
Coordinate parameterisation and spectral method

optimisation for Beltrami field solver in stellarator

geometry
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Abstract.

The numerical solution of the stepped pressure equilibrium [Hudson et al , Phys.

Plasmas 19 112502 (2012)] requires a fast and robust solver to obtain the Beltrami field

in three-dimensional geometry such as stellarators. The spectral method implemented

in the Stepped Pressure Equilibrium Code (SPEC) is efficient when the domain is a

hollow torus, but ill-conditioning of the discretised linear equations occurs on the

(solid) toroid due to the artificially singular coordinate parameterisation near the

axis. In this work, we propose an improved choice for the reference axis to prevent

coordinates surfaces from overlapping. Then, we examine the parity and asymptotics

of the magnetic vector potential near the axis and suggest the use of recombined and

rescaled Zernike radial basis functions. The maximum relative error in the magnetic

field of the Wendelstein 7-X geometry is shown to reach 10−9 at high resolution in a

series of convergence tests and benchmarks against the boundary integral solver BIEST.

The new method is also reported to significantly improve the accuracy of multi-volume

SPEC calculations. A comparison between free-boundary SPEC and the analytical

Dommaschk potential is presented with higher-than-usual Fourier resolution. It is

illustrated that we are able to resolve low amplitude current sheets when an interface

is placed where there is no flux surface in the analytic solution. This was previously

concealed because of insufficient numerical resolution.



Coordinate parameterisation and spectral method optimisation for Beltrami field solver in stellarator geometry2

1. Introduction

The problem of representing an ideal magnetohydrodynamics (MHD) equilibrium in

three-dimension (3D) stellarator geometry is subtle in the absence of axisymmetry [1].

The ideal MHD force balance equation has the simplest form ∇p = J×B, where p is the

plasma pressure, B the magnetic field, J = ∇ × B/µ0 the current density, and µ0 the

magnetic permeability constant. The magnetic field structure in 3D equilibrium has a

combination of flux surfaces, islands and chaos [2]. The most widely used 3D equilibrium

code, VMEC [3], restricts the class of solutions to have nested toroidal flux surfaces

everywhere. However, the existence of the unphysical Pfirsch-Schlüter current on flux

surfaces with a rational rotational transform and pressure gradient remains an issue, as

the current contains a 1/x singularity whose volume integral is not bounded [4, 5]. The

presence of islands and chaos are also ignored. To avoid these problems, one may choose

to relax the ideal condition by introducing non-ideal effects, such as PIES [6], HINT [7]

and SIESTA [8].

Instead of relaxing the ideal condition, one can choose to relax the smoothness

condition. The stepped pressure equilibrium, introduced by Bruno and Laurence [9],

considers a weak solution to the ideal MHD force balance by allowing discontinuous

magnetic field and a piece-wise constant pressure profile. In a stepped pressure

equilibrium, the plasma volume is partitioned into a number of sub-volumes. Within

each volume, the magnetic field satisfies the Beltrami equation given by

∇×B = µB, (1)

where µ is known as the helicity multiplier in each volume. These sub-volumes are

separated by ideal interfaces with tangential (ideal) boundary condition given by

B · n = 0, (2)

where n is the unit vector normal to the surface of the interface, in addition to the

toroidal flux (and if the region is annular, the poloidal flux) being specified.

The pressure p is a constant within each volume but can jump at the interfaces,

giving a stepped profile. This pressure difference is balanced by a jump in the magnetic

pressure B2/2, keeping the total pressure unchanged on either side of the interface, i.e.[[
p+

B2

2

]]
= 0, (3)

where [[· · · ]] stands for the difference between either side of the interface. The pressure

p here should be understood as µ0p in SI unit. The stepped pressure equilibrium

allows the formation of islands and chaos and is free from the problems of diverging

singular currents. It was found later by Hole, Hudson and Dewar [10, 11] that

the stepped pressure equilibrium can be formulated as a variational problem and

described by the stationary points of the Multi-region Relaxed MHD (MRxMHD)
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energy functional. To access stepped pressure equilibrium solutions with complicated

geometry and parameters, the Stepped-Pressure Equilibrium Code (SPEC) [12, 13]

was built and verified in stellarator geometry [14]. Since then, MRxMHD and SPEC

have been extended both theoretically [15] and numerically to capture flow [16, 17],

pressure anisotropy [18], two fluid effects [19] and time evolution [20, 21, 22]. They are

also served as useful tools to investigate equilibrium bifurcation [15], the formation of

singular current sheets [4], the penetration of resonant magnetic perturbation [5, 23],

the equilibrium beta limit [24] and tearing modes [25, 26]. A free-boundary version of

SPEC was also developed recently [27].

The success of SPEC relies on the Beltrami field solver to compute the solution of

(1) and (2) using a spectral Galerkin method. Its robustness and efficiency can however

be improved, especially in the toroidal region that contains the coordinate axis. In this

paper, we focus on the following points:

(i) Once the boundary of the computational domain is given, a set of coordinates

to parametrise the interior needs to be constructed. Currently, SPEC uses a

toroidal coordinate system (s, θ, ζ), with s being the radial coordinate, θ and ζ

being generalised poloidal and toroidal angles, respectively. It selects the centroid

of the boundary to be the coordinate axis s = 0. For a strongly shaped non-

convex domain, the centroid can be outside the plasma boundary. Even when the

coordinate axis is inside the plasma boundary, there is nothing that prevents the

coordinate surfaces from overlapping, which immediately leads to a failure of the

solver. A mathematical explanation and justification of the choice of the coordinate

parameterisation is missing.

(ii) An ill-conditioning problem at high Fourier resolutions has been identified [28, 27],

mostly due to the artificial singularity in toroidal coordinates, and the choice of its

radial basis functions. This leads to the failure of the linear matrix solver.

(iii) There is a pressing requirement to make SPEC faster and more memory efficient, so

that it can serve as a core equilibrium solver within stellarator optimisation codes.

This will enable the effect of islands and chaos being taken into account in the

stellarator optimization process.

In comparison, a new code based on boundary integral methods, the Boundary Integral

Equation Solver for Taylor states (BIEST), was developed [29, 28, 30] to alleviate part of

these issues. BIEST solves the magnetic field only on the boundary surface, after which

the field at an arbitrary interior point can be computed by an integral of the solution

on the boundary (layer potential). No coordinate parameterisation is needed and no

coordinate singularity is present leading to a well-conditioned problem. The plasma

boundary in BIEST can be non-smooth, while SPEC is limited to having only smooth

boundaries. The SPEC Beltrami solver, however, has some significant advantages over

BIEST. For instance, the magnetic field is easy to compute everywhere within the volume

once the solution is obtained. Moreover, it constructs the magnetic vector potential A

directly, so that the magnetic helicity H =
∫

A · B dV is easily accessible to study
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plasma relaxation.

In this work, we present a number of critical improvements to the SPEC Beltrami

solver in toroidal regions, tackling the aforementioned difficulties. An improved

coordinate parameterisation is presented for a better specification of the coordinate axis.

Part of the ill-conditioning problem is mitigated by the use of Zernike basis functions and

basis recombination/rescaling. Finally, the speed and memory efficiency is optimised by

the use of iterative linear matrix solver and matrix-free method, making SPEC faster

than its previous version and as accurate as BIEST.

