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Abstract

In this article, we consider an anisotropic finite-range bond percolation model on Z2.
On each horizontal layer {(x, i) : x ∈ Z}we have edges 〈(x, i), (y, i)〉 for 1 ≤ |x−y| ≤ N .
There are also vertical edges connecting two nearest neighbor vertices on distinct
layers 〈(x, i), (x, i+1)〉 for x, i ∈ Z. On this graph we consider the following anisotropic
independent percolation model: horizontal edges are open with probability 1/(2N),
while vertical edges are open with probability ε to be suitably tuned as N grows
to infinity. The main result tells that if ε = κN−2/5, we see a phase transition in κ:
positive and finite constants C1, C2 exist so that there is no percolation if κ < C1 while
percolation occurs for κ > C2. The question is motivated by a result on the analogous
layered ferromagnetic Ising model at mean field critical temperature [11, J. Stat. Phys.
161, (2015), 91–123] for which the authors showed the existence of multiple Gibbs
measures for a fixed value of the vertical interaction and conjectured a change of
behavior in κ when the vertical interaction suitably vanishes as κγb, where 1/γ is
the range of the horizontal interaction. For the product percolation model we have a
value of b that differs from what was conjectured in that paper. The proof relies on the
analysis of the scaling limit of the critical branching random walk that dominates the
growth process restricted to each horizontal layer and a careful analysis of the true
horizontal growth process, which is interesting by itself. This is inspired by works on
the long range contact process [17, Probab. Th. Rel. Fields 102, (1995), 519–545].
A renormalization scheme is used for the percolative regime.
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Critical values in anisotropic percolation

1 Introduction

In this article, we consider an anisotropic finite-range bond percolation model on the
plane. For this we let Z2 = (V,E) be the graph with vertex set V = {v = (x, i) : x ∈ Z, i ∈
Z} and edge set E = EN = {e = 〈v1, v2〉 : vk = (xk, ik), k = 1, 2; |i1 − i2| = 1 for x1 =

x2 and 1 ≤ |x1 − x2| ≤ N for i1 = i2}. The edge set can be partitioned into two disjoint
subsets E = Ev ∪ Eh. Ev is the set of vertical edges, s.t. Ev = {e = 〈v1, v2〉 : x1 = x2}
and Eh denotes the set of horizontal edges, s.t. Eh = {e = 〈v1, v2〉 : i1 = i2} (here (xk, ik)

corresponds to vk for k = 1, 2). Each vertical edge is open with probability ε and each
horizontal edge is open with probability 1/(2N), and they are all independent of each
other. Our main purpose is to study the existence of percolation in this system, with
ε = ε(N) that tends to zero as N grows to infinity.

The basic motivation for this paper comes from a question raised in [11], where the
authors investigated the existence of phase transition for an anisotropic Ising spin system
on the square lattice Z2. On each horizontal layer {(x, i) : x ∈ Z} the {−1,+1}-valued
spins σ(x, i) interact through a ferromagnetic Kac potential at the mean field critical
temperature, i.e. the interaction between the spins σ(x, i) and σ(y, i) is given by

−Jγ(x, y)σ(x, i)σ(y, i),
∑
y 6=x

Jγ(x, y) = 1,

where Jγ(x, y) = cγγJ(γ(x − y)), and one assumes J(r), r ∈ R, to be smooth and
symmetric with support in [−1, 1], J(0) > 0,

∫
J(r)dr = 1, and moreover cγ is the

normalization constant (cγ → 1 as γ → 0). To this one adds a small nearest neighbor
vertical interaction

−εσ(x, i)σ(x, i+ 1),

and the authors proved in [11] that given any ε > 0, for all γ > 0 small µ+
γ 6= µ−γ , where

µ+
γ and µ−γ denote the Dobrushin-Lanford-Ruelle (DLR) measures obtained as thermody-

namic limits of the Gibbs measures with +1, respectively −1 boundary conditions.
One of the questions left open in [11] has to do with the following: how small

can we take ε = ε(γ) and still observe a phase transition of the Ising model (for all γ
small)? Following various considerations, the authors conjectured that if ε = ε(γ) =

κγ2/3 we might see a different behavior while varying κ. This is the problem that
motivates this paper. Our technique does not give an answer to the Ising system,
but considering the related product percolation model and usual Fortuin-Kasteleyn-
Ginibre (FKG) comparison, it yields a partial answer to the question, and shows that the
conjecture has to be modified. (See Remark (b) after the statement of Theorem 1.1.)

Indeed, the original problem just described could be formulated in terms of percola-
tion for a Fortuin-Kasteleyn (FK) measure with shape parameter q = 2. Here we treat a
simpler case by considering a corresponding anisotropic percolation model on Z2. Since
a Kac potential can be taken as an interaction of strength γ with range γ−1 (which we
fix as N ) we consider the edge percolation problem where horizontal edges of length
at most N are open with probability 1/(2N) and the vertical edges between sites at
distance 1 are open with probability ε = κN−b.

With respect to layer 0, we denote C00 as the cluster containing (0, 0),

C00 = {x : (0, 0) = 0→ (x, 0) with all the edges along the path in Z× {0}},

where v1 → v2 means there is an open path from v1 to v2. We can speak of generations on
each horizontal layer (we will consider the horizontal behaviour on layer 0 for simplicity).
x ∈ C00 is of k-th generation if the shortest open path from (0, 0) to (x, 0) has graph
distance k. That means that there are vertices v′1, · · · , v′k such that v′1 = (0, 0), v′k = (x, 0)
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Critical values in anisotropic percolation

and for any 1 ≤ i ≤ k − 1,〈v′i, v′i+1〉 ∈ Eh is open. Denote G0
k as the collection of vertices

that can be reached from 0 at k-th generation. The sites of {G0
k}k≥0 form a process very

close to a branching random walk starting from 0. The difference between {G0
k}k≥0 and

a critical branching process is the domain of the state function. Denote {ξk(x)}k≥0 as
the critical branching random walk. At each time k, particles of occupied sites branch
following Binomial(2N, 1/(2N)) and move to its 2N neighbours uniformly (note that it is
different from the model in [15] discussed in the next paragraph). The state function
ξk(x) ∈ Z+. However, the process {G0

k}k≥0 only tells if the site is occupied or not,
which takes value in {0, 1}. In Section 2, we show that these two processes are not too
different. This motivates us to consider the asymptotic density on each horizontal layer
and use it to derive the cumulated occupied sites over generations. But the introduction
of generations will cause a problem in the percolation problem if we only consider
the branching random walk. Because we are interested in percolation, the vertical
connections should be considered only once over the generations. Therefore, the true
process we are considering is a branching random walk with attrition. The attrition
means that if any site has been visited during the propagation, it cannot be visited again.

The way of dealing with horizontal propagation is motivated by the work of Lalley
[15] on the scaling limit of spatial epidemics on the one-dimensional lattice Z to Dawson-
Watanabe process with killings. The process considered in [15] is as follows. At each
site i, there is a fixed population (or village) of N individuals and each of them can be
either susceptible, infected or recovered. The model runs in discrete time; an infected
individual recovers after a unit of time and cannot be infected again. An infected
individual may transmit the infection to a randomly selected (susceptible) individual in
the same or in the neighboring villages. Denote pN (i, j) as the transmission probability
between any infected particle at site i and any susceptible particle at site j = i + e,
where e = 0 or ±1. For any pair (xi, uj) of infected and susceptible individuals located at
i and j respectively with |i− j| ≤ 1, the transmission probability is taken as

pN (i, j) =
1

3N
,

which makes it asymptotically critical (as N →∞). The evolution of this SIR dynamics
can be studied with the help of a branching random walk envelope: any individual at site
i and time t lives for one unit and reproduces, placing a random number of individuals at
a nearest site j with |j − i| ≤ 1, where the random number is of law Binomial(N, 1/(3N)).
The individuals are categorized into Susceptible, Infected or Recovered (SIR) and any
recovered individual is immune and will not be infected again. The author studied the
scaling limit (space factor Nβ/2 and time factor Nβ) of this system by considering the
cluster of particles at each site village and calculating the log-likelihood functions. The
recovered individuals do matter only when β = 2/5, which corresponds to the attrition
part of our process. To study the scaling limit of our process on horizontal level, we
first need to perform space and time rescaling on the approximate density. First we
have to scale the space with N , then the movement of the edges from x will have a
uniform displacement on x + [−1, 1]/{0}. Then, to get the weak convergence, we will
renormalize the space and time with Nα and N2α respectively. The state of the process
at time n ∈ Z+ is given by ξ̂n(·) : Z/N1+α → {0, 1}. ξ̂n(x) = 0 indicates that the site x is
vacant and ξ̂n(x) = 1 indicates that the site x is occupied. Two sites are neighbors in the
scaled space, denoted by y ∼ x if |x− y| ≤ N−α (or j ∼ i if |j − i| ≤ N in the unrescaled
space). We are going to consider the asymptotic approximate density

(Aξ̂)(x) =
1

2Nα

∑
y∼x

ξ̂(y),

and study its limit after the above mentioned time change.
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The method in [15] is to calculate the log-likelihood function with respect to a
branching envelope with known asymptotic density. However, we do not have the
log-likelihood function in our case. A more standard argument is to show the weak
convergence of the rescaled continuous-time particle system by verifying the tightness
criteria [10] like in [17], [4] and [8]. We will mainly refer to the way of Mueller and Tribe
[17] dealing with long-range contact process and long-range voter model and adapt it to
our discrete model to get the asymptotic stochastic PDEs. Our strategy on the horizontal
level is to derive the asymptotic density of the branching random walk without attrition
dominating the true system, where the states are denoted by ξ(x). In the branching
random walk, the case of multiple particles at one site is allowed. But we can show that
the probability of multiple particles is small with order O(Nα−1). Then the state can
be reduced from N-valued to {0, 1}-valued. We will then derive the asymptotic density
of the true process. Since we are considering the existence of percolation, to consider
the infinite cluster containing (0, 0) is equivalent to consider 2bN2αc equally spaced
particles on

{
−bN1+αc, . . . , 0, . . . , bN1+αc

}
(so the distance between particles in Z is of

order N1−α). Indeed, if we denote [−r, r]N = [−r, r] ∩Z/N1+α as the rescaled discrete
interval, to show percolation we may take an initial condition ξ̂0 with finite support, such
that A(ξ̂0)(x) = 1 for x ∈ [−1, 1]r and whose linear interpolation tends (as N → ∞) to
a continuous function f with compact support such that f(x) = 1 for x ∈ [−1, 1]. For
simplicity, we may take f to vanish outside [−1− δ, 1 + δ] for some δ > 0 fixed, and linear
in [−1− δ, 1] and [1, 1 + δ].

When showing percolation and adding the vertical connections, by a renormalization
argument (ref. [9]) we can reduce our layered system to an oriented percolation. We
can define a site as open if its corresponding block has a certain amount of cumulated
density, since we have already taken into account the attrition in the true system. As it
will be explained in Section 4, we will indeed need to consider the density on a smaller
scale. After building the renormalization argument, we are able to use the criteria in [6]
to determine the existence of percolation. The main result of this article is as follows.

Theorem 1.1. The critical values of the scaling and interaction factors are b = 2α = 2/5.
That is there exist positive constants C1 and C2 such that for κ < C1 not depending on N ,
there is no percolation and for κ > C2, there is a percolation, where κN−b is the opening
probability of vertical edges.

Remark 1.2. (a) The critical value α = 1/5 can be guessed by standard coupling as in
[15]. First, we build a critical branching random walk with the same initial conditions,
namely 2bN2αc particles with at most one on each site distributed uniformly on 2bN1+αc
sites in [−1, 1]N . At each time, particles of the branching random walk produce offsprings
at their neighbourhoods following a Binomial distribution Bin(2N, 1/(2N)). The branch-
ing random walk will finally become extinct as we know [1]. The existence of percolation
is a meaningful problem if we introduce a vertical interaction. In the beginning, there
are O(Nα−1) particles at each site on average. Since the branching random walk is
critical, i.e. the expectation of offspring is exactly 1, this average behaviour will not
change too much during the propagation. Next, we colour the particles as red or blue
according to they are alive or dead respectively. The attrition means that if a site has
been visited, then it cannot be visited again. Initially, all the particles are red. The
offspring of blue particles are blue and the choice of colour of red particles is as follows.
If a site x has been occupied in the past, then the offsprings of red particles that are
produced at x become blue. The branching random walk will last for O(N2α) generations
(ref. [1]). Up to extinction, the chance of dying for any particle is O(N3α−1). The total
attrition at each generation is O(N5α−1). Hence if α = 1/5, then the total attrition per
generation is O(1).
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(b) As already mentioned above, the original problem that motivated this paper can
be formulated in terms of the existence of percolation for a corresponding Fortuin-
Kasteleyn measure with shape parameter q = 2 and edge probabilities of {〈v1, v2〉 ∈
E, v1 = (x, i), v2 = (y, j)} to be

p(〈v1, v2〉) = 1− e−Jγ(x,y)I{〈v1,v2〉∈Eh} − e
ε(γ)I{〈v1,v2〉∈Ev}.

By the FKG inequality, the probability of percolation for q = 2 is bounded from above
by that when q = 1 (product measure). As a consequence, for κ sufficiently small, we
conclude that there is no phase transition if ε(γ) = κγ2/5 (much larger than κγ2/3 as
conjectured in [11]), for all γ small.

(c) The organization of this paper is as follows. We will provide necessary lemmas
and use them to show the weak convergence of the dominating envelope in Section
2. Results related to the true horizontal process like the asymptotic density, Girsanov
transformation and cumulated density are shown in Section 3. The killing property of
the attrition part helps us to consider the case when κ < C1 in Subsection 4.1. With
the properties of the true process, the oriented percolation construction is built up in
Subsection 4.2 and we can show the existence of percolation when κ > C2.

2 The envelope process

Since the proof of our main theorem involves the scaling limit of the process ξ̂, as in
[15] we are led to consider first the situation of the corresponding branching random
walk, as our ’envelope process’, and we first study its scaling limit in Theorem 2.2.
This result should probably be contained in the literature, even if not stated exactly as
convenient for the consideration of our true model in Section 3; the ideas are contained
in Mueller and Tribe [17].

Before studying the asymptotic behaviour of the process, we first study that of an
envelope process. In this section, we consider the state function ξn(·) : Z/N1+α → Z+.
The mechanism of this envelope process is as follows. The number of particles at site x
will increase by 1 if one of its neighbours branches following Binomial(2N, 1/(2N)) and
then chooses x uniformly among the 2N neighbours. It can be written as

ξn+1(x) =
∑
y∼x

ξn(y)∑
w=1

ηwn+1(y, x),

where (ηwn+1(y, x))w,n,y,x is an i.i.d. sequence with distribution Bernoulli(1/(2N)). The

horizontal process ξ̂n(·) : Z/N1+α → {0, 1} analysed in Section 3 is dominated by this
envelope process in two senses: ξ̂n(·) does not allow multiple particles at one site and
any visited site cannot be visited again. At the end of this section, we will show that the
probability of multiple particles at one site is quite small, of order O(N2(α−1)) which is
negligible when α < 1.

The main result of this section regards the asymptotic behaviour (as N →∞) of the
approximate density function of the dominating envelope process

A(ξbtN2αc)(x) =
1

2Nα

∑
y∼x

ξbtN2αc(y)

extended to R as the linear interpolation of its values on Z/N1+α. This is made precise
in Theorem 2.2 below.

