
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Type-Safe Metaprogramming and Compilation
Techniques For Designing Efficient Systems in
High-Level Languages

Lionel Emile Vincent PARREAUX

Thèse n° 10 285

2020

Présentée le 25 novembre 2020

Prof. V. Kuncak, président du jury
Prof. C. Koch, directeur de thèse
Dr F. Pottier, rapporteur
Prof. O. Kiselyov, rapporteur
Prof. M. Odersky, rapporteur

à la Faculté informatique et communications
Laboratoire de théorie et applications d’analyse de données
Programme doctoral en informatique et communications

The reasonable man adapts himself to the world;

the unreasonable one persists in trying to adapt the world to himself.

Therefore all progress depends on the unreasonable man.

— George Bernard Shaw

The limits of my language mean the limits of my world.

— Ludwig Wittgenstein

Acknowledgements
I would first like to thank my thesis supervisor Christoph Koch for his patience and under-

standing, for believing in me from the start and letting me work on what impassioned me most,

and for pushing me to continue my career in academia. Along with Val Tannen, Christoph

helped me navigate the research job market; I would have never secured such opportunities

without his dedicated advice and guidance. I am also grateful to the members of my thesis

committee, and in particular to François Pottier for his incredibly detailed feedback on my

thesis, and to Oleg Kiselyov for his humbling but also illuminating criticism.

I would like to thank the people with whom I had the chance of collaborating during my PhD:

Amir Shaikhha, my office mate, with whom I had many captivating technical conversations,

and who kick-started my research; Antoine Voizard, my long-time friend and long-distance

collaborator; Simon Peyton Jones, who took interest in some of my outlandish ideas, which

are still to come to fruition; Aleksander Boruch-Gruszecki, whose obsession with Common

Lisp continues to defy my understanding; Paolo G. Giarrusso, who regularly enlightened me

with his vast knowledge of programming language research; and Viktor Kunčak, who lured

me into the PhD program in the first place. I would also like to thank the other people who

provided helpful suggestions and feedback on my various paper ideas and drafts, and on the

design of Squid: Samuel Grütter, Vlad Ureche, Georg S. Schmid, Milos Nikolic, Daniel Lupei,

Dmitry Petrashko, Manohar Jonnalagedda, Sandro Stucki, Aggelos Biboudis, Vojin Jovanovic,

Eugene Burmako, and Martin Odersky.

I would like to thank my lab mates for contributing to the great working environment at EPFL:

Sachin, Milos, Aleksandar, Mohammad, Mohammed, Amir, Yannis, Daniel, and Immanuel, as

well as Simone for taking care of the lab.

Last but not least, I would like to thank Ana for providing some stability in my life and for

always pushing me to improve; my father, without whom I would probably not have discovered

my vocation and started an academic career; and my mother for never failing to support me.

Lausanne, November 19, 2020 L. P.

i

Abstract
Software engineering practices have been steadily moving towards higher-level programming

languages and away from lower-level ones. Higher-level languages tend to greatly improve the

safety and maintainability of software systems, because they handle various implementation

details automatically, allowing programmers to focus on their problem domains.

However, the gains offered by higher-level languages are often made at the cost of reduced

performance — these languages usually consume more memory, run more slowly and require

expensive garbage-collecting runtime systems, a trend which has been worsening with the

increasing adoption of functional programming in the industry.

Modern programmers are thus faced with a dilemma: should they favor safety, productivity,

and lower maintenance costs, or should they focus on performance instead?

The central idea behind the present thesis is to solve this dilemma by making simultaneous

advances in type systems, metaprogramming, and compiler technology. In particular, we

study various metaprogramming techniques based on flexible statically-typed quasiquotation,

which enable domain experts to safely define their own domain-specific optimizers and com-

pilers. This way, developers can focus on programming with high-level domain abstractions,

while having these abstractions optimized and compiled away automatically.

We present the design and implementation of Squid, a metaprogramming framework which

augments the Scala programming language with novel multi-staged programming capabilities.

Along with Squid, we present several application examples, including a polymorphic yet

efficient library for linear algebra, a stream fusion engine which improves on the state of the

art, a demonstration of query compilation by rewriting, a multi-stage SQL database system

prototype, and two embedded Scala domain-specific languages to express, optimize, and

compile language-integrated queries.

iii

Résumé
Les pratiques du génie logiciel s’orientent progressivement vers les langages de program-

mation de haut niveau, et s’éloignent des langages de plus bas niveau. Les langages de haut

niveau ont tendance à améliorer considérablement la sécurité et la maintenabilité des sys-

tèmes logiciels, car ils traitent automatiquement les différents détails d’implémentation, ce

qui permet aux programmeurs de se concentrer sur leurs domaines d’application.

Cependant, les gains offerts par les langages de haut niveau sont souvent réalisés au prix d’une

réduction des performances — ces langages consomment généralement plus de mémoire,

fonctionnent plus lentement et nécessitent des systèmes d’exécution coûteux nécessitant des

ramasse-miettes, une tendance qui s’est aggravée avec l’adoption croissante de la program-

mation fonctionnelle en entreprise.

Les programmeurs modernes sont donc confrontés à un dilemme : doivent-ils privilégier la

sécurité, la productivité et la réduction des coûts de maintenance, ou doivent-ils plutôt se

concentrer sur les performances ?

L’idée centrale de cette thèse est de résoudre ce dilemme en faisant des progrès simulta-

nés dans les systèmes de types, la métaprogrammation et la technologie des compilateurs.

En particulier, nous étudions diverses techniques de métaprogrammation basées sur une

quasiquotation flexible et statiquement typée, qui permettent aux experts du domaine de

définir en toute sécurité leurs propres optimiseurs et compilateurs spécifiques au domaine. De

cette façon, les développeurs peuvent se concentrer sur la programmation avec des abstrac-

tions de haut niveau, tout en étant assuré que ces abstractions sont optimisées et compilées

automatiquement.

Nous présentons la conception et l’implémentation de Squid, un framework de métapro-

grammation qui augmente le langage de programmation Scala avec de nouvelles capacités

de programmation dite multi-étapes (multi-stage programming). En plus de Squid, nous

présentons plusieurs exemples d’application, y compris une bibliothèque polymorphe mais

efficace pour l’algèbre linéaire, un moteur de fusion de flux qui améliore l’état de l’art, une

démonstration de compilation de requêtes par réécriture, un prototype de système de base

de données SQL multi-étapes, et deux langages intégrés à Scala pour exprimer, optimiser et

compiler des requêtes intégrées au langage.

v

Contents
Acknowledgements i

Abstract (English/Français) iii

Introduction 1

1 Statically-Typed Code Manipulation with Analytic Quasiquotes 13

1.1 Introduction . 14

1.1.1 Basics of Quasiquotation . 14

1.1.2 Analytic Quasiquotes . 15

1.1.3 Statically-Typed Quasiquotes . 15

1.1.4 Quasiquotes in Various Languages . 16

1.1.5 Best of Both Worlds . 16

1.2 Expressing Code Manipulation . 17

1.2.1 Explicit Approaches . 19

1.2.2 Existing Scala Quasiquotes . 23

1.2.3 Limitations of Scala Reflection Quasiquotes 25

1.3 Code Manipulation with Squid Quasiquotes . 28

1.3.1 Basics of Squid Quasiquotes . 28

1.3.2 Pattern Matching and Rewriting . 29

1.3.3 Type Representation Implicits . 29

1.3.4 Matching and Extracting Unknown Types 30

1.3.5 Nonlinear Pattern Variables . 33

1.3.6 Cross-Quotation References . 33

1.3.7 Cross-Stage References and Cross-Stage Persistence 33

1.3.8 Runtime Compilation and Cross-Stage Persistence 34

1.3.9 Automatic Function Lifting and Unlifting 35

1.3.10 Higher-Order Pattern Variables . 35

1.3.11 Code Combinators . 36

1.3.12 Call-By-Name Reduction Example . 36

1.4 Safety Properties of Squid Quasiquotes . 38

1.4.1 Hygiene . 38

1.4.2 Scope Safety . 39

1.4.3 Type Safety . 39

vii

Contents

1.4.4 GADT Reasoning . 39

1.4.5 Pattern Matching Exhaustiveness . 40

1.4.6 Safety of Rewriting . 40

1.5 Example: A Quoted ANF Conversion . 41

1.6 Type-Safe & Hygienic Macros for Scala . 44

1.7 Related Work . 44

1.7.1 Existing Quasiquotation Systems . 44

1.7.2 Unification of Runtime and Compile-time Metaprogramming 46

1.7.3 Type-Safe Code Manipulation . 47

1.7.4 Program Transformation . 47

2 Application: A Polymorphic Yet Efficient Linear Algebra Library 49

2.1 Introduction . 49

2.2 Motivation . 51

2.3 PILATUS Design . 53

2.3.1 Tagless Final . 53

2.3.2 Semi-Ring and Ring . 55

2.3.3 Module . 56

2.3.4 Linear Map . 57

2.3.5 Pull Array and Control-Flow Constructs . 58

2.4 Matrix Algebra . 59

2.4.1 Vector: Module + Pull Array . 59

2.4.2 Matrix: Linear Map + Vector . 60

2.4.3 Putting It All Together . 61

2.5 Interpreted Languages . 62

2.5.1 Standard Matrix Algebra . 62

2.5.2 Graph DSL for Reachability and Shortest Path 64

2.5.3 Probabilistic Linear Algebra Language . 66

2.5.4 Differentiable Linear Algebra DSL . 69

2.6 Staging and Optimisation . 71

2.6.1 Augmented Multi-Stage Programming . 71

2.6.2 Staging PILATUS . 71

2.6.3 Staged Representation Optimisations . 73

2.6.4 Algebraic Optimisations . 73

2.6.5 Fixed-Size Matrix DSL . 75

2.6.6 Fused DSL . 76

2.7 Evaluation . 77

2.8 Related Work . 78

2.8.1 Linear Algebra Languages and Libraries . 78

2.8.2 Deforestation and Array Fusion . 78

2.8.3 Automatic Differentiation and Differentiable Programming 79

2.8.4 Probabilistic Programming . 79

viii

Contents

2.9 Conclusions . 80

3 The Modular Implementation of Squid 81

3.1 Introduction . 81

3.2 The Intermediate Representation Base . 82

3.3 Closed Worlds . 83

3.4 Language Virtualization . 84

3.5 Open Worlds . 85

3.6 Support for IR Manipulation . 85

3.7 Intermediate Representation Reinterpretation . 87

3.8 One Interface to Rule Them All . 87

3.9 Implementation of Squid Quasiquotes in Scala 89

3.9.1 Compilation of Squid Quasiquotes . 89

3.9.2 Cross-Quotation References . 91

3.9.3 Required Properties of the Macro System 93

3.9.4 Use of Runtime Reflection and Metaprogramming 93

3.10 Related Work . 94

3.10.1 Quasiquotes for Domain-Specific Languages 94

4 Optimizing High-Level Libraries with Quoted Staged Rewriting 97

4.1 Introduction . 98

4.1.1 Staging and Extensible Compilers . 98

4.1.2 User-Defined Rewriting . 99

4.1.3 Quoted Staged Rewriting . 100

4.2 Multi-Stage Programming Limitations Exemplified 101

4.2.1 Staging the Power Function . 101

4.2.2 New Optimization Opportunity . 101

4.2.3 Limitations of Staging . 103

4.3 Quoted Staged Rewriting . 105

4.3.1 Rewriting Math.pow . 105

4.3.2 Extending the Rewriting . 106

4.3.3 Hybrid Approaches and Online Rewriting 107

4.3.4 Guarantees and Control . 107

4.3.5 Modularity of Rewritings . 108

4.3.6 Composing Uses of QSR Libraries . 109

4.3.7 Optimizing Existing Libraries . 109

4.4 Enabling Quoted Staged Rewriting . 110

4.4.1 Effect-Sensitive A-Normal Form (ANF) . 110

4.4.2 Effect System . 111

4.4.3 Scalability of Code Pattern Matching . 111

5 Application: A New Approach to Stream Fusion 113

5.1 Previous Approaches . 113

ix

Contents

5.2 Stream Fusion by CPS and Inlining . 114

5.3 The Problem with flatMap . 117

5.4 Enabling More Fusion by QSR . 119

5.5 Correctness of the Stream Fusion Scheme . 122

5.6 Extensibility of Optimizations . 123

5.7 When Everything Else Fails — Fusing flatMap the Hard Way 124

5.8 Evaluation . 127

5.8.1 Performance . 127

5.8.2 Productivity . 128

5.9 Conclusion . 129

6 Improved Safety and Expressivity for Analytic Metaprogramming 131

6.1 Introduction . 132

6.1.1 Motivating Example . 132

6.1.2 Limitations of Higher-Order Abstract Syntax 133

6.1.3 Non-lexically-scoped Open Code Manipulation 133

6.1.4 Early Example of Rewriting . 134

6.2 Presentation of Contextual Squid . 135

6.2.1 Handling of Open Code in Contextual Squid 135

6.2.2 Rewrite Rules and Polymorphism . 137

6.2.3 Fixed Point Rewritings . 138

6.2.4 Free Variables and Substitution . 139

6.2.5 Speculative Rewrite Rules . 139

6.2.6 Motivating Example: Array of Tuples Optimization 139

6.3 Formalization of the Core Language . 142

6.3.1 Syntax . 142

6.3.2 Type System . 145

6.3.3 Operational Semantics . 147

6.3.4 Soundness of λ{} . 152

6.4 Implementation in Scala . 159

6.5 Application: Query Compilation By Rewriting . 161

6.5.1 Systems as multi-level DSLs . 161

6.5.2 Schema Specialization . 162

6.5.3 Row-to-Column Store Transformer . 163

6.6 Related Work . 164

6.7 Conclusion . 166

7 Hygienic Scope Polymorphism 167

7.1 Introduction . 168

7.2 Metaprogramming Hygiene Beyond Macros . 172

7.2.1 Hygiene Via the Type System . 173

7.2.2 Naive Interpretation of Context Polymorphism 174

7.3 A Negative Result: No Hygiene With Plain Names 176

x

Contents

7.3.1 Core Problem . 176

7.3.2 Reified Context Parameters . 177

7.3.3 Reified Weakening . 178

7.3.4 Context Evidence Opacity and Transparency 180

7.3.5 A Problematic Program . 181

7.4 Hygiene Via Affine First-Class Bindings in λ[α] . 182

7.4.1 First-Class Bindings in Squid . 182

7.4.2 Presentation of λ[α] . 184

7.4.3 Soundness . 190

7.4.4 Straightforward Extensions . 190

7.5 Implementation in Squid . 191

7.6 Example Applications . 193

7.6.1 Bindings reversal . 193

7.6.2 Encoding Cross-Stage Persistence for a Staged Database 194

7.6.3 A safer take on flatMap streamlining . 195

7.7 Related Work . 197

8 Multi-Stage Programming in the Large with Staged Classes 199

8.1 Introduction . 199

8.2 Presentation of Staged Classes . 202

8.2.1 Classes in Scala . 202

8.2.2 The Vector Class, Staged . 203

8.2.3 Staged Class Instantiation . 204

8.2.4 Generative Programming to Avoid Repetition 206

8.2.5 Generalizing the Vector Arity . 206

8.2.6 Generalizing the Element Type . 207

8.2.7 Direct and Staged Inheritance . 209

8.2.8 Staged Class Caching . 210

8.2.9 Generic Methods . 210

8.2.10 Putting It All Together . 211

8.3 Use Case: Typed Type Providers . 211

8.3.1 An Embedded DSL for Record Type Providers 213

8.3.2 Implementing the Type Provider DSL . 214

8.3.3 Type Provision From Data Samples . 216

8.3.4 Evaluation . 217

8.4 Related Work . 218

8.5 Conclusion . 220

9 Application: A Staged Database Compiler 221

9.1 Motivation . 221

9.2 Architecture of the Staged Database System . 222

9.2.1 Specialized Container Classes . 223

9.2.2 Column Store Meta-Container Class . 223

xi

Contents

9.2.3 Loading and Emitting Data Efficiently . 225

9.3 Compiling Queries On The Fly . 226

9.3.1 An Additional Stage for Compiling Queries 227

9.4 An Embedded DSL for Data Definitions and Queries 229

9.4.1 Shallow DSL . 230

9.4.2 Internal Representation of the Database 233

9.4.3 Query Representation . 234

9.4.4 Query Lifting . 237

9.5 Basic Optimization and Planning for Queries . 239

9.5.1 Query Rewriting . 239

9.5.2 Query Plans . 240

9.5.3 Query Planning . 243

9.6 Evaluation . 247

9.6.1 Related Work . 248

9.7 Conclusion . 249

10 Comprehending Monoids with Class 251

10.1 Background on Comprehension . 251

10.1.1 Origins . 251

10.2 Comprehension for Queries . 252

10.3 Why Monoid Comprehension? . 253

10.3.1 Semantics of List and Monad comprehension 253

10.3.2 Embedding Monoid comprehension in Haskell 254

10.3.3 Semantics of Monoid comprehension . 254

10.3.4 Encoding . 255

10.3.5 Space Efficiency . 256

10.4 SQL-style Grouping and Ordering . 256

10.4.1 Grouping in monad comprehension . 257

10.4.2 Grouping in monoid comprehension . 258

10.4.3 Performance of grouping . 258

10.4.4 Generality of grouping . 259

10.4.5 Ordering . 260

10.5 Conclusions on Monoid Comprehension in Haskell 261

10.6 Generalized Monoid Comprehension in Scala . 261

10.6.1 The Full Monoid Comprehension Calculus 262

10.6.2 Semigroups and Canonical Monoids . 262

10.6.3 Heterogeneous Collection Types . 263

10.7 Optimizing Monoid Comprehension Queries with Squid 264

10.7.1 Motivating Example . 264

10.7.2 Optimization Approach . 265

10.7.3 Deeply Embedding Monoid Comprehensions 266

10.7.4 Query Rewriting and Planning . 267

xii

Contents

Conclusions and Future Work 269

A Improved GADT Reasoning in Scala 271

A.1 Introduction . 272

A.2 Closed GADTs in Core Scala and DOT . 273

A.2.1 Encoding of ADTs and Pattern Matching 274

A.2.2 GADTs and Object-Oriented Languages . 274

A.2.3 Existential types and Subtyping Proofs . 275

A.2.4 Closed GADT Encoding in Scala . 275

A.2.5 Core Scala and DOT . 277

A.2.6 Closed GADT Encoding in Core Scala . 277

A.2.7 Summary . 279

A.3 Open GADTs . 279

A.3.1 Class Instance Matching . 279

A.3.2 Understanding an Old Paradox . 280

A.3.3 Solution: Invariant Inheritance . 281

A.3.4 Type Parameters as Members . 281

A.4 Further Work on GADTs in Scala . 283

A.5 Conclusion . 283

B Complete Encoding of GADT in pDOT 285

C Organization of the Streams Optimizer 289

D Code of the Microbenchmarks 291

Bibliography 299

Curriculum Vitae 323

xiii

Introduction

Software engineering practices have been steadily moving towards higher-level programming

languages and away from lower-level ones. Higher-level languages tend to greatly improve

the safety, productivity, and maintainability of software systems, because they handle vari-

ous implementation details automatically, allowing programmers to focus on their problem

domains.

However, the gains offered by higher-level languages are often made at the cost of reduced

performance — these languages usually consume more memory, run more slowly and require

expensive garbage-collecting runtime systems. Today, we run JavaScript on smart watches,

reducing their battery lives, and we have machines in data centers churn through gigabytes of

heap-allocated objects, wasting energy. This trend has been worsening with the increasing

adoption of functional programming in the industry, resulting in beautifully-maintainable

codebases which run with suboptimal performance characteristics.

Modern programmers are thus faced with a dilemma: should they favor productivity and

lower maintenance costs, or should they focus on performance instead?

The main idea behind my thesis is that we can help solve this dilemma by making simultaneous

advances in type systems, metaprogramming, and compilers technology.

Research Problem

Programming abstractions are one of the main culprits for the inefficiency of high-level

programming languages. Layers of abstractions help modularize and encapsulate program

components, but they tend to introduce some costs at run time, and to make analyzing and

optimizing programs much harder for compilers and runtime systems.

Removing abstractions automatically

On the other hand, high-level programs can often be made as efficient as lower-level ones

if we have the tools to remove these high-level abstractions, lowering them into specialized

constructs which contain fewer indirections, exhibit more controlled memory allocations, and

do not get in the way of compiler optimizations.

1

Introduction

Moreover, by removing abstractions automatically from user programs, one can retain the

safety and maintainability of writing high-level code, but without paying for it at runtime.

However, removing abstractions automatically is no easy feat; previous experience in the

field has shown that fully-automatic and general solutions are intractable and do not scale.

Best-effort approaches to general-purpose compiler optimization usually fall short — they are

far from unlocking the level of performance that could be obtained from comparable low-level

code written by expert programmers. Cohen et al. [2006] and many others made this observa-

tion more than a decade ago; yet, despite impressive progress in compilation techniques for

various specific domain, the general situation has remained essentially unchanged to this day.

In other words, the proverbial “sufficiently-smart compiler,” which would be able to automati-

cally remove all overhead introduced by code abstractions, does not exist.1

Tradeoffs in abstraction removal

Therefore, if we want to write high-level programs with the performance characteristics of

lower-level approaches, we need to compromise either on full automation or on full generality,

if not both. For instance, we may require users to explicitly guide the compiler towards efficient

implementation strategies, or we may have them use restricted sublanguage in which more

assumptions can be made, to be leveraged by specialized optimizers.

Importantly, these compromises do not stand in the way of our original vision, as long as they

do not jeopardize the safety and modularity of software artifacts, as well as the productivity

of developers — the goal is to retain most of the advantages of high-level languages while

favoring approaches that allow for more efficient compilation and execution. The modularity

aspect is key here: it would be highly unsatisfactory if, for example, user-specified optimization

strategies silently broke down when the code is refactored and modularized (as is true of many

existing approaches based on optimization hints for the compiler).

Research Approach

In the present thesis, we focus on approaches which let programmers safely define their own

specialized optimizers and compilation strategies, to apply on their high-level domain-specific

languages (DSL) and libraries.

The typical intended workflow is that performance experts (called DSL designers) define

domain-specific languages and libraries together with strategies for optimizing and compiling

them efficiently, and DSL users (who need not have the same technical knowledge as DSL

1The nonexistence of such a universal optimizer for a general-purpose programming language is in fact easily
derived from Rice’s theorem. One could argue that most of the desired optimization could still be achieved with the
help of heuristics; in practice however, optimizers quickly run into limitations due to the algorithmic complexity
of analyzing programs precisely, the loss of precision often resulting in big losses in optimization opportunities.

2

Introduction

designers) can then write efficient programs based on these abstractions. We are in particular

interested in approaches which retain the advantages of high-level languages, including safety

and productivity, not only for DSL users but also for DSL designers.

The task of DSL designers requires writing programs which manipulate other programs, an

activity known as metaprogramming. To permit expressive metaprogramming techniques

without compromising the safety and modularity of software systems, we explore different

type systems which ensure that metaprograms are well-behaved.

Moreover, non-trivial program optimizations are greatly facilitated and made practical by

using advanced intermediate representations of programs; therefore, we also explore ways in

which we can reconcile type-safe metaprogramming with the compiler technology to enable

such representations.

The research literature on these different techniques has a long and rich history, of which we

attempt to make a (necessarily incomplete) summary in the next section.

High-Level Background

Abstractions and Metaprogramming. The idea of removing the overhead of abstractions

using metaprogramming techniques is an old one. It dates back at least to the work of

Ken Kennedy, who coined the phrase “abstraction without guilt” – which later morphed into

“abstraction without regret” [Rompf et al., 2014, Koch, 2014]. A novelty of the present thesis is to

focus on enhancing at the same time the safety and expressiveness of such metaprogramming

techniques, whereas previous approaches were often lacking in either category, as we shall

discuss later.

Embedded domain-specific languages (EDSL). An EDSL is a domain-specific language which

is defined using the constructs of an existing language — the so-called host language [Hudak,

1996]. This approach has seen some success in expressive languages with a flexible syntax

such as Haskell [Axelsson et al., 2010, Najd et al., 2016, Hudak, 1996] and Scala [Rompf and

Odersky, 2010, Lee et al., 2011, Ofenbeck et al., 2013]. The main advantage of EDSLs is that

they can reuse the facilities of the host language [Oliveira et al., 2009], such as its parser, type

system, integrated development environments, etc.

In the context of embedded domain-specific languages, program optimizations may be classi-

fied into two categories: generic, and domain-specific.

Generic optimizations. These optimizations operate on the basic constructs of the host lan-

guage, and often work directly with specialized intermediate representation for that language.

Examples of such optimizations are inlining [Chang and Hwu, 1989], common-subexpression

elimination [Rosen et al., 1988], and dead-code elimination [Knoop et al., 1994].

3

Introduction

Domain-specific optimizations. These optimizations operate on the level of specific DSL

constructs defined within the host language (as opposed to language constructs themselves).

They work by transforming certain code patterns into patterns expected to be more efficient,

relying on domain-specific knowledge that generic optimizers do not necessarily have access

to [Oliveira et al., 2009, Mernik, 2012]. Examples of such optimizations are data representation

specializations [Ureche et al., 2015, Mernik, 2012] and list fusion [Gill et al., 1993].

Applying domain-specific optimizations is often crucial to the performance of DSLs. For

example, DSLs for digital signal processing, image processing, and numerical computing like

Feldspar [Axelsson et al., 2010], Spiral [Puschel et al., 2005], Halide [Ragan-Kelley et al., 2013],

and Liszt [DeVito et al., 2011] rely on this type of very specific optimizations.

Compilers for general-purpose languages are usually limited to generic optimizations and

do not provide facilities for programmers to add their own domain-specific ones, with a few

exceptions (see rewrite rules below).

Deep EDSLs. Approaches to EDSL optimization have relied on deeply embedding EDSLs [Jo-

vanovic et al., 2014]. This means that DSL constructs defined in the host language no longer

evaluate their result directly, but instead create an intermediate representation of the DSL

program, which can be optimized and partially evaluated, and in a later phase compiled and

executed. Several approaches have been used to simplify the use of EDSLs. For example,

type-based embedding [Rompf, 2016], as employed in Scala by Delite [Lee et al., 2011] and

LMS [Rompf and Odersky, 2010], or in Haskell by Feldspar [Axelsson et al., 2010] and others.

Program generation. Program generation is almost as old as the discipline of programming

itself, dating back to the days of Lisp and PL/I. It is ubiquitous in software engineering, and is

often used for improving the performance of software systems. C++ templates [Vandevoorde

and Josuttis, 2002], Lisp macros [Kohlbecker et al., 1986], and Template Haskell [Sheard

and Jones, 2002] are example techniques for generating programs. The so-called generative

programming approach has long been a staple of high-performance computing [Cohen

et al., 2006], for instance with active libraries [Veldhuizen and Gannon, 1998] and telescoping

languages [Chauhan and Kennedy, 2001].

Partial Evaluation. The goal of partial evaluation [Jones et al., 1993] is to evaluate in advance

the parts of a program that are known statically, resulting in the generation of a “residual”

program to compute the remaining dynamic parts. The residual program will usually execute

faster than the original program, since it has less work to do. Online partial evaluation detects

the static parts of programs on the fly, as they arise from previous transformations, while

offline partial evaluation relies on a separate “binding-time analysis” pass which has to makes

conservative assumptions. Although the offline approach is less powerful, it is easier to

implement and use in practice — this is especially true for more advanced applications, such

as the so-called Futamura projections [Futamura, 1999]. There are three Futamura projections:

the first projection consists in compiling a given program by specializing an interpreter for

4

Introduction

that program; the second projection builds a compiler by specializing the specializer for

the interpreter; finally, the third projection builds a compiler compiler by specializing the

specializer... for itself. (Despite sounding crazy, this makes perfect sense.)

Multi-stage programming. Multi-stage programming (MSP) or just staging [Taha and Sheard,

1997] is a technique for specializing programs in a type-safe and modular way, using the

full abstraction capabilities of a general-purpose host language. MSP lets programmers

syntactically distinguish multiple stages of execution in their programs. At each intermediate

stage, the program computes away what is known at this stage, and generates a new residual

program meant to execute the next stage. The ultimate stage performs the task of the unstaged

program, but in a more efficient way. MSP is a form of offline partial evaluation, with explicit

annotations for binding-time analysis. It was introduced as a reaction to the unpredictability of

original partial evaluation techniques (mentioned in the previous paragraph). In essence, MSP

is used to define program generators that work by composing program fragments together in a

type-safe way. MSP frameworks were developed for various programming languages, such as

ML [Taha and Nielsen, 2003, Taha and Sheard, 1997, Taha, 1999], OCaml [Calcagno et al., 2003,

Kiselyov, 2014], Scala [Rompf and Odersky, 2010, Rompf et al., 2013, Parreaux et al., 2017c,a],

Haskell [Mainland, 2012], and even Java [Westbrook et al., 2010].

Extensible Compilers. Techniques inspired by MSP have been used to facilitate the defini-

tion of extensible compilers for performance-oriented DSLs and heterogeneous target plat-

forms [Lee et al., 2011, DeVito et al., 2013, Puschel et al., 2005, Ofenbeck et al., 2013, Axelsson

et al., 2010]. Generally speaking, these compilers reuse the frontend capabilities of their host

(syntax and type system) but they convert programs into their own domain-specific interme-

diate representation (IR) which can be extended by DSL designers for custom optimization

and compilation capabilities.

Quasiquotes. Pioneered in Lisp [Bawden, 1999] and later picked up for supporting MSP,

quasiquotes are a convenient way of manipulating program fragments using the concrete

syntax of the manipulated language. Quasiquotes act like quoted code templates that offer

a way for program fragments to be composed (put together to form bigger programs) and

decomposed (inspected and broken down into smaller parts).

Macros. Languages like Lisp, Scala [Shabalin et al., 2013], and Haskell [Sheard and Jones, 2002]

provide macros, a way to have fragments of code execute at compilation time, manipulating the

AST representations of user programs. Macro systems often rely on quasiquotes to make this

process easier [Bawden, 1999]. More primitive macro systems, based on textual manipulation

of the program’s source code (so-called macro preprocessors), date back to the 1960s, in the

context of languages like PL/I and C.

Inlining. Inlining [Chang and Hwu, 1989], copies the bodies of functions into their call sites, in

order to optimize them with their surrounding environments. While instrumental in exposing

5

Introduction

optimization opportunities [Leißa et al., 2015], inlining has to be performed carefully to

avoid making it counter-productive. Indeed, not only can excessive inlining lead to code size

explosion, but it can also lead to high-level optimization opportunities being missed, when

these optimizations rely on detecting library usage patterns which could not be recovered

easily from the inlining of their internal implementations. This is especially important for

domain-specific optimizations expressed using rewrite rules.

Rewrite Rules. Rewrite rules like these of the Glasgow Haskell Compiler (GHC) [Peyton Jones

et al., 2001] allow library authors to specify domain-specific optimizations like stream fusion

[Coutts et al., 2007]. They have proven powerful but also brittle, as they are completely at

the mercy of the compiler’s inlining heuristics, which do not always expose enough rewriting

opportunities.

Supercompilation and distillation. The goal of these techniques [Turchin, 1996, Bolingbroke

and Peyton Jones, 2010, Sørensen and Glück, 1995, Hamilton, 2007] is to optimize recursive

programs by aggressive inlining steps (called driving) and generalization/folding steps. These

techniques often generate lots of code duplication (sometimes prohibitively so), and they

have not yet found their way into mainstream applications.

Normalizing intermediate representations (IR). Many IRs have been proposed for simplify-

ing data-flow analysis and program optimization, such as SSA [Rosen et al., 1988], CPS [Appel,

1992, Kennedy, 2007], ANF [Flanagan et al., 1993], VSGD [Stanier, 2012, Reißmann, 2012], and

the sea-of-IR-nodes [Click and Paleczny, 1995]. These IRs are crucial for detecting optimiza-

tion opportunities and applying them effectively and efficiently in user programs, as working

with plain abstract-syntax trees quickly becomes too limiting. In the context of functional

programming language compilers, ANF-based and CPS-based IRs have traditionally been

favored. There has been some contention in the community [Appel, 1992, Kennedy, 2007,

Flanagan et al., 1993, Maurer et al., 2017] on whether ANF is sufficient to reap the advantages

of the more complex CPS representation, and it seems like the debate is still ongoing.

We will review more specific background and related work within each chapter of the thesis,

as the need arises.

Research Questions

The principal research question we aim to answer are the following:

• How to design expressive metaprogramming constructs to describe domain-specific

optimizations of high-level programs in a safe way?

• How to make these metaprogramming constructs extensible and able to leverage exist-

ing compiler technology, like advanced intermediate representations?

6

Introduction

ADT algebraic data type
ANF A-normal form
AST abstract syntax tree
CPS continuation-passing style
CSE common subexpression elimination
DCE dead code elimination
DSL domain-specific languages

EDSL embedded domain-specific languages
GADT generalized algebraic data type
HOAS higher-order abstract syntax

IGR incremental graph reduction
IR intermediate representation

LHS left-hand side
MSP multi-stage programming

PHOAS parametric HOAS
QQ quasiquote
QSR quoted staged rewriting
RHS right-hand side

redex reducible expression

Table 1 – common abbreviations and shorthands used throughout the thesis.

• How to integrate such design into an existing programming language like Scala, lever-

aging its advanced type and macro systems, and avoiding extensive changes to its

compilation process?

• How to extend the multi-stage programming (MSP) paradigm to make it applicable to

more real-world use cases, taking it beyond its current niches?

• What does the design of efficient systems based on these approaches look like, and how

to solve the challenges which arise from it in practice?

Preliminaries

Before explaining the contributions of this thesis, let us first go through a few preliminaries.

Terminology

Table 1 lists some common abbreviations and shorthands used throughout the thesis.

7

Introduction

Static Types for Metaprogramming

In this thesis, we tackle the problem of statically typing metaprograms: programs that con-

struct, deconstruct, rewrite and evaluate other programs. The famous motto of static typing

coined by Milner [1978], Well-typed programs cannot “go wrong”, which means that types

prevent the occurrence of runtime errors, can be adapted to our specific setting:

Well-typed metaprograms cannot “go wrong!”

In particular, well-typed metaprograms should not run into type mismatches and unbound

variable errors at runtime, which could arise from erroneous uses of code manipulation

constructs. This is what we mean when we refer to the safety of our metaprogramming

primitives.

The Scala Language

Scala was originally a research language developed by Martin Odersky and his team at EPFL,

but it has since become an important language in both research and industry. Scala has

gained a significant and diverse user base, making it one of the most successful functional

programming languages to date.

Most of the ideas and designs presented in this thesis are general and broadly applicable.

However, we focus on examples using the Scala programming language (we also use some

Haskell for illustration purposes in Chapter 10). Although we make a point of explaining every

nonstandard feature of the language, some familiarity with Scala will likely help the reader

understand our examples in their finest detail.

Scala Reflection Macros

Since its version 2.10, Scala has offered experimental support for an advanced macro system

[Burmako, 2013] based on the so-called Scala Reflection API [Burmako, 2017a]. Scala’s macro

system is atypical in that it expands macro invocations during the elaboration phase of the

type checker, so that Scala macros can influence the processes of type inference and type

checking. This can be used to extend Scala’s type system, providing much more power than

the more common syntactic approaches to macro expansion.

Despite their experimental nature and their lack of stability, Scala macros have been adopted

by large swathes of the ecosystem, and libraries built using Scala macros have become essential

parts of the Scala landscape.

8

Introduction

The Squid Framework

The main software artifact developed during my PhD is the Squid type-safe metaprogramming

and extensible compilation framework, implemented as a macro-based extension to the Scala

programming language. “Squid” stands for the approximate contraction of Scala quoted DSLs.

The framework is open source and available online.2

Squid has already seen a number of users, including students from several universities. It

was also used by my former colleague Amir Shaikhha, currently a lecturer at the University of

Oxford, which resulted in the collaborative work presented in Chapter 2.

Dotty and Scala 3

Dotty is the name of the next-generation Scala compiler, which is being developed by Martin

Ordersky and his team at EPFL. This compiler embodies the upcoming version 3 of the

language, and is slated to replace the old Scala 2 compiler in the near future.

One of the most difficult aspects of porting existing Scala code to Dotty is that the old Scala

macro facilities, which had always been experimental, are no longer available in Dotty. This

decision was made because the old macro facilities were too unprincipled and were tied to

the internals of the old Scala compiler. Consequently, considerable efforts have gone into

designing a new macro system which can support the most important usages of existing Scala

macros in the wild, while fixing their limitations.

After the publication of Squid, which featured the first quotation-based MSP system for Scala,

similar MSP capabilities were added to Dotty to support the macro redesign [Stucki et al., 2018].

Moreover, several unique innovations of Squid, such as statically-typed analytic quasiquotes,

have already made their way into Dotty’s new metaprogramming system.

Main Contributions

The main contributions of this thesis are the following:

• I present the design and implementation of Squid, a type-safe metaprogramming and

extensible compilation framework, as a Scala macro-based library (Chapters 1 and 3).

• I explain some of the limitations of existing metaprogramming approaches; in particular,

I discuss the limitations of multi-stage programming (MSP), and through Squid I show

how to extend MSP in several directions: 1. by supporting the decomposition and analy-

sis of program fragments (Chapter 1); 2. by using normalizing underlying intermediate

representations to facilitate optimizations (Chapters 3 and 4); and 3. by adding, via

2Squid is available at https://github.com/epfldata/squid.

9

https://github.com/epfldata/squid

Introduction

staged classes, the capability to manipulate and generate classes and modules which

can be shared across a staged application (Chapter 8).

• I introduce an increasingly expressive type system to support the metaprogramming con-

structs of Squid corresponding to the aforementioned features (Chapter 6), culminating

in the presentation of a system for type-safe and scope-safe analytic metaprogramming

with hygienic manipulation of open program fragments and context polymorphism

(Chapter 7). I provide a formalization of this type system and prove its soundness. This

type system is reused to support the safety of staged classes (Chapter 8).

• The development of Squid and its type system have been motivated from the start by

very practical metaprogramming use cases in the development of efficient systems.

Throughout the thesis, I present various application examples of the demonstrated

Squid capabilities, including a polymorphic yet efficient library for linear algebra (Chap-

ter 2), a stream fusion engine improving on the state of the art (Chapter 5), a demon-

stration of query compilation by rewriting (Section 6.5), the design of a multi-stage SQL

database system prototype along with its embedded Scala DSL frontend (Chapter 9),

and a new embedded domain-specific language for better expressing and optimizing

queries over collections of data (Chapter 10).

The contents of this thesis are in large parts derived from published and in-progress work in

collaboration with Amir Shaikhha, Antoine Voizard, Aleksander Boruch-Gruszecki, Paolo G.

Giarrusso, and Christoph Koch, my thesis supervisor. The corresponding published papers

are listed below:

Squid: Type-safe, hygienic,and reusable quasiquotes (SCALA 2017) [Parreaux et al., 2017b]

Quoted Staged Rewriting: A practical approach to library-defined optimizations (GPCE

2017, Best Paper Award) [Parreaux et al., 2017a]

Unifying analytic and statically-typed quasiquotes (POPL 2018) [Parreaux et al., 2017c]

Comprehending monoids with class (TyDe 2018, Extended Abstract) [Parreaux and Koch,

2018]

Finally, a Polymorphic Linear Algebra Language (ECOOP 2019) [Shaikhha and Parreaux,

2019]

Towards improved GADT reasoning in Scala (SCALA 2019) [Parreaux et al., 2019]

Multi-stage Programming in the Large with Staged Classes (GPCE 2020) [Parreaux and Shaikhha,

2020]

10

Introduction

Outline of the Thesis

We start by motivating and exploring Squid’s basic quasiquotation capabilities in Chapter 1,

demonstrating the design of the first practical statically-typed quasiquotation system to allow

code inspection while preserving type safety, scope safety, and hygiene.

I present an early application example in Chapter 2: the design of a high-level polymorphic

library for linear algebra, which uses Squid to acheive the performance of specialized low-level

implementations.

In Chapter 3, we discuss the modular implementation of Squid in tagless-final style (i.e., using

object algebras), which enables the use of quasiquotation with different possible underlying

intermediate representations.

In Chapter 4, we identify some limitations of multi-stage programming and propose a new

approach called quoted staged rewriting (QSR). This approach can be used to define opti-

mizations as rewrite rules using statically-typed analytic quasiquotes backed by a normalizing

intermediate representation

As an application example, Chapter 5 shows the design of a stream fusion approach using

QSR which improves on the state of the art by being both simpler and more powerful.

In Chapter 6, we revisit the handling of bindings as shown in Chapter 1, finding it to be

too restrictive; we present and formalize a new approach which allows users to more freely

decompose and recompose bindings while still preserving scope safety and hygiene. Based on

the new-found expressive power of these binding manipulation capabilities, I describe a new

optimization technique called speculative rewrite rules. Speculative rewrite rules are used to

design a query compiler implemented by rewriting, as an application example. However, the

approach shown in this chapter is not final, and is only a stepping stone to the next chapter.

The system presented so far is still too restrictive as it has limited support for scope poly-

morphism. In Chapter 7, we tackle the question of enabling hygienic scope polymorphism

in Squid. We devise a new formal calculus to solve this problem via a (lightweight) depen-

dent affine type system. This new system is expressive enough to describe the stream fusion

approach of Chapter 5 with minimal changes, removing its usage of unsafe escape hatches.

In Chapter 8, we identify further limitations of multi-stage programming which prevent it

from being used “in the large,” on the level of modules and data structures, as opposed to

single function bodies. We introduce staged classes as a way to manipulate class definitions as

first-class constructs in a type-safe way. This allows generating efficient specialized modules

and data structures which can be shared and reused across each staged application.

As an application example for staged classes, we show in Chapter 9 the design of a staged SQL

database compilation prototype which goes beyond the simple query compilation techniques

demonstrated in previous work.

11

Introduction

As can be seen above, several application examples on which I have focused are related to

database use cases. During my PhD, I often felt the need to embed query languages inside

Scala or Haskell, and I have been looking for a query language most appropriate for such

embedding (and corresponding optimization). This led me to revisit an old system, the

monoid comprehension calculus, in the context of a functional language with type classes,

which turned out to unleash the expressive power of monoid comprehension, making it a

good frontend language for my database prototypes. The embedding of this query language

in both Haskell and Scala is explained in Chapter 10, where we also briefly outline how to

optimize it using Squid.

We then conclude and present future work.

Finally, in appendix Appendix A, we look at two particular typing problems which arose from

quasiquotation in Squid, but which are more general and can be studied independently; they

are the problems of reasoning about generalized algebraic data types (GADTs). We explore

foundations for GADTs within Scala’s core type system (which is unique in that it supports

both GADTs and subtyping), in order to guide a principled understanding of the required

reasoning capabilities in Scala and Squid.

12

1 Statically-Typed Code Manipulation
with Analytic Quasiquotes

Quasiquotation is a technique to construct and deconstruct program fragments using quoted

code templates in which “holes” are left to be filled in later. This can greatly simplify the task of

metaprogramming, because such quasiquotes hide the details of the representation in which

programs are manipulated — quasiquotes present metaprogrammers with the concrete syntax

of the language they seek to manipulate.

I argue that two main flavors of quasiquotes have existed so far: Lisp-style quasiquotes,

which can both construct and deconstruct programs but may produce code that contains

type mismatches and unbound variables; and MetaML-style quasiquotes, which rely on static

typing to prevent these errors, but can only construct programs. The former has been used

for designing expressive macros as well as program analysis and transformation systems, and

the latter has been particularly useful for multi-stage programming and embedded domain-

specific languages.

In this chapter, I describe a quasiquotation system which unifies Lisp-style and MetaML-style

quasiquotes into a single framework called Squid, a library which extends Scala’s type system

with statically-typed code manipulation capabilities. We show how to support the type-safe

construction and deconstruction of program fragments. To the best of my knowledge, this is

the first practical statically-typed quasiquotation system to allow code inspection.

Combining Lisp-style quasiquotes with static typing is challenging for multiple reasons. We

should statically ensure type safety (no type mismatches), scope safety (no unbound variable),

and hygiene (no name clashes) throughout our program manipulations. In particular, when

pattern-matching on program fragments, we need the compiler to soundly reason about code

patterns which can both uncover unknown types and refine known ones (GADT reasoning,

which we explore in its more general form in Appendix A).

I demonstrate the use of Squid by implementing a statically-typed quoted β reduction and

ANF conversion, and explain how Squid can be used as a type-safe and hygienic alternative to

the current Scala macros.

13

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

1.1 Introduction

We start by recalling some background on quasiquotation, and classify the existing systems

between two main paradigms: Lisp-style analytic quasiquotation, and MetaML-style statically-

typed quasiquotation.

1.1.1 Basics of Quasiquotation

Our solution to implementing safe metaprogramming constructs is crucially based around the

concept of code quasiquotes — or just quasiquotes: quoted code templates that offer a way for

program fragments to be composed (put together to form bigger programs) and decomposed

(inspected and broken down into smaller parts).

As a basic example, in Squid the value denoted by code''2 + 2'' is not a string of characters,

but an abstract syntax tree (AST) representing the expression 2 + 2. These quasiquotes can

be viewed as syntactic sugar for manipulating AST node constructors — indeed, one could

express code''2 + 2'' more explicitly as IntAdd(Const(2), Const(2)).

Within quasiquotes, it is possible to leave holes (also called unquotes, or antiquotes) to be

filled in later. Holes are written ${...} or just $id when ... is a simple identifier id.

In expressions, holes enable code insertion: they are substituted with the provided code values.

For example, in a context where x = code''2'', the expression code''2 + $x'' is equivalent to

code''2 + 2''. In patterns, holes enable code extraction: they pull code values out of the matched

programs, making the result available to the right-hand side of the corresponding pattern

matching branch.

As an example of code pattern-matching,1 the following code:

code''print(27 + 1)'' match {

case code''print($x)'' => x

}

extracts the code fragment passed to print in the original program code''print(27 + 1)'', and

thus evaluates to x = code''27 + 1''.

In this work, we focus on the quasiquotation of code in the same language as the host language

(the language in which code manipulation is done — here Scala). This is not a significant

restriction in practice, as long as the host language is powerful enough to express the programs

we want to manipulate. For example, many domain-specific languages (DSL) have been

successfully embedded in expressive languages with a flexible syntax such as Haskell [Axelsson

et al., 2010, Najd et al., 2016, Hudak, 1996] and Scala [Rompf and Odersky, 2010, Lee et al.,

2011, Ofenbeck et al., 2013].

1 Scala expression s match {case p => e} corresponds to SML’s case s of p => e or
Caml’s match s with p -> e.

14

1.1. Introduction

Code quasiquotation has been present in research and industry under two main flavors, which

we will refer to as the Analytic and Statically-Typed flavors.

1.1.2 Analytic Quasiquotes

Analytic quasiquotes were pioneered in the context of Lisp, where source code is essentially

made of arbitrarily-nested lists and symbols (S-expressions), which is also the native data

structure format which programs manipulate.

For example, the Lisp function (lambda (x) (print x)) which takes a parameter x and prints

its value, can be represented with datum `(lambda (x) (print x)) — the “back-tick” at the

beginning indicates the start of a quasiquotation, to distinguish it from plain Lisp source code.

Therefore, programs can naturally manipulate source code like any other data structure (code

as data). In addition, the built-in eval function is used to interpret any datum as source code

by executing it (data as code).

Antiquotation in Lisp is written with a comma, so expression `(lambda (x) ,(id `x)) seen in

Table 1.1 first executes the identity function id on the symbol `x returning `x , then places

that code fragment into the bigger program fragment, constructing the code for another

implementation of the identity function `(lambda (x) x).

The fact that Lisp programs can naturally analyze (inspect) source code derives directly from

the idea of code as data. Allowing quasiquotes in pattern matching is one convenient way to

do such analysis, and is in fact standard in several dialects of Lisp, including Scheme [Bawden,

1999]. This is what motivates our terminology: these quasiquotes have analytic capabilities.

1.1.3 Statically-Typed Quasiquotes

Lisp is dynamically typed, which means that it does not statically prevent the occurrence

of type mismatches and unbound variable references at runtime. For example, since the

identifier x is a valid bit of Lisp program, (eval `x) is also valid but raises a runtime error in

the style of “x is undefined and cannot be evaluated” unless it is executed in a context

where some x is defined.

In contrast, in a statically typed programming language, type mismatches and undefined

variable errors are never supposed to happen at runtime. The presence of an eval function in

this setting makes the notions of code as data and data as code significantly harder to satisfy.

Indeed, we must make sure that program fragments containing unbound references are never

evaluated, and that all constructed programs are well-typed. We must reject programs such as

code''x''.run (using Squid syntax, where method run evaluates the program fragments, just

like eval in Lisp).

With MetaML, Taha and Sheard [2000] introduced statically-typed quasiquotes, allowing

15

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

the expression of type-safe program generators that cannot generate ill-typed or ill-scoped

programs. In MetaML, the quotation 〈 x + 1 〉 — similar to Lisp’s `(+ x 1) — is only valid if it

is surrounded by a code fragment at the same quotation level2 containing a binder for x with

type int, so that x + 1 will end up in a place where x is bound when the metaprogram executes.

Together with antiquotes, written ~(...), we can rewrite in MetaML the Lisp example we saw

in the previous section as 〈 fun x → ~(id 〈 x 〉) 〉, which evaluates to 〈 fun x → x 〉.

MetaML historically faced some safety challenges. The first was to statically prevent the

evaluation of open code (code that contains variables which have not yet been bound). For

example, 〈 fun x → ~(run 〈 x 〉 ; 〈 x 〉) 〉 should be rejected: 〈 x 〉 cannot be run as it has

not yet been inserted into a context where x is bound. Another challenge was that of scope

extrusion, where a piece of code escapes its enclosing scope by ways of imperative features

such as mutable references, as in 〈 fun x → ~(some_ref := 〈 x 〉 ; 〈 x 〉) 〉. Two general

approaches have been proposed to solve these problems; the first makes use of contextual

types [Nanevski, 2002, Rhiger, 2005, Kim et al., 2006], where the environments that terms

depend on are reflected in their types; the second uses environment classifiers, which abstract

over these contexts [Taha and Nielsen, 2003] using type variables, which can be partially-

ordered to reflect the structure of scopes [Kiselyov et al., 2016].

MetaML quasiquotes are not as expressive as analytic quasiquotes like those of Lisp, because

all constructed code is viewed as a black box that cannot be inspected; in other words, these

quasiquotes cannot be used in patterns,3 and it is not possible to use them to express program

analysis or transformation algorithms.

1.1.4 Quasiquotes in Various Languages

Quasiquotes that belong to the analytic category include those of the Lisp family [Bawden,

1999], Stratego [Visser, 2002] and Scala reflection [Shabalin et al., 2013] (see Section 1.2.2). The

safer, statically-typed category includes the quasiquotes of MetaML [Taha and Sheard, 2000],

MacroML [Ganz et al., 2001], MetaOCaml [Taha, 2004] and Typed Template Haskell, a variant

of Template Haskell [Sheard and Jones, 2002].

Table 1.1 summarizes the properties of some of these various systems, and is discussed further

in the related work (Section 1.7).

1.1.5 Best of Both Worlds

In this chapter, I show how to combine the advantages of both flavors of quasiquotes into a

unified framework, realized as Squid. Squid allows the construction and inspection of code

fragments while ensuring that generated code is always well-typed and usually well-scoped.

2Notwithstanding the cross-stage persistence capability, which we will discuss later.
3Quasiquote patterns for MetaML were suggested by Sheard et al. [1999], but were neither implemented nor

formalized.

16

1.2. Expressing Code Manipulation

T S A H Syntax Example
Squid (This Chapter) G# G# code''(x: T) => ${ id(code''x'') }''

Scala-reflection QQ (1) # # # q''(x: T) => ${ id(q''x'') }''

Scala-refl. reify/splice G# # # — cannot express open terms —
MetaOCaml (2) G# # .< fun x → .~(id .< x >.) >.

Template Haskell (3) # G# # G# [| \x -> $(id [| x |]) |]

Typed Template Haskell * # * [|| \x -> $$(id [||x ||])||]

Stratego (4) # # # [[(x: int)=> ~(id ([[x]]))]]

Lisp/Scheme QQ (5) # # # `(lambda (x) ,(id `x))

λ{} (Chapter 6) d λx : T . b id dx : T e c e
MetaML Calculus (7) G# # 〈 λx. ~(id 〈 x 〉) 〉

Rhiger’s λ[] (6) # ↑ (λx : T . ↓ (id ↑ x))
Nanevski’s ν� (8) G# let box u = id X in box λx.

{
X =̇ x

}
u

Table 1.1 – Comparison of quasiquotes in several systems. The criteria are whether they:
statically ensure program fragments are well-typed and well-scoped (columns T and S, re-
spectively); support analysis via pattern-matching (A); support hygiene (H); the asterisks
indicate that although fully supported, the feature is not as flexible as in other approaches; see
Sections 1.7.1 and 6.6 for a full discussion. References: (1) Shabalin et al. 2013; (2) Taha 2004;
(3) Sheard and Jones 2002; (4) Visser 2002; (5) Bawden 1999; (6) Rhiger 2012b; (7) Taha and
Nielsen 2003; (8) Nanevski and Pfenning 2005.

The scope safety guarantee mentioned in this chapter has the same limitations as in the early

MetaML work, in that it only holds as long as metaprograms are pure and do not use eval. We

will explore a more advanced contextual type system to address these limitations in Chapter 6.

Note that Squid quasiquotes focus on the expression side of Scala; they cannot manipulate

class, method, object, or type definitions. This restriction is similar to other staging frame-

works, such as MetaML [Taha and Sheard, 2000], MetaOCaml [Kiselyov, 2014], and LMS [Rompf

and Odersky, 2010]. In contrast, the existing Scala 2 quasiquotes allow manipulating all Scala

constructs, but with much weaker guarantees. In Chapter 8, we explore how to support the

first-class representations of classes in a safe way, in order to support more powerful program

analysis and generation strategies.

1.2 Expressing Code Manipulation

In this section, I describe some of the problems which arise in the context of analytic metapro-

gramming, reviewing the limitations of existing approaches in the context of Scala.

17

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

sealed abstract class Exp

case class Lit (value: Int) extends Exp

case class Var (name: String) extends Exp

case class Add (lhs: Exp, rhs: Exp) extends Exp

case class App (fun: Exp, arg: Exp) extends Exp

case class Fun (name: String, body: Exp) extends Exp

(a) Simple uni-typed abstract syntax tree (AST).

sealed abstract class Exp[T]

case class Lit (value: Int) extends Exp[Int]

case class Add (lhs: Exp[Int], rhs: Exp[Int]) extends Exp[Int]

case class App[A, R] (fun: Exp[A => R], arg: Exp[A]) extends Exp[R]

case class Fun[A, R] (lam: Exp[A] => Exp[R]) extends Exp[A => R]

(b) AST based on a generalized algebraic data type (GADT) and using higher-order abstract
syntax (HOAS) to represent bindings.

type Exp[T] = [V] => Term[T, V]

sealed abstract class Term[T, V](ty: Type[T])

case class Lit[V] (value: Int) extends Term[Int, V](IntType)

case class Var[A, V] (value: V, tyA: Type[A])

extends Term[A, V](tyA)

case class Add[V] (lhs: Term[Int, V], rhs: Term[Int, V])

extends Term[Int, V](IntType)

case class App[A, B, V] (fun: Term[A => B], arg: Term[A, V], tyB: Type[B])

extends Term[B, V](tyB)

case class Fun[A, B, V] (lam: V => Term[B, V], tyA: Type[A], tyB: Type[B])

extends Term[A => B, V](FunType(tyA, tyB))

sealed abstract class Type[T]

case object IntType extends Type[Int]

case class FunType[A, B](tyA: Type[A], tyB: Type[B]) extends Type[A => B]

(c) GADT AST with parametric HOAS bindings (PHOAS) and internal typing.

Figure 1.1 – Outline of different possible AST implementations.

18

1.2. Expressing Code Manipulation

1.2.1 Explicit Approaches

Simple abstract syntax trees

The simplest possible way to represent and manipulate programs, in a functional language, is

through an abstract syntax tree representation implemented with an algebraic data type.

Figure 1.1a shows the definition of an AST for lambda calculus augmented with integer literals

and addition. Notice that all expression nodes have the same base type Exp, and that names

are bound in Fun and referred to in Var as simple character strings.

In this representation, one step of call-by-name reduction (for example) may be written as

follows:4

def reduce: Exp => Exp = {

case Lit(v) => Lit(v)

case Var(n) => Var(n)

case Add(Lit(l), Lit(r)) => Lit(l + r)

case Add(Lit(v), r) => Add(Lit(v), reduce(r))

case Add(l, r) => Add(reduce(l), r)

case App(Fun(n, b), a) => subst(n, a)(b)

case App(f, a) => App(reduce(f), a)

case Fun(n, b) => Fun(n, b)

}

def subst(name: String, arg: Exp): Exp => Exp = {

case Lit(v) => Lit(v)

case Var(`name`) => arg

case Var(n) => Var(n)

case Add(l, r) => Add(subst(name, arg)(l), subst(name, arg)(r))

case App(f, a) => App(subst(name, arg)(f), subst(name, arg)(a))

case Fun(`name`, b) => Fun(name, b) // `b` cannot refer to the variable

case Fun(n, b) => Fun(n, subst(name, arg)(b)) // unhygienic

}

Manipulating such an AST representation is error-prone mainly for three reasons:

• it is all too easy to construct ill-typed terms such as App(Lit(1), Lit(2)), as it is to

make mistakes which can lead to such terms, for example by writing App(reduce(a), a)

instead of App(reduce(f), a) in the App(f, a) case of reduce;

• it is all too easy to construct ill-scoped terms such as App(Var(''oops''), Lit(3)), which

4In Scala, { case ...} is the syntax of PartialFunction literals, but it can also be used as a shorthand
syntax for x => x match { case ... } of type A => B. Also in Scala, patterns of the form `v` match any
value equal to an existing v value (the ticks are used to distinguish these “equality patterns” from pattern variables).

19

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

could arise for instance if we had written subst(name, arg)(b) instead of Fun(n, subst

(name, arg)(b)) in the corresponding subst case;

• it is all too easy to manipulate name bindings unhygienically, i.e., to write program

transformations which result in name clashes (unintended variable capture/shadowing);

in fact, the subst implementation we’ve seen is unhygienic because it does not perform

any capture avoidance: it may substitute a term arg within a context where its free

variable occurrences get captured (which is not the intended semantics of substitution).

None of these problems are detected at the time the metaprogrammer defines their metapro-

gram; instead, they manifest themselves when the metaprogram is run on actual programs,

resulting in the generation of nonsensical programs which do not compile, or — worse — the

generation of programs which compile, but with the wrong runtime semantics.

Debugging this sort of problems by tracing back their root causes is hard and time-consuming,

notably because they often occur far from these root causes, and because the code that is

generated in many metaprogramming applications is inscrutable and not designed for human

understanding.

Generalized algebraic data types (GADT)

To avoid some of these problems, the practice has been to reflect the type of each object-

language term (a term in the language being manipulated) in the type of its corresponding

AST node.

This can be done by using generalized algebraic data types (GADTs) [Xi et al., 2003, Cheney

and Hinze, 2003, Kennedy and Russo, 2005], as shown in Figure 1.1b. Notice that Exp is now

equipped with a type parameter that documents the type of the term it represents. While

this generally improves the safety of AST manipulations, it also makes them slightly more

cumbersome to write.

As we will see in Section 1.4 and in more depth in Appendix A, GADTs require some special

reasoning capabilities from compilers to handle pattern matching adequately.

Higher-order abstract syntax (HOAS)

The error-prone “bureaucracy of syntax” exemplified by our flawed subst function has been

bothering metaprogrammers since the dawn of metaprogramming, and logicians before them.

Several techniques have been proposed to alleviate these difficulties.

Higher-order abstract syntax [Church, 1940, Huet and Lang, 1978] is a popular technique

which leverages the host language’s own substitution mechanism to implement substitution

in the object language.

20

1.2. Expressing Code Manipulation

Figure 1.1b implements HOAS by changing the Fun data type — instead of holding a plain

name and a body, it holds an actual host-language function from Exp to Exp — and by removing

the Var data type. This way, the need for a subst function disappears!