This article is organised as follows. Section 2 describes our choice of coordinate

parameterisation and geometric axis. Section 3 then deals with the parity and regularity

condition at the coordinate axis and introduces the set of basis functions used. Section

4 outlines the discretised Beltrami equation and how the resulting linear equations are

solved. Verification, benchmarks and numerical experiments are preformed in Section

5. Section 6 discusses the results and draws useful conclusions.

2. Coordinate parameterisation

The first step of the computation is to prescribe the plasma boundary in cylindrical

coordinates as R = R(θ, ζ), Z = Z(θ, ζ) and ϕ = ζ. A solution to the Beltrami equation

(1) is then sought that satisfies the boundary condition (2) and a flux condition in the

plasma volume enclosed by the given plasma boundary. For this, the magnetic field is

discretised within the plasma volume. Unlike the finite element method that requires a

mesh and a collection of low-degree polynomial basis functions with local support, SPEC

adopts a spectral method, in which the field is approximated by a (linear) combination

of global basis functions. In particular, the original SPEC uses Fourier-Chebyshev series

for the angular/radial direction, respectively. The spectral method has the advantage

of displaying a spectral convergence rate [31]. In other words, the difference between

the numerical solution and the analytical solution decays exponentially as the resolution

increases, e.g. by including more Fourier modes and/or radial basis functions.

The boundary condition is difficult to enforce should the computation be carried out

in cylindrical geometry given the complicated boundary. SPEC proposes to construct a

set of toroidal coordinates (s, θ, ζ) to parametrise the plasma volume, with s = 0 on the

geometric axis and s = 1 on the boundary. The components of the magnetic field are

expressed in terms of the global basis functions in (s, θ, ζ). The geometric axis, similar

to the axis in cylindrical geometry, is an artificial reference point whose choice should

not affect the resulting magnetic field (represented in Cartesian coordinates). With this

system, the boundary conveniently corresponds to the surface s = 1 and therefore the

boundary condition is easy to enforce.

This is equivalent to mapping the plasma volume into a standard torus (tokamak

with circular cross-section), so that the plasma boundary at a fixed toroidal angle

corresponds to a circle. The Beltrami equation is then solved over a simpler domain in

these coordinates with non-Euclidean metric, and the solution is easily mapped back
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to real space. We note that the mapping is unrelated to the magnetic field within the

plasma volume, but depends only on the geometric information of the plasma boundary.

The magnetic field is a priori unknown.

The desired properties of the coordinate parameterisation are as follows. The

mapping should be

(i) real analytic; a Taylor series of the mapping around any point should converge.

(ii) continuous and bijective; for every point in the (s, θ, ζ) domain, there should

correspond a unique point in the plasma domain and vice versa.

The first property is to ensure the spectral convergence of the numerical method, and

is automatically satisfied in SPEC by writing the parameterisation of R,Z in terms of

polynomials in s and Fourier series in θ and ζ. The second property is essential to the

well-posedness of the boundary-value problem and the consistency of the discretisation

scheme, but is unfortunately not automatic.

Formally, the toroidal plasma domain Ω̄ ⊂ R3 is considered to be the image of a

smooth embedding into the Euclidean 3-space of the standard solid torus M̄ = D̄2×S1,

created by sweeping a unit disk D̄2 = {(x, y) ∈ R2|x2 + y2 ≤ 1} around the unit circle

S1 = {(x3, x4) ∈ R2 : x2
3 + x2

4 = 1}. We denote the embedding F : M̄ → R3. Since M̄ is

a compact manifold (with boundary), it is sufficient to ensure that the derivative of the

map F is everywhere injective. Since M̄ and Ω̄ are three-dimensional, it is equivalent

to verifying that the determinant of the Jacobian matrix nowhere vanishes.

Starting from an obvious local coordinate for S1, namely the toroidal angle ζ such

that (cos ζ, sin ζ) ∈ S1, we consider mappings F : M̄ → R3 locally of the form

F (x, y, ζ) = (R(x, y, ζ) cos ζ, R(x, y, ζ) sin ζ, Z(x, y, ζ)), (4)

where R,Z ∈ C∞(M̄,R) are smooth functions on M̄ . The toroidal angle ζ coincides

with the (geometric) polar angle of cylindrical coordinates. The Jacobian determinant

of the map F at (x, y, ζ) is

det JF (x, y, ζ) =−R(∂xR∂yZ − ∂yR∂xZ). (5)

It is non-zero if R(x, y, ζ) > 0 and the “2D Jacobian” satisfies

JD2(x, y, ζ) =
∂R

∂x

∂Z

∂y
− ∂Z

∂x

∂R

∂y
6= 0. (6)

This condition is equivalent to asking that the level sets of R and Z on a poloidal plane

at a fixed ζ are nowhere tangential. A necessary requirement is that R and Z have no

critical points (zero gradient) over the unit disk.
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SPEC explicitly uses the coordinate parameterisation R,Z of the form

R(x, y, ζ) =s2R0(ζ) + (1− s2)Rx(ζ)

+
N∑

n=−N

M∑
m=1

Rm,ns
m cos(mθ − nNpζ),

Z(x, y, ζ) =s2Z0(ζ) + (1− s2)Zx(ζ)

+
N∑

n=−N

M∑
m=1

Zm,ns
m sin(mθ − nNpζ),

(7)

where x = s cos θ and y = s sin θ are polar coordinates on the unit disk, M,N ∈ N+

is the Fourier resolution, NP ∈ N+ the field period, and Rm,n, Zm,n ∈ R are Fourier

coefficients. The pair (Rx, Zx) locates the image through F of the origin of the unit disk

on a poloidal plane at fixed ζ. The curve traced in R3 is referred to as the geometric

axis. Again, we emphasis that it is similar to the cylindrical axis and has no particular

physical meaning, other than being the reference axis for the (local) toroidal coordinate

system (s, θ, ζ). It is not necessarily the magnetic axis. In fact, there can be multiple

magnetic axes, or no apparent axis if the region displays chaotic field-lines. The pair

(R0, Z0) is the θ-average of the shape drawn by the plasma boundary on a poloidal plane

at fixed ζ. The form of these functions is taken to be

R0/x(ζ) =
N∑
n=0

R0/x,n cos(−nNP ζ),

Z0/x(ζ) =
N∑
n=1

Z0/x,n sin(−nNP ζ).

(8)

In the expressions above, we are assuming stellarator symmetry [32] such that

R(s, θ, ζ) = R(s,−θ,−ζ) and Z(s, θ, ζ) = −Z(s,−θ,−ζ). This is an imposed symmetry

for stellarator design purpose and reduces to the up-down symmetry in the tokamak

case. Our method can be straightforwardly extended to the general case.

2.1. Finding the coordinate axis to ensure a non-zero Jacobian

With arbitrary Fourier coefficients {Rm,n, Zm,n}m,n and {Rx,n, Zx,n}n, the map defined

via (7) may not be an embedding. Two different points of (s, θ, ζ) can be mapped to

the same (X, Y, Z), resulting in overlap. The transformation (7) only “discourages”

overlapping but does not prevent it completely [13]. In such cases, there are points

where JD2 = 0 within the plasma volume. We should examine the properties of (7) and

find conditions that help meet the stated requirements. In particular, efforts should be

made to ensure JD2 6= 0 everywhere in the plasma volume and on its boundary.

