
]

0.02

0.04

0.06

0.08

0.1

0.12
ν
∗

e = 0

ν
∗

e = 0.028
ν
∗

e = 0.276
ν
∗

e = 2.758

ν
∗

e

0 0.5 1 1.5 2 2.5

〈C
R
S
[∂

2
R
S
/∂

x
2
]〉
x

0.02

0.04

0.06

0.08

0.1

Figure 4.16: (a) Correlation CRS between the ky modes of Reynolds stress contributions
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0.028 (magenta), 0.276 (blue) and 2.758 (green). (b) Radial average of the correlation
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The second set of diagnostics consisting of the bicoherence analysis (in figure 4.15) and
the analysis based on the correlation between the different ky contributions to Reynolds
stress (in figure 4.16), measures the collective effect of self-interaction from multiple kys,
i.e., these diagnostics also account for how the different kys compete with each other to
drive zonal flows via self-interaction.

A priori it may appear that there is a contradiction of results from these two sets of
diagnostics with the first set of diagnostics suggesting that the effect of self-interaction
from each ky increases with increasing collisionality, while the second set of diagnostics
suggesting that the total effect of self-interaction from the multiple kys decreases with
increasing collisionality. However, it should be noted that the number of significant
ky modes participating in turbulence and how nonlinear the system is could also play
a significant role in determining the total effect of self-interaction. This can be ex-
plained using the following thought experiment: As one increases collisionality, the linear
eigenmodes become less unstable. Now, consider a nonlinear system with high enough
collisionality such that effectively the microturbulence is driven by a single unstable
eigenmode having a particular ky. In such a system, the self-interaction contribution from
this particular ky is localised near its MRSs. Whereas in a more nonlinear system with
a larger number of unstable ky modes, the corresponding self-interaction contributions
located at respective MRSs tend to be present all through the radial extent (since the
MRSs of eack ky are mis-aligned in the radial coordinate) as shown in figures 3.4(a).
One thus concludes that under conditions for which the system is less nonlinear, as is
the case with high collisionality, the bicoherence analysis and the correlation between
the various ky contributions to Reynolds stress show a decrease in the total effect of
self-interaction. To further substantiate this point, in the following subsection, a parallel
is drawn between increasing collisionality and decreasing background drive gradient.
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Figure 4.17: ky spectra of |Φ|2 in simulations with R/LT,i = 6 (blue) and 4 (green).
Other parameters are the same as in table 3.1.

Parallel between increasing collisioanality and decreasing R/LT,i

The arguments presented in the previous paragraph can be verified by performing
simulations close to marginal stability where a reduced number of unstable ky modes
contribute towards turbulence while also retaining more of their linear characteristics.
In figure 4.17, the ky spectra of |Φ|2 in simulations with R/LT,i = 6 and 4 are shown
with the latter being close to marginal stability. These are the same set of collisionless
kinetic electron simulations presented in chapter 3 with parameters given in table 3.1.
Indeed, for the case with R/LT,i = 4, a reduced number of kys contribute significantly
towards turbulence, with kyρi = 0.245 contributing a large fraction of the total fluctuation
energy. Therefore, in the corresponding plot of zonal flow shearing rate ωE×B,ion shown
in figure 4.18(b), one can see significant stationary structures at the corresponding MRSs
separated by a distance ∆xLMRS = 1/ŝky = 5.10ρi. Whereas in the case far from marginal
stability, i.e. for R/LT,i = 6, the stationary self-interaction contributions from the larger
number of kys, being radially mis-aligned, tend to cancel each other out between lowest
order MRSs.

The average bicoherence level 〈BN (k; k′)〉kx,ky in these simulations far and near from
marginal stability are 0.113 and 0.160 respectively. The corresponding correlation levels
〈CRS[∂2RS/∂x2]〉x are 0.006 and 0.011 respectively. Both these diagnostics indicate that
the total effect of self-interaction decreases as one moves closer to marginal stability. This
provides a validation to the hypothesis that total self-interaction is weaker in a system
with less number of significant ky contributions despite the fact that the eigenmodes
retain more of their linear characteristics.

4.1.3 Conclusions

The effect of collisions on the non-adiabatic passing electron dynamics has been studied in
this work using both linear and nonlinear gyrokinetic simulations. In linear simulations,
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Figure 4.18: ωE×B,ion as a function of x and t in simulations with (a) R/LT,i = 6 and
(b) 4. Other parameters are the same as in table 3.1.

the weakening of the non-adiabatic electron drive of ITG microinstability with collisions,
which has already been reported in [Mikkelsen and Dorland, 2008], has been shown to
be a consequence of the increased adiabatic like response of electrons away from MRSs.
In addition, it is found that the characteristic parallel length scale associated to the
ballooning envelope tail of the eigenmodes is set primarily by the electron-ion mean
free path. This in turn leads to an increase in the radial width of the fine-structures
with increasing collisionality. The decrease in the linear drive of the microinstability
with increasing collisions leads to a corresponding decrease in the heat and particle
flux levels in nonlinear simulations. However the radial width of fine-structures in
nonlinear simulations is not found to show any increase with increasing collisionality
as the width of these structures are predominantly set by the nonlinear broadening
mechanism. Furthermore, the parallel correlation length of the turbulent eddies is not
found to be set by collisionality. Finally, the effect of collisions on the self-interaction
mechanism is studied. The diagnostics measuring the total effect of self-interaction
(and modulational instability) from the multiple kys simultaneously suggests that total
self-interaction decreases with increasing collisionality. The final conclusion is that for
physically relevant values of collisionality in the core, the effect of non-adiabatic passing
electrons, in particular the self-interaction mechanism, remains significant.

4.2 Effect of background shear flow on non-adiabatic pass-
ing electron dynamics

Experimental measurements have shown that background E×B shear flows are essential
to the formation of transport barriers in both the tokamak core and edge [Tresset et al.,
2002], and significantly reduce turbulent transport levels [Burrell, 1997, Conway et al.,
2000]. It is therefore crucial towards enabling H-mode confinement in tokamaks [Wagner,
2007]. Numerical studies have revealed that this transport suppression is caused by the
perpendicular component (to the background magnetic field) of the flow shear while
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the parallel component is known to drive the so-called parallel velocity gradient (PVG)
instability [Waltz et al., 1998, Peeters and Angioni, 2005, Casson et al., 2009, Barnes
et al., 2011].

Another effect of background flow shear on turbulence is the formation of soliton-like
travelling structures. In presence of finite background shear flows, avalanche or burst-
like structures drifting in a specific radial direction have been observed in gyrokinetic
simulations [van Wyk et al., 2017, McMillan et al., 2018]. With strong enough background
shear flows, the linear drive of turbulence from instabitities such as ITG can get suppressed.
In such linearly stable systems, given a large enough perturbation, the plasma can be
pushed into a subcritical state with non-zero turbulence levels [Casson et al., 2009, Roach
et al., 2009, McMillan et al., 2009, van Wyk et al., 2016]. Recent studies have reported
the presence of coherent travelling structures in these sub-critical states [Pringle et al.,
2017, van Wyk et al., 2017, McMillan et al., 2018].

Background shear flow can therefore have significant effects on turbulence. However,
since the interaction between the two involves multiple feedback loops, it is often not
straightforward to predict these effects [Burrell, 1997]. Most of these studies on the
effect of background flow shear on ion scale turbulence in tokamaks have been done
using gyrokinetic simulations considering adiabatic electron response. In this section,
a preliminary study on the effect of back-ground shear flow on non-adiabatic electron
response, in particular on the associated fine-structures is carried out.

Simulation set-up: The simulation parameters are the same as those in table 4.1, with
no collisions and kinetic electrons. A scan in the shearing rate S associated to the
background flow is performed over a range 0 ≤ SR/vth,i ≤ 1. The background shearing
rate S is defined as

S = −r0
q0

∂Ωtor
∂x

, (4.2)

where ∂Ωtor/∂x is the radial derivative of the toroidal angular velocity. Note that the
background flow is set to be purely toroidal [Told, 2012].

Effect on heat flux: In figure 4.19, the time-averaged gyro-Bohm normalised ion heat
flux is plotted as a function of the background shearing rate S, showing a decrease with
increasing value of S. This is in general consistent with the results in references [Barnes
et al., 2011, McMillan et al., 2019] where a scan has been performed for a similar set of
parameters, but with adiabatic electrons.

