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a b s t r a c t 

Brain mechanisms of visual selective attention involve both local and network-level activity changes at specific 

oscillatory rhythms, but their interplay remains poorly explored. Here, we investigate anticipatory and reactive 

effects of feature-based attention using separate fMRI and EEG recordings, while participants attended to one 

of two spatially overlapping visual features (motion and orientation). We focused on EEG source analysis of 

local neuronal rhythms and nested oscillations and on graph analysis of connectivity changes in a network of 

fMRI-defined regions of interest, and characterized a cascade of attentional effects at multiple spatial scales. We 

discuss how the results may reconcile several theories of selective attention, by showing how 𝛽 rhythms support 

anticipatory information routing through increased network efficiency, while reactive 𝛼-band desynchronization 

patterns and increased 𝛼- 𝛾 coupling in task-specific sensory areas mediate stimulus-evoked processing of task- 

relevant signals. 
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. Introduction 

Visual selective attention enables us to prioritize the processing of

ehaviorally relevant stimuli while filtering out irrelevant ones. This

undamental function of the human brain is supported by changes in

ctivity patterns that occur at multiple spatial scales, from local neu-

onal circuits to global interactions between brain regions ( Corbetta and

hulman, 2002 ; Greenberg et al., 2010 ; Kastner and Ungerleider, 2000 ;

colari et al., 2014 ; Serences and Yantis, 2007 ). A central role in this

istributed brain function is played by specific rhythms that coordi-

ate selective processing both at the level of neuronal ensembles and

t the macro-scale of multiple brain regions, determining the enhance-

ent and propagation of attention-related signals or the downregula-

ion of irrelevant activity ( Antzoulatos and Miller, 2014 ; Bonnefond and

ensen, 2015 ; Buschman et al., 2012 ; Buzsáki and Draguhn, 2004 ;

anolty et al., 2007 ; Haegens et al., 2011a ; Kopell et al., 2000 ; von Stein

nd Sarnthein, 2000 ). 

A growing body of evidence suggests that distinct neuronal rhythms

ay serve distinct functional roles in selective attention. Activity around

he alpha rhythm ( 𝛼, 7–14 Hz), for instance, has been widely linked to

he prevention or inhibition of task-irrelevant signals ( Chelazzi et al.,

019 ; Foster and Awh, 2019 ; Van Diepen et al., 2019 ; but see

oonan et al., 2016 ; Schroeder et al., 2018 ). A potential mechanism by

hich 𝛼 rhythms would gate selective attention is through the pulsed
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nhibition of ongoing cortical activity, by providing phasic bursts of in-

ibition that suppress the functional processing and inter-areal commu-

ication in the gamma frequency range ( 𝛾, above 30 Hz) ( Jensen and

azaheri, 2010 ). In support of this, several studies have recently docu-

ented an inverse relationship between 𝛼-band feedback signaling from

ttentional control regions and feedforward 𝛾-band activity in sensory

ortices, revealing top-down, attention-related 𝛼-modulations that in-

erfere with local structures of 𝛼- 𝛾 phase-amplitude coupling (PAC) in

ensory areas ( Bonnefond and Jensen, 2015 ; Haegens et al., 2011b ;

athewson et al., 2011 ; Mazaheri and Jensen, 2010 ; Pascucci et al.,

018 ; Popov et al., 2017 ). Intermediate beta rhythms ( 𝛽, 15–30 Hz)

ave been instead related to the instantiation of distributed task-

elevant representations that convey context- and content-specific in-

ormation ( Antzoulatos and Miller, 2016 , 2014 ; Buschman et al., 2012 ;

ichter et al., 2018 ; Spitzer and Haegens, 2017 ). At the same time, 𝛽-

and activity has been also shown to promote feedforward and inter-

real 𝛾-band synchronization ( Richter et al., 2017 ), while prevent-

ng interference and irrelevant attentional shifts ( Fiebelkorn and Kast-

er, 2019 ). Thus, distinct rhythms appear to fulfill separate but comple-

entary roles in selective attention, by differentially modulating local

ctivity, structures of cross-frequency coupling and neuronal communi-

ation in large-scale networks. 

A further distinction exists as to whether specialized rhythms sup-

ort the anticipatory (prestimulus) and reactive (poststimulus) com-

onents of selective attention. Prestimulus synchronization of 𝛼-band
ember 2020 
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ctivity has been mostly described in relation to anticipatory, proac-

ive mechanisms to filter out irrelevant features and locations ( Foxe and

nyder, 2011 ; Kelly et al., 2006 ; Oliveira et al., 2014 ; Snyder and

oxe, 2010 ; Worden et al., 2000 ; but see Noonan et al., 2016 ), whereas

oststimulus, 𝛼-band event-related desynchronization (ERD) has been

inked to the release from inhibition ( Klimesch et al., 2007 ), which

n turn facilitates local and feedforward 𝛾-band activity conveying

ask-relevant signals ( Bonnefond et al., 2017 ; Pascucci et al., 2018 ;

opov et al., 2017 ). Conversely, poststimulus increases of 𝛼-band ac-

ivity may represent reactive suppression and the return to inhibitory

tates that prevent task-irrelevant processing ( Pascucci et al., 2018 ).

n a similar vein, increases of 𝛽-band activity have also been found in

reparatory stages of processing ( Schneider and Rose, 2016 ), as top-

own modulatory signals that relay task-specific behavioral context

 Richter et al., 2018 ), or in more reactive stages as feedback control

echanisms that facilitate the bottom-up communication of attended

timuli ( Bastos et al., 2015 ). Crucially, most of these phenomena have

een investigated separately and the exact nature of their interplay, as

ell as the complexity of local and large-scale neuronal dynamics in-

olved in selective attention, remains poorly understood. 

In the present work, we leveraged different spatial scales of neuronal

ctivity to characterize the temporal dynamics of local and network-

evel changes during anticipatory and reactive stages of selective at-

ention. At the local level, we focused on neuronal rhythms modula-

ions and on the phenomenon of nested oscillations ( Bonnefond et al.,

017 ). At the network level, we exploited frequency-resolved mea-

ures of directed connectivity among distributed attentional and sen-

ory areas, with the goal to assess the role of distinct rhythms in fa-

ilitating network-level communication to convey relevant signals, or

reventing/filtering out irrelevant ones. Most previous studies on vi-

ual attention have investigated local neurophysiological changes and

hole-brain connectivity separately (for reviews, see Carrasco, 2011 ;

colari et al., 2014 ). However, local and network changes are highly in-

erdependent because within-area activity co-determines the functional

nteractions with other areas. Likewise, the interactions with other areas

re what shapes local activity. Taking both local and network activities

nto account is especially pertinent for visual selective attention since

t involves preferential processing of features through coordinated ac-

ivity in a distributed network of areas ( Buschman and Kastner, 2015 ).

ocal activity changes in distinct frequency bands are thought to reflect

pecific mechanisms for the processing or inhibition of stimulus features

for review, see Buzsáki, 2006 ), while network interactions are needed

or cognitive tasks. Specifically, mechanisms of large-scale network syn-

hronization are thought to establish information routing of behav-

orally relevant information between neuronal groups, through distinct

requency channels of communication ( Bastos et al., 2015 ; Fries, 2015 ).

ere, we therefore investigated both the local activity changes and net-

ork reorganization resulting from feature-based selective attention. 

In the anticipatory stage, we expected attention-induced local and

etwork-level changes in the 𝛼 and 𝛽-band. Alpha-band changes in

reparatory stages have been shown to downregulate irrelevant activity

nd proactively filter out task-irrelevant signals ( Chelazzi et al., 2019 ;

oster and Awh, 2019 ; Snyder and Foxe, 2010 ), while 𝛽-band changes

re thought to reflect the control of endogenous content reactivation

f task-relevant information ( Spitzer and Haegens, 2017 ). We thus ex-

ected 𝛼-band power increases in task-specific sensory areas in antic-

pation of task-irrelevant (unattended) stimuli, accompanied by facili-

ation of network-level communication in the 𝛼-band to convey gating

ignaling to these areas; vice versa, locally increased 𝛽 power and en-

anced information routing in the 𝛽-band were expected in anticipation

f task-relevant (attended) stimuli to endogenously reactivate content-

pecific relevant representations. As for the reactive stage of selective at-

ention, a recent study using an orientation discrimination task showed

hat attention-induced 𝛼-band ERD was accompanied by increase in 𝛼-

PAC in early visual areas ( Pascucci et al., 2018 ), which may reflect

n enhancement in sensory processing of relevant exogenous signals
f attended stimuli ( Bonnefond and Jensen, 2015 ; Jensen and Maza-

eri, 2010 ). Here, we expected similar reactive effects to selectively oc-

ur in sensory cortices that preferentially encode the attended feature,

ogether with a dynamic reorganization of frequency-specific inter-areal

nteractions in the 𝛼 and 𝛾-band. The feature-based specificity of atten-

ion may emerge from these more local, selective coupling mechanisms

n functionally specialized regions, while general effects of stimulus rel-

vance may involve more global phenomena, characterized by dynamic

hanges in the network organization of functional interactions between

istributed cortical areas. With regards to network changes, previous

ork has shown that 𝛾-band interactions support information routing of

ttended sensory representations, while interactions in the 𝛼 and 𝛽-band

ould mediate the suppression of task-irrelevant information and pro-

ide endogenous control, respectively ( Fiebelkorn and Kastner, 2019 ;

ries, 2015 ; Jensen and Mazaheri, 2010 ; Spitzer and Haegens, 2017 ).

uring the reactive stage of processing of attended stimuli, we therefore

xpected changes in local and global network efficiency characterized

y i) facilitation of communication in the 𝛾-band and ii) impediment in

he 𝛼 and 𝛽-band. 