Writing R(x, y, ζ) = ρ(x, y, ζ) + ∆Rs2 and Z(x, y, ζ) = Γ(x, y, ζ) + ∆Zs2 with

∆R(ζ) = R0(ζ)−Rx(ζ), ∆Z(ζ) = Z0(ζ)− Zx(ζ), the Jacobian can be rewritten as

JD2(x, y, ζ) = 2∆R
∂Γ

∂θ
− 2∆Z

∂ρ

∂θ
+ J0(s, ζ) + J̃(x, y, ζ) (9)
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with

J0(s, ζ) =
2N∑
n=0

J0,n(s) cos(−nNP ζ)

J̃(x, y, ζ) =
M∑
m=1

2N∑
n=−2N

Jm,n(s)sm cos(mθ − nNP ζ), (10)

where Jm,n(s) are polynomials of s, the exact form of which is given in Appendix B.

These functions only have parametric dependencies on the Fourier harmonics of the

boundary Rm,n and Zm,n and are determined when the boundary is given. On the other

hand, the location of the geometric axis, controlled by ∆R = R0−Rx and ∆Z = Z0−Zx,
is free.

As long as the plasma boundary is convex, the choice Rx = R0 and Zx = Z0

is suitable. This is the case in many applications such as tokamaks without an X-

point. In the case of stellarators with a highly shaped plasma boundary, doing so will

unfortunately lead to JD2 = 0 on a finite set of lines across every poloidal plane. Luckily,

by adjusting ∆R and ∆Z, these lines of degeneracy can often be pushed outside the

scope of the unit disk. This is how an initial guess of the magnetic axis is obtained in

the VMEC code. In VMEC, a search is performed on a grid of (R,Z) on each toroidal

plane to find the location of the axis that maximises the minimum of |JD2|.
In this work, we propose a reliable choice of Rx and Zx to ensure a non-zero “2D

Jacobian”. One advantage of this choice is that Rx and Zx can be expressed in simple

functions of the Fourier harmonics of the boundary. Thanks to this, we are able to

differentiate the axis location with respect to the boundary harmonics for optimisation

purposes (where minimisation of a target functional requires gradient information). The

method is based on the following idea. At a fixed toroidal angle ζ, the 2D Jacobian is a

two-variable function on the unit disk, pictured as a “potato chip” in a 3D surface plot.

The average value

〈JD2〉(ζ) =
1

π

1∫
0

2π∫
0

JD2 sdsdθ = 2

1∫
0

J0(s, ζ) sds (11)

depends only on the boundary data. Ensuring that 〈JD2〉(ζ) 6= 0 is a first consistency

check.

The average orientation of the potato chip is then controlled by 〈~∂JD2〉(ζ) =
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(〈∂xJD2〉, 〈∂yJD2〉) where

〈∂xJD2〉(ζ) =

〈
cos θ

∂JD2

∂s
− sin θ

s

∂JD2

∂θ

〉

=
1

π

2π∫
0

JD2|s=1 cos θdθ (12)

〈∂yJD2〉(ζ) =

〈
sin θ

∂JD2

∂s
+

cos θ

s

∂JD2

∂θ

〉
=

1

π

∫ 2π

0

JD2|s=1 sin θdθ (13)

Setting the average orientation to zero ensures that the potato chip is fairly flat, thereby

limiting its chances to cross zero over the unit disk. This works provided that the

average value exceeds the maximum variations. Fourier decomposing (12) and (13) in

the toroidal direction yields a linear system of 4N + 1 equations for the coefficients of

∆R and ∆Z, and is equivalent to ensuring that the following integrals vanish for all

n ∈ [−2N, 2N ]

1

2π

2π∫
0

[〈∂xJD2〉 cos(nNpζ) + 〈∂yJD2〉 sin(nNpζ)]dζ

=
1

2π2

2π∫
0

2π∫
0

JD2|s=1 cos(θ − nNpζ)dθdζ = 0. (14)

As per expression (8), the resolution in SPEC is restricted to N + 1 and N coefficients

in Rx and Zx respectively, meaning that only the 2N + 1 equations with n ∈ [−N,N ]

are considered. After some algebra left in Appendix B.2, we obtain the following linear

system [
A B

C D

][
∆~R

∆~Z

]
= −

[
~J+

~J−

]
(15)

where ∆~R = (∆R0, . . . ,∆RN) and ∆~Z = (∆Z1, . . .∆ZN), ~J+ = (J1,0, . . . J1,N),
~J− = (J1,−1, . . . J1,−N) and

An,k = Z1,n−k + ΘN−k−nZ1,k+n, n ∈ [0, N ], k ∈ [0, N ]

Bn,k = −R1,n−k + ΘN−k−nR1,k+n, n ∈ [0, N ], k ∈ [1, N ]

Cn,k = Z1,k−n + ΘN−k−nZ1,−n−k, n ∈ [1, N ], k ∈ [0, N ]

Dn,k = R1,k−n −ΘN−k−nR1,−k−n, n ∈ [1, N ], k ∈ [1, N ]

(16)

with Θi =

{
1, i ≥ 0

0, i < 0
. The derivatives of ∆X = (∆~R,∆~Z) with respect to the

boundary parameterisation are computed using this linear system.
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Figure 1. Plasma boundary generated from (17) with R0 = 5, R1 = 1, κ = 5 and

different R2 and Z2.

To demonstrate the method, we consider a family of plasma boundaries,

parameterised by
R(θ) = R0 +R1 cos θ +R2 cos 2θ,

Z(θ) = −κR1 sin θ − κZ2 sin 2θ,
(17)

in which κ > 0 is a constant controlling the ellipiticity, and R0, R1, R2, Z2 ∈ R are free

parameters. This resembles the ζ = 0 toroidal cut of a stellarator with a bean-shaped

plasma boundary, where it is most challenging to determine a good geometric axis and

the boundary is dominated by the m = 1, 2 Fourier harmonics. figure 1 gives examples

of plasma boundaries generated by (17) with R0 = 5, R1 = 1, κ = 5 and different R2

and Z2. It is seen that R2 controls how elongated the “arms” are while Z2 controls the

arms’ width.

The Jacobian in this case is given by

JD2 = −κR2
1 − 4κR2Z2s

2 − 2sκR1 cos θ (∆R +R2 + Z2)

− 4κs2Z2∆R cos 2θ, (18)

where ∆R = R0−Rx. Note that we have ∆Z = 0 due to assumed stellarator symmetry.

The potato chip related to this Jacobian with R2 = 2, Z2 = 0.05 (black solid curve in

figure 1) is plotted in figure 2 (a) with a trivial choice of axis Rx = R0. In this case,

the potato chip is so tilted that it crosses the plane JD2 = 0 leading to an inconsistent

coordinate parameterisation of the toroidal domain. Substituting (18) into (12) yields

an average x-orientation (gradient) of 〈∂xJD2〉 = −2κR1(∆R + R2 + Z2). Setting this

orientation to zero, we obtain ∆R = −(R2 + Z2). The corresponding potato chip is

shown in figure 2 (b). The chip is now rotated to a horizontal position and no longer

has zeroes over the unit disk. If the plasma boundary is more complicated, namely its

Fourier content is richer, JD2 is expected to display wilder variations. However, the
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Figure 2. The Jacobian “potato chip” for the bean-shaped plasma boundary, with

different choices of the geometric axis Rx. (a) ∆R = 0, i.e. Rx = R0. (b) ∆R = −2.05,

i.e. Rx = R0 + 2.05, obtained by eliminating the orientation of the potato chip.

method of “rotating” the potato chip such that it remains flat will work well for most

practical applications.