Below is how the reduce function could be implemented with the GADT + HOAS abstract

syntax tree of Figure 1.1b. Notice that the mistakes mentioned earlier on the plain AST form

are no longer possible.

def reduce[A]: Exp[A] => Exp[A] = {

case Lit(v) => Lit(v)

case Add(Lit(l), Lit(r)) => Lit(l + r)

case Add(Lit(v), r) => Add(Lit(v), reduce(r))

case Add(l, r) => Add(reduce(l), r)

case App(Fun(f), a) => f(a) // no error-prone subst needed

// case App(f, a) => App(reduce(a), f) // mistake is now ill-typed!

case App(f, a) => App(reduce(f), a)

case Fun(f) => Fun(f)

}

However, we should note that a simplistic HOAS approach as presented here is fairly limited.

For instance, it could not really be used without adaptations to implement a pretty-printer for

the expression trees.

Moreover, HOAS prevents the free deconstruction and transformation of binding structures:

In order to inspect the body of a function, one needs to provide an argument to substitute

for the occurrences of the variable bound by the function. This argument will typically be an

occurrence of the new binding used as a result of the transformation, or a concrete value if we

want to remove the binding (inlining the argument). Therefore, we need to know what the final

binding structure will look like before we can even look at the body of the function. To see why

this is problematic, consider a transformation that inlines a reducible function applications

when the function uses its parameter at most once. The problem is that we have no way of

knowing how many times the function uses its parameter before we have passed an argument

to substitute in the body of the function — i.e., before we can make the decision whether to

inline the function or not! In a way, this is limitation is due to substitution being hard-wired

into the definition of HOAS structures, while other slightly more subtle metaprogramming

tasks manipulating bindings are not, and thus feel like “second-class” citizens.

Another noteworthy limitation of HOAS is that it delays and duplicates the execution of

transformations: every Fun AST node stores a closure that is only executed on-demand, and

more specifically every time the function body needs to be inspected, which re-computes all

the transformations applied on that body so far. While this is probably fine for verification

approaches mostly concerned with the theoretical soundness of mechanized semantics, it is

not realistic for practical metaprogramming applications.

21

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

Parametric higher-order abstract syntax (PHOAS)

Yet another problem of the basic HOAS formulation is that while it makes sure that ill-typed

terms cannot be represented, it does not prevent the representation of AST values that

do not correspond to actual terms of the object language. For instance, in the previous

HOAS AST, one can construct the Exp[Int => Int] value Fun((x: Exp[Int]) => if (x ==

Lit(0)) Lit(1) else x) does not correspond to any term expressible in the object language.

Chlipala [2008] proposed a parametric higher-order abstract syntax approach (PHOAS), which

prevents this specific problem and also makes the syntax much easier to use for various

analysis and transformation tasks.

However, the two other limitations of HOAS are still present in PHOAS: it delays and duplicates

the execution of transformations, and prevents easily inspecting the bodies of functions

without either rebuilding a new function (before we get to see the function body) or somewhat

compromising on the hygiene guarantees offered by (P)HOAS in the first place (e.g., if we

replace variable occurrences by dummies or de Bruijn indices,5 which opens us up to the

same kind of problems as in the plain AST).

Internal typing

In practical metaprogramming approaches, it is often desirable to keep the AST internally

typed, meaning that AST nodes should store a runtime representation of the types of the terms

they represent, which can be used to influence program analysis and transformation processes

down the line.

This can be done by adding parameters in our AST cases, to hold runtime type representation

values encoded with a similar GADT as for expressions. Figure 1.1c shows an approach which

combines PHOAS with internal typing.6 In a declaration of the form ‘sealed abstract class

Term[T, V](ty: Type[T]),’ the term ty is a class constructor parameter — in other words,

instances of Term[T, V] require a value ty of type Type[T] in order to be constructed, which

will be passed by each subclass of Term.

Now the reduce function looks as follows:

5It is possible to make de Bruijn indices scope-safe via the type system [Chen and Xi, 2005], but they are still
fundamentally low-level “unhygienic” implementation details making it easy to confuse bindings (even within the
bounds of scope safety), leading to surprising results [Kiselyov et al., 2016].

6For concision, we use the Scala 3 syntax for first-class polymorphic function types, of the form [X] => T[X],
which means ∀ X. T[X], and can also be encoded in Scala 2 with abstract class F { def apply[X]: T[X] }.

22

1.2. Expressing Code Manipulation

def reduce[A]: Exp[A] => Exp[A] = e => [V] => e[V] match {

case Lit(v) => Lit(v)

case Var(v, t) => Var(v, t)

case Add(Lit(l), Lit(r)) => Lit(l + r)

case Add(Lit(v), r) => Add(Lit(v), reduce(r))

case Add(l, r) => Add(reduce(l), r)

case App(Fun(f), a, t) => f(a)

case App(f, a, t) => App(reduce(f), a, t)

case Fun(f, t, u) => Fun(f, t, u)

}

The curried value-lambda and type-lambda e => [V] => ... may be a little difficult to read.

This is a function expression taking an e parameter (of type Exp[A]) and a V type parameter. In

its body, the function applies e to type V — remember that type Exp[A] = [V] => Term[T, V].

Notice how we need to propagate type representations manually, i.e., one has to pass argu-

ments like t in polymorphic constructors like Var. The practice in Scala is usually to make

the runtime type representations implicit (using Scala’s implicit parameters feature), so as to

somewhat alleviate this burden, but anyone with experience manipulating internally-typed

GADT expression trees in Scala knows that it is still very painful and time-consuming (in part

because of their interaction with the delicate typing aspects of GADTs).

As we can see, this representation is getting quite a bit “hairy” and more difficult to manipulate,

yet what we have seen is still far from the practical metaprogramming and optimization

tasks that we are targeting in this thesis. Typically, the design of a DSL and of its domain-

specific optimizations quickly becomes entangled with these lower-level AST implementation

concerns, which get in the way of the DSL design activity.

Moreover, as the supported type system becomes more elaborate (it is common for Scala

DSLs to leverage Scala’s advanced type system features), both the internal and external rep-

resentations of the corresponding types need to keep up, which can make them much more

complicated.

In Section 1.3, we will see that Squid allows us to reap the advantages of an advanced type-safe

internally-typed syntax while exposing only a simple quoted interface to the metaprogrammer,

and without some of the drawbacks of higher-order approaches.

1.2.2 Existing Scala Quasiquotes

Scala Reflection quasiquotes

In Scala, different forms of quotation coexist. While, for instance, ''2+2'' denotes a string made

of characters '2', '+', and '2', when prefixed with q as in q''2+2'' it represents an abstract syntax

23

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

tree (AST) equivalent to:

q''2+2'' ==

Apply(Select(Literal(Constant(2)), TermName(''$plus'')),

List(Literal(Constant(2))))

Code quasiquotation using the ‘q’ string prefix was a technique developed by Shabalin et al.

[2013] in order to facilitate manipulating the AST constructs of the Scala Reflection API (nick-

named scala-reflect) while defining Scala macros [Burmako, 2013]. It is available as part of the

Scala standard library.

Advantages of a quoted syntax for abstract syntax trees

As we can see in the example above, expressing code using the quoted form q''2+2'' is much

more concise than using the “explicit” (non-quoted) form. The explicit form also exposes

details of the internal encoding of Scala’s AST which are not usually relevant to metapro-

grammers, such as the names of abstract syntax constructs (Apply, Select, etc.) and the JVM

encodings of operator names like $plus.

Thus, we can already start to see why a quoted approach has advantages over the explicit

approaches described in Section 1.2.1 once the AST to manipulate becomes closer to more

featureful real-world programming languages.

Quoted code manipulation

In Scala, quasiquotes can be used as both expressions and patterns. Syntax ${...} is used to

unquote terms from inside a quasiquote.7 (When the unquoted term is a simple variable, the

curly braces can be omitted.) In quasiquote expressions, unquoted terms are inserted into the

surrounding code. In quasiquote patterns, unquotes extract the terms found in their positions,

matching them with the unquoted pattern. For example, the following expression:

q''2 + 1'' match {

case q''$n + 1'' => q''$n - 1''

}

evaluates to q''2 - 1''.

It is straightforward to write a version of the reduce function presented above using Scala

quasiquotes:

7Unquote [Abelson et al., 1991] is also referred to as anti-quote [Mainland, 2007] and escape [Taha and Sheard,
2000].

24

1.2. Expressing Code Manipulation

def reduce: Tree => Tree = {

case ConstLit(n)

=> ConstLit(n)

case Ident(name)

=> Ident(name)

case q''${ConstLit(n)} + ${ConstLit(m)}''

=> ConstLit(n + m)}

case q''${ConstLit(n)} + $b''

=> q''${ConstLit(n)} + ${reduce(b)}''

case q''$a + $b''

=> q''${reduce(a)} + $b''

case q''(($ident: $t0) => $body)($a)''

=> reduce(body.transform { case `ident` => a })

case q''$f($a)''

=> q''${reduce(f)}($a)''

case q''($ident: $t0) => $body''

=> q''($ident: $t0) => $body''

}

Where Tree is the type of Scala AST nodes. We used a custom ConstLit(_) constructor syn-

onym to mean Literal(Constant(_: Int)) for brevity. The expression t.transform(f) tra-

verses some tree t trying to apply partial function f on each of its subterms.

Note that this particular usage of transform is not hygienic, notably because it ignores shad-

owing (we discuss these issues in the next section). Yet, this sort of cavalier applications of

code transformation primitives are often seen in Scala macros in the wild, which is part of the

reason why Scala macros have had the reputation of being particularly brittle.

1.2.3 Limitations of Scala Reflection Quasiquotes

Despite having achieved widespread adoption, Scala Reflection quasiquotes have important

limitations that restrict their potential applications to metaprogramming.

This subsection serves not only as a laundry list of the ways in which Scala Reflection quasiquotes

are insufficient — more importantly, it sets the stage for describing the properties and static

guarantees that Squid quasiquotes achieve in response to them.

Lack of Static Typing

Scala Reflection quasiquotes fall into the “Lisp-style” analytic category of quasiquotes defined

in Section 1.1, since they allow the inspection of program fragments through pattern matching,

25

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

but are not statically typed.8

More precisely, Scala Reflection quasiquotes only check (at compile-time) for syntactic well-

formedness, but do nothing to prevent the expression of ill-typed and ill-scoped code. For

instance, the program fragment q''Math.pow(x, List())'' happily compiles (even in a context

without a surrounding binding for x) and will generate ill-formed code.

As a stop-gap measure to cope with macros expanding into ill-formed code, the Scala 2

compiler re-type-checks the code resulting from all macro expansions.

This state of affairs is not only less than ideal for performance reasons, but also because it

means that macro developers cannot leverage the benefits of static typing when manipulating

code, and macro users often end up with compilation errors pointing to invisible macro-

generated code which cannot be easily debugged.

Lack of Hygiene

Informally, hygiene is the property that variable bindings do not “get mixed up” as the result of

a program transformation; quasiquotes of the Lisp family generally lack such property, though

some fare better than others.9

The reduce transformation we have seen earlier in this section is unhygienic because it is un-

sound in the presence of shadowing. For example, it will transform q''((x:Int) => (x:Int) =>

x)(1)'' into q''(x:Int) => 1'' instead of transforming it into q''(x:Int) => x''. The root cause

is that bindings in Scala Reflection quasiquotes are implemented using plain String names,

which may clash with one another and produce unexpected results.

Hygiene problems manifest in a variety of ways. In the context of macro systems and of Scala

macros in particular, two hygiene problems which commonly arise are:

1. Newly-introduced variable bindings clashing with bindings already present in the origi-

nal program. To work around this problem, one has to manually generate “fresh names”

and use them exclusively in generated code (the gensym approach of Lisp macros).

2. References to global symbols (such as math.pow) in macro-generated code may change

meaning if the surrounding code in which the macro expands happens to bind a value

with the same name (for instance if it defines a different math object with its own pow

method). To avoid this, macro authors need to fully-qualify the names of the symbols

they use (as in q''_root_.scala.math.pow(...)'' in our example).10

8In that sense, Scala Reflection quasiquotes are very close to the plain simple AST representation of Figure 1.1a
in terms of safety properties.

9Notably, Template Haskell [Sheard and Jones, 2002] has some mechanisms to automatically create fresh names
in generated programs, eschewing many potential metaprogramming errors, although these safety measures can
be circumvented easily.

10The _root_ package is used to fully qualify identifiers in the global namespace without any possibility of

26

1.2. Expressing Code Manipulation

The creators of Scala Reflection quasiquotes [Shabalin et al., 2013] were well aware that hygiene

was an important limitation of their approach. Shabalin [2014] experimented with the idea of

adding hygiene on top of Scala Reflection quasiquotes, but his system was fairly complicated

and its soundness properties unclear (the formalism came without a proof); consequently, it

was never implemented.

We further discuss the problem of hygiene in metaprogramming in Section 1.4.1.

No propagation of internal typing

As explained in the previous section, maintaining internal typing is often desirable in metapro-

gramming applications. Scala Reflection quasiquotes have the capability of storing internal

typing information, but they do not retain or propagate it upon transformation.

For instance, when calling the reduce function above on a program pgrm, even if pgrm is

internally annotated with typing information, this information is lost and is not propagated

into the transformed program.

Essentially, given two ASTs a and b both internally assigned type Int, the term q''$a + $b''

will not be assigned type Int, unless it is type checked again or manually annotated (e.g., as

q''$a + $b''.withType(IntType), an error-prone approach).

Lack of normalization of syntactic details

Many syntactic details not relevant to the semantics of a program fragment are abstracted

after parsing, when the program is put in abstract syntax tree form. For example, 2 * 2 + 1

and (2 * 2) + 1, which are not meaningfully different, parse into the same AST.

Yet many more non-semantic details can be abstracted away after name resolution and type

checking have been performed, such as: the precise names of bound variables, whether type

parameters are explicitly specified (versus inferred), the resolution of implicit arguments,

syntactic sugar like for comprehensions (similar to Haskell do expressions), etc.

Because they are untyped, quasiquote systems such as the one provided by Scala Reflection

cannot consider equivalent terms as equivalent when they differ only in these superficial ways.

For example, pattern q''Some[Int](42)'' will not match q''Some(42)'' (and conversely), despite

them being equivalent after type checking.

As another example, given some function f of type Int => Int, the following code fragments are

all “semantically” equivalent if we look past name resolution, type inference, and desugaring

differences:

f(Int.MaxValue)

confusion due to name clashes.

27

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

f.apply(Int.MaxValue)

f(scala.Int.MaxValue)

import Int.{MaxValue => MV}; f(MV)

f(Int.MaxValue): Int

f(Int.MaxValue: Int)

Yet, a quasiquote pattern such as q''$fun(Int.MaxValue)'' will only match the first one (yielding

fun = q''f'').

This is problematic because it means that when macro writers or DSL designers want to match

on certain usage patterns, they have to handle all equivalent representations and their possible

combinations, making the task unfeasible.

In practice, Scala macro writers try to only analyse fully-typed expressions for this reason.

When the Scala compiler type checks a program, it rewrites all expressions into their “fully-

explicit” form — in the example above, all forms except the last two are rewritten into

f.apply(scala.Int.MaxValue).

However, relying on the assumption that terms are in type-checked form is problematic, as

any subsequent transformations may violate that assumption. Moreover, there is no way

of checking that expression and pattern quasiquotes are always written in that form, so it

is extremely easy to introduce subtle code transformation problems by deviating from this

implicit normal form.

1.3 Code Manipulation with Squid Quasiquotes

In this section, I introduce Squid’s approach to analytic metaprogramming through statically-

typed and hygienic quasiquotation, explaining the wide array of metaprogramming features

that it supports.

1.3.1 Basics of Squid Quasiquotes

Squid quasiquotes are prefixed with the ‘code’ identifier, and manipulate AST nodes of type

Code[T], where T reflects the type of the represented object term (like in the GADT approaches

of Figure 1.1). For example, code''42.toDouble'' has type Code[Double].

Probably the main difference with Scala Reflection quasiquotes is that Squid type checks the

quoted code fragments while they are compiled, and uses the resulting typing information to

create the appropriate AST nodes. As a result, the AST nodes are always internally represented

in a fully-typed form: all type parameters are specified, the code is desugared (e.g., f(123)

is represented as f.apply(123)) and implicit arguments are inferred. This is the case even

28

1.3. Code Manipulation with Squid Quasiquotes

when the quasiquote itself does not mention type parameters, uses syntax sugar, and/or omits

implicit arguments.

For example,11 the quasiquote code''List(1,2).map(_ + 1)'' is equivalent to:

code''scala.Predef.List.apply[Int](1, 2)

.map[Int, List[Int]]((x: Int) => x + 1)(List.canBuildFrom[Int])''

Indeed, both of these forms will compare equal by the standard == equality operator.

Under the hood, Squid quasiquotes are macros that produce the boilerplate necessary for

constructing or deconstructing AST nodes corresponding to the code being quoted.

1.3.2 Pattern Matching and Rewriting

Just like Scala quasiquotes, Squid quasiquotes support pattern-matching. However, type

annotations are often required to help with Scala’s local type inference. For example, the

pattern code''$x + 1'' does not type check, as the Scala type checker cannot not know which

‘+’ method is implied when the type of x is unknown. The pattern matching example in

Section 1.2.2 is now written:

code''2 + 1'' match {

case code''($n: Int) + 1'' => code''$n - 1''

}

To help define concise rewriting transformations, Squid provides a convenience rewrite

method which traverses a program in top-down or bottom-up order (which can be configured)

and applies a transformation to each of its sub-terms, while checking at compile-time (of the

metaprogram) that the transformation is type-preserving.

1.3.3 Type Representation Implicits

In order to satisfy the requirement that program fragments be internally typed (i.e., they

should contain runtime information about the types of the terms that they encode), Squid

requires functions manipulating code which contains statically-unknown types to pass along

associated runtime type representations for these unknown types.

As hinted in Section 1.2.1, the most convenient way to do so in Scala is via implicit parameters.

Squid defines the CodeType type class for this purpose. As an example, the following function

returns an empty option term for any type T:

def foo[T: CodeType] = code''Option.empty[T]''

11In Scala, map takes an implicit CanBuildFromparameter used to allow mapping over heterogeneous types [Oder-
sky and Moors, 2009], but whose precise semantics is irrelevant to this presentation.

29

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

The syntax T: CodeType in type parameter lists is shorthand for including a corresponding

implicit parameter of type CodeType[T], so the code above is equivalent to:

def foo[T](implicit _: CodeType[T]) = code''Option.empty[T]''

When foo is called as e.g., foo[Int], an implicit type representation, of type CodeType[Int], is

synthesized and passed along with the function call, so that the resulting term is the expected

code''Option.empty[Int]''.

We could also write the call to foo[Int] by passing the implicit argument explicitly,12 using

the Squid codeTypeOf primitive to request a type representation for Int:

val intType = codeTypeOf[Int]

val res = foo[Int](intType)

Type representation values can also be obtained from terms of the corresponding type, so we

can write:

assert(res.T =:= codeTypeOf[Option[Int]])

where =:= is used to compute type equivalence.

1.3.4 Matching and Extracting Unknown Types

To define type-parametric rewrite rules, Squid quasiquotes allows the extraction of types (not

just terms) from quoted patterns.

In the example below, given some pgrm fragment, we transform calls to foldLeft on List

objects into imperative foreach loops:

def lower[T](pgrm: Code[T]) = pgrm rewrite {

case code''($ls: List[$t]).foldLeft[$r]($init)($f)'' =>

code''''''

var cur = $init

var xs = $ls

while (xs.nonEmpty) {

val x = xs.head

xs = xs.tail

cur = $f(cur, x)

}

cur

''''''

}

12In practice, passing type representations around explicitly is almost never necessary.

30

1.3. Code Manipulation with Squid Quasiquotes

which can be used as follows, for instance:

lower(code''List(1, 2, 3).foldLeft(0)((acc, x) => acc + x).toDouble'')

and returns (a desugared version of) the following program fragment:13

code''''''

{

var cur = 0

var xs = List(1, 2, 3)

while (xs.nonEmpty) {

val x = xs.head

xs = xs.tail

cur = cur + x

}

cur

}.toDouble

''''''

Note that in Scala, multi-line quotations are introduced with triple quotation marks '''''' and

that the “operator syntax” p rewrite f is equivalent to the “method syntax” p.rewrite(f).

Extracted type representations are values and not types

Any type extracted from a quasiquote pattern such as case code''...[$t0]...'' results in a

value t0 of type CodeType[T0], where T0 is an existential type which cannot be directly referred

to in the right-hand side of the pattern matching case.

Indeed, only values can be extracted from the Scala “string interpolator” syntax which Squid

relies on for its code quasiquote patterns. So t0 has to refer to the runtime type representation

for T0, and not T0 directly. Thankfully, we can access T0 indirectly through the path-dependent

type t0.T — this works because every CodeType[A] value ty contains a type member named T

which reflects its type argument A, so that ty.T refers to A.

For example, one can write:

def bar(x: Code[Any]): Code[Any] = x match {

case code''Some[$t0]($_)'' =>

val c = foo[t0.T]

// or equivalently:

val c = foo(t0)

13Notice that the β reducible expression ((acc, x)=> acc + x)(cur, x) was automatically reduced by
Squid as it is equivalent to a trivial let binding.

31

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

assert(c == code''Option.empty[$t0]'')

case _ => x

}

Above, the call to foo[t0.T] is elaborated into foo[t0.T](t0) by the compiler — the type

representation value t0 is picked up from the current scope automatically, based on its static

type, and passed as the value for foo’s implicit type representation parameter.

Bounding extracted types

It is sometimes necessary to constrain pattern type variables to conform to some specific

subtyping bounds.

In particular, this is sometimes needed to make a pattern even type check. For instance,

consider the signature of the orElse method14 defined on the Option[T] type in Scala:

Option[A] <: {

def orElse[B >: A](alternative: => Option[B]): Option[B]

...

}

Notice that type parameter B is lower-bounded by A. When trying to write an optimization for

orElse in Squid quasiquotes, the following rewrite rule will fail to compile:

case code''Some[$ta]($lhs).orElse[$tb]($rhs)''

=> lhs

because extracted type tb is not known to be a supertype of ta, and therefore the call to orElse

in the pattern does not type check. To fix this, Squid provides a lightweight syntax to require

some bounds on extracted types:

case code''Some[$ta]($lhs).orElse[$tb where (ta <:< tb)]($rhs)''

=> lhs

The refined version above compiles and has the expected semantics.

Bounds on extracted types are checked at runtime, even though a runtime check is not always

necessary (like in the example above, where the check should succeed by construction, since

orElse cannot be called with non-conforming type arguments).

14orElse is used to fall back to an alternative option if the first is None. Expression Some(x).orElse(y)
returns Some(x) and None.orElse(y) returns y.

32

1.3. Code Manipulation with Squid Quasiquotes

1.3.5 Nonlinear Pattern Variables

Squid allows using the same pattern variable several times in a single pattern. For instance,

the following rewrite rule simplifies an if expression with the same subexpression (up to alpha

equivalence) on its two branches:

case code''if ($cond) $cde else cde''

=> code''$cond; $cde'' // re-insert cond in case it has side effect

Due to a Scala restriction in the syntax of patterns, only one of the multiple occurrences of the

pattern variable is marked with a dollar sign.

As another example, the following pattern matches a call to map and take where the input and

output types of map match, and rewrites it into a call to the mapFirst function (a hypothetical

map implementation which maps only the first n elements and therefore does not change the

overall list’s element type):

case code''(xs: List[$ta]).map(f: ta => ta).take($n)''

=> code''xs.mapFirst($n, $f).take($n)''

1.3.6 Cross-Quotation References

An important feature of a flexible quasiquotation system is the ability to manipulate open

terms [Taha and Sheard, 2000].15 Since Squid quasiquotes are type-checked and hygienic, a

program fragment like code''x + 1'' is not valid on its own, as x is not defined — contrast this

with current Scala quasiquotes, where q''x + 1'' is perfectly valid even if x never ends up being

bound in the generated program.

However, within a context where x is bound at the same quotation depth16 as its reference,

code''x + 1'' becomes a valid expression. For instance, code''(x: Int) => ${bar(code''x +

1'')}'' is a valid quasiquote (of type Code[Int => Int]): when evaluated, the inner quasiquote

embeds a reference to the outer x, returning a program fragment to be processed by bar, the

result of which (which will presumably contain references to x) will be inserted into the outer

quote, which binds x.

1.3.7 Cross-Stage References and Cross-Stage Persistence

Referring to variables defined across different quotation depths is normally forbidden. For

instance, the following program is rejected by Squid with a compile-time type error:

15A capability notably missing from the earlier Scala Reflection statically-typed quotation approach, the reify
macro (see Section 1.7).

16The notion of quotation depth used here is purely syntactic: it corresponds to the number of surrounding
quotes minus the number of surrounding unquotes. Why this simple notion is sufficient to guarantee scope-safety
and hygiene is explained later on in the thesis.

33

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

val x = Console.readInt

code''println(x + 1)''

The given error offers a suggestion: “Perhaps you intended to use a cross-stage reference, which

needs the @squid.lib.crossStage annotation.” This error is reported by Squid in the first

place because situations where cross-stage references occur very often indicate a programmer

error. However, when a cross-stage reference is actually desired, programmers can use the

@crossStage annotation as follows:17

import squid.lib.crossStage

@crossStage val x = Console.readInt

code''println(x + 1)''

Squid will interpret this code as the construction of a program fragment which contains a

reference to a value living at the current stage (the stage during which program fragments are

manipulated). We call such references cross-stage references. Moreover, built-in support for

cross-stage references is called cross-stage persistence.

Note that in the example above, println is not a cross-stage reference, because it is a globally-

accessible symbol (it desugars to the scala.Predef.println selection path). Similarly, the +

method in x + 1 is accessible from the global Int type, so it is statically resolved and does not

incur any cross-stage persistence.

Program fragments containing cross-stage references typically cannot be interpreted outside

of the current runtime environment, because they would lose access to the corresponding

current-stage values. For instance, trying to dump a generated program containing cross-stage

references into a source file will normally not succeed, unless the corresponding current-

stage values happen to be serializable, in which case Squid will generate the corresponding

deserialization code.

The main use of cross-stage persistence is for retaining cross-stage references in program

fragments which are eventually runtime-compiled, a process which we describe next.

1.3.8 Runtime Compilation and Cross-Stage Persistence

After composing a program at run time using quasiquotes, one can then either dump a

stringified version of the code inside a file to be compiled and run later, or runtime-compile

it on the fly, using the .compile method, which produces bytecode that can then be run

efficiently.

After the one-off cost of runtime compilation is amortized, a runtime-compiled function

definition such as ‘val f = code''(x: Int) => x + 1''.compile’ will be as efficient to call as if

it had been defined with ‘val f = (x: Int) => x + 1’.

17Alternatively, Squid supports writing code''println(%(x) + 1)'' to indicate that x is a cross-stage reference.

34

1.3. Code Manipulation with Squid Quasiquotes

Going back to cross-stage persistence, the following example code passes a current-stage

mutable array into a program fragment which is then runtime-compiled. Subsequently

mutating the array shows that the cross-stage reference has indeed been preserved, and still

refers to the same current-stage array instance:

@crossStage val arr = Array(0, 0, 0)

val test = code''(i: Int) => arr(i)''.compile

println(test(0)) // prints 0

arr(0) = 1

println(test(0)) // prints 1

1.3.9 Automatic Function Lifting and Unlifting

Squid supports a convenience feature called automatic function lifting: upon insertion, Squid

automatically lifts any host-language function, of type Code[A] => Code[B], into an object

language function, of type Code[A => B], and immediately inlines it, when possible.

As an example, the following code evaluates to code''(x: Int) => x + 1'':

val f = (y: Code[Int]) => code''$y + 1''

code''(x: Int) => $f(x)''

// or equivalently:

code''$f''

In essence, automatic function lifting has the same semantics as desugaring $f(a) into

${f(code''a'')} when a is pure expression (for some notion of purity — see Section 4.4.2

for details), and into val x = a; ${f(code''x'')} otherwise.

The reverse transformation, from Code[A => B] into Code[A] => Code[B], known as automatic

function unlifting, is also provided by Squid as an implicit conversion.

1.3.10 Higher-Order Pattern Variables

Squid provides a very simple form of higher-order matching [Pfenning and Elliott, 1988,

de Moor and Sittampalam, 2001] which directly mirrors automatic function lifting.

A pattern like case code''(x: Int) => $body: Int'' will not match a lambda where body makes

use of x, while the following pattern will: code''(x: Int) => $f(x): Int'', giving to the ex-

tracted pattern variable f type Code[Int] => Code[Int]. Applying f to some Code[Int] value

will replace all usages that f made of x in the original program fragment.

Note that this effectively reintroduces some of the limitations of HOAS criticized earlier in this

chapter. We will see in later chapters of the thesis how to use a more fine-grained and safer

approach to manipulating bindings and open code, removing these limitations.

35

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

Higher-order pattern variables in quasiquote-based pattern matching were suggested before

us by Sheard et al. [1999], but we do not know of any actual implementation of the idea, beside

ours.

1.3.11 Code Combinators

Quotations are not always the most appropriate way of representing the possible shapes of

program fragments — despite their resolutely semantic flavor (they are more “semantic” than

“syntactic” since they ignore most syntactic details), sometimes Squid quasiquotes are still too

concrete.

For this reason, Squid provides a number of “code combinators” [Chen and Xi, 2005, Kameyama

et al., 2015, Kiselyov et al., 2016] which allow the construction and deconstruction of program

fragments in a more generic way.

The most common combinator, Const, is the constructor for constant values. For instance,

Const(27) is the same as code''27''. This combinator is needed because the syntax of quo-

tations does not allow distinguishing between syntactic categories like constants versus ex-

pressions — i.e., one cannot insert a plain Int as if it were a code value (unless an implicit

conversion is used, but we try to avoid those, as they tend to make metaprograms unnecessar-

ily confusing and slow to compile [Rompf, 2016]).

As another example, LeafCode() is a custom extractor (a Scala construct which can be used in

patterns) defined by Squid to match any expression that has no sub-terms, such as variable

references, constants, and global symbols like scala.math.

There are several other code combinators provided by Squid, such as MethodApplication —

which will be used and explained further in Section 1.5.

1.3.12 Call-By-Name Reduction Example

Using Squid, we can now rewrite the reduce example seen in Section 1.2.2, but in a type-safe

and hygienic way as shown in Figure 1.2.

VariableRef() is an extractor defined by Squid that matches variable references, but does not

extract any useful information from them.

This reduce implementation is not far, in terms of concision, from the one we have seen in

the previous section, but it does much more: notably, it statically makes sure that all quoted

expressions are well-typed, it manipulates bindings in a hygienic way, and it propagates

internal typing information automatically.

36

1.3. Code Manipulation with Squid Quasiquotes

1 def reduce[T: CodeType]: Code[T] => Code[T] = {

2 case Const(n)

3 => Const(n)

4 case x @ VariableRef()

5 => x

6 case code''(${Const(a)}: Int) + (${Const(b)}: Int)''

7 => Const(a + b)

8 case code''(${Const(a)}: Int) + ($b: Int)''

9 => code''${Const(a)} + ${reduce(b)} : T''

10 case code''($a:Int) + ($b: Int)''

11 => code''${reduce(a)} + $b : T''

12 case code''((p: $t0) => $body(p): T)($a)''

13 => body(a)

14 case code''(f: $t0 => T)($a)''

15 => code''${reduce(f)}($a)''

16 case e @ code''(p: $t0) => $body(p)''

17 => e

18 }

Figure 1.2 – The reduce function implemented with Squid quasiquotes.

Extracted types and GADT reasoning

Notice the : T type ascriptions18 on lines 9 and 11. They are necessary to make the program

type check. Without such ascriptions, the unannotated term code''${reduce(a)} + $b'' would

be inferred by Squid to have type Code[Int] instead of the expected Code[T], and the Scala

compiler would complain about a type mismatch (expected: Code[Int]; found: Code[T]).

As we will further discuss in Section 1.4.4, in this particular branch of the pattern match, since

we know that we have matched a term of type Code[T] with a pattern of type Code[Int], we can

conclude that T is a supertype of Int, and we should be able to upcast Code[Int] to Code[T].

However, the Scala type checker has no specific knowledge of Squid pattern quasiquotes, and

so it has no way to know that in this particular pattern branch, T is related to Int.19 Fortunately,

Squid keeps track of such uncovered type relations, and it provides a convenience implicit

conversion called coerce, which is used to convert values between known-to-be-related types.

To do this, the Squid pattern macro compares the type of the quoted pattern with the type of

the scrutinee, recursing into the subcomponents of each type while following the variance of

the corresponding type constructor positions, and recording a list of discovered subtyping

18In this example, notice that T refers to a type, not a type representation, so it should not appear unquoted.
19This is a technical limitation, related both to the way Scala 2 pattern macros are expanded, and to the lacking

support for GADT reasoning in Scala 2 (see Appendix A for more details and explanations).

37

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

relations.

This coerce function is applied implicitly at line 7 thanks to the expected type of reduce, but

expected types do not propagate into quotes (a fundamental limitation of Squid’s macro-based

approach), so lines 9 and 11 need some help. We annotate the expressions inside the quote

with : T so that the coerce function is invoked implicitly while type-checking the expression

(the corresponding synthetic call is then discarded by the quasiquote macro, so it does not

become part of the resulting program fragment).

1.4 Safety Properties of Squid Quasiquotes

In this section, we briefly review Squid’s safety properties and how they are achieved, including

hygiene, scope safety, and type safety. This is only an informal overview; a safer version of

Squid (referred to as Contextual Squid) is formalized and proven safe later, in Chapter 6.

1.4.1 Hygiene

Hygiene problems were historically solved in macro systems such as Scheme by treating

bindings from the original program and bindings introduced by a macro expansion differently,

and by preventing one kind from mixing up with the other [Kohlbecker et al., 1986].

Unfortunately, this does not generalize to program transformations commonly found in

compiler passes, which cannot always be expressed in terms of simple macro expansion. Even

in a language like Scheme, quasiquotes are still fundamentally unhygienic — as a matter of

fact, the high-level facilities provided by Scheme for writing hygienic macros are not based on

quasiquotation, but on more limited and less expressive code manipulation primitives.

As a good example of the tricky nature of hygiene, while developing Squid I discovered a

hygiene bug in the Scala compiler20 that had been left undetected for many years, and that

was spanning several major versions of the compiler. The code:

val a = 100; ({ val a = 0; (c: Int) => c })(a)

used to be transformed into:

val a: Int = 100; { val a: Int = 0; ((c: Int) => c).apply(a) }

during type checking, altering the semantics of the expression. Squid would have rejected the

expression of such an unsound rewriting at compile time of the program transformer.

Squid expression and pattern quasiquotes are statically type-checked and put into a normal

form where symbols are uniquely identified, so that for example code''Math.pow($x,2)'' and

{import Math.pow; code''pow($x,2)''} are equivalent. Moreover, bound variables in the source

20https://issues.scala-lang.org/browse/SI-10170

38

https://issues.scala-lang.org/browse/SI-10170

1.4. Safety Properties of Squid Quasiquotes

program cannot interfere with variables introduced by transformers, because Squid decides

statically when and where variable capture occurs and uses fresh variable identifiers for each

binding, preventing unbound references and unexpected captures.

1.4.2 Scope Safety

The handing of binding decomposition through higher-order patterns variables (see Sec-

tion 1.3.10) gives Squid some similar properties as the higher-order abstract syntax approaches

studied in Section 1.2.1.

Squid’s approach is as scope-safe as PHOAS. But in contrast to PHOAS, it is much simpler (not

needing to encode terms as first-class polymorphic functions) and in contrast to (P)HOAS,

it executes term construction and transformations eagerly, caching the result — i.e., when

a binding is created by a quote, its body is immediately reified, as oppsed to the (P)HOAS

approach where the body remains suspended inside a closure of the Fun constructor.

However, Squid does suffer from the other major limitation of higher-order approaches: its

handling of bindings is limiting and cannot express more advanced binding manipulations

use cases. For example, in Chapter 5, we find a transformation that requires the use of an

unsafe escape hatch from Squid’s HOAS-like system. We will see how to remove the need for

this escape hatch in Chapters 6 and 7, where we see how to make the handling of open terms

much more flexible (dropping the requirement for lexical scoping), while still ensuring that it

is scope-safe and hygienic.

1.4.3 Type Safety

Squid relies on the Scala type checker to check and elaborate all quoted expressions. Therefore,

it benefits from a battle-tested implementation which always agrees with the type system of

the host language, an important property since we reflect the types of program fragments in

their static host-language types.

Moreover, Scala’s support for bounded type abstraction and path-dependent types is instru-

mental in making the type extraction and type-parametric rewriting use cases (explained in

Section 1.3.4) work well and soundly within the rest of the type system.

1.4.4 GADT Reasoning

When pattern matching on code values, one usually does not know all the types that may hide

inside the subparts of the analysed program. So by inspecting code with pattern matching,

one may discover the existence of unknown types, which have to be treated as existential types.

Moreover, as we have seen in Section 1.3.12, some relations between known types may be

discovered when a particular pattern matches. Unsurprisingly, the tricky typing considerations

39

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

which arise from this turn out to be precisely similar to the ones that arise from pattern-

matching on GADTs.

As mentioned before, Squid palliates some of the limitations of the Scala 2 compiler with

respect to so-called GADT reasoning by recording its own type refinement information and

applying its own GADT reasoning. This was implemented based on a new understanding of

GADTs in a language with subtyping like Scala, a subject which is discussed in some more

depth in Appendix A.

1.4.5 Pattern Matching Exhaustiveness

Pattern matching is never checked for exhaustiveness in Squid, which is a known limitation.

In order to exhaustively transform a program using Squid by recursive pattern matching,

one should make sure to use a mix of quasiquotes and code combinators handling all of

the basic constructs of the language: variable and module references, method applications,

lambda abstractions, etc. Surprisingly, there are not so many features to handle in Squid’s

default intermediate representation,21 since many more advanced Scala features are internally

represented in terms of more primitive features like method application (see Section 3.4).

It is interesting to note that in the majority of the metaprogramming use cases I have consid-

ered during my PhD, exhaustive pattern matching on all possible constructs of the language

was never really needed, except in a quoted implementation of pretty-printing — instead, the

bulk of the pattern matching was performed in rewritings or in pattern matching expressions

with default cases.

1.4.6 Safety of Rewriting

Implementing term rewriting correctly in the presence of internal typing and subtyping can

be surprisingly difficult, as the problem is more subtle than it looks.

For instance, a naive approach to applying a rewriting with pattern type T and right-hand side

type U on all the subterms of some term t, one could imagine performing the following steps:

• statically check that U <: T, to ensure that the rewriting is type-preserving;

• for each subterm s of t, check whether s.type <: T; if so, match s with the rewriting’s

pattern, and if there is a match, apply the rewriting.

However, the approach outlined above does not work. To see why, consider the case where

T = U = Any (the top-type of Scala’s subtyping lattice) and where the rewriting is of the form

21Squid supports various underlying intermediate representations, as explained later in Chapter 3. The default
intermediate representation is based on a simple AST structure.

40

1.5. Example: A Quoted ANF Conversion

{ case Const(_: Any) => code''false: Any''}. Using the algorithm above, we would rewrite a

term such as 2 + 2 into false + false, which obviously does not type check.

To correctly perform rewriting, one need to make sure, for each subterm s, not only that

s.type <: T, but also that U should be a subtype of the type at which the subterm s is used in

the original program. Such considerations are naturally complicated by features like type-

parametric rewritings.

Chapter 6 formalizes the general rewriting algorithm (but omits type-parametric rewriting, for

the sake of simplicity) and proves its correctness.

1.5 Example: A Quoted ANF Conversion

Correctly handling bindings is one of the most common pitfalls in program manipulation.

The higher-order pattern variable (HOPV) technique presented in Section 1.3.10, which is

used to match binding constructs, can seem limiting because it extracts functions instead of

directly-inspectable terms. In this section, we show that HOPVs are still flexible enough to

express some interesting transformations.

Intermediate representations (IR) may automatically normalize terms into forms such as

SSA, CPS or ANF, by construction. I call these internally-normalizing representations. In

this chapter, we focus on simple AST representations of programs which are not internally

normalizing. However, we will see in Chapter 3 that Squid quasiquotes can be made to work

on internally-normalizing representations, thanks to Squid’s modular design.

When the IR is not internally-normalizing, it is still possible to perform ANF conversion as a

type-safe, hygienic transformation expressed with quasiquotes. Figure 1.3 presents such a

transformation for our toy lambda calculus with integers and addition, now extended with

if-then-else. Note that rec is the name of the helper function, and not a keyword of the

language.22

As explained in Section 1.3.9, Squid provides implicit conversions to go back and forth be-

tween lifted (Code[A => B]) and unlifted (Code[A] => Code[B]) function types. Using this facility,

variable k on line 20 is lifted in order to be inserted, and value code''join'' on line 26 is unlifted

in order to be passed to rec.

As an example of execution, the program:

val foobar = {

val foo = 123

val bar = 42

(if (true) foo else foo + 2) + bar

}

22I sincerely apologize to all OCaml developers trying to read code using this unsettling naming convention!

41

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

1 def toANF[T: CodeType](trm: Code[T]) =

2 rec(trm)(identity)

3

4 def rec[T: CodeType, R: CodeType]

5 (trm: Code[T])(k: Code[T] => Code[R]): Code[R] =

6 trm match {

7 case Const(_)

8 => code''val c = $trm; $k(c)''

9 case code''val x: $tx = $a; $body(x)''

10 => rec(a)(x => rec(body(x))(k))

11 case code''($a:Int) + ($b:Int)''

12 => rec(a)(a => rec(b)(b =>

13 code''val add: T = $a + $b; $k(add)''))

14 case code''($f: $t0 => T)($a)''

15 => rec(f)(f => rec(a)(a =>

16 code''val app: T = $f($a); $k(app)''))

17 case code''(p: $t0) => ($body(p): $t1)''

18 => code''''''

19 val f: T = (p: $t0) => ${toANF(body(code''p''))}

20 $k(f)

21 ''''''

22 case code''if ($cnd) $thn else $els''

23 => rec(cnd)(cnd =>

24 code''''''

25 val join = $k

26 if ($cnd) ${ rec(thn)(code''join'') }

27 else ${ rec(els)(code''join'') }

28 '''''')

29 case _ => k(trm)

30 }

Figure 1.3 – Type-safe, hygienic ANF conversion.

foobar + 1

is transformed by the algorithm of Figure 1.3 into:

val c_0 = 123

val c_1 = 42

val c_2 = true

val join_7 = ((lifted_3: scala.Int) => {

val add_4 = lifted_3.+(c_1)

val c_5 = 1

42

1.5. Example: A Quoted ANF Conversion

val add_6 = add_4.+(c_5)

add_6

})

if (c_2)

join_7(c_0)

else {

val c_8 = 2

val add_9 = c_0.+(c_8)

join_7(add_9)

}

Notice the hygienic generation of fresh names by Squid in the end program (e.g., add_4 and

add_6).

We can generalize our approach to handling other language constructs in a straightforward

way. More interestingly, generalizing the approach to handling arbitrary computations23 can

also be done by replacing the cases for integer addition and function application with case

MethodApplication(ma), which is a helper extractor defined by Squid. This extracts an object

ma capable of representing any method application, which can then be rebuilt by applying a

type-preserving transformation on each of its arguments, as follows:

case MethodApplication(ma) =>

ma.rebuildCPS([T: CodeType, R: CodeType] => rec[T, R])(r =>

code''val tmp = $r; $k(tmp)'')

The rebuildCPS method takes a polymorphic function (again, here using Scala 3 syntax for

polymorphic lambdas) to be applied to each argument passed in the matched method applica-

tion. This function is in continuation-passing style, which usefully gives it the same shape as

rec itself, and which is necessary to introduce variable bindings along with each transformed

argument. Method rebuildCPS also takes a continuation argument that we use to bind the

result of the method application to a tmp variable.

It is interesting to compare our implementation of A-Normalization to the original Scheme

algorithm by [Flanagan et al., 1993]. The continuation-based structure is essentially the same,

and the size of the program (19 lines of code in their case) is in the same ballpark. However,

our version has the additional advantage to be type-safe and to propagate internal typing

(which they do not). Moreover, our version is hygienic by construction, while they need to use

the error-prone “gensym discipline” of manually generating fresh names to avoid introducing

name clashes. In our case, Squid takes care of these low-level details automatically.

23Most Scala computational forms are represented as method calls by Squid’s default intermediate representation,
as explained in Section 3.4.

43

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

@macroDef

def naivePower(base: Double, exp: Int): Double =

// in this scope, base: Code[Double] and exp: Code[Int]

exp match {

case Const(exp) =>

var cur = code''1.0''

for (i <- 1 to exp) cur = code''$cur * $base''

cur

case _ =>

code''Math.pow($base, $exp.toDouble)''

}

Figure 1.4 – Naive version of the power macro.

1.6 Type-Safe & Hygienic Macros for Scala

In this section, we briefly describe another feature of Squid, which acts like an alternative to

the current Scala macros. As a motivating example, consider the typical power(x, n) function

that raises number x to the nth power. We want to write a power macro which expands into a

series of multiplications when the exponent argument received is a known constant.

A first version is shown in Figure 1.4. The macroDef annotation transforms a method definition

into a macro. Like in Scalameta [Burmako, 2017b], the effect of that annotation is that within

the body of the annotated function, each parameter declared as p: T is reinterpreted as a piece

of code with type p: Code[T] which can be inspected using pattern matching and rewriting.

The macro in Figure 1.4 is “naive” in that it will duplicate the base code, resulting in potentially

unnecessary computations and even in changes in program semantics — indeed, program

naivePower(readInt,2) will expand into 1.0 * readInt * readInt. To correct this flaw, we

have to first assign the value of base to a temporary variable, and duplicate a references to

that variable instead. The corrected macro, which binds base to an intermediate variable, is

presented in Figure 1.5.

1.7 Related Work

We now review some related work.

1.7.1 Existing Quasiquotation Systems

Lisp-style. While the idea of quasiquotation is old [Quine, 1940], Lisp was the language that

pioneered its usage as a metaprogramming construct [Bawden, 1999]. Lisp treating code

as “just” data meant that no special restrictions or mechanisms were in place to prevent

44

1.7. Related Work

@macroDef

def power(base: Double, exp: Int): Double =

exp match {

case Const(exp) =>

code''val b = $base; ${

var cur = code''1.0''

for (i <- 1 to exp) cur = code''$cur * b''

cur

}''

case _ =>

code''Math.pow($base, $exp.toDouble)''

}

Figure 1.5 – Correct definition of the power macro.

common errors associated with code manipulation, such as unintended variable capture (lack

of hygiene), scope extrusion and type mismatches (lack of static typing). Scheme introduced

facilities to write hygienic macros [Kohlbecker et al., 1986, Abelson et al., 1991, Culpepper

and Felleisen, 2004] using safer constructs which separate identifiers appearing at different

macro expansion phases (e.g., distinguishing identifiers introduced by a macro from those

present in the original program). However, these constructs are much more restrictive than

quasiquotation, reducing the expressiveness of this new macro implementation mechanism.

Code quasiquotation in Scheme remains unhygienic, so it is mostly used as a lower-level

building block. Rhiger [2012b] proposed a finer-grained hygiene system for Scheme-like code

quasiquotes, but it does not support pattern matching on code values.

MetaML-style. The idea of code quasiquotation was picked up in a statically-typed context by

Taha and Sheard [2000] with MetaML (and subsequently MetaOCaml [Taha, 2004]) to enable

multi-stage programming (MSP). The approach was ported to compile-time macros by Ganz

et al. [2001] with MacroML. In these systems, quasiquotes can only generate and not inspect

code — though MacroML has some limited form of pattern–template expansion that borrows

from Scheme’s hygienic macro system. This style of quasiquotation is provided as an extension

of the host language’s type system, which provides static guarantees about the code generated

by quasiquotes: it is well-typed and well-scoped, except in the presence of imperative effects,

which can lead to scope extrusion (cf. Section 1.1.3).

Template Haskell. With Template Haskell (TH), Sheard and Jones [2002] introduced compile-

time metaprogramming to Haskell using quasiquotes which had some notions of type aware-

ness and hygiene, but could easily generate ill-typed and ill-scoped code, therefore providing

weaker guarantees than MetaOCaml. Typed Template Haskell (TTH) later added type-safe

quasiquotes similar to MetaOCaml. Neither MetaOCaml nor TH/TTH support term decon-

struction via quasiquotes in pattern matching.

45

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

Quasiquotation in Haskell, Scala, and Squid. A general quasiquotation syntax (not restricted

to code quasiquotes) was introduced in Haskell by Mainland [2007]. Since this new quasiquo-

tation syntax supports patterns, it could in principle be used to implement quasiquote-based

code pattern matching in Haskell, but this has never been done (to the best of my knowledge).

A similar general quasiquotation system exists in Scala (but is confusingly referred to as a

“string interpolator” syntax) and is used by the Scala Reflection API to provide Lisp-like un-

typed code quasiquotes with support for pattern matching [Shabalin et al., 2013]. This is the

very system used by Squid, with the difference that Squid uses type-aware macros in order to

extend Scala’s type system (similarly to how MetaML-style quasiquotation extends ML’s type

system), enabling static type checking. The Scala reflection API has an alternative type-safe

and hygienic reify/splice system that can be used for program generation (reify acts like

quotation and splice like antiquotation), but that system does not allow the expression of

open code and does not support pattern matching, greatly limiting its usefulness — for in-

stance, while it can be used to implement the flawed macro in Figure 1.4, it cannot be used to

implement the correct version in Figure 1.5.

Other languages. Several other languages such as F# [Syme, 2006] support different flavors

of quasiquotes that fall into the categories defined above. Table 1.1 summarizes the features

supported by quasiquotes in Squid and in several other systems. The Stratego snippet uses an

example object language, but Stratego is not tied to any particular language. The asterisk (*) on

the “well-scoped” and “hygienic” criteria for TTH denotes that these properties are achieved

by forbidding any effects in the code generator, which can be restrictive and prevents, e.g.,

effectful let-insertion [Kameyama et al., 2015].

1.7.2 Unification of Runtime and Compile-time Metaprogramming

Squid provides the same type-safe quasiquote-based interface to manipulate code at run

time and at compile time. At run time, Squid is typically used for the purpose of runtime

compilation (the usual practice in traditional multi-stage programming), or for dumping the

resulting code in source files to be compiled later. At compile time, Squid can be used to

implement macros in a type-safe and hygienic way (as we saw in Section 1.6). The underlying

infrastructure Squid uses to implement these features relies heavily on the incredible work

done by Burmako [2013, 2017a] to make the Scala Reflection API usable both at run time and

at compile time.

Stucki et al. [2018] later implemented a Squid-style quasiquote API for the new Dotty compiler,

providing similar dual run time and compile time capabilities. They introduced a level-

counting “Phase Consistency Principle” which corresponds to the usual notion of quotation

depth used in MetaOCaml and Squid to define valid cross-quotation references (presented in

Section 1.3.6). On the other hand, their approach does not support any cross-stage persistence,

unlike Squid (as shown in Section 1.3.7). It should be noted that because of limitations with

Scala macros (explained later in Section 3.9.2), Squid originally did not fully support cross-

46

1.7. Related Work

quotation references, and instead relied on a distinct notion of non-lexically-scoped free

variables which we develop in Chapter 6.

1.7.3 Type-Safe Code Manipulation

Type-safe code manipulation approaches focusing on multi-stage programming usually do not

permit the inspection of existing code (the purely generative approach), or they lose well-typed

and well-scoped guarantees while doing so, like in LMS [Rompf and Odersky, 2010]. While

purely generative staging is more powerful than one may think, especially when coupled with

effects [Kameyama et al., 2015, Kiselyov et al., 2016], our experience in using these and related

systems is that code analysis and transformation using first-class code inspection result in

programs which are often simpler and more concise, and therefore also easier to write and

understand. This aspect is explained in more detail in Chapter 4.

Guarantees about manipulated programs have been encoded via the host language’s type

system using techniques such as generalized algebraic data types (GADTs) [Xi et al., 2003,

Cheney and Hinze, 2003], higher-order abstract syntax (HOAS) [Pfenning and Elliott, 1988],

applicative functors and monads [Kameyama et al., 2015], and De Bruijn indices [Carette

et al., 2009, Sheard et al., 2005, Chen and Xi, 2005]. As we have seen in Section 1.2.1, these

are often heavyweight approaches — they impose a significant cost on domain experts, who

have to deal with complicated type encodings, whereas they would prefer to just express

code transformations as simple rewrite rules. In particular, we found that GADTs are hard to

manipulate in systems like Haskell and Scala [Giarrusso, 2013, Rompf, 2016].

“Type-based embedding” systems like LMS [Rompf and Odersky, 2010, Rompf, 2016] use

implicit conversions to compose code fragments with minimal visual clutter, but it is a compli-

cated and hard-to-understand approach [Jovanovic et al., 2014] which is also not applicable to

code pattern-matching (at least in Scala), and requires the manual definition of lots of implicit

conversion machinery (see also Section 5.8.2).

1.7.4 Program Transformation

Stratego [Visser, 2002] is a system of composable program transformations that can express

rewrite rules using the concrete object syntax, which makes it closely related to quasiquote-

based approaches. The main difference with our approach is that Stratego deals with external

DSLs, and that its transformations are not statically typed, so they only offer syntactic guaran-

tees about generated programs. Several approaches base program analysis and transformation

on variants of the visitor pattern [Hudak, 1998, Ureche et al., 2015]. They are appropriate

for a certain range of transformations that only access one level of program trees, but scale

poorly to more advanced use-cases.24 Being able to pattern-match and discover the shape of

subprograms, which cannot be easily emulated with the visitor pattern, is an invaluable asset,

24As discussed in private communication with the main author [Ureche et al., 2015], March 2016.

47

Chapter 1. Statically-Typed Code Manipulation with Analytic Quasiquotes

making analyses and rewritings both concise and powerful. GHC rewrite rules [Peyton Jones

et al., 2001] provide a simple interface for domain exerts to write transformations, but they are

limited to simple rewritings (syntax expansion similar to hygienic macros in Scheme).

In this chapter, we have focused on manipulating expressions. Mor general approaches to

program transformation also deal with higher-level constructs like classes and modules. We

see how Squid can be generalized to manipulating classes through staged classes in Chapter 8.

48

2 Application: A Polymorphic Yet Efficient
Linear Algebra Library

Many different data analytics tasks boil down to linear algebra primitives. However, in practice

data scientists often use specialised libraries for each different type of workload. This is mainly

motivated by performance concerns, as specialized libraries are often much more efficient

than generic ones.

In this chapter, we present PILATUS, a polymorphic iterative linear algebra language, appli-

cable to various types of data analytics workloads. PILATUS relies on Squid to achieve good

performance despite its polymorphic nature.

The design of the PILATUS domain-specific language is inspired by both mathematics and

programming languages: its basic constructs are borrowed from abstract algebra, while the

key technology behind its polymorphic design is the tagless final approach (a.k.a. polymorphic

embedding/object algebras).

This design enables us to change the behaviour of arithmetic operations to express matrix

algebra, graph algorithms, logical probabilistic programs, and differentiable programs.

Crucially, the polymorphic design of PILATUS allows us to use multi-stage programming and

rewrite-based optimisation to recover the performance of specialised code, supporting fixed

sized matrices, algebraic optimisations, and fusion.

2.1 Introduction

It is well-known that many problems can be formulated using linear algebra primitives. These

problems come from various data analytics domains including machine learning, statistical

data analytics, signal processing, graph processing, computer vision, and robotics.

Despite the fact that all these workloads could use a standard unified linear algebra library, in

practice many different specialised libraries are developed and used for each of these workload

types [Carette and Kiselyov, 2011]. This is mainly due to the performance-critical nature

of such data analytics workloads: in order to satisfy their performance requirement, such

49

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

workloads use hand-tuned specialised libraries implemented using either general-purpose or

specialised domain-specific programming languages.

In this chapter, we demonstrate the PILATUS language (Polymorphic Iterative Linear Algebra,

Typed, Universal, and Staged). PILATUS is a polymorphic domain-specific language (DSL), in

the sense that it can support various workloads, such as standard iterative linear algebra tasks,

graph processing algorithms, logical probabilistic programs, and linear algebra programs

relying on automatic differentiation. By default, this polymorphic nature causes a significant

performance overhead. We demonstrate how to remove this overhead by using safe high-

level meta-programming and compilation techniques, and more specifically multi-stage

programming (MSP, or staging) [Taha and Sheard, 2000, Taha, 2004].

This chapter uses the tagless final approach [Kiselyov, 2012, Carette et al., 2009] (also known

as polymorphic embedding [Hofer et al., 2008] and object algebras [Oliveira and Cook, 2012])

in order to embed [Hudak, 1996] the PILATUS DSL in the Scala programming language. This

technique allows embedding an object language in a host language in a type-safe manner. In

addition, this approach allows multiple semantics for the embedded DSL (EDSL). Based on

this feature and by carefully choosing the abstractions involved in defining PILATUS (such as

semi-ring/ring, module, and linear map structures), we provide several evaluation semantics.

More specifically, we allow several variants of a linear algebra language, such as: a standard ma-

trix algebra language, a graph language for expressing all-pairs reachability and shortest path

problems, a logical probabilistic programming language, and a differentiable programming

language. The polymorphic aspect of PILATUS is also essential for the seamless application

of staging, and to express different optimised staged variants: fixed size matrices, deforesta-

tion [Wadler, 1988, Gill et al., 1993, Svenningsson, 2002, Coutts et al., 2007], and algebraic

optimisations.1

Next, we motivate the need for PILATUS (Section 2.2), and we make the following contributions:

• We present PILATUS, a polymorphic EDSL in Section 2.3. This DSL uses the notion of

semi-rings and rings (Section 2.3.2) in order to define operations on each individual

element of a vector and a matrix. Furthermore, PILATUS uses the notion of pull arrays

(Section 2.3.5) for defining a collection (or array) of elements.

• We present four different languages that are implemented by providing a concrete inter-

preter for PILATUS in Section 2.5: (1) a standard matrix algebra language (Section 2.5.1);

(2) a graph DSL (Section 2.5.2); (3) a logical probabilistic linear algebra language (Sec-

tion 2.5.3); and (4) a differentiable linear algebra language (Section 2.5.4).

1We used Scala as the implementation language for PILATUS, but other programming languages with support
for lambda expressions and multi-stage programming could be used as well; most of the techniques presented
in this chapter can also be implemented in Haskell, OCaml, and Java for example. For expressing rewrite-based
optimisations, either the multi-stage programming framework should support code inspection (as is the case with
Squid [Parreaux et al., 2017b], which we use), or the developer is responsible for implementing/extending the
intermediate representations (as with frameworks like LMS [Rompf and Odersky, 2010]).

50

2.2. Motivation

• We present our use of multi-stage programming to improve the performance of PILATUS

programs by creating a staged language (Section 2.6.2) for fixed size matrices (Sec-

tion 2.6.5), performing algebraic optimisations (Section 2.6.4), and performing fusion

(Section 2.6.6).

• We show the impact of using multi-stage programming on the performance of appli-

cations written using PILATUS in Section 2.7. Overall, the implementation of PILATUS

consists of around 400 LoC supporting all the features presented in this chapter. PILATUS

uses the Squid [Parreaux et al., 2017b] type-safe meta-programming framework for its

multi-stage programming facilities, which is the only external library dependency.

Finally, we present the related work in Section 2.8 and conclude the chapter in Section 2.9.

2.2 Motivation

Apart from standard matrix algebra tasks, many numerical workloads in various domains

can be expressed using linear algebra primitives [Dolan, 2013]. Among such examples are

various graph problems such as reachability and shortest path. Figure 2.1 shows as example

the reachability problem on both deterministic and probabilistic graphs.

Despite the expressiveness of linear algebra, there are many different libraries specialized for

each particular data analytics task. This is because of two main reasons. First, most existing

linear algebra libraries do not define the interfaces for extending their usage for the problems

in other domains. Second, despite some efforts on providing abstract and extensible linear

algebra libraries [Dolan, 2013], such analytical tasks are performance critical. As a result, there

should be hand-tuned and specialized libraries for each particular task. As an example, for

graph problems, rather than having the linear-algebra-based solutions presented in Figure 2.1,

the library developers prefer to provide specialized graph libraries for performance reasons.