To test our hypotheses, we acquired separate EEG and fMRI record-

ngs while human participants were performing basic visual tasks under

ifferent feature-based attention conditions. We presented two spatially

verlapping features ( Baldauf and Desimone, 2014 ), motion and orien-

ation, and we directed participant’s attention toward one of them in

eparate blocks, probing both anticipatory and reactive feature-specific

ttentional responses. We used EEG for its high temporal resolution and

bility to resolve spectral components. Since analyses in EEG sensor-

pace do not allow meaningful interpretation in terms of underlying in-

eracting cortical areas ( Brunner et al., 2016 ; Van de Steen et al., 2016 ),

e employed a source reconstruction technique using individual head

odels ( Pascual-Marqui et al., 2017 ; Rubega et al., 2019 ; Van Veen

t al., 1997 ). Source-reconstructed EEG signals were extracted from 22

ortical regions of interest (ROIs), as identified using fMRI contrasts

rom the same participants. We adopted an fMRI-based approach to lo-

alize attention-induced effects and define ROIs. This takes into account

he specific characteristics of our experimental design and the physical

roperties of the visual stimuli employed, and can be expected to be

ore accurate than using a priori selections based on previous studies,

here paradigm and stimuli characteristics may differ from those used

ere. This approach allowed us to identify known attentional areas in

rontal and parietal cortices ( Corbetta and Shulman, 2002 ), as well as

dditional sensory areas that may be specific for the paradigm and vi-

ual features used in this study ( Ahlfors et al., 1999 ; Bosking et al., 1997 ;

upont et al., 1998 ; Koelewijn et al., 2011 ; Schoenfeld et al., 2007 ;

imoncelli and Olshausen, 2001 ). 

Analyses on source-reconstructed EEG signals enabled us to charac-

erize the temporal dynamics of i) local neuronal rhythms, ii) nested

scillations, and iii) whole-brain connectivity, as a function of atten-

ional condition. Local rhythmic modulations were quantified using

orlet wavelet transform ( Torrence and Compo, 1998 ), while nested

scillations were assessed using measures of PAC ( Lachaux et al., 1999 ;

enny et al., 2008 ). A time-varying connectivity analysis was employed

o derive frequency-resolved measures of directed connectivity ( Baccalá

nd Sameshima, 2014 ; Pascucci et al., 2020 ; Takahashi et al., 2010 ), and

e used graph theoretical analysis to summarize the topological orga-

ization of large-scale functional networks in the time and frequency

omain. Our brain, like many other natural networks, is character-

zed by a network organization that favors both functional segregation

nd integration, which are respectively the ability for specialized pro-

essing within densely interconnected neuronal groups and the ability

o quickly access and combine specialized information from these dis-

ributed groups across areas ( Rubinov and Sporns, 2010 ). These were

raditionally quantified using network measures like the mean clustering

oefficient and characteristic path length, such that high clustering and

hort characteristic path length characterize networks that are simulta-

eously highly segregated and integrated ( Watts and Strogatz, 1998 ).
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Fig. 1. Experimental paradigm. Schematic representation of the trial struc- 

ture for A) Attended (motion or orientation discrimination) and B) Unattended 

(detection of color changes in the fixation spot) conditions. The white arrows on 

top of the visual stimuli indicate the direction of coherent motion and were not 

present during the experiment. The red fixation spot is enlarged for illustrative 

purpose, but it did not change size during color changes. 
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ore recent measures of segregation and integration are the local and

lobal network efficiency ( Latora and Marchiori, 2001 ). These quan-

ify the levels of functional integration within subgraphs of intercon-

ected brain regions and globally in the entire network respectively,

nd have the interpretational advantage that higher efficiency values

ndicate more integration, locally or globally. Simultaneously increased

ocal and global efficiency would represent enhanced large-scale net-

ork communication, facilitating information routing, while decreased

evels would represent reduced communication at certain frequencies

nd time points. Although it seems reasonable to expect that net-

ork topology dynamically changes during stimulus processing ( Ju and

assett, 2020 ), its dynamics and relevance for attentional processing re-

ain unexplored. 

The analyses of neuronal rhythms and nested oscillations were ex-

ected to characterize the dynamic modulations of local cortical com-

utations induced by attention in specialized sensory areas, while the

raph analysis was expected to shed light on how selective attention

exibly and dynamically reorganizes functional network interactions to

ender such specialized information more widely accessible across cor-

ical regions, supporting the preferential processing of endogenously-

r exogenously-driven relevant signals in widespread circuits. Our re-

ults revealed a cascade of attentional effects at multiple spatial scales,

rom anticipatory 𝛽-band connectivity changes to facilitate network-

evel communication, to distinct local and global poststimulus dynamics

nitiated by 𝛼-band desynchronization. 

. Methods 

.1. Participants 

Twenty healthy human participants (13 female; all right-handed;

ges 19–34 y, M = 23.25, SD = 4.15) with normal or corrected-to-normal

ision (visual acuity across participants 1.10–1.63, M = 1.40, SD = 0.19;

reiburg visual acuity test ( Bach, 1996 )) took part in the study for mone-

ary compensation (20.– CHF/hour). The study was performed in accor-

ance with the Declaration of Helsinki on “Medical Research Involving

uman Subjects ” and after approval by the responsible ethics commit-

ee (Commission cantonale d’éthique de la recherche sur l’être humain,

ER-VD). Written informed consent was obtained from each participant

rior to the experimental sessions. Data from one participant (male,

ge = 22) were excluded because of excessive artifacts in the EEG. These

onsisted of irregular drifts over several electrodes (due to inappropri-

te fitting of the headcap), as signaled by electrode offset outside the

cceptable range for legitimate recordings (within + /- 25 mV). 

.2. Experimental design 

Visual stimuli were Random Dot Kinematograms (RDK: 10° field-

ize, 1200 dots, 0.2° dot-size, infinite dot-life, and 4°/s dot-speed), that

ere contrast-modulated through a Gaussian-windowed sinusoidal grat-

ng (Gabor: 6° width at 3 SDs, and 0.5 cycles/° spatial frequency), such

hat the Gabor determined the visible region of the RDK and its spatial

attern of contrast ( Fig. 1 ). The orientation of the Gabor ranged between

5° and − 45° off-vertical, and phase varied randomly at every trial. In

he RDK, a subset of dots moved coherently either towards left or to-

ards right (signal-dots), while the remaining dots moved with random

alks (noise-dots), in such a way that their direction varied at every

rame but their speed was kept constant. Stimuli were presented on a

ray background for 300 ms always at the same spatial location, around

 central fixation spot that was constantly on the screen (0.2° size, and

0,0,160) color in RGB digital 8-bit notation). The inter-trial interval

ITI) was randomly varied between 800 and 1000 ms. The generation

nd presentation of the visual stimuli was performed using a combi-

ation of in-house Python codes and PsychoPy Builder ( Peirce et al.,

019 ). 
The study consisted of three separate experimental sessions: one be-

avioral (approx. 45 min), one EEG (approx. 60 min), and one session

f fMRI (approx. 45 min). In all sessions, the participants were asked

o performed different tasks on the same type of visual stimuli. The be-

avioral session comprised two different tasks in separate blocks (100

rials), requiring a two-choice response. At the beginning of each block,

articipants were either instructed to report the perceived motion di-

ection in the RDK (left vs. right, motion discrimination task), or the

ff-vertical tilt of the Gabor (left vs. right, orientation discrimination

ask), by pressing the corresponding key on a keyboard. The aim of the

ehavioral session was to determine individual thresholds for coherent

otion and orientation discrimination, in order to level performance for

he two tasks in the EEG and fMRI sessions, keeping accuracy at 82%

f correct responses for both tasks. Thresholds were estimated using the

daptive staircase procedure QUEST ( Watson and Pelli, 1983 ) as imple-

ented in PsychoPy, which measures psychophysical thresholds using

 Weibull psychometric function, where desired correct performance of

2% is typically used (see, e.g., Pascucci et al., 2018 ). We used start-

ng values of 60% for signal-dots and 4° for angle of orientation, while

he task-irrelevant feature was kept constant during the staircase pro-

edure (40% of signal-dots in the orientation discrimination task and

 3° off-vertical in the motion discrimination task). This allowed to ob-

ain individual discrimination thresholds at the same level of accuracy

cross participants, both for the motion discrimination task (signal-dots

ercentages 10.61–89.82, M = 44.50, SD = 29.09) and for the orienta-

ion discrimination task (angles of orientation 1.53°–4.30°, M = 2.45°,

D = 0.72°). Individually calibrated values were used to define stimuli in

he subsequent EEG and fMRI sessions. 

During neuroimaging sessions, participants also performed an ad-

itional control task, where they had to report sporadic color changes

n the fixation spot lasting 200 ms (from dark blue to red, 30% of tri-

ls; Fig. 1 B) by pressing a response button. To ensure that the timing

f these color changes was unpredictable, we presented them at any

ime during the trial, randomly. Trials in which the color change over-

apped with visual stimuli appearance were excluded from the succes-

ive analyses. This design resulted in two conditions in which the RDK

as task-relevant (motion and orientation discrimination) and one con-

ition where it was task-irrelevant (color change detection). We refer

o these different task conditions as Attended (Attended-motion and

ttended-orientation) and Unattended, indicating the type of attentional

rocessing required for the visual stimuli. Task order was counterbal-
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nced across participants in each of the three experimental sessions.

articipants had a limited time to respond (1500 ms), after which the

esponse for that trial was considered incorrect. The EEG session con-

isted of 160 trials for each task condition, which were divided in 4

locks (40 trials per block). Small breaks were offered between blocks.

he fMRI session followed a similar block structure, but with less trials

48 trials for each task condition). Here, a fixed 12 s break was presented

fter each block following the instruction to “REST ” (Rest period), with

he exception of the last Rest period that lasted 60 s. The aim of the

MRI session was to identify regions of interest (ROIs) for source-space

EG analyses (see Section 2.4 and Supplementary material). 

.3. EEG data acquisition and preprocessing 

EEG recordings were collected at the Department of Psychology, Uni-

ersity of Fribourg. During the EEG session, participants were sitting in-

ide a dark, electromagnetic shielded room, with their head leaning on

 chinrest positioned at 71 cm from a VIEWPixx /EEG 

TM (VPixx Tech-

ologies Inc., Saint-Bruno, CA) LCD monitor (24 inches diagonal size,

920 × 1080 resolution, 100 cd/m 

2 luminance, 120 Hz refresh rate, 1 ms

ixel response time). A 2-button RESPONSEPixx response box (VPixx

echnologies Inc.) was plugged into the monitor and used by the par-

icipants during the visual tasks. EEG data were acquired using a 128-

hannel ActiveTwo EEG system (Biosemi, Amsterdam, NL). Data acqui-

ition was performed at a sampling rate of 1024 Hz, and signals were

eferenced to the Common Mode Sense (CMS) active electrode, which

ogether with the Driven Right Leg (DRL) passive electrode formed a

eedback loop in the system. This CMS/DRL loop allow to drive the

ommon-mode voltage as close as possible to the ADC reference voltage

n the AD-box, and to obtain an extra 40 dB common-mode rejection ra-

io at 50 Hz, when compared with using normal ground electrodes with

ame impedance. At the end of the EEG session, the 3D coordinates of

he positions of the electrodes were localized for each participant using

n ELPOS system (Zebris Medical GmbH, Isny im Allgäu, DE). These in-

ividual electrodes’ positions were used for EEG source reconstruction

rocedure (see Section 2.4 ). 