We note that the above method is equivalent to cancelling the m = 1 component of

the Jacobian on the boundary, which is justified via the following two observations. First,

the level surfaces of s=constant determine toroidal shells starting from the boundary at

s = 1 and shrinking to the axis as s reduces. These toroidal shells become less shaped as

s decreases and tend towards an ellipse near the axis. Although not always guaranteed,

if J 6= 0 everywhere on the boundary, it is less likely to have J = 0 somewhere inside

the plasma volume because the internal surfaces are less and less shaped. The second

observation is that the Fourier harmonics of J have the m = 1 harmonics much greater

than the m > 1 ones and the Jacobian is well approximated by J0 + J1 cos θ. As

mentioned in the potato chip argument, the constant term in the Jacobian, J0, is not

affected by the choice of the axis and is therefore fixed, but J1 is linearly proportional

to the free parameters of the axis. If the amplitude of m = 1 term, |J1|, is less than the

constant term |J0|, then J0 + J1 cos θ will vanish nowhere. Choosing Rx and Zx so as

to eliminate the m = 1 harmonics of J at s = 1 is the optimal way to ensure this, since

the remaining m > 1 harmonics are usually smaller.

We show another application of the method outlined above to choose the geometric

axis and parameterise the plasma domain. The design of the National Compact

Stellarator Experiment (NCSX) [33] has a highly shaped plasma boundary. The toroidal

cut of a NCSX-like plasma volume at ζ = 0 is shown in figure 3. The plasma boundary

is non-convex and consequently, the coordinate axis chosen by setting either Rx = R0

or the usual centroid method is outside the plasma boundary as indicated in figure 3.

We applied the aforementioned method to choose an axis that eliminates the m = 1

harmonics of J on the plasma boundary. This method leads to geometric axis right

in the middle of the plasma volume, close to the magnetic axis predicted by a VMEC

vacuum calculation, though our method is based entirely on geometric arguments and
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knows nothing about MHD equilibrium. We overplot the contour of the Jacobian J in

figure 3, showing non-zero value within the volume.

1 1.5 2
R (m)

-0.6

-0.4

-0.2

0

0.2
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Z
 (

m
)

0.02

0.04

0.06

0.08

0.1
|J|

R
x

R
0

Centroid

VMEC

Figure 3. The Jacobian JD2 in a NCSX-like plasma volume at ζ = 0, using the

coordinate axis designed to eliminate m = 1 Fourier harmonics of J on the plasma

boundary. The corresponding coordinate axis Rx is overplotted (black star), along

with R0 of the boundary (blue square), the centroid of the boundary (brown plus) and

the magnetic axis computed by VMEC assuming vacuum (red circle).

To demonstrate the robustness of our method, we test it against the family of

boundaries in (17). We find that our method guarantees J 6= 0 for all the allowed

parameter space except some extreme cases. The detail is shown in Appendix A.

3. Parity and boundary conditions on the coordinate axis

3.1. Constraints on the coefficients of the Fourier expansions of physical quantities

If we write a physical scalar f in Fourier harmonics of θ and ζ as

f(s, θ, ζ) =
∑
m,n

fm,n(s) cos(mθ − nNpζ), (19)

then fm,n(s) cannot be arbitrarily chosen if f is analytic in Euclidean space. It must

follow the parity constraint and have certain asymptotic behaviour as s → 0. These

constraints are given by [31]

fm,n(−s) = (−1)mfm,n(s), (20)

lim
s→0

fm,n(s)

sm
<∞. (21)

The parity requirement (20) guarantees that f takes the same value under the

transformation s → −s and θ → θ + π, as x = s cos θ = −s cos(θ + π) and

y = s sin θ = −s sin(θ + π) refers to the same point in Cartesian coordinates. The

asymptotic requirement (21) guarantees that f is analytic in Cartesian coordinates
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(x, y), i.e. it can be written into converged Taylor series in (x, y) and is thus smooth.

These results were derived on a unit disk by Boyd and Yu [31], but they can be trivially

extended to a toroid. As a corollary, fm,n(s) can be expanded into polynomials as

fm,n(s) = sm
∑
l≥0

fm,n,2ls
2l. (22)

Similar constraints apply to the magnetic vector potential A = As∇s + Aθ∇θ +

Aζ∇ζ. Following Lewis and Bellan [34], we first write A = Ax∇x + Ay∇y + Aζ∇ζ, in

which Ax, Ay and Aζ follows the requirements for a scalar (22). Then we expand ∇x
and ∇y into ∇s and ∇θ. After some algebra, we obtain that

As =
∑
m≥0,n

[λm,ns
m−1 + shs,m,n(s)] sin(mθ − nNpζ), (23)

Aθ =
∑
m≥0,n

[λm,ns
m + s2hθ,m,n(s)] cos(mθ − nNpζ), (24)

Aζ =
∑
m≥0,n

hζ,m,n(s) cos(mθ − nNpζ), (25)

with λ0,n = 0, while hs,m,n(s), hθ,m,n(s) and hζ,m,n(s) follow (22). We introduce a gauge

g(s, θ, ζ) =
∑
gm,n(s) sin(mθ − nNpζ), where

gm,n(s) =
λm,n
m

sm +

∫ s

0

s′hs,m,n(s′)ds′. (26)

The vector potential Â after the gauge transformation Â = A − ∇g will have Âs = 0

and will not contain the λm,n term, i.e.

Âθ =
∑
m≥0,n

s2ĥθ,m,n(s) cos(mθ − nNpζ), (27)

Âζ =
∑
m≥0,n

ĥζ,m,n(s) cos(mθ − nNpζ), (28)

where ĥθ,m,n(s) and ĥζ,m,n(s) follow (22). One last gauge freedom remains. That is, one

can choose a new gauge ĝ(ζ) depending only on ζ, with A after gauge transformation

still conforming (27) and (28). We therefore enforce that

ĥζ,0,0(1) = ĥζ,0,n≥1(0) = 0, (29)

to eliminate this gauge freedom. For simplicity, we will drop the hat on Â from now on.

3.2. The Zernike polynomials and their recombination

The conditions (20) and (21) are known as behavioural boundary conditions [35]. In

other words, they do not enforce the solution or its derivatives to any specific value

but instead restrict the class of functions that the solution can take. The behavioural

boundary conditions are usually treated in two different ways when the corresponding

PDE is solved numerically using a spectral method. The first way is to choose a set
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of basis functions that satisfy these conditions from the very beginning. For example,

one chooses the Fourier basis for a periodic boundary condition. The second way is

to choose a more general set of basis functions that does not satisfy the behavioural

boundary condition, but rely on the properties of the PDE so that the numerical solution

satisfy these conditions automatically [31]. For example, one can still use the parity-

restricted Chebyshev polynomials to solve the Lapalce equation on a unit disk, although

the Chebyshev polynomials do not satisfy the asymptotic condition (21) [31].