This chapter aims to solve both these issues by combining ideas from mathematics and

programming languages. The first issue is tackled by defining a polymorphic linear algebra

language by using abstractions from abstract algebra, including the ring, module, and lin-

ear map structures for expressing scalar values, a vector of values, and a matrix of values,

respectively. Furthermore, for implementing these abstract interfaces, we use the tagless-final

approach [Carette et al., 2009, Kiselyov, 2012], a well-known technique from the programming

language community.

The examples of Figure 2.1 show matrices of elements of various types, for which the addition

and multiplication operations can be assigned various meanings. Figure 2.1a shows the

usage of linear algebra primitives for expressing graph reachability problems. To do so, the

addition and multiplication operators are instantiated to boolean disjunction and conjunction,

respectively. For expressing the reachability problems on probabilistic graphs, these two

operators are instantiated with the disjunction and conjunction on boolean distributions, as

51

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

21 3

4

1
Reachability with 2 hops

2 3

4
0 0 1 1
1 0 1 1
0 1 0 0
0 0 1 0

⊗


0 0 1 1
1 0 1 1
0 1 0 0
0 0 1 0

=


0 1 1 0
0 1 1 1
1 0 1 1
0 1 0 0

M2,2 = (1∧0)∨ (0∧0)∨ (1∧1)∨ (1∧0) = 1

(a) The reachability problem in a graph can be expressed using matrix-matrix multiplication of the
adjacency matrix of a graph. Instead of using the standard addition operator, here we use the boolean
disjunction, and instead of the multiplication operator, we use the boolean conjunction.

21 3

4

0.1

0.5

0.3

0.6

0.8

0.2

0.9
1

Reachability with 2 hops
2 3

4

0.1

0.09 0.19

0.4

0.27

0.18
0.54

0.72

0.27


0 0 0.1 0.5

0.8 0 0.3 0.6
0 0.9 0 0
0 0 0.2 0

⊗


0 0 0.1 0.5

0.8 0 0.3 0.6
0 0.9 0 0
0 0 0.2 0

=


0 0.09 0.1 0
0 0.27 0.19 0.4

0.72 0 0.27 0.54
0 0.18 0 0


(b) The reachability problem in a probabilistic graph can also be expressed using matrix-matrix
multiplication of its adjacency matrix. Each element of the adjacency matrix represents the presence
of a node with probability p. The addition and multiplication operators correspond to disjunction
and conjunction of two boolean distributions, respectively.

f (x) =


0 0 1 x +3
8 0 2x −1 6
0 3x +3 0 0
0 0 x 0


2

=


0 3x +3 x2 +3x 0
0 6x2 +3x −3 6x +8 8x +24

24x +24 0 6x2 +3x −3 18x +18
0 3x2 +3x 0 0



f ′(x) =


0 3 2x +3 0
0 12x +3 6 8

24 0 12x +3 18
0 6x +3 0 0

 f (2) =


0 9 10 0
0 27 20 40

72 0 27 54
0 18 0 0

 f ′(2) =


0 3 7 0
0 27 6 8

24 0 27 18
0 15 0 0




0�0 0�0 1�0 5�1
8�0 0�0 3�2 6�0
0�0 9�3 0�0 0�0
0�0 0�0 2�1 0�0

⊗


0�0 0�0 1�0 5�1
8�0 0�0 3�2 6�0
0�0 9�3 0�0 0�0
0�0 0�0 2�1 0�0

=


0�0 9�3 10�7 0�0
0�0 27�27 20�6 40�8

72�24 0�0 27�27 54�18
0�0 18�15 0�0 0�0


(c) The derivative of a matrix with respect to the variable x can also be expressed using linear algebra
operations. The dual number technique represents each element of a matrix as the pair v�d of the
actual value v and the value of its derivative d . Accordingly, the addition and multiplication operators
are the corresponding ones on dual numbers.

Figure 2.1 – Example of problems expressed using different interpretations of linear algebra
primitives.52

2.3. PILATUS Design

shown in Figure 2.1b. Finally, Figure 2.1c shows the process of computing the derivative of

an example matrix expression with respect to a given variable. To do so, each element of the

matrix should be represented as a pair of numbers, known as dual numbers, where the first

component is the actual value of that expression and the second component is the value of its

derivative with respect to the given variable. As an example, the dual number representation

for the element of the 2nd row and 3r d column is represented as 3� 2, meaning that the

actual value of this element at x = 2 is 2x −1 = 3, whereas its derivative value is (2x −1)′ = 2.

Similarly, the addition and multiplication operators are instantiated with the corresponding

ones operating on dual numbers, which implement the derivative rules.

All of these use cases can be easily represented as PILATUS programs, parameterized over the

meaning one wants to use for a particular domain.

The second issue is the performance overhead caused by the polymorphic nature of the

language, due to the abstractions introduced in order to solve the first issue. We use multi-

stage programming (also known as staging) to compile away the overhead corresponding to

these abstractions. Moreover, by using a staging framework with support for rewriting, we can

also implement algebraic optimization rules for further improving performance.

Next, we give more details on the design of PILATUS.

2.3 PILATUS Design

In this section, we first give an overview of the tagless final approach. Then, we define the

polymorphic interface for the semi-ring and ring structures. Afterwards, we show an abstract

interface for vectors and matrices using the mathematical notions of modules and linear

maps. Finally, we define the interface for a functional encoding of an array of elements and

control-flow constructs.

2.3.1 Tagless Final

Tagless final [Carette et al., 2009, Kiselyov, 2012] (also known as polymorphic embedding [Hofer

et al., 2008] and object algebras [Oliveira and Cook, 2012] in the context of object-oriented pro-

gramming languages) is a type-safe approach for embedding [Hudak, 1996] domain-specific

languages. This approach solves the expression problem [Wadler, 1998] by encoding each DSL

construct as a separate function, and leaving their interpretation abstract.

There are different ways of implementing this approach: (1) in languages like Haskell, one can

use type classes [Carette et al., 2009, Kiselyov, 2012]; (2) in OCaml, one can use the module

system [Carette et al., 2009, Kiselyov, 2018]; (3) in languages like Java, one can use the object-

oriented features [Oliveira and Cook, 2012]; and (4) in Scala one can use either type classes or

mixin composition (also known as the cake pattern) [Hofer et al., 2008, Rompf and Odersky,

2010].

53

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

In this chapter, we follow the approach based on type classes. Consider a DSL with two

constructs, one for creating an integer literal, and the other for adding two terms. The tagless

final interface for this DSL is as follows:

trait SimpleDSL[Repr] {

def lit(i: Int): Repr

def add(a: Repr, b: Repr): Repr

}

The code above defines a trait (similar to an interface in Java or a module signature in ML). The

SimpleDSL trait is parameterised with a Repr type, which is the type of the objects manipulated

by the DSL. This trait contains one abstract method for each constructs of the DSL, here lit

and add.

For convenience, we also typically define free-standing functions for writing programs in the

DSL while omitting the particular DSL implementation used:

def lit[Repr](i: Int) (implicit dsl: SimpleDSL[Repr]): Repr =

dsl.lit(i)

def add[Repr](a: Repr, b: Repr)(implicit dsl: SimpleDSL[Repr]): Repr =

dsl.add(a, b)

These functions require an implicit instance of the SimpleDSL trait, and redirect to the imple-

mentations of the corresponding methods in that instance. In Scala, implicit parameters need

not be specified by users at each call site; indeed, they can be filled in automatically by the

compiler, based on their expected type. Implicits are the mechanism used to implement type

classes in Scala [Oliveira et al., 2010].

One can then define generic programs in the DSL, as follows:

def myProgram[Repr](implicit dsl: SimpleDSL[Repr]) = add(lit(2), lit(3))

Which can also be written using the following shorthand syntax:

def myProgram[Repr: SimpleDSL] = add(lit(2), lit(3))

Then, one can specify a particular evaluation semantics for this program. As an example, the

following type class instance defines an evaluator/interpreter for SimpleDSL:

implicit object SimpleDSLInter extends SimpleDSL[Int] {

def lit(i: Int): Int = i

def add(a: Int, b: Int): Int = a + b

}

54

2.3. PILATUS Design

Evaluating the example program above in the REPL with this evaluation semantics, which is

automatically picked up by the compiler based on the requested type Int, results in:

scala> myProgram[Int]

result: Int = 5

Rather than directly evaluating DSL programs, one can also represent the programs as strings.

Below is a type class instance that stringifies programs in our DSL:2

implicit object SimpleDSLStringify extends SimpleDSL[String] {

def lit(i: Int): String = i.toString

def add(a: String, b: String): String = s''$a + $b''

}

Evaluating the same program with the stringification evaluation semantics results in:

scala> myProgram[String]

result: String = ''2 + 3''

PILATUS defines a separate type class for each category of the language constructs (e.g., semi-

rings, rings, modules, linear maps, etc.), as we show next. We will introduce different evaluation

semantics for this DSL by providing type class instances. These evaluation semantics are both

interpretation-based (cf. Section 2.5) and compilation-based (cf. Section 2.6).

2.3.2 Semi-Ring and Ring

A semi-ring is defined as a set of numerical values R, with two binary operators + and ×, and

two elements 0 (additive identity) and 1 (multiplicative identity), such that for all elements a,

b, and c in R the following properties hold:

• a +0 = a

• a +b = b +a

• (a +b)+ c = a + (b + c)

• a ×1 = 1×a = a

• a ×0 = 0×a = 0

• (a ×b)× c = a × (b × c)

• a × (b + c) = (a ×b)+ (a × c)

2String interpolation syntax s"...$x..." is equivalent to "..."+ x + "...".

55

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

trait SemiRing[R] {

def add(a: R, b: R): R

def mult(a: R, b: R): R

def one: R

def zero: R

}

trait Ring[R] extends SemiRing[R] {

def neg(a: R): R

def sub(a: R, b: R): R = add(a, neg(b))

}

object Pilatus {

def add[R](a: R, b: R)(implicit sr: SemiRing[R]): R = sr.add(a, b)

// ... other boilerplate methods elided for brevity

}

Figure 2.2 – The tagless final interface for semi-rings and rings.

• (a +b)× c = (a × c)+ (b × c)

A ring is a semi-ring with an additional additive inverse operator (−) such that for all elements

a in R , a+(−a) = 0. The binary operator for subtraction can be easily defined as a−b = a+(−b).

The tagless final encoding of semi-rings and rings is shown in Figure 2.2. There are six DSL

constructs corresponding to addition, multiplication, negation, subtraction, one, and zero.

These methods are redirected to the implementation of the corresponding operations of the

SemiRing and Ring type classes. The implementation of the methods of these type classes are

left abstract. These definitions will be given by each concrete semantics, which should make

sure that the aforementioned properties hold for the elements of type R.

2.3.3 Module

A mathematical module is a generalization of the notion of a vector space. A module over a

particular semi-ring is realised using an addition operator for two modules (similar to vector

addition), and a multiplication between a semi-ring element and the module (similar to

scalar-vector multiplication). For all elements a and b in a semi-ring R with the multiplicative

identity 1R , and the elements u and v in a (left-)module M , the following properties hold:

• a · (u + v) = a ·u +a · v

• (a +b) ·u = a ·u +b ·u

56

2.3. PILATUS Design

trait Module[V, R, D] {

implicit val sr: SemiRing[R]

implicit val dr: SemiRing[D]

def dim(a: V): D

def add(a: V, b: V): V

def smult(s: R, a: V): V

}

object Pilatus {

// ...

def dim[V, D](a: V)(implicit m: Module[V, _, D]): D = m.dim(a)

// ... other boilerplate methods elided for brevity

}

Figure 2.3 – The tagless final interface for modules.

• (a ×b) ·u = a · (b ·u)

• 1R ·u = u

Additionally, the dimension of a finite module generalises the notion of the number of basis

vectors3 representing a vector.

Figure 2.3 shows the tagless final interface for modules. The Module type class has three type

parameters: (1) V specifies the type of the underlying vector representation; (2) R specifies

the type of each element of the vector; and (3) D specifies the type of the dimension of the

underlying vector. Note that all the elements of type R and D support semi-ring operations,

thanks to the two type class instances sr and dr. Furthermore, the Module type class supports

the following operations: (1) the dim method returns the dimension of the given module; (2)

the add method computes the result of the addition of two module elements; and (3) the smult

method computes the multiplication of a semi-ring element and a given module.

2.3.4 Linear Map

A linear map is a transformation between two modules, which preserves the addition and the

scalar multiplication operations of the given module. Assume the linear map M transforming

module V to module W , and both modules are over the semi-ring R. Then for all elements

f in the linear map M , u and v from module V , and a from the semi-ring R, the following

properties hold:

3The basis vectors are linearly independent vectors (none of them can be expressed as a linear combination of
the other ones) that can be used to express every vector as a unique linear combination of them.

57

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

trait LinearMap[M, V, R, D] {

implicit val rowModule: Module[V, R, D]

implicit val sr: SemiRing[R]

implicit val dr: SemiRing[D]

def apply(m: M, v: V): V

def compose(m1: M, m2: M): M

def add(m1: M, m2: M): M

def dims(mat: M): (D, D)

}

object Pilatus {

// ...

def apply[M, V](m: M, v: V)(implicit lm: LinearMap[M, V, _, _]): V =

lm.apply(m, v)

// ... other boilerplate methods elided for brevity

}

Figure 2.4 – The tagless final interface for linear maps.

• f (u + v) = f (u)+ f (v)

• f (a ·u) = a · f (u)

Similar to functions, linear maps have two operations. First, a linear map can be applied

to a module returning a transformed module, behaving similar to the function application.

Second, a linear map can be composed with another linear map resulting in another linear

map, behaving similarly to function composition.

Figure 2.4 shows the tagless final encoding of linear maps. Here, we only consider finite linear

maps transforming two finite modules, and we assume that both modules are over the same

semi-ring (represented with type R, and the sr type class instance) with the same module

type representation (represented with the type V). From a vector/matrix point of view, the

compose and apply methods correspond to the matrix-matrix and matrix-vector multiplication,

respectively. The add method corresponds to the matrix addition operator, and the dims

construct returns the dimension of the input and output modules, which is represented as a

tuple.

2.3.5 Pull Array and Control-Flow Constructs

Using a pull array is a well-known approach in the high-performance functional programming

community for a functional encoding of arrays [Svensson and Svenningsson, 2014, Anker and

Svenningsson, 2013, Claessen et al., 2012]. In this representation, an array is defined using two

58

2.4. Matrix Algebra

trait PullArrayOps[A, E, L] {

def build(len: L)(f: L => E): A

def get(arr: A)(i: L): E

def length(arr: A): L

}

trait Looping[L] {

def forloop[S](z: S)(n: L)(f: (S, L) => S): S

}

object Pilatus {

// ...

def build[A, E, L](len: L)(f: L => E)(implicit p: PullArrayOps[A, E, L]): A =

p.build(len)(f)

// ... other boilerplate methods elided for brevity

}

Figure 2.5 – The tagless final interface for pull arrays and control-flow constructs.

components: (1) the length of the array; and (2) a function mapping an index to the value of

the corresponding element in that array.

Figure 2.5 demonstrates the tagless final encoding of pull arrays and looping constructs. The

build method is responsible for constructing a pull array of size len, in which the i th element

is f(i), indexed from 0 to len - 1. The get method returns the i th element of the array arr,

whereas the length method returns the size of the given array. Finally, the forloop method is

meant for implementing recursion and iteration. More specifically, this function starts from

the state z, iterates n times (from 0 to n - 1), and at the i th step, updates the state s with

f(s, i).

2.4 Matrix Algebra

In this section, we build the constructs of matrix algebra based on the mathematical notions

explained in the previous section. First, we show the construction of vector constructs using

modules and pull arrays. Then, we demonstrate the matrix constructs by using linear maps

and vectors.

2.4.1 Vector: Module + Pull Array

A vector (more specifically, a dense vector where most elements are non-zero) can be seen as

a module the elements of which are stored as a pull array. Given that each element of a vector

form a semi-ring, we can define the addition, element-wise multiplication, and dot product of

two vectors.

59

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

trait Vector[V, R, D] extends Module[V, R, D] {

implicit val pa: PullArrayOps[V, R, D]

implicit val looping: Looping[D]

def dim(a: V): D = pa.length(a)

def add(v1: V, v2: V): V = zipMap(v1, v2, sr.add)

def smult(s: R, a: V): V = map(a, e => sr.mult(s, e))

def map(v: V, op: R => R): V = pa.build(pa.length(v))(i => op(pa.get(v)(i)))

def zipMap(v1: V, v2: V, op: (R, R) => R): V =

pa.build(pa.length(v1))(i => op(pa.get(v1)(i), pa.get(v2)(i)))

def elemMult(v1: V, v2: V): V = zipMap(v1, v2, sr.mult)

def dot(v1: V, v2: V): R =

looping.forloop(sr.zero)(pa.length(v1))((acc, i) =>

sr.add(acc, sr.mult(pa.get(v1)(i), pa.get(v2)(i))))

/* sum and norm are omitted for brevity */

}

Figure 2.6 – The tagless final implementation for (dense) vectors.

The implementation for the tagless final encoding of a vector, as well as the mentioned

methods are given in Figure 2.6. The V type parameter specifies the underlying vector type

representation, the R type parameter specifies the type of each element of the vector, and the D

type parameter is the type of the dimension of the underlying vector.

The zipMap method, receives two vectors v1 and v2 as input and creates a vector of the same

size,4 for which each element is constructed by applying the binary operator op on the cor-

responding elements from v1 and v2. The add and elemMult are constructed by passing the

addition and multiplication functions of the underlying semi-ring of elements to the zipMap

method. The map method applies a given function to each element of the input vector and pro-

duces a vector of the same size with the transformed elements as output. The smult method is

implemented using this method. Finally, the dot method computes the dot product of two

vectors v1 and v2 by first computing the element-wise multiplication of these vectors, and

then adding the elements of this intermediate vector.

Next, we use the mentioned vector data structure together with linear maps in order to define

a matrix data-structure.

2.4.2 Matrix: Linear Map + Vector

Figure 2.7 shows the implementation of matrices (more specifically, dense matrices) using

linear maps and vectors. The M type parameter specifies the type of the underlying matrix

4We assume that the input vectors have the same size for the sake of simplicity. In practice, this property can be
enforced statically using Scala’s powerful implicit programming capabilities, and singleton types.

60

2.4. Matrix Algebra

representation, V represents the type of each row-vector and column-vector of the matrix, R

denotes the type of each element of the matrix, and D specifies the type of the dimension of

each row and each column of the matrix.

In order to facilitate usages of the generic library, we have implemented several helper methods.

The get method returns the corresponding element in the r th row and c th column of the

matrix.5 The numRows and numCols methods return the number of rows and columns of a

matrix, respectively. The getRow method returns the vector representing the r th row of the

given matrix, whereas getCol returns a vector containing the elements in the c th column of

the given matrix. Finally, the zipMap and map methods have similar behaviour to the methods

with the same name from the vector data type.

The add method returns the result of the addition of two matrices, which is implemented

using the zipMap method. The mult method returns the matrix-matrix multiplication of two

matrices. This method is implemented by performing a vector dot-product of each row of the

first matrix with each column of the second matrix. Finally, the transpose method returns the

transpose of the given matrix.

2.4.3 Putting It All Together

Before showing different evaluation semantics in the upcoming sections, we need a way to

print the result values. To do so, we define the Printable type class which converts the value

of a particular type into a string. Figure 2.8 shows the corresponding tagless final definition.

Example. Throughout this chapter, we use the following example matrix program, where we

change the values for matrix m based on the evaluation semantic that we are interested in:

def example[M, D](m: M)(implicit mev: Matrix[M,_,_,D], pev: Printable[M]):

Unit = {

import mev._

val I = eye(numRows(m))

val m2 = mult(m, m)

val res = add(I, add(m, m2))

println(getString(res))

}

This program accepts the matrix m, the value of which differs based on the evaluation semantic

that we would like to use. The result of this program is the addition of the identity matrix

(represented using the eye method), the given input matrix, and the second power of it.

In the next sections, we give several concrete interpretations for PILATUS, and we show the

output of the example program above for each of the interpretations.

5As we will see in Section 2.6, r and c can have types other than Int.

61

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

trait Matrix[M, V, R, D] extends LinearMap[M, V, R, D] {

implicit val paMat: PullArrayOps[M, V, D]

implicit val vector: Vector[V, R, D]

/* Other implicit values: paRow, rowModule, looping, dr, sr */

/* apply and compose methods use the mult method, elided for brevity. */

def get(mat: M, r: D, c: D): R =

paRow.get(paMat.get(mat)(r))(c)

def numRows(mat: M) = dims(mat)._1

def numCols(mat: M) = dims(mat)._2

def getRow(mat: M, i: D): V = paMat.get(mat)(i)

def getCol(mat: M, j: D): V = getRow(transpose(mat), j)

def zipMap(m1: M, m2: M, bop: (R, R) => R): M =

paMat.build(numRows(m1))(i =>

paRow.build(numCols(m1))(j =>

bop(get(m1, i, j), get(m2, i, j))))

def add(m1: M, m2: M): M = zipMap(m1, m2, sr.add)

def mult(m1: M, m2: M): M =

paMat.build(numRows(m1))(i =>

paRow.build(numCols(m2))(j =>

vector.dot(getRow(m1, i), getCol(m2, j))))

def transpose(mat: M): M =

paMat.build(numCols(mat))(i =>

paRow.build(numRows(mat))(j => get(mat, j, i)))

/* map, eye, fill, and zeros are omitted for brevity */

}

Figure 2.7 – The tagless final implementation for (dense) matrices.

2.5 Interpreted Languages

In this section, we first show an evaluation strategy which results in a standard matrix algebra

library. Then, we show how we can define an alternative interpretation which leads to treating

PILATUS as a graph library. Afterwards, we show a linear algebra library for logical probabilistic

programming. Finally, we demonstrate how PILATUS can behave as a library for differentiable

programming.

2.5.1 Standard Matrix Algebra

In order to define a standard matrix algebra library for PILATUS, we start by defining a normal

interpreter for rings. Figure 2.9 shows the interpretation for a ring of integer and double values.

In both cases, the addition and multiplication operations are defined using the primitive

62

2.5. Interpreted Languages

trait Printable[T] {

def string(e: T): String

}

object Pilatus {

// ...

def getString[T](e: T)(implicit p: Printable[T]) = p.string(e)

}

Figure 2.8 – The tagless interface for the stringification of the values of different evaluation
semantics.

implicit object RingInt extends Ring[Int] {

def add(a: Int, b: Int) = a + b

def mult(a: Int, b: Int) = a * b

def one: Int = 1

def zero: Int = 0

def neg(a: Int): Int = -a

}

implicit object RingDouble extends Ring[Double] {

/* Similar to RingInt */

}

Figure 2.9 – The tagless final interpreter (a.k.a. type class instances) for a ring of integer and
double values.

operations provided by the Scala language.

Figure 2.10 shows an interpreter for pull arrays, where every constructed pull array is materi-

alised into an array of elements. Hence, retrieving an element and returning the size of the

pull array is achieved by returning the corresponding element in the materialised array and

the length of the array, respectively. Finally, the implementation of forloop is achieved by

performing a foldLeft on the range of elements from 0 to n-1, and passing the initial state and

the accumulator function.

An alternative way of interpretation for pull arrays, which avoids the materialisation of the

intermediate arrays into a sequence, keeps a data structure which holds the length and the

constructor function of each element. This representation is given in Figure 2.11.

Example. The standard matrix algebra interpreter evaluates the example program as follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt }

val adj = Array(Array(0, 0, 1, 5),

63

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

class PullArrayArrayOps[E: ClassTag] extends PullArrayOps[Array[E], E, Int] {

def build(len: Int)(f: Int => E): Array[E] =

Array.tabulate(len)(f)

def get(arr: Array[E])(i: Int): E =

arr(i)

def length(arr: Array[E]): Int =

arr.length

}

class LoopingInt extends Looping[Int] {

def forloop[S](f: (S, Int) => S)(z: S)(n: Int): S =

(0 until n).foldLeft(z)(f)

}

object Semantics {

implicit def pullArrayArrayOps[E: ClassTag] = new PullArrayArrayOps[E]

implicit val loopingInt = new Looping[Int]

}

Figure 2.10 – The tagless final interpreter for a pull array, represented as a list of elements, and
the control-flow constructs.

Array(8, 0, 3, 6),

Array(0, 9, 0, 0),

Array(0, 0, 2, 0))

val m = build(4)(i => build(4)(j => adj(i)(j)))

example(m)

// output:

[[1, 9, 11, 5]

, [8, 28, 23, 46]

, [72, 9, 28, 54]

, [0, 18, 2, 1]]

Note that the build method is redirected to the build method of the PullArrayOps type class

(cf. Figure 2.5).

2.5.2 Graph DSL for Reachability and Shortest Path

A directed graph can be represented using its adjacency matrix. More specifically, a graph with

n vertices can be represented using a matrix of size n×n, in which all elements are Boolean. If

the element in the i th row and j th column is true, this means that there is an edge between

the i th and j th vertices in the graph.

64

2.5. Interpreted Languages

case class PullArrayInter[E](len: Int, f: Int => E)

class PullArrayInterOps[E] extends PullArrayOps[PullArrayInter[E], E, Int] {

def build(len: Int)(f: Int => E): PullArrayInter[E] =

PullArrayInter(len, f)

def get(arr: PullArrayInter[E])(i: Int): E =

arr.f(i)

def length(arr: PullArrayInter[E]): Int =

arr.len

}

object Semantics {

// ...

implicit def pullArrayInterOps[E] = new PullArrayInterOps[E]

}

Figure 2.11 – The tagless final interpreter for a pull array, represented as a pair of length and
the element constructor function.

In order to support such adjacency matrices, we need to use the Boolean semi-ring for the

matrix elements. Figure 2.12 shows the implementation of the Boolean semi-ring, in which

addition performs disjunction, and multiplication performs conjunction.

Using the Boolean semi-ring for the elements of a matrix leads to a graph library. This instanti-

ation of PILATUS is appropriate for expressing reachability computations among all vertices of

a graph: given an adjacency matrix M , each element of M ×M shows the existence of a path

of length 2 between the two vertices in the corresponding graph.

The graph algorithms that can be implemented on top of PILATUS are not limited to reachabil-

ity ones. By adding other types of semi-rings, one can express other graph computation prob-

lems. As an example, Tropical semi-rings can express shortest-path graph problems [Mohri,

2002, Dolan, 2013]. Figure 2.13 shows the tagless final encoding of Tropical semi-rings. The

ShortestPath data type represents the path between two nodes of a graph, where Unreachable

specifies a path of length +∞, and Distance(v) specifies a path of length v. The Tropical semi-

ring computes the minimum length of two paths as the addition operator of the semi-ring, and

adds the length of two paths as the multiplication operator. We omit the definition for other

semi-rings for graph and other similar problems (e.g., linear equations, data-flow analysis,

petri nets, etc., which are already explored in the literature [Dolan, 2013]).

Example. When one uses the Boolean semi-ring, the example program is actually computing

the existence of paths with maximum length two among all the nodes. When we provide the

adjacency matrix of the graph of Figure 2.1a, the example program evaluates to:

65

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

class SemiRingBoolean extends SemiRing[Boolean] {

def add(a: Boolean, b: Boolean) = a || b

def mult(a: Boolean, b: Boolean) = a && b

def one: Boolean = true

def zero: Boolean = false

}

object Semantics {

// ...

implicit val semiRingBoolean = new SemiRingBoolean

}

Figure 2.12 – The tagless final interpreter for a semi-ring of Boolean values, used for expressing
graph reachability problems.

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, semiRingBoolean }

val adj = Array(Array(false, false, true, true),

Array(true, false, true, true),

Array(false, true, false, false),

Array(false, false, true, false))

val m = build(4)(i => build(4)(j => adj(i)(j)))

example(m)

// output:

[[T, T, T, T]

, [T, T, T, T]

, [T, T, T, T]

, [F, T, T, T]]

2.5.3 Probabilistic Linear Algebra Language

Probabilistic models are used in many applications including artificial intelligence, machine

learning, cryptography, and economics. Probabilistic programming languages have proven to

be successful for expressing such stochastic models in a declarative style without worrying

about computational aspects [Carpenter et al., 2017, Gordon et al., 2014, Goodman et al.,

2012, Kiselyov and Shan, 2009]. As an example, an important computer vision application

was recently expressed in only 50 lines of code in the Picture probabilistic programming

language [Kulkarni et al., 2015].

In this chapter, our aim is not to make PILATUS a full-fledged probabilistic programming

language. Instead, we show how we can encode Boolean probability distributions in PILATUS in

the form of a semi-ring. This means that we support the conjunction and disjunction between

two Boolean distributions. Also, the zero and one elements of the semi-ring correspond to the

66

2.5. Interpreted Languages

sealed trait ShortestPath {

def add(o: ShortestPath): ShortestPath = (this, o) match {

case (Unreachable, x) => Unreachable

case (x, Unreachable) => Unreachable

case (Distance(v1), Distance(v2)) => Distance(v1 + v2)

}

def min(o: ShortestPath): ShortestPath = (this, o) match {

case (Unreachable, x) => x

case (x, Unreachable) => x

case (Distance(v1), Distance(v2)) => Distance(math.min(v1, v2))

}

}

case class Distance(v: Int) extends ShortestPath

case object Unreachable extends ShortestPath

class SemiRingTropical extends SemiRing[ShortestPath] {

def add(a: ShortestPath, b: ShortestPath) = a.min(b)

def mult(a: ShortestPath, b: ShortestPath) = a.add(b)

def one: ShortestPath = Distance(0)

def zero: ShortestPath = Unreachable

}

object Semantics {

// ...

implicit val semiRingTropical = new SemiRingTropical

}

Figure 2.13 – The tagless final interpreter for a semi-ring of Boolean values, used for expressing
graph shortest-path problems.

distribution with the probability of one for false and true, respectively. As a side effect of the

compositional design of PILATUS, we can support vectors and matrices of such distributions

as well, virtually for free. Thus, PILATUS supports probabilistic graphs and the associated path

queries, similar to systems such as ProbLog [De Raedt et al., 2007].

Figure 2.14 shows the tagless final implementation for Boolean distributions. The BoolProb

data type has a list of probabilities assigned to each Boolean value. This data type is actually a

probability monad [Giry, 1982, Erwig and Kollmansberger, 2006]. As is customary with monad

implementation in Scala, the flatMap method represents the bind operator of the monad,

and the apply method of the companion object represents the unit operator. The normalise

method makes sure that the list of probabilities associated to each Boolean value has distinct

Boolean values, and that the probabilities sum up to one.

67

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

case class BoolProb(l: List[(Boolean, Double)]) {

def flatMap(f: Boolean => BoolProb): BoolProb = {

val ll = for(x <- l; y <- f(x._1).l) yield { y._1 -> (y._2 * x._2) }

BoolProb(ll).normalise()

}

def normalise(): BoolProb = {

val sum = l.map(_._2).sum

val nl = l.groupBy(_._1).mapValues(_.map(_._2).sum / sum)

BoolProb(nl.toList)

}

}

object BoolProb {

def apply(v: Boolean): BoolProb = BoolProb(List(v -> 1.0))

}

class SemiRingBoolProb extends SemiRing[BoolProb] {

def add(a: BoolProb, b: BoolProb) = a.flatMap(x => if(x) one else b)

def mult(a: BoolProb, b: BoolProb) = a.flatMap(x => if(x) b else zero)

def one: BoolProb = BoolProb(true)

def zero: BoolProb = BoolProb(false)

}

object Semantics {

// ...

implicit val semiRingBoolProb = new SemiRingBoolProb

}

Figure 2.14 – The tagless final implementation using the Boolean probability monad for
semi-ring operations.

There are many alternative implementations for the probability monad such as lazy trees [Kise-

lyov and Shan, 2009] with the possibility to support distributions for values other than

Booleans. Furthermore, in this context one can use various optimisations such as variable elim-

ination [Dechter, 1998]. Finally, it is possible to explore other inference mechanisms [Mans-

inghka et al., 2018]. All these aspects are orthogonal to the purposes of this work, and PILATUS

can be extended to support all these features, which we leave as exercises to the reader.

Example. When we give the adjacency matrix of the probabilistic graph of Figure 2.1b as the

input to the example program, the evaluation is as follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, semiRingBoolProb }

def flip(p: Double): BoolProb = BoolProb(List(true -> p, false -> (1 - p)))

68

2.5. Interpreted Languages

val adj = Array(Array(flip(0), flip(0), flip(0.1), flip(0.5)),

Array(flip(0.8), flip(0), flip(0.3), flip(0.6)),

Array(flip(0), flip(0.9), flip(0), flip(0)),

Array(flip(0), flip(0), flip(0.2), flip(0)))

val m = build(4)(i => build(4)(j => adj(i)(j)))

example(m)

// output:

[[1, 0.1, 0.2, 0.5]

, [0.8, 1, 0.4, 0.8]

, [0.7, 0.9, 1, 0.5]

, [0, 0.2, 0.2, 1]]

As in the previous section, the example program computes the all-pairs path with maximum

length of two. Hence, the result matrix is the probability of the existence of a path by traversing

at most one intermediate node.

2.5.4 Differentiable Linear Algebra DSL

Many applications in machine learning such as training artificial neural networks require

computing the derivative of an objective function. In many cases, the manual derivation

of analytical derivatives is not a practical solution, as it is error prone and time consuming.

Hence, several techniques were developed for automating the derivation process.

Automatic differentiation (or algorithmic differentiation) is one of the most well-known tech-

niques to systematically compute the derivative of a program. This technique systematically

applies the chain rule, and evaluates the derivatives for the primitive arithmetic operations

(such as addition, multiplication, etc.) [Baydin et al., 2015a].

Among different implementations of automatic differentiation, here we show the forward

mode technique using dual numbers. In this implementation, every number is augmented

with an additional component, which maintains the computed derivative value. Correspond-

ingly, all primitive operations should be augmented with the appropriate derivation computa-

tion.

Figure 2.15 demonstrates the generic tagless final interface for the dual number representation

of a ring. This interface uses the pair representation for dual numbers, in which the first

component is the normal value, whereas the second component is the derivative value. The

second component in the implementation of the addition operator reflects the addition rule of

derivation (d(a +b) = d a +db), whereas the one in multiplication reflects the multiplication

rule (d(a ×b) = d a ×b +a ×db).

Example. Let us consider again the example matrix given in Figure 2.1c. By representing this

input matrix using dual numbers, our running example is evaluated as follows:

69

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

class DualSemiRing[R](implicit val sr: SemiRing[R])

extends SemiRing[(R, R)] {

type Dual = (R, R)

def add(a: Dual, b: Dual) = (sr.add(a._1, b._1), sr.add(a._2, b._2))

def mult(a: Dual, b: Dual) =

(sr.mult(a._1, b._1), sr.add(sr.mult(a._1, b._2), sr.mult(a._2, b._1)))

def one: Dual = (sr.one, sr.zero)

def zero: Dual = (sr.zero, sr.zero)

}

class DualRing[R](implicit val ring: Ring[R])

extends DualSemiRing[R] with Ring[(R, R)] {

def neg(a: Dual) = (ring.neg(a._1), ring.neg(a._2))

}

object Semantics {

// ...

implicit def dualSemiRing[R: SemiRing] = new DualSemiRing[R]

implicit def dualRing[R: Ring] = new DualRing[R]

}

Figure 2.15 – The tagless final implementation using dual numbers for ring operations.

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, dualRing }

val adj = Array(Array(0 -> 0, 0 -> 0, 1 -> 0, 5 -> 1),

Array(8 -> 0, 0 -> 0, 3 -> 2, 6 -> 0),

Array(0 -> 0, 9 -> 3, 0 -> 0, 0 -> 0),

Array(0 -> 0, 0 -> 0, 2 -> 1, 0 -> 0))

val m = build(4)(i => build(4)(j => adj(i)(j)))

example(m)

// output:

[[1 -> 0, 9 -> 3, 11 -> 7, 5 -> 1]

, [8 -> 0, 28 -> 27, 23 -> 8, 46 -> 8]

, [72 -> 24, 9 -> 3, 28 -> 27, 54 -> 18]

, [0 -> 0, 18 -> 15, 2 -> 1, 1 -> 0]]

More specifically, computing the square of this matrix results in:

val m2 = compose(m, m)

println(getString(m2))

// output:

[[0 -> 0, 9 -> 3, 10 -> 7, 0 -> 0]

, [0 -> 0, 27 -> 27, 20 -> 6, 40 -> 8]

, [72 -> 24, 0 -> 0, 27 -> 27, 54 -> 18]

70

2.6. Staging and Optimisation

, [0 -> 0, 18 -> 15, 0 -> 0, 0 -> 0]]

This output is the same as what we have observed in Figure 2.1c.

2.6 Staging and Optimisation

In this section, we show how to use multi-stage programming (MSP, or just staging) to improve

the performance of PILATUS programs, by removing the abstraction overhead incurred by the

high-level programming features we use to make our DSL polymorphic.

2.6.1 Augmented Multi-Stage Programming

We start by quickly recapitulating the discipline of multi-stage programming in the context of

Squid, and its extension to pattern matching and rewriting.

Runtime Compilation. Recall that, as explained in Section 1.3.7, Squid allows programmers

to runtime-compile code on the fly, using the .compile method, which produces bytecode

that can then be run as efficiently as if it had been compiled normally.

Multi-Stage Programming (MSP). The goal of MSP is to turn a program which contains ab-

stractions and indirections into a code generator — instead of producing its result directly,

the “staged” program will produce code that is more straightforward (free of abstractions), to

compute the program’s result more efficiently. To achieve this, one annotates the non-static

parts of the program (those that should be executed later) using Squid quasiquotes and Code

types. Thanks to runtime compilation, the staged program effectively partially evaluates the

fixed parts of a program even if they depend on values obtained at runtime.

Code Pattern Matching and Rewriting. Squid extends the capabilities of classical MSP lan-

guages by supporting code pattern matching and rewriting (quasiquotes are allowed in pat-

terns, as explained in Chapter 1), which lets programmers inspect already-composed code

fragments in a type-safe way. As we will see in Section 2.6.4, in practice this saves programmers

the trouble of having to define their own inspectable program representations delaying the

production of actual code values.

2.6.2 Staging PILATUS

Thanks to the polymorphic nature of PILATUS, it is quite straightforward to turn a given

semantics into a multi-stage program. All we need to do is to provide an evaluation semantics

which manipulates program fragments instead of normal values, and which composes these

fragments together instead of directly evaluating the results of each operation.

71

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

Figure 2.16 shows the staged versions of some of the PILATUS interfaces. A RingCode[T]

is a ring implementation6 that manipulates Code[T] ring elements (the RingCode[T] class

extends Ring[Code[T]]). Remember from Section 1.3.3 that the CodeType[T] type class is used

to automatically infer runtime type representations, which is necessary for Squid program

manipulation. Notice that the implicit ringCode definition takes an implicit argument of type

Code[Ring[T]]. This works out of the box, because Squid can turn an implicit Ring[T] into a

Code[Ring[T]] automatically, lifting the code used for generating the implicit.

As an example, consider the following polymorphic PILATUS program:

def polymorphicProgram[R: Ring](a: R, b: R): R = mult(add(a, one), b)

And the following two usages, one with a direct R = Int interpretation, and one with a staged

R = Code[Int] one:

import Semantics.{ ringInt }, StagedSemantics.{ ringCode }

Console.print(''Enter an integer number: '')

val k = Console.readInt

val f_slow = (x: Int) => polymorphicProgram(x, k)

val f_code = (x: Code[Int]) => polymorphicProgram(x, Const(k))

val f_fast = code''${f_code}''.compile

The Const constructor turns a primitive value (here an Int) into a code value (here a Code[Int]).

Notice that we insert f_code into a quasiquote even though it is not a code value, but a function

from code to code; in fact, it is implicitly lifted by Squid to the corresponding code value (see

Section 1.3.9).

Assuming the user enters the number 27 on the console, the code generated at runtime for

f_fastwill be equivalent to (x: Int) => Semantics.ringInt.mult(Semantics.ringInt.add(x,

1), 27) which, after inlining of the statically-dispatched ringInt methods, corresponds to

(x: Int) => (x + 1) * 27. To understand why this is much more efficient than the f_slow

version, consider that the evaluation of f_slow has to go through virtual dispatch of all the

ring operations; moreover, it also has to use boxed representations of the manipulated integer

values due to the generic context in which ring operations are defined, which requires repeated

allocations and unwrapping of boxed integers. As a result, in a realistic workload, even the

just-in-time compiler will typically not manage to make that code as fast as the straightforward

primitive operations performed by f_fast.7

6Strictly speaking, this implementation does not form a ring, because for example code''2+1'' is not the same
as code''1+2'' — though they are “morally” equivalent as they represent equivalent programs.

7Runtime systems like the CLR for C# avoid boxing by performing runtime specialisation of generic code,
but that only achieves a small part of all the optimisation and partial evaluation we are interested in here. C++
templates can perform advanced compile-time specialisation, which could get us closer to our goal (though this
means specialisation could not rely on runtime values), but they are difficult and heavyweight, yet much less
flexible because they do not allow for first-class manipulation of code values.

72

2.6. Staging and Optimisation

This kind of overhead easily compounds as we introduce more abstractions, to the point

where non-staged abstract programs end up being orders of magnitude slower than the staged

versions [Yallop, 2017], as we will see in Section 2.7.

2.6.3 Staged Representation Optimisations

An interesting aspect of MSP is that it lets us define data structures made of partially-staged

data. For example, if we want to partially evaluate the allocation of pairs and the selec-

tion of their components, we can use representations of type (Code[A],Code[B]) instead of

Code[(A,B)].

This comes in useful when representing dual numbers in our staged interpreter. We can

implement an alternative to DualRing that is specialised for handling code values, and define

its operations accordingly, for example:

def mult(a: (Code[R], Code[R]), b: (Code[R], Code[R])) =

(code''$sr.mult(${a._1}, ${b._1})'',

code''$sr.add($sr.mult(${a._1}, ${b._2}), $sr.mult(${a._2}, ${b._1}))'')

Note that in the code above, we use program fragments a._1 and b._1 several times. This is fine,

because the default intermediate representation that Squid uses to encode program fragment

is based on the A-normal form [Flanagan et al., 1993], which let-binds every subexpression to

a local variable, and thus avoids code duplication [Parreaux et al., 2017b,a]; in other words, by

inserting a given code value in several places, we only duplicate variable references.

2.6.4 Algebraic Optimisations

Thanks to the staged interpretations of PILATUS, which allows us to manipulate program

fragments as first-class values, we can leverage the algebraic properties of ring structures to

perform optimisations. To do so, we can extend the staged ring implementation, so that we

use the normal staged method implementations by default, and override those methods where

there is a potential for algebraic optimisations. The goal of the overridden methods is to return

simplified program fragments based on the shape of their inputs.

This technique is similar to the original tagless final [Carette et al., 2009] and polymorphic

embedding [Hofer et al., 2008] approaches to algebraic optimisation. The main difference is

that thanks to Squid’s analytic capabilities, we do not need to create our own intermediate

symbolic representation of programs, and instead we can pattern-match on code values

directly.

An implementation of this optimised staged semantics for rings is given in Figure 2.17. When

used in pattern position, traditional quasiquote escapes ${...}, which insert code values into

bigger expressions, are written $${...} instead.

73

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

import squid.IR.Predef._ // import the `Code', `CodeType' and `code'

functionalities

class SemiRingCode[T: CodeType](val sr: Code[SemiRing[T]]) extends

SemiRing[Code[T]] {

def add(a: Code[T], b: Code[T]) = code''$sr.add($a, $b)''

def mult(a: Code[T], b: Code[T]) = code''$sr.mult($a, $b)''

def one: Code[T] = code''$sr.one''

def zero: Code[T] = code''$sr.zero''

}

class RingCode[T: CodeType](val ring: Code[Ring[T]])

extends SemiRingCode[T](ring) with Ring[Code[T]] {

def neg(a: Code[T]) = code''$ring.neg($a)''

}

class PullArrayCodeOps[E: CodeType]

extends PullArrayOps[Code[PullArrayInter[E]], Code[E], Code[Int]] {

def build(len: Code[Int])(f: Code[Int] => Code[E]): Code[PullArrayInter[E]] =

code''PullArrayInter($len, $f)''

def get(arr: Code[PullArrayInter[E]])(i: Code[Int]): Code[E] = code''$arr.f($i)''

def length(arr: Code[PullArrayInter[E]]): Code[Int] = code''$arr.len''

}

object StagedSemantics {

implicit def semiRingCode[T: CodeType]

(implicit cde: Code[SemiRing[T]]): SemiRing[Code[T]] = new SemiRingCode(cde)

implicit def ringCode[T: CodeType]

(implicit cde: Code[Ring[T]]): Ring[Code[T]] = new RingCode(cde)

// other similar definitions elided...

}

Figure 2.16 – The tagless final encoding of compiled rings, pull arrays, and control-flow
constructs.

74

2.6. Staging and Optimisation

class SemiRingOptCode[T: CodeType](sr: Code[SemiRing[T]]) extends

SemiRingCode[T](sr) {

override def add(a: Code[T], b: Code[T]) = (a, b) match {

case (_, code''$$sr.zero'') => a

case (code''$$sr.zero'', _) => b

case _ => super.add(a, b)

}

override def mult(a: Code[T], b: Code[T]) = (a, b) match {

case (_, code''$$sr.zero'') => code''$sr.zero''

case (code''$$sr.zero'', _) => code''$sr.zero''

case (_, code''$$sr.one'') => a

case (code''$$sr.one'', _) => b

case _ => super.mult(a, b)

}

}

class RingOptCode[T: CodeType](ring: Code[Ring[T]]) extends RingCode[T](ring) {

override def neg(a: Code[T]) = a match {

case code''$$ring.zero'' => code''$ring.zero''

case _ => super.neg(a)

}

}

Figure 2.17 – The tagless final encoding of the compiled library of PILATUS, which applies
algebraic optimisations for the elements of matrices.

Many more algebraic rewritings can be added to perform partial evaluation and normalization

of program fragments. We have omitted them for the sake of brevity. Furthermore, one can en-

code the algebraic properties of modules (cf. Section 2.3.3) and linear maps (cf. Section 2.3.4)

as rewrite rules, which we leave for the future.

2.6.5 Fixed-Size Matrix DSL

In some applications, such as computer vision, the matrices or vectors have small sizes,

and sometimes these sizes are statically known (e.g. a vector of size 3 to show a point in

the 3D space). In these cases, the necessary memory for the corresponding arrays can be

allocated at compile time (or even stack-allocated), leading to better performance and memory

consumption at run time.

PILATUS can be instantiated with an evaluator that makes sure that the length of arrays is

known during the compilation time. In this case, the representation of a pull array is a sequence

75

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

case class PullArrayCode[E](len: Code[Int], f: Code[Int] => Code[E])

class PullArrayCodeFusedOps[E]

extends PullArrayOps[PullArrayCode[E], Code[E], Code[Int]] {

def build(len: Code[Int])(f: Code[Int] => Code[E]): PullArrayCode[E] =

PullArrayCode(len, f)

def get(arr: PullArrayCode[E])(i: Code[Int]): Code[E] =

arr.f(i)

def length(arr: PullArrayCode[E]): Code[Int] =

arr.len

}

Figure 2.18 – The tagless final encoding of the compiled library of PILATUS, which removes all
unnecessary intermediate arrays.

of the symbolic representation for each element. Furthermore, the representation for its length

is an integer, instead of a symbolic representation. Interestingly, this representation is the

same as the one shown in Figure 2.10, but with the E type instantiated to multi-stage code

types.

2.6.6 Fused DSL

Deforestation [Wadler, 1988, Gill et al., 1993, Svenningsson, 2002, Coutts et al., 2007] is a

well-known technique used in functional languages in order to remove the unnecessary

intermediate data structures. This removal has a positive effect on both memory consumption

and run-time performance, thanks to the removal of unnecessary memory allocations and

avoidance of unnecessary computations.

One of the key advantages of using pull arrays is providing deforestation. However, to benefit

from this feature, one should provide an appropriate representation for pull arrays which

avoids materialisation. This can be achieved by symbolically maintaining the length and

the constructor function. Whenever the array is indexed or the length of array is needed,

instead of creating a symbolic representation for them, we can use the maintained length and

constructor function.

Figure 2.18 represents the implementation of fused pull array, and a compiler allowing defor-

estation for PILATUS.

76

2.7. Evaluation

1

10

100

1000

add3N add dot

R
un

 ti
m

e
(m

illi
se

co
nd

s)

Native Array
Pull Array (PA)
PA+Staged (PAS)
PAS+Fused
Baseline

Figure 2.19 – Performance comparison between PILATUS with different configurations and a
baseline low-level implementation.

2.7 Evaluation

In this section, we show how multi-stage programming and rewriting can make PILATUS

faster than the high-level implementation, while being competitive with a handwritten low-

level implementation. We use several micro benchmarks consisting of a pipeline of vector

operations such as addition, dot product, and norm. Each benchmark is tested with five

different approaches:

• PILATUS by using a native array without optimisation

• PILATUS by using a pull array without optimisation

• PILATUS by using a pull array with staging

• PILATUS by using a pull array with staging and fusion

• A handwritten low-level optimised implementation

The experiments are performed on a six-core Intel Xeon E5-2620 v2 processor with 256GB of

DDR3 RAM (1600Mhz), with Scala version 2.12.8 running on the OpenJDK 64-Bit Server VM

(build 24.95-b01) with Java 1.7.0_101.

Figure 2.19 shows the performance results. For these experiments, the input vectors are

all stored in a native JVM array, consisting of one million integer elements. Based on these

experiments we make the following observations. First, changing the usage of native array

representation to a pull array causes a minor performance overhead. This is because the JIT

of JVM is unable to remove the overhead caused by the lambdas used in a pull array. Second,

the overhead of lambdas as well as several other overheads are removed by using staging.

This performance improvement is between 2.5x to 5x. Finally, the intermediate arrays are

successfully removed by benefiting from the fusion of pull arrays (cf. Section 2.6.6). The

improvement varies between 4x to 26x depending on the number of removed intermediate

arrays. This makes the staged and fused PILATUS competitive with the baseline low-level

implementation.

77

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

2.8 Related Work

2.8.1 Linear Algebra Languages and Libraries

The R programming language [R Core Team, 2014] is widely used by statisticians and data

miners. It provides a standard language for statistical computing that includes arithmetic,

array manipulation, object oriented programming and system calls. It is a Turing-complete

language. By contrast, with our language we chose to focus solely on linear algebra opera-

tions. This minimalistic approach results in a language that is not Turing Complete, but is

nevertheless polymorphic in various dimensions.

The Spiral [Puschel et al., 2005] project introduces the languages SPL [Xiong et al., 2001],

OL [Franchetti et al., 2009], and more recently LL [Spampinato and Püschel, 2014] which

mainly captures the non-iterative matrix operations of PILATUS. Furthermore, the interme-

diate languages Σ-SPL [Franchetti et al.] and Σ-LL [Spampinato and Püschel, 2014] expose

opportunities to perform loop fusion. One interesting direction is to use the search-based tech-

niques to perform global optimisations offered by Spiral. Furthermore, Spiral in Scala [Ofen-

beck et al., 2013] supports loop unrolling and fixed size matrices by using the staging facilities

offered by LMS [Rompf and Odersky, 2010] and abstracting over data layout. Kiselyov [2018]

has used the tagless final approach and staging facilities of MetaOCaml in order to implement

a linear algebra DSL based on rings and pull arrays (but not modules and linear maps) and

has implemented many of the optimisations that we have seen in this chapter. However, to

the best of our knowledge, none of these projects consider graph algorithms, probabilistic

programming, and automatic differentiation of linear algebra.

In the Haskell programming language, Dolan [2013] implements a linear algebra library which

uses different semi-ring configurations for expressing graph algorithms, as well as several

other algorithms. We can easily extend PILATUS in order to support the additional semi-

ring configurations used in that work. While Elliott [2009] implements a library for forward

automatic differentiation in Haskell, Dolan does not consider automatic differentiation. Since

both of these libraries are implemented without any multi-stage programming facilities,

neither can support the staged libraries provided by PILATUS.

2.8.2 Deforestation and Array Fusion

Deforestation [Wadler, 1988] and the corresponding short cut techniques [Gill et al., 1993,

Svenningsson, 2002, Coutts et al., 2007] were introduced for functional languages for removing

the unnecessary intermediate collections. Recently, these techniques have been implemented

as a library using multi-stage programming [Jonnalagedda and Stucki, 2015a, Kiselyov et al.,

2017, Shaikhha et al., 2018a].

On the other hand, in the high-performance functional array programming there are the two

well-known array representations, which also achieve deforestation: pull arrays and push

78

2.8. Related Work

arrays [Anker and Svenningsson, 2013, Claessen et al., 2012]. Each one of these two array

representations comes with its own benefits, for which [Svensson and Svenningsson, 2014]

combines the benefits of these two complementary representations. Pull arrays have been

used for various DSLs [Axelsson et al., 2011, Kiselyov, 2018, Shaikhha et al., 2017] to produce

efficient low-level code from the high-level specification of linear algebra programs. However,

none of these systems consider other domains presented in this chapter.

2.8.3 Automatic Differentiation and Differentiable Programming

Many techniques for finding optima of a given objective function (such as gradient-descent-

based techniques) require the derivative of that function. Automatic differentiation (AD) [Ke-

dem, 1980] is one of the key techniques for automatically computing the derivative of a given

program. Thus, these tools are an essential component of many machine learning frameworks.

There is a large body of work on AD frameworks for imperative programming languages such

as Tapenade [Hascoet and Pascual, 2013] for C and Fortran, ADIFOR [Bischof et al., 1996] for

Fortran, and Adept [Hogan, 2014] and ADIC [Narayanan et al., 2010] for C++, ADiMat [Bischof

et al., 2002], ADiGator [Weinstein and Rao, 2016], and Mad [Forth, 2006] performs AD for

MATLAB programs, whereas AutoGrad [Maclaurin et al., 2015], Theano [Bergstra et al., 2010],

Tensorflow [Abadi et al., 2016] performs AD for a subset of Python programs. There are also

AD tools developed for functional languages such as DiffSharp [Baydin et al., 2015b] for F#,

dF˜ [Shaikhha et al., 2018b] for a subset of F#, Stalingrad [Pearlmutter and Siskind, 2008]

for a dialect of Scheme, as well as the work by Karczmarczuk [1999] and Elliott [2009] for

Haskell. The most similar work to ours is Lantern [Wang et al., 2018], which uses the multi-

stage programming features provided by LMS [Rompf and Odersky, 2010] in order to perform

AD for numerical programs written in a subset of Scala. A key feature provided by Lantern

is reverse-mode AD using delimited continuations [Danvy and Filinski, 1990]; this can also

be supported by PILATUS, but we leave it for future work. All these frameworks focus on

differentiable programming, whereas PILATUS also supports graph computations and prob-

abilistic programming, while providing algebraic and low-level optimizations for improved

performance.

2.8.4 Probabilistic Programming

Probabilistic programming languages (PPL) can express stochastic models in a productive

manner without worrying about the low-level details [Gordon et al., 2014]. Infer.NET [Minka

et al., 2014], Picture [Kulkarni et al., 2015], and probabilistic C are examples of imperative

PPLs, whereas, BUGS [Gilks et al., 1994], STAN [Carpenter et al., 2017], and Church [Goodman

et al., 2012] are functional PPLs. Figaro [Pfeffer, 2009] is an object-oriented probabilistic

programming language which is defined as an EDSL on top of Scala. PRISM [Sato, 2008],

BLOG [Milch et al., 2007], and ProbLog [De Raedt et al., 2007] are examples of Logical PPLs.

PILATUS is inspired by both logical PPLs and the embedding of functional PPLs [Kiselyov and

Shan, 2009]. Although PILATUS has a more limited expressivity power in comparison with

79

Chapter 2. Application: A Polymorphic Yet Efficient Linear Algebra Library

other logical probabilistic programs, it supports various other domains such as differentiable

programming for linear algebra workloads.

2.9 Conclusions

In this chapter, we have presented PILATUS, a polymorphic linear algebra language. This

language is embedded in Scala and can have interpretations supporting various domains,

such as standard matrix algebra, all-pairs reachability and shortest-path computations for

graphs, logical probabilistic programming, and differentiable programming. In order to

compensate for the performance penalty caused by the code abstractions, PILATUS uses

multi-stage programming, removing the associated overhead by construction. Furthermore,

leveraging the mathematical nature of PILATUS, we use algebraic rewrite rules to further

improve the performance.

80

3 The Modular Implementation of Squid

The Squid metaprogramming framework is implemented as a simple software library, and

requires no changes to the Scala compiler. Squid extends Scala’s type system solely by relying

on its powerful macro system. We now examine how Squid is implemented, leveraging Scala 2’s

extensive metaprogramming capabilities.

This chapter is particularly concerned with the modular implementation which constitutes

the backbone of Squid, and more specifically: 1. how it abstracts over different intermediate

represenations and interpretations of program fragments thanks to object algebras; 2. how it

helps in deeply embeddeing domain-specific languages; 3. how it virtualizes many constructs

of the Scala language to make the handling of program representations easier; and 4. how it

leverages the powerful metaprogramming tools already offered by the Scala compiler.

All existing quasiquotation systems I know have been tied to a specific abstract syntax tree

representation of the manipulated programs, which is limiting. Indeed, it is often useful to

manipulate programs expressed in more advanced intermediate represenations, as we will see

in Chapter 4. In this situation, it was previously necessary to abandon the usage of quasiquotes

and drop down to explicit manipulations of the underlying data structures of the intermediate

representation, a difficult and error-prone task.

Thus, we show that Squid quasiquotes are reusable, in the sense that they are not tied to a

particular program representation, but can be used to manipulate different intermediate

representations. Adapting (or binding) a new IR to Squid is done simply by implementing a

well-defined interface in the style of object algebras (or tagless-final style).

3.1 Introduction

In Chapter 1, we have detailed several different high-level approaches to manipulating pro-

gram fragments, but all of these approaches assumed a more or less advanced abstract syntax

tree representation of the programs.

81

Chapter 3. The Modular Implementation of Squid

On the other hand, the need often arises for more advanced IRs than plain ASTs [Stanier

and Watson, 2013], such as ANF (Administrative Normal Form) [Flanagan et al., 1993], SSA

(Static Single Assignment) or CFG (Control Flow Graph). This is particularly important when

DSLs start incorporating effects and mutability, where evaluation order and aliasing become

significant.

Manipulating this sort of intermediate representations is even harder and error-prone than

manipulating plain abstract syntax trees (which was described in Section 1.2.1). One generally

needs to propagate types manually as well as secondary meta-information like effects annota-

tions, which one should has deal with explicitly. IR transformation becomes very error-prone,

especially since one has to be careful to account for effects and avoid performing transforma-

tions that would change the evaluation order of programs. The design of a deeply-embedded

DSL and of associated program transformations (such as domain-specific optimizations)

quickly becomes entangled with these low level IR implementation concerns, which get in the

way of DSL designers.

In this chapter about the modular implementation of Squid, we first describe how Squid

abstracts over the intermediate representation and provides general facilities to implement

closed-world and open-world IR backends for the quasiquotes — in this sense, we say that

Squid quasiquotes are “generic” in the IR. We are not aware of any previous generic quasiquote

system. In the rest of the chapter, we describe various other concerns related to the imple-

mentation of the Squid system in Scala.

3.2 The Intermediate Representation Base

Figure 3.1 shows the Base trait required to be implemented by all Squid backends, taking the

form of an object algebra interface [Oliveira and Cook, 2012] — also known as the tagless-final

style [Carette et al., 2009] — where abstract type Rep represents the type of IR nodes, while types

Val and TypeRep represent the types of bound variables and type representations, respectively.1

Method readVal converts a variable symbol into a variable reference. ascribe corresponds to

type ascription (of syntax x:T in Scala). Classes Code and CodeType have protected constructors

in order to prevent external users from instantiating them arbitrarily.