EEG preprocessing was performed using a combination of EEGLAB

 Delorme et al., 2011 ; Delorme and Makeig, 2004 ), its plugins, and

n-house scripts implemented in MATLAB (The MathWorks Inc., Nat-

ck, USA). Data were first downsampled to 500 Hz using an anti-

liasing filter with 125 Hz cutoff frequency and 50 Hz transition

andwidth. Afterwards, the data were detrended using high-pass fil-

ering (1 Hz low-frequency cutoff), as implemented in the PREP plu-

in ( Bigdely-Shamlo et al., 2015 ). Line noise and its harmonics were

educed using the adaptive filtering technique implemented in the

EGLAB plugin CleanLine ( https://www.nitrc.org/projects/cleanline ),

hich allows identifying and removing significant sinusoidal artifacts.

pochs were extracted using the time window − 1500–1000 ms around

timulus onset. Noisy EEG channels were identified by visual inspec-

ion and removed before proceeding to the subsequent preprocess-

ng steps (number of removed channels across participants 12–21,

 = 15.85, SD = 2.64). Epochs contaminated by noise artifacts were

lso rejected by visual inspection, and the same was done for those

ith eye blinks occurring within 500 ms from stimulus onset ( − 500–

00 ms window) (percentage of rejected epochs across participants

2.50–38.95%, M = 23.01, SD = 7.49). Decomposition of EEG data by

ndependent component analysis (ICA) was performed using the Fas-

ICA algorithm ( Hyvärinen and Oja, 2000 ). ICA components identified

s eye artifacts or muscular activity artifacts were removed from the data

number of removed components across participants 5–23, M = 10.30,

D = 4.09). As final preprocessing steps, noisy EEG channels were in-

erpolated using a spherical spline interpolation ( Perrin et al., 1989 );

hen, the signals were re-referenced to the common average reference

 Lehmann and Skrandies, 1980 ). Trials with incorrect responses were

xcluded from successive analyses. Moreover, because the functional

onnectivity analysis (see Section 2.7 ) can be sensitive to the amount of
rials ( Astolfi et al., 2008 ; Toppi et al., 2012 ), and consequently an im-

alance of trials between task conditions may create spurious differences

rom comparing them, the amount of trials across task conditions was

alanced within-subjects (number of trials per task condition across par-

icipants 74–127, M = 103.5, SD = 15.3). This was accomplished by ran-

omly removing trials in each condition to match the minimum amount

cross the three task conditions at within-subject level (maximum per-

entage of trials removed per task condition across participants 0.63–

3.75%, M = 6.3%, SD = 4.7%). 

.4. EEG source reconstruction 

Source reconstruction techniques enable to estimate and localize the

EG sources of brain electrical activity, by solving first a forward prob-

em and then an inverse problem ( Michel et al., 2004 ). For the for-

ard problem, the volume conduction model of each participant was

onstructed using a boundary element method (BEM) ( Hamalainen and

arvas, 1989 ), which employed the information about boarder surfaces

etween three different tissue-types: scalp, skull and brain. These sur-

aces were obtained from a segmentation procedure of the individual-

articipant anatomical MRI, using a Gaussian kernel for smoothing (5

oxels FWHM). The participant-specific 3D electrode coordinates were

ligned to the head model of the same participant using an interactive

e-alignment procedure, followed by a projection of electrodes onto the

ead surface. For group analyses on source-reconstructed EEG data, we

mployed a template grid based on Montreal Neurological Institute and

ospital (MNI) template anatomical MRI to define the solution points.

he template comprised 1725 source-points (equivalent current dipoles)

ith 10 mm spacing, and was constrained to be within the cortical gray

atter. Individual MRIs were warped to the template, and the inverse of

his warping procedure was applied to the template grid. This procedure

rovided participant-specific grids that were no longer regularly spaced,

ut that became equivalent across participants in normalized MNI space,

acilitating group analysis on source-space. Finally, individual lead field

atrices were computed considering an unconstrained-orientation for-

ard operator, i.e., each solution point was modeled as three orthogonal

quivalent current dipoles placed at that location. 

To solve the EEG inverse problem, we employed the linearly con-

trained minimum variance (LCMV) beamformer ( Van Veen et al.,

997 ). The LCMV belongs to the family of spatial filtering methods

nd its implementation relies on the use on an estimate of the sensor-

pace covariance matrix, which was here estimated from the time win-

ow − 500–500 ms around stimulus onset. Source-reconstructed signals

ere extracted from 22 cortical ROIs using singular value decomposition

SVD), deriving scalar-value time series that best explain the variability

n dipole orientations and strengths across trials, for each ROI (for de-

ails see Rubega et al., 2019 ). An automatic procedure starting from the

esults of an fMRI statistical analysis allowed to identify the 22 ROIs (for

etails, see Supplementary material): left and right premotor area (PM L

nd R), left and right middle frontal gyrus (MFG L and R), left and right

nferior frontal gyrus (IFG L and R), supplementary motor area (SMA),

iddle cingulate cortex (MCC), left and right calcarine sulcus (V1 L and

), left cuneus (Cuneus), left and right secondary visual cortex (V2 L

nd R), left fusiform gyrus (FFG L), left gyrus postcentralis (GPC L), left

nd right superior parietal lobule (SPL L and R), left and right inferior

arietal lobule (IPL L and R), left and right middle temporal area (MTG

 and R), right visual cortex V5 (V5 R). As a final step, we used orthog-

nalization for leakage correction ( Pascual-Marqui et al., 2017 ), on the

ingle trial scalar-valued time series derived using SVD. This orthogonal-

zation approach allowed reducing the detrimental effects on functional

onnectivity analyses of zero-lag cross-correlations, which are due to in-

tantaneous linear mixing between source-reconstructed signals (source

eakage) and are known to produce spurious functional connectivity es-

imates ( Anzolin et al., 2019 ). All the steps of EEG source reconstruc-

ion were implemented using in-house MATLAB codes and routines from

https://www.nitrc.org/projects/cleanline


M.F. Pagnotta, D. Pascucci and G. Plomp NeuroImage 223 (2020) 117354 

F  

h

2

 

w  

w  

s  

w  

p  

l  

a  

t  

i

 

i  

c  

p  

f  

a  

a  

A  

t  

a  

t  

o  

t  

c

 

s  

e  

f  

e  

s  

a  

n  

A  

a

2

2
 

b  

f  

t  

b  

b  

p  

M  

V  

o  

t  

r  

P  

H  

J  

w  

a

0  

f  

t  

2  

t  

d

𝐵

 

w  

c  

t  

o  

p  

N  

f  

p  

t  

w  

t  

P

 

d  

I  

s  

t  

w  

p  

r  

w  

p  

C

 

(  

u  

f  

l  

b  

P  

c  

i  

f  

f  

o  

c  

d  

t  

w  

c  

p  

a

2
 

c  

l  

o  

P  

o  

o  

a  

t  

1  

r  

s  

i  

r  

w  
ieldTrip ( Oostenveld et al., 2011 ) (Radboud University, Nijmegen, NL;

ttp://www.ru.nl/neuroimaging/fieldtrip ). 

.5. Power spectra 

To investigate local brain rhythms modulations depending on

hether the stimuli were relevant or not, time-varying power spectra

ere estimated in the time window − 800–800 ms around stimulus on-

et from the source-reconstructed signals in each ROI. The estimation

as performed using a Morlet wavelet transform with central frequency

arameter 𝜔 0 = 6, in combination with zero-padding to solve the prob-

em of edge effects ( Torrence and Compo, 1998 ). For each participant

nd task condition, time-varying spectral estimates were estimated in

he frequency range 1–100 Hz using the MATLAB codes made available

n Pagnotta et al., 2018a . 

To characterize the attentional modulations of neuronal rhythms

n the reactive stage of processing (locked to stimulus onset), a

luster-based permutation approach was used to compare time-varying

ower spectra of Attended and Unattended conditions, over time

rames (0–500 ms after stimulus onset) and frequencies (1–100 Hz),

nd all ROIs ( Maris and Oostenveld, 2007 ). In this and every other

nalysis using a cluster-based permutation approach to compare

ttended and Unattended conditions, we employed the same set-

ings: two-tailed dependent t -test ( p < 0.05), 50,000 permutations,

nd p < 0.05 for the permutation test. In the two-tailed test, we used

he solution that consists of multiplying the p -values with a factor

f two, prior to thresholding, to distribute alpha level over both

ails ( http://www.fieldtriptoolbox.org/faq/why_should_i_use_the_cfg.

orrecttail_option_when_using_statistics_montecarlo/ ). 

To assess neuronal rhythms modulations in the anticipatory stage, a

imilar analysis was performed on a prestimulus time window of inter-

st ( − 300–0 ms). We selected this prestimulus window to be as distant

rom the previous behavioral response as possible, while keeping a large

nough window size to consider a central frequency for the phase time

eries above 4 Hz, for the PAC analysis (see Section 2.6.1 ). We aver-

ged spectral estimates over the prestimulus window since there was

o temporal reference in the anticipatory window, and then compared

ttended and Unattended conditions using a cluster-based permutation

pproach over frequencies (1–100 Hz) and ROIs. 

.6. Local cross-frequency coupling 

.6.1. Anticipatory cross-frequency coupling 
Cross-frequency coupling was measured in terms of dependence

etween phase of low-frequency oscillations and amplitude of high-

requency oscillations, called phase-amplitude coupling or PAC. Among

he available types of cross-frequency coupling, we employed the PAC

ecause of its more clear functional role and physiological plausi-

ility ( Canolty and Knight, 2010 ; Voytek et al., 2010 ). Several ap-

roaches have been proposed to measure PAC ( Canolty et al., 2006 ;

artínez-Cancino et al., 2019 ; Penny et al., 2008 ; Tort et al., 2010 ;

oytek et al., 2013 ). We here employed the modulation index based

n GLM ( Penny et al., 2008 ) to calculate within-region PAC, using the

oolbox from Martínez-Cancino et al. (2019) . Since previous studies

eported attention-related modulations of low-frequency activity and

AC (especially 𝛼- 𝛾) in sensory areas ( Bonnefond and Jensen, 2015 ;

aegens et al., 2011b ; Mathewson et al., 2011 ; Mazaheri and

ensen, 2010 ; Pascucci et al., 2018 ; Popov et al., 2017 ), our analysis

as restricted to the occipito-temporal ROIs: V1 L and R, Cuneus, V2 L

nd R, FFG L, MTG L and R, and V5 R. 