Remark 2.1. The same interpolation is used when considering the approximate density
of the process ξ̂.
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Setting eλ(x) = eλ|x| for λ ∈ R, we define

C = {f : R→ [0,∞) continuous with |f(x)eλ(x)| → 0 as |x| → ∞,∀λ < 0} ,

to which we give the topology induced by the norms (‖ · ‖λ, λ < 0), where

‖f‖λ = sup
x
|f(x)eλ(x)|.

In the following convergences (Theorem 2.2 and Theorem 3.1), we consider the law
of A(ξ) or A(ξ̂) in the space D([0,∞), C), the space of C-valued paths equipped with
Skorohod topology.

Theorem 2.2. Assume that as N → ∞, A(ξ0) converges in C to a continuous function
f with compact support. Then, A(ξbtN2αc)(x) converges in law to ut(x), which is the
solution to one dimensional Dawson-Watanabe process:{

∂ut
∂t = 1

6∆ut +
√
utẆ (t, ·)

u0 = f,
(2.1)

where ∆ is the Laplacian operator acting in the spatial coordinates and Ẇ is the space-
time white noise.

The idea of the proof is to write the mechanism as a martingale problem, then
introduce a Green function representation (see (2.8)) to simplify the approximate density.
The tightness criteria in [10] can be applied to get the weak convergence. We will follow
the blueprint of [17] to show the tightness.

Before starting the proof, we first explain the notation used in the following sections.
For f, g functions on our discrete space Z/N1+α, we write, whenever meaningful,

(f, g) =
1

N1+α

∑
x

f(x)g(x)

Similarly, for f, g defined in R, we write

(f, g) =

∫
fgdx.

Define the discrete measure generated by ξn as

νNn =
1

N2α

∑
x

ξn(x)δx

and for a function f and measure ν, we write

(f, ν) =

∫
fdν

for the integral whenever it is well defined. In Lemma 2.4, we will see that for any test
function f which is bounded and with compact support

(f,Aξn)− (f, νNn )→ 0 in L2.

We define the amplitude of a function around a neighbourhood as

D(f, δ)(x) = sup{|f(y)− f(x)| : |y − x| ≤ δ}. (2.2)
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2.1 Martingale problem

Suppose ξ0(x) is deterministic and with a finite (depending on N ) support. Rewriting
the mechanism of ξn(x), we have

ξn+1(x) =
∑
y∼x

ξn(y)∑
w=1

(
ηwn+1(y, x)− 1

2N

)
+

1

2N

∑
y∼x

ξn(y)

=
∑
y∼x

ξn(y)∑
w=1

(
ηwn+1(y, x)− 1

2N

)
+

1

2N

∑
y∼x

(ξn(y)− ξn(x)) + ξn(x).

(2.3)

The first term will contribute to the space-time white noise part and the second term
will contribute to the Laplacian in the SPDE.

Take discrete test function φN (k, x) for x ∈ Z/N1+α (φNk (x) = φN (k, x)). φN (k, x) :

N×Z/N1+α satisfying the following conditions:

bTN2αc∑
k=1

(|φNk − φNk−1|, 1) <∞,

1

bTN2αc

bTN2αc∑
k=1

(|φNk |+ |φNk |2, 1) <∞.

(2.4)

Summation by parts and (2.3) give

(νNn , φ
N
n ) =

1

N2α

∑
x

ξn(x)φNn (x)

=
1

N2α

∑
x

ξn(x)(φNn (x)− φNn−1(x)) +
1

N2α

∑
x

ξn(x)φNn−1(x)

= (νNn , φ
N
n − φNn−1) + (νNn−1, φ

N
n−1) +

1

N2α

∑
x

1

2N

∑
y∼x

(ξn−1(y)− ξn−1(x))φNn−1(x)

+
1

N2α

∑
x

∑
y∼x

ξn−1(y)∑
w=1

φNn−1(x)

(
ηwn (y, x)− 1

2N

)
,

where we use the decomposition (2.3) in the last equality. Denote ∆Df(x) =
N2α

2N

∑
y∼x(f(y) − f(x)). By summation by parts into the second term again, we can

obtain

(νNn , φ
N
n )− (νNn−1, φ

N
n−1) = (νNn , φ

N
n − φNn−1) + (νNn−1, N

−2α∆Dφ
N
n−1)+

+
1

N2α

∑
x

∑
y∼x

ξn−1(y)∑
w=1

φNn−1(x)

(
ηwn (y, x)− 1

2N

)
= (νNn , φ

N
n − φNn−1) + (νNn−1, N

−2α∆Dφ
N
n−1) + dn(φN ),

where

dn(φN ) =
1

N2α

∑
x

∑
y∼x

ξn−1(y)∑
w=1

φNn−1(x)

(
ηwn (y, x)− 1

2N

)
. (2.5)

Summing up n from 1 to m, we get a semimartingale decomposition

(νNm , φ
N
m)− (Aξ0, φ

N
0 ) = (νNm , φ

N
m − φNm−1) +

m−1∑
i=1

(νNi , φ
N
i − φNi−1 +N−2α∆Dφi) +Mm(φN ),

(2.6)
where we use the identity (νN , N−2α∆Dφ

N + φN ) = (Aξ, φN ).
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Mm(φN ) =
∑m
k=1 dk(φN ) is a martingale with square variation

〈M(φN )〉m =

m∑
k=1

Ek−1d
2
k

=

m∑
k=1

1

2N1+4α

∑
x

∑
y∼x

ξk−1(y)(φNk−1)2(x)

(
1− 1

2N

)

≤
m∑
k=1

‖φNk−1‖0
2N1+4α

∑
x

∑
y∼x

ξk−1(y)φNk−1(x)

=

m∑
k=1

‖φNk−1‖0
N2α

(Aξk−1, φ
N
k−1).

(2.7)

For any x ∈ Z/N1+α, let ψzi (x) ≥ 0 be the solution to{
ψzi − ψzi−1 = N−2α∆Dψ

z
i−1

ψz0(x) = Nα

2 I(x ∼ z).

The solution of this equation is ψzn = N1+αP(Sn+1 = x − z), where Sn =
∑n
i=1 Yi, with

(Yi) i.i.d. uniformly distributed on {i/N1+α, |i| ≤ N}.
∆D can be seen as the generator of this symmetric random walk Sn with steps of vari-

ance c3
3 N

−2α and E[Y 4] = c4
5N4α , where c3(N), c4(N)→ 1. ψzt (x) behaves asymptotically

as p( c3t
3N2α , z − x) (ref. Lemma A.1),where p(t, x) is the Brownian transition probability.

We apply (2.6) with test function φNk = ψn−k for k ≤ n− 1, so that the first drift term
vanishes and (νNn , φ

N
n ) = (νNn , ψ

x
0 ) = A(ξn)(x). Thus we obtain an approximation

A(ξn)(x) = (νN0 , ψ
x
n) +Mn(ψxn−·), (2.8)

where Mn(ψxn−·) =
∑n
k=1 dk(ψxn−k) and dk(φN ) is as in (2.5). Proving the tightness of

A(ξbtN2αc) is equivalent to prove that of MbtN2αc. Some estimations on ψn and the
moments of A(ξn) used to show the tightness are stated in the appendix A. We skip the
proofs which are very similar to those in [17].

2.2 Tightness

In this section, we assume an initial condition so that the linear interpolation of A(ξ0)

converges to f under ‖ · ‖−λ for any λ > 0. To get the centred approximated density, by
(2.8), let

Â(ξn)(x) = A(ξn)(x)− (νN0 , ψ
x
n).

Lemma 2.3. For 0 ≤ s ≤ t ≤ T , x, y ∈ Z/N1+α, |t− s| ≤ 1, |x− y| ≤ 1, λ > 0 and p ≥ 2,

E|Â(ξbtN2αc)(x)− Â(ξbsN2αc)(y)|p ≤ C(λ, p, f, T )eλp(x)
(
|x− y|

p
4 + |t− s|

p
4 +N−

αp
2

)
.

(2.9)

Proof. We decompose this difference into space difference Â(ξbtN2αc)(x)− Â(ξbtN2αc)(y)

and time difference Â(ξbtN2αc)(y) − Â(ξbsN2αc)(y). First, we deal with the space differ-
ence. The Burkholder-Davis-Gundy (BDG) inequality (discrete version recalled in the
appendix A) gives that

E|Â(ξbtN2αc)(x)− Â(ξbtN2αc)(y)|p ≤ E〈M(ψxbtN2αc−· − ψ
y
btN2αc−·)〉

p
2

btN2αc.
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Critical values in anisotropic percolation

The constants C(λ, p, f, T ) in the following proof are generic constants. With a similar
argument as in (2.7),

〈M(ψxbtN2αc−· − ψ
y
btN2αc−·)〉btN2αc

≤
btN2αc∑
k=1

‖ψxbtN2αc−k+1 − ψ
y
btN2αc−k+1‖λ

N2α

(
Aξk−1e−λ, ψ

x
btN2αc−k+1 + ψybtN2αc−k+1

)
By Lemma A.2 (d),

〈M(ψxbtN2αc−· − ψ
y
btN2αc−·)〉btN2αc

≤
btN2αc∑
k=1

(
(btN2αc − k + 1)−

1
2N−α|x− y| 12 +N−

3α
2 k−

3
4

)
·(

Aξk−1e−λ, ψ
x
btN2αc−k+1 + ψybtN2αc−k+1

)
.

By using Lemma A.2 (b) and Lemma A.3 (c),

E|Â(ξbtN2αc)(x)− Â(ξbtN2αc)(y)|p

≤ C(λ, p, f, T )eλp(x)

btN2αc∑
k=1

(btN2αc − k + 1)−
1
2N−α|x− y| 12 +N−

3α
2 k−

3
4


p
2

.

It is easily seen that

E|Â(ξbtN2αc)(x)− Â(ξbtN2αc)(y)|p ≤ C(λ, p, f, T )eλp(x)
(
|x− y|

p
4 +N−

αp
2

)
. (2.10)

For the time difference,

Â(ξbtN2αc)(y)− Â(ξbsN2αc)(y)

= MbtN2αc(ψ
y
btN2αc−·)−MbsN2αc(ψ

y
bsN2αc−·)

=
1

N2α

btN2αc∑
k=1

∑
x

∑
z∼x

ξk−1(z)∑
w=1

ψybtN2αc−k+1(x)

(
ηwk (z, x)− 1

2N

)

− 1

N2α

bsN2αc∑
k=1

∑
x

∑
z∼x

ξk−1(z)∑
w=1

ψybsN2αc−k+1(x)

(
ηwk (z, x)− 1

2N

)

=
1

N2α

bsN2αc∑
k=1

∑
x

∑
z∼x

ξk−1(z)∑
w=1

(ψybtN2αc−k+1(x)− ψybsN2αc−k+1(x))

(
ηwk (z, x)− 1

2N

)

+
1

N2α

btN2αc∑
k=bsN2αc+1

∑
x

∑
z∼x

ξk−1(z)∑
w=1

ψybtN2αc−k+1(x)

(
ηwk (z, x)− 1

2N

)
= M

(1)
bsN2αc +

(
M

(2)
btN2αc −M

(2)
bsN2αc

)
,

where the two martingales are

M
(1)
bsN2αc =

1

N2α

bsN2αc∑
k=1

∑
x

∑
z∼x

ξk−1(z)∑
w=1

(ψybtN2αc−k+1(x)− ψybsN2αc−k+1(x))

(
ηwk (z, x)− 1

2N

)
and

M
(2)
bsN2αc =

1

N2α

bsN2αc∑
k=1

∑
x

∑
z∼x

ξk−1(z)∑
w=1

ψybtN2αc−k+1(x)

(
ηwk (z, x)− 1

2N

)
.
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For M (1)
bsN2αc, we use the similar argument as (2.7), and get

〈M (1)〉bsN2αc

≤
bsN2αc∑
k=1

‖ψybtN2αc−k+1 − ψ
y
bsN2αc−k+1‖λ

N2α

(
Aξk−1e−λ, ψ

y
btN2αc−k+1 + ψybtN2αc−k+1

)

≤
bsN2αc∑
k=1

(
N−

α
2 (bsN2αc − k + 1)−

3
4 |t− s| 12 +N−

3α
2 (bsN2αc − k + 1)−

3
4

)
·
(
Aξk−1e−λ, ψ

y
btN2αc−k+1 + ψybsN2αc−k+1

)
.

By BDG inequality,

E

∣∣∣M (1)
bsN2αc

∣∣∣p ≤ E〈M (1)〉
p
2

bsN2αc

≤ C(p)

bsN2αc∑
k=1

(
N−

α
2 (bsN2αc−k+1)−

3
4 |t− s| 12 +N−

3α
2 (bsN2αc − k + 1)−

3
4

) p
2

· E
(
Aξk−1e−λ, ψ

y
btN2αc−k+1 + ψybsN2αc−k+1

) p
2

.

Writing e−λp2
= e− 3λp

2
eλp and implementing Lemma A.3 (c) give

‖E(Ap/2(ξk−1))‖− 3λp
2
≤ C(λ, p, f, T ).

Together with Lemma A.2 (b), we get

E
(
Aξk−1e−λ, ψ

y
btN2αc−k+1 + ψybsN2αc−k+1

) p
2

≤ E
(

(Ap/2(ξk−1))e−λp2
, ψybtN2αc−k+1 + ψybsN2αc−k+1

)
≤ C(λ, p, T )eλp(y).

Hence,

E

∣∣∣M (1)
bsN2αc

∣∣∣p
≤ C(λ, p, f, T )eλp(y)

bsN2αc∑
k=1

N−
α
2 (bsN2αc−k+1)−

3
4 |t−s| 12 +N−

3α
2 (btN2αc−k+1)−

3
4


p
2

≤ C(λ, p, f, T )eλp(y)
(
|t− s|

p
4 +N−

αp
2

)
, (2.11)

where the second inequality is because of the fact that

bsN2αc∑
k=1

(bsN2αc − k + 1)−
3
4 ≤ C(T )N

α
2 .

For M (2)
btN2αc −M

(2)
bsN2αc,

E

∣∣∣M (2)
btN2αc −M

(2)
bsN2αc

∣∣∣p ≤ E(〈M (2)〉btN2αc − 〈M (2)〉bsN2αc

) p
2

.
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Similar as the argument in (2.7),

〈M (2)〉btN2αc − 〈M (2)〉bsN2αc

≤
btN2αc∑

k=bsN2αc+1

‖ψybtN2αc−k+1‖λ
N2α

(Aξk−1e−λ, ψbtN2αc−k+1)

≤
btN2αc∑

k=bsN2αc+1

(
N−α(btN2αc − k + 1)−

1
2

)(
Aξk−1e−λ, ψ

y
btN2αc−k+1

)
.

Thanks again to Lemma A.2 (b) and Lemma A.3 (c),

E

∣∣∣M (2)
btN2αc −M

(2)
bsN2αc

∣∣∣p ≤ C(λ, p, f, T )eλp(y)

 btN2αc∑
k=bsN2αc+1

N−α(btN2αc − k + 1)−
1
2


p
2

≤ C(λ, p, f, T )eλp(y)|t− s|p/4. (2.12)

Summarising (2.10)(2.11)(2.12), we can get (2.9).

Tightness of
{
A(ξbtN2αc), N ≥ 1

}
follows from Lemma 2.3.

Lemma 2.4. For φ : Z/N1+α → [0,∞) and λ > 0,

|(νNk , φ)− (A(ξk), φ)| ≤ ‖D(φ,N−α)‖λ(νNk , e−λ),

with D(φ,N−α) as defined in (2.2).

Proof.

(A(ξk), φ) =
1

N1+α

∑
x

A(ξk)(x)φ(x)

=
1

2N1+2α

∑
x

∑
y∼x

ξk(y)φ(x)

=
1

2N1+2α

∑
x

∑
y∼x

ξk(y)(φ(x)− φ(y)) + (νNk , φ).