In this work, we follow the first path and use the Zernike polynomials [36, 37]

(one-sided Jacobi polynomials) as our basis functions. The Zernike polynomials are

orthogonal basis functions on the unit disk. They have the advantage of displaying

spectral convergence (the error decays exponentially in the radial resolution L) when

solving the Laplace equation on the unit disk [31], while the usual Fourier-Bessel series

converge only algebraically (polynomial order in L). Furthermore, the Zernike basis only

needs half the number of degrees of freedom used by the parity-restricted Chebyshev

polynomials to achieve comparable accuracy. The Zernike polynomials take the form

Z−ml (s, θ) = Rm
l (s) sinmθ,

Zm
l (s, θ) = Rm

l (s) cosmθ,
(30)

where Rm
l (s) is a l-th order polynomial given by

Rm
l (s) =

l−m
2∑

k=0

(−1)k(l − k)!

k!
[

1
2
(l +m)− k

]
!
[

1
2
(l −m)− k

]
!
sl−2k, (31)

and is only non-zero for l ≥ m and even l −m. The radial basis Rm
l (s) is a polynomial

of s with lowest order m and therefore the Zernike basis functions satisfy (22).

The unknowns, namely the components of the vector potential, are discretised in

terms of the Zernike polynomials. The on-axis boundary condition for Aζ in (28) is

automatically satisfied by the Zernike polynomials. But the condition for Aθ in (27) is

not since Aθ,m,n ∼ sm+2 rather than sm at the same time as the Zernike polynomials

scales as sm near the axis. Therefore, additional treatments are needed to enforce the

on-axis boundary condition for Aθ. For m = 0 and m = 1, a basis recombination method

is used by defining new radial basis functions as

R̂0
0 = 1, R̂0

l =
1

l + 1
R0
l −

(−1)l/2

l + 1
,

R̂1
1 = s, R̂1

l =
1

l + 1
R1
l −

(−1)(l−1)/2

2
s.

(32)

so that the basis scales as sm+2 except for R̂0
0 and R̂1

1, which are excluded from the

representation of Aθ,m,n. For m ≥ 2, the radial basis functions are only rescaled as

R̂m
l =

1

l + 1
Rm
l . (33)

Lagrange multipliers are introduced for the m ≥ 2 components to ensure that the sm

terms vanish.
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Now, we can write the components of the vector potential as

Aθ =
∑
m≥0,n

L∑
l=m

Aθ,m,n,lR̂
m
l (s) cos(mθ − nNpζ), (34)

Aζ =
∑
m≥0,n

L∑
l=m

Aζ,m,n,lR̂
m
l (s) cos(mθ − nNpζ), (35)

where the unknowns are Aθ,m,n,l and Aζ,m,n,l, and L is the maximum order of polynomial

in s. We let Aθ,0,n,0 = Aθ,1,n,1 = 0, while keeping in mind that an additional Lagrange

multiplier is introduced later to force the m-th harmonic of Aθ to scale as sm+2 for s→ 0.

The reason for implementing a mixture of basis recombination, rescaling and Lagrange

multiplier method is to ensure the condition number of the discretised problem only

increases mildly as L and the poloidal Fourier resolution M increases.

4. Implementation in the Stepped Pressure Equilibrium Code (SPEC)

4.1. The SPEC energy functional

Our Beltrami solver improves and extends the original Beltrami solver of the Stepped

Pressure Equilibrium Code (SPEC). SPEC defines the energy functional F in the

toroidal volume as

F =
1

2

∫
Ω

|∇ ×A|2dV − µ

2

[∫
Ω

A · ∇ ×AdV −K0

]
+

∑
m≥2,n

am,n

[
lim
s→0

Aθ,m,n(s)/sm
]

+
∑
n

bn [Aζ,0,n(s = sn)]

+ d1

[∮
Cp

A · dl−∆ψt

]
+
∑
m,n

em,n

∫∫
∂Ω

∇×A · n cos(mθ − nNpζ)dS, (36)

where K0 is the target helicity, s0 = 1, sn>0 = 0, ∆ψt the toroidal flux, and Cp is

a poloidal loop on ∂Ω’s short way around the torus. We have introduced Lagrange

multipliers am,n, bn, d1 and em,n to ensure various boundary conditions. They correspond

to the regularity condition (27), the gauge condition (29), the total toroidal flux

constraint and the ideal boundary condition B · n = 0, respectively. The free variables

are a = {Aθ,m,n,l, Aζ,m,n,l, am,n, bn, em,n, d1}. Substituting the discretisation (34) and (35)

into (36), F can be rewritten into matrix-vector products as

F =
1

2
aT · A · a− µ

2
(aT · B · a−Ko)− aT · b, (37)

where b = {0,∆ψt} and the matrices A and B are constructed by completing the

integral in (36) using a mixture of Gaussian quadrature and FFT. This is equivalent
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to the Galerkin method. The evaluation of radial quadrature integrand at each radius

is independent to each other and therefore can be parallelised. Alternatively, since

the matrix elements in A are independent to each other, we can assign one CPU to

compute each element. We remark that these are parallelised using a shared memory

scheme, in addition to the original SPEC parallelisation over the number of volumes

with distributed memory.

The solution a is a stationary point of the energy functional F . In the case where

µ is known, setting the derivatives of F to zero gives

(A− µB) · a = b. (38)

If µ is not the eigenvalue of the generalised eigenvalue problem A · a = µB · a, then a

can be obtained by solving the linear equation (38). In the case µ is unknown but K0 is

known or µ is the eigenvalue, µ is solved together with a by locating a stationary point of

(37) using a Newton’s method. We will focus on the first case in which µ is given, since

it is more commonly used in practice. For example, if instead the rotational transform ι-

is prescribed on the boundary, µ will be adjusted iteratively, with (38) solved each time

after the adjustment to estimate and match ι- on the boundary.

The matrix Â = A − µB is dense and indefinite. The linear equation (38) can be

solved either by a direct method such as LU decomposition, or by an iterative method

such as the generalised minimal residual method (GMRES) [38]. The direct solver is fast

and accurate in low resolution. But as the time complexity of the direct method scales

as O(M3N3L3), where L, M and N are the radial, poloidal and toroidal resolution,

respectively, the iterative solver is preferred at high resolution (M,N,L ≥ 15) due to its

lower time cost. In the next section, we will focus on solving the linear equation using

GMRES.

Once the Beltrami field inside each volume is solved, SPEC also iteratively find a

global force balance by adjusting the position of the interface geometry to satisfy (3)

on each interface. The procedure is detailed in Hudson et al [12, 27] and will not be

repeated here.

4.2. The iterative solver and matrix-free method

In this section, we will introduce the iterative matrix solver, GMRES, and its matrix-free

form that is newly included in SPEC. GMRES iteratively looks for an that minimises

the residual εGMRES = ‖Â ·an−b‖, where ‖.‖ is the Euclidean norm. Instead of solving

the original problem which is usually ill-conditioned, a left preconditioner matrix M is

applied on both side of (38) so that the transformed problem is well conditioned. The

convergence speed of (the preconditioned) GMRES depends highly on the quality ofM.

A good preconditioner will require the matrix productM−1Â to be as close as possible

to an identity matrix. Also, inverting the preconditioner M should be considerably

cheaper than inverting Â itself.