Effect on zonal fine-structures: The zonal fine structures, discussed in section 3.2, are
found to persist even in presence of background shear flows. See figure 4.20, where the
time-average of the shearing rate ωE×B,ion associated to the perturbed zonal flows [defined
by equation (3.1)] are plotted with solid lines, as a function of the radial coordinate x.
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Figure 4.19: Time averaged and gyro-Bohm normalised ion heat flux Qi plotted as a
function of background flow shearing rate SR/vth,i.

Figure 4.20: Solid lines indicate time averaged shearing rate ωE×B,ion associated with
perturbed zonal flows as a function of the radial coordinate x. Simulations with four
different values of background flow shearing rate SR/vth,i = 0 (brown), 0.1 (black), 0.5
(green) and 1.0 (blue) are shown. Corresponding standard deviation of ωE×B,ion are also
shown with dashed lines.

The amplitudes of the peaks at lowest order MRSs can be seen to decrease with increasing
value of S. The standard deviation of ωE×B,ion, measuring the fluctuating component of
zonal flows, are also plotted in figure 4.20, denoted by dashed lines. Note that the ratio
of the peak values of the time average with respect to the standard deviation remains
approximately constant (' 1) across the simulations being considered.

Avalanche-like structures on perturbed zonal flows: For a more qualitative study, the (x, t)
profile of ωE×B,ion is plotted in figure 4.21, for each of the four values of background
shear flow considered. In these plots, radially propagating fronts or avalanches, discussed
in reference [McMillan et al., 2009], can be clearly observed. As S increases, these
structures preferentially travel in a specific radial direction. The radial velocity (3.25,
3.20, 2.15 and 0.68, in units of vth,iρi/R) of these structures is also found to decrease
with increasing values of background shear (SR/vth,i = 0, 0.1, 0.5 and 1 respectively).
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Figure 4.21: (x, t) color plot of the shearing rate ωE×B,ion associated with perturbed
zonal flows in simulations with background flow shearing rate SR/vth,i of (a) 0, (b) 0.1,
(c) 0.5 and (d)1.0 .

Furthermore, compared to the cases with SR/vth,i = 0, 0.1 and 0.5, the radial width of
the avalanche-like structures for the case with SR/vth,i = 1.0 is found to be significantly
larger.

Soliton like propagating density structures: The avalanche-like zonal structures also
correspond to soliton-like radially drifting density perturbations. This can be seen
in figures 4.22 and 4.23. In figure 4.22, the shearing rate ωE×B,ion for the case with
SR/vth,i = 0.5 is shown over a time window corresponding to the initial stage of
turbulence evolution where only one prominent avalanche-like structure has been formed.
In figure 4.23, the density perturbation at the outboard midplane z = 0 is shown for
three different time snaps. In each of these density pertbation plots, structures having a
specific periodicity in y (with kyρi ' 0.3) can be seen. The wavefronts of these structures
correspond to the radial locations of the avalanche-like zonal structures seen in figure 4.22.
These density structures appear to be very similar to the simple advecting structures
reported in reference [McMillan et al., 2018].

In summary, the fine-structures associated to non-adiabatic passing electrons persist
even in presence of finite background shear flow. The turbulent flux-levels decreases with
increasing values of background shearing rate, and radially propagating structures are
seen, similar to the results obtained with adiabatic electrons.
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Figure 4.22: (x, t) color plot of the shearing rate ωE×B,ion associated with perturbed
zonal flows in the simulation with background flow shearing rate SR/vth,i = 0.5 . The
horizontal dashed lines denote the times tvth,i/R = 144.6, 149.8 and 154.2 .

Figure 4.23: Electron density perturbation n1 at the outboard midplane in the simulation
with background flow shearing rate SR/vth,i = 0.5, at times tvth,i/R (a) 144.6, (b) 149.8
and (c)154.2 .
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5 Conclusions

5.1 Summary

In this thesis, the effect of non-adiabatic passing electrons on microturbulence in the
tokamak core has been studied using the flux-tube version of the Eulerian gyrokinetic
code GENE.

As a result of the non-adiabatic passing electron dynamics, linear ITG and TEM eigen-
modes can become significantly extended along the magnetic field lines, generating
fine radial structures at corresponding MRSs. These fine structures on the eigenmodes
persist in turbulence simulations as well, and via non-linear coupling lead to stationary
corrugations on the radial profiles of density, temperature and in particular E ×B zonal
shear flows, aligned with low order MRSs. Given that shearing and decorrelation of
turbulent eddies by zonal flows is a primary mechanism by which turbulence saturates, the
generation of these fine scale zonal flow structures, via a process called the self-interaction
mechanism, was studied in detail.

Self-interaction essentially involves each individual microturbulence eigenmode interacting
non-linearly with itself to produce a Reynolds stress contribution to the zonal flow drive,
which is located around its corresponding MRSs. At low order MRSs, these self-interaction
contributions to Reynolds stress from the different eigenmodes radially align and add up
constructively to drive the stationary E ×B zonal shear flows, whereas between the low
order MRSs, these contributions to Reynolds stress related to the various microturbulence
modes tend to be radially misaligned. These radially misaligned contributions to Reynolds
stress drive zero stationary zonal shear flow but a non-zero fluctuating zonal shear flow
component between low order MRSs. These fluctuating zonal flows are found to play a
significant role in the zonal flow turbulence saturation mechanism.

An important finding of this thesis is that the self-interaction contributions to Reynolds
stress act as random decorrelated kicks that can in some cases disrupt the zonal flow
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drive via modulational instability mechanism. Unlike self-interaction, it is a coherent
process, leading to correlated contributions from the various microinstability modes to
the Reynolds stress drive of zonal modes.

As a consequence of the decorrelated self-interaction contribution from the various
microturbulence modes, the associated shearing rate of the fluctuating zonal flows is
observed to decrease as more toroidal modes are resolved in the simulation. In flux-tube
simulations accounting for the full toroidal domain, such an increase in the density of
toroidal modes corresponds to an increase in the system size, leading to a finite system
size effect that is distinct from the well-known profile shearing effect. The observed
scaling of E × B shearing rate with the spectral density of toroidal modes has been
explained based on simple statistical arguments.

For the practical purpose of running flux-tube simulations, it is also possible for one to
view this system size effect resulting from self-interaction as a numerical convergence
issue. In reference [Ball et al., 2020], a detailed analysis is presented on how to most
efficiently remove the effects of self-interaction so as to achieve the true flux-tube limit of
ky,minρi → 0. This may be done by increasing the simulation box size to span multiple
poloidal turns instead of one.

How collisions and background shear flow may modify the effect of non-adiabatic passing
electrons was also investigated in this thesis.

With collisions, linear growth rate of ITG microinstability was found to weaken as
a consequence of the increased adiabatic-like response of electrons away from MRSs.
Furthermore, the shortened electron mean free path in presence of collisions was shown
to lead to a radial broadening of the fine-structures associated to ITG eigenmodes. The
decrease in the linear drive of the microinstability with increasing collisions leads to
a corresponding decrease in the heat and particle flux levels in nonlinear turbulence
simulations. Furthermore, as a result of dominant nonlinear effects, a radial narrowing
of the fine-structures is observed in turbulence simulations, along with an increase in the
parallel correlation length of turbulent eddies.

In presence of finite background shear flow, the fine-structures associated with the
non-adiabatic passing electron response were found to persist. The turbulent flux-levels
decrease with increasing values of background shearing rate, and radially propagating
soliton-like structures are seen, similar to the results obtained with adiabatic electrons in
previous studies [Barnes et al., 2011, McMillan et al., 2019, van Wyk et al., 2017, Pringle
et al., 2017, McMillan et al., 2018].

All these studies, including the investigations on the effect of collisions and background
shear flow, show that self-interaction is a robust and ubiquitous feature of plasma
turbulence in tokamaks. The results obtained as part of this work using simulations
close to the Cyclon Base Case suggest that the effect of self-interaction in determining
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the turbulent transport levels is significant only for small to medium size tokamaks
(ρ∗ & 1 · 10−1). Whereas the stationary fine-structures associated with self-interaction at
rational surfaces are found to persist even for large tokamaks (ρ∗ . 1 · 10−1). Repeating
these studies in more realistic geometries and in other turbulence regimes such as TEM,
ETG, MTM, KBM etc. (as also discussed in the outlook below) can help one obtain
a better understanding of the effect of self-interaction. In particular, checking for the
effects of self-interaction in ITER/DEMO scenarios could also be insightful to the fusion
community.