The anticipatory PAC analysis was performed in the window − 300–

 ms. The central frequency for the phase time series ( f PHASE ) ranged

rom 4 Hz to 30 Hz in 1Hz-steps, and the higher central frequency for

he amplitude time series ( f AMPLITUDE ) ranged from 40 Hz to 100 Hz in

Hz-steps. The bandwidth of the band-pass filters to estimate the phase

ime series ( BW ) and the amplitude time series ( BW ) were
PHASE AMPLITUDE 
efined according to the following expressions: 

𝐵 𝑊 𝑃𝐻𝐴𝑆𝐸 ( 𝐻𝑧 ) = 

[
𝑓 𝑃𝐻𝐴𝑆𝐸 − 1 , 𝑓 𝑃𝐻𝐴𝑆𝐸 + 1 

]

 𝑊 𝐴𝑀 𝑃𝐿𝐼 𝑇𝑈𝐷𝐸 ( 𝐻𝑧 ) = 

[
𝑓 𝐴𝑀 𝑃𝐿𝐼 𝑇𝑈𝐷𝐸 − 

(
𝑓 𝑃𝐻𝐴𝑆𝐸 + 1 

)
, 

𝑓 𝐴𝑀 𝑃𝐿𝐼 𝑇𝑈𝐷𝐸 + 

(
𝑓 𝑃𝐻𝐴𝑆𝐸 + 1 

)]
(1) 

Filtering was applied to the time window of interest using two buffer

indows of 1850 ms, before and after the window. Each buffer window

onsisted of 600 ms of observed signal and the rest zeros, such that fil-

ering was applied every time to a 4000 ms window. A combination

f high-pass and low-pass finite impulse response (FIR) filters was em-

loyed to band-pass filter the data in the frequency bands of interest.

ext, the Hilbert transform was applied to extract the analytic signals

rom which instantaneous low-frequency phase and high-frequency am-

litude time series were estimated, which allowed computing PAC in the

ime window of interest using the GLM-based method. This procedure

as repeated for every combination of f PHASE and f AMPLITUDE , in each

rial. Single-trial estimates were averaged to obtain the within-region

AC in the different task conditions. 

In each task condition, the presence of local oscillatory nesting was

etermined by a statistical test using surrogate data ( Aru et al., 2015 ).

n this surrogate analysis, PAC estimates were obtained 500 times from

urrogate data. Surrogate data were generated using a block-resampling

echnique where the time series of instantaneous low-frequency phase

as separated into 20 segments. The segments were then randomly

ermuted across time and a new PAC estimate (surrogate) was de-

ived. The statistical significant of each PAC estimate (from actual data)

as assessed against the distribution of surrogates, following the ap-

roach based on z-scores (alpha level of 0.05) described by Martínez-

ancino et al. (2019) . 

After surrogate analysis, significant within-region PAC estimates

masked) were compared between Attended and Unattended conditions,

sing a cluster-based permutation approach over all pairs of f PHASE and

 AMPLITUDE . The f PHASE –f AMPLITUDE pairs for which BW AMPLITUDE over-

apped with BW PHASE were excluded from the analysis. Since strong im-

alances in the power spectra between conditions can lead to spurious

AC differences ( Aru et al., 2015 ), a control analysis based on a stratifi-

ation procedure was used to confirm the between-condition differences

n PAC. The control analysis was performed using the ft_stratify function

rom FieldTrip with 1000 iterations ( Oostenveld et al., 2011 ), separately

or each ROI that showed significant differences in PAC from the previ-

us cluster-based permutation comparison. At each iteration, this pro-

edure selects subsets of trials from the two conditions with matched

istributions of power spectra across trials, for both phase and ampli-

ude frequency bands. Balanced numbers of trials between conditions

ere maintained during this procedure. The final estimates from this

ontrol analysis were obtained as the median across iterations of the

ower-balanced estimates, and these were compared between Attended

nd Unattended conditions using the cluster-based permutation. 

.6.2. Reactive 𝛼- 𝛾 coupling 
A measure of stimulus-evoked cross-frequency coupling was

omputed for each task condition using the instantaneous phase-

ocking value (PLV) between the low-frequency phase and the phase

f amplitude-filtered high-frequency signal ( Lachaux et al., 1999 ;

ascucci et al., 2018 ). Same as before, the estimation was performed

n the subset of 9 occipito-temporal ROIs. Time-varying estimates were

btained at each time frame by averaging the instantaneous contributes

cross trials. The analysis was performed on the interval 0–500 ms af-

er stimulus onset, using two buffer windows (before/after), each of

450 ms length (including 300 ms of observed signal). Low-frequency

ange was defined in the 𝛼-band as f PHASE = 10 Hz. This value was

elected in a data-driven way, based on results obtained by compar-

ng time-varying power spectra ( Fig. 4 ). For the amplitude time se-

ies, f AMPLITUDE ranged from 40 Hz to 100 Hz in 2Hz-steps. The band-

idths of the two band-pass filters were chosen using the expressions

http://www.ru.nl/neuroimaging/fieldtrip
http://www.fieldtriptoolbox.org/faq/why_should_i_use_the_cfg.correcttail_option_when_using_statistics_montecarlo/
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n Eq. (1) ; the procedure of filtering (FIR-based) and analytic signals

xtraction (using Hilbert transform) was carried out as previously (see

ection 2.6.1 ). The presence of within-region 𝛼- 𝛾 coupling in each task

ondition was determined using surrogate analysis ( Aru et al., 2015 ;

artínez-Cancino et al., 2019 ). A cluster-based permutation approach

ver time frames and amplitude high-frequencies was then employed to

ompare significant instantaneous PLV estimates (masked) between At-

ended and Unattended conditions. Finally, a control analysis based on

tratification (1000 iterations) was used to confirm between-condition

ifferences in time-varying 𝛼- 𝛾 coupling, by selecting at each iteration

ubsets of trials from the two conditions with matched distributions of

ower spectra, for both phase and amplitude frequency bands ( Aru et al.,

015 ). The stratification procedure was here performed separately for

ach time frame. 

.7. Large-scale networks 

To estimate the functional interactions among ROIs we used the in-
ormation form of partial directed coherence (iPDC) ( Takahashi et al.,

010 ). The iPDC is based on the notion of Granger-Geweke causal-

ty ( Geweke, 1984 ; Granger, 1969 ), which relies on the concepts of

emporal precedence and statistical predictability between simultane-

usly recorded time-series, extended to the spectral-domain ( Seth et al.,

015 ). Computationally the iPDC is derived from a multivariate autore-

ressive (MVAR) model with a certain order, which determines the num-

er of past observations included in the model. To derive iPDC estimates

he MVAR coefficients are Fourier transformed, appropriately weighted

y the noise covariances to overcome the scale-variance problem, and

hen normalized. This assures that the resulting connectivity estimates

re scale-invariant and not affected by local differences in signal power

 Baccalá and Sameshima, 2014 ). The iPDC is a measure of the partialized

elayed functional interactions between ROIs, which is able to charac-

erize the interaction directionality between them (directed measure),

s well as discerning direct from indirect or mediated paths of connec-

ions (directness). More precisely, the iPDC from the j -th time series to

he i -th time series is equivalent to the squared coherence between the

nnovation process associated with i and the partialized version of j ,
hich via appropriate logarithmic expression and integration provides

he mutual information rates between these two processes ( Baccalá and

ameshima, 2014 ; Takahashi et al., 2010 ). In the present study, the iPDC

as used as measure of the frequency-specific, directed connections be-

ween ROIs, and all connectivity analyses were performed on source-

econstructed time series, because analyses applied on EEG sensor-space

ime series do not allow any meaningful interpretation in terms of inter-

cting brain sources ( Brunner et al., 2016 ; Van de Steen et al., 2016 ). 

To accommodate the non-stationarity of signals and obtain time-

arying functional interactions in our network of 22 ROIs, the iPDC

an be derived from a time-varying MVAR (tvMVAR) model of the sig-

als, which can be computed using adaptive algorithms ( Arnold et al.,

998 ; Milde et al., 2010 ; Pagnotta and Plomp, 2018 ). This procedure

llows obtaining iPDC estimates over frequencies and time frames. For

ach participant and task condition, time-varying iPDC estimates were

omputed in the interval − 800–800 ms around stimulus onset and in

he frequency range 1–100 Hz (in 1Hz-steps), after decimating single-

rial data by a factor of two. We performed tvMVAR modeling with the

elf-Tuning Optimized Kalman filter (STOK) algorithm ( Pascucci et al.,

020 ), using a percentage of variance explained of 99% for setting the

ltering factor threshold ( Hansen, 1987 ). The optimal model order for

ach participant was selected by first identifying the value that mini-

ized the difference between power spectra obtained from parametric

vMVAR modeling and those obtained using a nonparametric approach

ased on wavelet transform (see Section 2.5 ), in each task condition sep-

rately, and then selecting the maximum value across task conditions

model orders across participants 11–24, M = 17.79, SD = 2.94). This ap-

roach optimizes model quality within participants and was adopted

o best reflect the temporal structure of the recorded data, and avoid
hoices based on a group estimate, which may be driven by subjects

ith the poorest data quality. 

We employed measures from graph theory to characterize large-scale

opological properties of the frequency-specific, directed functional net-

orks in the different task conditions ( Rubinov and Sporns, 2010 ). Each

OI was considered as a node in the graph and two measures were es-

imated: global efficiency and local efficiency. The network’s global ef-

ciency is the average inverse shortest path length and indicates the

evel of global functional integration in the network ( Latora and Mar-

hiori, 2001 ). The single node’s local efficiency is the global efficiency of

he local subgraph comprising all its immediate neighbors ( Latora and

archiori, 2001 ), and the network’s local efficiency is computed as av-

rage efficiency of all local subgraphs, which represents the level of

ocal integration within subgraphs. High local efficiency suggests func-

ional segregation within the network ( Rubinov and Sporns, 2010 ). Both

lobal efficiency and local efficiency were computed for each partic-

pant and task condition from the full matrix of iPDC estimates, i.e.,

rom a fully-connected, weighted and directed adjacency matrix. Sub-

raphs and nodes’ neighbors were thus determined by the interaction

trengths: the stronger the connection weight between two nodes, the

loser they were (functionally). When we consider global and local ef-

ciency derived from iPDC-based graphs, we can talk about frequency-

pecific levels of functional integration among ROIs, respectively glob-

lly and within subgraphs, for two reasons. First, the iPDC has a clear

nterpretation in terms of between-processes mutual information rates,

roviding an association with the notion of information flow ( Baccalá

nd Sameshima, 2014 ; Takahashi et al., 2010 ). Second, thanks to its

artialization approach, the iPDC provides the directness of functional

onnections. It is therefore reasonable to characterize the cascades of

hese direct connections as paths of integration between ROIs, unlike

hen using classical measures such as cross-correlations and spectral

oherence ( Rubinov and Sporns, 2010 ). 

