A four-dimensional plasma model able to describe the scrape-off layer region of tokamak devices at arbitrary collisionality is derived in the drift-reduced limit. The basis of the model is provided by a drift-kinetic equation that retains the full nonlinear Coulomb collision operator and describes arbitrarily far from equilibrium distribution functions. By expanding the dependence of the distribution function over the perpendicular velocity in a Laguerre polynomial basis and integrating over the perpendicular velocity, a set of four-dimensional moment equations for the expansion coefficients of the distribution function is obtained. The Coulomb collision operator as well as Poisson's equation are evaluated explicitly in terms of perpendicular velocity moments of the distribution function.