5.2 Outlook

In this thesis, the effects of non-adiabatic passing electrons have been studied with the
help of flux-tube simulations. In particular, in chapter 3, the self-interaction mechanism
associated with non-adiabatic passing electrons has been shown to lead to a system size
effect. However, note that in flux-tube simulations the other finite ρ∗ effects, such as
profile shearing [Waltz et al., 1998, Waltz et al., 2002] and effect of finite radial extent of
the unstable region [McMillan et al., 2010], are missing. Therefore, in order to study how
self-interaction competes with other finite ρ∗ effects, global simulations can be used (or
local simulations that treat these other finite ρ∗ effects explicitly such as in [Candy et al.,
2020]). Using global simulations, a scan in ρ∗ can be carried out and the results can be
compared with the results from the ky,minρi scan obtained using flux-tube simulations
in chapter 3. Since finding such system size effects and predicting the correct turbulent
scaling laws are crucial towards designing future larger tokamaks such as ITER and
DEMO, it is important to carry forward studies on the effect of non-adiabatic passing
electron dynamics and the self-interaction mechanism.

While the effects of collisions and finite background shear on the fine structures related
to non-adiabatic passing electrons have already been addressed in chapter 4, one can
pursue this study for electromagnetic turbulence in finite β plasmas, or on electron scale
turbulence. The presence of fine-structures at the MRSs of Kinetic Ballooning Modes
(KBMs) and Microtearing Modes (MTMs) have already been reported in references
[Falchetto et al., 2003] and [Doerk, 2012] respectively. One can persue these studies
to find the effect of self-interaction on electromagnetic turbulence. Many instances
of the cross scale interactions between electron and ion scale turbulence have already
been reported [Görler and Jenko, 2008, Maeyama et al., 2015, Howard et al., 2016].
Furthermore, studies such as [Maeyama et al., 2017] have shown that short wavelength
zonal flows produced by non-adiabatic passing electron dynamics, can affect electron
scale turbulence. Given that self-interaction generates the stationary E ×B zonal shear
layers with radial extents of the order of few ion Larmor radius at low order MRSs, it will
be worthwhile to carry out electron-ion multiscale simulations to explore the associated
cross-scale interactions further.
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Finally, these effects of non-adiabatic passing electrons found using gyrokinetic simulations
should be verified by experimental measurements. In reference [Dif-Pradalier et al., 2015]
for instance, a high-resolution fast-sweeping X-mode reflectometer has been used to
measure the radial correlation length of fluctuations in the Tore Supra Tokamak. The
minimas of these radial correlation lengths have then been identified as the radial positions
of E×B staircases. An important pre-requirement in measuring the fine stationary zonal
structures on density and temperature profiles at MRSs, which have a width of only
a few Larmor radius, is that the measurement diagnostic should have sufficiently high
radial resolutions. The Toroidal Phase Contrast Imaging (TPCI) and the Correlation
Electron Cyclotron Emission (CECE) diagnostics available at the TCV tokamak, with
radial resolutions of less than a mm, might be able to identify these structures.
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A Local flattening of gradients be-
tween lowest order MRSs

In this appendix, the possibility of local flattening of effective gradients between Lowest
order Mode Rational Surfaces (LMRSs) as a means to explain the increase in flux levels
with decreasing ky,minρi observed for the kinetic electron runs (see figure 3.7), is explored.

The time-averaged gradient of density and temperature perturbations is found to present
a net steepening of these gradients at the radial positions near LMRSs. For example, see
the flux-surface and time averaged perturbed density gradient plots in figure A.1 for the
reference ITG driven turbulence simulations presented in table 3.1, with ky,minρi = 0.035
and 0.0175. Note that the gradient of background density dn0/dx has a negative sign.
Therefore, positive and negative values of the y-axis quantity (dδn/dx)/(n0/LN ) in
figure A.1 represent respectively a flattening and steepening of the effective density
profile n = n0 + δn. Furthermore, a value of (dδn/dx)/(n0/LN ) = 1 implies a fully flat
effective density profile n. In figure A.1, one can indeed see that the x-average of the
perturbed density gradient fine-structures near the LMRSs (i.e. averaged over the pink
shaded region), is negative, representing a steepening of the gradients. Given that the
total x-average of the quantity (dδn/dx)/(n0/LN ) over the entire Lx domain is zero, this
implies a flattening of the total gradients between LMRSs (in the white region). In other
words, one could say that the fine structures at LMRSs, including the intense shearing
associated to zonal flows (see figure 3.5), constitute mini local transport barriers, which
then sustain reduced effective gradients between LMRSs.

Assuming that the time and flux-surface averaged fine-structures at LMRSs of density
and temperature gradients remain approximately the same in their amplitudes and radial
widths across simulations with different ky,minρis, the associated steepening of gradients
near each LMRS also remains the same. However, as the radial density of LMRSs
decreases with decreasing ky,minρi, the net flattening of the gradients between LMRSs
decreases. This is illustrated in figure A.2. Since the the fine-structures at LMRSs occupy
an ever smaller fraction of the radial domain as ky,minρi and the density of LMRSs
decreases, the dynamics between LMRSs will more dominantly determine the turbulence
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Figure A.1: Flux-surface and time-averaged relative density gradients (dδn/dx)/(n0/LN )
for cases with (a) ky,minρi = 0.035 and (b) ky,minρi = 0.0175. Horizontal dotted black
lines indicate the average relative density gradient in the (white) region between the fine
structures (pink) at LMRSs.

levels. Hence, as ky,minρi decreases, the less flattened gradients between LMRSs can
drive a larger turbulence flux. This could then potentially explain the observed increase
in flux levels with decreasing ky,minρi. In the following, this hypothesis is tested.

In figure A.1, x-average of the flux-surface and time averaged perturbed density gradient
[in units of the background gradient] in the region between LMRSs (white region)
is indicated with horizontal dashed lines. For the case with ky,minρi = 0.0175, the
flattening of the gradients between LMRSs is indeed lesser than that observed for the
case with ky,minρi = 0.035. However, for all values of ky,minρi ∈ {0.0175, 0.035, 0.07, 0.07}
considered, it is found that the average change in the local perturbed density and
temperature gradients between LMRSs (white region) is less than 10% and 1% of the
background gradients of density and ion temperature respectively.

From figure A.3, which is the result of a linear simulation scan over density and tempera-
ture background gradients, one could see that the ±10% and ±1% change in the gradients
as indicated by the vertical dotted lines lead only to less than ±5% change in growth rates
of the most unstable ITG eigenmodes. Furthermore, from figure A.4, which is the result
of a corresponding nonlinear scan, one could see that the ±10% and ±1% change in the
gradients corresponds to only a ±12% and ±5% change in the ion heat flux, respectively.
Therefore, the flattening of the effective profiles between LMRSs at most plays a minor
role in explaining the ∼ 150% increase in ion heat flux as ky,minρi is decreased from 0.14
to 0.0175 (shown in figure 3.7). The fact that the nonlinear simulations with altered
background gradients presented in figure A.4 themselves also contain fine structures at
LMRSs and non-zero changes in effective local gradients between them is acknowledged.
It is however not expected to lead to a different conclusion.
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Figure A.2: Density profiles (thick black line) with exaggerated modifications resulting
from mini-transport barriers at LMRSs, for the same cases as in Fig. A.1. Dotted lines
denote the position of LMRSs and pink regions denote the extent of fine structures
at LMRSs. Thin black lines denote the background density. Note that there is lesser
local flattening in the (white) region between fine structures at LMRSs in the case with
ky,minρi = 0.0175 than in the case with ky,minρi = 0.035.
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Figure A.3: Growth rate [cyan] versus logarithmic (a) density and (b) temperature
background gradients for linear runs corresponding to the nonlinear runs considered.
Vertical dotted lines indicate ±10% and ±1% change in the density and temperature
gradients, respectively, while horizontal dotted lines indicate the corresponding changes
in growth rates.
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Figure A.4: Ion heat flux versus logarithmic (a) density and (b) temperature background
gradients. Except for the changes in the background gradients, all parameters are kept
the same as in Table 3.1. Vertical dotted lines indicate ±10% and ±1% changes in the
density and temperature gradients respectively, while horizontal dotted lines indicate the
corresponding change in heat fluxes.
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B Flux-surface-averaged poloidal
momentum conservation equation

Zonal flows are linearly stable and are driven by microinstability modes via the quadratic
E × B non-linearity in the gyrokinetic equation [Diamond et al., 2005]. In order to
identify and analyze the different possible mechanisms driving zonal flows and to study
their statistical properties, it is useful to identify a physical quantity that can then be
used as a proxy for estimating the zonal flow drive. In this appendix, justification is
provided for considering the Reynolds stress, more specifically the off-diagonal component
〈ṼxṼχ〉 of the Reynolds stress tensor resulting from the combination of fluctuating E×B
flow components in the radial and poloidal directions, as this proxy for the non-linear
drive of zonal flows.