Notice that Squid does not internally use a typed view of the IR (we have Rep instead of

Rep[T]). This choice was motivated by simplicity of the Squid implementation and of the

code generated by each quasiquote, ensuring faster compilation. Moreover, we noticed that

when dealing with low-level IR manipulation, types often get in the way rather than help.

Critically, this does not impact the soundness of high-level IR manipulation using quasiquotes,

as high-level quasiquote terms are wrapped inside the typed Code[T] wrapper.

1We do not show the methods for building type representations (TypeRep), but they follow the same pattern as
for term representations (Rep).

82

3.3. Closed Worlds

trait Base {

type Val

type Rep

type TypeRep

def const(value: Any): Rep

def freshVal(name: String, typ: TypeRep): Val

def readVal(v: Val): Rep

def lambda(param: Val, body: => Rep): Rep

// override if needed:

def ascribe(self: Rep, typ: TypeRep): Rep = self

class Code[+T] protected(val rep: Rep)

class CodeType[T] protected(val trep: TypeRep){ type Typ = T }

} // ...more helper methods and definitions elided

Figure 3.1 – Abstract types and methods required for a Squid IR.

3.3 Closed Worlds

Perhaps surprisingly, the Base trait does not feature a function application method. This

is because in Scala and Squid, applying a function corresponds to calling the apply method

defined on the scala.Function type, and Squid has a special mechanism for encoding methods

in a user-extensible way: when generating IR code for a method call inside a quasiquote, Squid

looks for a method with a corresponding name in the Base. If no such method is found, a

compile-time error reports the missing feature. To avoid name clashes, these methods should

live in objects whose names reflect the full names of the types where the original methods are

defined. For example, to bind the IR in Figure 1.1a to a Squid base, we include the following

definitions:

object MyIR extends Base {

type Rep = Exp

type TypeRep = Unit

object `class scala.Int` {

def typeRep = ()

def + (self: Rep)(arg: Rep) = Add(self, arg)

}

object `class scala.Function` {

def typeRep(lhs: TypeRep, rhs: TypeRep) = ()

def apply(self: Rep)(arg: Rep) = Apply(self, arg)

83

Chapter 3. The Modular Implementation of Squid

}

/* ... more definitions ... */

}

Remark that in Scala, identifiers delimited with back-ticks may contain any valid characters,

so we literally named the objects above “class scala.Int” and “class scala.Function”.

As an example, the code generated for code''(x: Int) => x+1'' after having imported the ‘code’

quasiquote builder from MyIR will be of the form:

val x = MyIR.freshVal(''x'', MyIR.`class scala.Int`.typeRep)

val rep = MyIR.lambda(x,

MyIR.`class scala.Int`.+(MyIR.readVal(x), MyIR.const(1)))

new MyIR.Code[Int](rep)

We do not give the full IR binding here for brevity. The online Squid repository contains several

examples of custom Squid IRs, as well as a binding to an existing IR for the LMS-style DSL that

was used in [Shaikhha et al., 2016].

3.4 Language Virtualization

For the economy of concepts, many Scala language features are internally encoded using the

set of Base features that we have seen above. For this purpose, Squid defines a small library

of virtualized constructs [Moors et al., 2012, Jovanovic et al., 2014]. For example: variables

are represented using a MutRef data type supporting operations .! and := for variable access

and modification respectively; if-then-else and loops are implemented using functions such

as ifThenElse and While taking by-name arguments; by-name arguments themselves are

represented as calls to a byName function taking a () => T function parameter; finally, functions

with more than one parameter are implemented with curried functions passed into uncurryN

methods — for example, (x:Int, y:Int) => x+y is represented as uncurry2((x:Int) => (y:Int)

=> x+y); pattern matching is represented using isInstanceOf and unapply calls.2 Finally, by

default let-bindings are represented as lambda abstractions immediately applied (redex).

Naturally, these virtualized encodings can be safely ignored by quasiquote users, and DSL

designers may convert them into their own IR-specific representations. For example, in:

object MyIR extends Base {

object `object squid.lib` {

def ifThenElse(cond: Rep, thn: Rep, els: Rep) =

buildInternalIfThenElseNode(cond, thn, els)

}

// ... more definitions elided

}

2A more handy representation of pattern matching is left as future work.

84

3.5. Open Worlds

3.5 Open Worlds

In the context of metaprogramming “at large,” like when writing general-purpose Scala macros

(as opposed to DSL program transformations), it is useful to have a way to generate method

applications on the fly, without having to define IR bindings manually for all possible methods.

This is possible thanks to the OpenWorld trait shown in Figure 3.2. If a base extends this trait,

Squid will default to generating calls to methodApp to encode method applications that do not

have a direct binding defined. methodApp takes a tp parameter so that the IR is informed of the

type returned by the method call. loadMtdSymbol takes an overloading index to identify which

method overload is being selected (0 if the method is not overloaded).

As an example, assuming we do not have in MyIR a direct binding for type Double and method

toDouble, the quasiquote code''2.toDouble'' will expand into the equivalent of:

val _Int = MyIR.loadTypSymbol(''scala.Int'')

val _Double = MyIR.loadTypSymbol(''scala.Double'')

val _toDouble = MyIR.loadMtdSymbol(_Int, ''toDouble'', 0)

val rep = MyIR.methodApp(MyIR.const(2),

_toDouble,Nil,Nil,typeApp(_Double,Nil))

new MyIR.Code[Double](rep)

The simplest way to implement methods loadTypSymbol and loadMtdSymbol is to make use of

Scala Reflection’s runtime metaprogramming capabilities, reusing its TypeSymbol and MethodSymbol

data types. This way, it is possible for an IR to dynamically explore things such as the anno-

tations attached to a Scala method and its parameters, which is especially useful for imple-

menting such mechanisms as annotation-based effect systems. Squid provides a ready-made

ScalaSymbols trait that defines loadTypSymbol and loadMtdSymbol using Scala runtime reflec-

tion, so it is effortless for an IR to leverage these capabilities.

Finally, notice that using an open world IR generally allows for more flexibility. For exam-

ple, it is possible to define programs that completely abstract over the base that is being

used. Moreover, an open-world IR can be used as target to reinterpretation, as we will see in

Section 3.7.

3.6 Support for IR Manipulation

In order to support pattern matching and term rewriting, a Squid IR has to extend yet another

trait — InspectableBase, shown in Figure 3.3. The Extract type represents the result of pattern

matching, and contains a mapping from term variable names to extracted terms and from

type variable names to extracted type representations. InspectableBase defines the seman-

tics of term and type pattern matching (extract and extractTyp), rewriting3 (rewriteRep),

3rewriteRep can be implemented in terms of transform and extract, but we found that for advanced IRs
such as ANF, it is often useful to have more control on the way rewritings apply, enabling more powerful patterns.

85

Chapter 3. The Modular Implementation of Squid

trait OpenWorld extends Base {

type MtdSymbol

type TypSymbol

def loadTypSymbol(fullName:String): TypSymbol

def loadMtdSymbol

(typ: TypSymbol, symName: String, index: Int): MtdSymbol

def methodApp(self: Rep, mtd: MtdSymbol,

targs:List[TypeRep],argss:List[ArgList], tp:TypeRep): Rep

def typeApp(typ: TypSymbol, targs: List[TypeRep]): TypeRep

} // ...more helper methods and definitions elided

Figure 3.2 – The “open world” trait, which allows using any methods.

code traversal/transformation (transform), term equivalence (repEq) and subtyping (typLeq).

Term equivalence is needed because Squid allows an extracted variable to be used in the

same pattern, as in case code''($a,a)'' which matches only pairs with twice the same compo-

nent. Similar to ScalaSymbols for symbol loading, Squid provides a ready-made ScalaTyping

trait that defines TypeRep, typLeq, typeHole and extractTyp relying on Scala’s runtime type

representation facilities.

Pattern matching is implemented by building an IR node representing the pattern, where

unquotes are replaced with special “hole” nodes. The IR then provides the semantics of

matching a given expression node against that pattern node. Thus methods hole and typeHole

represent unquotes in patterns. In addition with name and expected type, hole takes two

lists of bound values yes and no, that specify respectively which bound references the hole is

supposed to contain, and which it is forbidden to contain. For example, in pattern case code''

(x:Int,y:Int,z:Int) => $f(x,z)'', the argument to yes will be List(x,z) and that to no will be

List(y). The hole method is supposed to extract a function term with arity equal to the length

of yes. In the case above, it would extract an (Int,Int) => Int function term. On extraction,

Squid lifts that term into a host-language function of type (Code[Int],Code[Int]) => Code[Int]

automatically. Importantly, the term extracted by a hole may contain any references that

appear in neither yes nor no. This is because code pattern-matching can be used in rewrite

rules, which traverse every sub-term of a program and may open an arbitrary number of

bindings on the way — as long as the terms extracted by a rule’s pattern end up as part of the

rule’s result,4 these bindings should not be affected.

In contrast with Base and OpenWorld, providing an implementation for InspectableBase is

usually a non-trivial undertaking, the most difficult task being to implement complete pattern

matching semantics. On the other hand, once this is in place, one can fully benefit from

4And are not extruded by imperative effects like variable update.

86

3.7. Intermediate Representation Reinterpretation

trait InspectableBase extends Base {

type Extract = (Map[String, Rep], Map[String, TypeRep])

def extract (xtor: Rep, xtee: Rep): Option[Extract]

def rewriteRep(xtor: Rep, xtee: Rep,

mkCode: Extract => Option[Rep]): Option[Rep]

def extractTyp(xtor: TypeRep, xtee: TypeRep,

va: Variance): Option[Extract]

def transform(r: Rep)(pre: Rep=>Rep,post: Rep=>Rep): Rep

def hole(name: String, typ: TypeRep,

yes: List[Val], no: List[Val]): Rep

def typeHole(name: String): TypeRep

def reinterpret(r: Rep, newBase: OpenWorld): newBase.Rep

def repEq(a: Rep, b: Rep): Boolean

def typLeq(a: TypeRep, b: TypeRep): Boolean

}

Figure 3.3 – Base for allowing code inspection (e.g., pattern matching).

Squid’s powerful and safe IR manipulation capabilities.

3.7 Intermediate Representation Reinterpretation

An important capability shown in Figure 3.3 is that offered by the reinterpret method: an

InspectableBase may provide the capability to have its programs reinterpreted into a different

Squid Base, which is an important tool that in turn enables many interesting applications

(cf. Section 3.8). This is especially useful for optimizing high-level programs by progressively

lowering their level of abstraction: at a certain point, we may want to switch to an IR which is

more appropriate to deal with low-level programs.

Notice that reinterpret takes an OpenWorld parameter as the target Base, because it has to be

able to reinterpret arbitrary features that may or may not be specially handled in the target

IR. In practice, it is possible to adapt a non-OpenWorld IR to make it OpenWorld, using Java

reflection to find the correct node creation methods at runtime.

3.8 One Interface to Rule Them All

...and in Abstraction Bind Them

In this subsection, we describe how Squid’s object algebra interfaces turned out to be a

87

Chapter 3. The Modular Implementation of Squid

powerful tool that facilitated the implementation of several Squid features.

Code generation backend. It can be useful to convert a program expressed in some custom

IR into a standard Scala AST. This is simply done by reinterpreting that code into the ScalaAST

base, in which type Rep = universe.Tree (where universe.Tree is the type of Scala ASTs). For

example, in that base we have def const(value: Any) = Literal(Constant(value)), which

constructs a Scala AST for a constant literal.

Note that IRs that rely on virtualized constructs [Moors et al., 2012, Jovanovic et al., 2014]

will typically refine the behavior of the reinterpret method in case the target is a subclass

of ScalaAST, so that these constructs are correctly de-virtualized. For example, without de-

virtualization we might observe the following behavior:

scala> code''if (true) 1 else 0''.reinterpretIn(new ScalaAST)

res0: universe.Tree = q''squid.lib.ifThenElse(true, 1, 0)''

To avoid this, the IR can special-case each virtualized construct in reinterpret, so that the

expression above results in the expected Scala AST: q''if (true) 1 else 0''.

Pretty-printing. Pretty-printing is a standard application of object algebras [Oliveira and

Cook, 2012], and requires defining an algebra where type Rep = String. However, when we

already have an InspectableBase, we can avoid writing a pretty-printer entirely: it suffices to

reinterpret the code into ScalaAST and then reuse the standard Scala pretty-printer.

Evaluation by runtime reflection. Squid provides the ReflectInterpreter Base implemen-

tation that leverages Java runtime reflection to execute code at runtime. In that base, we

have type Rep = Runner[Any] (where Runner is a data type that is used to build a runnable

representation of the code), and methodApp uses Java reflection to load the correct method

from its method symbol and create the appropriate runner. Thanks to this interpreter,

running code from an arbitrary InspectableBase is as simple as calling reinterpret with

a ReflectInterpreter instance — in fact, Squid provides a run:T helper method on Code[T]

types that does just that.

Evaluation by runtime compilation. A much more efficient but heavyweight way to imple-

ment code evaluation is to rely on Scala’s runtime compilation capabilities. We can use the

Scala compiler to generate extremely efficient JVM byte-code at runtime, a useful capability

for performance-sensitive systems that rely on staging.

Modular embedding. Remember that Squid leverages the Scala compiler to type check snip-

pets of code, and then uses the result to build the corresponding IR nodes. We call our

approach “modular embedding,” because the IR construction process itself is abstracted, and

is expressed in terms of the OpenWorld interface. For example, the case that lifts constants from

the type-checked Scala AST is of the form:

case Literal(Constant(x)) => base.const(x)

88

3.9. Implementation of Squid Quasiquotes in Scala

Where base is the OpenWorld Base object used to build the result of the embedding. The call to

const refers to the function declared in Figure 3.1. This approach has the advantage that we

can use modular embedding in different contexts:

• In the optimize{...} block construct shown in Chapter 4: the optimize macro embeds a

piece of code at compile time into a given Squid IR where optimizations are performed,

then reinterprets the code into the ScalaAST base to produce the result of the macro

expansion. A similar mechanism is used in the code generated by the @squidMacro

construct presented in Section 1.6.

• In quasiquotes, which embed code snippets into a specific MirrorBase backend, whose

role is to generate the Scala AST necessary to reconstruct the same code at runtime. In

this base, const(42) results in the Scala AST q''$base.const(42)'', where base identifies

the target runtime base. Indeed, the role of quasiquotes is to create run-time code

representations, as opposed to optimize whose goal is to handle code representations at

compile time. Interestingly, the code invoked by optimize itself makes use of quasiquote-

based “runtime” code manipulation — indeed, the runtime of the optimizer is the

compile-time of the user program.

3.9 Implementation of Squid Quasiquotes in Scala

This section is aimed at giving the reader a better understanding of the mechanisms underlying

Squid, as well as giving prospective implementers of advanced type system techniques insights

on how Scala facilitates such endeavors.

The main takeaway is that the combination of a flexible type system with an advanced type-

aware macro system can go a long way towards implementing advanced statically-typed

features without modifying the host language’s compiler, provided that compiler supports

macros with the capabilities listed in Sections 3.9.3 and 3.9.4.

3.9.1 Compilation of Squid Quasiquotes

Squid quasiquotes are implemented as macros that perform parsing and type-checking of

quoted fragments, compute and check associated types and contexts, and produce the Scala

code necessary to reconstruct the program fragments at runtime encoded in Squid’s interme-

diate representation.

Basic Expansion. To understand how Squid quasiquotes are compiled, let us start with a

simple example, code''Math.pow($x, 2)'', where some value x is in scope with type Code[Int].

In Scala, this expression is conceptually equivalent to a simple invocation of the form code(

List(''Math.pow('', '',2)''), x). The code function being a macro, it executes at compile-time.

The first thing it does is to interpret the strings passed in its first argument as a Scala code

89

Chapter 3. The Modular Implementation of Squid

snippet. To do this, it reconstitutes the fragment as ''Math.pow(hole[Int](0),2)'' and parses

it using the Scala parser. hole[Int](0) represents the unquoted value x, where type argument

Intwas retrieved from its type in the current scope, and 0 is a unique identifier associated to the

unquote. This snippet of code is then type checked using Scala’s type checker, given signature

def hole[T]: T. In this case, we end up with ''java.lang.Math.pow(hole[Int](0).toDouble,

2.0)'', typed Double. Notice the insertion of toDouble as a result of type checking: similarly, the

Scala type checker adds missing type parameters, inferred implicit arguments, fully-qualified

names, etc. The next step is to lift this typed AST into a program that reconstructs it at

runtime. During this process, hole[Int](0) is replaced with x.rep, where method rep accesses

the underlying implementation of a code fragment. We give below a simplified version of the

code that is produced:

val Math = staticObject(''java.lang.Math'')

val Math_pow = methodSymbol(''java.lang.Math.pow'')

val res = methodApp(Math, Math_pow, x.rep, Constant(2.0))

new Code[Double](rep = res)

Where class Code[+T](rep: Rep) is a typed wrapper that hides its internal untyped code repre-

sentation rep. The expansion of quasiquotes in pattern position is very similar, desugaring

to a call to the extract method that takes a pattern AST, a scrutinee AST and produces either

nothing if the matching failed, or a mapping from extracted term names to extracted code

fragments and extracted type names to extracted type representations.

Type-Parametric Matching. Type-parametric matching (see Section 1.3.4) uses the ability

of Scala to reason about path-dependent types, which are types that may live in arbitrary

objects, including local ones (this is a similar concept to first-class modules in ML). Squid

assigns to an extracted type representation ty the type CodeType which contains an abstract

type member T (a type declaration without a definition). Then, Squid type checks the pattern

using references to ty.T. In essence, ty.T — which can only be referred to within the scope of

the pattern matching branch where ty is extracted — is existentially quantified, which is the

correct interpretation of type-parametric matchings. For example, assuming pgrm has type

Code[Any], in the code below (where =~= stands for α equivalence):

pgrm match {

case code''List[$ty]($a, $b)'' =>

print(ty) // ty is a term here

val ls = code''List($b, $a)''

assert(ls =~= code''List[$ty] ($b, $a)'')

assert(ls =~= code''List[ty.T]($b, $a)'')

ls

}

the pattern is type checked as having type List[ty.T], and therefore the right-hand side of

the match sees a scope with extracted variables {ty: CodeType; a: Code[ty.T]; b: Code[ty.T]}.

90

3.9. Implementation of Squid Quasiquotes in Scala

The return type of this example is Code[List[_]] — the wildcard in List[_] stands for an

unknown type (an existential without a path). This is because the local type representation

module ty is invisible from outside the scope of pattern matching branch, which ensures that

extracted types from different patterns or even from different runs of a match cannot be mixed

with one another.

3.9.2 Cross-Quotation References

An important feature of a flexible quasiquotation system is the ability to manipulate open

terms.5 Since Squid quasiquotes are type-checked and hygienic, a program fragment like

code''x + 1'' is not valid on its own, as x is not defined.

However, within a context where x is bound at the same quotation depth as its reference,

code''x + 1'' becomes a valid expression. For instance, code''(x: Int) => ${bar(code''x +

1'')}'' is a valid quasiquote (of type Code[Int => Int]): when evaluated, the inner quasiquote

will embed a reference to the outer x, be processed by bar, and then the result (which will

presumably still contain references to x) will be inserted into the outer quote, which binds x.

A syntax white lie

Technically, the syntax I have described above, which is the syntax I have been and will be

using throughout my thesis, does not actually work as is.

How could it not? Let us try it:

scala> code''(x: Int) => ${ identity(code''x + 1'') }''

<console>:15: error: Embedding Error: Quoted expression does not type check:

not found: value x

This error is due to a limitation in the implementation of Scala macros: the arguments passed

to macros always expand before the macro itself. Therefore, the outer code''(x: Int) =>

${...}'' macro does not have an opportunity to set up its binding context before code''x + 1''

expands, so the latter fails with a type error.

Thankfully, there are many ways to work around this limitation — as we will see below. The

greatest tragedy of my PhD is that none of those workarounds is truly satisfactory, being either

downright inelegant or looking uncomfortably asymmetric with the pattern syntax.

5A capability notably missing from the earlier Scala Reflection statically-typed quotation approach, the reify
macro (see Section 1.7).

91

Chapter 3. The Modular Implementation of Squid

Redemption

The most tolerable workaround is to drop the usage of actual quotes, and rely on braces instead

of the string-literal syntax, which has the effect of letting the Scala compiler understand that

the outer quotation is setting up a binding context:

// Using braces:

code{(x: T) => ${ identity(code{x + 1}) }}

This works, by invoking an alternative frontend to the Squid macros, but has some serious

drawbacks.6 First, it means that we have to restrict the syntax allowed in quasiquotes to

Scala’s syntax exclusively. This is in contrast with the string-literal syntax, which support some

useful meta-syntax that is not valid Scala. For example, the string-literal syntax supports

quasiquotes which define polymorphic function literals with a concise syntax, as in code''[T]

=> (x: T) => (x, x)'' although polymorphic function literals are not yet supported in Scala

(in the current version 2). Another example is the insertion of first-class variables (which we

see later in Chapter 6) into quasiquotes, as in code''val $v = 0; $v + 1'' — the brace-based

syntax does not work well for this. Second, the syntax highlighting in integrated development

environments will not color quoted code in a different color, contrary to the quoted version (it

is colored differently here through obscure Latex invocations). Last but not least, this syntax is

asymmetric with quasiquote patterns, which cannot use braces (because of another limitation

of Scala macros) and therefore have to use the a string-literal syntax.

Brace and string-literal syntaxes can even be mixed, but that looks even less regular:

// Mixing braces and quotes:

code{(x: T) => ${ identity(code''x + 1'') }}

An alternative workaround is to escape the quotation of the inner quasiquote, as well as the

anti-quotation of the outer one:

// Escaping the unquote and inner quote:

code''''''(x:T) => $${ id(code''x'') }''''''

Escaping anti-quotations is done by doubling the dollar sign $$ so that the Scala compiler

does not consider it like an actual escape (which would prompt it to try and type check the

escaped code before the outer quote expands). Escaping inner quote is done by tripling the

quotation marks on the outer one, and is necessary because the Scala compiler (which is now

blind to the anti-quote) would consider the opening '' as closing the outer quote. Together,

these allow us to process the outer quote first, establishing the appropriate context before

expanding the inner one.

A major drawback of this approach is that we lose syntax highlighting in the escaped code.

Using triple quotes and double dollar signs is also fairly verbose.

6The braces syntax also has advantages, such as supporting click-to-definition in IDEs.

92

3.9. Implementation of Squid Quasiquotes in Scala

Note that escaping anti-quotations is useful in other contexts too. For instance, Squid supports

escaping anti-quotations to insert values into patterns, as in:

// match a println call on the specific code value in c0:

case code''println($$c0)'' => ...

Finally, we can also use automatic function lifting (presented in Section 1.3.9) to achieve the

same effect as cross-quotation references, but it is even more verbose than other alternatives:

// Using automatic function lifting:

code''(x:T) => ${ (y: Code[T]) => id(y) }(x)''

In practice

As a result of these limitations, I noticed that many Squid users have resolved to using braces

almost exclusively in expression code, resorting to quotes only for patterns,

3.9.3 Required Properties of the Macro System

In order to achieve its goals of static safety, the Squid quasiquote system relies essentially on

two features of the host language’s macro system:

• The ability to query type information and invoke the type checker during macro ex-

pansion: it should be possible to query the type of unquoted expressions in order to

properly type check the quote. Additionally but not essentially, Squid accesses the

type of the scrutinee in pattern matching (cf. Section 6.2.1) and type-checks a quoted

program fragment in the same scope as the quote itself, which is why we can write

{import Math.pow; code''pow($x,2)''}.

• The ability to refine the type of expanded macros: since both the type and the context

requirements of program fragments are computed during macro expansion, it must be

possible for the compiler to expand a macro call before knowing its final type, and use

the precise type of the expansion to type check the rest of the program.

3.9.4 Use of Runtime Reflection and Metaprogramming

Implementation of run and compile. Method run is implemented using Java reflection to

load the classes mentioned in the program fragment and execute their methods. An alternative

method compile invokes the Scala compiler at runtime to produce efficient JVM bytecode

from a program fragment, and then execute it without any interpretative penalty. This enables

Multi-Staged Programming [Taha and Sheard, 1997] (MSP), a form of explicit partial evaluation.

In MSP, the original program generates a program at runtime (first stage), which may in turn

93

Chapter 3. The Modular Implementation of Squid

generate new programs (second stage, etc.), each time removing computations that are known

at the current stage, so that an efficient implementation is finally synthesized that executes

faster than its unstaged counterpart.

Subtype Checking in Code Pattern Matching. Squid makes use of Scala runtime type repre-

sentations, that it packages with the program fragments. This is because subtyping checks

are performed at runtime to guide pattern matching on those fragments.7 Thanks to Scala’s

reflection features, we perform subtyping checks at runtime, leveraging Scala’s advanced type

system almost for free. For example, pattern case code''$ls: Seq[AnyVal]'' should match

code''List(1,2,3)'' because List[Int] <: Seq[AnyVal], but should not match something like

code''List(4.toString)'' or it would lead to inconsistencies in reconstructed programs (cf.

String 6<: AnyVal). Note the necessity to annotate holes for which Scala cannot locally infer a

type, like for $ls in the pattern example above. In contrast, pattern code''Math.pow($x,$y)'' is

fine because Math.pow is not overloaded nor polymorphic and only works with arguments of

type Double.

3.10 Related Work

3.10.1 Quasiquotes for Domain-Specific Languages

Quasiquotes in MetaML [Sheard et al., 1999], Haskell [Najd et al., 2016], F# [Syme, 2006]

and others were used to facilitate the implementation of embedded DSLs such as language-

integrated queries [Cheney et al., 2013]. Earlier approaches such as LINQ [Meijer et al.,

2006] also provided some level of language-integrated domain-specific program reification.

[Najd et al., 2016] use TTH to build DSL programs for their alternative embedding of Feldspar

[Axelsson et al., 2010], an approach they call Quoted DSLs (QDSL). In this approach, a particular

DSL is implemented using the quasiquotation abilities of a host language, which requires

significant heavy lifting behind the scenes (for example, retrieving type information [Najd et al.,

2016]). Najd et al. propose that “Rather than building a special-purpose tool for each QDSL,

it should be possible to design a single tool for each host language.” With Squid, we realized

this vision for Scala: we presented a quasiquote-based metaprogramming framework that

simplifies the deep embedding of DSLs and the design of associated program transformations.

The practice of deeply embedding DSLs in host languages, exemplified by the polymorphic

embedding approach [Hofer et al., 2008], requires to encode each DSL feature in the host

language as a special data type. This translates into a lot of boilerplate, especially when

associated with the burden of defining a suitable interface for DSL users, and it reduces the

flexibility of the DSL design and implementation process. In contrast, we propose a system

where quasiquotes are used both as the front-end for DSL users and the tool used by DSL

developers to describe their domain-specific optimizations. This means DSL designers can

7Note that type information needs only be associated with program fragments, and not with current-stage values,
which means we introduce no runtime overhead for normal computations not involving metaprogramming.

94

3.10. Related Work

immediately use the shallow interface of their DSL (i.e., defined as a simple library in the host

language), and apply custom analyses and rewritings on it without the need for a dedicated

deep representation.

95

4 Optimizing High-Level Libraries with
Quoted Staged Rewriting

Multi-stage programming (MSP, or just staging) is a popular technique for programmatically

removing code abstractions, thereby allowing for faster program execution while retaining

modular high-level interfaces.

Unfortunately, techniques based on MSP suffer from a number of problems — ranging from

practicalities to fundamental limitations — which have prevented their widespread adoption.

MSP requires both the designers of an optimized library and the users of that library to adapt

their code to the technique. This results in exposing users to metaprogramming constructs or

in having to hide such constructs behind cumbersome interfaces which are time-consuming to

develop — either approach resulting in worse user experience. Moreover, libraries developed

using MSP are often hard to extend and to compose together .

In this chapter, we introduce quoted staged rewriting (QSR), an approach to defining opti-

mizations as rewrite rules using statically-typed analytic quasiquotes backed by a normalizing

intermediate representation (IR).

The QSR approach is “staged” in two ways: first, rewrite rules can execute arbitrary code

during pattern matching and code reconstruction, leveraging the power and flexibility of MSP;

second, library designers can orchestrate the application of successive rewriting phases or

stages.

The advantages of using quasiquote-based rewriting are that: 1. library designers who wish

to implement optimizations never have to deal directly with the normalizing intermediate

representation hidden by the quasiquotes; and 2. that it allows for the definition of non-

intrusive optimizations — in contrast with MSP, it is not necessary to adapt the entire library

and user programs to accommodate optimizations.

We show how Squid’s modular design, which was described in Chapter 3, enables QSR and ren-

ders library-defined optimizations more practical than ever before: it allows library designers

to write safe and powerful domain-specific optimizers that library users invoke transparently

on delimited portions of their code base.

97

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

4.1 Introduction

We begin by providing some necessary background before presenting our quoted staged

rewriting approach. This section also serves as a presentation of the related work.

4.1.1 Staging and Extensible Compilers

In Section 2.6.1, we succinctly introduced the broad principles of multi-stage programming

(MSP, or just staging) [Taha and Sheard, 1997]. In this section, we get into some more detail on

the technique, its history and applications, and its limitations.

MSP lets programmers syntactically distinguish multiple stages of execution in their programs.

At each intermediate stage the program computes away what is known at this stage, and

generates a new residual program meant to execute the next stage. The ultimate stage performs

the task of the unstaged program, but in a more efficient way. MSP can be viewed as a form

of partial evaluation with explicit annotations for binding-time analysis [Jones et al., 1993],

or as a way to define type-safe program generators that work by iteratively composing code

fragments together. MSP can be applied to both run time [Taha and Sheard, 2000, Taha, 2004]

and compile-time [Ganz et al., 2001, Yallop and White, 2015] code generation. In the latter

case, programs are made of two stages where the first stage is executed at compile time and

the second stage corresponds to the final, compiled program.

A major limitation of MSP is that it generally offers no type-safe facilities to analyse code (it is

purely generative), which greatly restricts its capabilities in terms of program optimization.

Moreover, staging a library exposes users of that library to staging annotations,1 which leak

through its interface. Perhaps more importantly, staging requires to decide from the beginning

which parts of the program are static (meant to be executed at program generation time) and

which parts are dynamic, then building everything around that dichotomy, making it hard to

evolve the design later on without extensive refactorings.

Still, staging has been successfully applied to optimizing domain specific languages (DSL),

especially Embedded DSLs (EDSL) [Hudak, 1996] which are DSLs that are defined within a

more expressive host language such as Haskell [Axelsson et al., 2010, Najd et al., 2016, Hudak,

1996] or Scala [Rompf and Odersky, 2010, Lee et al., 2011, Ofenbeck et al., 2013, Scherr and

Chiba, 2015]. In this context, staging has been used to facilitate the definition of extensible

compilers for performance-oriented DSLs and heterogeneous target platforms [Lee et al.,

2011, DeVito et al., 2013, Puschel et al., 2005, Ofenbeck et al., 2013, Axelsson et al., 2010].

Generally speaking, these compilers reuse the frontend capabilities of their host (syntax and

type system) but they convert programs into their own domain-specific intermediate rep-

resentation (IR) before stringifying low-level code. This limits their ability to interact with

1Type-Based Embedding eschews staging quotations [Rompf and Odersky, 2010], but requires more complex
types, which also degrades the library interface [Jovanovic et al., 2014, Rompf, 2016].

98

4.1. Introduction

code outside of the DSL. For example, a compiler for a streams DSL (see the LMS embedding

of [Kiselyov et al., 2017]) by default can only handle primitive types, strings, arrays, functions,

loops and tuples, and adding support for using other constructs (such as, for example, BigInt)

requires extending the compiler’s IR, which involves significant amounts of boilerplate. More-

over, expressing non-trivial optimizations in these frameworks is hard and error-prone, as

one has to deal with details of the IR with limited support for code pattern matching. Tools

have been proposed to generate some of the boilerplate automatically [Jovanovic et al., 2014,

Sujeeth et al., 2013] and solutions were sketched to make code rewriting easier [Rompf, 2016],

but the fundamental limitations and intrinsic complexity of these approaches are still there,

and the burden they impose on library users only partly lifted.

In the words of Cohen et al. [2006], “[MSP] does not relieve the programmer from reimplement-

ing the main generator parts for each target application. The only way to improve code reuse

in the generator is to base its design on a custom intermediate representation, which may be

almost as convoluted for application programmers as designing their own compiler.”

4.1.2 User-Defined Rewriting

The idea of building program optimizations via high-level rewrite rules is far from new [Visser,

2002, Visser et al., 1998, Peyton Jones et al., 2001, Steuwer et al., 2015, Puschel et al., 2005,

Farmer, 2015, Sloane, 2011, Visser, 2001, Klint et al., 2009, de Moor and Sittampalam, 1999].

However, few approaches have offered a lightweight, type-safe, language-integrated way of

expressing these rules, as most rely on distinct specification metalanguages or complex code

transformation combinators.

A notable exception, the Glasgow Haskell Compiler (GHC) [Peyton Jones et al., 2001] allows

library writers to describe simple algebraic rewrite rules consisting of two expressions: a

pattern, and a template to replace the pattern with when the rule fires. GHC tries to apply

as many of these rules as possible as it performs its own optimization passes. There are no

termination or correctness guarantees associated with the rewrite rules, as their objective is to

let users make — at their own risk — domain-specific assumptions that the compiler cannot

make.

There are two major limitations to this approach. First, while the rules are sufficient to express

a variety of optimizations, they are limited in the patterns that they can match and in the

code that they can generate. For example, it is easy to define a rule to rewrite pow x 2 into x

* x, but the generalization of that rule to rewrite pow x n, where n is constant, into x * ... *

x is not expressible. Second, library designers have very weak guarantees about the actual

application of their rules when a program is compiled. The result is intimately dependent on

the inlining behavior of GHC (which is affected by separate compilation), so that expert knowl-

edge about the inner workings of the GHC optimizer is often required to achieve satisfying

results [Peyton Jones et al., 2001].2 As a consequence, the practice is to annotate functions with

2The GHC wiki has this informal bit about the behavior of rewrite rules in the context of list fusion: “Q: Why

99

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

INLINE or NOINLINE directives that sometimes need to refer to GHC’s own internal optimization

phase numbers. Moreover, approaches like stream fusion — a popular deforestation tech-

nique [Coutts et al., 2007, Coutts, 2011] — have been shown to require more powerful rewriting

facilities than simple GHC rewrite rules. This has sparked interest in HERMIT [Farmer et al.,

2014, Farmer, 2015], an interactive system based on rewriting combinators that is significantly

more complex. Older systems like MAG [de Moor and Sittampalam, 1999, 2001] have proposed

language-integrated rewriting for specific purposes such as mechanized fusion, but with weak

or no type preservation guarantees.

4.1.3 Quoted Staged Rewriting

In summary, staging is powerful but imposes a burden on both library users and library

designers. Moreover, purely-generative staging disallows code inspection, which is limiting,

and approaches that allow code inspection do so by exposing low-level IR constructs that are

hard to manipulate. Rewrite rules in the style of GHC are easier to express and integrate more

seamlessly with the host language, but they lack expressiveness and control.

In this chapter, we bring together the advantages of staging and rewriting into a unified

framework, Quoted Staged Rewriting (QSR), based on Squid. We claim that our approach

combines the flexibility and ease of use of language-integrated rewrite rules with the power

and guarantees of static staging.

Our framework works by user-defined, scoped optimizations, whereby: 1. library designers

express powerful domain-specific optimizations by way of type-safe quasiquote-based rewrite

rules; and 2. library users write normal, unstaged code that they can surround with optimize{

... } blocks in order to apply those library optimizations. With first-class control of inlining,

users can abstract on the library’s constructs while letting the library see through these ab-

stractions to apply its rewritings. Scoped optimizations are useful because it often makes

sense to focus optimization efforts on the “hot execution paths” of a program, where we can

afford to let the optimizer spend more time doing its job. In our experience, applying these

aggressive optimizations to more code outside of the hot paths makes the general compilation

slower but has rapidly diminishing results.

Rewrite rules, which are applied at compile time, are allowed to use arbitrary computations, a

flexibility that places them on equal footing with staging. On the other hand, rewriting enables

a more dynamic approach to binding-time analysis. Together with extensible pattern match-

ing, this favors more modular optimization designs: rewritings with orthogonal concerns can

be completely decoupled. Taking inspiration from transformation-based compilers [Rompf

et al., 2013, Jones, 1996], where rewritings are interspersed with successive lowering phases

that decrease the general level of abstraction, we allow optimization designers to specify at

does making one thing fuse sometimes make something else not fuse? A: Because the whole system is built around
inlining, and no one really knows how to make that Do The Right Thing every time. Also, no one knows a better way
to avoid basing it on inlining.”

100

4.2. Multi-Stage Programming Limitations Exemplified

which phase to inline which library abstractions. This is an essential feature to guarantee con-

sistent abstraction removal and robust, predictable optimization — both staples of MSP. We

make novel use of a simple IR and effect system, to soundly accommodate Scala’s imperative

features while enabling high-level algebraic rewritings. We thus reap the benefits of purity

while still allowing the manipulation of low-level imperative programs.

4.2 Multi-Stage Programming Limitations Exemplified

In this section, we exemplify the limitations of traditional multi-stage programmign ap-

proaches to designing optimizing libraries.

4.2.1 Staging the Power Function

The prototypical staging example is power, a function that raises a number x to the nth power:

since the exponent part n is often a statically known integer, it is tempting to specialize that

function so that a call to it expands into a simple sequence of multiplications. Figure 4.1a

presents the code for a staged power function, which takes a current-stage exponent n and

returns a function from any Double code value base to a code value representing its multiplica-

tion n times. Triple quotation marks '''''' introduce multi-line quotations.

The figure ends with a usage example for n = 3. The astute reader will notice that the unquoted

expression power(3) has type Code[Double] => Code[Double], whereas it is used as if it were

of type Code[Double => Double]. The reason is that Squid automatically lifts any current-

stage function Code[A] => Code[B] into a next-stage function Code[A => B] upon insertion (as

explained in Section 1.3.9).

4.2.2 New Optimization Opportunity

When removing abstractions programmatically and performing aggressive inlining, opti-

mizable patterns often emerge, including patterns that a programmer would never write

explicitly [Peyton Jones et al., 2001]. For instance consider a simulation application that needs

to compute the gravitational force between several different celestial bodies. Those of us who

remember our physics course will point out that the relevant equation has the form:

F =G
m0 ·m1

d(p0, p1)2

which corresponds to the program of Figure 4.2. When the call to distance is inlined, the body

of gravityForce ends up containing a call to pow(sqrt(...), 2), which is clearly an inefficient

identity:

G * plan0.mass * plan1.mass /

pow(sqrt(pow(plan0.pos.x - plan1.pos.x, 2)

101

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

def power(exp: Int)(base: Code[Double]): Code[Double] =

if (exp == 0) code''1.0''

else {

assert(exp > 0)

if (exp % 2 == 0) code''''''

val tmp = ${power(exp/2)(base)}

tmp * tmp

''''''

else code''$base * ${power(exp-1)(base)}'' }

val pow3 = code''${power(3)}''.run

(a) Defining a staged power function.

import Math.pow // pow: (Double, Double) => Double

@bottomUp @fixedPoint

val powOpt = rewrite {

case code''pow($base, 0)'' => code''1.0''

case code''pow($base, ${Const(exp)})''

if exp.isWhole && exp > 0 =>

if (exp % 2 == 0) code''''''

val tmp = pow($base, ${Const(exp/2)})

tmp * tmp

''''''

else code''$base * pow($base, ${Const(exp-1)})''

}

def pow3(x: Double) = powOpt.optimize { pow(x,3) }

(b) Rewriting the standard Math.pow function.

Figure 4.1 – Two approaches to optimizing the power function.

102

4.2. Multi-Stage Programming Limitations Exemplified

+ pow(plan0.pos.y - plan1.pos.y, 2)), 2)

Naturally, we would like being able to optimize such patterns.

4.2.3 Limitations of Staging

Let us consider what happens if we stage the function of Figure 4.2, making use of the power

function defined in Figure 4.1a. Assuming purely-generative staging like in MetaOCaml [Taha,

2004], there is no easy way to extend that definition of power to perform the “power-of-power”

optimization described above. The staged function can no longer accept a Code[Double] as

the base, since purely generative approaches do not allow inspecting or decomposing code

fragments – only creating and composing them together. However, we need to know whether

a given piece of code has the form of a square root to be able to eliminate a square operation

performed on it.

Solving this issue typically involves defining an auxiliary data structure for code being con-

structed, that carries additional information about its underlying structure. Figure 4.4 shows a

generalized definition genPower of the power function, that uses an algebraic data type CodeRep

to retain information about the code: subclass Pow describes a piece of code that results from

an application of the power function, while Simple corresponds to other code. Method toCode

is used to reify that intermediate representation into a proper code fragment to be inserted

into a quasiquote.

Notice how that change affected the way we define pow3. More complex usages of power have

to change in an even more significant way, as is shown in Figure 4.3 where we adapt the

planet simulation code seen previously to our new staging scheme. As one can see, both

the implementation of genPower and its usage in pow3, distance and gravityForce become

tremendously more complicated. We believe that this is why purely-generative staging is

often relegated to the back end — i.e., used merely for end-of-the-pipeline code generation,

while the front end of the library is defined in the finally-tagless style [Carette et al., 2009] and

mostly hides staging.

Extensible compiler techniques obviate the need to explicitly wrap and unwrap code, by

making the equivalent of Pow directly extend (inherit from) the compiler’s internal IR node

type [Hofer et al., 2008]. Moreover, type-inference-based techniques help to hide staging

annotations to some extent [Rompf and Odersky, 2010], which can be further improved by

language virtualization [Moors et al., 2012, Jovanovic et al., 2014], but the added complexity

and fundamental limitations are still there: DSL designers have to write the entire library with

staging in mind, define IR nodes for all constructs meant to be supported by the DSL, and

interact directly with details of the compiler’s IR (especially when defining rewritings[Rompf,

2016]).

103

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

import Math.{pow, sqrt}

val G = 6.67E-11

def gravityForce(plan0: Planet, plan1: Planet) =

G * plan0.mass * plan1.mass /

pow(distance(plan0.pos,plan1.pos), 2)

def distance(p0: Position, p1: Position) =

sqrt(pow(p0.x - p1.x, 2) + pow(p0.y - p1.y, 2))

Figure 4.2 – Example simulation code using sqrt and pow.

def gravityForce(pl0: Code[Planet], pl1: Code[Planet]) =

code''G * $pl0.mass * $pl1.mass / ${

genPower(distance(code''$pl0.pos'', code''$pl1.pos''), 2.0).toCode }''

def distance(p0: Code[Position], p1: Code[Position]) =

sqrt(Simple(code''''''

${ genPower(Simple(code''$p0.x - $p1.x''), 2.0).toCode }

+ ${ genPower(Simple(code''$p0.y - $p1.y''), 2.0).toCode }

''''''))

def sqrt(x: CodeRep[Double]) = genPower(x, 0.5)

Figure 4.3 – Simulation code adapted for the (new) staged interface.

104

4.3. Quoted Staged Rewriting

abstract class CodeRep[T] { def toCode: Code[T] }

case class Simple[T](toCode: Code[T]) extends CodeRep[T]

case class Pow(cde: Code[Double], exp: Double) extends CodeRep[Double] {

def toCode =

if (exp.isWhole) power(exp.toInt)(cde)

else code''Math.pow($cde,${Const(exp)})''

}

def genPower(base: CodeRep[Double], exp: Double) = base match {

case Simple(c) => Pow(c, exp)

case Pow(c,e) if exp.isWhole => Pow(c,exp * e)

case _ => Pow(base.toCode, exp)

}

val pow3 =

code''(x: Double) => ${ genPower(Simple(code''x''), 3).toCode }''.run

Figure 4.4 – New definition of the staged power function, with support for optimizing the
“power-of-power” pattern.

4.3 Quoted Staged Rewriting

Remember that Squid supports pattern matching on code fragments, an innovation over

classical MSP languages. The syntax is case code''pattern''=> result. In a code pattern, the

semantics of unquotes is no longer to insert but rather to extract code fragments found in the

place where they occur. For example, the following program evaluates to code''2'':

code''2 + 1'' match { case code''($n: Int) + 1'' => n }

4.3.1 Rewriting Math.pow

Figure 4.1b presents a rewriting that optimizes calls to Math.pow with integer exponents using

binary exponentiation. Const is the constructor/extractor for constant values; for example

Const(2) is equivalent to code''2'' in both expressions and patterns. A rewriting is registered

using a rewrite block containing pattern matching clauses. Each rewriting can be configured

to apply in bottom-up or top-down traversal order, and can be made to apply repeatedly until

a fixed point is reached. In this example we use bottom-up order and fixed-point recursion.

Method isWhole simply tests whether a Double value is a whole number. Note that Squid uses

an IR based on the A-Normal Form (ANF) [Flanagan et al., 1993], which means that non-trivial

sub-expressions are let-bound, so that it is not a problem to duplicate the base argument

extracted from the patterns. For example, pow(readInt, 3) is rewritten into:

val x_0 = readInt

x_0 * 1.0 * (x_0 * 1.0 * (x_0 * 1.0))

105

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

One can immediately notice several differences with the staged version. First we do not

need to create a new, distinct power construct; instead we operate directly on Java’s standard

Math.pow method. This means that any programs using Math.pow can already benefit from our

optimization without any changes to their business logic. In other words, QSR allows us to

work directly on program representations instead of staged structures, but without having to

define our own domain-specific IR. Moreover, the optimization of pow3 in Figure 4.1b happens

at compile-time which makes the user experience similar to built-in optimizations.

4.3.2 Extending the Rewriting

Implementing the “power-of-power” optimization by rewriting is straightforward, as we can

simply add the following rewrite rules3 to those of Figure 4.1b:

case code''sqrt($x)''

=> code''pow($x, 0.5)''

case code''pow(pow($base, ${Const(a)}), ${Const(b)})''

if b.isWhole

=> code''pow($base, ${Const(a * b)})''

case code''pow($x, 1)''

=> x // just for aesthetics

We can now wrap the body of gravityForce in Figure 4.2 inside a powOpt.optimize{...} block,

which rewrites it into:

val x_0 = plan0.pos.x - plan1.pos.x

val x_2 = plan0.pos.y - plan1.pos.y

G * plan0.mass * plan1.mass / (x_0 * x_0 + x_2 * x_2)

There is one caveat however: the additional rules have to be inserted at the beginning of

the case clauses of Figure 4.1b, otherwise an expression such as pow(pow(x, 0.5),2) will

be rewritten to val tmp = pow(y, 0.5); tmp * tmp by the second rule of Figure 4.1b, before

the new rules can be applied, missing that optimization opportunity.4 This shows that the

ordering of rewritings should be carefully considered by library designers. More generally, it

is often useful to organize rewrite rules into separate phases. For example, considering that

the implementation of sqrt is faster than that of more general-purpose pow, it would pay off

to have a later phase that converts code of the form pow(x, 0.5) back into sqrt(x) before

emitting the final code. The question of rewriting phases is exemplified further in Section 5.4.

3We require the outer exponent b to be a whole number to avoid performing unsound reductions, like
sqrt(pow(x, 2)) to x instead of abs(x).

4The cases of a rewriting are tried in the order they are defined, similar to classical pattern matching (the match
keyword).

106

4.3. Quoted Staged Rewriting

@online

val powOpt = rewrite {

case code''pow($base, ${Const(exp)})''

if exp.isWhole && exp > 0

=> power(exp.toInt)(base)

case code''pow($base, $exp)''

=> throw StagingError(

''Non-static exponent: '' + exp.show)

}

Figure 4.5 – Hybrid approach: rewrite rules that falls back to staged function and emit error on
rewrite failure.

4.3.3 Hybrid Approaches and Online Rewriting

It is possible to freely combine rewriting and traditional staging. For instance, while fixed

point rewriting is often useful, its use in Figure 4.1b could be considered overkill; instead

of looping through the fixed point of the rewrite rule, we could just as well call a staged

function that performs the looping itself,5 as demonstrated in Figure 4.5. In that configuration,

the role of rewrite rules is to automatically extract static parts from unannotated programs,

similar to binding time analysis (BTA). Reminiscent of online partial evaluation [Jones et al.,

1993], the @online annotation specifies that a rewriting should be performed on the fly, as

program representations are constructed. Online rewrite rules can be used to achieve a form of

normalization: by restricting the space of representable programs, they make transformations

simpler to express. Additionally, they can alleviate phase ordering problems [Rompf et al.,

2013].

4.3.4 Guarantees and Control

Thanks to arbitrary code execution in rewrite rules and control over inlining (see Section 5.4),

we make the argument that QSR is as powerful as compile-time staging. In particular, it

preserves all the necessary control required by library designers, who wish to guarantee to

library users that program optimizations apply reliably: if some rewriting could not be applied

because static information could not be extracted, it is always possible for the rewrite system to

emit a compile-time error and fail code generation, as is done in the second rule of Figure 4.5.

Other valid behaviors in this case may be: emitting a compile-time warning but going through

with code generation; simply logging the failure in a report that users can inspect in order to

understand how to speed up their program; or doing nothing at all – which is what traditional

compiler optimizations have been doing.

5Yet another hybrid approach would be to use code pattern-matching inside of a staged definition, lifting the
purely-generative restriction.

107

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

An even stronger argument can be made following [Cheney et al., 2013] and [Najd et al., 2016],

who rely on the subformula principle of normal proofs adapted to programming [Wadler,

2015] to guarantee that types that do not appear as subformulas of the types of the inputs

and outputs of a program will be completely removed after sufficient normalization. For

example, a program of type Int => Int that is internally defined using some Stream data type

can be rewritten to a program that does not make use of Stream, as long as we can inline all

Stream functions. The possibility of inlining the relevant functions is an integral part of the

subformula principle: if we do not have access to the function body (and therefore cannot

inline it), the function itself should be counted as part of the inputs to the program, which

prevents the application of the subformula principle (as the function type will contain the

offending type — here, Stream).

4.3.5 Modularity of Rewritings

Squid enables the common approach [Visser et al., 1998, Sloane, 2011] of separating term-level

rewritings from transformation strategies. As a result, it is possible to define self-contained

libraries of useful rewritings as well as libraries of useful transformation strategies and com-

pose them modularly. To combine different strategies we rely on Scala’s mix-in composition

mechanism, a technique also used in previous work [Hofer et al., 2008, Rompf et al., 2011].

Another important direction for modularity is to allow abstracting over patterns in rewrite

rules [Visser, 2001]. Squid achieve this by merely relying on Scala’s built-in custom extractors:

object Even {

def unapply(x: Code[Double]): Option[Code[Double]] = x match {

case Const(n) if n % 2 == 0 => Some(x)

case code''($_: Int) * 2'' => Some(x)

case code''${Odd(_)} + 1'' => Some(x)

case _ => None

}

}

object Odd { /* similar definition elided */ }

rewrite {

case code''pow(-1, ${Even(n)})''

=> code''1.0''

case code''pow(pow($b, ${Even(Const(n))}), ${Const(e)})''

if n * e == 1.0

=> code''abs($b)''

}

The code above defines co-recursive Even and Odd extractors that are used to rewrite terms

108

4.3. Quoted Staged Rewriting

such as pow(pow(x,2),0.5) into abs(x) and pow(-1,readInt*2) into readInt; 1.0.

4.3.6 Composing Uses of QSR Libraries

Finally, we describe how to compose together optimizers defined in different libraries. The

simplest way to achieve composition is to nest the optimize blocks, which expand inside-

out: in r0.optimize{ ... r1.optimize{ ... } ... } the r1 block expands first (applying its

rewrite rules), and what the r0 block sees is the resulting optimized code. Consequently, this

approach may yield different results depending on the order in which the different blocks are

nested.

A more fine-grained alternative is to merge rewriting passes together, as in (r0+r1).optimize{

... } but this requires that the rewritings be defined using compatible traversal strategies.

More advanced library optimizers (like in Chapter 5) may be defined in terms of succes-

sive rewriting and inlining phases; determining how to mix these more complex optimizers

together in a fine-grained way requires careful consideration from the user.

4.3.7 Optimizing Existing Libraries

As we saw with Math.pow and Math.sqrt, Squid can optimize code written using preexisting,

unmodified libraries. On the other hand, it is often beneficial to design libraries with optimiza-

tion in mind, using constructs that can be easily manipulated and optimized by code rewriting.

For example, Chapter 5 presents a streams implementation Strm that is geared towards QSR.

Nevertheless, it is still possible to use that ad-hoc implementation to optimize existing li-

braries, such as Scala’s Stream. This is done in three phases. First, we define conversion

functions toStrm and toStream to move between the two representations [Ureche et al., 2015].

Then we rewrite all Stream operations to Strm ones using these conversions, while collapsing

useless conversions on the fly. For example, we convert Stream.from(0,1).take(3).sum to

Strm.from(0,1).take(3).sum with these rewritings:

case code''($xs: Stream[Int]).sum''

=> code''toStrm($xs).sum''

case code''Stream.from($start, $step)''

=> code''toStream(Strm.from($start, $step))''

case code''($xs: Stream[$t]).take($n)''

=> code''toStream(toStrm($xs).take($n))''

case code''toStrm(toStream($xs: Strm[$t]))''

=> xs

Finally, the usual Strm optimizations can be applied on the resulting program, producing

optimized code that may entirely bypass the usage of Stream. Note that in certain cases,

inserting back-and-forth conversions may be detrimental to performance when the whole

109

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

pipeline cannot be converted and when the cost of conversion outweighs the gains of opti-

mization [Coutts et al., 2007]. Thankfully, it is easy to write a separate “clean-up” phase which

reverts conversions that could not apply fully, avoiding unwanted conversion costs.

4.4 Enabling Quoted Staged Rewriting

In this section, we detail several important technical aspects of the Squid implementation that

enable QSR.

4.4.1 Effect-Sensitive A-Normal Form (ANF)

Hash consing. The Squid ANF IR is geared towards making rewrite rules as flexible as possible.

As such, we have an unconventional definition of “non-trivial expressions” (those expressions

that need to be let-bound). In our approach all pure expressions are considered trivial and

therefore they are never let-bound. Semantically, it is as if pure expressions were duplicated

at every one of their use sites, but internally Squid uses hash-consing [Jerding et al., 1997] so

that there is only a single representation in memory of every pure term. Conceptually, writing

code〈println(x+1); x+1〉 is equivalent to writing val x_0 = code〈x+1〉; code〈println($x_0);
$x_0〉. This is not only useful to save memory, but also allows Squid to cache transformations

so that they are not performed more than once on a given pure term.

Matching. The mechanism described above gives us the benefits of ANF (normalized control-

flow, sound handling of effects) while enabling powerful code pattern matching, because

patterns can freely inspect nested sub-expressions as long as these sub-expressions are

pure. Impure patterns can also be used, such as case code〈println(readInt)〉, which matches

code〈val x = readInt; println(x)〉 but does not match any program where there are impure

expressions intervening between the readInt and println calls, like code〈val x = readInt;

readDouble; println(x)〉.

Scheduling. When generating or pretty-printing code, Squid uses a scheduling phase to let-

bind pure expressions that are used multiple times, in order to minimize program size and

computation costs. This phase needs special care around closures, by-name arguments and

branching constructs. For example, it makes sense to schedule expressions out of a loop (so

as not to recompute them on every iteration), but inside an if-then-else branch if the other

branch does not also use it (so as not to perform useless computations). Due to the lack of

space, we do not describe the algorithm used by Squid to perform scheduling, but there is

extensive literature on the subject [Click, 1995]. Squid allows users to annotate higher-order

method parameters to indicate whether they are expected to execute at most once, at least

once or many times. This way Squid can produce sensible schedules for code that uses custom

constructs, such as the loopWhile function of Section 5.3.

110

4.4. Enabling Quoted Staged Rewriting

4.4.2 Effect System

Basic Principles. In order to determine which expressions are pure, Squid uses a very simple

yet surprisingly versatile effect system. The idea is to differentiate two kinds of effects: direct

and latent. An expression has direct effect if it reads or writes mutable state, performs I/O,

etc. Latent effects are reserved for expressions that delay the execution of direct effects, such

as a lambda expression containing effectful code. Similarly to previous systems [Rytz et al.,

2012], methods are then annotated with 1. their intrinsic effect, and 2. the way they propagate

the effects of their arguments. “Pure expressions” are those with no direct effect, so lambda

expressions are considered pure even when they have latent effect.

Examples. Since the Scala Stream datatype is purely functional, none of its methods has any

intrinsic effects. However, transformers like map “build up” latent effects when applied to

effectful functions, so Stream(1,2,3).map(_ + readInt) has latent effect. On the other hand,

consumers like fold “execute” the latent effect of their arguments. This is because Stream

is a lazy data structure that executes computations only when required. As an example, if

either s or f have latent effect then s.fold(0)(f) has direct effect — otherwise it is pure.

As a result, a stream pipeline like the ones we study in Chapter 5 is normalized to one big

expression terminated by a call to a consumer such as fold or foreach, which allows for simple

yet powerful rewritings (cf. Figure 5.2). Finally, notice that strict collections behave differently:

for them, transformers execute immediately, so code like List(1,2,3).map(_ + readInt) has

direct effect.

Future Work. Improving the effect system to be more fine-grained could benefit pattern

matching and scheduling. In particular, we could maintain an arbitrary number of latent

effect layers — currently we consider that x => print(x) and x => y => print(x) have the

same (latent) effect, which means that when the latter is applied once it is already considered

to have a direct effect, which is not unsound but rather imprecise. We could also use a graph-

based IR [Click and Cooper, 1995] to maintain explicit dependencies between expressions,

like in LMS [Rompf et al., 2013] or Graal [Würthinger, 2011]. Finally, while we currently require

users to annotate the effects of their methods, automatic effect inference is entirely feasible.

Existing dedicated effect-tracking tools could also be leveraged, such as Scala FX [Rytz et al.,

2012].

4.4.3 Scalability of Code Pattern Matching

Squid implements pattern matching by building a term containing holes to represent the

pattern, similarly to the Folds subsystem of HERMIT described in Farmer’s dissertation

(p.73) [Farmer, 2015].

Squid’s current rewriting algorithm works by trying each pattern one after the other, and does

not memoize previous matching results, although that would be possible to implement —

following Farmer, we plan to use trie maps in order to speed up the process. Nevertheless,

111

Chapter 4. Optimizing High-Level Libraries with Quoted Staged Rewriting

we have found that even our non-optimal approach was practical, and enabled advanced

rewritings like those of Chapter 5 plus dozens of online normalization rules6 to be applied on

mid-sized method bodies without incurring concerning compilation times. We reserve an

empirical study of these performance characteristics for future work.

6When we did the microbenchmarks of Section 5.8, there were a total of 66 online rewrite rules registered,
handling things ranging from logic operations to options normalization to desugaring common Scala idioms.

112

5 Application: A New Approach to
Stream Fusion

Stream fusion is a technique to automatically remove the creation of intermediate lists in

functional programs.

Previous approaches to stream fusion have been based on simple rewrite rules, which suffered

from brittleness and a lack of optimization guarantees, and multi-stage programming (MSP),

which suffered from the limitations of MSP seen in the previous chapter.

In this chapter, we describe a solution based on quoted-staged rewriting (QSR) which reaps

the advantages of both approaches, and also performs more fusion than either in some cases,

thanks to the use of an advanced flatMap-streamlining program transformation.

Our implementation of stream fusion (a well-known deforestation technique) is both simpler

and more powerful than the state of the art, and can readily be used by Scala programmers

with no knowledge of metaprogramming.

5.1 Previous Approaches

The goal of deforestation is to optimize libraries which make use of functional data structures

by removing the computation of intermediate results [Wadler, 1988]. List and stream fusion

are two particular well-known deforestation techniques which deal with functional lists — or

“streams” of data. We will henceforth refer to these techniques simply as fusion.

Fusion has been an intense subject of research [Gill et al., 1993, Gill, 1996, Peyton Jones et al.,

2001, Coutts et al., 2007, Jonnalagedda and Stucki, 2015a, Kiselyov et al., 2017]. Promising

approaches relying on simple Haskell rewrite rules [Peyton Jones et al., 2001, Coutts et al.,

2007] were thoroughly explored, but these approaches often suffer from a lack of control and

from limitations of the rewrite rules framework.