Therefore,

|(νNk , φ)− (A(ξk), φ)| ≤ 1

2N1+2α

∑
x

∑
y∼x

ξk(y)D(φ,N−α)(y)

= (νNk , D(φ,N−α))

≤ ‖D(φ,N−α)‖λ(νNk , e−λ).

Lemma 2.4 together with (a) of Lemma A.3 give that

E

(
sup

1≤k≤btN2αc
‖(νNk , φ)− (A(ξk), φ)‖p

)
≤ C(λ, p, f, T )‖D(φ,N−α)‖pλ.

This implies the tightness of
{

(νNbtN2αc, φ), N ≥ 1
}

for each such test function and there-

fore the tightness of
{
νNbtN2αc, N ≥ 1

}
as a measure-valued process under vague topology.
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Hence, with probability one, for all T > 0, λ > 0, and test function φ ∈ C2
0 (R) with com-

pact support, we can have a subsequence of A(ξNbtN2αc) and νNbtN2αc such that

sup
t≤T
‖A(ξNbtN2αc)− ut‖−λ → 0, as N →∞,

sup
t≤T

∣∣∣∣∫ φ(x)νNbtN2αc(dx)−
∫
φ(x)νt(dx)

∣∣∣∣→ 0, as N →∞.

From Lemma 2.4, we can see that νt is absolutely continuous with density νt(dx) =

ut(x)dx. By substituting φNk = φ ∈ C2
0 (R) as the test function with compact support in

the decomposition (2.6), we can see that

MN
btN2αc(φ) = (νNbtN2αc, φ)− (A(ξ0), φ)−

btN2αc∑
k=1

1

N2α
(νNk ,∆Dφ)

is a martingale and every term on the right-hand side converges almost surely by Lemma
2.3. Hence MN

btN2αc(φ) converges to a local martingale

mt(φ) =

∫
φ(x)νt(dx)−

∫
φ(x)ν0(dx)−

∫ t

0

∫
1

6
∆φ(x)νs(dx)ds

=

∫
φ(x)ut(x)dx−

∫
φ(x)f(x)dx−

∫ t

0

∫
1

6
∆φ(x)us(x)dxds,

(2.13)

which is continuous since every term on the right-hand side is continuous. Moreover,
from (2.7),

(MN
btN2αc)

2 −
btN2αc∑
k=1

1

N2α
(A(ξk−1), φ2)

(
1− 1

2N

)
is a martingale. As N →∞,

m2
t (φ)−

∫ t

0

∫
φ2(x)us(x)dxds (2.14)

is also a continuous local martingale. (2.13) and (2.14) prove that any subsequential
weak limit νt(dx) = ut(x)dx solves (2.1). The uniqueness follows from Theorem 5.7.1 of
[5] which finishes the proof of Theorem 2.2.

2.3 Multiple particles at one site

In this subsection, we show the probability of multiple particles at one site is negligi-
ble in the branching envelope. Then, the state function can be reduced from its number
of particles to that it is occupied or vacant. We will first show a property (see Lemma
2.5) that refers to the weak limit of the envelope process. This is then used to deal with
the discrete process.

Let Xt denote the total mass of this system, that is

Xt = (νt, 1) =

∫
ut(x)dx.

We then have that

Xt =

∫ t

0

∫ √
us(x)W (ds, dx),
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and therefore its quadratic variation is 〈X〉t =
∫ t
0

∫
us(x)dxds. Hence{

Xt =
∫ t
0

√
XsdBs,

X0 = 2.

For k ≥ 1, let Tk denote the stopping time given by

Tk = inf

{
t > 0 : Xt ≥ 2k or

∫ t

0

Xsds ≥ 22k
}

= T ′k ∧ T ′′k ,

where

T ′k = inf
{
t > 0 : Xt ≥ 2k

}
, T ′′k = inf

{∫ t

0

Xsds ≥ 22k
}
.

Lemma 2.5. For a fixed initial condition f which is continuous and compact supported
satisfying f(x) = 1 for x ∈ [−1, 1], there exists constant C so that

P(Tk <∞) ≤ C2−k, k ∈ N.

Proof. P(Tk <∞) can be decomposed as

P(Tk <∞) = P (T ′k <∞, T ′k < T ′′k ) + P (T ′′k <∞, T ′′k < T ′k)

≤ P (T ′k <∞) + P (T ′′k < T ′k) .
(2.15)

If we denote H0 = inf{t > 0 : Xt = 0} as the first hitting time of zero then P(T ′k <∞) =

P(T ′k < H0), hence the first term on the RHS of (2.15) is simply

P (T ′k <∞) <
X0

2k
.

The event {T ′′k < T ′k} ⊂ ∪
k−1
j=1Aj , where

Aj =

{
T ′j <∞,

∫ T ′j+1

T ′j

Xudu ≥
6 · 22k

π(k − j)2

}
.

By using the Markov property of Xt,

P(Aj) ≤ P(T ′j <∞)P

(∫ T ′j+1

T ′j

Xudu ≥
6 · 22k

π(k − j)2

)
. (2.16)

The total mass satisfies

Xt −Xs =

∫ t

s

√
XudBu,

then

E
(
(Xt −Xs)

2|Xs

)
= E

(∫ t

s

Xudu

∣∣∣∣Xs

)
.

Hence we can get

E

∫ T ′j+1

T ′j

Xudu ≤ 22j .
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From this, the second term in (2.16) can be bounded by using the Markov inequality

P

(∫ T ′j+1

T ′j

Xudu ≥
6 · 22k

π(k − j)2

)
≤ C(k − j)2

22(k−j)
.

Therefore,

P(Aj) ≤
1

2k
· CX0(k − j)2

2k−j
.

After plugging in P(Tk <∞) ≤ P(T ′k <∞) +
∑k−1
j=1 P(Aj), we have that,

P(Tk <∞) ≤ C

2k
.

Corollary 2.6. For any t > 0,∫
ut(x)dx and

∫ t

0

∫
us(x)dxds

are finite with probability one.

Then for the discrete state function, we have:

Lemma 2.7. For any k ∈ N and any x ∈ Z/N1+α,

P(ξk(x) > 1 | Fk−1) < (Aξk−1(x))2N2α−2,

where {Fk}k≥0 is the natural filtration Fk = σ({ξj , 0 ≤ j ≤ k}).

Proof. In the discrete system, we have

ξk(x) =
∑
y∼x

ξk−1(y)∑
w=1

ηwk (y, x).

Denote N ′ =
∑
y∼x ξk−1(y) = 2Nα(Aξk−1(x)). Given {ξk−1(y), y ∈ Z/N1+α}, we have

ξk(x)
d
= Binomial(N ′, 1/(2N)).

Note Pk−1(·) as conditional probability given Fk−1.

Pk−1(ξk(x) ≥ 2) = 1− Pk−1(ξk(x) = 0)− Pk−1(ξk(x) = 1)

= 1−
(

1− 1

2N

)N ′
−N ′ 1

2N

(
1− 1

2N

)N ′−1
≤
(
N ′

2N

)2

= N2α−2(Aξk−1(x))2.

Since the branching envelope dominates the true horizontal process, this property
will also hold for the true horizontal process.
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3 The true horizontal process

The true process we consider is dominated by the branching random walk in the
preceding section, which means that at each time step, the particles will move and
reproduce following the mechanism of ξk. But if the site x has been occupied by some
particle before, then it cannot be occupied again. We denote {ξ̂k(x) ∈ {0, 1}, k ∈ Z+, x ∈
Z/N1+α} as the mechanism of the true process. It can be expressed as

ξ̂k+1(x) =

{
1 if

∑
j≤k ξ̂j(x) = 0 and

∑
y∈Nk(x) ηk+1(y, x) ≥ 1,

0 otherwise,

where Nk(x) = {y ∼ x : ξ̂k(y) = 1} having cardinality Nk(x) =
∑
y∼x ξ̂k(y) and

(ηk+1(y, x))k,y,x is an i.i.d. sequence with distribution Bernoulli(1/(2N)). ξ̂k+1(x) can be
rewritten as

ξ̂k+1(x) = I{
∑
y∈Nk(x) ηk+1(y,x)≥1}

1−
∑
j≤k

ξ̂j(x)


=

∑
y∈Nk(x)

ηk+1(y, x)

1−
∑
j≤k

ξ̂j(x)


︸ ︷︷ ︸

main

+

I{∑y∈Nk(x) ηk+1(y,x)≥1} −
∑

y∈Nk(x)

ηk+1(y, x)

1−
∑
j≤k

ξ̂j(x)


︸ ︷︷ ︸

error

=

 ∑
y∈Nk(x)

ηk+1(y, x)

1−
∑
j≤k

ξ̂j(x)

+ Ek(x).

(3.1)

The main goal of this section is to describe the limiting behaviour of the true horizontal
process, summarized in the following result:

Theorem 3.1. Assume that as N → ∞, A(ξ̂0) converges in C to a continuous function
f with compact support. When α = 1/5, as N → ∞, A(ξ̂btN2αc)(x) converges in law to
ût(x), which is the unique in law solution to the following SPDE

{
∂ût
∂t = 1

6∆ût − ût
∫ t
0
ûsds+

√
ûtẆ (t, ·)

û0 = f,
(3.2)

where Ẇ is the space-time white noise.

Remark 3.2. In the later proof, we frequently choose f such that f(x) = 1 for x ∈
[−r, r], r > 0.

The proof is given in the next two subsections: we first prove the tightness and that
any weak limit satisfies (3.2), and in Subsection 3.2 we prove the uniqueness.
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3.1 Limit behaviour of the rescaled horizontal process

Similarly to (2.3) and by (3.1),

ξ̂k+1(x) =

 1

2N

∑
y∼x

ξ̂k(y) +
∑

y∈Nk(x)

(
ηk+1(y, x)− 1

2N

)1−
∑
j≤k

ξ̂j(x)

+ Ek(x)

= ξ̂k(x) +
1

2N

∑
y∼x

(ξ̂k(y)− ξ̂k(x)) +
∑

y∈Nk(x)

(
ηk+1(y, x)− 1

2N

)

− 1

2N

∑
y∼x

∑
j≤k

ξ̂k(y)ξ̂j(x)−
∑

y∈Nk(x)

(
ηk+1(y, x)− 1

2N

)∑
j≤k

ξ̂j(x) + Ek(x)

= ξ̂k(x) +
1

2N

∑
y∼x

(ξ̂k(y)− ξ̂k(x)) +
∑

y∈Nk(x)

(
ηk+1(y, x)− 1

2N

)

− 1

N1−αA(ξ̂k(x))
∑
j≤k

ξ̂j(x)−
∑

y∈Nk(x)

(
ηk+1(y, x)− 1

2N

)∑
j≤k

ξ̂j(x) + Ek(x).

Denote ν̂Nk = 1
N2α

∑
x ξ̂k(x)δx as the measure generated by ξ̂k. Choose test function

φN satisfying (2.4) and sum by parts,

(ν̂Nk , φ
N
k )− (ν̂Nk−1, φ

N
k−1) = (ν̂Nk , φ

N
k − φNk−1) + (ν̂Nk−1, N

−2α∆Dφ
N
k−1) + d

(1)
k (φN )

− 1

N1−α

∑
j≤k−1

(A(ξ̂k−1)φNk−1, ν̂
N
j )− d(2)k (φ) + Ek(φN ),

with the error term

Ek(φN ) =
1

N2α

∑
x

Ek(x)φNk (x),

and martingale terms

d
(1)
k (φN ) =

1

N2α

∑
x

φNk−1(x)
∑

y∈Nk−1(x)

(
ηk(y, x)− 1

2N

)
,

d
(2)
k (φN ) =

1

N2α

∑
x

φNk−1(x)
∑

y∈Nk−1(x)

(
ηk(y, x)− 1

2N

) ∑
j≤k−1

ξ̂j(x).

Summing k from 1 to n, we can get a semimartingale decomposition

(ν̂Nn , φ
N
n )− (A(ξ̂0), φ0) = (ν̂Nn , φ

N
n − φNn−1) +

n−1∑
k=1

(ν̂Nk , φ
N
k − φNk−1 +N−2α∆Dφ

N )

−
n−1∑
k=1

∑
j≤k

1

N1−α (A(ξ̂k)φNk , ν̂
N
j ) + M̂n(φN ) +

n∑
k=1

Ek(φN ),

(3.3)

where the martingale M̂n(φN ) = M
(1)
n (φN ) −M (2)

n (φN ) =
∑n
k=1

(
d
(1)
k (φN )− d(2)k (φN )

)
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has square variation

〈M̂(φN )〉n =

n∑
k=1

Ek−1(d
(1)
k (φN )− d(2)k (φN ))2

=

n∑
k=1

1

2N1+4α

∑
x

∑
y∼x

ξ̂k−1(y)

1−

 ∑
j≤k−1

ξ̂j(x)

2
 (φNk−1)2(x)

(
1− 1

2N

)

≤
n∑
k=1

‖φNk−1‖0
2N1+4α

∑
x

∑
y∼x

ξ̂k−1(y)

1−
∑
j≤k−1

ξ̂j(x)

φNk−1(x)

=

n∑
k=1

‖φNk−1‖0
N2α

(A(ξ̂k−1), φ)− ‖φ‖0
N1+α

n∑
k=1

∑
j≤k−1

(A(ξ̂k−1)φNk−1, ν̂
N
j ), (3.4)

where we use the fact that
∑
j≤k ξ̂j(x) ∈ {0, 1} to get the first inequality. We first show

that the error term in (3.3) is negligible.

Lemma 3.3. When α < 1/3, for t ≤ T , the cumulative error term over time btN2αc

1

N2α

btN2αc∑
k=1

∑
x

Ek(x)φNk (x)→ 0 in L2 as N →∞.

The test function φNk (x) is chosen as the discrete approximation of φ(t, x) : R+ ×R→ R

by taking φN (k, x) = φ
(

k
N2α , x

)
for x ∈ Z/N1+α, where φ is compact supported and twice

differentiable in t and x.

Proof. By Hölder inequality,

E

∣∣∣∣∣∣ 1

N2α

btN2αc∑
k=1

∑
x

Ek(x)φNk (x)

∣∣∣∣∣∣
2

≤ t

N2α

btN2αc∑
k=1

E

(∑
x

Ek(x)φNk (x)

)2

≤ T

N2α

btN2αc∑
k=1

∑
x

E

I{∑y∈Nk(x) ηk+1(y,x)≥1} −
∑

y∈Nk(x)

ηk+1(y, x)

2

(φNk )2(x),

where in the second inequality, we used the facts that
∣∣∣1−∑j≤k ξ̂j(x)

∣∣∣ ≤ 1 and, given Fk,

I{
∑
y∈Nk(x) ηk+1(y,x)≥1} −

∑
y∈Nk(x)

ηk+1(y, x), x ∈ Z/N1+α

are conditionally independent. Following similar reason as Lemma 2.7,

E

I{∑y∈Nk(x) ηk+1(y,x)≥1} −
∑

y∈Nk(x)

ηk+1(y, x)

2

≤ E[Nk(x)2]

4N2
.
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Nk(x) =
∑
y∼x ξ̂k(y) can be written as 2NαAξ̂k(x). Hence

E

∣∣∣∣∣∣ 1

N2α

btN2αc∑
k=1

∑
x

Ek(x)φNk (x)

∣∣∣∣∣∣
2

≤ T

N2

btN2αc∑
k=1

∑
x

E(Aξ̂k(x))2(φNk )2(x)

≤ C(λ, f, T )

N1−3α

btN2αc∑
k=1

1

N2α
(φNk , eλ)2 (Lemma A.3 (c)).