In subsection B.1, an approximate evolution equation for the shearing rate ωE×B as-
sociated to E × B zonal flows is derived so as to identify the nonlinear driving terms,
in particular the Reynolds stress term. Before analysing the full nonlinear zonal flow
evolution equation, it is first validated in the linear limit, on the output of a Rosenbluth-
Hinton test. This is done in section B.2. Following which, in section B.3, the relative
importance of the nonlinear terms are illustrated by analysing the evolution equation on
the output of a full turbulence simulation.

B.1 Derivation in GENE flux-tube model

An approximate evolution equation for the shearing rate ωE×B associated to E × B
zonal flows can be obtained from the radial conservation equation for the gyrocenter
charge density, which in turn is is obtained by taking the appropriate velocity moment
and flux-surface average of the gyrokinetic equation [Abiteboul, 2012]. Note that, while
a global "full-f" model is considered in reference [Abiteboul, 2012], here the derivation
is done in the local (flux-tube) limit in "delta-f" representation as modelled in GENE.
Further, this derivation is done in the electrostatic limit, invoking mi � me, and making
use of the quasi-neutrality equation in the long wave-length limit (correct to second order
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Appendix B. Flux-surface-averaged poloidal momentum conservation
equation

in k⊥ρi).

One starts from the gyrokinetic equation for the perturbed distribution function given
by equation (2.51). In the GENE field aligned (x, y, z) coordinates, in the electrostatic
limit (β → 0, A1‖ → 0, and B∗0‖ → B0), it becomes [for more details, see the derivation
leading up to equation (2.62) in reference [Lapillone, 2010]]:

− ∂

∂t
f1j = 1

Cγ1
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∂f0j
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, (B.1)

where C = B0/|∇x×∇y|, γ1 = g11g22−(g12)2, γ2 = g11g23−g12g13, γ3 = g12g23−g22g13,

Γα,j =∂f1j
∂α
− qj
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,
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(
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∂B0
∂z

)
.

Here, Ā denotes the gyro-average of any perturbed quantity A.

The under-(square)bracketed terms in Eq. B.1 cancel out since the background distribution
f0j is considered to be a local Maxwellian of the form:

f0j(x, z, v‖, µ) =
(

mj

2πT0j(x)

) 3
2

n0j(x) exp
(
−
mjv

2
‖/2 + µB0

T0j(x)

)
, (B.2)
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with

∂f0j
∂z

= − µ

T0j
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f0j ,

∂f0j
∂v‖

= −
mjv‖
T0j

f0j . (B.3)

The second last term in equation (B.1) can be neglected since microinstabilities tend to
align with the magnetic field (k‖ � k⊥), and hence ∂/∂z ’parallel’ derivatives of perturbed
quantities are ignored. To obtain the radially local gyrokinetic density conservation
equation, we perform a velocity space integration, in which process the last term in
equation (B.1) cancels out. Finally, we perform a flux-surface average, defined as
〈·〉f.s. = 〈·〉yz =

∫
·Jxyzdydz/

∫
Jxyzdydz. A total of six linear terms average out to zero

in this process, as indicated in Eq. B.1. Furthermore, a contribution to the non-linear
term will also cancel in this process:

∂Φ̄1
∂x

Γy,j −
∂Φ̄1
∂y

Γx,j =∂Φ̄1
∂x

∂f1j
∂y
− ∂Φ̄1

∂y

∂f1j
∂x

=− ∂

∂x

(
∂Φ̄1
∂y

f1j

)
+ ∂

∂y

(
∂Φ̄1
∂x

f1j

)
︸ ︷︷ ︸

=0; f.s. avg.

.

With the perturbed gyrocenter density defined as

n1j = 2π
∫
f1jJvdv‖dµ, (B.4)

where Jv = B∗0‖/mj is the phase space Jacobian from particle to guiding-center coordinates
(B∗0‖ → B0 in the electrostatic limit considered here), we obtain:
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The perturbed gyrocenter charge density is defined as ρ1j = qjn1j . Now, using equation
(B.3), and the relation Cγ1 = B2

0/C, Eq. B.5 can be written as:
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where the neo-classical contribution N , related to curvature and ∇B drifts, is defined as:

N = −
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.

Note that f0j as appearing in the above equation is not a function of x in the flux-tube
limit.

The perturbed gyrocenter charge density term on the LHS of equation (B.6) can be split
into two parts as follows:

∑
j

ρ1j =
∑
j

2πqj
∫
f̄1jJvdv‖dµ+

∑
j

2πqj
∫ (

f1j − f̄1j
)
Jvdv‖dµ (B.7)

To find an appropriate expression for the first term in the RHS of equation (B.7), we
make use of the quasi-neutrality equation:∑

j

n1jqj = 0. (B.8)

Note that here n1j is the perturbed particle density expressed in particle coordinates
[not to be confused with the perturbed gyrocenter density n1j defined in equation (B.4)].
The particle density can itself then be expressed in terms of gyrocenter variables [see
equation (2.57)]:

n1j = n1gj + n1pj , (B.9)

where n1gj is the perturbed ’gyro-density’ defined as

n1gj = 2π
∫
f̄1jJvdv‖dµ (B.10)

and n1pj is the ’polarization density’, which in the long wavelength limit (correct to
second order in k⊥ρj), can be approximated by the differential operator:

n1pj ' ∇⊥ ·
(
n0jmj

qjB2
0
∇⊥Φ

)
. (B.11)

Using equations (B.8)-(B.11), we obtain a useful expression for the first term on the RHS
of equation (B.7):

∑
j

2πqj
∫
f̄1jJvdv‖dµ = −

∑
j

∇⊥ ·
(
n0jmj

B2
0
∇⊥Φ

)
. (B.12)

In the long wavelength limit (correct to second order in k⊥ρj), the gyro-averaging operator
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can be expressed as

Ā '
[
1 + 1
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Using this approximation, the second term in equation (B.7) can be expressed as:

∑
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where P1⊥j = 2π
∫
f1jµB0dv‖dµ is the presuure perturbations perpendicular to B0.

Now, using equations (B.7), (B.12) and (B.14), and the relation ∇2
⊥ ' gxx∂2/∂x2 +

2gxy∂2/∂x∂y + gyy∂2/∂y2, the LHS of equation (B.6) becomes:
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where
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Ωj (not to be confused with the larmor frequency) represents the vorticity associated
to zonal flows and is closely related to the typical definition of zonal flow shearing rate
ωE×B ' (1/B0)∂2〈Φ1〉yz/∂x2 [Dominski et al., 2015] (by approximating gxx ' 1 and
neglecting the z dependence of B0, we obtain ωE×B ' ΩjB0/(n0jmj)). The term Πj is
a perpendicular pressure perturbation term related to lowest order finite larmor radius
effects.

Following a similar procedure as for handling the LHS of equation (B.7), the first term
in the RHS of Eq. B.6 can be split into two parts:
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C

∂

∂x

〈
B0
mj

∫
∂Φ̄1
∂y

f1jdv‖dµ

〉
yz

=
∑
j

2πqj
C

∂

∂x

〈
B0
mj

∂Φ1
∂y

∫
f̄1jdv‖dµ

〉
yz

+
∑
j

2πqj
C

∂

∂x

〈
B0
mj

∫ (
∂Φ̄1
∂y

f1j −
∂Φ1
∂y

f̄1j

)
dv‖dµ

〉
yz

.