Multi-stage programming has been used to achieve some of the goals of fusion [Jonnalagedda

and Stucki, 2015a, Kiselyov et al., 2017]. Most recently, Kiselyov et al. [Kiselyov et al., 2017]

demonstrated an approach based on staging that fuses several difficult stream operations,

113

Chapter 5. Application: A New Approach to Stream Fusion

including “zipping” two streams together.1 Their approach requires an elaborate staged repre-

sentation of streaming code, that relies on existentially-quantified types to encode the stream’s

internal state and uses continuation-passing style (CPS) thoroughly to thread state and itera-

tion code through the streaming constructs. This makes the description and implementation

of the library slightly convoluted and hard to understand. On the other hand, the library

exposes staging annotations, as it forces users to write all the business logic of their application

inside quotations.2 For example, instead of writing stream.map(x => x.foo), one has to write

the equivalent of stream.map(x => code''$x.foo''). This has two disadvantages: first, library

users generally have to use a compiler modified for staging, and need to understand staging

annotations even when it’s irrelevant for their business logic; second, this means the BTA of

the library is completely fixed [Leißa et al., 2015]; i.e., which parts are known statically is fully

determined in advance by the library designers. Future changes to enable more optimizations

may break the library interface, as we describe further in Section 5.6, and any usages of the

library in a slightly more dynamic setting are impossible.

In the rest of this chapter, we show how to use QSR and reap the benefits of staging and

rewriting: we perform stream fusion without affecting the user interface of the library and

more thoroughly than in the staging-based previous work, and we enable more control and

more powerful transformations than offered by GHC rewrite rules.

5.2 Stream Fusion by CPS and Inlining

The streams interface we focus on is the same as in [Kiselyov et al., 2017]; we show it below

(syntax type Strm[A] <: { ... } specifies, through a subtyping bound, which methods the Strm

type should contain). All functions are standard and have self-describing signatures:

type Strm[A] <: {

def map[B](f: A => B): Strm[B]

def flatMap[B](f: A => Strm[B]): Strm[B]

def take(n: Int): Strm[A]

def filter(p: A => Bool): Strm[A]

def zipWith[B](that: Strm[B]): Strm[(A,B)]

def fold[B](z: B)(f: (B,A) => B): B

}

def fromRange(from: Int, until: Int): Strm[Int]

def unfold[A,B](init:B)(next:B => Option[(A,B)]): Strm[A]

Other constructs can of course be defined on top of these ones by adding “syntactic sugar,”

such as fromArray in:

1Zipping a stream of elements of type A with a stream of elements of type B produces a stream of combined
(A,B) elements.

2The authors propose to use combinators to hide staging and mitigate the issue, but we believe that this is not
really helping. x => stagedFoo(x) is not qualitatively better for the user than the quoted version.

114

5.2. Stream Fusion by CPS and Inlining

def fromArray[A](xs: Array[A]): Strm[A] =

fromRange(0, xs.length).map(i => xs(i))

A simple way to implement streams is by backing them with imperative producers which allow

requesting elements one by one (the pull model of iteration) while keeping internal iteration

state. In order to retain the expected pure interface for streams, it is necessary that stream

objects not store a specific producer, but rather a way to initialize a new producer and its

internal state — a producer factory:

case class Strm[A](producer: () => Producer[A])

Producer[A] can be implemented as a function of no arguments that, when called, returns

Some(e) if e is the next element to be produced, or None if there are no more elements to

produce (i.e., type Producer[A] = () => Option[A]). However, as has been noted before [Taha,

1999] the use of Option to guide control flow tends to generate code that is not easily optimized

or partially evaluated, because it typically contains redundant branching expressions. In

general, rewriting these into a more streamlined control flow requires some control-flow

analysis. While this can certainly be done using our approach (since we can inspect code

by recursively traversing it via pattern-matching), it is much easier to adopt an alternative

representation of producers. As often, the better representation is in continuation-passing

style:

type Consumer[A] = A => Unit

type Producer[A] = Consumer[A] => Unit

Figure 5.1 shows the gist of the Strm implementation that we finally settle on. The andThen

combinator pipelines two functions together such that f.andThen(g) (also written in operator

syntax f andThen g) is equivalent to x => g(f(x)).

Marking the Strm class with an @embed annotation allows Squid to automatically create a deep

embedding for the body of every method in the class (similar to [Jovanovic et al., 2014]).

By default, unless annotated with an explicit @phase (see Section 5.4), methods and data

constructors are treated by Squid like syntactic sugar, and they are inlined on the fly.

Perhaps surprisingly, most of the constructs of our streams library already fuse automatically

after inlining. For example, the “Hello World” of fusion xs.map(f).map(g).sum where s.sum =

s.fold(0)(_ + _) basically desugars/inlines into:

val p = xs.producer(); var cur = 0

var cont = true; while (cont) { cont = false

p { a => cur = cur + g(f(a)); cont = true } }

cur

As a more interesting example, consider the program:

optimize{ (xs:Array[Int]) => unfold(0)(i => Some(i,i+1))

115

Chapter 5. Application: A New Approach to Stream Fusion

@embed

case class Strm[A](producer: () => Producer[A]) {

def map[B](f: A => B): Strm[B] = Strm(() => {

val p = producer()

k => p(f andThen k)

})

def take(n: Int): Strm[A] = Strm(() => {

val p = producer()

var taken = 0

k => if (taken < n) { taken += 1; p(k) }

})

def zip[B](that: Strm[B]): Strm[(A,B)] = Strm(() => {

val p0 = producer()

val p1 = that.producer()

k => p0 { a => p1 { b => k((a,b)) } }

})

def fold[B](z: B)(f: (B,A) => B): B = {

val p = producer()

var cur = z

var cont = true

while (cont) {

cont = false

p { a => cur = f(cur, a); cont = true }

}

cur

}

def foreach(f: A=>Unit): Unit =

fold(()) { (_, a) => f(a) }

/* other implementations elided */

}

def fromRange(n: Int, m: Int): Strm[Int] = Strm(() => {

var i = n

k => { if (i < m) { k(i); i += 1 } }

})

Figure 5.1 – Implementation of the Strm data type.

116

5.3. The Problem with flatMap

.zip(fromArray(xs).filter(_ % 2 == 0)).foreach(print) }

For which Squid produces this code, slightly reformatted:

(xs_0: Array[Int]) => {

val len_1 = xs_0.length

var st_2 = 0

var i_3 = 0

var cont_4 = true

while (cont_4) {

cont_4 = false

val x_5 = st_2

st_2 = x_5 + 1

var cont_6 = true

while (cont_6) {

cont_6 = false

val iv_7 = i_3

if (iv_7 < len_1) {

val x_8 = xs_0(iv_7)

if (x_8 %2 == 0) {

print((x_5,x_8))

cont_4 = true

} else cont_6 = true

i_3 = iv_7 + 1

}

}

}

}

As we can observe, all of the Strm abstractions have been removed and closures have disap-

peared, leaving behind a residual program made only of variables and loops. Normalization

plays a major role in this regard: on the one hand, Squid relies on ANF (cf. Section 4.4.1) to

streamline block structures and inline “one-shot” lambdas (lambdas applied only once [Pey-

ton Jones et al., 2001]); on the other hand, user-defined online rewrite rules allow getting rid of

intermediate abstractions — notice that the code above does not contain any Option despite

the unfold interface making use of them. We do not describe such normalizations here for lack

of space, but the ones that apply in this case transform Some(x).isDefined and Some(x).get

into true and x respectively.

5.3 The Problem with flatMap

The only construct that does not play well with this state of affairs is flatMap, which is due to its

intrinsic higher-order nature. To understand this, consider one of its possible implementations,

117

Chapter 5. Application: A New Approach to Stream Fusion

shown below:

def flatMap[B](f: A => Strm[B]): Strm[B] = Strm(() => {

val p = producer()

var curBp = Option.empty[Producer[B]]

k => {

var consumed = false

loopWhile {

if (!curBp.isDefined)

p { a => curBp = Some(f(a).producer()) }

curBp.fold(false) { bs =>

bs { b => k(b); consumed = true }

if (!consumed) { curBp = None; true }

else false

}

}

}

})

Syntax loopWhile{...} is the same as while({...}){}, and opt.fold(d)(f) applies function f

on the value contained in option opt or returns d if opt is not defined. The implementation

proceeds by storing the current producer of B elements in variable curBp. Whenever the

current producer runs out of elements (variable consumed is not set to true after calling bs), we

set curBp to the next producer, which is obtained by applying f on the next element a of p.

The problem is that curBp is a variable that stores a function, preventing its inlining (remember

that type Producer[B] is an alias for Consumer[B] => Unit). Notice that each time the value of

curBp is reset, it captures a different value of a that is not available outside of the continuation

passed to p. Even if we know the body of f, we cannot naively inline it at its use site, in bs{ b

=> ...}, because we would no longer have access to that a. As was noted before [Coutts et al.,

2007, Coutts, 2011, Farmer et al., 2014], these complications derive directly from the power and

generality of flatMap. In the general case, for each element of the source stream, the function

passed to flatMap could return streams of arbitrary shapes constructed at runtime, making it

unfeasible for a compiler to fuse the code based solely on static information. However, in a

significant proportion of stream programs used in practice (if not the vast majority), flatMap

is used with more “well-behaved” functions, for example functions that always produce the

same shape of streams for each source element (see Section 5.7). Furthermore, it is often

possible to reorganize a program so that the result of any flatMap is consumed all at once

(the “push-based” approach) instead of one element at a time, which allows us to avoid the

inefficient pull-based implementation shown above. In the next section we explore that

approach, and in Section 5.7 we describe a more general but more complex and slightly less

efficient solution.

118

5.4. Enabling More Fusion by QSR

5.4 Enabling More Fusion by QSR

Our goal is to defer the inlining of flatMap and the other Strm operations so that we get

a chance to rewrite stream usage patterns in a way that removes the need for pulling from

flatMap results. To achieve this, we annotate all core Strm methods (those that are not syntactic

sugar) with @phase (''Low'') to delay their inlining. We then take inspiration from Kiselyov et

al. [Kiselyov et al., 2017], who leverage the fact that flatMap is no more problematic if we can

consume its elements using internal iteration (push-based approach, cf. foreach) instead of

external iteration (pull-based). We introduce the notion of pullable streams for streams that

can be efficiently used with external iteration. To mark streams that are pullable, we use a

dummy “marker” method pull[A](as:Strm[A]):Strm[A] also annotated with @phase(''Low''),

which simply returns its argument unchanged.3 We make fromRange and unfold syntactic

sugar that wrap their body with a call to pull, since their implementations are pullable, and

we define the propagation rules seen in the first part of Figure 5.2. These rules “float out” the

pull wrapper as long as the outer operation is also pullable.4

The next step is to define rules that fold usages of the stream combinators in order to enable

internal iteration. To simplify this step, we redefine fold and foreach in terms of a doWhile

method that consumes the elements of a stream as long as its argument function returns true:

@phase(''Low'') def doWhile (f: A => Bool) = {

val p = producer(); loopWhile {

var cont = false; p { a => cont = f(a) }; cont }}

The Folding rules in the second part of Figure 5.2 then reduce stream combinators that

are applied to doWhile. The last two rules of Figure 5.2 dispatch the implementation of zip

depending on which of its two arguments is pullable. Similar to [Kiselyov et al., 2017], in

this section we do not explicitly handle the case where neither is pullable. Function doZip is

syntactic sugar for a specialized version of doWhile:

def doZip[A,B](s:Strm[A],p:Producer[B])(f:(A,B) => Bool) =

s.doWhile{ a => var c = false; p { b => c = f(a,b) }; c }

Schematically, our optimizer is organized as follows:

• Desugaring: This is already done automatically by Squid; it concerns fromArray, fold,

foreach, doZip, etc.

• Flow: bottom-up rewriting to propagate the pull information “down” the method chain

— when possible — and to reduce consumed streams using internal iteration.

• Lowering: inlining of the Strm constructor, pull, doWhile and other core Strm methods

to low-level code; removal of Option variables and other low-level optimizations.

3A common technique, also used by GHC developers. For example see https://ghc.haskell.org/trac/ghc/wiki/
OneShot (accessed June 28 2017).

4Squid allows type-parametric matching (extracting types, as in Section 4.3.7). For simplicity, Figure 5.2 does
not show the type extractions.

119

https://ghc.haskell.org/trac/ghc/wiki/OneShot
https://ghc.haskell.org/trac/ghc/wiki/OneShot

Chapter 5. Application: A New Approach to Stream Fusion

Example. Consider the following pipeline transformation:

// Source:

fromRange(0, n) zip (

fromRange(0, m).map(i => fromRange(0, i)).flatMap(x => x)

) filter {x => x._1 %2 == 0} foreach println

// After Desugaring:

pullable(fromRangeImpl(0, n)).zip(

pullable(fromRangeImpl(0, m))

.map(i => pullable(fromRangeImpl(0, i)))

.flatMap(x => x)

).filter { x => x._1 %2 == 0 }

.doWhile { x => println(x); true }

// After Flow:

val p = fromRangeImpl(0, n).producer()

fromRangeImpl(0, m) doWhile { i =>

var cont_0 = false

fromRangeImpl(0, i) doWhile { b =>

var cont_1 = false

p { a => if (a %2 == 0) println((a, b)); cont_1 = true }

cont_0 = cont_1

cont_0

}

cont_0

}

// After Lowering, the code has only variables and loops

To conclude this part, let us remark that we already fuse more programs than [Kiselyov et al.,

2017], because in contrast with that work we do not desugar filter to flatMap. The implemen-

tation of filter is pullable while that of flatMap is not, so that desugaring is counterproductive.

As a result, we can fuse programs such as (s0 filter f0)zip (s1 filter f1) while [Kiselyov

et al., 2017] cannot — in their case writing such a program results in the generation of variables

holding closures that capture local mutable state, a failure of abstraction removal.

By using a careful design, simple high-level rewrite rules and controlled inlining, we achieved

state-of-the-art stream fusion capabilities with less complexity than previous work.

120

5.4. Enabling More Fusion by QSR

@bottomUp @fixedPoint val Flow = rewrite {

// Floating out pullable info

case code''pull($as) map $f''

=> code''pull($as map $f)''

case code''pull($as) filter $pred ''

=> code''pull($as filter $pred)''

case code''pull($as) take $n ''

=> code''pull($as take $n)''

case code''pull($as) flatMap $f''

=> code''$as flatMap $f'' // flatMap is not 'pullable'

// Folding

case code''pull($as) doWhile $f''

=> code''$as doWhile $f''

case code''$as map $f doWhile $g''

=> code''$as doWhile ($f andThen $g)''

case code''$as filter $pred doWhile $f''

=> code''$as doWhile { a => !$pred(a) || $f(a) }''

case code''$as take $n doWhile $f''

=> code''''''

var tk = 0

$as doWhile { a => tk += 1; tk <= $n && $f(a) }

''''''

case code''$as flatMap $f doWhile $g''

=> code''''''

$as doWhile { a =>

var c = false

$f(a) doWhile {b => c = $g(b); c}

c

}''''''

// Zipping

case code''$as zip pull($bs) doWhile $f'' => code''''〈
$as.doZip($bs.producer()){ (a,b) => $f((a,b)) }''''''

case code''pull($as) zip $bs doWhile $f'' => code''''〈
$bs.doZip($as.producer()){ (b,a) => $f((a,b)) }''''''

}

Figure 5.2 – Algebraic rewrite rules for stream fusion.
121

Chapter 5. Application: A New Approach to Stream Fusion

5.5 Correctness of the Stream Fusion Scheme

The first desirable property for our stream fusion rewriting system is that it terminates, ex-

pressed in Theorem 5.5.1 below:

Theorem 5.5.1 (Strong Normalization). The fixed point application of the rewrite rules in

Figure 5.2 always converges.

Proof:. The pull wrapper propagation converges because pull is only propagated outwards,

and is never introduced by any other rule. For the rest of the rules, notice that they each reduce

the number of Strm constructs in the program by at least one. This is a decreasing measure

which ensures that the rewriting is terminating.

Next, let us argue that we fuse all stream pipelines that we set out to fuse (which excludes

pipelines zipping two flattened streams). Interestingly, Figure 5.2 can be viewed like small-step

operational semantics, where values are fully-fused stream pipeline programs. Our goal is then

to show that well-formed pipelines reduce to values, which is done via the usual properties of

subject reduction (Theorem 5.5.4) and progress (Theorem 5.5.6).

Definition 5.5.2 (Pullable Stream). A stream term that can be rewritten to a term of the form

pull(xs) by the rewrite rules in Figure 5.2.

Definition 5.5.3 (Well-formed pipeline). A well-typed program where: 1. all stream sub-terms

are used as arguments in applications of map, flatMap, filter, take, zip, pull, or doWhile; 2.

where any applications of zip has at least one of its two arguments pullable; and 3. where

applications of pull enclose neither zip nor flatMap applications.

Notice that in actual programs, pull is not invoked by the user but solely arises from desug-

aring fromRange(n.m) and unfold(z)(f) into well-formed sub-terms, respectively the terms

pull(fromRangeImpl(n, m)) and pull(unfoldImpl(z)(f)).

For simplicity we consider that producer() calls introduced by the Zipping rules are immedi-

ately inlined, and that the resulting code is inlined as well, recursively.

Theorem 5.5.4 (Subject Reduction). The rewrite rules of Figure 5.2 preserve types and well-

formedness.

Proof:. We have type preservation for free thanks to Squid, which statically enforces that the

result of each rewrite rule has the same type as the pattern. It is straightforward to see that

well-formedness is preserved as well, as the rules only introduce Strm functions and low-level

constructs — we can prove by induction that producer() is never applied on flatMap (which

is the only construct with a non-trivial producer implementation) because the zipping rules

make sure producer() is only applied on pullable streams, and flatMap does not propagate

the pull wrapper.

122

5.6. Extensibility of Optimizations

Definition 5.5.5 (Fully-fused pipeline). A program that only contains references to doWhile,

fromRangeImpl, unfoldImpl and low-level constructs such as variables of primitive types, if-then-

else branches, conditionals, etc.

Theorem 5.5.6 (Progress). Any well-formed pipeline that is not fully-fused can have at least

one of its sub-terms reduced by the rules of Figure 5.2.

Proof:. For a pipeline to be well-formed but not fully fused, it either needs to have non-low-

level features such as function variables — which cannot happen because we only inline

pullable streams — or it needs to still have one of pull, map, flatMap, filter, take or zip. At

least one of these has to be passed into a call to doWhile, by well-formedness hypothesis

(because doWhile is the only terminal operation). Therefore, such term can be reduced by one

of the folding rewrite rules if the outer term is not a zip. If it is a zip, we can either propagate

pull in one of its arguments, or we can apply one of the zipping rules because by hypothesis

at least one of the two arguments is pullable.

Finally, remark that semantic preservation (in terms of program execution semantics) is easily

assessed by looking at each rewrite rule case in isolation. In other words, QSR makes it easy to

reason locally about each rewrite rule, ensuring that it transforms its input program into an

equivalent output.

5.6 Extensibility of Optimizations

We already saw that Squid allows adding syntactic sugar in the form of user-defined methods

annotated with or enclosed by a class annotated with @embed (which allows Squid to lift the

method’s implementation). Here we examine how to extend the set of core stream constructs.

As an example, consider stream programs that contain code of the form if (...) stream0 else stream1.

At the moment, that pattern will not be recognized as pullable by the library, and may therefore

get in the way of fusion. Thankfully, by only adding the two rules below we can seamlessly

integrate that pattern with the rest of the fusion system:

// Floating out pullable info

case code''if ($c) pull($thn) else pull($els)''

=> code''pull(if ($c) $thn else $els)''

// Folding

case code''(if($c) $thn else $els) doWhile $f''

=> code''''''

if ($c) $thn doWhile inl($f)

else $els doWhile inl($f)

''''''

123

Chapter 5. Application: A New Approach to Stream Fusion

Like pull(s), syntax inl(f) is used as a marker. It hints for Squid to inline function f, even if f

is used in several places. This effectively leads to code duplication in the case above, but that

is a requirement for fusion to happen reliably.

Contrast the seamless extension above with what [Kiselyov et al., 2017] proposes to solve the

same problem, which involves changing the user interface of flatMap to continuation-passing

style.

5.7 When Everything Else Fails — Fusing flatMap the Hard Way

The rewriting proposed in Section 5.4 generates fused code for many use cases, but un-

fortunately fails to fuse zip applications where both arguments are flattened. More gen-

erally, it fails to fuse flatMap in the absence of a direct consumer of the flattened stream,

which can also happen if we only have access to incomplete pipelines, such as (n:Int)=>

fromRange(0,n).flatMap(fromRange(0,_)).

In general, it would be useful if we could streamline flatMap applications so as to make

them efficiently pullable. Intuitively, the code above could be rewritten:

(n: Int) => Strm(() => {

var i = 0

var j: Option[Int] = None

k => loopWhile { // loop until suitable element is found

if (j.isEmpty && i < n) { j = Some(i); i + = 1 }

j.fold(false) { jv =>

if (jv < i) { k(jv); false } // element is found

else { j = None; true } // j stream is exhausted

}

}

})

Notice the similarity with the implementation of flatMap shown in Section 5.3. The main

difference is that instead of using a variable that stores the inner Producer, we use a variable

that stores the state of the inner producer (here j), and that state is reset whenever a new value

of the outer producer (here i) is obtained. The idea is similar to the one proposed in [Farmer

et al., 2014], though we use actual imperative stream states while [Farmer et al., 2014] uses a

purely functional encoding of stream states, as the host language (Haskell) is purely functional.

This transformation can be applied automatically, provided we have access to the complete

inlined state of the inner producer. This tells us that the rewriting should apply after the

Lowering phase of Section 5.4. To prevent flatMap from being inlined to its inefficient imple-

mentation, we change its implementation so that it inlines into a low-level doFlatMap(p,f)

method where p is the source producer, and f is the function that creates an inner producer

from each element of p. Next, we register the rewrite rule of Figure 5.3, to be applied during

124

5.7. When Everything Else Fails — Fusing flatMap the Hard Way

Lowering. The code in Figure 5.3 is the most technical example of this chapter; to understand

it, we first need to introduce a few concepts:

The defaultValue helper. The defaultValue[T] helper method, which can be used within

quasiquotes allows one to create, for a given type T, a dummy “default” value on the current

compilation platform, to be used as a placeholder in initialization positions while the real

value has not yet been computed.

Higher-Order Patterns Variables. As explained in Section 1.3.10, Squid provides higher-order

patterns variables, whereby, for example, pattern code''(x: Int) => $body: Int'' will not

match a lambda where body makes use of x, but the following pattern will: code''(x: Int) =>

$f(x): Int'', giving to f type Code[Int] => Code[Int].

Temporary Variable Extrusion. In order to inspect open code, which is represented as a

function [Pfenning and Elliott, 1988], we must apply it to some value first. However, sometimes

we do not yet have that value until after we have inspected the code. To solve this, Squid

provides an open(f)((body,close) => ...) idiom used to temporarily manipulate the open body

of code function f as body, making it inspectable. Given some f : Code[A] => Code[B], the type

of body is B but it implicitly contains unbound references to its A parameter. close has type5

∀X. Code[X] => Code[A => X], and is used to reintroduce the explicit parameter dependency.

close can be applied to body or to any of its subterms. This mechanism can lead to errors, if

one does not close pieces of code that were closed and contain occurrences of the parameter.

However, the close function checks that no such occurrences exist in the result. Therefore,

any programmer error is immediately reported at the relevant place, and we never end up

with programs containing unbound or wrongly-captured variables, which greatly simplifies

debugging.

In Figure 5.3 we recursively analyse the body of f, using a reset parameter to accumulate

a function term that resets the state of the inner stream when a new element of the outer

stream is available. When we encounter a mutable variable binding, we reconstruct it but

initialize it with null and integrate the actual initialization as part of the reset argument

passed recursively. Immutable value bindings are converted into variables so they can be reset

similarly. Finally, encountered effects are simply integrated into the reset accumulator. When

the recursion finally encounters the k => ... lambda expression constructing the resulting

Producer, we build the final, efficient implementation of flatMap. Note that it is important to

match a lambda k => ... term, for the soundness of the rewriting (finding something else in

place of a lambda would mean that low-level state inlining might not have been complete).

Summary. We presented an algorithmic rewrite rule that performs flatMap streamlining to

enable fusion in many of the cases where it failed in Section 5.4. The rule is implemented

entirely using the type-safe, high-level utilities provided by Squid. Previously, Farmer et al.

[2014] demonstrated a similar rewriting, but to implement it they had to extend the compiler

5Scala 2 does not support first-class polymorphic function types (though they are being introduced in Scala 3),
but such types can be easily emulated via a class type; if the class has an apply method, it will look the same as a
function value from the user’s perspective.

125

Chapter 5. Application: A New Approach to Stream Fusion

@online val FlatMapStreamlining = rewrite {

case code''doFlatMap[$ta, $tb]($pa, a => $f(a))'' =>

open(f) { (body_f, close_f) =>

def rec(produce: Code[Producer[tb.T]], reset: Code[() => Unit])

: Code[Producer[tb.T]] = produce match {

// Adapt `var` bindings:

case code''var x: $xt = $init; $innerBody(x, x = _)''

=> open(innerBody) { (inner, close_inner) =>

code''var y = defaultValue[$xt]; ${

val newReset = code''() => { $reset(); y = $init }''

close_inner(rec(inner, newReset))(code''y'', code''y = _'')

}''

}

// Adapt `val` bindings:

case code''val x: $xt = $init; $innerBody(x)''

=> open(innerBody) { (inner, close_inner) =>

code''var y = defaultValue[$xt]; ${

val newReset = code''() => { $reset(); y = $init }''

close_inner(rec(inner, newReset))(code''y'')

}''

}

// Adapt imperative effects:

case code''$effect; $innerBody''

=> rec(innerBody, code''() => { $reset(); $effect }'')

// Conclude the rewriting by adapting the ending lambda:

case code''k => $innerBody(k)'' => code''''''

var curA: Option[$ta] = None

(k: Consumer[$tb]) => {

var consumed = false

loopWhile {

if (!curA.isDefined)

$p { a => curA = Some(a); ${close_f(reset)}(a)() }

curA.fold(false) { a =>

${close_f(produce)}(a) { b => k(b); consumed = true }

if (!consumed) { curA = None; true }

else false

}

}}''''''

case _ => throw StagingError("Could not streamline this flatMap")

}

rec(body_f, code''() => ()'')

}}

Figure 5.3 – The flatMap streamlining rewrite rule.
126

5.8. Evaluation
E
x
e
c
u
ti
o
n
 T
im
e

Default Iterator Staged Rewritten Baseline

 1

 10

 100

 1000

 10000

 100000

sumO
fSqu

ares
Even cart

sumO
fSqu

ares

zipW
ith-a

fter-fl
atMa

p
zip-fl

at-fla
t

filters

flatM
ap-ta

ke

zip-fi
lter-fi

lter

flatM
ap-a

fter-z
ipWi

th
dotP

rodu
ct map

s sum

Figure 5.4 – Time taken by different stream pipeline implementations on the JVM. Notice the
logarithmic scale. Default: our streams library without optimization; Iterator: standard Scala
iterators; Staged: staged streams using LMS [Kiselyov et al., 2017]; Rewritten: our streams
library with optimizations applied; Baseline: manual low-level implementations. The code is
available online at https://github.com/epfldata/staged-rewritten-streams.

and drop down to complicated IR manipulations. We can also argue that our approach is

more robust, as the user has full control on the rewriting and inlining pipeline. Remark that

flatMap streamlining usefully completes the scheme of Section 5.4, but does not replace it:

our optimizer always tries to apply the latter first, because it is more efficient (as it deals with

smaller, higher-level stream representations) and because it tends to produce slightly better

code with less variables and loops.

5.8 Evaluation

5.8.1 Performance

In this section, we empirically demonstrate that our QSR stream fusion approach6 is competi-

tive with both staging and manual low-level implementations that use only integral variables

and loops. We measured the execution time of small pipelines consisting of flat-mapping,

filtering, zipping, etc. and summing up the results. We tested five approaches: our pure

Scala library without optimization (Default); Scala iterators, which are conceptually similar

but lower level (their interface is imperative) and hand-optimized to play well with the JVM

(Iterator); the staged code of [Kiselyov et al., 2017] (Staged); the same code as Default but sur-

rounded with an optimize{...} block to apply our QSR (Rewritten); and hand-coded low level

implementations using integral variables and loops (Baseline). The inputs used consisted of

arrays of several hundred thousand integer elements. The times were measured on a six-core

Intel Xeon E5-2620 v2 processor with 256GB of DDR3 RAM (1600Mhz). We used Scala version

2.11.2 running on the OpenJDK 64-Bit Server VM (build 24.95-b01) with Java 1.7.0 101.

6The fusion algorithm we have benchmarked in this section is the one presented previously in this chapter but
with a few minor tweaks and extra normalization rules that help with streamlining.

127

https://github.com/epfldata/staged-rewritten-streams

Chapter 5. Application: A New Approach to Stream Fusion

Shallow Fusion Generic
Squid / QSR 127 149 293

LMS / [Kiselyov et al., 2017] — 314 1982

Table 5.1 – Lines of code for stream fusion in Squid and LMS.

As we can observe, the rewritten version has performance characteristics mostly similar to

the staged and low-level versions. All these three versions outperform the unoptimized and

iterator versions by one or two orders of magnitude. We interpret that performance difference

as the cost of abstraction (here mainly incurred from using closures, virtual dispatch and

boxing). Even in these simple cases the advanced JIT of the JVM in server mode cannot remove

that overhead automatically. Both the rewritten and staged approaches produce similarly

low-level code where all abstractions have been eliminated, except for cases zip_flat_flat

and zip_filter_filter where the staged version fails to fuse and falls back to using variables

holding functions. The generated code still performs honorably — about twice as slow as the

rewritten version but still an order of magnitude faster than the unoptimized ones. Notice

that the rewritten version does completely fuse zip_flat_flat and zip_filter_filter, and

therefore has comparable results with the baseline.7 For the rest of the tests, the minor

differences in runtime between the staged, rewritten and baseline versions can be attributed

to slight differences in generated looping structures.

5.8.2 Productivity

We conclude with a brief empirical argument about the productivity gains of our approach.

We measured the number of physical lines of code (i.e., excluding comments and blank lines)

in: 1. the “shallow” implementation of the library (cf. Figure 5.1); 2. the implementation

of stream fusion; and 3. the supporting library code that allows the approaches to function

(Generic). The LMS implementation does not have a shallow counterpart to its staged streams

library — which is reported under Fusion. The Generic number for LMS accounts for the

IR definitions of basic constructs such as arrays, strings, tuples, etc., and associated code

generation implementations; it only includes LMS code used by this application. For Squid,

Generic includes mainly standard normalization rules as well as a small library of virtualized

constructs (like mutable variables). Notice that the stream fusion rewritings in Squid are half

the size of the staging-based implementation in LMS, and are completely separate from the

library, which can be used independently. Even more tellingly, the LMS approach requires

considerably more supporting code,8 and that code will only grow as users want to include

more constructs to be used within their streams programs. In contrast, Squid accommodates

7A previous version of these benchmarks [Parreaux et al., 2017a] had a visible difference between the rewritten
and baseline versions on zip_flat_flat, but Oleg Kiselyov helpfully pointed out that our baseline implementation
of the algorithm was wrong (we forgot to update some variables), which was responsible for the difference.

8This code can be generated automatically by tools like Yin-Yang [Jovanovic et al., 2014] and Forge [Sujeeth
et al., 2013], but it is still an overhead compared to not needing it at all.

128

5.9. Conclusion

new constructs without requiring any additional supporting code.

5.9 Conclusion

Quoted Staged Rewriting allows the authors of high-level functional libraries to co-design

associated domain-specific optimizers to improve the efficiency of their libraries. As demon-

strated with the stream fusion use case studied in this chapter, this technique can even enable

the same level of performance as manually-written low-level code.

129

6 Improved Safety and Expressivity for
Analytic Metaprogramming

In Chapter 1, we saw how to statically type quasiquotes with analytic capabilities, unifying

Lisp-style and MetaML-style quasiquotation.

However, the way we proposed handling open code was not fully satisfactory. First, it was not

sound in the presence of effects like mutation and exceptions. Second, it was not sound in the

presence of a run (or compile) function which interprets or compiles a piece of code on the fly.

Third, open code extracted from patterns was encoded using higher-order patterns variables,

which is very restrictive as it prevents freely inspecting extracted terms — indeed, it forced us,

in Chapter 5, to use a temporary variable extrusion escape hatch, which when misused can

violate static scope safety.

In this chapter, we describe a possible solution to ensuring the safety of open code manipula-

tion. This new solution tracks scope dependencies in the types of terms and allows very flexible

non-lexically-scoped open code manipulations. This lets us express scope-safe code genera-

tion in the presence of effects, temporary extrusion of bindings via code pattern matching,

and the composition of open code fragments without syntactically-surrounding binders.

We formalize this approach as λ{}, a multi-stage calculus with code pattern matching and

rewriting, and prove its soundness. We also present its realization in a new version of Squid

(dubbed Contextual Squid), leveraging Scala’s expressive type system.

To demonstrate the usefulness of the approach, we introduce speculative rewrite rules, a

novel code transformation technique which makes decisive use of these new non-lexical

open code manipulation capabilities. This work was motivated by the needs of real-world

metaprogramming applications; in Section 6.5 we see several examples of speculative rewrite

rules inspired by query compilation use cases.

However, we will see in the next chapter that the approach presented in this chapter is in fact

not completely adequate, as it does not support the more general forms of scope polymor-

phism. Therefore, this chapter should really be considered a stepping stone towards a more

ambitious solution, and not a final say on the matter.

131

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

6.1 Introduction

In Chapter 1, we saw a version of Squid which supported hygienic code manipulations, in

the sense that unrelated bindings would never interfere, but 1. it did not guarantee that all

evaluated code was well-scoped; and 2. the primitives it offered to match and reconstruct

bindings lacked expressiveness (see Section 6.6 for a more thorough comparison).

In this chapter, we describe and exemplify a more advanced version of Squid, referred to as

Contextual Squid (though we may just use Squid from now on), which resolves these problems.

6.1.1 Motivating Example

As a motivating example for this chapter, let us consider the simple metaprogramming task of

turning an array of tuples into a tuple of arrays.

For instance, given the following dummy source program:

(n: Int, idx: Int) => {

val arr = new Array[(Int, Int)](n)

var i = 0

while (i < n) {

arr(i) = (i, i * 2)

i += 1

}

arr(idx)

}

the goal is to rewrite it into the following form:

(n: Int, idx: Int) => {

val arr_0 = new Array[Int](n)

val arr_1 = new Array[Int](n)

var i = 0

while (i < n) {

arr_0(i) = i

arr_1(i) = i * 2

i += 1

}

(arr_0(idx), arr_1(idx))

}

This optimization is sometimes known as “array-of-structs to struct-of-arrays,” and has par-

ticular relevance in the field of databases (see Section 6.5.3); its goal is to streamline array

132

6.1. Introduction

accesses, making them more cache-friendly for the processor, and to avoid the performance

cost of allocating tuples.

6.1.2 Limitations of Higher-Order Abstract Syntax

This program transformation example is a good example of the limitations of strictly-lexically-

scoped open code manipulation approaches, which we mentioned in Section 1.2.

The problem is that we have to match on usages of local array variables, and change in a

non-trivial way the binding of that variable — in this case, we want to replace it with two

distinct bindings, which goes beyond the simple substitution use cases where HOAS shines.

Let us try to see how we would write the transformation. We would start by matching an array

variable declaration and its body:

pgrm rewrite {

case code''val a = new Array[$t0]($size); $body(a): $t1''

=>

...

From this pattern, we extract a size variable of type Code[Int] and a body variable of type

Code[Array[t0.T]] => Code[t1.T]. Notice that body is a function an cannot be inspected

directly. In order to transform the usages of the array variable inside the body, we need to

somehow provide a value of type Code[Array[t0.T]], but how shall we do that?

One solution would be to pass in a dummy program fragment for a temporary substitute of the

original array variable, for example code''dummy[Array[$t0]](${Const(freshCount)})'' where

dummy and freshCount would be defined as follows:

def dummy[T](id: Int) = throw new Exception

private var curId = -1

def freshCount = { curId += 1; curId }

This essentially brings us back to the plain-AST approach of handling bindings (discussed in

Section 1.2), with all the caveats that it entails: lack of scope safety and lack of hygiene — it

is easy to misuse such constructs and end up with metaprograms mixing fresh counts and

forgetting to make sure all dummy occurrences are properly removed form the manipulated

programs. So it is not a very satisfactory answer.

6.1.3 Non-lexically-scoped Open Code Manipulation

Essentially, the metaprogramming ability we are looking for can be summarized as follows:

133

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

The ability to manipulate open terms (compose and decompose them) indepen-

dently from the binders which will eventually capture the free variables contained

in these open terms.

Because this implies the use of variables references in places which are not lexically (in the

metaprograms) within the scope of their final binder, we refer to this as non-lexically-scoped

open code manipulation. Another way of looking at the same problem is that in traditional

metaprogramming approaches, it is often useful to separate the generation of variable names

from their binding [Pottier, 2007].

This approach makes many use cases simpler, and allows us to extract concrete first-order

terms from patterns containing bindings, which will let us express the array-of-tuples transfor-

mation mentioned above as well as the flatMap streamlining algorithm of Figure 5.3 much

more safely and directly.

Moreover, this approach can let us delay decisions about the new bindings we want to in-

troduce during program transformation (such as where or in what order to insert them, or

whether to insert them at all) after having inspected the bodies of the original bindings.

However, in order to statically ensure that non-lexically-scoped metaprograms are still scope-

safe and hygienic, we need a more advanced type system which is able to track the dependen-

cies of program fragments in their types. The goal of this chapter is to demonstrate a system

which does just that.

6.1.4 Early Example of Rewriting

Before we delve into the design of Squid’s new type system, and to get a taste of the system, let

us first review a much simplified version of our motivating example.

Consider the problem of finding all local variables that hold a pair of values (a, b), removing

these variables and rewriting their uses into direct accesses to a and b. The following Scala

program uses Squid’s rewrite primitive to traverse a pgrm term bottom up while matching any

variable p bound to a pair of integers; in the scope body of each such binding, it replaces pro-

jections to p’s first and second components (syntaxes p._1 and p._2) with the corresponding

pair element a or b:

pgrm.rewrite {

case code''val p: (Int, Int) = ($a, $b); $body'' =>

val body2 = body.rewrite {

case code''p._1'' => a

case code''p._2'' => b

}

body2.subst[''p''](code''($a, $b)'')

}

134

6.2. Presentation of Contextual Squid

Contextual Squid statically keeps track of the fact that variable p is free in program fragments

body and body2 (i.e., these terms are “open in p”). Therefore, patterns used in the inner

rewriting of body are allowed to refer to that variable p. Matching on the usage of existing free

variables is a fundamentally important capability of our non-lexical system, which cannot be

expressed directly using a higher-order approach like HOAS.

Expression body2.subst[''p''](c) returns the substitution in body2 of all occurrences of the

variable named ''p'' with the provided code fragment c. This is used to replace all remaining

occurrences of p (if any) with an in-place reconstruction of the original pair. For example, pro-

gram code''val my = (1, 2 + 2); print(my); my._1 + my._2'' is first rewritten into body2 =

code''print(my); 1 + (2 + 2)'', and then into code''print((1, 2 + 2)); 1 + (2 + 2)''.

Contextual Squid is still hygienic, because it will not mix up the matched binding p with bound

variables present in the original program pgrm, even if they also happened to be named p when

the original program was constructed.

Moreover, Contextual Squid is scope-safe, because forgetting to substitute p in body2 at the

end of the rewriting will result in a type error, reported at compilation time — otherwise, our

rewriting could result in programs with unbound references to p.

6.2 Presentation of Contextual Squid

We now review the features of Contextual Squid and see how to resolve the motivating example

presented in Section 6.1.1.

6.2.1 Handling of Open Code in Contextual Squid

The way Squid allows the type-safe manipulation of non-lexically-scoped open program

fragments is threefold.

Representing free variables explicitly

Squid allows expressing free variable references explicitly, without a lexically-enclosing binder.

This is done by prepending a ‘?’ to the names of these free variables when they occur in a

quasiquote.1

The example given in Table 1.1, which uses a cross-quotation reference:

code''(x: Int) => ${ id(code''x + 1'') }''

can now also be written in Squid as:

1 We could avoid the ‘?’ and view all unqualified names as free variables (which is what is done in the formalism),
but this would be a bad ergonomic choice: typos could easily result in confusing errors, and we do not want for e.g.,
code''print(1)'' to be interpreted as code''(?print)(1)'' instead of code''scala.Predef.print(1)''.

135

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

code''(x: Int) => ${ id(code''(?x: Int) + 1'') }''

The main advantage is that it renders the composition of code more modular: an open code

fragment can be written out without having bindings for all its free variables syntactically

surrounding it; i.e., Squid quasiquotes do not have to be lexically scoped. In the previous

example, we can extract the inner expression into a val binding, which does not work in

approaches like MetaML:

val inner = id(code''(?x: Int) + 1'')

code''(x: Int) => $inner''

Allowing violations of lexical scoping based on explicit annotations is related to the approach

taken by Kim et al. [2006].

Reflecting context requirements in the type of code fragments

In order to track which fragments are open and when their free variables are to be captured, as

well as to decide when code is safe to be evaluated, we make the types of quoted terms directly

reflect their context requirements, i.e., the names and types of the free variables contained in

those terms.

For instance, val fx = code''(?x: Int) + 1'' has type Code[Int,{x:Int}],2 which means that

it represents a term of type Int that needs to be inserted in some context where a variable x of

type Int is defined. By composition, code''$fx.toDouble'' has type Code[Double,{x:Int}] as it

is equivalent to code''((?x: Int) + 1).toDouble''.

The free variables contained in a term that is inserted into some quotation context are cor-

rectly captured by the variables bound in said context: code''val x = 0; $fx.toDouble'' has

type Code[Double,{}] and evaluates to code''val x = 0; (x + 1).toDouble'' (or, equivalently,

code''val y = 0; (y + 1).toDouble'').

While Contextual Squid still allows the use of cross-quotation variable references, just like the

original version of Squid, it type-checks them in a more careful way. When one writes code

such as code''(x: Int) => ${ id(code''x + 1'') }'' (from Table 1.1), the type of the inner

quote code''x + 1'' is no longer just Code[Int], but Code[Int,{x:Int}].3

Allowing binding-destrucuring patterns

Quasiquote patterns may be used to match bindings, and the extracted subterms will have

types that reflect and track their potential dependencies to these bindings; e.g., using → to

2In Scala, {val x: Int} is a structural object type listing some immutable field x of type Int; for concision we
omit the val and write it just as {x: Int} in this thesis.

3This is a good approximation for now, but is not quite exact. We will see in Section 7.4.2 that cross-quotation
references in Squid are type checked in a more subtle way.

136

6.2. Presentation of Contextual Squid

denote evaluation in a REPL session:

val f = code''(x: Int) => x + (?y:Int)''

: Code[Int => Int, {y: Int}]

→ code''(x: Int) => x + ?y''

val g = f match { case code''(z => $body)'' => body }

: Code[Int, { y: Int; z: Int }]

→ code''?z + ?y''

Several things should be noted here.

First, code quasiquotes integrate well with Scala’s type inference, as the type of the scrutinee f

propagates to help type the pattern in g. If f had type Code[Any,_] instead and we still wanted

to match an Int => Int function, we would have to write the pattern as case code''(z: Int) =>

$body: Int''.

Second, the names of bound variables do not matter, and a lambda that used x as the parameter

name can be matched as if it were using z instead.

Third, in the example, the type of the extracted fragment body reflects that it may contain free

variables from two different sources: by propagation from the scrutinee’s type we know it may

refer to some y, and because the pattern introduced a binding named z it may as well refer to

it — what happened is that body was safely extruded from its enclosing context {z:Int}.

6.2.2 Rewrite Rules and Polymorphism

As we have seen in Section 1.3.2, Squid provides a rewrite method that traverses a program and

applies a transformation while checking at compile-time that the transformation preserves

the type and context of each sub-terms. Moreover, Squid allows the extraction of types along

with terms.

Recall the example shown in Section 1.3.2: given some pgrm fragment we transform calls to

foldLeft on List objects into imperative foreach loops:

pgrm rewrite {

case code''($ls:List[$t]).foldLeft[$r]($init)($f)''

=> code''var cur = $init; $ls.foreach(x => cur = $f(cur, x)); cur''

}

For example, if pgrm = code''List(1,2).foldLeft(0)((acc,x) => acc+x) + 1'', the rewriting re-

turns code''{var cur = 0; List(1,2).foreach(x => cur = cur+x); cur} + 1'' (the β-redex is re-

moved by Squid’s internal normalization). Note that in Scala partial functions are written

{ case ... => ... }; they are similar to pattern matching, but they need not be exhaustive.

137

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Operator syntax ‘p rewrite f’ is the same as ‘p.rewrite(f)’. Notice that we extract a type t

that is never used explicitly — it is in fact inferred as part of the type of the quoted program on

the right-hand side of the rewriting case.4

6.2.3 Fixed Point Rewritings

Rewritings can be applied over and over again until they reach a fixed point. In Squid, rewriting

Math.pow(x, 2) into x * x is trivially expressed, but let us here consider the generalization of

that problem to arbitrary exponents.

We define below a fixed point rewriting that uses binary exponentiation to transform calls

to Math.pow with a constant integer exponent into a series of multiplications. Const is the

constructor for constants, used to lift current-stage values as code constants and extract

constant values from code fragments. For instance, pattern code''pow($x,${Const(exp)})''

extracts x as a code value of type Code[Double,_], but it extracts exp as a “bare” value of type

Double. Method isWhole from class Double is used to query whether a floating-point number

has an integral value.

import Math.pow

pgrm fix_rewrite {

case code''pow($x, $exp)''

if !x.isTrivial

=> code''val base = $x; pow(base, $exp)''

case code''pow($x, 0)''

=> code''1.0''

case code''pow($x, ${Const(exp)})''

if exp.isWhole && exp > 0

=> if (exp % 2 == 0)

code''val tmp = pow($x, ${Const(exp / 2)}); tmp * tmp''

else

code''$x * pow($x, ${Const(exp - 1)})''

}

The role of the first case rule, which is applied first, is to let-bind the base x passed to pow if

it is not “trivial” i.e., unless it is a constant or a variable reference. This avoids code duplica-

tion that would otherwise result from the following rules.5 For example, pow(.5,3) is rewrit-

ten into 0.5*{val tmp_0 = 0.5*1.0; tmp_0*tmp_0}, duplicating 0.5, but pow(readDouble,3)

(where readDouble reads a number from standard input) is rewritten into val x_0 = readDouble;

4 This named pattern variable is necessary ($t cannot be replaced with $_) because Squid needs to generate a
local, named type symbol representing the extracted type. This is explained further in Section 3.9.1.

5Note that Squid can be used with different underlying intermediate representations [Parreaux et al., 2017b]; by
using an appropriate representation (such as the A-normal form), such code duplication concerns disappear, as
we show in [2017a].

138

6.2. Presentation of Contextual Squid

x_0*{val tmp_1= x_0*1.0; tmp_1*tmp_1}.

6.2.4 Free Variables and Substitution

As explained in the introduction, given some variable x free in t, we can replace all its occur-

rences in t with syntax t.subst[''x''](y), as in the following example:

val a = code''(?x: Int) + 1''

: Code[Int, {x: Int}]

→ code''?x + 1''

val b = a.subst[''x''](code''27'')

: Code[Int, {}]

→ code''27 + 1''

Note that the right-hand side y of t.subst[''x''](y) is evaluated lazily (i.e., only if there are

actual instances of x left in t), a property that proves useful in the next sections.

6.2.5 Speculative Rewrite Rules

In Squid, the current innermost rewriting can be aborted by calling abort() at any point in the

right-hand side of the rewriting case. This call never returns and passes the control back to

the rewriting engine.6

We call speculative rewrite rule a rewrite rule which attempts to apply a transformation op-

timistically, but aborts that transformation as soon as it finds something that prevents its

successful application. In essence, speculative rewrite rules are a convenient and type-safe

way to express conditional rewritings without having to define separate, error-prone analysis

passes over the program one wants to transform.

In the next section, we present an example of speculative rewrite rule and explain how Squid

ensures the safety of these constructs. Another example, directly extracted from our work on

query compilation [Shaikhha et al., 2016], is given in Section 6.5.2.

6.2.6 Motivating Example: Array of Tuples Optimization

Figure 6.1 presents an example of speculative rewrite rule that attempts to turn any array

of 2-tuple elements into two distinct arrays.7 A trace of the successive values taken by each

variable, given a dummy input pgrm, is shown below:

6This mechanism is similar to delimited continuations [Danvy and Filinski, 1990], where ‘case pattern

=> ...’ acts like (reset (shift c ...)) and abort() acts like a short-circuiting (c ()). This is internally
implemented on the JVM using exceptions.

7The JVM stores composite objects such as tuples using an additional level of indirection (boxing), which is
removed if we store each field of the tuple in a separate array.

139

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

def optimize[T](pgrm: Code[T, {}]): Code[T, {}] = pgrm rewrite {

case code''val arr = new Array[($ta, $tb)]($size); $body'' =>

val a = code''?a: Array[$ta]''

val b = code''?b: Array[$tb]''

val body2 = body rewrite {

case code''arr($i)._1''

=> code''$a($i)''

case code''arr($i)._2''

=> code''$b($i)''

case code''arr($i) = ($va, $vb)''

=> code''$a($i) = $va; $b($i) = $vb''

case code''arr($i)''

=> code''($a($i), $b($i))''

case code''arr.size''

=> code''$a.size''

}

val body3 = body2.subst[''arr''](abort())

code''''''

val a = new Array[$ta]($size)

val b = new Array[$tb]($size)

$body3

''''''

}

Figure 6.1 – A speculative rewrite rule for transforming any array of pairs into two arrays.

pgrm = code''if (readInt > 0) { val a = new Array[(Int,String)](3); a(0) = (36,

''ok''); a.size }''

size = code''3''

body = code''(?arr)(0) = (36, ''ok''); (?arr).size''

body2 = code''(?a)(0) = 36; (?b)(0) = ''ok''; (?a).size''

body3 = body2

result = code''val a = new Array[Int](3); val b = new Array[String](3); a(0) =

36; b(0) = ''ok''; a.size''

optimize(pgrm) → code''if (readInt > 0) { $result }''

To understand this example, two key properties of Squid should be noted: 1. holes at the

end of a list of statements can be viewed as matching the input greedily; for instance, pattern

code''print(42); $b'' will match a print statement and all following statements in the current

140

6.2. Presentation of Contextual Squid

block;8 2. free variables in patterns will match free variables in the program fragments the

patterns are matching.

All statements following the array binding that is matched in the original program are captured

into body; they are extruded from their enclosing context, and their references to the bound

array are transformed into references to the free variable arr. In the inner rewriting, we

then match references to arr to transform usages of the array as they existed in the original

program. Note that this process is hygienic: as it traverses a program, the rewrite method

only extrudes bindings that are matched explicitly in patterns (the other, internal bindings use

freshly-generated names), and therefore there is no risk of encountering free variables also

named ‘arr’ that referred to different bindings than the one we have matched.

Once the inner rewriting has been applied, the result body2 contains a program fragment

where patterns like arr(i)._1 have been replaced with expressions referring to free variables a

and b — in this case, (?a)(i). All remaining references to arr are then searched for using the

free variable substitution syntax (which evaluates its second argument lazily), and if any is

found the rewriting is aborted.

Notice that in the inner rewriting, we deliberately do not handle patterns of the general form

code''$arr($i) = $v'' where v is not of the form (x, y). As a consequence, arrays used in such

a way are not transformed: not all references to arr are removed, and the rewriting is aborted.

The rationale is that if the original program stored already-tupled values into the array, then

perhaps it is not a good idea to do the transformation: it may lead to more allocation rather

than less.9

Finally, note that while the optimization in Figure 6.1 is defined for tuples of two elements only,

applying it until it reaches a fixed point will also transform arrays of tuples of more elements,

as long as an inductive encoding of tuples is used — for example, (a,b,c,d) could be encoded

as a composition of nested 2-tuples such as (a,(b,(c,d))). This is actually more or less how

tuples are encoded in the new Scala 3 version of the language.

To get a sense of how Squid’s type system and contextual code types help us avoid runtime

errors, let us look at some programming mistakes that could be made while writing the

transformation:

• omitting to insert $body3 in the result code fragment: this would give result type Unit (i.e.,

void in languages like Java) and the rewrite method would complain that the rewriting

is not type-preserving;

• using the wrong array in the inner rewriting — for example writing code''$a($i)'' instead

of code''$b($i)'': the inner rewrite would complain that this case tries to rewrite a term

of type ta to a term of type tb and reject it (fail to compile), as above;

8This is because a block like {a;b;c} is represented in Squid as {a;{b;{c}}}.
9In a real-world setting, a more precise analysis with heuristics could determine whether or not to apply the

rewriting, depending on the usage patterns found for the array.

141

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

• forgetting to define one of a or b in the final result of the main rewriting: since Squid

would notice that the free variable a would have never been captured, the result type

inferred for the whole rewriting would be10 Code[T,{a:Array[_]}] instead of Code[T,{}]

(the return type explicitly specified for optimize), resulting in a type mismatch;

• using body2 directly instead of body3, without performing the variable substitution: a

similar error as above would be raised, as variable arr would still be assumed free in

body2, propagating its context requirement to the result type of the outer rewriting

expression;

• forgetting to transform some array operations: this will simply abort the rewriting and

leave arrays with unexpected usages untouched, ensuring the safety of our transfor-

mation; this case includes when the array “escapes” the current scope, being sent to

unknown functions;

• trying to evaluate the size program fragment with size.run: this results in a compile-

time error that reads “cannot prove that <context @ 2:7> =:= {}” (explained in

Section 6.4);

• accessing the size program fragment from outside of the rewriting (e.g., by leaking it

through a mutable variable): since the context requirement of size is only defined inside

the right-hand side of the rewrite rule, size’s type becomes Code[Int,_] when viewed

from the outside, making the term impossible to close and therefore useless.

6.3 Formalization of the Core Language

This section presents the core of our design for statically-typed analytic quasiquotation with

non-lexically-scoped open code, demonstrating its main ideas independently of its Scala

implementation.

λ{} (pronounced “lambda-braces”) is a call-by-value multi-stage λ-calculus with two types of

pattern matching on code values: match, which simply decomposes a term against a pattern,

and rewrite, which traverses a term bottom-up, applying some transformation on the way.

6.3.1 Syntax

The syntax of λ{} is given in Figure 6.2.

; is the empty language (with no productions). θ is a meta-meta-variable that ranges over

meta-variables, and is used to parametrize the productions of q . Thus, qu denotes the syntax

of normal terms, while q; refers to terms which do not contain unquotes u, so that dq;e is the

syntax of quoted values (discussed in Section 6.3.3), where the unquotes have been evaluated.

10 In Scala 2, an underscore in type position stands for an existential: the type Array[_] stands for the
existentially-quantified type Array[t] forSome { type t }.

142

6.3. Formalization of the Core Language

θ denotes 0 to n repetitions of ‘θ’ separated by semicolons. We will use let x : T = t0 in t1

as syntactic sugar for (λx : T. t1) t0. Type ascriptions are used to disambiguate types when

necessary, and will be useful to define the semantics of pattern matching in Section 6.3.3.

To simplify the development, we make the usual assumption that α-renaming is used when-

ever needed to prevent shadowing: a context never contains two distinct bindings x : T and

y : S such that x = y . This allows us to equate contexts with finite partial functions from

variable names to types. For example, we use ; for the empty context {} and Γ∪Γ′ for context

extension.

Examples

As a first example of a λ{} program, we give below a simple optimization that transforms an

expression of the form pow x 2 into x * x. We assume the existence of constants ‘pow’ and ‘*’

for integer power and multiplication, respectively:

λx : Code Int;. x match dpow byc 2e ⇒ dlet z = byc in z ∗ ze else x

The function above takes a code value x and pattern-matches it against the power-of-2 pattern,

binding the program fragment extracted as the base to variable y . If the pattern matches,

a program is returned that consists in the binding of the code value represented by y to

some variable z, that is then multiplied with itself (this avoids duplicating the computations

potentially contained in y). If the pattern does not match, the original code value x is simply

returned unchanged.

In λ{}, free variables present in quoted terms do not require a special syntax, so for example

code''(?x: Int) + 1'' is written just dx +1e.

The closex construct makes sure that a term contains no free variable x, otherwise defaulting

to the associated else branch.

To illustrate the use of open terms and show a speculative rewrite rule, we take inspiration from

the rewriting of Figure 6.1, which matches usages of an extruded variable arr and replaces

them with usages of different free variables a and b. We assume the language is extended

with types ‘Array’ and ‘PairArray’ (similar to Array[Int] and Array[(Int,Int)] in Scala), and

with constants ‘mkPairArray’, ‘mkArray’, ‘size’, ‘get’, and ‘first’ with the expected semantics.

An incomplete version of the rewriting of Figure 6.1, where we handle only two cases (namely

143

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

t ::= qu Term

qθ ::= (Syntax Template)

n Literal

| t + t Addition

| x, y, z Variable

| t t Application

| λx : T. t Abstraction

| dque Quote

| run t Evaluation

| t match dte ⇒ t else t Pattern Matching

| t rewrite dte ⇒ t Term Rewriting

| closex t else t Speculative Closure

| t : T Type Ascription

| θ (Syntax Extension)

u ::=
bxc Variable

| bconst xc Constant

v ::= Value

n Literal

| 〈λx : T . t , γ〉 Closure

| dq;e Quote

γ ::= {
x 7→ v

}
Subs. Context

T,S ::= Type

Int Integer

| T → T Function

| Code T C Code

C ,Γ ::= {
c

}
Typ. Context

c ::=
x : T Binding

| κ Brand

Figure 6.2 – Syntax of λ{}.

size and get-first), is given below:

pgrm rewrite dlet arr =mkPairArray bnc in bbodyce ⇒
let a = da : Arraye in
let body2 = body rewrite dsize arre ⇒ dsize bace

rewrite dfirst (get arr bic)e ⇒ dget bac bice in
closearr dlet a =mkArray bnc in bbody2ce
else dlet arr =mkPairArray bnc in bbodyce

The program above proceeds in much the same way as in Figure 6.1. For example, given some

pgrm = dlet x =mkPairArray 3 in first (get x 0)+ second (get x 1)e, after the outer pattern

matches, we get body = dfirst (get arr 0)+ second (get arr 1)e, which is subsequently rewrit-

ten into body2 = dget a 0+ second (get arr 1)e, and then closearr is called on a term that still

contains references to arr (as we are missing the rule to rewrite uses of second), aborting the

rewriting as expected.

144

6.3. Formalization of the Core Language

6.3.2 Type System

The typing rules of λ{} are presented in Figure 6.3. Typing judgment Γ′, Γ` t : T is read “under

inner context Γ and outer context Γ′, t has type T ” (see explanations below). Syntax ` t : T is

shorthand for ;` t : T , and Γ` t : T is itself shorthand for ;, Γ` t : T .

Quoting and unquoting

We use a “double-headed” typing judgment in order to type the term inside a quote as having

its own, inner context (on the right), while remembering the outer context from outside the

quote (on the left).

The inner context is the usual typing context, accounting for free variables. Free variables in

a quote may be bound by a lambda abstraction, or may remain free and become part of the

quoted term’s context requirements.

The outer context is used to type unquotes, which refer to the context outside of the quo-

tation. Since unquotes can only contain variables bxc and constants bconst xc, they can-

not be nested, so we only need to carry a single outer context even though λ{} is a multi-

stage language. This syntactic restriction does not incur a loss of generality, as a nested

unquote such as d...b f bx0cc...e can always be encoded by using an intermediate binding:

let x1 = f bx0c in d...bx1c...e.

Notice how in T-QUOTE, the outer context of t becomes the inner context of dte while the inner

context becomes part of the Code type of dte, and how in T-ANTI0, the context parameter of

unquoted code has to coincide with the inner context of surrounding code.