The result follows by using the properties of test functions (2.4).

Choosing φNk = ψn−k as in Section 2.1, we can obtain

A(ξ̂n)(x) = (ν̂N0 , ψ
x
n)−

n∑
k=1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)ψxn−k, ν̂

N
j

)
+ M̂n(ψxn−·) +

n∑
k=1

Ek(ψxn−k).

(3.5)

Since ξ̂k(x) is dominated by ξk(x), the estimations in Lemma A.3 also hold for ξ̂k(x).
As in Section 2.2, we will use the estimations in Lemma A.2 and Lemma A.3 to get the
tightness of A(ξ̂btN2αc)(x). We assume that the linear interpolation of A(ξ̂0) converges to
f under ‖ · ‖−λ for any λ > 0 as N →∞ and let

Â(ξ̂k)(x) = A(ξ̂k)(x)− (ν̂N0 , ψ
x
k).

Lemma 3.4. When α = 1/5, for 0 ≤ s ≤ t ≤ T , x, y ∈ Z/N1+α, |t − s| ≤ 1, |x − y| ≤ 1,
λ > 0 and p ≥ 2,

E|Â(ξ̂btN2αc)(x)− Â(ξ̂bsN2αc)(y)|p ≤ C(λ, p, f, T )eλp(x)
(
|x− y|

p
4 + |t− s|

p
4 +N−

αp
2

)
.

(3.6)

Proof. We first deal with the error term and the remaining terms will be shown as
in the proof of Lemma 2.3, where we decompose this difference into space and time
differences.

The error term is

1

N2α

btN2αc∑
k=1

∑
x′

ψzbtN2αc−k(x′)Ek(x′), for z = x or y,

where
Ek(x′) = I{

∑
y∈Nk(x′) ηk+1(y,x)≥1} −

∑
y∈Nk(x′)

ηk+1(y, x).

We can decompose Ek(x′) = E
(1)
k (x′) + E

(2)
k (x′), where

E
(1)
k (x′) = E[Ek(x′) | Fk],

satisfying ∣∣∣E(1)
k (x)

∣∣∣ ≤ ∣∣∣∣∣1−
(

1− 1

2N

)Nk(x′)
− Nk(x′)

2N

∣∣∣∣∣ ≤ Nk(x′)2

4N2
,

and

E
(2)
k (x) = Ek(x′)− E[Ek(x′) | Fk].
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With respect to the first term E
(1)
k , we have

E

∣∣∣∣∣∣ 1

N2α

btN2αc∑
k=1

∑
x′

ψzbtN2αc−k(x′)E
(1)
k (x′)

∣∣∣∣∣∣
p

≤ C(p, T )

N2α

btN2αc∑
k=1

E

(∑
x′

ψzbtN2αc−k(x′)E
(1)
k (x′)

)p

≤ C(p, T )

N2α+(2−2α)p

btN2αc∑
k=1

E

(∑
x′

(Aξ̂k(x′))2ψzbtN2αc−k(x′)

)p

≤ C(p, T )

N2α+(2−2α)p

btN2αc∑
k=1

E

(∑
x

(Aξ̂k(x′))2pψbtN2αc−k(x′)

)
·

(∑
x′

ψzbtN2αc−k(x′)

)p−1

≤ C(p, T )N (1+α)(p−1)

N2α+(2−2α)p

btN2αc∑
k=1

E

(∑
x′

(Aξ̂k(x′))2pψzbtN2αc−k(x′)

)
(Lemma A.2 (a))

≤ C(λ, p, f, T )N (1+α)(p−1)

N2α+(2−2α)p

btN2αc∑
k=1

(∑
x′

ψzbtN2αc−k(x′)eλp(x
′)

)
(Lemma A.3 (c))

≤ C(λ, p, f, T )eλp(z)N
−(1−3α)p (Lemma A.2 (b)).

Moreover,

M (2)
n =

1

N2α

n∑
k=1

∑
x′

ψbtN2αc−k(x′)E
(2)
k (x′), n ≤ btN2αc,

is a martingale. Hence,

〈M (2)〉btN2αc ≤
C

N2+2α

btN2αc∑
k=1

∑
x′

(Aξ̂k(x′))2(ψzbtN2αc−k(x′))2.

By BDG inequality, we have

E

∣∣∣∣∣∣ 1

N2α

btN2αc∑
k=1

∑
x′

ψzbtN2αc−k(x′)E
(2)
k (x′)

∣∣∣∣∣∣
p

≤ C(p, T )

N (1+α)p−2α(p/2−1)

btN2αc∑
k=1

E

(∑
x′

(Aξ̂k(x′))2(ψzbtN2αc−k(x′))2

) p
2

≤ C(λ, p, T )eλp(z)

Np+2α

btN2αc∑
k=1

N
αp
2 (btN2αc − k)−

p
4 · E

(∑
x′

(Aξ̂k(x′))2ψzbtN2αc−k(x′)e−2λ(x′)

) p
2

≤ C(λ, p, T )eλp(z)

Np+2α

btN2αc∑
k=1

N
αp
2 (btN2αc − k)−

p
4

· E

(∑
x′

(Aξ̂k(x′))pe−λp(x
′)ψzbtN2αc−k(x′)

)(∑
x′

ψzbtN2αc−k(x′)

) p
2−1

≤ C(λ, p, f, T )eλp(z)N
(1+α) p2

Np+2α

btN2αc∑
k=1

N
αp
2 (btN2αc − k)−

p
4

≤ C(λ, p, f, T )eλp(z)N
− 1−α

2 p,
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where the second inequality is by Lemma A.2 (c), the third inequality is from the fact
that (ψzk, 1) = 1 and Lemma A.3 (c), and the second last inequality is by Lemma A.2 (a),
(b) and Lemma A.3 (c).

To get the estimation of space difference, first we need to deal with

E

∣∣∣∣∣∣
btN2αc∑
k=1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)(ψxbtN2αc−k − ψ

y
btN2αc−k), ν̂Nj

)∣∣∣∣∣∣
p

≤ C(λ, p, f, T )eλp(x)

·

 1

N1−α

btN2αc∑
k=1

∑
j≤k−1

(btN2αc − k + 1)−
1
2Nα|x− y| 12 +N

α
2 (btN2αc − k + 1)−

3
4

p

≤ C(λ, p, f, T )eλp(x)
(
N (5α−1)p|x− y|

p
2 +N (4α−1)p

)
≤ C(λ, p, f, T )eλp(x)

(
|x− y|

p
2 +N−αp

)
,

where the last inequality is because of α = 1/5. Next, we will use BDG inequality to
estimate

E

∣∣∣M (2)
btN2αc(ψ

x
btN2αc−· − ψ

y
btN2αc·)

∣∣∣p ≤ E〈M (2)(ψxbtN2αc−· − ψ
y
btN2αc·)〉

p
2

btN2αc.

As the argument in (3.4),

〈M (2)(ψxbtN2αc−· − ψ
y
btN2αc−·)〉btN2αc

≤ 1

N1+α

btN2αc∑
k=1

∑
j≤k−1

‖ψxbtN2αc−k+1 − ψ
y
btN2αc−k+1‖λ

· (A(ξ̂k−1)e−λ(ψxbtN2αc−k+1 + ψybtN2αc−k+1), ν̂Nj )

≤
btN2αc∑
k=1

∑
j≤k−1

(
N−1|x− y| 12 (btN2αc − k + 1)−

1
2 k +N

α
2 (btN2αc − k + 1)−

3
4 k
)

· (A(ξ̂k−1)e−λ(ψxbtN2αc−k+1 + ψybtN2αc−k+1)), ν̂Nj )

Using (b), (c), (d) of Lemma A.2 and (a), (c) of Lemma A.3,

(A(ξ̂k−1)e−λψ
x
btN2αc−k+1), ν̂Nj )

≤ ‖Ap(ξ̂k−1)‖
1
p

−λp(ψ
x
btN2αc−k+1, ν̂

N
j )

≤ ‖Ap(ξ̂k−1)‖
1
p

−λp sup
1≤j≤btN2αc

(e−λ, ν̂
N
j )‖ψxbtN2αc−k+1‖λ

≤ ‖Ap(ξ̂k−1)‖
1
p

−λp sup
1≤j≤btN2αc

(e−λ, ν̂
N
j )eλ(x)Nα(btN2αc − k + 1)−

1
2 .

(3.7)
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Therefore, by using the fact that α = 1/5,

E

∣∣∣M (2)
btN2αc(ψ

x
btN2αc−· − ψ

y
btN2αc·)

∣∣∣p
≤ C(λ, p, f, T )eλp(x)

·

btN2αc∑
k=1

Nα−1|x− y| 12 (btN2αc − k + 1)−1k +N
α
2−1(btN2αc − k + 1)−

5
4 k


p
2

≤ C(λ, p, f, T )eλp(x)
(
N

5α−1
2 p|x− y|

p
4 +N

2α−1
2 p

)
≤ C(λ, p, f, T )eλp(x)

(
|x− y|

p
4 +N−

3α
2 p
)
.

Similarly, for the time difference, we first deal with the drift term

btN2αc∑
k=1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)ψybtN2αc−k+1, ν̂

N
j

)

−
bsN2αc∑
k=1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)ψybsN2αc−k+1, ν̂

N
j

)

=

bsN2αc∑
k=1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)

(
ψybtN2αc−k+1 − ψ

y
bsN2αc−k+1

)
, ν̂Nj

)

+

btN2αc∑
k=bsN2αc+1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)ψybtN2αc−k+1, ν̂

N
j

)
.

By (b), (e) of Lemma A.2, (c) of Lemma A.3 and the fact that α = 1/5, the p-th moment of
the first term above can be bounded by

E

∣∣∣∣∣∣
bsN2αc∑
k=1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)

(
ψybtN2αc−k+1 − ψ

y
bsN2αc−k+1

)
, ν̂Nj

)∣∣∣∣∣∣
≤ C(λ, p, f, T )eλp(y)

·

bsN2αc∑
k=1

N
5
2α−1|t− s| 12 (bsN2αc − k + 1)−

3
4 k +N

3
2α−1(bsN2αc − k + 1)−

3
4 k

p

≤ C(λ, p, f, T )eλp(y)
(
N (5α−1)p|t− s|

p
2 +N (4α−1)p

)
≤ C(λ, p, f, T )eλp(y)

(
|t− s|

p
2 +N−αp

)
.

By (b), (c) of Lemma A.2, (c) of Lemma A.3 and the fact that α = 1/5, the p-th moment of
the second term above can be bounded by

E

∣∣∣∣∣∣
btN2αc∑

k=bsN2αc+1

∑
j≤k−1

1

N1−α

(
A(ξ̂k−1)ψybtN2αc−k+1, ν̂

N
j

)∣∣∣∣∣∣
p

≤ C(λ, p, f, T )eλp(y)

 btN2αc∑
k=bsN2αc+1

N2α−1(btN2αc − k + 1)−
1
2 k

p

≤ C(λ, p, f, T )eλp(y)
(
N (5α−1)p|t− s|

p
2

)
≤ C(λ, p, f, T )eλp(y)|t− s|

p
2 .
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To deal with the part of M (2)
btN2αc(ψ

y
btN2αc−·)−M

(2)
bsN2αc(ψ

y
bsN2αc−·), we can separate it into

two parts and use BDG inequality.
The first part is M (2)

bsN2αc(ψ
y
btN2αc−· − ψ

y
bsN2αc−·) with quadratic variation

〈M (2)(ψybtN2αc−· − ψ
y
bsN2αc−·)〉bsN2αc

≤
bsN2αc∑
k=1

∑
j≤k−1

‖ψybtN2αc−k+1 − ψ
y
bsN2αc−k+1‖λ

N1+α

·
(
A(ξ̂k−1)e−λ(ψybtN2αc−k+1 + ψybsN2αc−k+1), ν̂Nj

)
≤
bsN2αc∑
k=1

(
N

α
2−1|t− s| 12 (bsN2αc − k + 1)−

3
4 k +N−1−

α
2 (bsN2αc − k + 1)−

3
4 k
)

·
(
A(ξ̂k−1)e−λ(ψybtN2αc−k+1 + ψybsN2αc−k+1), ν̂Nj

)
.

Inequality (3.7) gives us

E

∣∣∣M (2)
bsN2αc(ψ

y
btN2αc−· − ψ

y
bsN2αc−·)

∣∣∣p
≤ C(λ, p, f, T )eλp(y)

·

bsN2αc∑
k=1

N
3
2α−1|t− s| 12 (bsN2αc − k + 1)−

5
4 k +N

α
2−1(bsN2αc − k + 1)−

5
4 k


p
2

≤ C(λ, p, f, T )eλp(y)
(
N

3.5α−1
2 p|t− s|

p
4 +N

2.5α−1
2 p

)
≤ C(λ, p, f, T )eλp(y)

(
N−

3α
4 p|t− s|

p
4 +N−

5α
4 p
)
.

The second part is M (2)
btN2αc(ψ

y
btN2αc−·)−M

(2)
bsN2αc(ψ

y
btN2αc−·) with quadratic variation

〈M (2)(ψybtN2αc − ·)〉btN2αc − 〈M (2)(ψybtN2αc − ·)〉bsN2αc

≤
btN2αc∑

k=bsN2αc+1

∑
j≤k−1

‖ψybtN2αc−k+1‖λ
N1+α

(
A(ξ̂k−1)e−λψ

y
btN2αc−k+1, ν̂

N
j

)

≤
btN2αc∑

k=bsN2αc

∑
j≤k−1

N−1(btN2αc − k + 1)−
1
2

(
A(ξ̂k−1)e−λψ

y
btN2αc−k+1, ν̂

N
j

)
.

Inequality (3.7) again gives us

E

∣∣∣M (2)
btN2αc(ψ

y
btN2αc−·)−M

(2)
bsN2αc(ψ

y
btN2αc−·)

∣∣∣p
≤ C(λ, p, f, T )eλp(y)

 btN2αc∑
k=bsN2αc+1

Nα−1(btN2αc − k + 1)−1k


p
2

≤ C(λ, p, f, T )eλp(y)
(
N

5α−1
2 p|t− s|

p
2

)
≤ C(λ, p, f, T )eλp(y)|t− s|

p
2 .

Combining with Lemma 2.3, we get (3.6).

The tightness of A(ξ̂btN2αc) follows from Lemma 3.4, which means that we can find
a subsequence with a limit ût. Since the true process is dominated by the branching
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envelope, we easily see that Lemma 2.4 also holds for the true horizontal process.
This implies the tightness of ν̂NbtN2αc under vague topology. Let ν̂t be a weak limit. By

substituting φNk = φ ∈ C2
0 (R) in the semimartingale decomposition (3.3) and Lemma 3.3,

if α = 1/5, we can see that the martingale M̂N
btN2αc can be written as

M̂N
btN2αc(φ) = (ν̂NbtN2αc, φ)− (A(ξ̂0), φ)−

btN2αc∑
k=1

(ν̂Nk ,∆Dφ)

−
btN2αc∑
k=1

∑
j≤k−1

1

N1−α (A(ξ̂k−1φ), ν̂Nj ) +O(N−2/5)

and every term on the right-hand side converges almost surely by Lemma 3.4. Hence
M̂N
btN2αc(φ) converges to a local martingale

m̂t(φ) = (ν̂t, φ)− (ν̂0, φ)− 1

6

∫ t

0

(ν̂s,∆φ)ds−
∫ t

0

(
ν̂s,

∫ s

0

ûrφ

)
ds

=

∫
φ(x)ût(x)dx−

∫
φ(x)f(x)dx− 1

6

∫ t

0

∫
∆φ(x)ûs(x)dxds

−
∫ t

0

∫ s

0

∫
φ(x)ûs(x)ûr(x)dxdrds,

(3.8)

which is continuous since every term on the right-hand side is continuous. Moreover,
from (3.4),

(M̂N
btN2αc)

2 −
btN2αc∑
k=1

1

N2α
(A(ξ̂k−1), φ2)

(
1− 1

2N

)

−
btN2αc∑
k=1

∑
j≤k−1

1

N1+α
(A(ξ̂k−1)φ2, ν̂Nj )

(
1− 1

2N

)
is a martingale. As N →∞,

m̂2
t (φ)−

∫ t

0

∫
φ2(x)ûs(x)dxds (3.9)

is also a continuous local martingale. (3.8) and (3.9) prove that any subsequential weak
limit ν̂t(dx) = ût(x)dx solves (3.2).