If the i-th and j-th unknowns in a correspond to Aθ,mi,ni,li and Aθ,mj ,nj ,lj ,

respectively, then the matrix element Âi,j describes the coupling strength between
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harmonics (mi, ni) and (mj, nj). Noting that if the Fourier series of the boundary

Rm,n and Zm,n have spectral convergence, then the coupling terms between Aθ,mi,ni,li

and Aθ,mj ,nj ,lj , formed by the (|mi−mj|, |ni−nj|) harmonics of the coordinate metrics,

should also decay exponentially with |mi−mj| and |ni−nj| and are thus small compared

to the “diagonals” mi = mj and ni = nj. Therefore, we can construct M from the

elements of Â by eliminating all the coupling terms with mi 6= mj or ni 6= nj, and

keeping the rest (“diagonals” and terms related to Lagrange mulitpliers). Physically,

the matrix M is equivalent to the Â matrix of a tokamak with similar major radius

and minor radius to the stellarator we are solving for. The preconditioning matrix M
is sparse, with the number of nonzero elements ∼ O(MNL2), while the total number of

elements in M is O(M2N2L2). After the construction of M, the approximate inverse

M is computed by an incomplete LU factorisation [39]. In our numerical experiments,

the absolute residual εGMRES usually decreases to 10−9 with 50 iterations and 10−12 with

80 iterations.

As Â is dense, the memory needed to store it scales as O(M2N2L2). The time

complexity of constructing it also scales as O(M2N2L3) taking into account the radial

Gaussian quadrature, making it costly both in memory and time if the resolution is

high. It turns out that at each iteration step of GMRES, we only need the matrix-

vector product of Â and a trial vector an, rather than the matrix itself. It is therefore

possible to construct directly Â · an without computing each element of Â. This is

known as the matrix-free method. We have also implemented the matrix-free GMRES

in SPEC. Excluding the preconditioner, the memory and time complexity of the matrix-

free method are O(MNL) and O(NGMRESL
2MN logMN), respectively, with NGMRES

the number of GMRES iterations.

The only caveat with the matrix-free method is that it does not improve the time

cost of solving the force balance at this stage. To overcome this drawback, we plan to

formulate the force balance problem into a least square form and uses an adjoint-based

method (see for example Paul et al [40] and references therein). This will be reported

in future work.

5. Numerical experiments, verification and examples

5.1. Convergence and benchmark

We conduct our numerical experiments using the boundary of Wendelstein 7-X OP1.1

vacuum field [14, 41] with single-volume SPEC running as a Beltrami solver. A plot

of the boundary shape and |B| on the surface is shown in figure 4, while the Poincaré

section of four different toroidal angles are plotted in figure 5. Note that the toroidal

flux within the plasma volume is normalized to unity. In SPEC, the averaged Beltrami

field error, Eα, is defined as

Eα =
1

V

∫
Ω

|(∇×B− µB) · ∇α|dV, (39)
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where α = {s, θ, ζ} is the coordinate of interest and V the volume size. Figure 6

shows Eα as a function of the Fourier and radial resolution, for the original SPEC

radial basis functions (modified Chebyshev, in dashed red) and the new Zernike basis

function (in solid blue). SPEC’s previously reported ill-conditioning problem requires

the radial resolution to be reduced when it emerges. As a consequence, the error

stops converging as the Fourier resolution increases beyond M = N = 21, as shown

in figure 6. On the other hand, the new Zernike method successfully mitigates the ill-

conditioning problem with uninterrupted error convergence, as seen in figure 6. The

error decreases exponentially as the resolution increases, matching the expectation of

spectral convergence. The ill-conditioning problem is suppressed for Fourier resolutions

as high as M = N = 35. Such a resolution is sufficient for most applications.

Figure 4. The W7X OP1.1 boundary we used and the magnitude of the vacuum field

on the plasma boundary.

Figure 5. The Poincaré section of the W7X OP1.1 case we used at different toroidal

angles: (a) ζ = 0, (b) ζ = π/10, (c) ζ = 2π/10 and (d) ζ = 3π/10.

In figure 7, we also compare B solved by SPEC and B computed by the BIEST

code. The maximum point-wise error is defined as

emax =
‖B−Bref‖∞
‖Bref‖∞

, (40)
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Figure 6. The volume averaged Beltrami error Eα as a function of SPEC resolution,

with the Zernike basis and the original modified Chebyshev basis, for µ = 1 Beltrami

field with W7X boundary. We have L = M + 4 in the Zernike case and L = Lmax

in the Chebyshev case, with Lmax the maximum allowed L without triggering the

ill-conditioning error.

where Bref is the reference solution, and the infinity norm ‖x‖∞ takes the maximum

value of x among its three Euclidean components and the maximum of every point on

a grid in Ω. Here, the reference solution is taken to be the BIEST magnetic field on

the plasma boundary computed with a relative error of 10−9. Again, we find a spectral

convergence rate with the Zernike basis up to the precision of the reference solution.

The convergence study and benchmark shows that the ill-conditioning problem no longer

appears in high resolution SPEC calculations.
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Figure 7. The maximum magnetic field error between SPEC and a reference BIEST

run as a function of SPEC resolution for the vacuum solution µ = 0 and the

Taylor state µ = 1. For the reference BIEST calculation, we set BIEST parameters

N = 448 × 2240, 392 × 1960, εGMRES = 10−12, 10−11 for µ = 0, 1, respectively. These

parameters are set so that the reference BIEST magnetic field has 10−9 relative error.

For SPEC, we use matrix-free method.
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In Table 1, we present the computation time for the three different matrix solving

methods implemented in SPEC: the direct method, GMRES with matrix and GMRES

matrix-free. The first two methods are similar in speed, mostly due to the same amount

of the time spent constructing the matrix. On the other hand, the matrix-free method is

orders of magnitude faster and scales only moderately with increasing resolution. Even

when the slower non-matrix-free methods are used, SPEC only spends a fraction of the

time used by BIEST for computing the Taylor state, despite the fact that BIEST uses

6 times as many CPUs.

SPEC BIEST

M ×N × L emax direct(s) iter-w-mat(s) matrix-free(s) N εGMRES emax tsolve(s)

11× 11× 15 5.5× 10−4 1.36 1.42 0.33 7.9× 104 1× 10−4 2.3× 10−4 316.9

17× 17× 21 2.2× 10−5 16.79 17.09 1.90 1.4× 105 3× 10−6 2.7× 10−5 1322

23× 23× 27 8.4× 10−7 107.8 103.2 5.30 2.5× 105 1× 10−7 9.0× 10−7 3722

29× 29× 33 4.2× 10−8 604.5 544.3 11.96 5.2× 105 1× 10−9 3.0× 10−8 17473

35× 35× 39 2.5× 10−9 - - 16.65 7.7× 105 1× 10−10 1.7× 10−9 41512

Table 1. The time consumption measured in seconds for solving the Taylor state

µ = 1 with W7X boundary, using the SPEC direct solver with matrix (direct), GMRES

with matrix (iter-w-mat) and matrix-free GMRES, and comparing to BIEST with a

similar accuracy. We set εGMRES = 10−12 for SPEC. The SPEC computation was

performed on 8×Intel Cascade Lake CPU@3.2GHz, while BIEST uses 48 such CPUs.