Running Code

Rule T-RUN requires the context of program fragment t in run t to be empty. This is central

to avoiding the occurrence of unbound reference errors at runtime. For example, the term

run dx +1e is not typeable, similar to how code''(?x: Int) + 1''.run is rejected by Squid.

Pattern Matching

Rule T-MATCH needs to ensure two important properties:

Unquotes in a pattern capture the local context surrounding them. For example, for some z :

Code Int; in program z match dλx : Int. byc+1e ⇒ y else d0e, the type of extracted variable

y should be Code Int
{

x : Int
}
; indeed, y can be used to extract terms containing references

to x (in particular, when z = dλx : Int. x +1e we get y = dxe). This is achieved by typing the

pattern tp with outer context Γ′ (so that Γ′ contains the extracted variables) and then typing

the body tb in the original context Γ extended with Γ′.

145

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Because T-ANTI0 requires the unquoted variable’s context parameter to exactly coincide with

the local context surrounding the unquote, Γ′ has to contain variables whose types reflect the

exact context from which they were extracted. It is important for T-ANTI0 disallow widening

of the unquoted variable’s type: though it would make sense in expressions, it would also allow

the types of terms extracted from patterns to “forget” about their local context requirements

(in the previous example, y could be assigned type Code Int;).11 As a result, an expression

like λx : Code Int;. dλy : Int. bxce is not typeable, but this is not a practical limitation, since

one can use an intermediate binding allowing subsumption (T-SUB) to widen the context of x

as needed, as in: λx : Code Int;. let z : Code Int
{

y : Int
}= x in dλy : Int. bzce.

Extracted variables propagate the scrutinee’s own context requirements. For example, con-

sider t = dx +1e match dbyc+1e ⇒ y else d0e, which extracts a subterm from a program

fragment containing free variable x. Term t should have type Code Int
{

x : Int
}

since x is

free in the result dxe. This is achieved by adding the original context C of the scrutinee to the

context of each extracted term in Γ′, written Γ′/C and formally defined below. In the example

above, C = {
x : Int

}
, Γ′ = {

y : Code Int;}
and so Γ′′ = Γ′/C = {

y : Code Int
{

x : Int
}}

.

Definition 6.3.1 (Context predication Γ/C).

Γ/C
def= {

(x : f (T,C)) | (x : T) ∈ Γ}
where f (T,C) =

Code T ′ (C ∪ C ′) if T = Code T ′ C ′

T otherwise

Definition 6.3.2 (Tight typing `∗). We write Γ′, Γ`∗ t : T to require that Γ′ be a smallest context

satisfying the typing judgment Γ′, Γ` t : T . More formally,12

Γ′, Γ`∗ t : T
def= Γ′, Γ` t : T ∧ (6 ∃Γ′′. Γ′′, Γ` t : T ∧ |Γ′′| < |Γ′|)

In rule T-MATCH, we require pattern code tp to be typed with the smallest outer context

possible (i.e., tight typing). Indeed, by weakening, a pattern such as tp = bxc+1 could not only

be typed with outer context
{

x : Code Int;}
, but also with, e.g.,

{
x : Code Int;; y : Int

}
. We

have to reject the latter, as it would introduce a spurious variable y into the scope of body

tb , whereas no y was actually extracted from tp . Intuitively, this is because when typing a

pattern, the outer context serves as a binder for the extracted variables, whereas when typing

an expression, it is used as a normal context, where weakening is in order.

11Another approach could be to change the premise of T-ANTI0 to Γ′ ` x : Code T Γ and to add a “flag” to the
typing judgment that specifies whether we are typing an expression (where T-SUB is allowed to happen), or a
pattern (where it is not).

12Notation |Γ|, based on the interpretation of contexts as sets, denotes the number of context members c in Γ.

146

6.3. Formalization of the Core Language

Rewriting

The rule for rewriting T-RW is similar to T-MATCH. The essential differences are that: T-RW

does not require the type of pattern tp to coincide with that of scrutinee ts , because the pattern

may match any sub-term of the scrutinee; T-RW requires body tb to be a code value with the

same type as the pattern, as any matched subexpression will be replaced by tb ; and finally,

T-RW predicates the local context Γ′′ on C ∪{
κ

}
, where κ is some fresh “context brand.” The

effect is to introduce κ into the context parameters of all terms extracted from the pattern,

which will prevent them from being run and otherwise misused: the only way to eliminate

that brand from the context of a term is to use the term as body tb of the rewriting itself.

As a simple example, consider the program:

dλx : Int. x +1e rewrite dbyc+1e ⇒ let z : Int= run y in d0e

which has to be ill-typed because it tries to run the open term dxe extracted as y . Thankfully,

T-RW types y not as Code Int; but as Code Int
{
κ

}
where κ is some fresh brand preventing

T-RUN from applying. Squid uses a similar mechanism (cf. Section 6.4).

6.3.3 Operational Semantics

As shown in Figure 6.2, values v are either integer literals, lambda abstractions closing over

some contexts (closures) or quoted code dte where t does not contain any immediate unquotes

(i.e., unquotes that are not inside a quote), which we write dq;e.

Value substitution contexts γ map variables to values,13 and |= is used to express that a value

substitution context conforms to or is consistent with a typing context.

E-∗ and Q-∗ Rules

Figure 6.4 shows the basic big step semantics rules of λ{}. These rules are of the form γ ` t → v ,

read “under context γ, t evaluates to v .” E-∗ rules are for current stage code. Q-∗ rules,

which are for next stage code (terms surrounded by one level of quotation), replace immediate

unquotes in quoted code by the values to be unquoted; they can be seen as the β-rule(s) for

quotes. For example,
{

x 7→ dy +1e}` dλy : Int. bxce→ dλy : Int. y +1e.

E-RUN takes code from the next stage and evaluates it as code in the current stage. Therefore,

it also evaluates code in the second next stage as code in the next stage, etc. and may trigger

more Q-∗ rules to apply.

13We prefer not to use substitution (which is often used in presentations of operational semantics) because our
syntax prevents expressions from appearing inside unquotes, which means we could not use a straightforward
substitution of expressions for variables. Additionally, contexts interact more intuitively with the semantics of
pattern matching, which introduces a set of bindings to be merged with the current context.

147

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Term typing

T-LIT

Γ0,Γ` n : Int

T-PLUS

Γ0,Γ` t0 : Int Γ0,Γ` t1 : Int

Γ0,Γ` t0 + t1 : Int

T-ASC

Γ0,Γ` t : T

Γ0,Γ` (t : T) : T

T-ABS

Γ0,Γ∪{
x : T

}` t : S

Γ0,Γ` (λx : T. t) : T → S

T-VAR

(x : T) ∈ Γ
Γ0,Γ` x : T

T-APP

Γ0,Γ` t f : T → S Γ0,Γ` ta : T

Γ0,Γ` t f ta : S

T-QUOTE

Γ, C ` t : T

Γ0,Γ` dte : Code T C

T-ANTI0
(x : Code T Γ) ∈ Γ′
Γ′, Γ` bxc : T

T-ANTI1
(x : Int) ∈ Γ′

Γ′, Γ` bconst xc : Int

T-CLOSE

Γ0,Γ` t : Code T (C ∪{
x : S

}
) Γ0,Γ` t ′ : Code T C

Γ0,Γ` closex t else t ′ : Code T C

T-RUN

Γ0,Γ` t : Code T ;
Γ0,Γ` run t : T

T-MATCH

Γ0,Γ` ts : Code T C Γ′′ = Γ′/C Γ0,Γ` te : T Γ′, C `∗ tp : T Γ0,Γ∪Γ′′ ` tb : T

Γ0,Γ ` ts match dtpe ⇒ tb else te : T

T-RW

Γ0,Γ` ts : Code T C Γ′′ = Γ′/(C ∪{
κ

}
) κ 6∈C

Γ′C `∗ tp : T ′ Γ0,Γ∪Γ′′ ` tb : Code T ′ (C ∪{
κ

}
)

Γ0,Γ ` ts rewrite dtpe ⇒ tb : Code T C

T-SUB

Γ0,Γ` t : T0 T0 <: T1

Γ0,Γ` t : T1

Subtyping

T-CODE

T0 <: T1 C0 ⊆C1

Code T0 C0 <: Code T1 C1

T-FUN

T0 <: T1 T2 <: T3

T1→ T2 <: T0→ T3

T-REFL

T <: T

Value typing

T-CLOS

Γ |= γ Γ∪{
x : T

}` t : S

Γ` 〈λx : T . t , γ〉 : T → S

Context conformance

; |= ;
Γ |= γ ` v : T

Γ∪{
x : T

} |= γ ∪{
x 7→ v

} κ 6∈C

Γ′/(C ∪{
κ

}
) |= γ

Figure 6.3 – Typing and subtyping rules of λ{}.

148

6.3. Formalization of the Core Language

Term evaluation

E-LIT

γ ` n → n

E-PLUS

γ ` t0 → n0 γ ` t1 → n1 n0 +n1 = n3

γ ` t0 + t1 → n3

E-ASC

γ ` t → v

γ ` t : T → v

E-ABS

γ `λx : T. t →〈λx : T . t , γ〉

E-VAR

(x 7→ v) ∈ γ
γ ` x → v

E-APP

γ` ta → va γ` t f →〈λx : T . t , γ f 〉
γ f ∪

{
x 7→ va

} ` t → v

γ ` t f ta → v

E-CLOSED

γ ` t →dt ′e x 6∈ FV(t ′)

γ ` closex t else te →dt ′e

E-OPEN

γ ` t →dt ′e x ∈ FV(t ′)
γ ` te → v

γ ` closex t else te → v

E-RUN

γ ` t →dt ′e
γ ` t ′ → v

γ ` run t → v

E-MATCH

γ ` ts →dt ′se t ′s À tp = γb

γ ∪ γb ` tb → v

γ ` ts match dtpe ⇒ tb else te → v

E-NOMATCH

γ ` ts →dt ′se (t ′s , tp) 6∈ dom(À)
γ ` te → v

γ ` ts match dtpe ⇒ tb else te → v

Quote evaluation

Q-LIT

γ ` dne→ dne

Q-PLUS

γ ` dt0e→ dt ′0e γ ` dt1e→ dt ′1e
γ ` dt0 + t1e→ dt ′0 + t ′1e

Q-ASC

γ ` dte→ dt ′e
γ ` dt : T e→ dt ′ : T e

Q-ABS

γ ` dte→ dt ′e
γ ` dλx : T. te→ dλx : T. t ′e

Q-VAR

γ ` dxe→ dxe

Q-APP

γ ` dt f e→ dt ′f e γ ` dtae→ dt ′ae
γ ` dt f tae→ dt ′f t ′ae

Q-QUOTE

γ ` ddtee→ ddtee

Q-ANTI0

(x 7→ n) ∈ γ
γ ` dbconst xce→ dne

Q-ANTI1

(x 7→ dte) ∈ γ
γ ` dbxce→ dte

Q-CLOSE

γ ` dte→ dt ′e γ ` dtee→ dt ′ee
γ ` dclosex t else tee → dclosex t ′ else t ′ee

Q-RUN

γ ` dte→ dt ′e
γ ` drun te→ drun t ′e

Q-MATCH

γ ` dtse→ dt ′se γ ` dtbe→ dt ′be γ ` dtee→ dt ′ee
γ ` dts match dtpe ⇒ tb else tee → dt ′s match dtpe ⇒ t ′b else t ′ee
Q-RW

γ ` dte→ dt ′e γ ` dtbe→ dt ′be
γ ` dt rewrite dtpe ⇒ tbe → dt ′ rewrite dtpe ⇒ t ′be

Figure 6.4 – Main rules of the big step operational semantics of λ{}.
149

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Rules E-MATCH and E-NOMATCH make use of partial function À to match a term against a
given pattern, producing a value substitution context that contains the results of the matching.
For example, we have:

d(x : Int→ Int) (123 : Int)eÀInt d(byc : Int→ Int) (bconst zc : Int)e = {
y 7→ dx : Inte; z 7→ 123

}
The definitions of À and ÀT are explained later in this section.

Rule E-CLOSED searches for free occurrences of x in its argument term (where FV is defined

as usual for multi-stage languages, for example see [Rhiger, 2012a]); it evaluates to the term

unchanged if there are none, and otherwise evaluates to the else branch.

For lack of space, we do not list all the rules for rewrite, which simply go through all the

subterms of a term and transform it by reusing the semantics of pattern matching. We only

see three examples below:

RW-LIT

γ ` t →dne
γ` dne match dtpe ⇒ tb else dne→ v

γ ` t rewrite dtpe ⇒ tb → v

RW-PLUS

γ ` t →dt0 + t1e
γ ` dt0e rewrite dtpe ⇒ tb →dt ′0e
γ ` dt1e rewrite dtpe ⇒ tb →dt ′1e

γ` dt ′0 + t ′1e match dtpe ⇒ tb else dt ′0 + t ′1e→ v

γ ` t rewrite dtpe ⇒ tb → v

Rule RW-LIT applies pattern matching on a constant literal n (as this term has no sub-

expressions); if the pattern does not match, the rule returns the term unchanged. Rule

RW-PLUS first applies rewrite recursively inside both sides of an addition, and then applies

pattern matching to transform the top-level expression made of the results of these two

recursive calls.

RW-ABS

γ ` t →dλx : T. t0e t ′0 = [x 7→ y]t0 y fresh

γ ` dt ′0e rewrite dtpe ⇒ tb →dt ′′0 e γ` dλy : T. t ′′0 e match dtpe ⇒ tb else dne→ v

γ ` t rewrite dtpe ⇒ tb → v

More interestingly, RW-ABS makes sure to change the name of the variable bound by the

lambda term it rewrites, before recursing in its body. This way, the names of bound variables

inside rewritten programs can never clash with other names.

Intensional Type Analysis

Similar to Squid (cf. Section 3.9.4), λ{} performs run-time subtyping checks to guide pat-

tern matching. For example, pattern d(bxc : Int→ Int) byce, where x and y are typed respec-

tively as Code (Int→ Int) C and Code IntC , should not match a program fragment such as

d(λx0 : Int→ Int. x0) (λx1 : Int. x1)e, because the extracted terms would not have the correct

types expected by the pattern.

150

6.3. Formalization of the Core Language

(t : T) À (t ′ : S) = t ÀT t ′ if T <: S (X-ASC)

x ÀT x = ; (X-VAR)

t ÀT bxc = {
x 7→ dt : T e} (X-ANTI0)

n ÀT n = ; (X-LIT)

n ÀT bconst xc = {
x 7→ n

}
(X-ANTI1)

dte ÀT dte = ; (X-QUOTE)

(λx : S. t) ÀT (λy : S′. t ′) = [z 7→ y]([x 7→ z]t À [y 7→ z]t ′) z fresh (X-ABS)

(run t) ÀT (run t ′) = t À t ′ (X-RUN)

(t0 + t1) ÀT (t ′0 + t ′1) = (t0 À t ′0)] (t1 À t ′1) (X-PLUS)

(t0 t1) ÀT (t ′0 t ′1) = (t0 À t ′0)] (t1 À t ′1) (X-APP)

(closex t0 else t1) ÀT

(closex t ′0 else t ′1) = (t0 À t ′0)] (t1 À t ′1) (X-CLOSE)

(ts match dtpe ⇒ tb else te) ÀT

(t ′s match dtpe ⇒ t ′b else t ′e) = (ts À t ′s)] (tb À t ′b)] (te À t ′e) (X-MATCH)

(ts rewrite dtpe ⇒ tb) ÀT

(t ′s rewrite dtpe ⇒ t ′b) = (ts À t ′s)] (tb À t ′b) (X-RW)

Figure 6.5 – Extraction rules for pattern matching in λ{}.

In order to enable those runtime checks, we actually perform evaluation not directly on a

source program t , but on its translation JtKΓ
′
Γ into an explicitly-typed variant of λ{} — a form

where every subterm is annotated with its type as assigned by the typing rules, given inner

context Γ and outer context Γ′. For example, Jx +1K;{ x :Int } = (x : Int)+ (1 : Int) : Int.

The JtKΓ
′
Γ function traverses t in lockstep with the typing rules and adds type annotations to

each subterm. Below, we show a few cases — the other cases are straightforward:

A-IDEM

Jt : T0KΓ
′
Γ = (t : T0)

A-GROUND

Γ′, Γ` t : T t ∈ {
n ; x ; bconst xc ; bxc}

JtKΓ
′
Γ = (t : T)

A-APP

Γ′, Γ` t0 t1 : T

Jt0 t1KΓ
′
Γ = (Jt0KΓ

′
Γ Jt1KΓ

′
Γ : T)

A-QUOTE

Γ′, Γ` dte : Code T C

JdteKΓ′Γ = dJt ′KΓC e : Code T C

etc.

Remark that J.KΓ
′
Γ,C is idempotent, thanks to A-IDEM, so there is always a single ascription on

each subterm.

151

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Extraction

Figure 6.5 shows the definitions of partial function À and its helper ÀT . We write γ0] γ1

for the disjoint union of value substitution contexts γ0 and γ1, which is only defined if their

domains are disjoint, that is to say, dom(γ0)∩dom(γ1) =; =⇒ γ0] γ1
def= γ0 ∪γ1.

Case X-VAR matches two variables with the same name and compatible types, producing an

empty result (as nothing is extracted from this match). For example dx : Code Int;e matches

pattern dx : Code Int
{

y : Int
}e because we have Code Int ; <: Code Int

{
y : Int

}
. On the

other hand, case X-ANTI0 matches anything with a compatible type and extracts it as a code

value, which corresponds to the semantics of unquotes in pattern position.

Particularly interesting is the X-ABS case, which matches two lambda bodies by renaming both

variable x bound in the scrutinee and variable y bound in the pattern to some fresh variable

z, and then renaming all occurrences of z to y in the result. This way, any code extracted by

this rule will refer to bound variable x of the original term as y , the name used in the pattern.

Remember that we assume sufficient α-renaming to avoid name collisions, which includes the

assumption that y is not already free in t — if it was, we would get conflicting contexts while

typing the pattern, between the y bound in the pattern and the y coming from the scrutinee

of the pattern match or rewriting.

X-ABS effectively makes the names of bound variables irrelevant to the operational semantics

of λ{}. Interestingly, this gives us a way to compare open terms for α equivalence — in Squid,

it is implemented as reciprocal matching t0 ≡α t1
def= (t0 À t1) = (t1 À t0) =;.

6.3.4 Soundness of λ{}

We now look into proving the safety of λ{}.

Top-Level Evaluation

We write t ⇓ v the annotation and evaluation of program t down to value v , an abbreviation

of ; ` JtK;; → v . Note that in the proofs below, we refer to terms t with no assumptions

on whether they are in an annotated form or not, because that is not a requirement for the

soundness ofλ{}. Failing to annotate a program before evaluating it will not result in evaluation

getting stuck, however it may result in a different evaluation result due to some patterns not

matching, as partial function À is not defined on terms lacking explicit type annotations.

Canonical Forms

Since the type system admits a subtyping rule (T-SUB) and a reflexive subtyping relation,

inverting the typing judgment always yields multiple possibilities, including the use of T-SUB.

This leads to some bureaucracy in the proofs, forcing us to take care of the subtyping case in

152

6.3. Formalization of the Core Language

addition to the main case.

To help with that issue, we introduce an inversion lemma for the subtyping relation:

Lemma 6.3.3 (Subtyping inversion). If S <: T , then S is a pointwise-subtype of T , define as:

• S has the same type constructor as T

• Then, depending on T :

– if T = Int, then S = Int

– if T = T1→ T2, then S = S1→ S2 with T1 <: S1 and S2 <: T2

– if T = Code T ′ CT , then S = Code S′ CS with S′ <: T ′ and CS ⊆CT

Proof. By induction on derivations of S <: T .

Notice that because S and T are so tightly coupled, the "upward" version of lemma 6.3.3 is

also admissible (where we do a case analysis on S to infer T ’s shape).

Thanks to this lemma, we know that T-SUB preserves the type constructor and can only replace

its arguments by subtypes of theirs (or supertypes in contravariant positions). In the following,

when it is clear that a property is preserved by subtyping thanks to this lemma, we may use

the phrase “modulo subtyping” as a shorthand.

Remark 1 (Inversion Modulo Subtyping). Lemma 6.3.3 has an important consequence. First,

notice that for any term shape t , only one typing rule R applies aside from T-SUB — essentially,

the system is syntax-directed modulo subtpying. Thus, we know precisely the structure of any

type derivation for terms of that shape: it ends with R followed by an arbitrary number of

instances of T-SUB.

Now, applying the lemma to that observation means that all instances of T-SUB in that deriva-

tion yield pointwise-subtypes, which is a reflexive and transitive relation. Therefore, inverting

the typing assumption yields the use of R, just slightly weakened — the type of t is replaced by

an arbitrary pointwise-subtype (both in the premises and the conclusion).

Lemma 6.3.4 (Preservation for annotation). If Γ′, Γ` t : T , then Γ′, Γ` JtKΓ
′
Γ : T .

Proof. By induction on derivations of Γ′, Γ` t : T and definition of JtKΓ
′
Γ .

Lemma 6.3.5 (Canonical Forms). If ` v : T , then:

• if T = Int, then v = n for some n;

• if T = T1→ T2, then v = 〈λx : T1. t , γ〉 for some x, t , and γ;

• if T = Code T1 C , then v = dte, for some t such that C ` t : T1.

Proof. By induction on the typing rules and the syntax of values, modulo subtyping.

153

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

We will also need the following lemma about the type of a quote.

Lemma 6.3.6 (Inversion for quotes). If Γ ` dte : T , then there exists T0,T1,C0,C1 such that

T = Code T1 C1 and Γ, C0 ` t : T0, with T0 <: T1 and C0 ⊆C1.

Proof. By induction on the typing derivation. There are only 2 cases that apply: T-SUB, which

is immediate by 6.3.3 and by transitivity of both <: and ⊆; and the base case, T-QUOTE, which

allows to conclude thanks to the reflexivity of those relations.

For the proof of preservation, we first need the following lemma.

Lemma 6.3.7 (Evaluation to quotes yields values). For any value substitution context γ and

term t, if γ` t →dt ′e, then dt ′e ∈ v. In other words, a term never evaluates to a quote containing

immediate unquotes.

Proof. By induction on the reduction. E-ASC and Q-ASC are immediate by induction on

their unique premise, E-CLOSED on its first. All the other E-∗ rules are immediate, since

none produces an unspecified quoted term; thus, all the rules which can apply (producing

a value v) are obviously correct. The only interesting Q-∗ rule is Q-ANTI0, which is solved

by the observation that γ maps identifier to values, applied to the first premise. Q-ANTI1 is

trivial since the resulting quote is a value. All the other Q-∗ rules are solved directly because

they are essentially congruence rules — under the assumption that no subterm contains

an immediate unquote after reduction, then the term itself can’t contain one either (after

reduction, again).

Lemma 6.3.8 (Extraction weak conformance). Extraction in conforming contexts yields weakly-

conforming contexts: If we have

• Γ |= γ;

• Γ` ts : Code T C ;

• Γ′, C `∗ tp : T ;

• Γ′′ = Γ′/C ;

• γb = ts À tp ;

then Γ∪Γ′′ |=d γ∪γb , where we write weak conformance A |=d B as a shorthand for:

A |=d B
def= {

x 7→ v | (x 7→ v) ∈ A ∧ x ∈ dom(B)
} |= B

Proof. By induction on the extraction rules. It is easy to see that each extraction rule matches

subterms of the same types in conforming contexts, which allows applying the induction

hypothesis. Notice that |=d is weaker than |= (as used in T-MATCH) — this is necessary to

allow the base cases of the induction, which may individually extract fewer bindings than are

present in the full typing context. The interesting cases of the induction are X-ANTI0 and

X-ANTI1, which are the only rule to add bindings to the extraction result (easily shown to

154

6.3. Formalization of the Core Language

weakly conform). Rule X-ABS recurses on lambda bodies with a renamed parameter variable,

and it is an easy result that renaming with a fresh variable preserves typing.

Lemma 6.3.9 (Extraction completeness). Extraction provides bindings for all binding in the

typing context of the tightly-typed pattern: Under the same premises as in lemma 6.3.8, we have:

dom(Γ′′) ⊆ dom(γb)

Proof. By induction on derivations of typing and tight typing. In each case, we can tightly type

each sub-pattern and then weaken the corresponding Γ′ just enough to tightly type the whole

pattern (preservation of typing under weakening is straightforward to prove).

Together, lemmas 6.3.8 and 6.3.9 show that extraction in the context of the pattern matching

typing and evaluation rules yields fully-conforming contexts Γ∪Γ′′ |= γ∪γb .

Lemma 6.3.9 is interesting, because it demonstrates why we need a tight typing of tp in T-

MATCH. Indeed, if we allowed Γ′ to be wider than strictly necessary, then we could end up with

bindings that are bound when typing the body of the pattern matching, but never actually

extracted from the pattern.

Lemma 6.3.10 (Preservation — general). Evaluation in conforming contexts preserves typing:

If γ` t → v then for all Γ, Γ′, T such that Γ |= γ and Γ′, Γ` t : T , we have Γ` v : T .

Proof. By induction on the evaluation derivation. In the following, we replace t by the nota-

tions used in the conclusions of the typing & evaluation rules.

Case E-VAR Since x is typable in Γ, then Γ(x) = T . We conclude by conformance of γ to Γ.

Case E-LIT, Q-LIT, Q-VAR, Q-QUOTE These cases are immediate since v evaluates to itself.

Case E-IGNORE By remark 1, inverting the judgment Γ ` (t : T) : T a Γ′ yields Γ ` t : S a Γ′,
with S <: T . By induction hypothesis on that judgment, v has type S as well — and T by

T-SUB.

Case E-ABS By inversion modulo subtyping, we get that T = T1→ T2 and that there exists S1

and S2 such that T1 <: S1, S2 <: T2 and Γ`λx : S1. t : S1→ S2. The resulting closure v is

typed via T-CLOS and T-SUB; the second premise of T-CLOS is exactly the same as the

one of T-ABS, and the first premise is provided by the assumption that Γ |= γ.

Case E-APP By remark 1, we inverse the typing judgment and obtain the judgments Γ `
t f : T ′→ S′ and Γ ` ta : T ′′, with S′ <: S and T ′′ <: T <: T ′. By induction on the first 2

premises, the closure has the same type than t f , namely T ′→ S′, and va has the same

type than ta , T ′. Notice that Γ∪{
x : T

} |= γ ∪{
x 7→ va

}
. The context exactly coincides

with the one of rule T-CLOS for the closure (by inversion and remark 1 again). The

conclusion follows by induction on the last premise.

155

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Case E-PLUS By inversion of the typing judgment, we get that both t0 and t1 have type Int.

By induction and the canonical forms lemma, they reduce to two constants n0 and n1.

Case E-RUN By the inversion lemma for quotes, the type of t is Code T ′ C ′ for some T ′ and C ′.
By induction on the first premise, dt ′e (which is a value) has the same type as dte, namely

Code T ′ C ′. This in turn gives us that t ′ has type S, with S <: T ′. Hence, by induction on

the second premise, v has type S; thus also type T ′ by T-SUB — and T ′ is also the type of

the term run t .

Case E-MATCH By inversion modulo subtyping, the base case must be T-MATCH with some

return type S, where S <: T . This gives us the right typing judgment on tb to use with the

corresponding induction hypothesis (on the evaluation of tb), thanks to lemmas 6.3.8

and 6.3.9 which show that Γ∪Γ′′ |= γ∪γb . Thus, v has type S, and also T by T-SUB.

Case E-NOMATCH This case is similar to the last one, but simpler (no context extension).

Cases E-RW-∗ All these rules are handled in a similar fashion. First, by inversion modulo

subtyping, we get that the base case must be T-RWR. We also apply the induction

hypothesis to the first premise, the one asserting the reduction of the scrutinee —

invoking lemma 6.3.7 if necessary. This allows, after inverting (modulo subtyping) the

typing hypothesis we just derived, to apply induction on any sub-rewrite premise. This

ensures that the subterms of the scrutinee (in the last premise) have the correct type.

One concludes by induction on the last premise.

Case E-CLOSED By inversion modulo subtyping, one gets Γ` t : Code T ′ C ′ a Γ′, with T ′ <: T

and C ′ ⊆C ∪{x : S}. By induction on the first premise, one get that dt ′e has the same type.

If x : S ∈C ′, it is easy to see that dt ′e can also be given the subtype Code T ′ (C ′ \ {x : S}),

by the second premise of E-CLOSED. We conclude by applying T-SUB if necessary.

Case E-OPEN By inversion modulo subtyping, one gets Γ` t : Code T ′ C ′ a Γ′, with T ′ <: T

and C ′ ⊆C . We conclude by induction hypothesis on the last premise, using T-SUB if

necessary.

Case Q-ANTI0 Again by remark 1, inverting the typing judgment on dbxce yields that it has

type Code T ′ C ′, and that C ′ ` bxc : T ′ a Γ with T ′ <: T . Inverting that premise again

gives us x : Code T ′′ C ′ ∈ Γ with T ′′ <: T ′. Since x 7→ dte ∈ γ (premise of Q-ANTI0) and

Γ |= γ, we get that dte is a value of type Code T ′′ C ′ in Γ. We conclude by applying T-SUB

if necessary.

Case Q-ANTI1 By inversion modulo subtyping and since Int has itself as only subtype/super-

type, we have Γ` dbconst xce : Code IntC , as well as C ` bconst xc : Inta Γ (T-QUOTE),

and x : Int ∈ Γ (T-ANTI1). We conclude by recalling that Γ |= γ.

All the remaining Q-∗ cases, which all apply to quoted terms, are handled the same way.

Each of these cases has premises of the form dte→ dt ′e. Thanks to 6.3.7, we show that such

156

6.3. Formalization of the Core Language

dt ′e terms are always values. Thus, we get an induction hypothesis for all such premises

(since, by inversion modulo subtyping, the base case for all premises is always T-QUOTE), and

we conclude by mirroring the input type derivation for the reduced term, applying T-SUB

whenever necessary.

We get preservation as an immediate corollary:

Theorem 6.3.11 (Type Preservation). If ` t : T and t ⇓ v, then ` v : T .

Proof. By Lemmas 6.3.4 and 6.3.10. Notice that by definition ; |=;.

In big step semantics, to distinguish between terms diverging and terms getting stuck, it is

customary to extend the syntax with an error value err (syntax ve ::= v | err) and add rules to,

on the one hand, generate errors when no original rule applies, and on the other to propagate

errors. Then, progress is the property that if a well-typed program evaluates to a value, that

value is not an error. The error-related rules for λ{} are standard, unsurprising, and therefore

omitted from this presentation.

For the proof of progress, we first need a version of it that only applies to quoted terms, and

assert that they all reduce to quoted terms.

Lemma 6.3.12 (Quote Progress). For any contexts Γ and Γ′, value substitution context γ such

that Γ |= γ, and every term t such that Γ′, Γ` t : T , there exists t ′ such that γ` dte→ dt ′e.

Proof. By induction on Γ` t : T . T-ANTI0 and T-ANTI1 both work thanks to their correspond-

ing Q-∗ rules and the assumption that Γ |= γ. The base cases T-VAR, T-LIT and T-QUOTE are

trivial by the associated Q-∗ rules. All the other cases are equally easy, since they don’t affect

the outer context, and corresponding Q-∗ rules act as congruences. Notice that this remark

also apply to T-MATCH and T-RWR — the only premise where they modify the outer contexts

are for the branches, but these are also left untouched by the associated Q-∗ rules.

Finally, we will also rely implicitly on the fact that the evaluation relation is deterministic.

Lemma 6.3.13 (Progress — general). Assume Γ |= γ. For any fully annotated term t, if Γ` t : T

and γ ` t → ve , then ve 6= err.

Proof. By induction on the typing and conformance derivations. To be more precise, we use a

strong induction on the size of the typing and context conformance derivations. Most cases

can be solved simply by a structural induction, and we handle them in this style; but one case

(T-RUN) requires a slightly more general induction principle.

Case T-VAR Immediate by conformance of γ to Γ.

157

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Case T-LIT Immediate since t is a non-quote value (and these never step).

Case T-RUN From the unique premise, Γ` t : Code T ;. By induction hypothesis, we know

that γ ` t → v for some v , and by preservation, Γ ` v : Code T ;. By canonical form,

v = dt ′e for some t ′ such that, by quote inversion modulo subtyping, ` t ′ : S for some

S <: T . We now need to apply the induction hypothesis on ` t ′ : S. To do that, we

leverage the fact that a typing/conformance derivation for this judgement is necessarily

of size smaller than or equal to the derivation for Γ ` dt ′e : Code T ; (immediate by

inversion of typing judgements), which is itself of size smaller than or equal to the

derivation for the premise Γ ` t : Code T ; (this can be proven in a separate lemma,

stating that evaluation reduces the size of typing/conformance derivations). Hence, by

induction, we get that for all v t ′
e such that γ ` s → v t ′

e , v t ′
e is not an error; and ve = v t ′

e .

Case T-ABS t evaluates to the corresponding closure, by rule E-ABS (and closures are values).

Case T-APP By induction on the premises and preservation, we get 2 values of the corre-

sponding types. By canonical forms on the value obtained for t f , it is a closure with

the appropriate argument type (or a supertype thereof). By induction on its typing

derivation, the body reduces without error when the argument is added to the context.

We conclude via E-APP.

Case T-ASC Immediate from the induction hypothesis on the unique premise.

Case T-QUOTE By combining lemmas 6.3.7 and 6.3.12.

Cases T-ANTI0 and T-ANTI1 Impossible since the right context is empty.

Case T-PLUS By the induction, inversion modulo subtyping, canonical forms and E-PLUS.

Case T-MATCH By induction on the first premise, if the scrutinee evaluates to a value, it is not

an error. By preservation and canonical forms, this value is a quoted term. Depending

on the result of the extraction check, we keep evaluating either tb or te . By induction on

the two corresponding premises of T-MATCH, either cases evaluate safely, and we can

apply E-MATCH. To use the induction hypothesis for tb we use lemmas 6.3.8 and 6.3.9,

which show the conformance of the corresponding contexts.

Case T-RWR Like in T-MATCH, the scrutinee evaluates safely (if ever). The reduction is split

across multiple rules, but the reasoning is essentially the same as in the pattern matching

case. One may have to perform more inversion on the typing hypothesis (to match

the structure of the rewriting being performed — this is proved by induction on the

rewriting rules), and conclude from the associated induction hypotheses.

Case T-SUB Follows immediately from the induction hypothesis.

Case T-CLOSE By induction (first premise), preservation and canonical forms, if t → v then

v has shape dt ′e. Then, check whether x ∈ FV(t ′). If not, an easy result shows that dt ′e

158

6.4. Implementation in Scala

also has type Code T C (removing the uses of T-SUB that add x). We conclude by E-

CLOSED. If, on the other hand, x is in FV(t ′), we conclude by induction (second premise

of T-CLOSE) and E-OPEN.

Theorem 6.3.14 (Progress). If ` t : T and t ⇓ ve , then ve 6= err.

Proof. By Lemma 6.3.13. Notice that by definition ; |=;.

6.4 Implementation in Scala

We now briefly describe how the mechanisms of λ{} are implemented via Squid inside the

Scala programming language.

Contexts as contravariant structural types. The type of quoted terms Code[T, C] is defined

in Scala as type Code[+Typ, -Ctx]. From the + and - prefixes, we can see that this type is

covariant in its Typ parameter, and contravariant in Ctx. Scala applies the traditional rules

for structural subtyping so that, for example, for all types X and Y where X :> Y , we have

{} :> {
a : X

}
:> {

a : Y
}
. Therefore, by Scala’s subtyping rules, for all T we also have:

Code[Y , { }] <: Code[Y ,
{

a : X
}
] <: Code[Y ,

{
a : Y

}
] <: Code[X ,

{
a : Y

}
]

In other words, a term that requires some context C can be used in place of a term that requires

some more specific context D <: C . In particular, a closed term, which requires no context

(written {}), can be used in place of a term that requires any context. This subsumption

principle is also called weakening [Rhiger, 2012a] or type widening, and is important for the

flexibility of the quasiquotes API. It is directly reflected in λ{} by typing rule T-SUB presented

in Section 6.3.2.

Context polymorphism. A consequence of this encoding of contexts as Scala types means

that in Squid we can abstract over contexts the same way we abstract over other types. This

capability is known as context or scope polymorphism (also called support polymorphism

[Nanevski, 2002]). However, we will see that a naive interpretation of context polymorphism

in λ{} and Squid leads to unsoundness (and lack of binder hygiene). The goal of Chapter 7 is to

extend λ{} and its Squid implementation to soundly support context polymorphism.

Type intersection and structural refinement. Scala has a concept of intersection types, where

A & B represents the intersection of types A and B . This means we can express refinements on

abstract contexts by intersecting an abstract context parameter C and a structural type such

as
{

x : T
}
, as in C &

{
x : T

}
, also simply written C

{
x : T

}
.

159

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

Term rewriting. Squid’s rewrite macro, which allows the recursive transformation of all

subterms of a program, has to make sure that intermediate extracted subterms are only used in

the context from where they were extracted, otherwise it could result in unsafe scope extrusion.

This is achieved by making the context matched by each case of the rewrite rule a refinement

on some abstract context type that is only usable within the pattern matching branch. For

example, in the program below, the type of extracted variables n and m is Code[Int, <context

@ 2:15>{y:Int}]. The type <context @ 2:15>, where 2:15 refers to the line and column of the

rewrite rule case, is a local context synthesized by Squid (akin to T0 in Section 3.9.1) that is only

valid within the pattern matching branch. This context is refined with {y:Int}, the context

requirement of the rewritten term pgrm.

For instance, in:

val pgrm = code''val x: Int = ?y ; println(x + ?y)''

pgrm rewrite {

case code''($n: Int) + ($m: Int)''

=> code''(-$m - $n) * (?z : Int)''

}

The return type of the rewrite expression above is Code[Int, {y: Int; z: Int}] because

in the right-hand side of the rewrite rule, we return a term with context wider than that of

its pattern, having extended it with some new free variable z — this context is inferred as

<context @ 2:15>{y: Int; z: Int}.

This mechanism is essentially the same as the way rule T-T-RWR in Figure 6.3 expects the body

of the rewriting to contain context brand κ, and removes that brand from the final result.

Run and closed terms. Squid’s run method is type-safe, as it statically rejects the evaluation of

code that potentially contains free variables. This is achieved by making run take an implicit

parameter which acts like an evidence [Oliveira et al., 2010] that the context of the term being

run is the empty context. We reproduce the signature of run below, as it appears as part of the

Code[+Typ, -Ctx] class:

type Code[+Typ, -Ctx] <: {

def run (implicit ev: Ctx =:= {}): Typ

...

}

The implicit parameter ev expresses a requirement for an evidence that Ctx be the empty

context {}. Evidence of the form A =:= B are generated by Scala’s standard library when the

subtyping relations A <: B and B <: A are satisfied. As a result, it is impossible to call .run

on a term that is not closed. For example, code''?x: Int''.run results in a compilation error

reading “cannot prove that {x: Int} =:= {},” while the expression code''val x = 123; ${

160

6.5. Application: Query Compilation By Rewriting

code''println(?x)''}''.run compiles14 and prints 123 to the console.

6.5 Application: Query Compilation By Rewriting

In this chapter, we discuss a very practically relevant application of metaprogramming tech-

niques: query compilation, which is currently an active area of database research.

We have built a number of query compilers over the past years, including DBToaster [Ahmad

and Koch, 2009, Koch et al., 2014] and LegoBase [Klonatos et al., 2014, Shaikhha et al., 2016],

which had their part in starting and accelerating this trend. Building these systems required

substantial effort, due to the need for generating low-level database code with state-of-the-art

performance from queries expressed in complex high-level languages (like SQL).

Most existing query compilers are difficult to maintain because they work by basic template

expansion, generating all the code in a single pass. To better separate the concerns of achieving

advanced code optimization, one needs to design several independent transformation passes

corresponding to different levels of abstraction [Shaikhha et al., 2016]. These passes should be

statically type- and scope-checked to avoid potential mistakes.

Squid was designed in part as an answer to the metaprogramming needs discovered while

iterating over the designs of these compilers. Early versions of Squid quasiquotes were used as

part of real systems such as LegoBase, but to best explain the kinds of transformations used in

our systems, we have designed a simpler, stripped down query compiler built entirely with

Squid, available online,15 and presented in this chapter.

6.5.1 Systems as multi-level DSLs

Our general approach is to structure systems as multi-layer domain-specific languages (DSL):

we start from a very high-level and declarative language on which powerful algebraic transfor-

mations can be performed, and then progressively lower the level of abstraction by removing

higher-level constructs and adding more and more imperative ones, until we end up with

optimal low-level code comparable to what an expert human programmer would have written

directly [Shaikhha et al., 2016, Parreaux et al., 2017a].

In the rest of this chapter, we describe two of the central transformations of a query compiler

implemented with Squid: schema specialization and row-to-column store transformation.

14Without a type annotation, free variable x is inferred to be of type Any — the type expected by println.
15This example and others can be found on the Squid-examples open source repository: https://github.com/

LPTK/squid-examples.

161

https://github.com/LPTK/squid-examples
https://github.com/LPTK/squid-examples

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

6.5.2 Schema Specialization

Relational databases work by keeping some metadata (called the data dictionary) that rep-

resents what type of data is stored and its relation with the logical schema of the database.

In a classical database system, this metadata is processed at runtime to determine how the

data should be accessed and modified, given a high-level logical specification obtained from a

query. This incurs high interpretive overhead, as it means that schema information has to be

read over and over again, resulting in much repeated work, and that data accesses have to go

through indirection.

The goal of the Schema Specialization transformer is to optimize or stage away all this overhead,

specializing a query program to the current schema of the database (once it stops changing)

and removing most of the indirection that would normally happen at query evaluation time.

This transformer works similarly to partial evaluation, where the speculative rewrite rules of

Squid are used as some form of dynamic binding time analysis [Jones et al., 1993], to extract

the static parts from arbitrary programs. For example, we specialize query programs that use

schemas expressed as lists of field information and completely remove that list data structure

from the residual programs.

Consider the following data structures, used as the basis of a high-level query execution engine.

To simplify the presentation, we assume that all columns of the relation are of type String. (In

practice, modular abstraction with Scala path-dependent types can be used to abstract over

the types, see CodeType in Section 1.3.3.) Instances of class Row internally store a list of column

values, and instances of Schema store the list of the names associated to each of these columns:

class Row(values: List[String], size: Int) { ... }

class Schema(columnNames: List[String]) { ... }

We want to transform a query program such as:

val s0 = new Schema("name","age")

val q = Relation.scan("data.csv", s0).project(Schema("age"))

q.print

into a program where the scan, project and print methods are inlined to their underlying

loop structures, which use methods Row.getField and Schema.indicesOf, so that we can then

remove the schema data structure entirely. In the excerpt below, we show one particular rule

of the schema specializer:

162

6.5. Application: Query Compilation By Rewriting

pgrm fix_rewrite {

// $colNames* extracts a variable number of arguments as a sequence of terms

case code''val s = new Schema(List($colNames*)); $body''

=> (body fix_rewrite {

case code''s.columnNames''

=> code''List($colNames*)''

case code''($r: Row).getField(s, $name)''

if colNames.contains(name)

=> val index = colNames.indexOf(name)

code''$r.getValue(${Const(index)})''

case code''s.indicesOf(List[String]($colNames2*))''

=> val columnIndexMap = colNames.zipWithIndex.toMap

val indices = colNames2.map(columnIndexMap).map(Const)

code''List($indices*)''

}).subst[''s''](abort())

}

The asterisk at the end of $colNames* indicates that we are extracting a variable list of ar-

guments, giving colNames type Seq[Code[String,_]] (omitting it, we would match a single

argument).

After this transformer is applied, we execute a general-purpose List partial evaluator (also

written using Squid) to remove all schema indirections from the program. The following

transformers in the pipeline of our query compiler then transform collections of rows (which

are internally backed by a List of fields) into collections of tuples (which provide faster access

to their components), with calls to row.getValue(i) with a constant index i are converted into

tuple accesses.

6.5.3 Row-to-Column Store Transformer

Classical relational database systems such as IBM DB2, Oracle, and Microsoft SQL Server are

“row-stores,” meaning that they store all their data records one after the other in memory.

However, many recent systems, such as Vertica, SAP HANA, and others, have experimented

with a “column-store” system where, for each fields of the records of a particular table, a

separate storage structure is used — column stores are a very prominent research topic in

databases, starting with C-store [Stonebraker et al., 2005]. Each approach has pros and cons,

but database systems are currently either developed one way or the other, with no way to

reconfigure them after the fact.

In our previous work [Klonatos et al., 2014, Shaikhha et al., 2016], we showed how to automati-

cally translate one kind of system to the other. Squid makes that transformation type-safe (i.e.,

more robust) and much easier to express, as we saw in Section 6.2.5 — in essence, the array-

163

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

of-structs to struct-of-arrays optimization shown in Figure 6.1 corresponds to the row-store

to column-store transformation of databases, when expressed in the context of in-memory

query compilation.

6.6 Related Work

We now review some related work.

Previous Squid implementations

In its original implementation (presented in Chapter 1), the Squid type-safe metaprogramming

framework provided statically-typed quasiquotes, but with more limited pattern matching

capabilities. The only way to match bindings was to use higher-order pattern variables (similar

to what was proposed by Sheard et al. [1999]), which means that matching the body of a

binding construct necessarily resulted in a function term, so one could never really separate

open code from its enclosing binding.

This posed problems when one wanted to change the nature of a binding (such as what

happens in Figure 6.1) or when one wanted to open a binding, explore its body, and drive the

reconstruction of that binding based on information gathered from the body — indeed, the

reconstruction of the binding structure had to be set up before we could actually see the body.

Squid was used to enable quoted staged rewriting, an approach to library-defined optimiza-

tions (Chapter 4); in that work, we needed to work around these limitations and used an

unsafe ‘close’ function to temporarily treat some code function as an open term (Figure 5.3).

Misuses of that construct could lead to scope extrusion problems.

In addition, in the non-contextual version of Squid, users could call .run on arbitrary pieces of

code, including open terms; this would result in runtime crashes.

In contrast, Squid’s new contextual quasiquote system, presented in this chapter, allows for

very flexible binding analysis and reconstruction, while statically preventing scope extrusion

and unbound variable reference errors.

Beyond more flexible pattern matching, we also found that expressing open terms using

explicit free variables was a useful metaprogramming technique in its own right. For example,

it allows for more relaxed multi-stage programming patterns, as noted by Kim et al. [2006].

This technique would not be type-safe without contextual quasiquotes.

Multi-stage formal calculi

Numerous multi-stage calculi based on modal logic have been developed that relate to our

approach, including λ� [Davies and Pfenning, 2001] and λ© [Davies, 1996], which inspired

164

6.6. Related Work

the design of MetaML. To prevent the evaluation of open code, Taha and Nielsen [2003]

mention the possibility of reflecting context requirements in the type of terms but choose the

more lightweight approach of environment classifiers, which unfortunately does not prevent

imperative effects from causing scope extrusion. The systems by Nanevski [2002], Kim et al.

[2006], as well as λ[] by Rhiger [2012a, 2005] use the contextual approach and do not have this

problem. This approach was later given a foundational treatment by Nanevski et al. [2008],

who presented an intuitionistic modal logic of necessity and its proof theory, and from this

logic develop a contextual modal type theory, showing how modalities of necessity map to

contexts. They discuss this type theory in the contexts of staging and logical frameworks.

While we created our formal system by abstracting from the practical considerations of Squid

pointed at throughout this thesis, the type-theoretic development carried over from that line

of work turns out to be strongly analogous. Most notably, the ν� calculus by Nanevski [2002]

presents code pattern matching using higher-order pattern variables (similar to what we used

in Chapter 1), along with support for first-class manipulation of names (analogous to Section

7.5; but not formalized in λ{}). In contrast, our calculus is not limited to two stages, allows

for more flexible patterns that can match free variables, and lets pattern variables implicitly

capture their local context. This gives us a simpler, yet more expressive account of code pattern

matching. Furthermore, we allow the hygienic rewriting of all subterms of a code value at

arbitrary depths16 (the rewrite construct), unlocking the power of speculative rewrite rules.

It is worth noting that environment classifiers were eventually replaced by runtime checks in

the main MetaOCaml implementation because they gave “good protection (a type error) against

only rare errors, while being cumbersome always” [Kiselyov, 2017]. They also gave relatively

unhelpful error messages such as “error: ’a not generalizable in (’a, int) code,”

while in Squid context errors manifest as understandable subtyping violations. Nevertheless,

the problems of environment classifiers with mutable references were eventually solved via

refined environment classifiers by Kiselyov et al. [2016], who gave a nice intuition on why using

partially-ordered type variables is sufficient to solve the same problems as e.g., Rhiger [2012a].

However, whether refined environment classifiers can be extended to reason about pattern

matching is an open question.

Interaction with cross-stage persistence

I noticed that in some cases where MetaML requires cross-stage persistence (CSP), we eschew

it thanks to the use of non-lexically-scoped free variables (or explicit free variables, in Squid).

For example, consider the program 〈fun x → ~(run 〈 〈x〉 〉)〉 which in [Taha and Nielsen,

2003] requires classifier annotations (written ‘[.]’) and CSP annotations (written ‘%’), as in:

〈 fun x → ~((run (a) 〈 % 〈 x 〉 〉)[b]) 〉

16Note that rewrite cannot be encoded with pattern matching in ν� (or in λ{}) as that would require polymorphic
recursion.

165

Chapter 6. Improved Safety and Expressivity for Analytic Metaprogramming

This program can be written without any notion of CSP or classifiers in λ{} as:

dλx : Int. brun ddxeece

and in Squid as code''(x: Int) => ${ code{code"?x:Int"}.run }'' (where code{...} is an al-

ternative syntax for code''...'' which helps with nested quotations — see Section 3.9.2).

Query Compilation

Query compilation has been employed in database systems since the dawn of the relational

database era: the very first relational database system, IBM’s System R, used query compilation

in its early prototypes, but this approach was quickly abandoned in favor of query interpre-

tation. Chamberlin et al. [1981] explain that this was ultimately due to the impracticality of

writing and maintaining code generators for query engines, rather than the query engine

code itself, in this early time of databases, when architectures and algorithms were still very

much in flux and subject to experimentation. What is not explicitly stated there, though very

clear, is that modern metaprogramming would have helped making the construction of query

compilers much more manageable and sustainable.

Recently, also thanks to advances in programming languages and technologies such as LLVM,

query compilation has returned to the limelight of databases, with commercial systems such

as StreamBase, IBM Spade, Microsoft’s Hekaton, Cloudera Impala, and MemSQL employing it.

Academic research has also intensified [Ahmad and Koch, 2009, Koch, 2010, Krikellas et al.,

2010, Neumann, 2011, Koch, 2014, Koch et al., 2014, Klonatos et al., 2014, Viglas et al., 2014,

Crotty et al., 2015, Rompf and Amin, 2015b, Nagel et al., 2014, Karpathiotakis et al., 2015,

Armbrust et al., 2015].

6.7 Conclusion

In this chapter, we showed how to implement safe non-lexically-scoped open code manip-

ulation for Squid. We formalized the approach as λ{}, a multi-stage calculus with pattern

matching on code values that allows safe scope extrusion and rewriting of open code. We

introduced “speculative rewrite rules,” an important class of type-safe optimizations based

on the flexible manipulation of variable bindings. As an application example for speculative

rewrite rules, we showed how to implement several query compiler optimization techniques

inspired by real-world use cases.

166

7 Hygienic Scope Polymorphism

In Chapter 6, we demonstrated λ{}, a system for type- and scope-safe non-lexically-scoped

open code manipulation. This relied on reflecting the context requirements of quoted program

fragments in their types.

λ{} was sufficient for expressing advanced program optimizations based on program transfor-

mation primitives such as the rewrite construct. These primitives, which are careful to avoid

name clashes by refreshing variable names as bindings are traversed, provide some limited

form of safe & hygienic scope polymorphism: the ability, for a single piece of metaprogram, to

manipulate programs in different contexts.

However, the λ{} system lacked the ability to more explicitly abstract over contexts, outside

of rewrite-like primitives. Abstracting over contexts via scope-polymorphic functions is an

important capability, offering more control on program transformations, enabling more

metaprogramming code reuse, and allowing for more flexible open code manipulations in

general.

In this chapter, we study how to extend the ideas of λ{} (and its realization in Squid) to

supporting fully-general scope polymorphism, all the while preserving the safety and hygiene

properties of λ{}.

We start by characterizing our notion of hygienic metaprogramming in the context of Squid

(which is quite different from the usual notion of hygiene as found in the Lisp literature, for

example), then show a first, negative result about adding safe and hygienic context poly-

morphism to λ{} with minimal changes, and finally demonstrate the λ[α] calculus (along

with its Squid implementation), a multi-stage language which achieves hygiene and context

polymorphism by relying on first-class dependent affine binding representations.

The powerful stream fusion engine described in Chapter 5, which had to use unsafe escape

hatches to cope with the strict lexical scoping imposed by earlier versions of Squid, was

rewritten in this safer version of Squid with minimal changes.

167

Chapter 7. Hygienic Scope Polymorphism

7.1 Introduction

In Chapter 6, we introduced Contextual Squid and its formalization λ{}, with novel support for

type- and scope-safe non-lexically-scoped open code manipulation. We presently review the

limitations of that approach, and how we intend to resolve them.

The meaning of hygiene in this chapter

The notion of hygiene pervades the field of metaprogramming; this word is often used to

describe various properties related to the sound handling of names and bindings in metapro-

grams. This usage is particularly prevalent in Scheme, but what it means exactly has proven

elusive [Herman, 2010]. Similar notions of hygiene also naturally appear in other domains,

such as contextual modal type theory [Nanevski et al., 2008].

We found from experience that the biggest problems encountered by Squid users with earlier

version of Squid were scope extrusion (i.e., lack of scope safety) and unexpected shadowing —

which we refer to as a lack of hygiene. This notion of hygiene is quite different from the

traditional notion found in the Scheme literature, but it is neither easier nor harder to ensure;

in fact, we argue that it occupies a separate (non-orthogonal) dimension of the design space.

First, Squid being a high-level metaprogramming system, we are not especially concerned with

the necessity of ensuring fresh names — this necessity is satisfied quite trivially by construction

(see the previous chapter), and has never cause problems in practice. Moreover, we are faced

with different problems than the Scheme community: On the one hand, in Scheme, many of

the difficulties related to hygiene come from the fact that macros can define their own arbitrary

binding forms, which is not possible in Squid. On the one hand, we would like to ensure

a stronger notion of name hygiene than in Scheme, not on the level of macro expansions

steps, but rather on the level of arbitrary higher-order metaprograms. It is worth emphasizing

here that macros are essentially first-order metaprograms, for which it is possible to define

successive expansion steps, and around which a weaker notion of hygiene can be defined, but

this is no longer possible in the general framework of Squid.

Therefore, for the purpose of this chapter, we will define hygiene as the absence of shadow-

ing between identifiers in the generated programs, and we will argue that our final system

preserves this property. Importantly, many shortcomings one could see in this definition of

hygiene are actually handled by the separate notions of scope safety and type safety; we be-

lieve that these three properties together effectively make the system well-behaved, avoiding

sources of unsoundness and surprises.

A simplistic approach to hygiene and scope safety

λ{} avoided any possible name clashes by carefully refreshing bound variable names as they

were traversed by the rewrite primitive, and by statically preventing the shadowing of free

168

7.1. Introduction

variables, which was possible because free variables appear in the types of program fragments.

For instance, in a pattern matching or rewrite expression, it was not possible to pick a variable

name, in the pattern, which clashed with the name of a free variable of the scrutinee:

def test(pgrm: Code[T, {x: Int}]) = pgrm rewrite {

case code''(x: String) => $body'' // error: name 'x' clashes with a FV in pgrm

=> ...

}

While this approach woks well in this restricted setting, it becomes insufficient when consider-

ing more advanced forms of context polymorphism, as we will see.

Scope-polymorphic functions

Scope-polymorphic functions are functions that abstract over some context C, and can thus

be applied to terms in different contexts, in a parametric way.

For example, consider the motivating example of Section 6.2.6; its signature was:

def optimize[T](pgrm: Code[T, {}]): Code[T, {}] = pgrm rewrite ...

Currently, this function can only be applied to closed programs. We may want to change the

signature of the function as in:

def optimize[T, C](pgrm: Code[T, C]): Code[T, C] = pgrm rewrite ...

so that it can be applied on open program fragments of arbitrary context C. However, how

should we make sure that this new definition will not mix up the free variable of C with the free

variables introduced during the execution of the optimizer?

Remember that the body of optimize looked like:

pgrm rewrite {

case code''val arr = ...; $body'' =>

val a = code''?a : Array[$ta]''

...

code''val a = new Array[$ta]($size); ...''

}

where we introduce match a variable binding, giving it the name arr, and then introduce free

variables a and b temporarily, in the scope of the rewrite rule.

If we are not careful, calling a polymorphic version of this optimizer on a program which

contains free variables of these names, as in:

optimize[{ a: String }](

code''val xs = new Array[(Int, Int)](42); (?a: String).length'')

169

Chapter 7. Hygienic Scope Polymorphism

will result in the generation of ill-typed code:

code''val a = new Array[Int](42); val b = new Array[Int](42); a.length''

because the free variable ?a: String in the original program will have been captured unin-

tendedly by the binding introduced by the optimizer.

Context disjointness evidence

One way to prevent this kind of name clashes is to require the absence of variable names arr,

a, and b from C, which can be expressed in Scala’s type system by way of implicit evidence

parameters.

We can make Squid disallow the refinements of abstract contexts unless these contexts are

known not to contain the refined names. More generally, the rule would be that when type

checking quasiquotes, whenever an abstract context C is intersected with any other context D,

an implicit disjointness evidence of type C <> D is searched for. If no such evidence is found,

the quasiquotation fails.

Type <>[N,C] is a simple type class with a private constructor, so that Squid only can create

instances of it. All evidence of type A <> B are generated automatically for all appropriate

concrete contexts by an implicit Scala macro, that checks that A and B share no common field

names. Other instances are obtained by composition of implicit assumptions.

This way, our proposed definition of optimize[T, C] now fails to compile. Instead, one has to

write the following declaration:

def optimize[T, C] (pgrm: Code[T, C])

(implicit ev: C <> {arr: Any; a: Any; b: Any})

: Code[T, C] = ...

Note that the types of the variables specified in context disjointness evidence are not important,

so for instance C <> {s: Any} and C <> {s: String} are interchangeable.

With this new definition, we can no longer call optimize on the program which caused a name

clash: the call is rejected with a compile-time error that reads:

“Cannot prove that {a: String} <> {arr: Any; a: Any; b: Any}.”

Context disjointness is insufficient

Although the approach is technically sound, requiring context disjointness evidence every

time one want to weaken an abstract context is too restrictive and greatly limits the usefulness

of scope polymorphism. More specifically, this restriction:

170

7.1. Introduction

• Hampers the modularity of code manipulations, violating the encapsulation of im-

plementation details: if two transformers t0 and t1 want to locally use the same free

variable names, then t1 may not be able to be used in the body of t0, and conversely.

• Prevents the definition of polymorphically-recursive metaprograms,1 which need to

pass refined contexts in each recursive call.

The latter point is of central importance, as polymorphically-recursive functions are common

in statically-typed metaprogramming where contexts are encoded in the types of code values.

It is often necessary to define recursive functions that introduce new variables into a context

on each recursive call, and these names should not conflict [Nanevski, 2002].

Example 7.1.1. Consider the following function, which recursively creates a list of bindings of

every natural number until n, and then sums them up all together:2

def sumTo[C](i: Int, n: Int, body: Code[Int, C]): Code[Int, C] =

if (i <= n)

code''val x = ${Const(i)}; ${ sumTo(i + 1, n, code''$body + (?x: Int)'') }''

else body

Evidently, we should have a way to hygienically generate each binding for x so that they do not

conflict — otherwise, we would end up with executions like sumTo(1, 2, code''0'') == code''

val x = 1; val x = 2; 0 + x + x'', which is not the intended result.