3.2 Girsanov transformation. Proof of the uniqueness in Theorem 3.1

As is discussed in Section 2.2, the envelope measure νt solves the martingale problem:
∀φ ∈ C2

0 (R) test function twice differentiable with compact support, the process

mt(φ) = (νt, φ)− (ν0, φ)− 1

6

∫ t

0

(νs,∆φ)ds

is a continuous local martingale with quadratic variation process

〈m(φ)〉t =

∫ t

0

(νs, φ
2)ds.

From this, we know that

e−(νt,φ) − e−(ν0,φ) −
∫ t

0

e−(νs,φ)
(
νs,−

1

6
∆φ+ φ2

)
ds
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is a continuous local martingale. Using the duality method in Section 4.4 of [10], we can
choose triplet (h, 0, 0) on the spaceMF × C2

0 , whereMF is the collection of finite Borel
measures and h(·, ·) is defined as

h(ν, φ) = e−(ν,φ).

Then
Eh(νt, φ) = h(ν0, u

∗
t ),

u∗s is the solution to the deterministic equation{
∂u∗t
∂t = 1

6∆u∗t − (u∗t )
2

u∗0 = φ.
(3.10)

{u∗t }t≥0 is the dual process of the solution to the martingale problem. The existence of
solution to (3.10) gives the uniqueness of {νt}t≥0.

Let m(ds, dx) be the orthogonal martingale measure of mt(·), which means that it is
of intensity measure

ν((0, t]×A) =

∫
A

∫ t

0

us(x)dsdx,

for any Borel measurable set A ⊂ R. Then the Radon-Nykodym derivative of the true
process with respect to the envelope is

dQ

dP

∣∣∣∣
t

= exp

{
−
∫ ∫ t

0

θ(s, x)m(ds, dx)− 1

2

∫ t

0

(us, θ(s, ·)2)ds

}
, (3.11)

where the drift term

θ(s, x) =

∫ s

0

ur(x)dr.

The uniqueness of {ν̂t}t≥0 follows directly from the uniqueness of {νt}t≥0. This concludes
the proof of Theorem 3.1.

4 Existence of percolation

In the past two sections, we have shown that α = 1/5 (in the sense of Theorem 3.1) is
a critical exponent for the horizontal process. The envelope process on each horizontal
layer follows the law with asymptotic approximate density given by the solution of (2.1).
In the anisotropic percolation model, the horizontal movement has an attrition compared
to the envelope process. The attrition comes from two parts:

• In the envelope process, it is allowed to have multiple particles at each site.
However, in the true mechanism, we only consider if a site is occupied or not
hence the configuration at each site can only take values in 0 or 1. Fortunately, the
probability of multiple particles is negligible when α = 1/5 (Corollary 2.7).

• As was explained in the Introduction, the vertical interaction should be only con-
sidered once for any site in the anisotropic percolation. When we consider the
horizontal movement, any site that has been visited before cannot be visited again.
Under the critical exponent α = 1/5, this attrition becomes significant and leads to
the part

−ût
∫ t

0

ûsds

in the asymptotic approximate density.

In this section we prove Theorem 1.1, by investigating the occurrence (or not) of
percolation when on each layer we have the true model, and the vertical bonds between
neighbouring sites are open with probability pv = κN−2/5, all independently.
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4.1 The case κ < C1

As we have discussed in Section 1, the occupied sites at each layer follow a horizontal
process with attrition whose asymptotic approximate density follows the SPDE (3.2).
Here we abuse the notation Cix as the cluster starting from x at layer i. in the rescaled
space Z/N6/5 ×Z. The main theorem to show in this subsection is as follows.

Theorem 4.1. For the horizontal process with attrition, there exists a constant L such
that the cumulated number of occupied sites (or the cluster size) starting from zero
satisfies

E|C00 | ≤ LN2/5.

Before proving the main theorem, let us show how it implies that there is no percola-
tion when κ < C1 for C1 small enough.

Corollary 4.2. Let pv = κN−2/5 denote the probability of a vertical edge being open.
There exists C1 such that for κ < C1, there is no percolation in the anisotropic percolation
system for all N large.

Proof of Corollary 4.2. Recall that the horizontal edges, i.e. edges between (x, i) and
(y, i) for some i and x ∼ y, are open with probability 1/(2N), while the vertical ones
between (x, i) and (x, j) for some x and |j − i| = 1 are open with probability pv, all
independently. We say that there is a path from (x, i) at layer i to (y, k) at layer k denoted
by (x, i)→ (y, k) if there is n and xj , ij , 1 ≤ j ≤ n so that (x1, i1) = (x, i), (xn, in) = (y, k)

and ∀1 ≤ j ≤ n− 1, the edge between (xj , ij) and (xj+1, ij+1) is open.
We want to explore all sites that are connected to (0, 0), i.e. that can be reached by an

open path from (0, 0). Once an open path reaches layer i, it can continue through vertical
neighbours at layers i± 1, moving upward or downward; we can count the number of
connected sites with a certain number of vertical movements from layer 0 rather than its
layer number.

After n movements which contain m vertical movements (upward or downward), there
is a collection of open paths from the origin (x0, i0) = (0, 0)→ (xn, in). Let Iv ⊂ 1, 2, · · · , n
be the set of vertical movements such that |Iv| = m and ∀k ∈ Iv, |ik− ik−1| = 1, xk = xk−1.
For k ∈ {1, 2, · · · , n}\Iv i.e. the horizontal movement indices, ik = ik−1, xk ∼ xk−1.
Denote Sm as the collection of points which are the ends of these paths from the origin
after m vertical movements (with any number n ≥ m of total movements).

These sites are possibly to be distributed on different layers. In the development
of {Sm}m≥0, we consider the horizontal movements and vertical movements separately
at each time. More precisely (ref. Figure 1), we start with (0, 0), and following the law
C00 we produce connected sites at layer 0. In the first vertical movement, these sites at
layer 0 can connect to sites at layer ±1. Before the second vertical movement, these
connected sites at layers ±1 will produce an horizontal cluster following the law of C00
at its layer, which will then connect to sites at layers ±2 and 0. Sm can be constructed
inductively by considering the total number of horizontal connected sites and then their
vertical movements.

Due to attrition, in the horizontal connection we only consider a site to be occupied
or not, rather than the number of particles at each site, the cardinality {|Sm|}m≥0 is
stochastically dominated (in the sense of Definition II.2.3 of [16]) by a branching process
{Zm}m≥0 following the law

Zm+1 =

Zm∑
i=1

Ym,i, where Ym,i ∼ Binomial(2Nm,i, pv) for 1 ≤ i ≤ Zm,

Nm,i is independent of Z1, · · · , Zm for each i,m

and (Nm,i)m,i is an i.i.d. sequence with distribution as |C00 |.
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Figure 1: Movement of Sm

Theorem 4.1 gives the upper bound of E|C00 | to be 2LN2/5. When κ is small enough
to make 2κL < 1, {Zm}m≥0 is a sub-critical branching process which will die out (ref.
Theorem A.5.1 of [1]). Therefore, there exists positive constant C1 = (2L)−1 such that
for κ < C1, there is no percolations in this layered system.

We now move to the proof of Theorem 4.1. For this we will need two inequalities
(Lemma 4.3 and Proposition 4.4 below) which concern the following hitting times for the
branching envelope and for the true horizontal process:

T̃k = inf

{
n :
∑
x

ξn(x) ≥ 2k or
n∑
i=1

∑
x

ξi(x) ≥ 22k

}
,

which is just the discrete version of the hitting time Tk in Section 2.3, and

T̂k = inf

{
n :
∑
x

ξ̂n(x) ≥ 2k or
n∑
i=1

∑
x

ξ̂i(x) ≥ 22k

}
= T̂ ′k ∧ T̂ ′′k ,

where

T̂ ′k = inf{n :
∑
x

ξ̂n(x) ≥ 2k}, T̂ ′′k = inf

{
n :

n∑
i=0

∑
x

ξ̂i(x) ≥ 22k

}
.

Lemma 4.3. Suppose ξ0(x) = 1 if x = 0 and ξ0(x) = 0 otherwise, then we have

P(T̃k <∞) < C2−k.

Proposition 4.4. Let integer k0 be defined by 2k0 ≤ N2/5 < 2k0+1. There exists M1

large such that for any k = k0 + log2M1 + r, r ≥ 0, we have

P(T̂k <∞ | T̂k0+log2M1
<∞) ≤ C

8r
.

Postponing the proofs of these estimates, we first see how they allow us to conclude
the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof is given in the following steps. As we can see in the
proof of Theorem 3.2, the attrition part is negligible when α < 1/5 becomes significant
when α = 1/5. Because of attractiveness, we only need to consider the attrition once the
total mass is of order O(N2/5). So we consider a process that dominates the horizontal
process, which follows the pure branching random walk before the total mass reaches
M1N

2/5 for some M1 large and includes the attrition part after that. We are first
interested in the crossing time of

∑
x ξn(x) over level M1N

2/5.

EJP 25 (2020), paper 129.
Page 26/44

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP533
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Critical values in anisotropic percolation

The dominating process that we consider in this subsection follows {ξk(x)} before
T̃k0+log2M1

and follows {ξ̂k(x)} after T̃k0+log2M1
. The reason of separating the time is as

follows. The size of cluster containing the origin satisfies

E|C00 | ≤
∞∑
k=0

22(k+1)P(T̂k <∞)

≤
k0+log2M1∑

k=0

22(k+1)P(T̃k <∞) +
∑

k≥k0+log2M1

22(k+1)P(T̂k+1 <∞)

≤
k0+log2M1∑

k=0

22(k+1)C2−k +
∑

k≥k0+log2M1

22(k+1)P(T̂k+1 <∞)

≤ 8CM1N
2/5 +

∑
k≥k0+log2M1

22(k+1)P(T̂k+1 <∞).

The third inequality is by Lemma 4.3 and the fourth inequality is due to the fact that
2k0 ≤ N2/5. The last work is to bound the second term in the last inequality. By
Proposition 4.4, the size of cluster containing zero can be bounded by

E|C00 | ≤ 8CN2/5 +
∑

k≥k0+log2M1

22k+2C2−k0−log2M18−(k−k0−log2M1)

≤ 8CM1N
2/5 + 8CM1N

2/5.

This finishes the proof of Theorem 4.1.

In the following part of this subsection, we will show Lemma 4.3 and Proposition 4.4.

Proof of Lemma 4.3. The proof is similar as in Lemma 2.5. It is followed by replacing
the corresponding part in the proof of Lemma 2.5 that

E
(
(Xt −Xs)

2 | Xs

)
= E

(∫ t

s

Xudu

∣∣∣∣Xs

)
into the fact that

E

((∑
x

ξn(x)−
∑
x

ξm(x)

)∣∣∣∣∣Fm
)

=

(
1− 1

2N

)
E

n−1∑
j=m

∑
x

ξj(x)

∣∣∣∣∣∣Fm
 .

Then we can use the similar martingale technique and the fact that

∑
x

ξn+1(x) =
∑
x

ξn(x) +
∑
x

∑
y∼x

ξn(y)∑
w=1

(
ηwn+1(y, x)− 1

2N

)
(4.1)

is a martingale. Denote the discrete mass as

X̃n =
∑
x

ξn(x).

The desired probability can be decomposed as

P(T̃k <∞) = P(T̃ ′k <∞, T̃ ′k < T̃ ′′k ) + P(T̃ ′′k <∞, T̃ ′′k < T̃ ′k)

≤ P(T̃ ′k <∞) + P(T̃ ′′k < T ′k),
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where

T̃ ′k = inf{n :
∑
x

ξn(x) ≥ 2k}, T̃ ′′k = inf

{
n :

n∑
i=0

∑
x

ξi(x) ≥ 22k

}
.

Denote H̃0 = inf{n : X̃n = 0} as the first hitting time of zero, then P(T̃ ′k <∞) = P(T̃ ′k <

H̃0), and this is simply

P(T̃ ′k <∞) ≤ X̃0

2k
=

1

2k
.

The event {T̃ ′′k < T̃ ′k} ⊂
⋃k−1
j=1 Aj , where

Aj =

T̃ ′j <∞,
T̃ ′j+1∑

i=T̃ ′j+1

X̃i ≥
6 · 22k

π(k − j)2

 .

For m < n, we have

E
[
(X̃n − X̃m)2 | X̃m

]
= E

(n−1∑
i=m

(X̃i+1 − X̃i)

)2

| X̃m


= E

[
n−1∑
i=m

(X̃i+1 − X̃i)
2 | X̃m

]

=

(
1− 1

2N

)
E

[
n−1∑
i=m

X̃i | X̃m

]
,

where the second equality follows at once from the definition of {X̃k}k≥0 (a branching
process). Letting n = T̃ ′j+1 and m = T̃ ′j gives that

P(Aj) ≤
(2j+2 − 2j)2 · π(k − j)2

22k
,

by the strong Markov property of {X̃k)k≥0 at stopping time T̃ ′j . Therefore,

P(T̃k <∞) ≤ 1

2k
+

k−1∑
j=1

P(Aj)

≤ C

2k
.

The above proof immediately yields

Corollary 4.5. Given a stopping time T with respect to the natural filtration of the
{ξn(x), n ≥ 0, x ∈ Z/N6/5}, the stopping time

T (k) = inf

{
n ≥ T :

∑
x

ξn(x) ≥ 2k or
n∑

m=0

∑
x

ξm(x) ≥ 22k

}
satisfies

P(T (k) <∞|FT ) ≤ C2−r

on the set {
X̃T ≤ 2k−r,

T∑
m=0

X̃m ≤ 22k/2

}
for universal finite C (uniform in N ) and integer r.
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To show Proposition 4.4, we need two properties of the branching processes: on
the large deviations and the next one is on the population size of the critical branching
process.

Lemma 4.6. For a sequence of random variables Yi
i.i.d.∼ Binomial(2N, 1/(2N)), i =

1, . . . , n, we have for a > 1
2 ,

P

(
n∑
i=1

(Yi − 1) ≥ na
)
≤ e−cn

a∧(2a−1)

.

Proof. The proof is followed by large deviation technique.

P

(
n∑
i=1

(Yi − 1) ≥ na
)

= P
(
et

∑n
i=1 Yi ≥ e(n+n

a)t
)

≤ exp

(
−(n+ na)t+ 2Nn log

(
1 +

et − 1

2N

))
,∀t ∈ R,

by the Markov inequality. The r.h.s. reaches the minimum if t satisfies

net

1 + et−1
2N

= n+ na.

From this, t = log(1 + na−1)− log(1− na−1

2N−1 ). If 1
2 < a < 1, t ≈ na−1 and hence

−(n+ na)t+ 2Nn log

(
1 +

et − 1

2N

)
≤ −cn2a−1.