We did not provide results for M = 35 cases with matrix because the number of

elements exceeds the upper limit of a 32 bit integer.

5.2. Comparison to the Dommaschk potential, high resolution

As mentioned in Section 4, our Beltrami solver is an integrated part of the SPEC

code. Limited by the ill-conditioning problem, previous benchmarks of SPEC multi-

volume equilibria cannot proceed to very high Fourier resolution. In this section,

we will demonstrate that our new Beltrami solver significantly improves the overall

convergence of SPEC multi-volume equilibria and enables more detailed physics studies.

We will repeat the free-boundary SPEC comparison [27] with the analytical Dommaschk

potential [42]. The difference in the magnetic field between SPEC and the analytical

solution was on the order of 10−5 for M = N = 12, the highest resolution without

triggering the ill-conditioning problem. This seemed to be a good match at first glance

and it was hoped that the difference would continue to decrease as the Fourier resolution

increases. But we will show that this is not the case. There are unresolved problems in

this comparison and interesting physics that can only be discovered at a much higher

resolution enabled by our improved Beltrami solver.

The Dommaschk potential is given analytically by

Φ(R,ϕ, Z) = ηϕ+ Φ5,2(R,ϕ, Z), (41)

where η = 1 is a constant and Φ5,2 a harmonic field (see Appendix 1 of Hudson et al [27]).

The magnetic field B = ∇Φ is a vacuum field with ∇×B = 0 and represents a classical
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stellarator vacuum field with 5 field periods (Np = 5) and the plasma cross section

being a rotating ellipse. The Poincaré section of the magnetic field at ζ = 0 is given in

figure 8. In Hudson et al , SPEC was set up with a circular computational boundary

Figure 8. The Poincaré section of the Dommaschk magnetic field at ζ = 0. The red

curve shows the plasma boundary.

Rw = 1 + 0.2 cos θ and Zw = −0.2 sin θ. The normal vacuum field on the computational

boundary, DV = B · (eθ × eζ) and the linking currents on the computational boundary,

I =
∫ 2π

0
B · eθdθ = 0 and G =

∫ 2π

0
B · eζdζ = 2πη are computed from the analytical

solution and given to SPEC as inputs, where eθ and eζ are the covariant basis vectors.

The computational domain was separated into a “plasma volume” (with µ = 0, in fact

has vacuum field inside) and a vacuum volume, with an ideal interface between them.

We shall call this interface the plasma boundary hereafter. The toroidal flux ∆ψt inside

the plasma boundary was chosen to be 0.003Wb, with the total toroidal flux inside the

computational boundary at ζ = 0 being 0.1257Wb. SPEC then iterates on the position

of the plasma boundary to reach a force balance (3). After the force balance is reached,

the solution from SPEC should match the analytical Dommaschk magnetic field up to

an error controlled by the numerical resolution. It was reported that because of the

ill-conditioning problem, the Fourier resolution cannot go beyond M = N = 12, and

the maximum Euclidean error emax defined in (40), taking the analytical solution as Bref

and computed at the grid points inside the computational boundary, can only reach as

low as 10−5. In this section, we will show that since the ill-conditioning problem is

resolved, emax continues to reduce spectrally with increased Fourier resolution.

Extra care should be taken to choose the plasma boundary and the choice is

not arbitrary. We need to ensure that such a surface exists as a flux surface in the

Dommaschk magnetic field to which we compare. Failing to do so will result in a

current sheet on the plasma boundary and a jump of ι- to shield the magnetic island

that was originally there [4], leading to a saturated emax even with increasing numerical

resolution. Given B from the Dommaschk potential, one will need to trace the field

lines to find a flux surface, compute the enclosed toroidal flux, and giving it to SPEC
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as an input. Numerical errors can build up and propagate during the process, leading

to poor convergence.

In this work, we follow a slightly different pathway. Instead of setting η in (41) to

unity, we consider it as an adjustable parameter that only affects the toroidal field Bζ .

The change of η will not modify DV , since the computational boundary is axisymmetic

and the projection of Bζ on it is zero. For a vacuum field, the linking current I will stay

at zero, but G will be affected through G = 2πη. Therefore, we still give DV and I to

SPEC as inputs, but instead of constraining G, we constrain ι- on the plasma boundary

on the vacuum side to ι-b ≈ 0.4966719044, a noble irrational number with continuous

fraction expansion 〈0, 2, 74, 1, 1, · · · 〉, in which

〈a0, a1, a2, a3, · · · 〉 = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

. (42)

A noble irrational, whose continued fraction expansion has an infinite sequence of 1’s on

its tail, is chosen because the flux surfaces with a noble rotational transform are more

resilient to chaos inducing perturbations and more likely to persist [43]. The existence

of such a flux surface as an interface is later verified by our convergence study. We

set ψt = 0.0021Wb, a fixed value. SPEC then iterates on the position of the plasma

boundary to find force balance. The procedure is equivalent to searching for a value of

η such that the plasma boundary is a flux surface with ι- = ι-b. Once the force balance

is achieved, G is computed from the solution, which is then used in (41) to construct

the reference Dommaschk field given η = G/(2π). Figure 9 shows that emax continue to

reduce beyond M = N = 12 as the ill-conditioning problem is solved, and reaches as

low as 10−8 for M = N = 24.
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Figure 9. The max Euclidean error emax between the analytical Dommaschk field

and SPEC solution, as a function of Fourier resolution. The radial resolution L is set

to sufficiently high until it does not affect the error.
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The improved resolution allows us to resolve current sheets on interfaces even with a

small amplitude. We take the Dommaschk potential case as an example. As mentioned

above, if the plasma boundary is not a flux surface in the Dommaschk vacuum field,

a current sheet will develop on it to shield out islands that were originally there. The

amplitude of this current sheet depends on the size of n and m if the rotational transform

on the surface is written into the form of ι- = n/m, where m,n ∈ N and coprime. If

we set η = 1 and keep ψt = 0.0021Wb, we can observe such a current sheet on the

plasma boundary. In figure 10, we plotted the discontinuity in BZ on the plasma

boundary as a function of two angles. The magnitude of [[BZ ]] is on the order of

10−7, and as a consequence, the Fourier resolution to resolve it must be high enough

such that emax < 10−7. The rotational transform ι- jumped from 0.4966703277953 to

0.4966701219709 on the plasma boundary, with their continuous fraction expansion

being 〈0, 2, 74, 1, 1, 2, 1, 1, 7, 2, 2, 1, 2, 1, 53〉 and 〈0, 2, 74, 1, 1, 2, 1, 2, 2, 10, 31, 1, 14, 1, 1〉,
respectively . It is noteworthy that although the rotation transformation here agrees

with the irrational ι-b mentioned above up to the first five digits, it still results in a non-

vanishing current sheet. This demonstrates the nature of the mathematical problem

and has strong implications for the class of solutions with assumed nested flux surfaces

everywhere. In fact, it can be conjectured that since on a computer all numbers have a

finite number of digits, they end up being rational leading to a corresponding current

sheet. However, the size of the current sheet reduces as we are approaching irrationals

with more digits. The current sheet will eventually be buried in the numerical noise and

be impossible to resolve due to insufficient numerical resolution. This motivates future

studies of the current sheet amplitude as we approach an irrational rotational transform

with higher and higher number of digits.