In Squid, it is also common to see transformers which are defined recursively, i.e., where

the transformer calls itself, in the right-hand side of one of its pattern matching or rewriting

expressions, on terms which have been locally extruded from their context. This is the case, for

instance, of the flatMap streamlining transformer presented in Chapter 5 (Figure 5.3). There

again, we should make sure that the extruded names do not conflict across recursive calls.

Example 7.1.2. Consider the following function, which recursively decomposes a list of bindings,

adding logging statements on each of them:

def logLocalVars[T, C]: Code[T, C] => Code[T, C] = {

case code''val x: $xt = $xv; $body''

=> code''val x = $xv; println(x); ${ logLocalVars(body) }''

case code''$e; $body''

=> code''$e; ${ logLocalVars(body) }''

case _ => body

}

1Polymorphic recursion happens when the recursive calls of a function take different type arguments than in
the current call.

2This is a contrived example, which would be better solved with a cross-quotation reference; we only give it for
clear illustration purposes.

171

Chapter 7. Hygienic Scope Polymorphism

Again, such a transformation should avoid conflating the different variables extruded in each

recursive call by inadvertently renaming them all to x.

Research questions

The specific research questions we tackle in this chapter are the following:

• How to characterize binding hygiene in the context of a general-purpose non-lexical

metaprogramming framework like Squid?

• Can we refine the dynamic semantics of context polymorphism to make it sound, in the

absence of disjointness requirements?

• How to design a system for handling bindings like first-class entities while preserving

scope safety and hygiene?

7.2 Metaprogramming Hygiene Beyond Macros

Hygiene has been traditionally defined in terms of “transcription steps” [Kohlbecker et al.,

1986], i.e., macro expansion stages. In his formalization of the essence hygiene in the context

of Scheme, a Lisp dialect, Adams [2015] noted that:

hygiene is essentially lexical scoping at the macro level

However, in the setting of Squid metaprogramming, code manipulation is not organized

around macros and does not follow obvious expansion steps, and moreover open code manip-

ulation is not even lexically-scoped.3 This is a major difference: while it is possible to clearly

define macro input and macro output, as macros are essentially first order (syntax to syntax),

that distinction is no longer possible in a general metaprogramming framework like Squid,

which can freely accept functions and return functions, so that there is no easily discernable

syntax-to-syntax expansion steps involved.4

So what exactly do we mean by hygiene, and how can it be obtained?

We have already started fleshing out an understanding of hygiene in Section 1.2.3, separating

the properties of a hygienic system into two parts:

3Note that on the flip side, hygiene in Lisp considerably complicated by the fact that Lisp macros can create new
binding forms and manipulate program fragments which are not yet well-formed (they expand outside-in and
manipulate program fragments whose binding structures are not yet fully defined), capabilities that we are not
interested in supporting in Squid.

4Seen another way: previous work focus on the macro boundary; they do not do anything to prevent local macro
helper functions from doing unhygienic manipulations (one local function may introduce a binding inadvertently
captured by another). There is no hygienic quasiquotation system in Lisp dialects, to the best of my knowledge.

172

7.2. Metaprogramming Hygiene Beyond Macros

• reference hygiene, which is the property that references created within some metapro-

gram will not get captured by unrelated binders in the manipulated program; and

• binder hygiene, which is the property that binders introduced by some metaprogram

will not capture unrelated pre-existing identifiers in the manipulated program.

The key word in both of these properties is the word unrelated. How shall we decide what is

and is not related?

Lexical and non-lexical scoping

In a lexically-scoped metaprogramming system, all variable references statically know their

binders, which are in the surrounding typing environment. Therefore, it is easy to apply

a renaming on all the binders in a program at compilation time, ensuring that “unrelated

bindings” do not interfere — this is what is done in traditional multi-stage programming

systems like MetaML [Taha and Sheard, 2000, Kiselyov, 2014, Kiselyov et al., 2016].

On the other hand, in a non-lexically-scoped system like Contextual Squid, it is generally

not possible to statically determine a single binder for each variable reference, as a variable

occurrence in a given program may end up being bound by different binders and different

places in the metaprogram, in scopes which are not even visible from the context of the

variable reference.

To be more concrete, consider that a library may expose some open program fragments such

as the following one:

object MyLibrary {

val cde: Code[Int, {v: Int}] =

code''(?v: Int) + 1''

}

It is evidently not possible to know statically all the places where this free variable v will be

bound, and so a global renaming scheme will not work.

7.2.1 Hygiene Via the Type System

The idea we introduce in this subsection is that hygiene in the presence of non-lexical scoping

could be recovered through the type system.5

Since a type system like Squid’s keeps track of all the free variables present in each program

fragment, it should be possible to statically determine what variable occurrences are “related”

or “unrelated,” i.e., known or unknown in each metaprogramming context.

5This is not a new idea. Herman and Wand [2008] already considered the use of types to precisely specify
hygiene; however, this was for a very different, Lisp-like system.

173

Chapter 7. Hygienic Scope Polymorphism

For example, consider the following program:

def foo[C]: Code[Double, C] => Code[Double, C] = {

case code''math.pow(x, 0)'' => code''1.0''

case code''math.pow(x, 2)'' => code''x * x''

case ...

}

which should not type check, because no x is statically known to live inside C.

On the other hand, the following program should type check:

def foo[C]: Code[Double, C { x: Double }] => Code[Double, C { x: Double }] = {

case code''math.pow(x, 0)'' => code''1.0''

case code''math.pow(x, 2)'' => code''x * x''

case ...

}

As an aside, note that the variable matching syntax used above should be distinguished from

the subterm extraction syntax, also valid, but with a different semantics (it will extract any

term, not a specific variable):

def foo[C]: Code[Double, C] => Code[Double, C] = {

case code''math.pow($_, 0)'' => code''1.0''

case code''math.pow($c, 2)'' => code''$c * $c''

case ...

}

7.2.2 Naive Interpretation of Context Polymorphism

We have seen in the introduction that naive interpretation of context polymorphism (or

scope polymorphism) leads to unsoundness. To give a simpler example of this phenomenon,

consider the context-parametric functions ref and bind below:6

def ref [C](n: Code[Int, C]) = code''(?s: String).take($n)''

def bind [C](m: Code[String, C { s: String }]) = code'' (s: String) => $m''

The return type inferred for ref is Code[String,C {s: String}], because the context require-

ment C introduced by n is propagated to the main term, but that context is extended with

the new requirement for a free variable s of type String, introduced by the (?s: String) free

variable syntax. The return type inferred for bind is Code[String => String,C], because the s

variable in the context requirement of m is captured by the lambda abstraction.

6Note that in Scala, str.take(n) represents the n first characters of a string str, or str if str.length < n.
This method is added via an implicit conversion, but our quasiquotes allow us to ignore it completely.

174

7.2. Metaprogramming Hygiene Beyond Macros

The following REPL session demonstrates unproblematic usages of these definitions:

val a = code''?x : Int''

: Code[Int, {x: Int}]

→ code''?x''

val b = ref(a)

: Code[Int, {s: String; x: Int}]

→ code''?s.take(?x)''

val c = bind[{x: Int}](b)

: Code[String => String, {x: Int}]

→ code''(s: String) => s.take(?x)''

code''val x = 12; $c''

: Code[String => String, {}]

→ code''x = 12; (s: String) => s.take(x)''

A problem with context polymorphism as presented above arises when an abstract context

which gets refined at some point is instantiated with a concrete type that is incompatible with

such refinement.

As an example, the result type of ref(code''?s : Int'') is the problematic structural type {s:

Int & String}. This type is simply not a realizable context, making the result of such a call

unusable. A subtler problem arises when we refine a context viewed as abstract with a variable

that it already contains, and capture this variable before the context type is concretized. An

example of this can be composed with the ref and bind seen above:

def compose[C](x: Code[Int, C]) = bind(ref(x))

compose(code''?s : Int'')

: Code[String => String, {s: Int}]

→ code''(s: String) => s.take(s)''

Observe that the result code''(s: String) => s.take(s)'' is ill-typed! The problem is that we

introduce a mismatch between the static semantics of contexts, handled by quasiquotes at

compilation time, and the dynamic semantics of free variables.

This is fundamentally a hygiene poblem: the type safety violation arises from a violation of

hygiene. Using intensional type analysis (Section 6.3.3), we could change the subsitution

rules to avoid substitutions which result in type errors, solving type safety per se, but such

a system would be deeply unsatisfactory, as it would still be fundamentally unhygienic and

un-parametric (variables would behave differently depending on the types of the variables

being bound).

175

Chapter 7. Hygienic Scope Polymorphism

7.3 A Negative Result: No Hygiene With Plain Names

This section is concerned with the question of whether we can refine the dynamic semantics of

quasiquotation in λ{} and Squid to make it conform to the obvious static semantics of context

polymorphism. This way, we could ensuring hygiene through the type system without having

to deeply alter the user-visible language.

In other words, the central idea we pursue (unsuccessfully) in this section is to enforce hy-

giene by leveraging the type system, in the presence of non-lexically-scoped open terms, scope

polymorphism, and plain variable names.

This is a surprisingly subtle problem on which I have spent a significant amount of time, in

vain, as the problem seems not to have any satisfactory solutions: while some solutions seem

to work at first, and can handle most common usages flawlessly, formal analysis demonstrates

that they always fall apart in corner cases. Again, what makes the problem particularly tricky

is the fundamentally higher-order nature of our language (to be contrasted with the first-order

problem of hygiene in Lisp macros).

Although it is possible to define nonstandard operational semantics to achieve the stated goal

of this section, these semantics are not compatible with existing language implementation

techniques, and thus the resulting systems cannot be easily embedded into Scala and Squid.

This section is only interesting insofar as it provides a strong (if informal) argument why hy-

giene with plain names and non-lexical open code manipulation with context polymorphism

is not feasible. Readers who are not interested in this negative result may safely skip this

section, and proceed to the next one (Section 7.4).

7.3.1 Core Problem

Formally, we are looking to add the following two simple rules to the type system of λ{}:

T-CTXABS

Γ0,Γ∪{
κ

}` t : T

Γ0,Γ `Λκ. t : ∀κ. T

T-CTXAPP

Γ0,Γ` t : ∀κ. T

Γ0,Γ` t [C] : [κ 7→C]T

where κ is a context variable which can be abstracted with T-CTXABS and then substituted

with a concrete context with T-CTXAPP.

The core problem of this chapter is that a naive context substitution approach may leave some

terms ill-typed as a result of unintended variable capture. For example, consider the following

term:

t : ∀κ. Code Int
{
κ

}→ Code (Bool→ Bool)
{
κ

}
t = Λκ. λc : Code Int κ. dλx : Bool. bcce

176

7.3. A Negative Result: No Hygiene With Plain Names

Now consider what happens when we apply t as in t [{ x : Int }], passing κ = { x : Int } and

c = dxe. The typing rule T-CAPP tells us that the result type is:

[κ 7→ { x : Int }](Code (Bool→ Bool) {κ }) = Code (Bool→ Bool) { x : Int }

This in itself is fine. But if we applied context substitution on the term in the same way as on

the type, we would end with the term:

[κ 7→ { x : Int }](λc : Code Int κ. dλx : Bool. bcce) = λc : Code Int { x : Int }. dλx : Bool. bcce

which is no longer well-typed! Indeed the free variable x in c now clashes with the locally-

defined λx : Bool in the term.

And indeed, if we tried to evaluate the term:

run dλx : Int. bt [{ x : Int }]dx +1ece

using the evaluation rules of Figure 7.3, we would get stuck while trying to run the code value:

dλx : Int. λx0 : Bool. x0 +1e

Clearly, the dynamic semantics of context-polymorphic functions has to be revised, as a naive

approach does not work.

There are many ways we could tackle the problem. For instance, we could change the output of

context substitution so that instead of immediately replacing context variables κ with concrete

contexts C , it would replace them with bindings κ 7→C which would be considered opaque as

long as we are evaluating terms in the context where κ was introduced.

7.3.2 Reified Context Parameters

The first observation we can make is that we need to reify some context representations one

way or the other, in order to let the dynamic semantics of quasiquotes be influenced by the

static context types.

Indeed, the key idea is to distinguish the composition of code whose context is known, which

means that its free variables should be captured, from the composition of code with unknown

context, whose free variables should be left alone for hygiene reasons. For this, we need to

keep track of the contexts that are in scope when code manipulations are performed.

In Scala, reifying type parameters can be done with a type class (like the A <> B type class

mentioned in Section 7.1). We can define a Ctx type class which can be used to identify abstract

contexts uniquely, as well as their composition via refinement and intersection. For instance,

a recursive context-polymorphic function could be declared as:

177

Chapter 7. Hygienic Scope Polymorphism

def foo[C: Ctx, D: Ctx] = {

... foo[C & D, D { v: Int }]

}

foo[{v: Int}, {w: String}]

In the example above, two new context evidence values would be created for the foo[{v:

Int}, {w: String}] call, respectively for contexts C = {v: Int} and D = {w: String}, and

these evidence values would be composed at runtime in order to create the evidence value

passed into the recursive calls of foo. Conceptually, the program above, after elaboration,

should look something like:

def foo[C, D](implicit C: Ctx[C], D: Ctx[D]) = {

... foo[C & D, D { v: Int }](CtxEv.inter(C, D),

CtxEv.inter(D, new CtxEv[{v: Int}]))

}

foo[{v: Int}, {w: String}](new CtxEv[{v: Int}], new CtxEv[{w: String}])

Note: reified contexts should not lead to surprising semantics

Importantly, the reification of context parameters should only be used for hygiene considera-

tions, and should not lead to a loss in parametricity.

Moreover, sometimes it is possible to infer different possible type arguments to satisfy a

function call; in such context, type inference should not influence the dynamic semantics of

the call. For example, in:

def foo[C: Ctx](a: Code[Int, C{ x: Int }]): Code[Int => Int, C] =

code''(x: Int) => $a''

val r = foo[{}](code''(?x: Int) * 2'')

val s = foo[{x: Int}](code''(?x: Int) * 2'')

Both calls are type-correct, and they should have the same semantics. If they did not, the

dynamic semantic of our language would be influenced by the (sometimes arbitrary) choices

made during type inference — not an uncommon thing in Church-style languages like Scala

and Haskell, but also not desirable in this case.

7.3.3 Reified Weakening

The next observation is that we can no longer allow the contexts of code values to be weakened

implicitly (by upcasting, leveraging a subtyping relation, as in Chapter 6).

178

7.3. A Negative Result: No Hygiene With Plain Names

The need for reified weakening is most evident in the following example, where the same term

is viewed under two different contexts in a context-polymorphic function, which should lead

to different operational semantics in order to ensure hygiene:

def foo[C: Ctx](c0: Code[Int, C], c1: Code[Int, C { x: Int }])

: Code[Int => Int, C]

= code''(x: Int) => $c0 + $c1''

val c = code''(?x: Int) + 1''

val r = foo(c, c)

Note that after type inference, foo(c, c) has to be elaborated as foo[{x: Int}](c, c) for the

call to type check.

According to our hygiene criteria, r should evaluate to code''(x_0: Int) => ?x * 2 + x_0

* 2'' so that, for instance, code''(x: Int) => $r'' evaluates to code''(x_1: Int) => (x_0:

Int) => x_1 * 2 + x_0 * 2''. Indeed, foo should not capture the variable x which lives in c0,

because that variable does not appear in its static context.

This can be achieved by noticing that in order to insert c0 into the context of the lambda

abstraction bidning (x: Int) inside foo, we have to weaken its type from Code[Int, C] into

Code[Int, C {x: Int}]. Reifying this weakening should allow us to make sure the dynamic

semantic of quote insertion avoid substituting x in c0, since in the context of foo, x was not

known to be free in c0.

In Scala, reified weakening can be implemented by relying on implicit conversions instead of

a subtyping relation. With the weakening conversions applied explicitly, the definition of foo

seen above becomes:

def foo[C: Ctx](c0: Code[Int, C], c1: Code[Int, C { x: Int }])

: Code[Int => Int, C]

= code''(x: Int) => ${c0.weaken[C { x: Int }]} + $c1''

Where a c.weaken[X] method call itself will capture a runtime representation of the reified

context X, which will be inspected while evaluating code composition. The signature of weaken

would be as follows:

type Code[+T, C] <: {

def weaken[D <: C](implicit ev: C): Code[T, D]

...

}

Notice that weaken takes an implicit evidence for context C and not for D — we only care about

the presence of free variables in C, the “true” context of the code value.

179

Chapter 7. Hygienic Scope Polymorphism

7.3.4 Context Evidence Opacity and Transparency

The crucial part of a hygienic operational semantics based on the ideas presented in this

section is to know when a given reified context parameter is supposed to be transparent or

opaque, while composing program fragments together.

Consider the following definition of foo[C], where a weakening conversion to context C { x:

Int } is reified around some code value c, and then the resulting code value is immediately

returned:

def foo[C: Ctx]

: Code[Int, C] => Code[Int, C { x: Int }]

= c => c.weaken[C { x: Int }]

In the call site, we apply the function as foo[{ x: Int }], which elaborates to something like

foo[{ x: Int }](C0) where C0 = new CtxEv[{ x: Int }] is a fresh context evidence. We then

insert the result of this call into a context where x is bound:

val c0 = foo[{ x: Int }] // passes fresh C0 evidence implicitly

val c1 = c0(code''?x: Int'') // c1 has type Code[Int, { x: Int }]

code''(x: Int) => $c1''

The value we will get at runtime for c1 will have the shape code''?x: Int''.weaken(C0), where

C0 is the context evidence which was synthesized for foo. In this call site context, C0 is to be

considered transparent, since we are no longer within its defining scope (which is the body

of the c0 closure) and we can therefore “see through” it, seeing that c1 does indeed contain a

genuine free variable x.

Compare that with a situation where the code composition would have happened in a context

where C0 was still opaque, and where we should therefore not have captured the free variable

x, for example in:

def foo[C: Ctx]

: Code[Int, C] => Code[Int => Int, C]

= c => code''(x: Int) => ${c.weaken[C { x: Int }]}''

val c0 = foo[{ x: Int }] // passes fresh C0 evidence implicitly

val c1 = c0(code''?x: Int'') // c1 has type Code[Int, { x: Int }]

assert(c0 == code''(x_0: Int) => ?x: Int'')

In the example above, the context evidence C0 = new CtxEv[{ x: Int }] should be considered

opaque while executing the code composition in foo, since foo is not supposed to see through

the context parameter C.

180

7.3. A Negative Result: No Hygiene With Plain Names

7.3.5 A Problematic Program

The specific mechanism we should use to determine whether a given context is to be consid-

ered opaque or transparent is left undetermined,7 and is irrelevant. Indeed, in this subsection,

we show with a counter example that no matter which mechanism is used, that mechanism is

necessarily wrong if we assume “reasonable” operational semantics!

Consider the following program:

def foo[C: Ctx](c0: Code[Int, C])

: (Code[Int, C { x: Int }], Code[Int, C { x: Int }] => Code[Int, C])

= {

val a: Code[Int, C { x: Int }] = c0.weaken

val f: Code[Int, C { x: Int }] => Code[Int => Int, C]

= c1 => code''(x: Int) => $a + $c1''

(f, a)

}

val c = code''?x: Int''

val (f, a) = foo[{ x: Int }](c)

// f: Code[Int, { x: Int }] => Code[Int => Int, { x: Int }]

// a: Code[Int, { x: Int }]

f(c)

The program above should return code''(x_0: Int) => ?x + x_0''. Indeed, from the reasoning

on hygiene we have developed, we can establish two facts on the code composition being

performed inside the closure that is returned by foo:

• the x variable in a should not be captured by the lambda: C is opaque to foo, and

therefore even after weakening c0 to context C { x: Int }, foo should not be able to see

the variable x that lives inside C — and therefore it should not capture it (this is necessary

not only for hygiene but also for type safety, as explained in Section 7.2.2).

• the x variable in c1 should be captured by the lambda: indeed, its static type has context

C { x: Int } where x is visible without weakening; moreover, the variable comes from

the call-site context where it had the completely unambiguous context { x: Int }.

However, when the closure produced by foo executes in the program above, c0 and c1 are

exactly the same value, simply passed in through two different paths. At no point do we have

the opportunity to alter the value to reflect the difference in these paths: we cannot perform

a special action on capture nor on argument passing, unless we accept some nonstandard

7We could, for example, pass additional implicit information along the context evidence in order to reify the call
stack of the different context-polymorphic functions and determine whether, in the current execution context, a
given context evidence is opaque or transparent.

181

Chapter 7. Hygienic Scope Polymorphism

operational semantics which is no longer aligned with Scala, or with most other existing

programming language for that matter. So both a and c1, which are the same value in this

example (and even have the same static type), should behave identically, which violates the

bullet points above.

Therefore, there is no reasonable operational semantics for our language where the program

above executes hygienically.

7.4 Hygiene Via Affine First-Class Bindings in λ[α]

We have seen in the previous section that using plain names in the context of λ{} and Squid

simply cannot work. Therefore, we need to change something about the way we handle

variables, in order to soundly support context polymorphism.

The main idea of this section is to use a first-class representation of bindings — which we refer

to as symbols — to abstract over the name (and associated type) of variables in a program.

7.4.1 First-Class Bindings in Squid

We have added a Variable[T] data type to the Squid framework to represent variable bindings

— also called symbols — as first-class entities which can be explicitly inserted into and extracted

from programs.

The signature of this data type is as follows:

type Variable[T] <: {

type C

def toCode: Code[T, C]

def tryClose[Ty, Co](pgrm: Code[Ty, Co & C]): Option[Code[Ty, Co]]

def substitute[Ty, Co](pgrm: Code[Ty, Co & C], vlu: Code[T, Co]): Code[Ty, Co]

...

}

val Variable: {

def apply[T]: Variable[T]

}

An instance of Variable[T] represents a free variable with a unique name as well as its associ-

ated type T (internally, Squid generates a fresh name on every instantiation). This is encoded

by each instance having a separate type member C representing the context dependency

associated with that symbol.

To keep track of symbol dependencies, we use Scala’s support for path-dependent types [Amin

et al., 2016] (as in Section 1.3.4 for type evidence): if v0 has type Variable[T], then v0.C refers

182

7.4. Hygiene Via Affine First-Class Bindings in λ[α]

to the context dependency of that specific symbol, which is considered distinct from v1.C, for

some other symbol v1, unless we can prove that v0 == v1.

One can obtain a reference to a free variable via its method toCode (or by directly inserting

it into a program fragment), and we can try to (partially) close a program fragment pgrm in

which the variable is statically known to potentially be free, by using method close (which

corresponds to speculative closure, as in Chapter 6).

Examples

Recall Example 7.1.1, which inductively constructed a program fragments made of a succession

of bindings. This example can now be implemented hygienically as:

def sumTo[C](i: Int, n: Int, body: Code[Int, C]): Code[Int, C] =

if (i <= n) {

val v = Variable[Int]

code''val $v = ${Const(i)}; ${ sumTo(i + 1, n, code''$body + $v'') }''

} else body

In fact, this is precisely how Squid implements cross-quoation references behind the scenes.

Indeed, the code below is automatically converted into the code above by Squid, when the

Squid macros expand:

def sumTo[C](i: Int, n: Int, body: Code[Int, C]): Code[Int, C] = {

if (i <= n)

// cross-quotation reference of 'v':

code''val v = ${Const(i)}; ${ sumTo(i + 1, n, code''$body + v'') }''

else body

}

In the examples above, the inner quote code''$body+ $v'' or code''$body+ v''has type Code[Int,

C & v.C], and the context requirement v.C is satisfied by binding present in the outer quote,

so that the outer quote can be typed Code[Int, C].

Also recall Example 7.1.2, which inductively decomposed a program, adding logging operations

on each binding. That example can eb rewritten as follows, by extracting symbols from the

matched code patterns:

183

Chapter 7. Hygienic Scope Polymorphism

def logLocalVars[T, C]: Code[T, C] => Code[T, C] = {

case code''val $x: $xt = $xv; $body'' // notice the $x

=> code''val $x = $xv; println($x); ${ logLocalVars(body) }''

case code''$e; $body''

=> code''$e; ${ logLocalVars(body) }''

case _ => body

}

In the right-hand side of the case where we extract symbol $x, we get a variable x of type

Variable[xt.T] in scope.

Enforcing Hygiene

The system as we have seen so far is scope-safe, but still not quite hygienic. As a simple

example, recall Example 7.1.1 again, and consider that by misusing Variable, we could have

easily generated programs containing (probably unintended) shadowing, a typical giveaway

for the lack of hygiene:

val v = Variable[Int] // a single v is defined outside!

def sumTo[C](i: Int, n: Int, body: Code[Int, C]): Code[Int, C] =

if (i <= n)

code''val $v = ${Const(i)}; ${ sumTo(i + 1, n, code''$body + $v'') }''

else body

The program above will have the same unhygienic behavior as our first version in Section 7.1.

From this example, it is clear that some linearity (or more generally affinity) restrictions should

be set in place to prevent the misuse of Variable symbols: indeed, in order to preserve hygiene,

one should only be able to bind each variable symbol at most once.

7.4.2 Presentation of λ[α]

In this subsection, we present the λ[α] multi-stage calculus, which reflects the augmentation

of Squid with hygienic first-class symbol manipulation and context polymorphism.

Syntax

The syntax of λ[α] is presented in Figure 7.1, where the new constructs (compared to λ{}) are

highlighted in grey.

The scope abstractionΛK . t and scope application t [K] constructs can not only manipulate

context variables K = κ, but also variable symbols K = α : T . The corresponding function

spaces are written ∀K . T .

184

7.4. Hygiene Via Affine First-Class Bindings in λ[α]

t ::= qu Term

qθ ::= (Syntax Template)

n Literal

| t + t Addition

| x, y, z Variable

| t t Application

| λx : T. t Abstraction

| ΛK . t Scope Abstraction

| t [K] Scope Application

| letα : T in t Symbol Creation

| dque Quote

| run t Evaluation

| t match dte ⇒ t else t Pattern Matching

| t rewrite dte ⇒ t Term Rewriting

| close α t else t Speculative Closure

| t : T Type Ascription

| θ (Syntax Extension)

u ::=
bxc Variable Unquote

| bconst xc Constant Unquote

| bαc Symbol Unquote

| λbαc. t Symbol Binding

v ::= Value

n Literal

| 〈λ c . t , γ〉 Closure

| dq;e Quote

γ ::= {
d

}
Subs. Context

d ::=
x 7→ v

| α 7→ dx : T e

T,S ::= Type

Int Integer

| T → T Function

| ∀K . T Univ. Context

| Code T C Code

C ,Γ ::= {
c

}
Typ. Context

c ::=
x : T Binding

| K Abs. Context

K ::=
α : T Symbol

| κ,α Brand

Figure 7.1 – Syntax of λ[α].

185

Chapter 7. Hygienic Scope Polymorphism

We have added antiquotation forms for inserting symbol references bαc as well as symbol

bindings λbαc. t , and a way to create new symbols with letα : T in t .

Static seamntics

The static semantics of λ[α] is presented in Figure 7.2.

Rules T-SYMABS and T-SYMAPP handle symbol abstraction and application, respectively.

To enforce affinity, we use function #α(t), which counts the number of times symbol α is

consumed (i.e., bound as part of a program fragment) in t :

#α(x) = #α(n) = #α(bxc) = #α(bconst xc) = 0

#α(bα′c) = 0 even when α=α′

#α(dte) = #α(t)

#α(t [α]) = #α(λbαc. t) = 1+#α(t)

#α((λx : T. t0) t1) = #α(t0)+#α(t1)

#α(t0 t1) = #α(t0)+#α(t1)

#α(λx : T. t) = #α(t)×2

#α(ΛK . t) = #α(t) when K 6= (α : T)

#α(Λα : T . t) = 0

etc... (other cases unsurprising)

We consider the capture of a symbol into a function which consumes that symbol as an

arbitrary number of uses of that symbol (we represent that as #α(t)×2) — indeed, we do not

have a way to prevent the capturing closure from executing more than once. Notice that we

have a special case for let bindings (encoded as applied lambdas (λx : T. t0) t1), since this is a

common special-case where we can be sure that the closure is indeed executed only once.

Rule T-LETSYM handles symbol creation by reusing a judgement from T-ABSSYM and addi-

tionally making sure that the corresponding symbol α does not leak into the result type.

Rules T-CTXABS and T-CTXAPP handle context abstraction and application, respectively.

The side-condition 6 ∃(x : S) ∈C of T-CTXAPP and T-ANTI0 makes sure that contexts containing

free plain variable names cannot be passed as argument (which could result in ill-typed terms,

as explained in Section 7.3.1), and cannot be unquoted. Therefore, cross-quotation references

with plain names are disallowed, but this is not a significant limitation: we can always encode

something like dλx : T. b...dx +1e...ce as let α : T in dλbαc. b...dbαc+1e...ce. This transforma-

tion can be applied automatically, which is essentially what the Squid implementation does to

implement cross-quotation references.

Note that one may match normal lambda patterns only if they extract nothing from their

186

7.4. Hygiene Via Affine First-Class Bindings in λ[α]

Term typing

T-LIT

Γ0,Γ` n : Int

T-PLUS

Γ0,Γ` t0 : Int Γ0,Γ` t1 : Int

Γ0,Γ` t0 + t1 : Int

T-ASC

Γ0,Γ` t : T

Γ0,Γ` (t : T) : T

T-ABS

Γ0,Γ∪{
x : T

}` t : S

Γ0,Γ` (λx : T. t) : T → S

T-VAR

(x : T) ∈ Γ
Γ0,Γ` x : T

T-APP

Γ0,Γ` t f : T → S Γ0,Γ` ta : T

Γ0,Γ` t f ta : S

T-SYMABS

Γ0,Γ∪{
α : S

}` t : T #α(t) ≤ 1

Γ0,Γ ` (Λα : S. t) : ∀α : S. T

T-SYMAPP

(α′ : S) ∈ Γ Γ0,Γ` t : ∀α : S. T

Γ0,Γ` t [α′] : [α 7→α′]T

T-LETSYM

Γ0,Γ` (Λα : S. t) : ∀α : S. T
α not free in T

Γ0,Γ` (letα : S in t) : T

T-CTXABS

Γ0,Γ∪{
κ

}` t : T

Γ0,Γ `Λκ. t : ∀κ. T

T-CTXAPP

Γ0,Γ` t : ∀κ. T 6 ∃(x : S) ∈C

Γ0,Γ` t [C] : [κ 7→C]T

T-QUOTE

Γ, C ` t : T

Γ0,Γ` dte : Code T C

T-ANTI0
(x : Code T Γ) ∈ Γ′ 6 ∃(y : S) ∈ Γ

Γ′, Γ` bxc : T

T-ANTI1
(x : Int) ∈ Γ′

Γ′, Γ` bconst xc : Int

T-ANTI2
(α : T) ∈ Γ′

Γ′, (Γ∪{
α

}
) ` bαc : T

T-BINDSYM

(α : S) ∈ Γ′ Γ′, (Γ∪{
α

}
) ` t : T

Γ′, Γ` (λbαc. t) : S → T

T-CLOSE

Γ0,Γ` t : Code T (C ∪{
α

}
) Γ0,Γ` t ′ : Code T C (α : S) ∈ Γ

Γ0,Γ` close α t else t ′ : Code T C

T-RUN

Γ0,Γ` t : Code T ;
Γ0,Γ` run t : T

Value and context typing

; |= ;
Γ |= γ ` v : T

Γ∪{
x : T

} |= γ ∪{
x 7→ v

} Γ |= γ

Γ∪{
α : T

} |= γ ∪{
α 7→ dx : T e}

Γ |= γ

Γ∪{
κ

} |= γ

T-CLOS

Γ |= γ Γ∪{
x : T

}` t : S

Γ` 〈λx : T . t , γ〉 : T → S

T-KCLOS

Γ |= γ Γ∪{
K

}` t : T

Γ` 〈ΛK . t , γ〉 : ∀K . T

Figure 7.2 – New typing rules for hygienic metaprogramming. The rules for match, rewrite and
the subtyping rules are omitted, since they are similar to Figure 6.3.

187

Chapter 7. Hygienic Scope Polymorphism

Term evaluation

E-SCPABS

γ `ΛK . t →〈ΛK . t , γ〉

E-CTXAPP

γ ` t →〈Λκ. t ′, γ′〉 γ′ ` [κ 7→C]t ′ → v

γ ` t [C] → v

E-SYMAPP

γ ` t →〈Λα : T . t ′, γ′〉 (α′ 7→ v ′) ∈ γ
γ′ ∪{

α′ 7→ v ′ } ` [α 7→α′]t ′ → v

γ ` t [α′] → v

E-LETSYM

γ∪{
α 7→ dx : Se}` t → v x fresh

γ` (letα : S in t) → v

E-CLOSED

γ ` t →dt ′e (α 7→ dx : T e) ∈ γ
x 6∈ FV(t ′)

γ ` closeα t else te →dt ′e

E-OPEN

γ ` t →dt ′e (α 7→ dx : T e) ∈ γ
x ∈ FV(t ′) γ ` te → v

γ ` closeα t else te → v

Quote evaluation

Q-ANTI2

(α 7→ dx : T e) ∈ γ
γ` dbαce→ dxe

Q-BINDSYM

(α 7→ dx : T e) ∈ γ γ` dte→ dt ′e
γ` dλbαc. te→ dλx : T. t ′e

Extraction rules

(t : T) À (t ′ : S) = t ÀT t ′ if T <: S (X-ASC)

x ÀT x = ; (X-VAR)

t ÀT bxc = {
x 7→ dt : T e} (X-ANTI0)

n ÀT bconst xc = {
x 7→ n

}
(X-ANTI1)

x ÀT bαc = {
α 7→ dx : T e} (X-ANTI2)

(λx : S. t) ÀT (λy : S′. t ′) = [x 7→ z]t À [y 7→ z]t ′ z fresh (X-ABS)

(λx : S. t) ÀT (λbαc. t) = ([x 7→ y]t À t ′)∪{
α 7→ dy : Se} y fresh (X-BIND)

(t0 t1) ÀT (t ′0 t ′1) = (t0 À t ′0)] (t1 À t ′1) (X-APP)

etc...

Figure 7.3 – Operational semantics of λ[α]. Only the new and updated rules are given; the rest
are as in Figure 6.4.

188

7.4. Hygiene Via Affine First-Class Bindings in λ[α]

body (ensured by T-ANTI0’s new side condition); so while a pattern like dλx : Int. x +1e is

still legal, a pattern like dλx : Int. byc+1e is now illegal. In order to extract subterms from

the bodies of bindings, one now has to also extract a corresponding variable symbol, as in:

dλbαc. byc+1e, which brings α : Int and y : Code Int
{
α; κ

}
into the typing context of the

corresponding pattern-matching branch, assuming for example that the scrutinee has type

Code (Int→ Int)
{
κ

}
, for some unknown κ in scope.

Context substitution is defined as follows:

[κ 7→C]Int = Int

[κ 7→C](Code T D) = Code [κ 7→C]T [κ 7→C]D

[κ 7→C](S→ T) = [κ 7→C]S→ [κ 7→C]T

[κ 7→C]Γ = {
c | c ∈ Γ∧ c 6= κ

}∪
 C if κ ∈ Γ

; otherwise

[κ 7→C]x = x

[κ 7→C](λx : T. t) = λx : [κ 7→C]T . [κ 7→C]t

[κ 7→C](t0 t1) = [κ 7→C]t0 [κ 7→C]t1

[κ 7→C]dte = d[κ 7→C]te
[κ 7→C]Λα : T . t = Λα′ : T . [κ 7→C]([α 7→α′]t) α′ fresh

[κ 7→C]∀α : T . T = ∀α′ : T . [κ 7→C]([α 7→α′]T) α′ fresh

[κ 7→C]Λκ. t = Λκ′. [κ 7→C]([α 7→ κ′]t) κ′ fresh

etc... (other cases unsurprising)

Dynamic semantics

Figure 7.3 presents the main new parts of the dynamic semantics of λ[α], compared to λ{}.

An important question to answer is: how can we make sure that the usages of bindings

extracted from patterns are indeed affine, when the term we extracted the binding from could

be reused (and matched again) an arbitrary number of times? The answer is to refresh the

binding we are currently matching before extracting it; this way, each extraction will yield

an effectively distinct variable symbol. Notice how we use a fresh variable name y when

extracting bindings in X-BIND.

Also notice that we do not have to rename the fresh variable z introduced in X-ABS in the

result of the extraction (unlike in Figure 6.5), because we made sure that plain names were

never extracted from patterns (by the side-condition of T-ANTI0).

189

Chapter 7. Hygienic Scope Polymorphism

7.4.3 Soundness

The soundness arguments for λ[α] are mostly similar to those we have seen in Chapter 6 for

λ{}. We define term annotation and evaluation t ⇓ v similarly, also implicitly adding all the

adequate err evaluation rules.

One of the main differences is the addition of a context substitution lemma, which helps in

proving progress and preservation:

Lemma 7.4.1 (Context substitution). If Γ0, Γ∪{
κ

}` t : T then Γ0, Γ` [κ 7→C]t : [κ 7→C]T .

Proof sketch. By induction on typing derivations.

Theorem 7.4.2 (Preservation). If ` t : T and t ⇓ v, then ` v : T .

Proof sketch. Similar to theorem 6.3.11, by induction on evaluation derivations with a stronger

lemma (like lemma 6.3.10).

Theorem 7.4.3 (Progress). If ` t : T and t ⇓ ve , then ve 6= err.

Proof sketch. Similar to theorem 7.4.3, by induction on typing derivations.

Moreover, we can also state a hygiene theorem, which we phrase in terms of the absence of

shadowing, since hygiene is about unintended variable capture, and unintended variable

capture in a closed program normally manifests as the presence of shadowing:

Theorem 7.4.4 (Hygiene). If ` t : T and ` t →dt ′e then t ′ contains no variable shadowing.

Proof. Left as an exercise for the reader.

7.4.4 Straightforward Extensions

In this subsection, we present possible extensions to λ[α] which are left as future work.

Lexical scoping

As mentioned before, lexically-scoped cross-quotation references using plain names are

currently disallowed by λ[α] but can be implemented in a straightforward way using first-class

variable symbols, like it is done in Squid. An extension to λ[α] could apply an elaboration

phase to rewrite programs which make use of cross-quotation references into programs using

fresh variable symbols, which can be done with a simple, local transformation.

190

7.5. Implementation in Squid

Imperative Effects

To better mirror the capabilities of Squid, we could add imperative features to λ[α] such as

mutable references. We expect this change to be straightforward and unproblematic; effects

caused problems in work such as the original MetaML because the meaning of identifiers in

program fragments was derived from the lexical scoping of the quotes — i.e., code values could

not safely leave their scopes at runtime — and mutable references as well as exceptions could

be used to violate this lexical scoping (pulling values out into the heap). However, various

works have since shown [Kiselyov et al., 2016, Kameyama et al., 2015, Rhiger, 2012a] that

properly reflecting scope dependencies inside the types of program fragments was sufficient

to solve the problem.

Type-Parametric Matching

As seen in Sections 1.3.4 and again in 6.2.2, Squid has the ability to define patterns which

extract type representations, in addition to subterms. Extending λ[α] with this functionality

would require the extension of the type language to allow bT c and dT e, and in order to prevent

mixing up distinct extracted types we would need a mechanism to prevent extracted types

from “escaping” the pattern matching branch in which they are available. The use of this

extension would look as in the example below:

d(λx : Int. x +1) 42e match d(bxc : bT c→ Int) byce ⇒ dbxc byc+bxc byce else d0e

Naturally, this feature would have to come with the GADT reasoning capabilities necessary to

make type-parametric pattern matching on code values practically useful (see Section 1.3.12

and Appendix A).

7.5 Implementation in Squid

Here we quickly describe some aspects of the new scope-polymorphic system of λ[α] as

implemented in Squid.

Hygiene and affinity

Since Squid is merely a macro library embedded in Scala, we have no easy way of enforcing

the affine typing of variable symbols, which is required for full hygiene. Therefore, for now

Squid users have to rely on discipline to stay out of trouble.

However, we have not found this to be a problem. The usual recommendation is to use cross-

quotation references when possible (which hide the symbol handling as an implementation

detail) and to keep bindings extracted from patterns local (as opposed to, e.g., leaking them

into some wider scope and reusing them several times).

191

Chapter 7. Hygienic Scope Polymorphism

Interaction with plain names

In order to prevent the paradoxes of using plain names together with context polymorphism

(see Section 7.1), Squid macros reject the handling of code which mixes plain names and

abstract context, similarly to λ[α]. For instance, Squid will reject the program code''(x:

Int) => $b'' if b ha type C { x: Int }, which contains a plain name, but it will allow that

expression if b ha type { x: Int }, which does not contain an abstract context component.

Integration with non-contextual metaprogramming

Maintaining precise context information throughout metaprograms can prove to be a hin-

drance, especially when the metaprograms do not perform very advanced or tricky transfor-

mations. We have found that some users of Squid prefer to avoid the use of contextual types,

and would rather program against the simpler non-contextual metaprogramming interface

introduced in Chapter 1.

Thankfully, it is easy to use contextual Squid in this non-contextual way: one simply has to

use a type synonym type Code[+T] = squid.Code[T, Nothing], where Nothing is the bottom of

Scala’s subtyping lattice, meaning that Code[T] refers to code values in arbitrary contexts which

can never be satisfied. Naturally, one cannot run such a Code[T] value, but Squid provides a

tryClose method on code values with the following signature:

type Code[+T, -C] {

def tryClose: Option[Code[T, {}]]

...

}

This method allows context-averse metaprogrammers to dynamically check that a Code[T]

program fragment is closed, and to evaluate it as a result, as in:

myProgram // type: Code[Int]

.tryClose // type: Option[squid.Code[Int, {}]]

.getOrElse(throw new Exception(''oops'')) // type: squid.Code[Int, {}]

.run // type: Int

We have found that first-class variable symbols also work well in non-contextual usages of

Squid. Users can extract, insert, and match symbol usages even when they have chosen not to

track contexts. Naturally, this is less hygienic than when contexts are tracked, since we cannot

statically make sure that a matched variable occurrence really is supposed to be visible at the

site where a pattern matches it. To nevertheless allow these uses, Squid has a special case

where it allows matching any symbol occurrences when the context of the scrutinee is the

bottom context Nothing.

192

7.6. Example Applications

7.6 Example Applications

We now see three application examples of programming with first-class variable symbols and

context polymorphism in Squid.

7.6.1 Bindings reversal

To demonstrate the versatility of our approach, let us see how one would traverse a block

of code, matching the variable bindings in that block, and then reverse the order of all the

bindings which were traversed. Note that this is not always possible, since some earlier

bindings might depend on later ones.

Assuming reverseBindingsOrder as the name of the function, and assuming that it returns an

option (returning None if the transformation is not possible), example uses would be:

reverseBindingsOrder(

code''val a = 1; val b = 2; val c = 3; a + b + c''

) == Some(code''val c = 3; val b = 2; val a = 1; a + b + c'')

reverseBindingsOrder(

code''val a = 1; val b = a; val c = 3; a + b + c''

) == None

This is possible to express thanks to Scala’s advanced path-dependent type system. In the

metaprogram below, we again use first-class polymorphic functions (a feature of the upcoming

Scala 3), to simplify the presentation:

def reverseBindingsOrder[T, C](p: Code[T, C]): Option[Code[T, C]] = {

def go[T, C](p: Code[T, C], k: [A, B] => Code[A, B & C] => Code[A, B & C])

: Option[Code[T, C]]

= p match {

case code''val $v: Int = $init; $body'' =>

go(body, [S, D] =>

(cde: Code[S, D & C & v.C]) =>

code''val $v = $init; ${ k[S, D & v.C](cde) }''

).flatMap(b => v.tryClose(b))

case expr => Some(k(expr))

}

go(p, [A, B] => identity)

}

193

Chapter 7. Hygienic Scope Polymorphism

7.6.2 Encoding Cross-Stage Persistence for a Staged Database

Another interesting use case which demonstrates the flexibility of path-dependent metapro-

gramming with Variable, we consider the use case of encoding substitution contexts manually:

the goal is to allow the manipulation of bundles called Assignments, which are made of: 1. a

program fragment which may contain an arbitrary number of free variables, and 2. a mapping

from each of these free variables to an actual value to be used in its place. We make these

Assignment bundles useful by making them able to runtime-compile the program fragment

they enclose, using their value mapping to provide values for each free variable.

We give the definition of Assignment and its helper function assign below:

trait Assignment[+Ctx] {

self => // 'self' is used to refer to the current instance of Assignment

// Abstract members:

type Abs[T]

def abs[T, C](pgrm: Code[T, C & Ctx]): Code[Abs[T], C]

def applyAbs[T](f: Abs[T]): T

// Concrete members:

def compile[T](pgrm: Code[T, Ctx]): T = applyAbs(abs(pgrm).compile)

def & [D] (that: Assignment[D]) = new Assignment[Ctx & D] {

type Abs[T] = self.Abs[that.Abs[T]]

def abs[T, E](pgrm: Code[T, Ctx & E]) = {

val a = that.abs[T, Ctx & E](pgrm)

self.abs[that.Abs[T], E](a)

}

def applyAbs[T](f: Abs[T]): T = that.applyAbs(self.applyAbs(f))

}

}

def assign[Ty](v: Variable[Ty], x: Ty) = new Assignment[v.C] {

type Abs[T] = Ty => T

def abs[T, C](pgrm: Code[T, C & v.C]) = code''$v => $pgrm''

def applyAbs[T](f: Abs[T]): T = f(x)

}

Each instance of Assignment[Ctx] is associated with an abstract type constructor Abs[T] which

represents the type of arbitrary code T after having been wrapped inside the lambdas necessary

to abstract away context Ctx. For example, given two variables v0: Variable[Int] and v1:

Variable[Double], for assignment assign(v0, 0) we get Abs[T] = Int => T and for composite

assignment assign(v0, 0) & assign(v1, 1.0), we get Abs[T] = Int => Double => T. Methods abs

and applyAbs allow us to go back and forth between plain and abstracted forms, and method

194

7.6. Example Applications

compile uses these to compile and then evaluate a piece of code within a context where each

variable of Ctx is associated with its assigned value.

Query compilers like the one we saw in Section 6.5 do not exist in a vacuum. At the time a

new query is sent to a database system, the runtime data structures representing the various

database tables may already be loaded in memory. In order for the compiled query program

to access this data, we need a way to make the generated code, which lives in the next stage,

refer to data that lives in the current stage.

For example, if the data of some Person(Name, Age) table is stored in an ArrayBuffer[(String,

Int)] named arr at runtime, the code for a query that scans this table needs a way to refer to

that arr so that when it is evaluated, it can access the stored data. In multi-stage programming,

this is traditionally solved using cross-stage persistence (CSP). However, here we demonstrate

that thanks to Squid’s advanced capabilities to handle non-lexically-scoped open code and to

abstract over variable symbols (see Section 7.4.1), we can avoid the use of CSP altogether. To

do this, we make use of the Assignment data type described above.

In the following example, we define a Table data type that stores an ArrayBuffer of runtime

values and provides a scan program fragment that performs an iteration on that data. Using

this, we construct a program which prints the Cartesian product of two tables t0 and t1, and

then we compile/evaluate that program at runtime:

class Table(arr: ArrayBuffer[Int]) {

val arrV = Variable[ArrayBuffer[Int]]

val asnt = assign(arrV, arr)

val scan = code''(k: Int => Unit) => $arrV.foreach(k)''

}

val t0 = new Table(ArrayBuffer(1, 2, 3))

val t1 = new Table(ArrayBuffer(4, 5, 6))

(t0.asnt & t1.asnt).compile(

code''${t0.scan} { x0 => ${t1.scan} { x1 => println((x0, x1)) }}'')

// ^ modulo runtime compilation and some normalization steps by the IR,

// the expression above is equivalent to:

t0.arr.foreach { x0 => t1.arr.foreach { x1 => println((x0, x1)) } }

The program above prints the tuples (1,4), (1,5), (1,6), (2,4), etc.

7.6.3 A safer take on flatMap streamlining

We now revisit the flatMap streamlining problem we saw in Section 5.7 in the context of stream

fusion: we needed to analyze the argument in calls to the stream flatMap function, in order to

separate the main lambda abstraction passed from its captured enclosing state, so that we

195

Chapter 7. Hygienic Scope Polymorphism

could make that state “resettable” by turning every bound value into a bound mutable variable

that could be reset to its initial value at will. To achieve this, we had to resort in Figure 5.3

to using an unsafe scope extrusion mechanism that, when misused, could create unbound

variable errors at runtime (the open function).

We now see a safer algorithm which achieves the same goal. This algorithm is a simplification

of that of Figure 5.3 and does not handle as many cases.

The function below takes a program made of let bindings followed by one lambda abstraction,

and turns that into a program which returns a tuple made of one lambda abstraction with

the same semantics, along with an effectful thunk that, when executed, resets the state of that

lambda. To simplify the handling of mutable variables, we assume the use a MutRef data type8

with the usual !r and r := v operations for getting and setting the value, respectively.

def rec[T, C](p: Code[T,C], reset: Code[Unit,C])

: Option[Code[(T, () => Unit), C]]

= p match {

case code''val $x: $xt = $xv; $body''

=> val v = Variable[MutRef[xt.T]]

val newBody = x.substitute(body, code''!$v'')

rec(newBody, code''$reset; $v := $xv'') match {

case Some(r) =>

Some(code''val $v = MutRef($xv); $r'')

case None => None

}

case code''($a: $ta) => $body''

=> Some(code''(($a => $body): T, () => $reset)'')

case _ => None

}

The rec function recursively analyses the program’s binding structure, wrapping each bound

value into a MutRef, and accumulating a reset expression representing how to reset these

references. Notice how we are able to recursively call rec on newBody, which has type Code[T, C

& v.C], thanks to our approach to hygienic context polymorphism.

As an example usage, consider the following invocation:

rec(

code''val x = readInt; val y = MutRef(x); (a: Int) => {y := !y + 1; a + !y}'',

code''()''

)

→ Some(code''''''

val x_0 = MutRef(readInt)

8In fact, Squid transparently encodes mutable local variables as immutable local variables which use the MutRef
data type.

196

7.7. Related Work

val x_1 = MutRef(MutRef(!x_0))

(

(a_1: Int) => {

!x_1 := !(!x_1) + 1

a_1 + !(!x_1)

},

() => {

()

x_0 := readInt

x_1 := MutRef(!x_0)

}

)

'''''')

7.7 Related Work

We now review some related work.

Context polymorphism and scope safety

Context polymorphism (or scope polymorphism) in a contextual type system, also called sup-

port polymorphism, has already been investigated by several authors, such as e.g., Nanevski

[2002], Kameyama et al. [2015], and Kim et al. [2006]. These systems have offered various

different properties, but to the best of our knowledge none has proposed analytic metapro-

gramming with hygienic non-lexically-scoped open code manipulation.

If we ignore the analytic capabilities and non-lexical scoping, our system with first-class

variables symbols and context polymorphism is very similar to the refined environment

classifiers approach of Kiselyov et al. [2016].

Hygienic binding manipulation in metaprogramming

FreshML [Shinwell et al., 2003] is an extension of ML specifically designed to soundly ma-

nipulate variable bindings in metaprograms. FreshML has been an influential approach to

dealing with bindings, in the context of user-defined abstract syntax trees. It uses first-class

representations of names, which are passed around and can participate in the definition of

functions like substitution, all the while making sure that hygiene is respected.

The first-class representation of names in FreshML has some similarities with our first-class

representation of bindings; however, there is a major difference: in FreshML, the actual values

of these representations do not appear in types, and thus types cannot express dependencies

upon them. FreshML enforces hygiene via runtime mechanisms, but does nothing to prevent

197

Chapter 7. Hygienic Scope Polymorphism

scope extrusion. This is in contrast with our dependent system, which keeps track of specific

variable representations in the type system, and statically prevents scope extrusion.

The Cαml system by Pottier [2006] is an implementation of FreshML for OCaml. Pure FreshML

[Pottier, 2007] is another version of FreshML which uses a “static discipline” for enforcing

purity in FreshML metaprograms, meaning that name generation is not an observable effect.

To achieve this, Pure FreshML uses a Hoare-style logic and an external (not part of the type

system) fully-automated decision procedure. As presented, Pure FreshML does not support

first-class functions or mutable state.

De Bruijn indices, as used by, e.g., Chen and Xi [2005] and many others, are an ad-hoc way to

hard-code scope safety in the type system of a host language. Even though they can be used to

enforce type safety, they are also patently unhygienic [Kiselyov et al., 2016].

Internal representation of bindings

Squid uses a scheme similar to the locally named representation [McKinna and Pollack, 1993].

This scheme consists in using different syntactic constructs to distinguish free variables from

bound variables, so that they can never be confused. α equivalence between terms could be

implemented more efficiently in Squid (it is currently done by checking mutual extraction)

if we used either a canonical locally named representation [Pollack et al., 2012] or a locally

nameless representation [McBride and McKinna, 2004, Charguéraud, 2012], but both have

drawbacks in the context of metaprogramming and DSL compilers design — they forget the

original names of variables, which are helpful when debugging.

Resource tracking in the type system

The problem of statically tracking the dependencies between different resources while prevent-

ing “leaks” can be found in many places in the programming languages literature. Tracking

the presence of free variables in terms through the type system is just one specific instance of

this more general problem.

In particular, there seems to be a lot of commonality between, on one hand, scope-safe

hygienic metaprogramming, and on the other hand, techniques which have been used to

enforce abstraction safety for algebraic effect handlers [Zhang and Myers, 2019, Biernacki

et al., 2019].

A particularly close system to ours is the Scala Effekt library, by Brachthäuser et al. [2020],

which coincidentally also uses contravariant type parameters holding intersections of abstract

type members, in order to guarantee effect safety.

198

8 Multi-Stage Programming in the Large
with Staged Classes

Despite its limitations (explored in Chapter 4), multi-stage programming (MSP) still holds

great promises. Indeed, it allows generating specialized partially-evaluated code reliably, with

the static guarantee that the generated code is well-typed and well-scoped. In principle, this

readily gives to high-level languages the means to produce implementations which execute as

fast as alternatives implementd in lower-level languages.

Yet, I argue that MSP has not reached its full potential yet, as it has been traditionally limited to

generating expressions, and has lacked principled facilities for generating modular programs

and data structures. In that sense, I argue that MSP has been reserved for programming “in the

small,” focused on generating efficient kernels of computation on the scale of single function

bodies, instead of complete applications.

In this chapter, I present a novel technique called staged classes, which extends MSP with the

ability to manipulate class definitions as first-class constructs in a type-safe way. This lets

programmers use MSP “in the large,” on the level of applications, rather than mere functions.

Using this technique, applications can be designed in an abstract and modular way without

runtime cost in the steady-state, as staged classes guarantee the removal of all staging-time

abstractions, resulting in the generation of efficient specialized modules and data structures.

In this chapter, we show that staged classes can be used for defining type- and scope-safe im-

plementations of type providers. Our main application example, a prototype staged relational

database system in Scala, is described in the next chapter.

8.1 Introduction

Multi-stage programming (MSP, or just staging) has been an intense subject of research

in the past two decades [Parreaux et al., 2017c,a, Scherr and Chiba, 2015, Kim et al., 2006,

Nanevski and Pfenning, 2005, Kameyama et al., 2015, Sheard et al., 1999, Taha and Nielsen,

2003, Kiselyov, 2017, Ofenbeck et al., 2013, DeVito et al., 2013, Carette et al., 2009, Taha and

199

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

Sheard, 1997, Taha, 1999, Ganz et al., 2001, Yallop and White, 2015, Rompf and Odersky, 2010,

Rompf, 2016, Scherr and Chiba, 2014, Rompf et al., 2013, Taha and Sheard, 2000, Jonnalagedda

and Stucki, 2015b, Oishi and Kameyama, 2017, Westbrook et al., 2010, Shaikhha et al., 2016].

This can be explained by the great promise that MSP offers: the ability to specialize or partially

evaluate programs in a type-safe and modular way, using the abstraction capabilities provided

by the general-purpose programming language itself.

This is in stark contrast with other common approaches to program specialization and gen-

eration, such as C++ templates. Indeed, templates rely on a relatively obscure and inflexible

untyped metalanguage that makes their use for metaprogramming unnecessarily challenging.

Yet, despite their obvious drawbacks, C++ templates have enjoyed a colossal success in indus-

try; they have come to underpin countless programs deployed in production, and to support

the backbones of many performance-sensitive software infrastructures, such as the C++ Stan-

dard Template Library [Josuttis, 2012] and Boost [Abrahams and Gurtovoy, 2004]. Meanwhile,

to the best of our knowledge, MSP has not seen much use outside of academia, with the

occasional exception of very specific and narrow application domains such as computational

kernels for heterogeneous systems [Sampson et al., 2017, Masliah et al., 2016, Haidl et al.,

2016].

In this chapter, we argue that one limitation that has been holding MSP back from more

widespread use is that it only tackles one part of the modularity problem. More specifically,

it provides tools for modularizing the program generation side of a metaprogram, but does

not provide tools for making the generated program itself modular. Indeed, traditional staging

only deals with generating expressions, which makes it great for generating highly-efficient

algorithmic kernels such as single database queries [Rompf and Amin, 2015b, Klonatos et al.,

2014], single parsers [Jonnalagedda et al., 2014], single stream processing pipelines [Kiselyov

et al., 2017, Jonnalagedda and Stucki, 2015b], individual linear algebra programs [Ofenbeck

et al., 2013, Sujeeth et al., 2011], etc. However, it usually provides no dedicated facilities for

generating data structure declarations and for sharing code across generated expressions and

usually has limited code sharing capabilities across separate function bodies.

While this may seem like an insignificant limitation (one would be tempted to ask: “who cares

about the modularity of the generated code?”), it turns out to have very concrete consequences

on real-world applications. First, it is not always practical to generate entire programs into

single expression. Generating reusable specialized components can be of central importance

for keeping code sizes in check and making compilation times manageable. MSP leads to

always inlining implementations, but inlining does not always improve runtime performance

and can be counter-productive, so there should be mechanisms to control it. Second, in certain

scenarios, such as the generation of specialized high-performance library code for humans to

use, the modularity and reusability of the generated code is an important requirement.

So far, this limitation was typically tackled by pragmatic MSP approaches [Rompf and Odersky,

2010, Ofenbeck et al., 2013, Shaikhha et al., 2016] in ways that do not integrate well with

200

8.1. Introduction

the rest of the MSP philosophy. Indeed, these approaches typically do not provide strong

compile-time guarantees about the generated code, nor are they expressed in a high-level

modular way. This is because the facilities provided by the MSP frameworks they rely on are

essentially geared towards composing expressions, not definitions — so in order to generate

modules, classes, and data structures, one often has to resort to ad-hoc string-based program

generation.

To solve this shortcoming, we introduce staged classes, a new statically-typed abstraction that

extends MSP by enabling the manipulation of object-oriented class definitions, while ensuring

that the generated code is well-typed and well-scoped, in line with traditional MSP. We say

that this approach enables full modularity, which we define as the property of a program

generation system that allows both the program generation code and the generated code to be

modular and shared. We argue that this “unleashes” the potential of MSP, making it a practical

tool for structuring program generation in the large, at the scale of real-world applications. As

a first step towards supporting this claim, we will detail the design of a fully-modular relational

database management system prototype in Scala, using the Squid MSP system [Parreaux et al.,

2017c] extended with staged classes.

We advocate two main usage modes for staged classes:

• As a way of defining generic libraries that do not pay for their genericity: individual users

will specify the specializations that they are interested in, and will use the generated

classes directly (for example, see the Vector class).

• As a way of taking MSP to the next level: we argue that allowing the generation of

type and module declarations containing mutually-recursive methods is a big step

forward that enables new usages of MSP “in the large,” as we will demonstrate with a

real-world-inspired use case in the next chapter (Chapter 9).

To give an early intuition about staged classes, consider the following class (in Scala) which

defines three mutable fields of type Float, all initialized to the value 0.0f:

class Vector3 { var x0, x1, x2: Float = 0.0f }

We can represent that class as a staged class as follows. A staged class is an instance of class

squid.Class (not to be confused with the standard java.lang.Class type), where fields are

defined using a varField “virtualized construct” [Moors et al., 2012].

val Vector3 = new Class { val x0 ,x1 ,x2 = varField[Float](code''0.0f'') }

Moreover, notice that we are now passing the initial field value inside a code quotation. This

is because this is code destined to live in the “next stage,” i.e., in the resulting generated

program. Given some term t of type T in context C, then code''t'', which has type Code[T,C], is

a first-class representation of term t that can be manipulated at run time.