To investigate the anticipatory network-level modulations of atten-

ion, time-varying iPDC estimates were first averaged over the antic-

patory window ( − 300–0 ms), as for anticipatory power changes (see

ection 2.5 ). Frequency-specific global and local network efficiency

ere then estimated for each participant and task condition. Finally,

ach graph measure was separately compared between Attended and

nattended conditions (two-tailed dependent t -test, p < 0.05, with FDR

orrection). To assess network-level modulations in the reactive stage,

easures of time-varying global efficiency and local efficiency were

nalyzed in the time window 0–500 ms from the full matrix of time-

arying iPDC estimates. A cluster-based permutation approach was used

o compare graph measures of Attended and Unattended conditions at

ach time point (0–500 ms after stimulus onset) and frequency (1–

00 Hz). Graph measures were derived using the Brain Connectivity

oolbox ( Rubinov and Sporns, 2010 ) ( http://www.brain-connectivity-

oolbox.net ). All the other steps of the functional connectivity analysis

ere performed using in-house scripts implemented in MATLAB. 

.8. Data availability 

Preprocessed EEG data on sensor-space and source-reconstructed sig-

als are available at https://doi.org/10.17605/OSF.IO/2ZQNT . 

. Results 

The behavioral task required the participants to attend visual stim-

li presented at central location ( Fig. 1 A), and to discriminate either

he motion direction of signal-dots in the Random Dot Kinematograms

RDK; motion discrimination task), or the off-vertical tilt of the Ga-

or (orientation discrimination task). These two tasks conditions are

amed Attended-motion and Attended-orientation, respectively. In each

ttended condition, stimuli contained both features (motion and ori-

ntation). In a third task condition that served as control, participants

ere asked to report sporadic color changes in the fixation spot ( Fig. 1 B),

http://www.brain-connectivity-toolbox.net
https://doi.org/10.17605/OSF.IO/2ZQNT
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hich rendered the same stimuli irrelevant for the task (Unattended con-

ition), without changing their physical characteristics. We calibrated

ask-difficulty beforehand (see Methods) and did not observe differences

n behavioral performance between the two discrimination tasks. Per-

entage correct was 89.0% ( SD = 5.2) and 88.6% ( SD = 7.2) for Attended-

otion and Attended-orientation respectively ( t = 0.19, p = 0.8485),

ith corresponding reaction times (RTs) of 687.5 ms ( SD = 159.1) and

 = 699.5 ms ( SD = 141.0; t == − 0.62, p = 0.5432). In the Unattended

ontrol condition, participants correctly detected a color change in the

xation spot in 99.2% of target trials ( SD = 1.4), with RT of 484.4 ms

 SD = 46.6). 

.1. Anticipatory stage: modulations of 𝛽-band rhythms 

The investigation of the attentional modulations of local neuronal

hythms, like any other analysis presented in this article, was carried out

n EEG source-reconstructed signals. We employed EEG source recon-

truction techniques based on individual lead-fields to extract the sig-

als from 22 cortical ROIs distributed across the brain ( Oostenveld et al.,

011 ; Pascual-Marqui et al., 2017 ; Rubega et al., 2019 ; Van Veen et al.,

997 ). Time-varying power estimates in each ROI were obtained with

he Morlet wavelet transform ( Torrence and Compo, 1998 ). 

To assess attention-related neuronal rhythms modulations in the an-

icipatory stage, time-varying power estimates in each ROI were aver-

ged over the anticipatory window ( − 300–0 ms) and then compared be-

ween Attended and Unattended conditions over frequencies (1–100 Hz)

see Methods). The results showed anticipatory 𝛽-band power increases

n the Attended conditions compared to Unattended. For the comparison

etween Attended-motion and Unattended, we found significant power

ncreases in PM L (with p -value for the permutation test p perm 

< 0.01),

PL L ( p perm 

< 0.05), FFG L ( p perm 

< 0.05), MTG L ( p perm 

< 0.05), and in

econdary visual cortices V2 L and R ( p perm 

< 0.05) ( Fig. 2 A). Simi-

arly, we found significant power increases in PM L ( p perm 

< 0.05), FFG L

 p perm 

< 0.001), Cuneus ( p perm 

< 0.05), and V2 R ( p perm 

< 0.005) from com-

aring Attended-orientation and Unattended ( Fig. 2 B). The results show

hat local anticipatory effects of attention involved increased 𝛽-band

ower, mostly in left prefrontal cortex and some occipito-temporal ROIs,

rrespective of the attended feature (motion or orientation). 

.2. Anticipatory stage: increased 𝛽-band network efficiency 

To characterize whole-brain connectivity changes due to attention,

e estimated the frequency-specific directed connections between the

2 ROIs using a multivariate functional connectivity measure, the iPDC

 Baccalá and Sameshima, 2014 ; Takahashi et al., 2010 ). Time- and

requency-resolved iPDC estimates were derived from tvMVAR model-

ng using the STOK algorithm ( Pascucci et al., 2020 ). To describe and

ompare the topological properties of the resulting networks, we used

wo graph measures: global efficiency and local efficiency ( Latora and

archiori, 2001 ; Rubinov and Sporns, 2010 ). Given the ability of

he iPDC to characterize both directionality and directness of inter-

real connections and because of its information-theoretic foundation

 Baccalá and Sameshima, 2014 ; Takahashi et al., 2010 ), these func-

ional connections can be seen as paths of integration between net-

ork nodes (ROIs). The iPDC-derived global efficiency represents the

requency-specific level of global functional integration among all ROIs.

ikewise, the local efficiency represents the level of functional integra-

ion within subgraphs of neighboring ROIs (functional segregation), de-

ned by strongest functional connections (see Methods). 

In the anticipatory window ( − 300–0 ms), topological network analy-

is revealed that attention to motion significantly increased both global

nd local network efficiency in the 𝛽-band (network more highly inte-

rated and segregated), with significant differences ( p FDR < 0.05) in the

anges 18–23 Hz and 17–22 Hz, respectively ( Fig. 3 A–B). We found

nalogous increases for the comparison between Attended-orientation

nd Unattended, where statistically significant differences in the 𝛽-band
 p FDR < 0.05) spanned larger frequency ranges, 15–29 Hz for global effi-

iency and 16–27 Hz for local efficiency, and we observed an additional

ncrease in both graph measures around 60 Hz ( 𝛾-band) ( Fig. 3 C–D).

hese results suggest that anticipatory network effects enhance large-

cale network communication especially in the 𝛽-band, by changing net-

ork topology at these frequencies to favor functional integration both

lobally and within functional subgraphs. 

.3. Anticipatory stage: absence of local pac changes 

In the prestimulus window, we found that attention to both mo-

ion and orientation enhanced the levels of functional integration in

he cortical network in the 𝛽-band. For the Attended-orientation con-

ition, we also observed significant increases of these levels in the 𝛾-

and, compared to Unattended. The activity from the two frequency

ands may be integrated locally through mechanisms of cross-frequency

oupling ( Bonnefond et al., 2017 ; Buzsáki, 2006 ; Canolty et al., 2006 ;

anolty and Knight, 2010 ; Jensen and Colgin, 2007 ), we thus investi-

ated whether attention modulates local PAC. For this analysis, we fo-

used on the occipito-temporal ROIs and calculated within-region PAC

 Martínez-Cancino et al., 2019 ; Penny et al., 2008 ). In each participant

nd task condition, a surrogate analysis was used to test for the pres-

nce of local PAC (see Methods). This test did not reveal any statisti-

ally significant 𝛽- 𝛾 PAC, which indicates that network-level changes in

he 𝛾-band for Attended-orientation are unlikely to results from linear

nteractions between 𝛽 and 𝛾 frequencies at the local level. 

.4. Anticipatory stage: brief summary 

Together, the analyses in the prestimulus window revealed that an-

icipatory attention-induced modulations facilitate network-level com-

unication in the 𝛽-band. This confirms our hypothesis of a central role

f 𝛽-rhythmic modulations in the anticipatory stage of attention. We fur-

her expected the presence of anticipatory 𝛼-rhythmic modulations for

ask-irrelevant (unattended) signals, but we did not find any major role

or anticipatory modulations of 𝛼 activity in our data. 

.5. Reactive stage: attention dynamically modulates brain rhythms 

To characterize the attentional modulations of neuronal rhythms in

he reactive stage of processing, time-varying power estimates in each

OI were compared between Attended and Unattended conditions in

ime-frequency space (time frames in the window 0–500 ms and fre-

uencies in the range 1–100 Hz). 

The results showed reactive differences due to attention, character-

zed by significantly higher 𝛼 and 𝛽-band power in Unattended com-

ared to Attended conditions over several fronto-parietal and occipito-

emporal ROIs. For the comparison between Attended-motion and Unat-

ended, we found significant decreases in PM L and R ( p perm 

< 0.05), SMA

nd MCC ( p perm 

< 0.005), V1 R ( p perm 

< 0.001), Cuneus ( p perm 

< 0.001), GPC

 ( p perm 

< 0.001), SPL L and R ( p perm 

< 0.001), IPL L and R ( p perm 

< 0.05),

nd MTG L and V5 R ( p perm 

< 0.05) ( Fig. 4 A). For the comparison between

ttended-orientation and Unattended, we found significant power de-

reases in PM L and R ( p perm 

= 0.05), MFG R ( p perm 

< 0.05), SMA and

CC ( p perm 

< 0.005), V1 L ( p perm 

< 0.05), V1 R ( p perm 

< 0.0005), Cuneus

 p perm 

< 0.0005), GPC L ( p perm 

< 0.005), SPL L and R ( p perm 

< 0.0005), IPL

 ( p perm 

< 0.05), IPL R ( p perm 

< 0.01), and MTG L ( p perm 

< 0.05) ( Fig. 4 B). In

his second comparison, we also found increases in FFG L ( p perm 

< 0.01),

t frequencies in the 𝛾-band. 