Figure 10. The jump of BZ on the plasma boundary for η = 1 and ψt = 0.0021Wb.

The jump indicates the existence of a current sheet on the plasma boundary and such

a boundary is not a flux surface in the vacuum field.
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6. Conclusion

In this work, we presented a numerical method to solve the Beltrami equation in a shaped

torus using a spectral method, based on the Stepped Pressure Equilibrium Code (SPEC).

With the coordinate interpolation and ill-conditioning problem properly addressed, the

Beltrami field can be solved to high accuracy in shaped stellarator geometry such

as the W7X. The speed was improved by the use of iterative matrix solvers and the

matrix-free method. We showed that the new Beltrami solver also improved the overall

accuracy of SPEC and it is now able to resolve very fine current sheets. The coordinate

parameterisation and on-axis boundary condition introduced in this paper can serve as

a reference point for future stellarator codes that utilizes toroidal coordinates. This is

also the first time the Zernike polynomials are used in a plasma equilibrium code.

To fully explore the benefit of the matrix-free method, we propose to implement

an adjoint-based optimisation algorithm to solve the force balance. This, along with

other performance improvements, will enable free-boundary SPEC to operate as a

core equilibrium solver to be frequently called within the iterations of reconstruction

and/or stellarator optimisation tools. Moreover, the current sheets formed due to

rational rotational transform on interfaces can now be resolved at very high resolution,

enabling future studies into the mathematical and physical nature of 3D MHD equilibria.

The improvement in numerical convergence and speed also enables more dedicated

physics studies such as multi-volume W7X equilibrium or tokamak/reversed-field pinches

sawtooth crashes [17]. A properly designed comparison with other equilibrium codes is

also planned for future works.
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Appendix A. Robustness of the choice of the geometry axis

Without loss of generality, in (17) we set R1 = 1 and the ellipticity parameter κ = 1

since it only scales J by a constant factor. The parameters R2 and Z2 should stay

within a range so the the boundary will not intersect with itself. This range is derived

by setting ∂θR = ∂θZ = 0, giving

1 +R2
−1 +

√
1 + 32Z2

2

2Z2

> 0 and Z2
2 <

1

4
. (A.1)

We have plotted this region in R2 − Z2 parameter space as shown in figure A1.

We choose Rx = R0 −R2 − Z2, so that

JD2 = −1− 4s2R2Z2 + 4s2Z2(R2 + Z2) cos 2θ, (A.2)

with no m = 1 harmonics. To satisfy the requirement that |JD2| 6= 0, we will need

|1 + 4s2R2Z2| > |4s2Z2(R2 + Z2)| for s ∈ [0, 1], giving another region in figure A1.

Inspection of figure A1 shows that the method works for nearly all the allowed choices

of R2 and Z2.
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-1.0

-0.5

0.0

0.5

1.0

R2

Z
2

Figure A1. Parameter space in R2 − Z2 for which the Jacobian m = 1 harmonic

elimination method is successful. Meshed area: allowed parameter space without

boundary self-intersecting. Red solid area: parameter space for which the Jacobian is

non-zero with our choice of geometric axis.
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Appendix B. Algebraic manipulations of the 2D Jacobian

Appendix B.1. Jacobian from the boundary data

1

s
[∂sρ∂θΓ− ∂θ∂sΓ]

=
M∑

a,b=1

N∑
k,l=−N

Ra,kZb,labs
a−1sb−1[cos(aθ − kζ) cos(bθ − lζ) + sin(aθ − kζ) sin(bθ − lζ)]

=
M∑

a,b=1

N∑
k,l=−N

Ra,kZb,labs
a+b−2 cos[(a− b)θ − (k − l)ζ] (B.1)

=
M∑
m=0

M−m∑
m′=1

N∑
k,l=−N

(m′ +m)m′s2m′+m−2

× cm{Rm+m′,kZm′,l cos[mθ − (k − l)ζ] +Rm′,kZm+m′,l cos[−mθ − (k − l)ζ]}

=
M∑
m=0

M−m∑
m′=1

N∑
k,l=−N

(m′ +m)m′s2m′+m−2 cos[mθ − (k − l)ζ]

× cmck−l(Rm′+m,kZm′,l +Rm′,−kZm′+m,−l) (B.2)

=
M∑
m=0

2N∑
n=−2N

sm cos(mθ − nζ)
M−m∑
m′=1

2N−|n|∑
n′=0

(m′ +m)m′s2m′−2

× cmcn(Rm′+m,n′+|n|−NZm′,n′−N +Rm′,N−n′−|n|Zm′+m,N−n′) (B.3)

=J0(s, ζ) + J̃(s, θ, ζ)

where ci =

{
1
2
, i = 0

1, i 6= 0
.
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Appendix B.2. Average of the 2D gradient over unit disk

In computing the (m = 1, n)-Fourier component of JD2 |s=1, we need

N∑
k=0

N∑
l=−N

∆RkZ1,l2 cos(kζ) cos(θ − lζ)

=
N∑
k=0

N∑
l=−N

∆RkZ1,l{cos[θ + (k − l)ζ] + cos[θ − (k + l)ζ]}

=
N∑
k=0

N∑
l=−N

∆Rk{Z1,l cos[θ + (k − l)ζ] + Z1,−l cos[θ − (k − l)ζ]}

=
2N∑

n=−N

min(N,N+n)∑
k=max(0,n−N)

∆Rk{Z1,k−n cos(θ + nζ) + Z1,−k+n cos(θ − nζ)}

=
N∑
n=0

N∑
k=0

∆Rk{(Z1,n−k + ΘN−n−kZ1,k+n︸ ︷︷ ︸
An,k

) cos(θ − nζ)

+
N∑
n=1

N∑
k=0

∆Rk(Z1,k−n + ΘN−n−kZ1,−k−n︸ ︷︷ ︸
Cn,k

) cos(θ + nζ)}

+
2N∑

n=N+1

N∑
k=n−N

∆Rk{Z1,n−k cos(θ − nζ) + Z1,k−n cos(θ + nζ)} (B.4)

where Θi =

{
1, i ≥ 0

0, i < 0
is a cut-off coefficient.
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We also need

N∑
k=1

N∑
l=−N

∆ZkR1,l2 sin(−kζ) sin(θ − lζ)

=
N∑
k=1

N∑
l=−N

∆ZkR1,l{cos[θ + (k − l)ζ]− cos[θ − (k + l)ζ]}

=
N∑
k=1

N∑
l=−N

∆Zk{R1,l cos[θ + (k − l)ζ]−R1,−l cos[θ − (k − l)ζ]}

=
2N∑

n=−N

min(N,N+n)∑
k=max(1,n−N

∆Zk{R1,k−n cos(θ + nζ)−R1,−k+n cos(θ − nζ)}

=
N∑
n=0

N∑
k=1

∆Zk(−R1,n−k + ΘN−k−nR1,k+n︸ ︷︷ ︸
Bn,k

) cos(θ − nζ)

+
N∑
n=1

N∑
k=1

∆Zk(R1,k−n −ΘN−k−nR1,−k−n︸ ︷︷ ︸
Dn,k

) cos(θ + nζ)

+
2N∑

n=N+1

N∑
k=n−N

∆Zk{−R1,n−k cos(θ − nζ) +R1,k−n cos(θ + nζ)} (B.5)
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