(B.16)

Using equation (B.12), and performing some algebraic manipulations, the first term on
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the RHS of equation (B.16) becomes:

∑
j

2πqj
C

∂

∂x

〈
B0
mj

∂Φ1
∂y

∫
f̄1jdv‖dµ

〉
yz

=−
∑
j

n0jmj

C
∂

∂x

〈 1
B2

0

∂Φ1
∂y
∇2
⊥Φ1

〉
yz

=−
∑
j

∂2

∂x2Rj (B.17)

where Rj = (n0jmj/C)RS and the Reynolds stress contribution RS is defined as

RS =
〈 1
B2

0

∂Φ1
∂y

(
gxx

∂Φ1
∂x

+ gxy
∂Φ1
∂y

)〉
yz

.

Using the long wavelength approximation of the gyro-averaging operator given in equation
(B.13), and performing some algebraic manipulations, the second term on the RHS of
equation (B.16) becomes:

∑
j

2πqj
C

∂

∂x

〈
B0
mj

∫ (
∂Φ̄1
∂y

f1j −
∂Φ1
∂y

f̄1j

)
dv‖dµ

〉
yz

= −
∑
j

mj

2qjC
∂

∂x

〈 1
B2

0

(
∇2
⊥Φ1

∂P1⊥j
∂y

+ ∂Φ1
∂y
∇2
⊥P1⊥j

)〉
yz

= −
∑
j

∂2

∂x2Pj (B.18)

where Pj is defined as

Pj = mj

2qjC

〈 1
B2

0

(
gxx

∂Φ1
∂x

∂P1⊥j
∂y

+ 2gxy ∂Φ1
∂y

∂P1⊥j
∂y

+ gxx
∂Φ1
∂y

∂P1⊥j
∂x

)〉
yz

.

Pj can be identified as a finite larmor radius correction term to the Reynolds stress term.

Note that terms Ωj , Πj , Rj and Pj are proportional to mj . Therefore, in the limit of
mi � me, and assuming that there is only one ion species denoted by index ’i’, equation
(B.6), using the results from equation (B.15) - (B.18), becomes:

∂

∂t
(Ωi + Πi) = ∂2

∂x2 (Ri + Pi)︸ ︷︷ ︸
non−linear terms

+ ∂

∂x
N . (B.19)
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B.2 Testing validity in linear case: Rosenbluth-Hinton test

The Rosenbluth-Hinton test [Rosenbluth and Hinton, 1998] computes the linear evolution
of a zonal mode. Using analytic calculations, starting from the gyrokinetic equation in
the electrostatic and collisionless limit, an initial zonal perturbation can be shown to
undergo Geodesic Accoustic Mode (GAM) [Winsor et al., 1968] oscillations, which get
damped to a residual level, as:

〈Φ(t)〉
〈Φ(0)〉 = (1−AR)e−γGt cos(ωGt) +AR,

where 〈Φ(t)〉 is the flux-surface averaged electrostatic potential measured at time t, ωG
and γG are the GAM frequency and damping rate respectively, and AR is the residual,
which for the circular geometry, takes the form

AR = 1
1 + 1.6q2

0/
√
r/R

, (B.20)

with q0, r and R being the local safety factor, local minor radius and the major radius
respectively.

Here, the validity of the poloidal momentum conservation equation (B.19) is tested
on the output of a Rosenbluth-Hinton test, considering adiabatic electrons. For this
test, the electrostatic and collisionless limit is considered, and the evolution of a zonal
mode (kxρi = 0.05, ky = 0) is chosen so that the long wavelength approximation
(k⊥ρi � 1) under which equation (B.19) is derived, is valid. The ad-hoc circular
geometry is considered, with q0 = 1.427, ε = r/R = 0.18, and ŝ = 0.847, along with
numerical resolutions Nz×Nv‖ ×Nµ = 32×256×32. The resulting flux-surface averaged
electrostatic potential normalised by its initial value, i.e. 〈Φ(t)〉/〈Φ(0)〉, is plotted in
figure B.1(a), where one can observe the initial GAM oscillations relaxing towards the
residual AR = 0.12. In figure B.1(b), the time evolution of the linear terms in the poloidal
momentum conservation equation (B.19) are plotted, where a good match is obtained
between the LHS and RHS, thereby justifying the validity of this equation in the linear
limit. It is interesting to note that the contribution from the perpendicular gyrocenter
pressure term ∂Πi/∂t is negligible in this case.

B.3 Testing validity in non-linear case: Turbulence simu-
lation

In this subsection, the validity of the poloidal momentum conservation equation (B.19)
is checked for a full turbulence simulation. The output of the kinetic electron simulation
with R/LT,i = 6 and ky,minρi = 0.07, considered in the ky,minρi scan in chapter 3 (whose
other parameters are given in table 3.1), is considered here as well. In figure B.2, the
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Figure B.1: Results of Rosenbluth-Hinton test. (a) Solid black line represents the flux-
surface averaged electrostatic potential normalised by its initial value, i.e. 〈Φ(t)〉/〈Φ(0)〉,
plotted as a function of time. Dashed green line represents the residual, defined in
equation(B.20). (b) Solid black line, yellow dashed line and dotted red line represent the
terms ∂Ω/∂t, ∂Π/∂t and ∂N/∂x terms repectively, plotted as a function of time.

various terms in equation (B.19) are plotted in the (x, t) plane, after filtering out the
kxρi > 0.5 and kyρi > 0.5 contributions. This post-diagnostic filtering was done so as
to only retain fluctuations verifying the long wavelength limit (k⊥ρi � 1) under which
equation (B.19) was derived. In these figures, a good match is obtained between the LHS
and RHS of equation (B.19). Unlike in the Rosenbluth-Hinton test, the contribution from
the ∂Π/∂t term is non-negligible, but is still lower than that of ∂Ω/∂t, approximately by
a factor 1/3. The neoclassical term ∂N/∂x is found to be a dominant contribution to the
RHS. However, being a linear term, the neoclassical term only accounts for the damping
of zonal flows. The zonal flows are in fact driven via the non-linear terms, the second
radial derivatives of the Reynolds stress R and the pressure term P. The amplitudes
of both these nonlinear terms are found to be comparable. An interesting observation
is that there is a phase (sign) reversal between the neoclassical term and the Reynolds
stress term. As mentioned in section 3.4.1, the positive correlation value [defined by
equation (3.9)] of 0.37 between the shearing rate term Ω and the Reynolds stress term
∂2R/∂x2 justifies considering the Reynolds stress term ∂2R/∂x2 as a proxy for the drive
of zonal flows. For corresponding adiabatic electron simulations (not shown here), the
correlation is as high as 0.77.
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Figure B.2: Results of turbulence simulation, plotted in the (x, t) plane. (a) LHS of
equation (B.19): ∂Ω/∂t + ∂Π/∂t, (b) ∂Ω/∂t, (c) ∂Π/∂t, (d) Ω, (e) RHS of equation
(B.19): ∂2R/∂x2 + ∂2P/∂x2 + ∂N/∂x, (f) ∂2R/∂x2, (g) ∂2P/∂x2 and (h) ∂N/∂x.
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C Local linear dispersion relation
for analysing effect of collisions
on ITG eigenmodes
In reference [Dominski et al., 2015], an analysis based on a local dispersion relation
has been used to demonstrate the destabilising effect of non-adiabatic passing electron
dynamics near MRSs and to estimate the radial size of the resulting fine-structures.
In this appendix, the same analysis is extended to include collisional effects, with the
aim of understanding the radial broadening of the fine-structures with collisions in
ITG eigenmodes, observed in linear GENE flux-tube simulations with Landau collision
operator as presented in section 4.1.1.2. A BGK-like collision operator [Bhatnagar et al.,
1954] is chosen here to model collisions, following the approach presented in reference
[Angus and Krasheninnikov, 2012]. In section C.1, first the validity of this simplified
operator is tested for drift wave instability by comparing it with the full linearised
Coulomb operator presented in reference [Jorge et al., 2018]. Section C.2 then addresses
whether the resulting dispersion relation can be used to explain the radial broadening of
the fine-structures with collisions.