The observed power differences between task conditions could in

rinciple be due to stimulus-evoked increases or decreases, in either

f the two conditions. We therefore inspected time-varying relative

ower change with respect to baseline, in each task condition sepa-

ately (Figs. S2–S4, Supplementary material). This showed that power

ifferences in the 𝛼 and 𝛽-band reflected an ERD ( Minami et al.,

014 ; Pfurtscheller and Lopes da Silva, 1999 ; Schmiedt et al., 2014 ;
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Fig. 2. Anticipatory stage: attentional modulations of neuronal rhythms. Results for the comparisons between A) Attended-motion and Unattended and B) 

Attended-orientation and Unattended. Each figure shows the frequency distribution of the sum of statistically significant differences across ROIs (positive t -values 

for Attended-motion higher than Unattended, and vice versa negative t -values), obtained from cluster-based permutation (two-tailed dependent t -test with p < 0.05, 

50,000 permutations, and p < 0.05 for the permutation test). Here and in the following, red indicate positive differences between Attended and Unattended conditions 

(i.e., increases with attention), blue indicates negative differences (i.e., decreases with attention). In each figure, the effect sizes in the 𝛽-band (15–30 Hz) for each 

ROI of power differences between conditions are superimposed over the MNI template, with diameters corresponding to effect size. Effect sizes were estimated using 

Cohen’s d ( Cohen, 1992 ). Lateral views of the left (L) and right (R) hemispheres, separately, are also shown. 
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ordanova et al., 2001 ) that was larger for attended than unattended

timuli ( Mazaheri and Picton, 2005 ; Pascucci et al., 2018 ). In the Unat-

ended condition, such 𝛼 and 𝛽 ERD was small or absent in frontal

nd parietal ROIs (Fig. S2, Supplementary material). We also observed

ithin-region event-related synchronization (ERS) at higher frequencies

 𝛾-band), especially for the Attended conditions. In the Attended-motion

n particular, a sharp 𝛾 ERS was present in right occipito-temporal ROIs

V2 R, V5 R, and MTG R), peaking at latencies around 100 ms after stim-

lus onset (Fig. S3, Supplementary material). It is worth highlighting

hat V5–MTG are known to be specialized for the perception of motion

 Ahlfors et al., 1999 ; Schoenfeld et al., 2007 ), suggesting that local re-

ctive effects selectively involved functionally specialized regions. For

ttended-orientation, 𝛾 ERS was less pronounced in occipital ROIs (e.g.,

2 and FFG) (Fig. S4, Supplementary material). 

Taken together, our results show that attention modulates local neu-

onal rhythms in distinct ways before and after stimulus onset. Antici-

atory effects involved attentional increase of 𝛽-band power, while re-

ctive effects involved stronger 𝛼 and 𝛽-band ERD due to attention, es-

ecially in parietal and frontal regions. 

.6. Reactive stage: dynamic changes in local 𝛼- 𝛾 coupling 

Rhythms in the 𝛼-band have been proposed to gate attention through

ulsed inhibition that suppresses the functional processing and inter-

real 𝛾-band communication ( Jensen and Mazaheri, 2010 ). A reactive

elease from inhibitory gating ( 𝛼 ERD) with attention may selectively

nhance the processing of task-relevant sensory signals ( 𝛾 ERS), and

odulations in the structures of 𝛼- 𝛾 PAC in sensory areas may mediate

his mechanism ( Bonnefond and Jensen, 2015 ; Haegens et al., 2011b ;
athewson et al., 2011 ; Mazaheri and Jensen, 2010 ; Pascucci et al.,

018 ; Popov et al., 2017 ). 

To assess attention-induced 𝛼- 𝛾 PAC changes dynamically, we used

 time-varying measure of 𝛼- 𝛾 coupling over time frames (0–500 ms af-

er stimulus onset), using a fixed central frequency for the phase time

eries in 𝛼-band (10 Hz) and varying the central frequency for the ampli-

ude time series in 𝛾 (see Methods). The results of a surrogate analysis

evealed the presence of significant 𝛼- 𝛾 PAC estimates across partici-

ants and task conditions, primarily for time frames in the interval 100–

00 ms poststimulus (Fig. S5, Supplementary material). We then com-

ared significant (masked) estimates between Attended and Unattended

onditions, and the results revealed the presence of dynamic attentional

ncreases in 𝛼- 𝛾 PAC in several occipital and temporal ROIs ( Fig. 5 ). For

he comparison between Attended-motion and Unattended, we found

ignificant 𝛼- 𝛾 PAC increases ( p perm 

< 0.05) in Cuneus, V2 R, V5 R, and

TG R ( Fig. 5 A). For the comparison between Attended-orientation and

nattended, significant 𝛼- 𝛾 PAC increases were obtained in V1 L and

2 L ( p perm 

< 0.05), Cuneus and V2 R (Positive: p perm 

< 0.005), and MTG

 ( p perm 

< 0.01) ( Fig. 5 B). 

A control analysis based on stratification ( Aru et al., 2015 ) confirmed

hat the observed effects could not be attributed to power differences in

he signals between conditions (Fig. S6, Supplementary material). In

um, while certain regions showed general attentional modulations of

AC (Cuneus, V2 R), others showed effects that were specific of the at-

ended feature: V5 R and MTG R for motion; V1 L, V2 L, and MTG-L

or orientation. To directly assess the specificity of these 𝛼- 𝛾 PAC mod-

lations depending on the attended feature, we also compared the two

ttended conditions. The results showed significant 𝛼- 𝛾 PAC increases
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Fig. 3. Anticipatory stage: differences in network efficiency. The results for global ( E global ) and local network efficiency ( E local ) are shown for the comparison 

between Attended-motion and Unattended (A–B), and for the comparison between Attended-orientation and Unattended (C–D). Each figure shows the grand-average 

across participants of graph measure estimates in each condition (top, Attended in red and Unattended in blue) and the differences between conditions ( ΔE global and 

ΔE local ; bottom, in gray), as a function of frequency. Shadings represent the standard error of the mean, frequencies that showed statistically significant results in a 

two-tailed dependent t -test ( p FDR < 0.05) are highlighted in green. 
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 p perm 

< 0.05) for Attended-motion compared to Attended-orientation in

5 R and MTG R, vice versa in V1 L (Fig. S7, Supplementary material).

Non-stationarities in neural data that are unrelated to genuine PAC,

an produce correlations between frequency components that may be

isinterpreted as PAC increases ( Aru et al., 2015 ; Gardner et al., 2006 ).

on-stationarities are typically observed in stimulus-evoked potentials

nd affect a broad range of frequency components. Therefore we used

ethods specifically developed to measure event-related PAC with re-

pect to stimulus onset, which should in principle avoid artifacts due to

vent-related non-stationarities in the signals ( Martínez-Cancino et al.,

019 ; Pascucci et al., 2018 ; Voytek et al., 2013 ). However, these meth-
ds succeed in this purpose only for precise repeated responses, where

tationarity over trials is maintained, a condition that often is not met in

eal neural data due to slight jitter between response times ( Aru et al.,

015 ). We thus checked the differences in non-stationarities across trials

etween Attended and Unattended conditions, by computing mean and

ariance across trials in each task condition and comparing them be-

ween conditions. The resulting between-condition differences in non-

tationarities did not allow to directly predict the reactive attentional

odulations of 𝛼- 𝛾 PAC, suggesting that these may not be simply caused

y such event-related artifacts (Figs. S8–S9, Supplementary material).

dditionally we repeated the reactive PAC analysis on signals obtained



M.F. Pagnotta, D. Pascucci and G. Plomp NeuroImage 223 (2020) 117354 

Fig. 4. Reactive stage: attentional modulations of neuronal rhythms. Results for the comparison between A) Attended-motion and Unattended and B) Attended- 

orientation and Unattended. Each figure shows the time-frequency distribution of the sum of statistically significant differences across ROIs, obtained from cluster- 

based permutation (two-tailed dependent t -test with p < 0.05, 50,000 permutations, and p < 0.05 for the permutation test). The marginal plots show time- or frequency- 

collapsed distributions of all significant power differences. In each figure, the effect sizes in one frequency band for each ROI of power differences between conditions 

are superimposed over the MNI template (first row), with diameters corresponding to effect size. Effect sizes were estimated using Cohen’s d ( Cohen, 1992 ). Lateral 

views of the left (L) and right (R) hemispheres, separately, are also shown (second and third row). Frequency bands were defined as: 𝛼 (8–12 Hz), 𝛽 (15–30 Hz), and 

𝛾 (45–100 Hz). 
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fter subtracting the trials mean and dividing by the trials standard devi-

tion (normalization), point-by-point for each single-trial signal, which

re two steps typically adopted to remove non-stationarity across trials

n connectivity analyses (see, e.g., Ding et al., 2000 ). The results of this

nalysis confirmed the presence of significant 𝛼- 𝛾 PAC increases with

ttention, in V5 R and MTG R for motion and in V1 L for orientation

Fig. S10, Supplementary material). 

.7. Reactive stage: fast dynamics of network efficiency 

We next asked how attentional processing affects large-scale network

opology after stimulus onset. For this assessment we derived time- and
requency-resolved global efficiency and local efficiency of the network

rom time-varying iPDC estimates, and compared them between con-

itions over time frames (0–500 ms) and frequencies (1–100 Hz) (see

ethods). 

The results showed significantly diminished global ( p perm 

< 0.01) and

ocal network efficiency ( p perm 

< 0.05) for Attended-motion compared

o Unattended, in the 𝛼 and 𝛽-band starting from around 270 ms af-

er stimulus onset ( Fig. 6 A–B). Similar results were obtained by com-

aring Attended-orientation and Unattended, with significantly de-

reased global ( p perm 

< 0.005) and local efficiency ( p perm 

< 0.01) in 𝛼

nd 𝛽 frequencies ( Fig. 6 C–D). Here, significant low-frequency differ-

nces emerged after 230 ms poststimulus, and were preceded by a
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Fig. 5. Reactive stage: dynamic differences in within-region 𝜶- 𝜸 PAC. Temporal evolution of within-region PAC changes for coupling between 𝛼-band phase 

(10 Hz) and 𝛾-band amplitude (40–100 Hz, in 2Hz-steps). Shown are comparisons between A) Attended-motion and Unattended and B) Attended-orientation and 

Unattended. Statistically significant results from cluster-based permutation approach (two-tailed dependent t -test with p < 0.05, 50,000 permutations, and p < 0.05 for 

the permutation test) are highlighted by the black outlines. 
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ignificant 𝛾-band increase of both graph measures for Attended-

rientation (above 40 Hz and at latencies between 170 and 220 ms

oststimulus; p perm 

< 0.05). A trend for attention-induced 𝛾 increases

as present for Attended-motion in the 100–300 ms time window, but

id not reach statistical significance (Fig. S11, Supplementary material,

hows unthresholded results). 