But for a ≥ 1, et ≈ na−1 and

−(n+ na)t+ 2Nn log

(
1 +

et − 1

2N

)
≤ −cna.

Lemma 4.7. Denote the critical binomial branching process as {ZNn }n≥0 with ZN0 = 1

and

ZNn+1 =

ZNn∑
i=1

Y n+1
i ,

where (Y n+1
i )n,i is an i.i.d. sequence with distribution Binomial(2N, 1/(2N)).

(i) Given any T > 1,

P

(
2ZNbtN2/5c

tN2/5
> x | ZNbtN2/5c > 0

)
→ e−x

as N →∞ uniformly in t ∈ [1/T, T ].

(ii) (tN2/5) · P(ZNbtN2/5c > 0)→ 2 as N →∞.

Proof. The moment generating function of ZNn , fNn (t) = E[tZ
N
n ] is given by

fNn+1(t) = fN (fNn (t)), fN (t) = fN1 (t) =

(
1 +

t− 1

2N

)2N

with supN (fN )′′′(1) bounded. The assertion follows from Theorem I.10.1 of Harris [12]
and the proof therein, after observing that

(fN )′′(1) =
2N(2N − 1)

(2N)2
→ 1 as N →∞

hence the result is uniform in t.
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With the help of these two properties, we can prove Proposition 4.4 used in the proof
of Theorem 4.1.

We first show how Proposition 4.4 follows from the following.

Proposition 4.8. Suppose ξ̂0(x) = 1 if x = 0 and ξ̂0(x) = 0 otherwise, and δ > 0, then
there exists M3 sufficiently large that

E
(
X̂M3N2/5

)
< δ,

for all N , where X̂n =
∑
x ξ̂n(x) is the discrete mass of the true horizontal process.

Remark 4.9. To summarize the notations about the total mass, {Xt}t≥0 denotes the
total mass of the envelope process in continuous time given the initial condition f to
be continuous, f(x) = 1 for x ∈ [−1, 1] and compact supported. {X̃n}n≥0 and {X̂n}n≥0
represent the total mass of the envelope process and the true horizontal process in
discrete time given the initial condition to be I{0}.

This Proposition will be proven later.

Proof of Proposition 4.4. We note that it is sufficient to show that (with M1 chosen
sufficiently large)

P (T̂k+1 <∞|T̂k <∞) <
1

8

for k ≥ k0. Lemma 4.6 shows that outside probability e−2
k/3

, we have that X̂T̂k
< 2k+22k/3

and
∑T̂k
m=0 X̂m < 22k + 22k/3.

Let B1 be the event that one of these two bounds fails (so P(B1) ≤ e−2
k/3

< 1/32

supposing that M1 is sufficiently large). We fix δ > 0 (to be bounded when needed) and let
M3 correspond to δ in Proposition 4.8. Let B2 be the event that supT̂k≤i≤T̂k+M3N2/5 X̂i ≥
M32k. So by the martingale properties of the envelope process P(B2\B1) < 2

M3
< 1/32

supposing, as we may have that M3 is sufficiently large. We note that on the complement

of B1 ∪ B2,
∑T̂k+M3N

2/5

i=0 X̂i ≤ 22k + 22k/3 + M3N
2/5M32k < 22(k+1)/2 if M1 is chosen so

that M1 > 8M2
3 and N is sufficiently large. Next we have by Proposition 4.8 and obvious

monotonicity

E(X̂T̂k+M3N2/5I(B1∪B2)c) < (2k + 22k/3)δ

and so by the Markov’s inequality, the event B3 = {X̂T̂k+M3N2/5I(B1∪B2)c ≥ 2
√
δ2k} has

probability bounded by
√
δ < 1/32 if δ was fixed sufficiently small. Finally we can apply

Corollary 4.5 to see that B4 = {T̂k+1 <∞}\(B1 ∪B2 ∪B3) has probability P(B4) < 1/32

(again supposing δ to have been fixed sufficiently small).

In the proof above, we have that at time T̂k, there are around 2k particles. For
the process starting from each single one, we want to show that after M3N

2/5 steps,
some killing property can help to reduce the quantity to be δ small. It remains to prove
Proposition 4.8.

Proof of Proposition 4.8. We suppose that X̂ is coupled with a envelope process Z so
that X̂n is dominated by Zn for each n. We suppose that δ > 0 is fixed. We wish to
partition ZN2/5 6= 0 into sets B1, B2, and B3 to show (with M3 fixed large that for each
k = 1, 2, 3, E(X̂M3N2/5IBk) < δ/4). Let

σ = inf
{
n ≥ N2/5/2 : X̂n ≤ εN2/5

}
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where ε is a small positive constant which remains to be fully specified. Let B1 =
{σ ≤ N2/5}. Then by the Strong Markov property applied at σ and the martingale
property for the envelope of the process

E(X̂M3N2/5IB1) ≤ P(X̂N2/5IB1 6= 0)E
[
E(X̂M3N2/5IB1 |Fσ)

]
≤ P(X̂N2/5IB1

6= 0)εN2/5

≤ δ/4,

if ε was chosen sufficiently small by Lemma 4.7.
We next consider B2 = {RN2/5 < 1/ε} where RN2/5 is the maximal absolute displace-

ment from 0 of the critical branching random walk Z by time N2/5, i.e.

Rn = max
m≤n

{
x ∈ Z/N6/5 : ξm(x) 6= 0

}
. (4.2)

Theorem 1.1 of Kesten [14] showed that

P(RN2/5 ≥ z | ZN2/5/2 > 0) ≤ Caz−a, for any a > 0, (4.3)

(It is easy to check the bound holds for uniformly over N ). Thus since ZN2/5/N2/5

conditioned on being nonzero is uniformly integrable (again using Lemma 4.7 ), we have
that (again supposing that ε is fixed small)

E(X̂M3N2/5IB2
) ≤ E(ZM3N2/5IB2

) < δ/4.

Finally we treat the complement B3. On the complement of B1∪B2 we can find a interval
with length 2ε contained in (−1/ε, 1/ε), which we denote as (x− ε, x+ ε) such that

∑
y∈(x−ε,x+ε)

N2/5∑
j=N2/5/2

ξ̂j(y) ≥ ε3N4/5. (4.4)

(B1 ∪ B2)c make sure that we have sufficient number of visited sites in (x − ε, x + ε).
Denote

V =
{
y ∈ (x− ε, x+ ε) : ∃ N2/5/2 ≤ j ≤ N2/5, ξ̂j(y) = 1

}
as the set of visited sites between N2/5/2 and N2/5. Without loss of generality, we
assume that x = 0. For y ∈ (−ε, ε), consider a random walk {Si}i≥0 starting from S0 = y

and each step it moves to one of its neighbourhood z (|y − z| ≤ N−1/5) with probability
1/(2N). Observe that E|Si − Si−1|2 ≈ 1

3N2/5 . Let τ2ε = inf{i > 0 : Si ∈ [−2ε, 2ε]c}.
For any z ∈ (−ε, ε), there are positive constants c1 < c2 such that

c1εN
−4/5 ≤ Py(Si hits z before τ2ε) ≤ c2εN−4/5. (4.5)

Let

NV =

τ2ε∑
i=1

ISi∈V .

Then by (4.4) and (4.5),

E[NV ] =
∑
z∈V

Py(Si hits z before τ2ε)

≥ ε3N4/5 · c1εN−4/5

= c1ε
4.
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Moreover,

E[N2
V ] =

∑
z,z′∈V

Py(Si hits z, z′ before τ2ε)

≤ E[NV ] +
c22
c21

(E[NV ])2.

By simple exercise using Cauchy-Schwarz inequality,

P(NV > 0) ≥ (E[NV ])2

E[N2
V ]

≥ 1

c22c
−2
1 + (E[NV ])−1

≥ 1

c22c
−2
1 + (c1ε4)−1

.

(4.6)

For any y ∈ (−ε, ε), let {Si}i≥0 be the random walk starting from y with the same law
above. Define

σ0 = inf{i > 0 : Si ∈ [−ε/2, ε/2]}, σ′0 = inf{i > σ0 : Si ∈ [−2ε, 2ε]c},

and inductively

σn = inf{i > σ′n−1 : Si ∈ [−ε/2, ε/2]}, σ′n = inf{i > σn : Si ∈ [−2ε, 2ε]c}.

We say that Si visits n times to interval [−ε/2, ε/2] in M3N
2/5 steps if σn < M3N

2/5 <

σn+1. Denote Nε/2 to be this number of times of visiting to [−ε/2, ε/2] before M3N
2/5.

Once a particle starting from (−ε, ε) visits V , it is killed with probability P(NV > 0).
Hence, each time a particle visit the interval (−ε/2, ε/2), it can survive with probability
1− P(NV > 0). If the particle visits R times to (−ε/2, ε/2), the probability of surviving
will be small. If we have a big time horizon M3N

2/5, we can make sure that the particle
can visit (−ε/2, ε/2) more than R times.

The probability that {Si}i≥0 starting from y does not hit V until M3N
2/5

Py
(
Si /∈ V for any 0 ≤ i ≤M3 −N2/5

)
≤ Py

(
Nε/2 ≤ R

)
+ P

(
Si /∈ V for any 0 ≤ i ≤M3N

2/5 | Nε/2 > R
)
.

By (4.6) and the Markov property of {Si}i≥0,

Py
(
Si /∈ V for any 0 ≤ i ≤M3N

2/5 | Nv ≥ R
)
≤
(

1− 1

c22c
−2
1 + (c1ε4)−1

)R
≤ δ/2,

if R is chosen large enough compared to ε−4. Moreover,

Py(Nε/2 ≤ R) ≤ δ/2,

if M3 is chosen largen compared to R. This concludes that

E[X̂M3N2/5 ] ≤ δ.

Remark 4.10. Notice that without considering the attrition, we can have the probability
P(Tk < ∞) ≤ C2−k. This is not enough in the proof of Theorem 4.1. However, for the
proof we are helped by the attrition: sites that were visited cannot be visited again. Even
in a very small killing zone (x− ε, x+ ε) in the proof above, many particles will be killed
in a finite but large time period.
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4.2 The case κ > C2

In this case, we will prove some properties of the true process, and then lead to an
oriented percolation construction. The first step is to show that the difference between
the solution to (3.2) and the solution to deterministic heat equation is quite small for
small times. Suppose under Q, u(t, x) is the solution to (3.2) and under P, u(t, x) is the
solution to (2.1). The Radon-Nykodym derivative of Q with respect to P is (3.11). Let
the initial condition f be continuous, compact supported and f(x) = 1 for x ∈ [−1, 1].
We can regard the initial condition as I[−1,1] plus some nonsignificant term. Define the
difference

N(t, x) = u(t, x)−Gtf(x),

with Gtf(x) = E[f(x+Bt/3)], where (Bt)t≥0 is a standard Brownian motion. By Lemma
4.2 of [18] (also ref. Lemma 4 of [15]),

P
(
|N(t, x)| ≥

√
δe−(δ

5−t)|x| for some t ≤ δ5 and x ∈ R
)
≤ C1δ

−1/12 exp(−C2δ
−1/4).

This property also holds for Q:

Lemma 4.11. Denote

Aδ =
{
|N(t, x)| ≤

√
δe−(δ

5−t)|x| for ∀t ≤ δ5 and ∀x ∈ R
}
.

If under Q, u(t, x) is the solution to (3.2) given the initial condition f satisfying f(x) = 1

for x ∈ [−1, 1], f(x) = 0 for x ∈ [−1− δ, 1 + δ] and f is linear in the other parts, then

Q(Aδ) ≥ 1− 3δ7/2 for all δ > 0 small enough.

Proof. Aδ ∈ Fδ5 , hence

Q(Aδ) =

∫
Aδ

dQ

dP
dP

≥ (1− δ7/2)

(∫
Aδ∩

{
dQ
dP |Fδ5≥1−δ

7/2
} dP

)

Since for δ small enough, P(Aδ) ≥ 1− δ7/2, we only need to show that

P

(
dQ

dP

∣∣∣∣
Fδ5
≥ 1− δ7/2|Aδ

)
≥ 1− δ7/2.

By (3.11),

P

(
dQ

dP

∣∣∣∣
Fδ5
≥ 1− δ7/2|Aδ

)

≥ P

(∣∣∣∣∣
∫ δ5

0

∫
θ(t, x)m(dt, dx) +

1

2

∫ δ5

0

(ut, θ(t, ·)2)dt

∣∣∣∣∣ ≤ δ7/2|Aδ
)
.

By Chebyshev’s inequality,

P

(∣∣∣∣∣
∫ δ5

0

∫
θ(t, x)m(dt, dx) +

1

2

∫ δ5

0

(ut, θ(t, ·)2)dt

∣∣∣∣∣ ≥ δ7/2|Aδ
)

≤ 2

δ7

E
(∫ δ5

0

(ut, θ(t, ·)2)dt|Aδ

)
+ E

(∫ δ5

0

(ut, θ(t, ·)2)dt

)2

|Aδ

 .
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Given Aδ,

u(t, x) ≤
√
δe−(δ

5−t)|x| +

√
3

2πt

∫ 2

−2
e−

3|x−y|2
2t f(y)dy.

By Hölder inequality,

E

(∫ δ5

0

(ut, θ(t, ·)2)dt|Aδ

)

≤ E

∫ (∫ δ5

0

u(t, x)dt

)3

dx|Aδ


≤ 1

4
δ10
∫ ∫ δ5

0

E(u(t, x)3|Aδ)dtdx

≤ 1

4
δ10

{
3δ3/2

∫ ∫ δ5

0

e−3(δ
5−t)|x| +

3
√

3√
2πt

∫ ∫ δ5

0

∫ 2

−2
e−

3|x−y|2
2t f(y)dydtdx

}

≤ 1

2
δ23/2 + 3δ15.

Similarly,

E

(∫ δ5

0

(ut, θ(t, ·)2)dt

)2

|Aδ

 ≤ Cδ23.
Therefore,

P

(∣∣∣∣∣
∫ δ5

0

∫
θ(t, x)m(dt, dx) +

1

2

∫ δ5

0

(ut, θ(t, ·)2)dt

∣∣∣∣∣ ≥ δ7/2|Aδ
)
≤ δ9/2,

and we have the expected result.

The previous result helps to get a lower bound for the total density in a small time
period which is our first desired property.

Corollary 4.12. Let f be the function given as: f(x) = 1 for x ∈ [−r, r] with r ≥ 1,
f(x) = 0 for x ∈ [−r − δ5/2, r + δ5/2]c and f is linear in the other parts, then there exists
constants L1(r) < L2(r) <∞,

P

(
∀x ∈

[
−r − 2δ5/2, r + 2δ5/2

]
, L1δ

5 ≤
∫ δ5

δ5/2

ût(x)dt ≤ L2δ
5

)
> 1− δ7/2,

for all δ > 0 small.

Proof. By Lemma 4.11, we know that out of probability δ7/2,

|ût(x)−Gtf(x)| ≤
√
δ,∀t ∈ [0, δ5].

For any x ∈
[
−r − 2δ5/2, r + 2δ5/2

]
and any t ∈

[
δ5/2, δ5

]
, given that δ is small enough,

Gtf(x) ≥ Gδ5I[−r,r](r + 2δ5/2)

≥ 2L1(r)

for some constant L1(r) > 0. Hence, for any x ∈
[
−r − 2δ5/2, r + 2δ5/2

]
and any t ∈[

δ5/2, δ5
]
,

ût(x) ≥ 2L1.