C.1 Testing validity of the BGK-like collision operator

Similar to the analysis in reference [Angus and Krasheninnikov, 2012] based on slab
geometry for drift wave modes, electrons are considered to be governed by the drift-kinetic
equation with a BGK-like collisions operator:

∂fe
∂t

+ vE · ∇fe + v‖∇‖fe + e

me
∇‖Φ

∂fe
∂v‖

= −ν(fe − fM,e), (C.1)

where fe is the gyrophase independent electron distribution function and the Maxwellian
distribution function is defined as fM,e = Neexp[−v2/(2v2

Th,e)]/(2πv2
Th,e)3/2, with vTh,e =√

Te/me. Note that fM,e is not a fixed stationary background distribution but a
Maxwellian with density ne = n0,e + n1,e and temperature Te = T0,e + T1,e corre-
sponding to the total values containing both the background and fluctuation contri-
butions. The collision frequency ν is defined as 0.51/τe, where the electron collision
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time τe = 3√meT
3/2
0,e /4

√
2e4n0,elnΛ and lnΛ ' 10 is the Coulomb logarithm [Braginskii,

1965]. The collision operator −ν(f − fM ) represents the loss of electron momentum
me

∫
v‖fedv to ions due to a difference in the electron and ion mean velocities. Since the

electron-electron energy exchange rate is of the same order as electron-ion momentum
exchange rate, this collision operator also approximates the collisional relaxation of
electrons with themselves. The thermal energy exchange of electrons with ions is ignored
since it is smaller than ν approximately by a factor me/mi.

To obtain the perturbed form of the distribution function from equation (C.1), one can
perform the analysis mentioned in section 2.5.1 leading up to equation (2.73), but in
this case, for electrons, in the slab geometry (1/LB = 0, ωD,e = 0), in the limit of drift
kinetics (k⊥ρe � 1), and with collisions. The resulting perturbed distribution function
is:

f̂1,e =
eΦ1
T0,e

(k‖v‖ − ω∗e)f0,M,e − iνf̂1,M,e

k‖v‖ − ω + iν
, (C.2)

where ω∗e = ωN,e[1 + ηeT0,e(∂/∂T0,e)], ωN,e = kyT0,e/eB0LN , ηe = LN/LT,e, f0,M,e is the
background Maxwellian and the linearised Maxwellian f̂1,M,e is given by:

f̂1,M,e =
[
n̂1,e
n0

+ 1
2

(
v2

v2
th,e

− 3
)
T̂1,e
T0,e

]
f0,M,e. (C.3)

Now, the electron density perturbation n̂1,e can be found in terms of the potential
perturbations Φ̂1 by taking the zeroth and second order velocity moments of equation
(C.2) and carrying out some algebraic manipulations, similar to that given in the Appendix
of reference [Angus and Krasheninnikov, 2012], to remove the temperature perturabtions
T̂1,e. Note that, while in reference [Angus and Krasheninnikov, 2012] only a background
density gradient is considered, in this analysis, a gradient in the background temperature
is also considered in order to model either ITG or TEM modes. One thus obtains:

n̂1,e
n0

= eΦ̂
T0,e


[
1 +

(
α+ ωN,e

2
√

2vth,ek‖
ηe − ω∗e√

2vth,ek‖

)
Z(α)

]
A+ iν√

2vth,ek‖

(
ω̃∗eα√

2vth,ek‖
− 1

2

)
B[

1 +
(
α− ω√

2vth,ek‖

)
Z(α)

]
A+ iν√

2vth,ek‖

(
ωα√

2vth,ek‖
− 1

2

)
B

 ,
(C.4)

where Z(α) = (1/
√
π)
∫∞
−∞ exp(−x2)/(x− α)dx is the plasma dispersion function, α =

(ω + iν)/(
√

2vth,ek‖), A = 3/2 + iνZ(α)/
√

2vth,ek‖, ω̃∗e = ωN,e(1 + ηe/2) and B =
α+ (α2 − 1/2)Z(α). Note that the ∂/∂T0,e operator in ω∗e acts only on Z(α).

For ions, the density response n̂1,i =
∫
f̂1,id

3v can be found using equation (2.73) for the
slab geometry ωD,i = 0 [details on the derivation for a more general case can be seen in
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reference [Brunner, 2014], leading up to equation (1.18)]:

n̂1,i
n0

= −qiΦ̂
T0,i

{
1 +

(
1− ω∗i

ω

)[
W

(
ω

k‖vth,i

)
− 1

]
e−(kyρi)2

I0(k2
yρ

2
i )
}
, (C.5)

whereW (x) = (x/
√

2)Z(x/
√

2)+1 and I0 is the modified Bessel function of first kind and
of order 0. The finite ion Larmor radius effects are captured by the term e−(kyρi)2

I0(k2
yρ

2
i ),

which if needed to be neglected, can be replaced with 1 (limit of kyρi � 1, correct to
zeroth order in kyρi).

A dispersion relation with the BGK-like collision operator can then be obtained from
the quasi-neutrality equation qin̂1,i + en̂1,e = 0, where the perturbed electron and ion
density responses are given by equations (C.4) and (C.5) respectively, which can be
solved for ω ∈ C as a function of ky and k‖. In figure C.1, the growth rate γ = Imag[ω]
is plotted as a function of ky and k‖ for four different values of collisionality, with
T0,e/T0,i = 100, mi/me = 1836 and ηi,e = 0, considering the case of drift wave instability.
The ion FLR effects are neglected by setting e−(kyρi)2

I0(k2
yρ

2
i ) = 1; in fact it is found to

have a negligible effect on ω. The collision rate ν is normalised as νR = νLN/cs, ky is
normalised as kyρs and k‖ is normalised as k‖LN , so that a direct comparison can be
made with figure 1 in reference [Jorge et al., 2018], which is obtained with the same set
of parameters and reproduced here as figure C.2. In reference [Jorge et al., 2018] (and
therefore in figure C.2), a drift-kinetic moment hierarchy model is considered with a full
linearised Coulomb (∼ Landau) collision operator, which is then used to study the effect
of collisions on the drift wave instability, having the parameters considered before, at
arbitrary collisionalities.

Note that, unlike the full Coulomb collision operator, the BGK-like operator considered
in this study is a very simple approximate collision operator. However, despite the many
limitations of the considered BGK-like collision model, including that it does not account
for ion-ion collisions, corresponding results (figure C.1) are found to match surprisingly
well with the ones obtained with the full Coulomb collision operator (figure C.2). Two
qualitative properties remain consistent across the results obtained with the two different
collision operators: one, as collisionality ν increases, the maximum growth rate over
all (k‖, ky) decreases, and two, as ν increases, the k‖ at which this maximum growth
rate occurs increases. The growth rate γ as a function of k‖ for two different values
of ky is shown in figure C.3(a), for both collision operators, for the case with νR = 1.
Quantitatively, the growth rates between the two collision operators are found to differ by
a maximum of ∼ 20%. This can also be seen in figure C.3(b), where the maximum of the
growth rates over all ky and k‖ are plotted as a function of collisionality. As collisionality
decreases, the difference in the growth rate between the two collision operators becomes
smaller, with both the cases correctly approaching the collisionless limit.
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Figure C.1: Normalised growth rate γLN/cs of the drift wave instability as a function
of kyρs and k‖LN , obtained as solutions of the dispersion relation with the BGK-like
collision operator, for four different values of collisionality νR = 0.05, 1, 10 and 500 (from
left to right) and with T0,e/T0,i = 100, mi/me = 1836 and ηi,e = 0. The dispersion
relation essentially results from the quasi-neutrality equation involving perturbed electron
and ion density responses given in equations (C.4) and (C.5) respectively.