.8. Reactive stage: brief summary 

In the reactive stage of attentional processing, our analyses pro-

ided two main findings: i) 𝛼-band desynchronization patterns in ar-

as of the fronto-parietal network are accompanied by increased 𝛾-band

ynchronization in occipito-temporal cortices, where specific 𝛼-driven

tructures of nested oscillations ( 𝛼- 𝛾) emerged dynamically, depend-

ng on the attended feature; ii) attention-related whole-brain connectiv-

ty changes first facilitate network-level communication in the 𝛾-band,

nd then impede it in the 𝛼 and 𝛽-band. These findings confirm our

ypotheses of 𝛼- 𝛾 coupling increases due to attention in visual cor-

ices (i), and of the presence of inverse between-frequencies relationship

or network-level interactions mediating the processing of task-relevant

ignals (ii). 
. Discussion 

In the present work, we sought to characterize local and large-scale

euronal dynamics during anticipatory and reactive stages of feature-

ased selective attention. To this aim, we investigated local cross-

requency coupling and brain-wide directed connectivity during a vi-

ual discrimination task that required the attentional selection of one of

wo spatially overlapping features. Our results show distinct patterns of

ested oscillations and functional network topologies that precede and

ollow stimulus onset. More precisely, we found evidence for a dominant

ole of 𝛽 rhythms in the anticipatory stage, followed by stimulus-evoked

-band desynchronization patterns and 𝛼-driven structures of nested os-

illations. The use of a control condition and the presentation of overlap-

ing features at a single location also allowed us to disentangle between

eneral effects of stimulus relevance and specific effects of the attended

eature (motion or orientation). Fig. 7 summarizes our findings. 

Feature-based selective attention was mediated by a stimulus-

nduced reconfiguration of both local and large-scale neuronal inter-

ctions. Before stimulus onset, local 𝛽 power increases in left prefrontal

ortex and occipito-temporal regions were paralleled by increased levels

f network integration in the 𝛽-band. After stimulus onset, brain activ-

ty underwent a marked reconfiguration, with robust desynchronization

f 𝛼 rhythms and increased 𝛼- 𝛾 coupling in feature-selective regions
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Fig. 6. Reactive stage: dynamic differences in network efficiency. The results for global (left) and local network efficiency (right) are shown for the comparison 

between Attended-motion and Unattended (A–B), and for the comparison between Attended-orientation and Unattended (C–D). Each figure shows the time-frequency 

distribution of significant differences, obtained from cluster-based permutation (two-tailed dependent t -test with p < 0.05, 50,000 permutations, and p < 0.05 for the 

permutation test). The marginal plots show time- and frequency-collapsed distributions of significant differences. 

Fig. 7. Temporal sequence of attention-induced effects. The figure highlights the sequential evolution of local and network-level effects observed in the present 

study, from the anticipatory to the reactive stage of selective attention (from left to right), with respect to stimulus onset ( 0 ms ). Red/blue patches indicate attention- 

induced increases/decreases. 
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V5 and MTG in the right hemisphere for motion discrimination; V1

or orientation discrimination), as well as in other visual areas (Cuneus

nd right V2). The observed cascade of attention-related effects suggests

hat different mechanisms, involving the interplay between large-scale

ynamics and nested oscillations, serve distinct aspects of selective at-

ention. 

Prestimulus 𝛽-band activity may reflect an increase in functional

ommunication among regions involved in the upcoming task. Inter-

reting the role of 𝛽 rhythms in the context of attention and cognitive

rocessing, however, is not trivial, given the large body of work tra-

itionally relating these rhythms to motor control ( Pfurtscheller et al.,

996 ; Pogosyan et al., 2009 ; Sanes and Donoghue, 1993 ; Swann et al.,

009 ), sensorimotor functions ( Lalo et al., 2007 ) and working memory

 Lundqvist et al., 2016 ; Schneider and Rose, 2016 ; Siegel et al., 2009 ).

 recent line of evidence has associated 𝛽 rhythms with the mainte-

ance of the status quo, that is, the preservation of ongoing sensorimo-

or states and cognitive sets ( Engel and Fries, 2010 ). Following this line,

ther studies have hypothesized a role for 𝛽-band synchronization in es-

ablishing flexible networks of neuronal ensembles that carry content-

nd task-specific representations ( Antzoulatos and Miller, 2016 , 2014 ;

uschman et al., 2012 ; Spitzer and Haegens, 2017 ). Our results appear

n agreement with this latter definition, by showing that large-scale net-

ork interactions associated with 𝛽 rhythms may control endogenous

echanisms of attention before stimulus onset, likely conveying task-

elated information to downstream areas (e.g., the relevant stimulus

eature, the type of response required) ( Richter et al., 2017 ). 

It is relevant to note that, contrary to previous reports (see

helazzi et al., 2019 ; Foster and Awh, 2019 ; Snyder and Foxe, 2010 for

eviews and discussions), we found no major role for anticipatory mod-

lations of 𝛼-band activity in our data. While, at first, this seems to sup-

ort the alternative view of 𝛼 rhythms as a secondary type of inhibitory

echanism, observable only in relation to target processing (e.g., at

psilateral sides of relevant stimuli; Chelazzi et al., 2019 ; Foster and

wh, 2019 ), the fact that our analysis always involved subtracting a

ontrol condition with identical stimulation could have hindered antic-

patory increases in 𝛼 power reflecting aspecific preparatory stages and

ynamic reallocations of attentional resources ( van Diepen and Maza-

eri, 2017 ). 

A clear modulation of 𝛼-band activity was evident shortly after

timulus onset. Alpha desynchronization ( Mazaheri and Picton, 2005 ;

furtscheller and Lopes da Silva, 1999 ) was the main component de-

ermining the observed network reconfiguration, accompanied by lo-

al increases of 𝛼- 𝛾 coupling in task-relevant sensory regions. This lat-

er phenomenon is in line with recent accounts hypothesizing a role of

rhythms in aligning the phase of high-frequency oscillations carry-

ng relevant processing ( Bonnefond et al., 2017 ; Pascucci et al., 2018 ).

nder this view, the decrease of 𝛼 power resulting from the evoked

esynchronization would allow longer windows of neuronal excitabil-

ty, favoring local increases and feedforward propagation of 𝛾-band ac-

ivity ( Bonnefond et al., 2017 ). Thus, the co-occurrence of 𝛼 desynchro-

ization and 𝛼- 𝛾 coupling may underlie the emergence of short func-

ional windows where the release from inhibitory signals enhances sen-

ory and task-relevant processing. In this respect, our results are also

n agreement with the gating-by-inhibition hypothesis that postulates

 similar inverse relationship between the degree of 𝛼-band synchro-

ization and the level of local neuronal excitability and 𝛾-band activity

 Bonnefond and Jensen, 2015 ; Haegens et al., 2011b ; Jensen and Maza-

eri, 2010 ; Mathewson et al., 2011 ; Mazaheri and Jensen, 2010 ). 

Adding to the gating-by-inhibition framework ( Mazaheri and

ensen, 2010 ), we found that the effects of release from inhibitory

ating specifically involved cortical regions encoding the attended

eature: motion coherence in right V5–MTG ( Ahlfors et al., 1999 ;

choenfeld et al., 2007 ), and Gabor’s orientation in primary visual cor-

ex (V1) ( Bosking et al., 1997 ; Dupont et al., 1998 ; Koelewijn et al.,

011 ; Simoncelli and Olshausen, 2001 ), in addition to less task-specific

reas. A compelling question for future investigations is whether these
eactive 𝛼-driven mechanisms of local cross-frequency coupling un-

erlie also the attentional selection based on whole-object representa-

ions, for example of faces and houses via the selective involvement of

usiform face area and parahippocampal place area, respectively. Fur-

hermore, stimulation techniques could help to establish whether sen-

ory areas that showed attentional PAC modulations are causally rele-

ant for behavior, and potentially help increase their functioning (see,

.g., Riddle et al., 2019 ). In particular 𝛼-rhythmic transcranial magnetic

timulation (TMS) over feature-selective ROIs (e.g., V5–MTG for mo-

ion), delivered before stimulus onset, should reduce the receptivity of

hese areas to top-down oscillatory signals that control sensory gating

 Fiebelkorn and Kastner, 2019 ; Jensen and Mazaheri, 2010 ). This way,

MS could help increase selective attention and positively impact be-

avioral performance in specific task conditions (e.g., when motion is

ttended). Alternatively, the specific timing of stimulations may reset

he ongoing phases of local neuronal oscillations in such a way that

-band inter-areal coherence and large-scale communication increase,

roducing opposite effects on attention. Analogous assessments could

e carried out by using 𝛾 TMS stimulations. 

In analyzing cross-frequency coupling and its changes across exper-

mental conditions, a certain number of possible issues and confounds

hould be taken into consideration. We adopted control analyses based

n surrogate testing and a stratification procedure, respectively, for as-

essing the statistical significance of PAC estimates and dealing with

onfounds due to differences in power between conditions ( Aru et al.,

015 ; Martínez-Cancino et al., 2019 ). Another source of confounds for

AC analysis comes from unspecific non-stationarities, i.e., those that

re not related to or caused by genuine coupling of neural processes, and

ay result in spurious PAC estimates ( Aru et al., 2015 ). To address con-

ounds driven by non-stationarities, for each ROI and task condition we

uantified non-stationarities in terms of mean and variance across tri-

ls, and compared them between Attended and Unattended conditions.

n ROIs where we found attention-induced 𝛼- 𝛾 PAC increases, the pres-

nce of between-condition differences in non-stationarities would indi-

ate that these artifactually drive PAC changes. Our results, however,

howed that this was not the case. We also performed ensemble mean

ubtraction and normalization of signals to remove non-stationarities

cross trials, and then repeated the reactive PAC analysis, which con-

rmed the presence of attention-induced 𝛼- 𝛾 PAC changes in feature-

elective regions. These additional analyses strongly suggest that the re-

ctive PAC modulations come from genuine coupling mechanisms that

epend on the feature-based attention conditions, but with the currently

vailable methods we cannot completely exclude the possibility that

esidual unspecific non-stationarities drive the within-region PAC effects

o some extent. Ultimately solving the issue of non-stationarities con-

ounds requires the development of ad hoc methods for the detection of

ausality, which go beyond the limits of traditional Granger formalism

o discern the directionality of cross-frequency effects, or the implemen-

ation of generative models that incorporate biophysical descriptions of

ross-frequency interactions and model comparison approaches. Alter-

atively, as laid out above, approaches using additional external per-

urbations (e.g., TMS stimulations) might provide an ideal solution to

onstrain the number of possible scenarios for the observation of spuri-

us PAC estimates (see Aru et al., 2015 for further discussion). 