The upper bound L2δ
5 follows from the same reason as the lower bound.
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In our original percolation model, the edges are not directed. However, it suffices
to show percolation in the related model where the vertical edges are directed upward.
For this we shall build a block argument, reducing the analysis to that of an oriented
percolation model. Here, we keep the notation as in [6]. Let

L0 = {(m,n) ∈ Z×Z+ : m+ n is even}.

L0 is made into a graph by drawing oriented edge from (m,n) to (m − 1, n + 1) or
(m+ 1, n+ 1). Random variables ω(m,n) ∈ {0, 1} are to indicate whether (m,n) is open
(ω(m,n) = 1) or close (ω(m,n) = 0). We say that there is a path from (m,n) to (m′, n′) if
there is a sequence of points xn = m, . . . ,= xn′ = m′ so that |xl − xl−1| = 1 for n < l ≤ n′
and ω(xl, l) = 1 for n ≤ l ≤ n′. Let

C0 = {(m,n) : (0, 0)→ (m,n)}

be the cluster containing the origin.

The following steps are to construct the blocks which are considered as sites in the
renormalized graph, to define when a renormalized site (block) is open and to define
when an edge is open in the renormalized graph. We can then use the comparison
theorem in [6]. The definition of renormalized sites being open demands a more refined
treatment of the approximate density, i.e. one needs to look at a smaller scale, and for
those purposes N−3/10 is adequate.

Definition 4.13. For a closed interval I = [a, b], ξ̂ is said to be (I, δ,N)-good if for the
continuous function f satisfying f(x) = 1 for x ∈ I, f(x) = 0 for x ∈ [a− δ, b+ δ]c and f
is linear in the other parts, ∑

x∈J
ξ̂(x) = bf(iN−3/10)N1/10c,

for any interval J ⊂ I of the form [iN−3/10, (i + 1)N−3/10] but for J ∩ Ic 6= ∅,∑
x∈J ξ̂(x) = 0.

Corollary 4.12 and Lemma 4.11 immediately give the following result for the discrete
horizontal process. In the following argument, we take δ and N so that δ5N2/5 to be an
even number.

Corollary 4.14. There exists δ0 > 0 so that given 1 ≤ r ≤ 2 and 0 < δ < δ0, if ξ̂0 is
([−r, r], δ5/2, N)-good on Z/N6/5, then for N large, outside of probability 5δ7/2, for each
x ∈ [−r − 2δ5/2, r + 2δ5/2], Aξ̂k(x) ≥ L1/2 for each δ5N2/5/2 ≤ k ≤ δ5N2/5.

Definition 4.15. Suppose ξ̂0 is ([a, b], δ5/2, N)-good. Let a [a, b]-subordinated process on
certain horizontal layer {ξ̃k(x)}0≤k≤δ5N2/5 be {ξ̂k(x)}0≤k≤δ5N2/5 killed on [a−1/2, b+1/2]c,
i.e. for 0 ≤ k ≤ δ5N2/5

ξ̃k+1(x) =

{
1 if

∑
j≤k ξ̃j(x) = 0 and

∑
y∈Nk(x) η̃k+1(y, x) ≥ 1

0 otherwise,

where Nk(x) = {y ∼ x : ξ̃k(y) = 1} and η̃k+1(y, x) = 0 if x ∈ [a − 1/2, b + 1/2]c but over
x, y ∈ [a − 1/2, b + 1/2], (η̃k+1(y, x))k,y,x is an i.i.d. sequence of random variables with
distribution Bernoulli(1/(2N)).
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Note that this killing property means that no new particles are generated outside
[a− 1/2, b+ 1/2] and it is to guarantee an independent structure in the renormalization
argument. The [a, b] will not appear when we use the subordinated process since it will
always be clear from the context.

Corollary 4.16. There exists δ0 > 0 so that under the conditions of Corollary 4.14, for
0 < δ < δ0 and N large, outside probability 6δ7/2, for each x ∈ [−r − 2δ5/2, r + 2δ5/2],
Aξ̃k(x) ≥ L1/2 for each δ5N2/5/2 ≤ k ≤ δ5N2/5.

Proof. We suppose {ξ̃n}0≤n≤δ5N2/5 is coupled with a true process {ξ̂n}0≤n≤δ5N2/5 and an

envelope process {ξn}0≤n≤δ5N2/5 . For any starting site z such that ξ̃0(z) = 1, let ξzn be
the envelope process with initial condition I{z}. For any 0 ≤ n ≤ δ5N2/5, we have

ξn(x) =
∑
z

ξzn(x),

where the sum is over the initial condition that is ([−r, r], δ5/2, N)-good. The event{
∃x ∈ [−r − 1/2, r + 1/2] and 0 ≤ k ≤ δ5N2/5 : ξ̃k(x) = 0 but ξ̂k(x) = 1

}
(4.7)

has probability bounded by ∑
z

2P
(
Rzδ5N2/5 ≥ 1/2

)
,

where the sum is over the initial condition that is ([−r, r], δ5/2, N)-good and

Rzn = max
m≤n
{x ∈ Z/N6/5 : ξm(x) 6= 0} − z

is the maximal displacement of ξz at time n. By (ii) of Lemma 4.7 and Kesten’s result
(4.3), we have

P(Rzδ5N2/5 > 1/2) ≤ 4

δ5N2/5
· Caδ5a

for any a > 0. Hence the probability of event (4.7) can be bounded by 8Caδ
5(a−1) and we

can conclude the proof by choosing a > 2.

For our block argument the result above provides many sites at level 1 that are
connected to sites occupied by ξ̂ at level 0. This by itself is insufficient since we require
these (level 1) sites to be ([−r−δ5/2, r+δ5/2], δ5/2, N)-good. The following is an important
step in this direction.

Lemma 4.17. Let ξ̃0 be as in Corollary 4.16 and J be a fixed interval of length N−3/10

in [−r − 2δ5/2, r + 2δ5/2]. Then the event that

min
x∈[−r−2δ5/2,r+2δ5/2]

δ5N2/5∑
k=δ5N2/5/2

Aξ̃k(x) ≥ L1δ
5N2/5/4, (4.8)

but ∑
x∈J

δ5N2/5∑
k=δ5N2/5/2

ξ̃k(x) < L1δ
5
√
N/32,

has probability less than e−cδ
5
√
N for universal c > 0.
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Proof. Let y be the midpoint of J and let

τ = inf

k ≥ δ5N2/5/2 :

k∑
j=δ5N2/5/2

Aξ̃j(y) ≥ L1δ
5N2/5/4

 .

For N large enough the event {τ < δ5N2/5} is contained in event that (4.8) happens.
For the proof we note that for every z within N−1/5 of y (the range of random walk
{Si} starting from y), there are at least N9/10/2 points of J in [z − N−1/5, z + N−1/5]

and so while
∑
x∈J

∑N2/5δ5

k=N2/5δ5/2 ξ̃k(x) < L1δ
5
√
N/4, each such (z, k) pair with ξ̃k(z) = 1

represents a probability

N9/10/2− L1δ
5
√
N/4

2N

of yielding a fresh occupied site for ξ̃ in J at time k + 1. The result now follows

from standard tail bounds of Binomial
(
L1δ

5N3/5

4 , N
9/10/2−δ5

√
N/4

2N

)
(with δ and N suitably

chosen to make L1δ
5N3/5

4 ∈ N).

Let {ξ̃ik}0≤k≤δ5N2/5 be the subordinate process after killing at level i ∈ N, where the
initial configuration will be recursively defined as indicated at the end of Proposition
4.18 and the subordination effect indicated by the corresponding interval where the
configuration is good.

With the same initial condition, {ξ̃ik}0≤k≤δ5N2/5 follows the same distribution on any
vertical level i. We will first discuss how the vertical connections behave between layer
0 and layer 1 as follows. Suppose ξ̃00 is ([−r, r], δ5/2, N)-good. Until δ5N2/5 time steps,
there is a certain amount of sites x’s such that ξ̃0k(x) = 1. The opening probability of
a vertical edge is κN−2/5, in the following proposition, we will show that with large
probability, the open vertical edge 〈(x, 0), (x, 1)〉 can make the initial profile at layer 1 be
([−r − δ5/2, r + δ5/2], δ5/2, N ])-good.

Proposition 4.18. Given 1 ≤ r ≤ 2 and δ < δ0, there exists vertical connection constant
C2, so that for κ > C2 and N large enough, if ξ̃00 is ([−r, r], δ5/2, N)-good on Z/N6/5×{0},
then outside of probability 6δ7/2, on layer 1, ξ̃10 is ([−r − δ5/2, r + δ5/2], δ5/2, N)-good on
Z/N6/5 × {1}. ξ̃10(x) = 1 implies that ξ̃0k(x) = 1 for some k ∈ [δ5N2/5/2, δ5N2/5] and
vertical edge 〈(x, 0), (x, 1)〉 is open.

Proof. By Corollary 4.16 and Lemma 4.17, outside of probability 6δ7/2 (for N large
enough), we have that for every interval J = [iN−3/10, (i + 1)N−3/10) contained in
[−r − 2δ5/2, r + 2δ5/2], we have

∑
x∈J

δ5N2/5∑
k=δ5N2/5/2

ξ̂k(x) ≥ L1δ
5
√
N/32.

We simply require that the vertical connection constant C2 be greater than 64/(L1δ
5).

Then by standard tail bounds of Binomial
(
L1δ

5
√
N/32, 64/(L1δ

5)N−2/5
)

(with δ and

N suitably chosen to make L1δ
5
√
N

32 ∈ N), there exists universal c > 0 so that outside

probability 2e−cN
1/10

N3/5, for every such interval J , the number of x ∈ J so that for some
k ∈ [δ5N2/5/2, δ5N2/5], ξ̃k(x) = 1 and 〈(x, 0), (x, 1)〉 is open is greater than N1/10.

Initially, ξ̃00 is ([−1, 1], δ5/2, N)-good. By Proposition 4.18, with probability 1− 6δ7/2,
ξ̃10 is ([−1 − δ5/2, 1 + δ5/2], δ5/2, N)-good. We can define recursively {ξ̃ik}0≤k≤δ5N2/5 for
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0 ≤ i ≤ δ−5/2 (from here toward the end, we take δ < δ0 and δ−5/2 ∈ N). By FKG
inequality, with probability

(1− 6δ7/2)2δ
−5/2

≥ 1− 12δ,

ξ̃2δ
−5/2

δ5N2/5 is ([−3, 3], δ5/2, N)-good. We then split and only consider the particles in two

intervals [−3,−1] and [1, 3]. We run over two processes {ξ̃ik}0≤k≤δ5N2/5 , 2δ−5/2 ≤ i ≤
4δ−5/2 starting from layer 2δ−5/2 with initial conditions to be ([−3,−1], δ5/2, N)-good

and ([1, 3], δ5/2, N)-good. Recursively, given ξ̃2nδ
−5/2

0 is (2m+ [−1, 1], δ5/2, N)-good, then

outside of probability 12δ, ξ̃2(n+1)δ−5/2

0 is (2(m+ 1) + [−1, 1], δ5/2, N)-good and (2(m− 1) +

[−1, 1], δ5/2, N)-good.

Note that the particles from ξ̃2nδ
−5/2

0 with initial conditions (2(m−1)+[−1, 1], δ5/2, N)-
good and (2(m+ 1) + [−1, 1], δ5/2, N)-good will meet in [−1, 1] + 2m at layer 2(n+ 1)δ−5/2.
We will only inherit the particles with lower m index, i.e. the particles from those with
initial condition (2(m− 1) + [−1, 1], δ5/2, N)-good.

Now we can do the renormalization. The renormalizaed regions are defined as

Rm,n = [−4, 4]× [0, 2δ−5/2] + (2m, 2nδ−5/2)

and

Im = [−1, 1] + 2m.

The renormalized site (m,n) corresponds to the block Rm,n. The random variables
ω(m,n) ∈ {0, 1} is to indicate that the renormalized block (site in the renormalized

graph) is open or close. ω(m,n) = 1 if ξ̃2nδ
−5/2

0 is (2m + [−1, 1], δ5/2, N)-good in Rm,n
and we say that Rm,n is good. The event that ω(m,n) is open or not is measurable with
respect to the graphical representations in Rm,n by the definition of {ξ̃k}0≤k≤δ5N2/5 on
a certain level. For an edge e = 〈(m,n), (m + 1, n + 1)〉 or e = 〈(m,n), (m − 1, n + 1)〉,
denote ψ(e) as the state of the edge. For e = 〈(m,n), (m + 1, n + 1)〉, ψ(e) = 1 if (m,n)

and (m + 1, n + 1) are open sites in the renormalized graph. The definition of ψ(e) for
e = 〈(m,n), (m − 1, n + 1)〉 is similar. Let the probability of an edge being open in the
renormalized graph be P(ψ(e) = 1) = 1− 12δ and P(ψ(e) = 0) = 12δ.

Therefore, the renormalized space is L0 = {(m,n) ∈ Z2 : m+ n is even , n ≥ 0} and
make L0 into a graph G = (V, E) by drawing oriented edges from (m,n) to (m± 1, n+ 1).
The percolation process (ψ(e))e∈E is called d-dependent percolation with density p if for
a sequence of vertices vi = (mi, ni), 1 ≤ i ≤ I with ‖vi − vj‖∞ > d, i 6= j connected by a
sequence of edges ei, 1 ≤ I − 1,

P(ψ(ei) = 0, 1 ≤ i ≤ I − 1) ≤ (1− p)I−1.

Proposition 4.19. The percolation process (ψ(e))e∈E is a 1-dependent oriented percola-
tion with density 1− 12δ.

The initial condition is ω(0, 0) = 1. By using the comparison argument Theorem 4.3
in [6], we have the following result.

Theorem 4.20. If there exists a percolation in the renormalized space L0 just defined,
then there is a percolation in our anisotropic percolation process.

The theorem of existence of percolation for d-dependent oriented percolation (Theo-
rem 4.1 in [6]) shows that if 12δ < 6−4·9, there is a percolation.

Remark 4.21. Figure 2 shows this renormalization construction.
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−1 1
layer 0

layer 2δ−5/2

layer 4δ−5/2

Figure 2: Oriented percolation construction

A Estimations for showing tightness

First, we need some bounds on the distribution function of St. Recall that St =∑t
i=1 Yi, with (Yi) i.i.d. uniformly distributed on {i/N1+α, |i| ≤ N} and p(t, x) is the

transition probability of the standard Brownian motion.

Lemma A.1. There exists m, such that for N ≥ m and any t ∈ N,∣∣∣∣N1+αP(St = y)− p
(

c3t

3N2α
, y

)∣∣∣∣ ≤ CNαt−
3
2 , (A.1)

where c3 is the constant in Section 2.1 that tends to 1 as N →∞.

The proof follows from [17, 3] and the inversion formula of characteristic function
in [7].

Proof. EeiuSt = ρt(u), where ρ(u) = EeiuY .

ρ(u) = EeiuY

=
1

2N

(
N∑
k=1

e
iuk

N1+α + e
−iuk
N1+α

)

=
1

N

(
N∑
k=1

cos

(
uk

N1+α

))

= 1− c3u
2

2! · 3N2α
+

c4u
4

4! · 5N4α
r, |r| ≤ 1

This directly gives that for u ≤ Nα/2,

|ρ(u)| ≤ exp

(
− c3u

2

12N2α

)
,

and for u ≥ Nα/2, |ρ(u)| ≤ 23/24.

Moreover, with the help of Theorem 8.5 of [3], for u ≤ Nα/2,∣∣∣∣ρt(u)− exp

(
− c3tu

2

6N2α

)∣∣∣∣ ≤ Ct−1 exp

(
− c3tu

2

6N2α

)
.
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Follow the inversion formula [7],

N1+αP(St = y) =
1

2π

∫ πN1+α

−πN1+α

eiuyρt(u)du,

p

(
c3t

3N2α
, y

)
=

1

2π

∫
eiuye−

tu2

6N2α du.