Figure C.2: Normalised growth rate γLN/cs of the drift wave instability as a function
of kyρs and k‖LN , obtained as solutions of the linearized moment hierarchy model with
a full linearised Coulomb collision operator presented in reference [Jorge et al., 2018].
Four different values of collisionality are considered: νR = 0.05, 1, 10 and 500 (from left
to right), in the cold-ion limit with mi/me = 1836. This figure is a replica of figure 1 in
reference [Jorge et al., 2018].
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Figure C.3: (a)Solid lines represent normalised growth rate γLN/cs as a function of k‖LN ,
obtained as solutions of the dispersion relation with the BGK-like collision operator,
with νR = 1 and for kyρs = 0.996 (black colour) and 1.727 (orange colour). The plots
are the k‖LN traces in the νR = 1 plot in figure C.1, at the respective kys. Dashed lines
represent the same for the linearised moment hierarchy model with the full Coulomb
collision operator, corresponding to k‖LN traces in figure C.2. (b) Black line represents
the maximum normalised growth rate γLN/cs over all ky and k‖, as a function of νR,
obtained as solutions of the dispersion relation with the BGK-like collision operator.
Dashed red line plots the same for the linearised moment hierarchy model with the full
Coulomb collision operator. Dotted yellow line represents collisionless limit for reference.

C.2 Analysing the effect of collisions on the radial width
of fine-structures

In reference [Dominski et al., 2015], an analysis based on a local dispersion relation has
been used to estimate the radial width of fine-structures at MRSs related to non-adiabatic
passing electron response, in a toroidal system. In this subsection, the same analysis is
extended to include collision al effects, using the BGK-like collision operator discussed in
the previous subsection.

Testing different electron models in the collisionless case

To begin with, the local dispersion relation in the collisionless case is considered. For
both electrons and ions, the perturbed density response is given by

δn̂1,j =
∫
f̂1,j d

3v, (C.6)
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where f̂1,j is the perturbed distribution function of species j obtained in equation (2.73).
For ions, one thus obtains,

n̂1,i
n0,i

= −qiΦ̂1
T0,i

[
1−

∫ ∞
−∞

d3vJ2
0

(
k⊥v⊥

Ωi

)
ω − ω∗i

ω − k‖v‖ − ωD,i
f0,i
n0,i

]
. (C.7)

Note that, unlike the slab case considered in the previous subsection, here the toroidal
geometry is considered in view of studying the toroidal ITG instability relevant to the
main studies in chapters 3 and 4. The effects of toroidicity manifests itself in the local
dispersion relation as a finite contribution ωD,j 6= 0 from the grad-B and curvature
drifts for any species j. The passing electron contribution can be separated out by
considering appropriate limits for the velocity integrals in equation (C.6). For the passing
contribution, the limits are

∫
pas d

3v = 2π
∫∞
−∞ dv‖

∫ v⊥,c
0 where v⊥,c = v‖/ tanφv is the

critical perpendicular velocity above which the electrons are trapped [see figure 1.2(a)].
Since the passing electrons are moving fast successively over the favorable and unfavorable
sides of the poloidal plane with a transit frequency much higher than the typical ITG/TEM
frequencies, one may average the passing electron density response over the poloidal
coordinate so that the drift frequency ωD,e gets averaged to 0. For the passing electrons,
one thus obtains [see equation (3.8) in [Dominski, 2016]]:

n̂1,e,pass
n0,e

= (1− αt)
eΦ̂1
T0,e

{
1−

(
1− ω∗e

ω

)[
1−

W (ω/k‖vth,e)− αtW (ω/(k‖vth,eαt))
1− αt

]}
,

(C.8)

where αt is the average fraction of trapped particles. This passing slab-like electron
response is labelled as PassKinE.

For the trapped electrons, one considers a bounce-averaged kinetic response mentioned
in equation (2.79) and illustrated in detail in reference [Brunner, 1997]:

n̂1,e,trap
n0,e

= αt
eΦ̂1
T0,e

[
1 +

(
1− ω∗e

ω

)
[z2
beW (zbe)]

]
, (C.9)

where zbe = sign(ωϕe)
√

2ω/ωϕe, ωϕe = n〈ϕ̇〉v2
th,e/E ' 1, E = (v2

⊥ + v2
‖)/2 is the kinetic

energy and n〈ϕ̇〉 is the toroidal precession drift frequency. This bounce averaged trapped
kinetic electron response is labelled as TrapKinE.

The dispersion relation can be obtained from the quasi-neutrality equation:

qi
δn̂1,i
n0,i

− eδn̂1,e,pass
n0,e

− eδn̂1,e,trap
n0,e

= 0, (C.10)

which when solved gives ω ∈ C as a function of k‖ and ky. In figure C.4, the solid blue
line, labelled as PassKinE+TrapKinE, represents the growth rate γ and real frequency ωr
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Figure C.4: (a) Normalised real frequency ωrR/vth,i and (b) growth rate γR/vth,i as a
function of k‖Rq0, obtained as solutions of the local dispersion relation in collisionless
limit, considering different electron models. Green, red, solid dark blue, dashed light
blue and magenta represent the adiabatic, hybrid, PassKinE + TrapKinE, SimPassKinE
+ TrapKinE and SimPassKinE electron models respectively. Physical parameters are
the same as that given in table 3.1 and kyρi = 0.3.

obtained from the dispersion relation (C.10) for kyρi = 0.3, where the density responses
are given by equations (C.7), (C.8) and (C.9). The physical parameters given in table 3.1
are considered, leading to a toroidal ITG type instability. For comparison, the results
with adiabatic and hybrid electron response are also shown with green and red lines,
labelled as AdiabaticE and HybridE, respectively. For the adiabatic electron case, one
considers n̂1,e/n0,e = n̂1,e,pass/n0,e + n̂1,e,trap/n0,e = eΦ̂1/T0,e and for the hybrid case one
considers adiabatic passing electron response n̂1,e,pass/n0,e = (1−αt)eΦ̂1/T0,e along with
the bounce averaged kinetic response of the trapped electrons given in equation (C.9).
The plots corresponding to these three different electron models, shown in figure C.4, are
the same as that in figure 6(a) of reference [Dominski et al., 2015].

The wave vector of a Fourier mode with poloidal and toroidal mode numbers m and n
respectively is given by k = m∇χ + n∇ϕ. Its component parallel to the background
magnetic field B0 is then given by

k‖ = k · B0
B0

= B0 · ∇χ
B0

[m+ nqs(x)] = B0∇ · ϕ
B0qs

[m+ nqs(x)] ' 1
Rqs

[m+ nqs(x)],

(C.11)

having used qs = B0 · ∇ϕ/B0 · ∇χ. As one approaches the MRS where q0 = qs(x0) =
−m/n, the parallel wave number k‖ → 0 (and the condition [ωr/k‖ � vth,e] for adiabatic
electron response is clearly violated). Note that the growth rate corresponding to the
PassKinE+TrapKinE case in figure C.4 is higher than those of the HybridE and AdiabaticE
cases as k‖ → 0, which clearly illustrates the destabilising effect of non-adiabatic passing
electron response near MRS.
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Since the passing electron kinetic response considered in equation (C.8) is essentially slab
like after having set ωD,e = 0, one may further simplify it as a product of the passing
electron fraction (1− αt) and the electron response in the slab limit, i.e.

n̂1,e,pass
n0,e

= (1− αt)
n̂1,e,slab
n0,e

. (C.12)

where the density response in the slab geometry, in the collisionless case, is given by,

n̂1,e,slab
n0,e

= eΦ
T0,e

{
1−

(
1− ω∗e

ω

) [
1−W (ω/k‖vth,e)

]}
. (C.13)

Note that n̂1,e,slab/n0,e is the same as equation (C.4) in the limit of no collisions, i.e.
ν = 0. In figure C.4, the solution of the dispersion relation (C.10), where the density
responses are given by equations (C.7), (C.12), (C.13) and (C.9), is shown using dashed
light blue line and labelled as SimPassKinE+TrapKinE. The result matches well with
the PassKinE+TrapKinE case, except for slight deviations in the intermediate values of
k‖Rq0 considered.

The dispersion relation can be simplified again for the case of ITG instability by con-
sidering the kinetic response of trapped electron to be passive [Dominski et al., 2015].
This is justified in figure C.4, where the solutions of the dispersion relation (C.10) with
the density responses given in equations (C.7), (C.12) and (C.13), and with no trapped
electron contribution (n̂1,e,trap/n0,j = 0), is plotted. The result, shown with solid magenta
line and labelled as SimPassKinE, matches well with the cases SimpPassKinE+TrapKinE
and PassKinE+TrapKinE where the kinetic trapped electron response is also considered.