As a means to describe functional network properties, we used graph

fficiency measures that indicate how easily signals can travel between

etwork nodes, i.e., the degree of local and global integration, depend-

ng on the configuration of directed functional connections ( Latora and

archiori, 2001 ; Rubinov and Sporns, 2010 ). We found a rapid desyn-

hronization of local 𝛼 rhythms together with increased 𝛼- 𝛾 coupling

n visual areas (~100–200 ms poststimulus), which co-occurred with

he rise of large-scale 𝛾-band interactions, with enhanced network effi-

iency in the 𝛾 range (170–220 ms poststimulus for orientation discrim-

nation; a similar trend for motion discrimination ~100–300 ms post-

timulus). The local activity modulations and the increased efficiency of

nter-areal high-frequency communication occurred at latencies that are
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onsistent with high-level stimulus processing and attentional modula-

ion ( Hillyard et al., 1998 ; Hillyard and Anllo-Vento, 1998 ). This suggest

 close relation between locally enhanced sensory processing of relevant

xogenous signals of attended stimuli ( Bonnefond and Jensen, 2015 ;

ensen and Mazaheri, 2010 ), and global network mechanisms by which

ttentional selection renders task-relevant stimulus content accessible

o widespread circuits for later processing (e.g., decisional), through 𝛾-

requency channel of communication ( Bastos et al., 2015 ; Fries, 2015 ). 

Our results also suggest distinct mechanisms for general and task-

pecific attentional effects. Task-specific modulations involved more lo-

al phenomena, characterized by increased coupling between 𝛼 and 𝛾-

and activity during poststimulus time, and these effects were selective

or functionally specialized regions. Based on the well-known special-

zation of these regions in processing the two types of stimulus’ fea-

ures used ( Ahlfors et al., 1999 ; Bosking et al., 1997 ; Dupont et al.,

998 ; Koelewijn et al., 2011 ; Schoenfeld et al., 2007 ; Simoncelli and

lshausen, 2001 ), these results support the view of PAC and nested

scillations as regulatory mechanisms for the local analysis and

eedforward communication of relevant sensory signals (e.g., target

timuli) ( Bonnefond and Jensen, 2015 ; Jensen and Mazaheri, 2010 ;

ascucci et al., 2018 ). Theories of communication based on nested os-

illations propose in fact that low-frequency carriers in the theta ( 𝜃,

–7 Hz), 𝛼 or 𝛽-band establish inter-areal communication at larger

cales, by mediating local excitability (reflected by 𝛾-band activity)

 Bonnefond et al., 2017 ). Cross-frequency coupling at the local level,

herefore, would coordinate 𝛾-band activity and information routing at

ifferent scales ( Buzsáki, 2006 ; Buzsáki and Wang, 2012 ; Canolty et al.,

006 ; Canolty and Knight, 2010 ; Jensen and Colgin, 2007 ; Penny et al.,

008 ; Voytek et al., 2010 ). 

General attentional effects were mediated by prestimulus changes

n spectral power and by topological changes in the brain-wide net-

ork of functional interactions. These included increased spectral power

ver left prefrontal cortex and occipito-temporal areas and increased

etwork efficiency in the 𝛽-band. The results therefore point to an as-

ecific enhancement of large-scale network communication that facil-

tates information routing while preparing for an attended stimulus to

ppear ( Buschman and Kastner, 2015 ; Fries, 2015 ). After stimulus on-

et, we found that attention induced desynchronization first in 𝛼 and

hen in 𝛽-band ( Klimesch et al., 2007 , 2001 ; Mazaheri and Picton, 2005 ;

ascucci et al., 2018 ; Schmiedt et al., 2014 ). These stimulus-evoked ef-

ects co-occurred with a rapid sequence of frequency-specific changes

n network topology, starting with enhanced network efficiency in the

-band (~100–300 ms poststimulus), followed by reduced efficiency in

he 𝛼 and 𝛽-band (after ~230–270 ms poststimulus). As discussed, the

arlier 𝛾-band effects may reflect enhanced communication conveying

ask-relevant signals between cortical regions. The later low-frequency

ffects, on the other hand, indicate that stimulus-evoked 𝛼 and 𝛽-band

esynchronization co-occurs with network-level changes that diminish

he levels of functional integration, both globally and within subgraphs

networks less integrated and segregated), thus reducing the communi-

ation through these frequency channels. These effects support the exis-

ence of two distinct top-down networks for the control of sensory gating

 𝛼-frequency channel) ( Fiebelkorn and Kastner, 2019 ; Jensen and Maza-

eri, 2010 ) and endogenous information routing ( 𝛽-frequency channel)

 Spitzer and Haegens, 2017 ). 

Such top-down network effects may be controlled by specific ar-

as. For connectivity analysis, we employed multivariate directed meth-

ds ( Baccalá and Sameshima, 2014 ), and a recently developed adap-

ive filter that was designed for highly dynamic, non-stationary sig-

als ( Pascucci et al., 2020 ). While we considered a network of brain-

ide cortical regions to investigate attention-induced changes in large-

cale neuronal communication through distinct frequency channels, lo-

ally we focused on the phenomenon of nested oscillations for selec-

ive processing in sensory cortices. Nonetheless, frontal and parietal ar-

as may also play a role in top-down control during selective atten-

ion. A top-down model of fronto-parietal control of attentional selec-
ion has in fact emerged from previous studies, suggesting top-down

ignaling from prefrontal cortex in the 𝛽-band when attention is en-

ogenously controlled, and top-down 𝛼-band signals originating from

osterior parietal cortex to disrupt sensory processing of irrelevant in-

ormation ( Buschman and Kastner, 2015 ; Buschman and Miller, 2007 ;

iebelkorn and Kastner, 2020 ; Pascucci et al., 2018 ). These top-down

ignals could affect the local coupling in sensory areas (see, e.g.,

ascucci et al., 2018 ). Future work is needed to address the relation-

hips between local cross-frequency coupling and changes in incoming

r outgoing connection strengths or changes in network topology, by

eriving single-trial estimates of connectivity instead of using the multi-

rial connectivity approach adopted here, across feature-based attention

onditions. 

Beyond the cortico-centric view of top-down control of attention, re-

ent studies in non-human primates revealed that also subcortical struc-

ures like the pulvinar and mediodorsal thalamus play an important role

n attentional control ( Fiebelkorn et al., 2019 ; Saalmann et al., 2012 ).

n this respect, despite we considered a whole-brain cortical network

or our analyses, one potential limitation is linked to the presence of

nobserved common inputs in subcortical structures ( Bastos and Schof-

elen, 2016 ; Pagnotta et al., 2018b ). We did not include the thalamus

s a ROI, due to the EEG intrinsic limitations in accurately reconstruct-

ng subcortical activity (although see Seeber et al., 2019 ). Hence, our

esults provide solely an account for the cortico-cortical interactions in

ediating selective attention. In the future, the use of invasive record-

ngs in clinical populations and implanted patients might provide further

nsights about the role of subcortical structures and thalamo-cortical in-

eractions in controlling attention and other cognitive functions. 

Another known methodological limitation of EEG studies is associ-

ted with the problem of spatial leakage. We employed a source re-

onstruction procedure using participant-specific models of electrodes

nd realistic head models derived from individual-participant’s anatomi-

al MRI. Source-reconstructed signals were extracted from fMRI-derived

OIs using an SVD-based approach ( Rubega et al., 2019 ). This projection

ethod provides reliable dimensionality reduction and helps derive an

verall “population signal ” for each brain region, by estimating signals

hat explain most of the variability across the entire group of dipoles

n each ROI. A method based on orthogonalization was then used to

orrect spatial leakage between ROIs ( Pascual-Marqui et al., 2017 ). We

hould caution that, however, the possible presence of residual leakage

ay prevent a complete separation of source-reconstructed ROIs’ sig-

als, and therefore of the local effects observed for example in right

5 and MTG (when motion was attended), or in early visual cortices

Cuneus, V1, V2). 

In conclusion, we have shown that selective attention is mediated by

 dynamic reorganization of frequency-specific inter-areal interactions

nd local activity changes. In anticipation of relevant stimuli, cortical

nteractions support information routing through 𝛽-frequency channels

o control endogenous content reactivation. In the reactive stage of se-

ective attention, 𝛼-driven desynchronization patterns and structures of

ested oscillations in task-specific sensory areas emerge together with

ncreased network-level communication through 𝛾-frequency, presum-

bly enhancing sensory processing of relevant exogenous information

nd rendering it more widely accessible across cortical regions for later

rocessing. While we have here used an experimental paradigm with

ontrolled environment and well-defined stimuli characteristics, the

ame approaches and analysis strategies could be employed to study se-

ective attention in more naturalistic paradigms using naturalistic stim-

li (see, e.g., Ki et al., 2016 ), or even recording the participants during

veryday situations, like the students in a classroom setting (see, e.g.,

o et al., 2017 ; Poulsen et al., 2017 ). Moreover, the ability to flexi-

ly adapt both whole-brain communication and selective mechanisms

f local processing may play a role beyond visual attention and may un-

erlie other cognitive functions, as well as attentional disorders such

s ADHD ( Bush, 2010 ). Likewise the approaches used here to study

isual selective attention could help shed light on how they malfunc-



M.F. Pagnotta, D. Pascucci and G. Plomp NeuroImage 223 (2020) 117354 

t  

f  

m  

f  

e

C

 

F  

W

 

d

 

d  

F

D

 

o

A

 

(

S

 

t

R

A  

 

 

A  

 

A  

 

A  

 

 

A  

 

A  

 

A  

 

 

B  

 

B  

B  

B  

 

B  

 

 

B  

 

B  

 

B  

 

B  

 

B  

 

B  

 

B  

B  

 

B  

B  

B  

B  

C  

 

 

C  

C  

 

 

C  

C  

 

C  

C  

 

C  

D  

 

D  

 

D  

 

 

D  

 

 

E  

F  

 

F  

F  

 

F  

 

F  

 

F  

F  

G  
ion in psychiatric conditions. Alterations of the observed patterns of

requency-specific network-level communication and/or local coupling

echanisms may in fact account for certain cognitive deficits resulting

rom autism spectrum disorders ( Sperdin et al., 2018 ), epilepsy ( Coito

t al., 2015 ), or schizophrenia ( Friston et al., 2016 ). 
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