The difference satisfies

|N1+αP(St = y)− p
(

c3t

3N2α
, y

)
|

≤ 1

π

∫ ∞
πN1+α

e−
c3tu

2

6N2α du+
1

π

∫ πN1+α

0

|ρt(u)− e−
c3tu

2

6N2α |du

≤ 1

π

∫ ∞
πN1+α

e−
c3tu

2

6N2α du+
1

π

∫ πN1+α

Nα/2

|ρt(u)|+ e−
c3tu

2

6N2α du

+
1

π

∫ Nα/2

0

∣∣∣∣ρt(u)− e−
c3tu

2

6N2α

∣∣∣∣ du
≤ 1

π

∫ ∞
Nα/2

e−
c3tu

2

6N2α du+N1+α

(
23

24

)t
+

1

πt

∫ Nα/2

0

e−
c3tu

2

6N2α du

≤ Ct−1Nαe−
c3t
24 +N1+αe−

t
24 + CNαt−

3
2 .

Therefore, we get the bound∣∣∣∣N1+αP(St = y)− p
(

c3t

3N2α
, y

)∣∣∣∣ ≤ C(N1+αe−
t
24 +Nαt−

3
2 ).

Because of (a) in the next lemma and p(t, x) ≤ t−1/2, we have∣∣∣∣N1+αP(St = y)− p
(

c3t

3N2α
, y

)∣∣∣∣ ≤ CNαt−
3
2 .

With the help of Lemma A.1, we can get the estimations on ψn.

Lemma A.2. We have the following estimates on ψzn:

(a) (ψzk, 1) = 1, ‖ψzk‖0 ≤ CNα,∀k ≥ 0.

(b) (eλ, ψ
z
btN2αc) ≤ C(λ, T )eλ(z) for 0 ≤ t ≤ T .

(c) ‖ψzk‖λ ≤ C(λ)eλ(z)Nαk−
1
2 .

(d) For |x− y| ≤ 1,

‖ψxk − ψ
y
k‖λ ≤ C(λ)e

C(λ)k

N2α eλ(x)
(
|x− y| 12 k− 1

2Nα +N
α
2 k−

3
4

)
.

(e) ‖ψyk − ψ
y
l ‖λ ≤ C(λ)e

C(λ)k

N2α eλ(y)N
α
2

(
|k − l| 12 l− 3

4 + k−
3
4

)
.

Proof. (a)

(ψzt , 1) =
1

N1+α

∑
x

Nα

2
I(x ∼ z) =

1

2N

∑
x

I(x ∼ z) = 1.

The second statement is because P(Xt = y) ≤ c/N for any y.
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(b)

(eλ, ψ
z
t ) =

1

N1+α

∑
x

eλ(x)ψzt (x)

=
∑
x

eλ(x)P(St+1 = x− z)

≤ 2eλ(z)
∑
x

eλxP (St+1 = x)

≤ 2eλ(z)(EeλY )t+1

≤ 2eλ(z)

(
1 +

λ2

3N2α

)t+1

≤ 2eλ(z) exp

(
λ2(t+ 1)

3N2α

)
.

(c) By (A.1) and p(k, y) ≤ Ck−1/2, we have

N1+αP(Sk = y) ≤ C
(
Nαk−

1
2 +Nαk−

3
2

)
,

then,

ψ0
k(y) ≤ C

(
Nα(k + 1)−

1
2 +Nα(k + 1)−

3
2

)
.

Therefore

‖ψzk‖λ ≤ C(λ, T )eλ(z)Nαk−
1
2 .

(d) For |x| ≥ 1,

P(Sk = x) ≤ N−(1+α)P(Sk ≥ |x| − 1)

≤ N−(1+α) exp(−u(|x| − 1))E exp(uXk)

≤ N−(1+α) exp(−u(|x| − 1)) exp

(
u2k

6N2α

)
.

Hence, for |x− z| ≥ 1,

ψxk(z) ≤ exp(−u|x− z|) exp

(
u2k

6N2α

)
.

This gives that for |x− z| ≥ 2,

ψxk(z) + ψyk(z) ≤ exp(−2λ|x− z|) exp

(
2λ2k

3N2α

)
.

From (A.1) and |p(t, x)− p(t, y)| ≤ Ct−1|x− y|, we have

‖ψxk − ψ
y
k‖0 ≤ C

(
|x− y|N2αk−1 +Nαk−

3
2

)
.

So,

‖ψxk − ψ
y
k‖λ ≤ sup

|x−z|<2

C(λ)‖ψxk − ψ
y
k‖0eλ(z)

+ sup
|x−z|≥2

min
(
‖ψxk − ψ

y
k‖0, e

C(λ)k

N2α exp(−2λ|x− z|)
)
eλ(z)

≤ C(λ)e
C(λ)k

N2α eλ(x)
(
‖ψxk − ψ

y
k‖0 + ‖ψxk − ψ

y
k‖

1
2
0

)
≤ C(λ)eC(λ)k/N2α

eλ(x)
(
|x− y| 12 k− 1

2Nα +N
α
2 k−

3
4

)
.
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(e) By using |p(t, y)− p(s, y)| ≤ C|t− s|s−3/2 and (A.1), we have

‖ψyk − ψ
y
l ‖0 ≤ C

(
|k − l|l− 3

2Nα +Nαk−
3
2 +Nαl−

3
2

)
.

Similarly as the argument in (d), we can get

‖ψyk − ψ
y
l ‖λ ≤ C(λ)e

C(λ)k

N2α eλ(y)N
α
2

(
|k − l| 12 l− 3

4 + k−
3
4

)
.

Recall the Burkholder-Davis-Gundy (BDG) inequality for discrete martingale [2]:

E( sup
1≤i≤t

|Mi|p) ≤ C(p)E〈M〉
p
2
t ,

where 〈M〉t =
∑t
k=1Ek−1(d2k), dk = Mk −Mk−1 and 1 < p < ∞. The notation Ek−1(·)

means conditional expectation given Fk−1. We have the following moment estimations.

Lemma A.3. Suppose the initial condition A(ξ0) whose linear interpolation converges in
C to f that is continuous and compact supported, then for T ≥ 0, p ≥ 2, λ > 0

(a) E
(

supk≤btN2αc(ν
N
k , e−λ)p

)
≤ C(λ, p, f, T ).

(b) (νN0 , ψ
z
t )p ≤ C(λ, p, f)eλp(z).

(c) ‖E(Ap(ξbtN2αc))‖−λp ≤ C(λ, p, f, T ) for t ≤ T .

Proof. (a) Plugging φNi = e−λ into (2.6) gives

(νNn , e−λ) = (Aξ0, e−λ) +

n−1∑
i=1

(νNi , N
−2α∆De−λ) +Mn(e−λ).

Since ∆De−λ ≤ C(λ)e−λ, thanks to Hölder inequality, we have

E
(

sup
k≤btN2αc

(νNk , e−λ)p
)

≤ C(λ, p, f) + C(λ, p)E

btN2αc−1∑
i=1

(νNi , N
−2αe−λ)

p

+ C(p)E sup
k≤btN2αc

|Ms(e−λ)|p

≤ C(λ, p, f) + C(λ, p)tp−1N−2α
btN2αc−1∑

k=1

E(νNk , e−λ)p + C(p)E〈M(e−λ)〉
p
2

btN2αc

The square variation in the last term satisfies

〈M(e−λ)〉btN2αc ≤
C(λ)

N2α

btN2αc∑
k=1

(νNk−1, e−2λ)

≤ C(λ)
1

N2α

btN2αc∑
k=1

1 + (νNk−1, e−λ)2.

Use Hölder inequality again, we have
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E
(

sup
k≤btN2αc

(νNk , e−λ)p
)
≤ C(λ, p, f) + C(λ, p)tp−1N−2α

btN2αc−1∑
k=1

E(νNk , e−λ)p

+ C(p, λ)E

 1

N2α

btN2αc∑
k=1

(νNk−1, e−λ)2


p
2

≤ C(λ, p, f) + C(λ, p)T p−1N−2α
btN2αc−1∑

k=1

E(νNk , e−λ)p

+ C(λ, p)T
p
2−1N−2α

btN2αc−1∑
k=1

E(νNk , e−λ)p

s ≤ C(λ, p, f, T ) + C(λ, p, f, T )N−2α
btN2αc−1∑

k=1

E(νNk , e−λ)p

The discrete Gronwall’s lemma concludes part (a)

E
(

sup
k≤btN2αc

(νNk , e−λ)p
)
≤ C(λ, p, f, T ).

(b) Let ψ
z

t (x) = N1+αP(Xt = x − z). Since ψzt (x) = 1
2N

∑
y∼x ψ

z

t (y), (νn, ψ
z
t ) =

(A(ξn), ψ
z

t ). It is directly by using (b) of Lemma A.2 since

(ν0, ψ
z
t )p = (Aξ0, ψ

z

t )
p

≤ ‖A(ξ0)‖p−λ(eλ, ψ
z

t )
p

≤ C(λ, p, f)eλp(z)

(c) By (2.8) and (b),

‖E(Ap(ξbtN2αc))‖−λp ≤ C(λ, p, f, T ) + C(p)‖E|MbtN2αc(ψbtN2αc−·)|p‖−λp.

For the second term above, by BDG inequality,

E
∣∣MbtN2αc(ψbtN2αc−·)

∣∣p
≤ E〈M(ψbtN2αc−·)〉

p
2

btN2αc

≤ E

btN2αc∑
k=1

‖ψbtN2αc−k+1‖
N2α

(Aξk−1, ψbtN2αc−k+1)


p
2

≤ E

btN2αc∑
k=1

|btN2αc − k + 1|− 1
2

Nα
(Aξk−1, ψbtN2αc−k+1)

p/2

(Lemma A.2 (c))

≤ C(p, T )

btN2αc∑
k=1

|btN2αc − k + 1|− 1
2

Nα

(
EA

p
2 (ξk−1), ψbtN2αc−k+1

)
(Lemma A.2 (a))

≤ C(p, T )

btN2αc∑
k=1

|btN2αc − k + 1|− 1
2

Nα
‖EA

p
2 (ξk−1)‖−λp

(
eλp, ψbtN2αc−k+1

)
≤ C(p, T, λ)eλp(z)

btN2αc∑
k=1

|btN2αc − k + 1|− 1
2

Nα
‖EAp(ξk−1) + 1‖−λp (Lemma A.2(b))

≤ C(p, T, λ)eλp(z)

1 +

btN2αc∑
k=1

|btN2αc − k + 1|− 1
2

Nα
‖E(Ap(ξk−1))‖−λp

 .
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This gives that

‖E(Ap(ξbtN2αc))‖−λp ≤ C(λ, p, f, T )

1 +

btN2αc∑
k=1

|btN2αc − k + 1|− 1
2

Nα
‖E(Ap(ξk−1))‖−λp

 .

The discrete Gronwall lemma completes this proof.

References

[1] Athreya, K.B., Ney, P.E.: Branching processes. Dover Publications, 2004. MR-2047480

[2] Beiglböck, M., Siorpaes, P.: Pathwise versions of the Burkholder–Davis–Gundy inequality.
Bernoulli 21, (2015), 360–373. MR-3322322

[3] Bhattacharya, R.N., Rao, R.R.: Normal approximation and asymptotic expansions. Soc. for
Industrial and Appl. Math. (SIAM), Philadelphia, 2010. MR-3396213

[4] Cox, J.T., Durrett, R., Perkins, E.A.: Rescaled voter models converge to super-Brownian
motion. Ann. Probab. 28, (2000), 185–234. MR-1756003

[5] Dawson, D.: Measure-valued Markov processes. École d’été de Probabilités de Saint-Flour
XXI-1991, pp. 1–260. Springer, Berlin, 1993. MR-1242575

[6] Durrett, R.: Ten lectures on particle systems. Lect. on Probab. Theory. (Saint-Flour, 1993),
pp. 97–201. Springer, Berlin, 1995. MR-1383122

[7] Durrett, R.: Probability: theory and examples. Cambridge University Press, 2010. MR-
2722836

[8] Durrett, R., Perkins, E.A.: Rescaled contact processes converge to super-Brownian motion in
two or more dimensions. Probab. Theory Related Fields 114, (1999), 309–399. MR-1705115

[9] Durrett, R., Griffeath, D.: Supercritical contact processes on Z. Ann. Probab. 11, (1983),
1–15. MR-0682796

[10] Ethier, S.N., Kurtz, T.G.: Markov processes: characterization and convergence. John Wiley &
Sons, 2009. MR-0838085

[11] Fontes, L.R., Marchetti, D.H., Merola, I., Presutti, E., Vares, M.E.: Layered systems at the
mean field critical temperature. J. Stat. Phys. 161, (2015), 91–122. MR-3392509

[12] Harris, T.E.: The theory of branching processes. Dover Publications Inc., Mineola, NY, 2002.
MR-1991122

[13] Kallenberg, O.: Foundations of modern probabilties. Springer, New York, 2002. MR-1876169

[14] Kesten, H.: Branching random walk with a critical branching part. J. Theor. Probab. 8, (1995),
921–962. MR-1353560

[15] Lalley, S.P.: Spatial epidemics: critical behavior in one dimension. Probab. Theory Related
Fields 144, (2009), 429–469. MR-2496439

[16] Liggett, T.M.: Interacting particle systems. Springer, New York, 1985. MR-0776231

[17] Mueller, C., Tribe, R.: Stochastic pde’s arising from the long range contact and long range
voter processes. Probab. Theory Related Fields 102, (1995), 519–545. MR-1346264

[18] Shiga, T. Two contrasting properties of solutions for one-dimensional stochastic partial
differential equations, Canad. J. Math. 46, (1994), 415–437. MR-1271224

EJP 25 (2020), paper 129.
Page 44/44

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=2047480
https://mathscinet.ams.org/mathscinet-getitem?mr=3322322
https://mathscinet.ams.org/mathscinet-getitem?mr=3396213
https://mathscinet.ams.org/mathscinet-getitem?mr=1756003
https://mathscinet.ams.org/mathscinet-getitem?mr=1242575
https://mathscinet.ams.org/mathscinet-getitem?mr=1383122
https://mathscinet.ams.org/mathscinet-getitem?mr=2722836
https://mathscinet.ams.org/mathscinet-getitem?mr=2722836
https://mathscinet.ams.org/mathscinet-getitem?mr=1705115
https://mathscinet.ams.org/mathscinet-getitem?mr=0682796
https://mathscinet.ams.org/mathscinet-getitem?mr=0838085
https://mathscinet.ams.org/mathscinet-getitem?mr=3392509
https://mathscinet.ams.org/mathscinet-getitem?mr=1991122
https://mathscinet.ams.org/mathscinet-getitem?mr=1876169
https://mathscinet.ams.org/mathscinet-getitem?mr=1353560
https://mathscinet.ams.org/mathscinet-getitem?mr=2496439
https://mathscinet.ams.org/mathscinet-getitem?mr=0776231
https://mathscinet.ams.org/mathscinet-getitem?mr=1346264
https://mathscinet.ams.org/mathscinet-getitem?mr=1271224
https://doi.org/10.1214/20-EJP533
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	The envelope process
	Martingale problem
	Tightness
	Multiple particles at one site

	The true horizontal process
	Limit behaviour of the rescaled horizontal process
	Girsanov transformation. Proof of the uniqueness in Theorem 3.1

	Existence of percolation
	The case <C1
	The case >C2

	Estimations for showing tightness
	References