Modelling the effect of collisions in local dispersion relation

Having justified the use of the simplified slab-like passing electron response SimPassK-
inE instead of the full kinetic electron response (SimPassKinE+TrapKinE and PassK-
inE+TrapKinE), one can now easily model the effect of collisions in the dispersion
relation (C.10), by considering the electron response given in equation (C.12), but with
n̂1,e,slab/n0,e given by equation (C.4) which models collisions with the BGK-like collision
operator. For the ion density response, equation (C.7) is used and the trapped electron
response is assumed to be passive. The resulting dispersion relation with the BGK-like
collision operator can be considered to solve for ω ∈ C a a function of ky and k‖. In
figure C.5, the growth rates and real frequencies thus obtained are plotted as a function
k‖, for kyρi = 0.3, for a range of collisionalities [νc is the GENE collisionality defined in
equation (2.99)]. The same physical parameters as those given in table 3.1 are considered.
Even with finite collisionality, the maximum growth rate is still observed at k‖ = 0,
similar to that observed in the case with no collisions. It is interesting to note that
for lower values of collisionality considered, two different branches of eigenmodes are
observed in the limit of k‖ → 0 and k‖ & 0.04, reflected by the discontinuity in the
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Figure C.5: (a) Normalised real frequency ωrR/vth,i and (b) growth rate γR/vth,i as a
function of k‖Rq0, obtained as solutions of the dispersion relation with the BGK-like
collision operator, considering the SimPassKinE electron model, for kyρi = 0.3, for
different values of collisionality νc.

growth rate and real frequency at k‖Rq0 ' 0.04, and that as collisionality is increased,
these branches merge into one.

In figure C.6, the growth rate and real frequency are plotted as a function of collisionality
νc, for the case with k‖Rq0 = 0.001 (practical limit of k‖ → 0). One observes a
decrease in growth rates with increasing collisionality, similar to that observed in linear
GENE simulations (see figure 4.1) for the same set of physical parameters. To be more
quantitative, as νc increases from 0 to 0.01, the growth rate in GENE simulations drop
by roughly 40%. Recollecting from section 4.1.1.1, this decrease in the growth rate in
GENE simulations is a result of collisions leading to (de-)trapping of electrons and as a
result, trapped electrons responding adiabatically. In the collisionless local dispersion
relation results shown in figure C.4(b), this corresponds to the ∼ 50% decrease in growth
rate γ from the HybridE electron model result which considers non-adiabatic trapped
electron response, to the fully AdiabticE electron result.

However, in figure C.6(b) the corresponding drop is only approximately 1%. That is, the
analysis based on the local dispersion relation, modelling collisions with the BGK-like
collision operator, is not able to quantitatively predict the drop in growth rates with
increasing collisionality.

Estimating the radial width of fine-structures

One now proceeds to find if the radial width of fine-structures can be predicted using
the analysis based on the local dispersion relation, explaind in the following.

Taylor expanding the relation for k‖ in equation (C.11), around x0 to first order in the
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Figure C.6: (a) Normalised real frequency ωrR/vth,i and (b) growth rate γR/vth,i as a
function of collision frequency νc, obtained as solutions of the dispersion relation with the
BGK-like collision operator, for k‖Rq0 = 0.001, considering the SimPassKinE electron
model. Physical parameters are the same as those given in table 3.1 and kyρi = 0.3.

small deviation x = x− x0, one has

k‖(x) ' ŝky
q0R

x, (C.14)

having used the linearised safety factor qs(x) ' q0(1 + ŝx/r0), ky = −nq0/r0 and
B0 · ∇ϕ ' B0/R. Using this definition of k‖(x), the width of the fine-structure (which
is a result of non-adiabatic passing electron dynamics) can be approximated from
figures C.4(a) and C.5(a) as that x where |ωr/k‖(x)vth,e| = 1, i.e. where the adiabatic
electron approximation (valid in the limit |ωr/k‖(x)vth,e| � 1) breaks down. This
approach is found to be valid in the collisionless limit [Dominski et al., 2015]. The same
estimation for the radial size of the fine-structures is used in the case with collisions
as well, and corresponding results are plotted in figure C.7 with green triangles. The
actual radial width of fine-structures, estimated as the full width at half maximum of
the z-averaged absolute value of the electrostatic potential 〈|Φ|〉z, in corresponding linear
GENE simulations are also plotted as black crosses. While for the collisionless case
(νc = 0) there is a good agreement in the radial width between the local dispersion
relation based estimate and the GENE result, they are seen to diverge as νc increases.

However, it should be noted that the condition for adiabatic electron response
|ωr/k‖(x)vth,e| � 1 is true only in the collisionless limit. In the fluid description, assuming
electrons to be isothermal on a magnetic surface, the linearised continuity and parallel
force balance equation can be written as

∂n1,e
∂t

= −n0,e∇‖v1,e

men0,e
∂ve,1
∂t

= −T0,e∇‖n1,e + en0,e∇‖Φ1 −men0,eν(v1,e − v1,i), (C.15)

where the friction force term −men0,eν(v1,e − v1,i) measures the rate of momentum loss
from electrons to ions due to collisions. Identifying ∂/∂t ∼ ωr and ∇‖ ∼ k‖, under the
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Figure C.7: Green triangles represent the radial width of the fine structures estimated
as that x where |ωr/k‖(x)vth,e| = 1. Yellow asterisks represent the radial width of
the fine structures estimated as that x where |ω|[(1 + ν2/ω2)0.25]/k||vth,e = 1. Blue
circles represent the radial width of the fine structures estimated as that x where
γ = [γ(k‖(x)Rq0 = 1 · 10−3) + γ(k‖(x)Rq0 = 4 · 10−1)]/2. In all the above cases, x is
related to k‖(x) via the relation x = k‖(x)q0R/ky ŝ. ωrand γ are solutions of the dispersion
relation with the BGK-like collision operator, considering the SimPassKinE electron
response. Black crosses represent the full width at half maximum of the z-averaged
absolute value of the electrostatic potential 〈|Φ|〉z) in linear GENE simulations. In all
cases, physical parameters are the same as that given in table 3.1

condition |ωr/k‖vth,e| � 1, the left hand side of equation (C.15) can be neglected. The
solution of the resulting equation, in the collisionless limit ν → 0 indeed gives the adiabatic
electron response ne,1 = n0,e(eΦ1/T0,e). Whereas in the case of finite collisionality ν 6= 0,
the condition |ωr/k‖vth,e| � 1 no longer gives an adiabatic electron response. Therefore,
estimating the width of the fine-structure as that x where |ωr/k‖(x)vth,e| = 1 may not
be a good approach in presence of collisions.

In presence of collisions, the limit of adiabatic electron response is reached when the
friction force term can also be neglected in equation (C.15), in addition to the LHS, i.e.
when |ω|[(1 + ν2/ω2)0.25]/k||vth,e � 1. One can therefore approximate the radial width
of the fine structures as that x where |ω|[(1 + ν2/ω2)0.25]/k||vth,e = 1. In figure C.7, this
estimate of the radial width of fine structures is plotted with yellow asterisks. However
there is still a quantitative mismatch with the GENE results.

In another approach, that k‖(x) in figure C.5(b), where γ = [γ(k‖Rq0 = 1 · 10−3) +
γ(k‖Rq0 = 4 · 10−1)]/2 has been used to find the radial width of fine-structures, using
the relation x(k‖) = k‖q0R/ŝky from equation (C.14). The choice of k‖Rq0 = 4 · 10−1

is made since at that value, the growth rates for all collisionalities considered are
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approximately the same. And the choice of k‖Rq0 = 1 · 10−3 is made since at that value,
the growth rates have already converged and reflects the limit of k‖ → 0. The estimate
[γ(k‖Rq0 = 1 ·10−3)+γ(k‖Rq0 = 4 ·10−1)]/2 is therefore the average growth rate between
these two choices of k‖s. The resulting width of fine-structures is plotted in figure C.7
using blue circles. An increase in the radial width of fine-structures is observed, however
the values and the nature of the curve differ significantly from the corresponding full
width at half maximum of the fine-structures seen in linear GENE simulations.

One therefore concludes that, while the local dispersion based estimation of the growth
rates and the radial width of the fine structures with collisions has been useful to a
certain degree to illutrate some of the qualitative results, it fails to produce results that
match quantitatively with linear GENE simulations.
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