201

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

The main advantage we gain from using staged class representations is the ability to program-

matically abstract over different shapes of classes at no runtime cost. For example, consider

the following generalization of Vector3, which is defined for arbitrary arity and component

types:1

class Vector[T](n: Int, init: Code[T,{}]) extends Class {

val xs = List.fill(n)(varField[T](init)) }

This is a staged class that abstracts over a family of related vector classes; the parameters

T, n and init of this class are staging-time abstractions, and will disappear in the generated

concrete classes. In particular, new Vector[Float](3, code''0.0f'') represents a class that is

equivalent to the original, unstaged Vector3 class presented above.

8.2 Presentation of Staged Classes

In this section, we present staged classes and the Scala type system features they rely on. We do

this through a progressive exploration of the design of a generic vectors library that abstracts

over method implementations (Section 8.2.4), vector arity (Section 8.2.5), and element types

(Section 8.2.6).

8.2.1 Classes in Scala

Consider the following Scala class, which represents a vector of three immutable floating-point

coordinates:

class Vector3(val x0: Float, val x1: Float, val x2: Float) {

val sum = x0 + x1 + x2

def prod(v: Vector3): Float =

(x0 * v.x0) + (x1 * v.x1) + (x2 * v.x2)

def equals(v: Vector3): Boolean =

(x0 == v.x0) && (x1 == v.x1) && (x2 == v.x2)

}

Several properties are hard-coded into this definition: the arity of the vector (it has three ele-

ments); the type of the elements; and also the runtime representation of instances of that class

in memory — for example, the Java Virtual Machine currently dictates that an Array[Vector3]

will be represented as an array of pointers to heap-allocated Vector3 objects. None of these

hard-wired properties can be generalized easily without losing either performance or mod-

ularity (or both). First, making a Vector class that is generic in arity or element type would

incur copious amounts of boxing and indirection (due to the uniform representation principle

of most high-level language runtimes). Second, leveraging more efficient memory represen-

tations, such as using three arrays of unboxed floating-point numbers to represent arrays of

1 Function List.fill(n)(v) creates a list of n elements initialized to v.

202

8.2. Presentation of Staged Classes

vector instances (the so-called columnar representation), would force us to forgo the nicely

encapsulated vector abstraction, making users have to deal with coordinates directly.

Moreover, consider the patent code duplication between the implementations of prod and

equals. These two methods basically pair the elements of two instances using some operation

(* and ==, respectively) and then reduce the results with another operation (+ and &&). Consider

that in a real vector class, many other methods will share a similar structure, resulting in

copious logic duplication. We could easily avoid such repetition by defining a fold operation,

so that prod can be expressed as fold(_ * _, _ + _) and equals as fold(_ == _, _ && _).2

However, doing so would significantly degrade the overall performance, due to the use of

higher-order functions, with no guarantees that the compiler would be able to remove these

additional abstractions.

The result is that in practice, programmers who care about performance often have to resort to

low-level and specialized implementations, which hampers modularity and incurs significant

amounts of boilerplate and repeated code.

8.2.2 The Vector Class, Staged

The first step towards a solution to the problem laid out above is to represent our Vector3 class

as a staged class:

object Vector3 extends Class {

val x0, x1, x2 = param[Float]

val sum = field(code''$x0 + $x1 + $x2'')

val prod = method(

code''(v:Self) => ($x0 * v.$x0) + ($x1 * v.$x1) + ($x2 * v.$x2)'')

val equals = method(

code''(v: Self) => ($x0 == v.$x0) && ($x1 == v.$x1) && ($x2 == v.$x2)'')

}

In Scala, object is used to define a singleton class instance. We instantiate the abstract class

Class, which is used to represent “first-class” class representations. The field and method

methods of Class are used to create members of the class being defined. Crucially, as the

body of these methods, we use program fragments, which are quoted inside code quasiquotes.

These represent code values that can be composed and inspected at run time. The dollar

sign is used to escape quasiquotes and plug in some code fragments defined outside. In this

example, we plug in the first-class field representations of the class. Finally, in the methods

taking as a parameter an instance of the class being defined, we use the Self type, which refers

to the current class. Self is an abstract type member (a type member whose definition is not

exposed) defined in the Class supertype.

2 ‘(_ + _)’ is shorthand for the lambda expression ‘(x,y) => x + y.’

203

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

Remark that our vector class is now an object (an instance of class Class), and the members of

the class are now immutable fields of that object. The quoted code sections represent program

fragments that will be composed together into the final generated program. Importantly, all

code in black is code that only participates in the code generation process, and will not appear

in the end program.

Generating the code. Finally, we can stringify the class represented by this Class instance by

calling Vector3.showCode. The class thereby generated corresponds precisely to the Vector3

class we showed at the beginning of this section. So, why go through the trouble of staging

classes? The essential insight is that we are now free to generalize such class representations,

and to introduce as much abstraction as we want on top of them: so long as these new

abstractions are not part of the quoted program fragments (i.e., so long as they appear in

black), they are guaranteed to be eliminated from the end program, so they will not incur

runtime overhead.

Implicit naming of definitions. We claimed that the class generated for the staged Vector3

object was identical to that of the original non-staged Vector3 class. But how could that be,

when we never specified the names of the class and of its fields, in our code? The trick is

that the Class and param constructors (and many other staged class constructs) take implicit

arguments, including a name argument that is resolved by default as the name of the enclosing

definition.3 This way, a definition such as ‘object C extends Class’ is in fact equivalent

to ‘object C extends Class(name = ''C'')’, and val f = field(v) is equivalent to val f =

field(v)(name = ''f'').

Explicit Constructs vs Quasiquotation. The attentive reader will realize that the staged class

infrastructure described here seems like a departure from the quotation-based approach we

have so far favored in Squid. This naturally raises the question: why not use quasiquotes for

classes, too?

One reason we prefer explicit constructs for staged classes is that staged class definitions

typically contain lots of current-staged code and definitions also using the scope of the staged

class for their own encapsulation. Moreover, we found that quotation did not lend itself well

to field and method generation patterns based on side effects; as will become clear in the rest

of this chapter, practical staged class applications make extensive use of such capabilities.

8.2.3 Staged Class Instantiation

While it is easy to instantiate a staged class after its code has been stringified and dumped

into a source file, it is not as straightforward to instantiate a class at staging time, while the

class is still represented as a run-time instance of Class. This is because we do not always

3 For this functionality, we use the macro-based sourcecode library, available at https://github.com/lihaoyi/
sourcecode. An alternative is to modify the Scala compiler to support the feature natively, as done, for instance, by
Scala Virtualized [Moors et al., 2012].

204

https://github.com/lihaoyi/sourcecode
https://github.com/lihaoyi/sourcecode

8.2. Presentation of Staged Classes

know statically the number and/or types of parameters (as with the Vector class of generalized

arity in the next section). It would be unsafe to allow unchecked constructor calls, such as

code''new $Vector3(1,2)'' — in this particular case, there would be too few arguments for

Vector3; we would generate new Vector3(1,2), which would not type check.

The most straightforward way of making a staged class instantiable at staging time is to

associate it with an “official” factory method. This is done by extending FactoryClass[T]

instead of Class, where T is the type of the argument that the factory will accept. The only

difference between Class and FactoryClass is that parameters in staged classes extending

FactoryClass need to be given an initial value, which can be computed from the factoryArg

code value available from FactoryClass, which represents the factory argument.

For example, here is how we could have associated a Vector3 staged class with a factory taking

as a parameter a Float value to initialize the vector’s fields:

object Vector3 extends FactoryClass[Float] {

val x, y, z = param[Float](factoryArg) }

The code above will generate a method apply inside an object generated alongside the class

having the same name as the class itself (in Scala, this is called a companion object; it replaces

static members). Vector3.showCode now outputs:

class Vector3(val x: Float, val y: Float, val z: Float)

object Vector3{ def apply(arg: Float) = new Vector3(arg,arg,arg) }

A reference to this apply method is provided by FactoryClass as ‘make’, of type Code[T =>

Self, {}] (here, Code[Float => Vector3.Self, {}]). We can use it as follows:

val r: Code[Vector3.Self, {}] = code''${Vector3.make}(0.5)''

// which at run time evaluates to:

r == code''new Vector3(0.5, 0.5, 0.5)''

A common pattern for classes with a known, static set of fields is to use a tuple as the factory

parameter. For example, when defining a staged Person class whose parameters name and age

are known in advance, we can write (using methods tuple._1 and tuple._2 to access the tuple

components):

object Person extends FactoryClass[(String, Int)] {

val name = param(code''$factoryArg._1'') // has type Param[String]

val age = param(code''$factoryArg._2'') // has type Param[Int]

Finally, note that in this example, all intermediate tuples will be eliminated automatically by

Squid, similarly to how squid eliminates β-redexes aggressively; for example:

Person(code''(Console.readLine, Console.readInt)'')

205

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

// will evaluate to:

code''val arg = (Console.readLine, Console.readInt);

new Person(arg._1, arg._2)''

// which will immediately reduce to:

code''new Person(Console.readLine, Console.readInt)''

8.2.4 Generative Programming to Avoid Repetition

For example, here is how we could define the generic fold function we alluded to earlier, in

order to factor the common structure in the add and equals methods:

type F = Float; type B = Boolean // for conciseness

def fold[C](map: Code[(F,F) => F, C], red: Code[(F,F) => F, C]) =

code''(v:Self) => $red($red($map($x0, v.$x0), $map($x1, v.$x1)), $map($x2,

v.$x2))''

// This allows us to define:

val prod = method(

fold(code''(_: F) * (_: F)'', code''(_: F) + (_: F)''))

val equals = method(

fold(code''(_: F) == (_: F)'', code''(_: B) && (_: B)''))

Notice that fold is a current-stage method definition; as such, it will not be part of the gener-

ated program — we solely use it to generate the bodies of the prod and equals methods, which,

after a step of β reduction (inlining function values, guaranteed by our staging framework),

will be exactly the same as in the original definition. Here we have modularized our code, and

yet we have incurred no extra overhead as the generated class is still precisely the same as

Vector3.

8.2.5 Generalizing the Vector Arity

To generalize the arity of our staged vector class, we parameterize our Class instances with

some staging-time integer representing the arity, and we programmatically generate a list of

corresponding class parameters:

class Vector(n: Int) extends Class { // class, not object anymore

// ...

We use List.tabulate(n)(f) to generate a list of n elements, defined in terms of their index

idx. We pass explicit name arguments to mirror the naming convention of Vector3:4

4 Note that the framework will automatically rename any field whose name clashes with an existing field. As a
consequence, if we had not provided an explicit ‘name = ''x'' + idx’ here, the fields would all implicitly receive
the name xs of the nearest enclosing definition, but we would end up with actual field names xs, xs_1, xs_2, etc.

206

8.2. Presentation of Staged Classes

val xs = List.tabulate(n)(idx => param[Float](name = ''x'' + idx))

Next, we use the reduce function defined on Scala Lists to create a program fragment that rep-

resents the sum of all elements of the current vector, and we assign the result to the usual sum

field. For example, for xs = List(x,y,z), we end up generating val sum = field(code''$x+

$y+ $z'').

val sum = field(

xs.reduce[Code[Float,Ctx]]((lhs,rhs) => code''$lhs + $rhs''))

Note that value xs has type List[Param[Float]], but we want to reduce to a Code type; thank-

fully type this.Param[Float] is a subtype of Code[Float,this.Ctx] (where Ctx is the phantom

type corresponding to the class’ scope); we provided an explicit type argument to reduce to

help type inference.

The generation of our element-fold implementation follows a similar logic, applying map on

the List of elements first, and then reduce, using the provided functions m and r:

def fold[C](m: Code[(F,F) => F,C], r: Code[(F,F) => F,C]) =

code''(v:Self) => ${

xs.map(x => code''$m($x, v.$x)'')

.reduce((lhs,rhs) => code''$r($lhs, $rhs)'') }''

Finally, the implementations of prod and equals remain unchanged. For illustration purposes,

the class generated by calling new Vector(2)(name = ''V2'').showCode is:

class V2(val x0: Float, val x1: Float) {

val sum = x0 + x1

def prod (v: V2): Float = (x0 * v.x0) + (x1 * v.x1)

def equals(v: V2): Boolean = (x0 == v.x0) && (x1 == v.x1)

}

8.2.6 Generalizing the Element Type

Preamble: Type Classes. As the last generalization step for our vector class, let us consider

how to make a generic Vector that can accept different element types. First, the question is

how to abstract over the addition and multiplication that are performed on Float values in

our original class. The idiomatic way to do that in Scala is to use a type class [Oliveira et al.,

2010]. We will use the Numeric type class, which is defined as:

class Numeric[N] {

def plus(lhs: N, rhs: N): N

def times(lhs: N, rhs: N): N

...

/* and other methods */

207

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

}

object Numeric {

implicit val ForFloat: Numeric[Float] = ...

...

}

The Scala implicit resolution mechanism, which happens during type checking, is responsible

for finding appropriate instances of this class. Instances can be provided by users as well as

by Scala’s standard library in the Numeric companion object. If an implicit Numeric[Float] is

required, Scala automatically synthesizes a reference to Numeric.ForFloat.

Type Class Lifting. In order to use this type class for type N in quoted code, we need an instance

of Code[Numeric[N],{}]. Thankfully, Squid provides an implicit macro that automatically lifts

implicit instances. For example, if an implicit Code[Numeric[Float],{}] is required, the Scala

type checker will synthesize code''Numeric.ForFloat'' for us.

Generic Vector. With all this out of the way, we generalize the element type of our Vector class

as shown below, where objectField is used to create a field in the companion object:5

class Vector[N](n: Int)

(implicit ty: CodeType[N], numCode: Code[Numeric[N], {}])

extends Class {

val num = objectField(numCode)

val params = List.tabulate(n)(i => param[N](name = ''x'' + i))

val sum = method(

xs.reduce[Code[N, Ctx]]((lhs, rhs) => code''$num.plus($lhs, $rhs)''))

def fold, equals ... // fold and equals are unchanged!

val prod = method(

fold(code''$num.times(_,_)'', code''$num.plus(_,_)''))

}

The ty: CodeType[N] implicit value is required by Squid to manipulate code values of generic

type N, as explained in Section 1.3.3.

Note: we did not have to change the definition of equals because it relies on the JVM equals

method, which is available on all types (it’s not based on a type class). Relying on JVM equals

is idiomatic in Scala code — for instance, the collections of the standard library also do it.

Implicit Type Class Operations. In the code above, we have to call methods form the Numeric

type class explicitly, as in code''$numCode.plus(a, b)'' instead of code''a + b''. this is because

there is no Numeric[N] implicit in scope to provide the usual Numeric syntax helpers — we only

5A Scala class may be accompanied by an object definition with the same name as the class, called the compan-
ion object, which can hold its own fields and methods. Companion object members serve the same role as static
class members in more traditional object-oriented programming languages like Java and C#.

208

8.2. Presentation of Staged Classes

have a Code[Numeric[N], {}] in scope; a Numeric[N] implicit is needed to enable the shorthand

syntax.

Thankfully, Squid provides a way to remedy this. Given a code value cde of type Code[T, C] or

Field[T], one can import cde.unliftedImplicit, which is brings an implicit T in scope that

can only be used within quasiquotes. This way, we can rewrite the Vector example using

shorthand Numeric syntax, as in:

class Vector[N](n: Int) ... extends Class {

...

import num.unliftedImplicit

val sum = method(

xs.reduce[Code[N, Ctx]]((lhs, rhs) => code''$lhs + $rhs''))

val prod = method(

fold(code''_ * _'', code''_ + _''))

...

}

Generated Code. Instantiating the staged class above and inspecting the code it generates

can be done by calling new Vector[Int](3)(name = ''IntVector3'').showCode, which produces

code equivalent to:

object IntVector3 {

val num = Num.ForInt

}

import IntVector3.num

class IntVector3(val x0: Int, val x1: Int, val x2: Int) {

def sum = num.plus(num.plus(x0, x1), x2)

// etc.

}

Since the element type is no longer generic, the element values are not boxed at runtime,

which typically translates to important performance gains. Although Numeric[N] methods

like plus are declared, in the Numeric interface, to take arguments of a generic type N, the

actual Num.ForInt instance takes plain Int values (the Scala compiler generates “bridges” for

such instances to still implement the generic Numeric’s methods); therefore, num method calls

performed directly on Num.ForInt use plain Int values, without any boxing.

8.2.7 Direct and Staged Inheritance

Staged classes can extend existing non-staged classes or interfaces. This is done by mixing in

[Odersky and Zenger, 2005] the Implements[T] trait (a trait defined by Squid for this purpose),

where T is the type of all the interfaces to be implemented, for example: ‘object MyClass

extends Class with Implements[MyInterface1 with MyInterface2 with ...]’.

209

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

The Implements[T] mixin refines the type of Self, making it a subtype of T, so that we can use

the class accordingly. We use a macro to check at compile time that all the fields and methods

required by the interfaces mentioned in T are provided with compatible types in the staged

class. Naturally, dynamically-generated fields with names that are not constant string literals

will not be accounted for in the check.

For future work, we are considering the possibility of letting staged classes inherit from

other staged classes. However, we have not yet felt the need for such feature. This is likely

because other ways of modularizing a staged class implementation are readily available and

are sufficiently convenient, by the very nature of staged classes.

8.2.8 Staged Class Caching

In order to avoid code duplication, Squid provides a caching mechanism so that a staged class

instantiated with the same staged parameters twice will only generate a single, shared class.

To leverage this feature, users have to annotate their cached classes with the ‘cached’ macro

annotation:

@cached class Example[A: CodeType](n: Int) extends Class { ... }

Where [A: CodeType] is a shorthand for [A](implicit _: CodeType[A]). The example above

will generate, at compile time, a ‘cached’ method in the companion object:

// expansion of @cached macro:

class Example[A: CodeType](n: Int) extends Class { ... }

object Example {

private val cache: Map[(Int,CodeType[_]), Example[_]] = Map.empty

def cached[A](n: Int)(implicit _0: CodeType[A]) =

cache.getOrElseUpdate((n,_0),

new Example[A](n)(_0)).asInstanceOf[Example[A]]

}

Cached classes behave similarly to C++ templates, in terms of generated code modularity, as

instantiations are shared.

8.2.9 Generic Methods

Staged classes offer two ways of defining generic methods:

• in a staged way, so that the method will be specialized (or monomorphized) at program-

generation time — this is done by making the staged method itself a method; or

• by generating a generic method — the syntax for this alternative is with a prefixed type

parameter list in the body of the method, as in ‘method(code''[T] ...'')’.

210

8.3. Use Case: Typed Type Providers

Importantly, the cached annotation described above also works with staged methods (the first

kind of methods defined above), so that they also behave like C++ templates. For example, the

following method:

@cached def foo[A:CodeType](n:Code[Int,{}]): Method[A=>List[A]] =

method(code''(a: A) => List.fill($n)(a)'')

generates a unique specialization for each unique pair of type A and value n that is passed to it.

8.2.10 Putting It All Together

Figure 8.1 shows the API of staged classes. It exposes some abstract types, such as Field[T],

which are types whose implementations are private to the staged class framework. These

types can only be used through the staged class API, and through an extension made to Squid’s

quasiquotation system, which allows users to write expressions like code''x.$f'' where x has

type cls.Self and f is a field belonging to the staged class cls. The Ctx and Self abstract

types are phantom types, in the sense that they are not used in the underlying implemen-

tation of staged classes, and merely serve to enforce static safety on the user’s side. Notice

how Implements[T] refines the type of Self, to mirror the fact that the class implements the

interfaces in T, which can be used to type-check quasiquotes accordingly. The member-

construction methods take by-name parameters (indicated with a leading => as in ‘body: =>

Code[T, Ctx]’), which is used to delay their evaluation in order to allow mutually-recursive

references to exist between methods, fields, and classes.

Since staged classes are built on top of the Squid framework [Parreaux et al., 2017c], we directly

reuse Squid’s machinery to achieve:

Type safety, which relies on Squid’s type system extension.

Scope safety, via the Ctx type (remember that each ClassLike instance cls has a distinct type

cls.Ctx, which prevents mixing up code fragments between different classes).

Cross-stage persistence for runtime compilation (see Chapter 9).

As a result, most type and scope errors in staged class metaprograms are caught at compile

time, in the form of Squid errors or normal Scala type mismatches.

8.3 Use Case: Typed Type Providers

Sometimes, programmers want to avoid having to write repetitive and error-prone type

definitions; yet, they are not necessarily willing to pay for the run-time overhead of approaches

that abstract over runtime type representations, such as dynamic dictionaries. Languages like

F# have provided facilities for generating types programmatically, via a popular feature known

as type providers [Syme et al.], which has notably been used to provide types for external data

211

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

class ClassLike {

type Ctx

type Self

type Method [T]

type Field [T]

type Param [T]

def method [T: CodeType] (body: => Code[T, Ctx])

(implicit name: Name) : Method[T]

def field [T: CodeType] (value: => Code[T, Ctx])

(implicit name: Name) : Field[T]

def varField [T: CodeType] (value: => Code[T, Ctx])

(implicit name: Name) : Field[MutRef[T]]

}

class Class(implicit name: Name)

extends ClassLike {

def param[T: CodeType](implicit name: Name): Param[T]

}

class FactoryClass[T](implicit name: Name, ty: CodeType[T])

extends ClassLike {

def param[T: CodeType] (init: Code[T, Ctx])

(implicit name: Name) : Param[T]

val factoryArg: Code[T, Ctx]

val make: Code[T => Self, {}]

}

trait Implements[+T] {

type Self <: T

}

Figure 8.1 – The core API of staged classes.

212

8.3. Use Case: Typed Type Providers

sources automatically [Petricek et al., 2016]. Type providers typically provide not only bare

data types, but also utilities like serialization and deserialization to and from external data

formats.

Problem. The main problem we identify with type providers is that they are not statically

typed metaprograms: it is possible to define type provider implementations which mismanage

the types and scopes of the code they generate. Such errors in the implementation of type

providers may result in generated code that does not compile, or compiles with the wrong

semantics (due to name hygiene problems). Importantly, such errors may only be detected

when users of the type providers invoke them, and not necessarily when the type provider is

designed by the metaprogrammer, so this can result in subpar user experience.

Solution with staged classes. In this section, we argue that staged classes can solve the

problem of statically-typed type providers elegantly and concisely, relying on the well-known

and proven principles of multi-staged programming.

8.3.1 An Embedded DSL for Record Type Providers

Consider the core problem of programmatically generating record types given sequences of

field name/field type associations. We would also like to generate, along with these types,

some automatic deserialization code to construct these records from, say, plain CSV files. Here,

we show how to implement this in a type-safe way with staged classes.

We will settle on the following user-facing domain-specific language (DSL) for expressing

record types, which is embedded [Hudak, 1996] in Scala’s type system. In this example, we

define a type Person which should have fields name of type String and age of type Int:

val Person = recordOf.name[String].age[Int].toClass

To make this work, we introduce a type class Serial[T] with method scan(sc: Scanner): T,

used to efficiently retrieve a value of type T from some existing java.util.Scanner. We will pro-

vide default Serial implementation for common types, such as Serial.ForInt : Serial[Int].

The Person definition above should produce the following class and factory method:

class Person(val name: String, val age: Int)

object Person {

def apply(sc: Scanner): Person = {

val name = Serial.ForString.scan(sc)

val age = Serial.ForInt.scan(sc)

new Person(name, age)

}

}

213

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

8.3.2 Implementing the Type Provider DSL

To implement our record DSL, we use the builder pattern.6 We expose the following interface,

where Dynamic is a standard Scala trait which we explain later in this section:

type RecBuilder <: Dynamic {

def toClass(implicit clsName: Name): FactoryClass[Scanner]

def selectDynamic[A](name: String)

(implicit srl: Code[Serial[A], {}], tpe: CodeType[A]): RecBuilder

}

val recordOf: RecBuilder

The recordOf entry point is a value of type RecBuilder. Type RecBuilder has a toClass method

to generate the staged class corresponding to the record type built so far. Notice that toClass

takes an implicit parameter of type Name, which will pick up the name of the nearest enclosing

definition, unless specified explicitly by the user (as explained in Section 8.2.2).

Adding a field to the record builder is the most complex part of the API. We use a method

called selectDynamic, which takes four parameters, the latter two being implicit:

• the type A of the field to be added;

• the name of the field to be added;

• an implicit code representation of a Serial[A] type class instance, which will be used to

generate references to the appropriate scan methods; and finally

• an implicit type representation of type CodeType[A], which reifies the type parameter A,

and is required by Squid to manipulate program fragments in a generic context.

The last missing ingredient to making our DSL work is a little bit of magic that the Scala com-

piler can do for us: since RecBuilder is marked as extending Dynamic, the type checker automat-

ically interprets calls of the form rec.field[T] as meaning rec.selectDynamic[T](''field'').

This way, for example ‘val P = recordOf.name[String].age[Int].toClass’ is equivalent to:

val P = recordOf.selectDynamic[String](''name'').selectDynamic[Int](''age'').toClass

Which, after typing and implicit resolution, is equivalent to:

val P =

recordOf

.selectDynamic[String](''name'')(

squid.codeTypeOf[String], code''Serial.ForString'')

.selectDynamic[Int](''age'')(squid.codeTypeOf[Int], code''Serial.ForInt'')

.toClass(Name(''P''))

6The idea of the builder pattern is to compose an object by progressively specifying its properties, one by one,
which is done by calling various methods on it.

214

8.3. Use Case: Typed Type Providers

Where codeTypeOf is a Squid macro that synthesizes the runtime representation of a Scala

type.

The full, type-safe implementation of the record-building DSL is given below.

package DSL

abstract class RecBuilder extends Dynamic {

private[DSL] def mkParams(cls: FactoryClass[Scanner]): List[cls.Param[_]]

def toClass(implicit clsName: Name)

= new FactoryClass[Scanner] {

val params = mkParams(this) }

def selectDynamic[A: CodeType] (name: String)

(implicit srl: ClosedCode[Serial[A]])

= new RecBuilder {

def mkParams(cls: FactoryClass[Scanner]) =

cls.param(code''$srl.scan(${cls.factoryArg})'')(name) ::

RecBuilder.this.mkParams(cls) }

}

val recordOf = new RecBuilder {

def mkParams(cls: FactoryClass[Scanner]) = Nil

}

Let us take some time to unpack this code, which is rather complex, and understand how

it works. We use an internal mkParams method, which is private to our DSL package, in order

to reconstruct a list of the class parameters to build once toClass is called. This has type

List[cls.Param[_]], because it is a list of parameters of the class cls, of unspecified type

(hence the “wildcard” underscore in Param[_]). The list is built up inductively, starting from

Nil in the base recordOf case, and adding elements using the :: infix list-building operation.

For illustration purposes, consider that if we were to inline all the calls to selectDynamic and

toClass that arose in the P example defined above, we would obtain:

val P = new FactoryClass[Scanner] {

val fields = param[String](code''Serial.ForString.scan($factoryArg)'')(''name'')

:: param[Int](code''Serial.ForInt.scan($factoryArg)'')(''age'')

:: Nil

}

215

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

8.3.3 Type Provision From Data Samples

Following Petricek et al. [2016], we now would like users being able to have the type providers

themselves infer the record names and types from an existing data sample:

val PersonModule = csvProvider(''Person'', ''people.csv'')

import PersonModule.Person

val p = new Person(''Bob'', 42) // using the explicit constructor

val q = Person(new Scanner(new File(''data.csv''))) // using the CSV-record factory

And have the correct type inferred from the CSV sample in “people.csv”. This can be done

easily by adapting the F# Data algorithm presented by Petricek et al. [2016]. Below, we present

a simplistic implementation7 that only looks at the header and first data line of the CSV, and

only tries to deserialize integers, booleans and strings. Our goal is to showcase the way staged

classes allow for concise yet type-safe implementations of F# Data-style type providers; it is

easy to imagine how to generalize such an implementation to handle more cases.

def inferShape(csvContent: Scanner): RecBuilder = {

val headerNames, firstLineValues = csvContent.nextLine().split(',')

var rec = recordOf

for ((headerName, value) <- headerNames.zip(firstLineValues)) {

if (hasIntFormat(value))

rec = rec.selectDynamic[Int](headerName)

else rec = rec.selectDynamic[String](headerName)

}

rec

}

This method parses the first two lines of a CSV file content (the header names and first-line

values), pairs them up accordingly (using the zip method in List), infers the type of the field

based on the hasXFormat functions, and updates a record builder to add each corresponding

field name/field type.

As an example, the following definition of the Person class is equivalent to the one we defined

in the previous subsection using the explicit record builder DSL:

val Person = inferShape(new Scanner(''name,age\nBob,42'')).toClass

As promised, we can now define a csvProvider method accepting a file name as an input, and

which will generate a class at compile time. This can be done using a Scala macro [Burmako,

2013]. We omit the macro definition here, for lack of space.

7In Scala, val a, b = E is equivalent to val a = E; val b = E.

216

8.3. Use Case: Typed Type Providers

0

200

400

600

800

1000

Q1 Q12 Q18 Q3 Q4 Q6

Ru
n

tim
e

(m
s)

Generated class Dictionary based Structural type

Figure 8.2 – Performance of different record representations, for computing a set of TPCH
queries.

8.3.4 Evaluation

Type Safety

By virtue of the contextual staged code types (see Chapter 7), the generated code is guaranteed

to be well-scoped and well-typed. Note that this is true even if field names collide: in this case,

the generated class will rename the duplicated fields following a predictable scheme based on

the order of definition of the fields; for example, given three fields which are all assigned the

same name “foo,” the generated class will contain fields named foo, foo_1, and foo_2.

Moreover, it is easy to see that if the data sample used in inferShape is representative, we

will not generate programs that will go wrong at run time (see [Petricek et al., 2016] for more

details).

Performance of Generated Classes

We now provide an answer to the question: “Is all this complication worth it? Why not use a

simpler, more dynamic approach to data records?” Indeed, there are different approaches for

representing records that do provide static type safety, but do not rely on program generation

to achieve it. These approaches are usually based on dynamic dictionaries or on runtime

reflection “behind the scenes.” In our opinion, the argument is then mostly about perfor-

mance. In Figure 8.2, we show the performance difference between three different type-safe

record representations in Scala, for a set of standard TPCH queries [Transaction Processing

Performance Council, 1999]: we benchmark plain classes as generated by our staged classes;

dictionary-based records;8 and Scala structural types, which rely on anonymous classes and

cached Java run-time reflection. We can see from the results that generated classes are consis-

tently faster than both approaches: from 30% to an order of magnitude faster than dictionaries,

and from about the same speed for Q18 to twice faster than structural types.

8 Provided by the Scala Records macro-based library, available at https://github.com/scala-records/
scala-records.

217

https://github.com/scala-records/scala-records
https://github.com/scala-records/scala-records

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

8.4 Related Work

CGM GCM DYN STA TYP

Staged Classes (This Chapter)
Squid (MSP) [Parreaux et al., 2017c] #

MetaML (MSP) [Taha and Sheard, 2000] # #
LMS (MSP) [Rompf and Odersky, 2010] # #

MacroML (MSP)[Ganz et al., 2001] # #
Modular macros [Yallop and White, 2015] # #

AnyDSL/Impala [Leißa et al., 2015] G# #
Template Haskell [Sheard and Jones, 2002] G# # G#

Scala “def” macros [Burmako, 2013] # # #
Scala annot. macros # #

Scala @specialized # #
Scala miniboxing [Ureche et al., 2013] # #

Scala ADTR [Ureche et al., 2015] G# #
Exotypes [DeVito et al., 2014] # #

Type providers [Syme et al.] # #
.NET generics [Kennedy and Syme, 2001] # G# G#

C++/D templates [Veldhuizen, 1998] G# # #
D mixins9 # #
Rust traits # #

Table 8.1 – Comparison of existing approaches to specialization and partial evaluation via
program generation. We assess whether the system offers: • modularity in the code generator
(CGM), which we also view as the ability to programmatically configure the code generation
process; • modularity in the generated code (GCM); • run-time specialization, from runtime
values (DYN); • compile-time specialization (STA); • type safety: the static guarantee, at
compile time of the code generator, that the generated code will be well-typed (TYP).

In this section, we review the related work. Table 8.1 summarizes existing approaches and

their supported features.

Program generation is ubiquitous in software engineering, and can be used for both reduc-

ing boilerplate (to express some repetitive, verbose, or sometimes error-prone idiom) and

improving performance (by removing the abstractions that get in the way of performance).

C++ templates [Vandevoorde and Josuttis, 2002], Lisp and Rust macros [Kohlbecker et al.,

1986], and Template Haskell [Sheard and Jones, 2002] are examples of program generators.

An important factor to consider, while comparing the different alternatives, is that program

generation (and metaprogramming in general) is hard and error-prone, so it is valuable to use

systems that offer strong static type safety guarantees.

Multi-stage programming (MSP) is a technique for specializing programs in a type-safe and

modular way, using the abstraction capabilities provided by the targeted programming lan-

218

8.4. Related Work

guage itself. There are many MSP frameworks developed in different programming lan-

guages such as ML-like languages [Taha and Nielsen, 2003, Taha and Sheard, 1997, Taha,

1999], Scala [Rompf and Odersky, 2010, Rompf et al., 2013, Parreaux et al., 2017c,a], and even

Java [Westbrook et al., 2010]. All these program generation and MSP frameworks only deal with

generating expressions, and typically do not provide facilities for generating data structure

declarations or for sharing code across generated expressions, although some forms of sharing

have been devised in various works, as described in the next paragraph.

Swadi et al. [2006] generate shared code for staged memoized functions, with applications

to dynamic programming. Let insertion is a common technique to generate shared defini-

tions during partial evaluation and staging (see, for instance, [Kameyama et al., 2015]), and

MetaOCaml introduced a primitive called genlet to facilitate it [Kiselyov, 2018], which can

also be used to generate mutually-recursive definitions [Yallop and Kiselyov, 2019]. Staged

classes offer yet another way of generating mutually-recursive definitions, where the locus of

the generated definitions is fixed (it is the scope of the class) similar to one of the alternatives

proposed by Yallop and Kiselyov [2019] except that staged classes also ensure scope safety —

it is not up to the user to make sure the definitions are inserted in the valid scopes, as opposed

to the solution proposed by Yallop and Kiselyov. As an interesting aside, I independently im-

plemented a technique very close to the genlet approach of MetaOCaml (which automatically

inserts the bindings in the widest appropriate scope) as part of one of my different ANF Squid

intermediate representation prototypes, while trying to to solve the same problem.

Another recent line of work has started to look into staging at the level of modules. Inoue

et al. [2016] proposed using records and polymorphism to emulate the staging of ML modules.

However, such manual encodings become cumbersome fast, especially when mutual reference

and recursion are desired in the generated code, and when several generated modules or data

structures need to inter-operate in a well-typed manner, as in our staged database example

(see Chapter 9). Watanabe and Kameyama [2017] proposed and implemented a language

called λ<M> which supports staged modules by translation into plain MetaOCaml, but their

translation could lead to exponential code duplication. Sato et al. [2020] later corrected the

problem by leveraging MetaOCaml’s genlet mechanism (mentioned in the previous paragraph),

which allows performing let insertion automatically to avoid code duplication. A typical worry

in the context of staging modules is that of extruding local module references — taking them

out of their scopes, where they lose their meaning; we do not have this problem with staged

classes, because all the generated classes are top-level definitions.

Terra [DeVito et al., 2013] is an MSP extension to the Lua programming language which uses

MSP and Exotypes [DeVito et al., 2014] in order to generate type declarations. However, due

to the dynamic nature of Terra, Exotypes do not benefit from the static safeties provided

by our system. Metaphor [Neverov and Roe, 2004] is a multi-stage language with a type

system that allows statically checking reflection-based field accesses. Ur [Chlipala, 2010] uses

dependent types to allow first-class computation of records and names. Both of these systems

provide static safety guarantees; however, they do not manipulate or create class definitions

219

Chapter 8. Multi-Stage Programming in the Large with Staged Classes

programmatically.

ADTR [Ureche et al., 2015] is a Scala compiler plugin enabling programmers to modify the

data representations in delimited scopes. This framework subsumes other frameworks such

as Scala miniboxing [Ureche et al., 2013], however, is not as powerful as MSP frameworks in

terms of code generation facilities.

F# type providers [Syme et al., Petricek et al., 2016] allow inferring types and methods based

on external data. Type providers are fundamentally not type-safe. Hence, such errors may only

be detected during their usage, not when they are designed by the metaprogrammer. Google

protocal buffers is a domain-specific framework for generating serializable types [Google,

2008].

8.5 Conclusion

In this chapter, we have shown how to take multi-stage programming further than its tradi-

tional area of application (metaprogramming in the small), to fill a niche that was previously

not occupied satisfactorily by any other approach (type-safe metaprogramming in the large),

to the best of our knowledge. We have shown how to use staged classes to define generic and

fully-modular libraries that do not pay for their genericity and modularity. We have demon-

strated in detail two main use cases: a statically-typed type providers implementation, and a

dynamic relational database compiler prototype. We explained the limitations of previous

approaches, and how staged classes could allow for the design of more modular, practical, and

reliable metaprogramming systems in the future.

220

9 Application: A Staged Database Compiler

In this chapter, we point out the deficiencies of previous staged query compilation approaches

and motivate the use of staged classes to solve these deficiencies.

We describe the design of a modular database compilation system, which goes further than

pure query compilation in that it generates efficient shared code for the database infrastructure

itself, as well as for individual queries.

Our database system prototype is particularly interesting in that it makes unique use of

advanced multi-stage programming (with more than two stages) and cross-stage persistence

[Taha and Sheard, 2000]. Though it is very much a “toy” system compared to existing industrial

database systems, we believe that it is easy to imagine how to enrich and extend it, as its design

is fundamentally modular.

We start by assuming that our database system receives plain-text SQL queries as input, which

may be ill-typed, and thus require some fallible dynamic checking; then, we see how to use

Squid to embed a type-safe Scala DSL as an alternative frontend to our database system. The

Scala EDSL has the advantage of being safer and more expressive than SQL, reducing the

impedance mismatch between the application and the database.

We show how the Scala query EDSL is transformed into internalized query representations

on which to perform rewritings, and then into query plans from which we can synthesize

efficient implementations. We do this while ensuring type- and scope-safety statically, thanks

to Squid’s advanced Scala-powered type system.

9.1 Motivation

In the era of “big data,” the amount of information to process and analyze is becoming a

bottleneck for many data-oriented tasks. On the other hand, random-access memory is

cheaper than ever, which explains the advent of in-memory databases. In this context, where

cold disk memory latencies no longer dominate data analytic run times, economizing CPU

221

Chapter 9. Application: A Staged Database Compiler

cycles has becomes crucial, and as such query compilation has been regaining interest in

research [Klonatos et al., 2014, Shaikhha et al., 2016, Rompf and Amin, 2015b, Tahboub et al.,

2018] and industry [Armbrust et al., 2015].

Approaches based on multi-staged programming [Klonatos et al., 2014, Rompf and Amin,

2015b, Shaikhha et al., 2016, Parreaux et al., 2017c, Cheney et al., 2013, Tahboub et al., 2018]

have invariably focused on compiling individual queries into efficient but non-modular

computation kernels. Typically, specialized data structures are generated as part of such

kernels in an ad-hoc way (generally by cobbling strings together). There are two problems

with that approach:

• First, the generation of these data structures is brittle and unsafe as it does not rely on

any principled abstraction. This contrasts starkly with the rest of these systems, which

is based on type-safe MSP, and thus benefits from all the reliability guarantees offered

by MSP. Therefore, we argue that the data structure generation part of these systems

constitutes a weak link in staged compilation pipeline.

• Second, in these approaches the entire database infrastructure usually has to be gener-

ated from scratch for each individual query. Workarounds to share this infrastructure

between queries are certainly conceivable, but are doomed to be even more brittle, due

to the untyped nature of these ad-hoc data structure generation approaches (see the

first bullet).

In this section, we argue that staged classes are a perfect fit for the reliable generation, at

run time or at compile time, of the backbone infrastructure of data structures underlying the

implementation of database systems. This way, we propose to go beyond pure staged query

compilation, introducing “staged database” compilation.

9.2 Architecture of the Staged Database System

In this chapter, we describe a (much simplified version of a) database system that is as close

to real-world use cases as possible. As such, we focus on an online in-memory SQL-based

service, which receives requests for data definition (table creation, deletion) and manipulation

(loading, dumping), as well as SQL-style queries that are cached by default so that their com-

piled code can be reused later (we only examine a trivial SQL query, sufficient to understand

the contribution of staged classes in this context, but we see more advanced queries later on

in the chapter). These database requests will trigger the generation of specialized code to

perform the underlying operations in an efficient manner.

222

9.2. Architecture of the Staged Database System

9.2.1 Specialized Container Classes

Managing data storage efficiently is one of the foremost concerns in the implementation of a

database system. The first thing we focus on is to define a set of containers for storing data

tables in memory without overhead. This is not straightforward, first because often in object-

oriented languages such as Scala, primitive values are boxed when they appear in generic

contexts, and second because objects are allocated on the heap, which we seek to avoid. Here,

we define a Container[A] staged data structure based on a dynamic array, which is specialized

for each element type A, so that it does not box. The [A: CodeType] syntax is a shorthand for

defining an implicit parameter in Scala, meaning [A](implicit _: CodeType[A]).

@cached class Container[A: CodeType] extends FactoryClass[Unit] {

val initArraySize = code''16''

val size = varField(code''0'')

val array = varField(code''new Array[A]($initArraySize)'')

val at = method(code''(idx: Int) => $array(idx)'')

val add = method(code''(a: A) => {

if ($size == $array.length) {

val old = $array

$array = new Array[A]($size * 2)

Array.copy(old, 0, $array, 0, $size)

}

val idx = $size; $array(idx) = a; $size = idx + 1;

idx

}'')

}

As a side note, remark how initArraySize is defined as a separate code value; this allows users

of the data structure to later override that value, and pick a possibly-non-constant value for it

instead.

Note that explicitly-specialized containers are not actually needed in environments with

support for run-time generic specialization, like C# and its .NET runtime system. However,

such automatic specialization is not sufficient for achieving our performance goals, as we see

in the next section, where the additional power of staged classes is required.

9.2.2 Column Store Meta-Container Class

It is not enough to specialize our dynamic array containers. We also want to avoid allocating

record objects on the heap. The column-oriented format is the most appropriate for our use

case, as it not only avoids allocating object wrappers, but has also been known by the database

community to enable faster data access for common queries. We believe that staged classes

are one of the first approaches to allow the type-safe yet modular and convenient definition of

column-store containers, that do not pay for their modularity.

223

Chapter 9. Application: A Staged Database Compiler

Our ColumnStore container class is parameterized with another class representing the record

type that we would like to store. Importantly, note that we will only use this class type as a

module containing field information, and we will never actually create instances of it! This

ensures that we will never pay for allocating record objects at run time.

class ColumnStore[A: CodeType](elemCls: FactoryClass[A])

extends FactoryClass[Unit] {

// ...

The most interesting aspect of the ColumnStore class is that we will need to store a collection

of columns, where each column represents a parameter in the element class and is associated

with its own specialized container class and with a cntr field of corresponding type in the

ColumnStore class. We achieve this using a nested class Column[T], that packages all this

information together:

class Column[T](val field: elemCls.Param[T], val cntrCls: Container[T]) {

val cntr: Param[cntrCls.Self] = param(code''${cntrCls.make}()'')

}

val cols: List[Column[_]] = elemCls.parameters.map {

case p: elemCls.Param[t] => new Column[t](p, Container.cached[t]) }

We can now define the add method, which builds a sequence of mutating statements in a

local variable res. The method works by leveraging the initValue available in each Param[T]

object of FactoryClass[A] instances, which has type Code[A => T, {}]. For each column, we

build the corresponding parameter value, and then add it to the corresponding specialized

container, returning the index as expected:

val firstColumn = c(0)

val size = method(code''() => ${firstColumn.cntr}.${firstColumn.cntrCls.size}'')

val add: Method[A => Int] = method(code''(arg: A) => ${

var res: Code[Unit, arg.type] = code''()''

for (c <- cols) {

res = code''$res; ${c.cntr}.${c.cntrCls.add}(${c.field.initValue}(arg))''

}

code''$res; $size() - 1''

}'')

Finally, we need to provide a getFieldAt method, which will allow users to retrieve a particular

field at a particular index in the columnar container. To do this, we find the corresponding

column field in our list of columns, and use the at method of its container. Note that this

is a staged method with one static part (the field parameter) which will disappear from the

generated code, and one dynamic part (the index parameter).

@cached def getFieldAt[T](f: elemCls.Param[T]): Method[Int => T] = {

224

9.2. Architecture of the Staged Database System

val c = cols.find(_.field == f).get

method(code''(idx: Int) => ${c.cntr}.${c.cntrCls.at}(idx)'')

}

} // end of ColumnStore

9.2.3 Loading and Emitting Data Efficiently

Let us now see how to handle our first database requests, related to data definition and

manipulation. When a user sends a CREATE TABLE request, we’ll be provided with a request

object of the form:

class TableCreationRequest

(val tblName: String, val columns: List[(String,String)])

First, we want to generate a class with the following interface (trait is like Java’s interface),

which will be able to perform efficient loading and dumping of data according to the provided

schema:

trait Table {

def loadFrom(in: InputStream): Unit

def dumpInto(out: OutputStream): Unit

}

We will reuse the recordOf/selectDynamic/toClass infrastructure of Section 8.3 to facilitate

our job:

class ColStoreTable(r: TableCreationRequest)

extends FactoryClass[Unit](name = r.name + ''_Table'') with Implements[Table]{

val recordCls = columns.foldLeft(recordOf){

case (row, (colName, ''INT'')) => row.selectDynamic[Int](colName)

case (row, (colName, ''BIT'')) => row.selectDynamic[Boolean](colName)

case (row, (colName, ''VARCHAR'')) => row.selectDynamic[String](colName)

}.toClass(name = r.name)

val storeCls = new ColumnStore[Scanner](recordCls)

val store = field(code''${storeCls.make}()'')

val loadFrom = method(code''''''(in: InputStream) => {

val reader = new BufferedReader(in)

while (reader.ready())

$store.${storeCls.add}(new Scanner(reader.readLine()))

}'''''')

val dumpInto = method(code''(out: OutputStream) => ...'')

}

225

Chapter 9. Application: A Staged Database Compiler

Triple-quotes in Scala are used to write multi-line quotations. For brevity, we omit the imple-

mentation of dumpInto, which simply iterates over the table’s indices and fields, accesses them

using getFieldAt, and prints out their toString representations.

Internally, our database engine will keep a mapping from each known table name to the

associated staged class instance storing that table. The table instance is obtained by generating

the code for instantiating the staged class using its factory’s make method, and compiling that

code on the fly:

class DatabaseInstance {

val tables: Map[String, Table] = Map.empty

def createTable(r: TableCreationRequest) = {

val maker: Unit => Table =

new ColStoreTable(r).make.compile

tables(r.name) = maker()

}

}

9.3 Compiling Queries On The Fly

Let us imagine we have a Person database table, and a user sends a query to find the age of

the oldest person, as in ‘SELECT MAX(p.Age) FROM Person p.’ We will first send this query to a

parser and then to a query planner (not described in this chapter), which will return a query

plan of the form new Aggregate(''Person'', ''age'', ''MAX''). How can we implement such a

query in an efficient way? One option is extending Table to include methods for iterating over

the record indices, and getting the appropriate fields:

trait Table {

... // as before

type RecordHandle

def iterator: Iterator[RecordHandle]

def getField(fieldName: String, r: RecordHandle): Any

}

But we can see two immediate problems with such approach: First, it is untyped (getField

returns Any), which will result in dynamic tests and casting to the correct types, as well as

boxing of primitive values, in addition to not being type safe. Second, the iteration is driven by

an Iterator abstraction, relying on virtual calls, which we would like to avoid.

Thankfully, this is a case where the great power of multi-stage programing can be of help.

226

9.3. Compiling Queries On The Fly

9.3.1 An Additional Stage for Compiling Queries

We start by defining an Iter[A] type that behaves like an iterator, but is defined in terms of a

pair of (has-next, get-next) functions, so that these can be inlined aggressively by Squid:

type Iter[A] = (() => Boolean, () => A)

Then, we extend the Table interface to include: (1) a reference to the record class elemCls

whose parameters are stored in the table; (2) an abstract RecordHandle type to represent logical

“pointers” to the records stored in the table; (3) a way to create the code to iterate through the

records using Iter[RecordHandle]; and (4) a type-safe getField method which extracts the

value of a given field:

trait Table {

... // as before

val elemCls: Class

type RecordHandle

def mkIter: Code[Iter[RecordHandle], {}]

def getField[T](f: elemCls.Param[T]): Code[RecordHandle => T, {}]

}

We can now create an efficient implementation for queries such as MAX aggregations. The mkMax

function below creates a program fragment for computing the current maximum of some field

f in a table tbl:

def mkMax(tbl: Table)(f: tbl.elemCls.Param[Int]): Code[() => Int, {}] =

code''''''() => {

val (hasNext, getNext) = ${tbl.mkIter}

var max = Int.MinValue

while (hasNext()) {

val h = getNext()

val v = ${tbl.getField(f)}(h)

if (v > max) max = v

}

max

}''''''

In order to call this function, we will need to convert the Aggregate query object into the table

and typed field arguments we want to pass to mkMax:

def mkAggr(db: DatabaseInstance, aggr: Aggregate): () => Int = {

val tbl: tbl.elemCls.Param[_] = db.tables(aggr.tableName)

val f = tbl.elemCls.parameters.find(_.name == aggr.fieldName).get

assert(aggr.opName == ''MAX'', ''Unsupported aggregation operator'')

227

Chapter 9. Application: A Staged Database Compiler

if (!(f.tpe <:< codeTypeof[Int])) // '<:<' checks subtyping at runtime

throw new Exception(''Cannot perform MAX on this field type'')

val fInt = f.asInstanceOf[tbl.elemCls.Param[Int]]

// ^ there is no way to check this statically

mkMax(tbl)(fInt).compile

}

Naturally, this is a fallible process, as the “stringly-typed” Aggregate object could contain

information that is inconsistent with our data schema. Proper validation and error reporting

to the user would normally need to be implemented, in a mature real system.1

Finally, to accommodate for the change in Table interface, the ColStoreTable class has to be

adapted to include the following new definitions:

class ColStoreTable(r: TableCreationRequest) extends ... with Implements[Table] {

@crossStage // this allows cross-stage references to recordCls

val recordCls = ... // this is defined as before

... // other definitions as before

val elemCls: Field[recordCls.type] =

field(code''recordCls'') // cross-stage reference to recordCls

val RecordHandle = typeDef[Int] // we use an integer index as the handle

val getSize: Method[() => Int] = method(

code''() => $store.${storeCls.size}()'')

val mkIter = method(code''''''{

var idx = 0

(() => idx < $getSize, // do we still have handles left?

() => {

val res = idx

idx += 1

res // next handle to use

})

}'''''')

val getField

1An alternative would be to use a type-safe embedded DSL as the frontend query language, as in Section 9.4
and Chapter 10.

228

9.4. An Embedded DSL for Data Definitions and Queries

: Method[[T] => recordCls.Param[T] => Code[Int => T, {}]]

= method({

@crossStage

val getFieldImpl = [T] => (f: recordCls.Param[T]) =>

code''(idx: Int) => $store.${storeCls.getFieldAt(f)}(idx)''

code''getFieldImpl''

})

}

The typeDef method (which we have omitted to present before) is used to provide a type

synonym in the generated class. Here, we use it to implement the abstract type RecordHandle

declared in the Table abstract class.

Three significantly non-trivial things happen here:

• First, in the definition of elemCls, we make a direct reference to the local elemCls field

from within a code quasiquote — notice how it is not escaped; this is permitted because

Squid supports cross-stage persistence [Taha and Sheard, 2000], which means that the

compiled version of a ColStoreTable instance will contain a field that refers back to the

recordCls field of the original staged ColStoreTable class!

• Second, getField is a first-class generic method (notice the leading [T] => parameter);

indeed, the abstract method required by Table is a polymorphic one.

• Third, getField also makes a cross-stage reference, to the getFieldImpl value; this

is what will allow generating code for accessing the table’s fields even after we have

compiled this instance of ColStoreTable.

9.4 An Embedded DSL for Data Definitions and Queries

In the previous sections of this chapter, we presented a staged database system designed

to interact with users through plain SQL queries. While common and practical, such an

interface is often suboptimal: its dynamic typing discipline makes it error-prone, and its

expressiveness is limited to the constructs of SQL, an old and inflexible language which

notably lacks abstraction capabilities.

Expressing queries through an EDSL has several advantages over plain SQL, including perfor-

mance, type safety, and the reduction of the “impedance mismatch” between the application

programming world (which uses general-purpose languages) and the database world (which

uses query languages). Therefore, we would like to offer an EDSL frontend for our staged

database system efforts.

In this section, we consider a better frontend to the staged database system. We describe how

Squid can be used to reinterpret type-checked Scala constructs, turning them into internal

229

Chapter 9. Application: A Staged Database Compiler

database-specific representations, to be compiled to efficient implementations by our staged

engine.

Our approach transforms Scala class, field, and method definitions into a staged database

representation at compilation time. The output of this process is the generation of a new

database module containing specialized data structures and where each query method has

been compiled to efficient database implementations.

9.4.1 Shallow DSL

The shallow DSL is the user-facing Scala library we expose to users, which they use to define

their data types, data tables, and queries.

Data Definitions via Squid-Embedded Classes

To make our system easy and natural to use, we want to allow users to define the data types

they want to store in the database as normal Scala classes, which may have parameters, fields,

and methods. This way, we can reduce the impedance mismatch between applications written

using functional and object-oriented code, and the databases used to store the corresponding

data durably.

There are many ways of mapping Scala classes to database objects, and conversely. In object-

relational mappings (ORMs), database accesses are often hidden behind method calls and

field accessors, which is a leaky abstraction with many surprising performance characteristics.

Here, we avoid such problems by requiring that the classes used to model the database be

private to the database, so that communication with the outside has to be handled explicitly

by users when defining queries. This approach is more aligned with the data first philosophy

of functional programming.

As an example, we define below a database called MyDatabase which stores instances of two

data types Person and Job:

@embed

object MyDatabase {

private class Person(val name: String, var age: Int, var job: Option[Job])

extends Record {

def isMinor = age < 18

}

private class Job(val enterprise: String, val salary: Int) extends Record

// table definitions follow...

}

To make the class, field, and method definitions inside MyDatabase available to Squid, we use

230

9.4. An Embedded DSL for Data Definitions and Queries

the @embed annotation (also used in Section 5.2 to retrieve the implementations of user-defined

methods). The @embed annotation lifts Scala classes and objects into corresponding staged

class representations, which can be directly manipulated, via Squid, by our staged database

compiler.

Database Table Definitions

The basic interface for defining tables and manipulating table entries is the following:

class Table[T] {

def all: TableView[T]

def insert(el: T): Unit

def delete(el: T): Unit

def insertAtId(id: Long, el: T): Unit

def deleteAtId(id: Long): Unit

def getAtId(id: Long): Option[T]

}

We use it to create one table for each data type in our database:

@embed

object MyDatabase {

// ...

private val persons = new Table[Person]

private val jobs = new Table[Job]

// query definitions follow...

}

Calling persons.all returns a TableView[Person], against which we can now express queries.

Database Query Definitions

We express queries following the following TableView interface:

class TableView[T] {

def count: Int

def aggregate[Res](init: Res, acc: (T, Res) => Res): Res

def foreach(f: T => Unit): Unit

def filter(pred: T => Boolean): TableView[T]

def map[R](f: T => R): TableView[R]

def flatMap[R](f: T => TableView[R]): TableView[R]

def join[R](other: TableView[R])(pred: (T, R) => Boolean): TableView[(T, R)]

231

Chapter 9. Application: A Staged Database Compiler

}

Note that this basic query DSL is patently incomplete; the most obviously missing piece is a

key-based aggregation operator (GROUP BY in SQL). In Chapter 10 we see a nice approach for

expressing such queries in a very general way, and for optimizing them (Section 10.7).

For example, we define below a loadFromFile query for loading person and job data from CSV

files, a numberOfMinors query for counting the number of minor people who have jobs, and a

deleteJobless query for deleting people who do not have jobs:

@embed

object MyDatabase {

// ...

def loadFromFile(personsFile: String, jobsFile: String): Unit = {

for (job <- Source.fromFile(jobsFile).getLines) {

val Array(id, ent, sal) = line.split(',')

jobs.insertAtId(id.toLong, new Job(ent, sal.toInt))

}

for (line <- Source.fromFile(personsFile).getLines) {

val Array(name, jid) = line.split(',')

val job = if (jid == ''NULL'') None

else Some(

jobs.getAtId(jid.toLong)

.getOrElse(throw new Exception(''Job not found: ''+ jid)))

persons.insert(new Person(name, job))

}

}

def numberOfMinors(): Int =

persons.all.filter(_.isMinor).count

def deleteJobless(): Unit =

persons.all.filter(_.job == None).foreach(persons.delete)

}

Generating the Staged Database Code

Finally, to get efficient runnable code out of the MyDatabase definition above, one has to

explicitly ask for Squid to generate the corresponding code, which is done with the invocations

below, which can for example be called as part of the project’s build:

val MyDatabaseStaged = new StagedDatabase[MyDatabase]

MyDatabaseStaged.generateCode(''generated/MyDatabase.scala'')

232

9.4. An Embedded DSL for Data Definitions and Queries

Squid Intermediate Representation Setup

To set up the Squid intermediate representation required to manage the code of the user’s

queries, we define the IR object below. We make the intermediate representation extend the

standard Squid SimpleANF representation in order to benefit from the automatic val-binding

of nontrivial expressions, which will come in handy when lifting queries (Section 9.4.4):

object IR extends squid.ir.SimpleANF

with squid.ir.StandardEffects

with squid.ir.ClassEmbedder

with squid.lang.ScalaCore

We also extend the ClassEmbedder trait in order to enable the Squid @embed helper macro, and

StandardEffects in order to make the ANF representation leverage Squid’s basic effect system

for standard Scala constructs, such as primitives, primitive operations, and constructs from

the standard library (see Section 4.4.2).

9.4.2 Internal Representation of the Database

The StagedDatabase class deals with representing staged databases and their queries, and with

compiling them to lower level efficient code. We give the basic definitions of StagedDatabase

below, and describe the other crucial parts of its design in the rest of this section.

class StagedDatabase[DB: CodeType] {

/** Ctx represents the scope of this database; it will be used as the context

* type for queries that make references to this database's tables. */

type Ctx = cls.Ctx

val db_cls: squid.Class[DB] = squid.classOf[DB]

/** The representation of a table that lives in this staged database. */

class TableRep[T0: CodeType](val cls: squid.Class[T0]) {

type T = T0

val T = codeTypeOf[T]

val columns = cls.fields.map(f =>

/* initialization of column information... */)

val functions = cls.methods.map(f =>

/* initialization of function information... */)

}

val tables = db_cls.classes.map(cls =>

new TableRep(cls))

/** The representation of a query expressed in this staged database. */

233

Chapter 9. Application: A Staged Database Compiler

class Query[T: CodeType](val name: String, val cde: Code[T, Ctx]) {

lazy val rep = liftQuery(cde)

}

val queries = db_cls.methods.map(m =>

new Query(m.name, m.etaExpand))

// ...many more definitions elided...

}

The TableRep class is used to represent the tables of the database; it is created from the classes

defined in the main database class DB — each class is treated like a table, whose columns

correspond the class’ fields, and with a set of functions to operate on the rows of the table,

corresponding to the class’ methods.

The queries defined in the database are gleaned from the top-level methods of the main

database class DB, and stored as plain code inside the Query representation. The next step is to

lift these code representations into proper query representations.

9.4.3 Query Representation

Queries are represented using the QueryRep generalized algebraic data types, for which we give

a partial definition below. Notice that QueryRep has its own context parameter C, as queries

may be nested within the local scopes of other queries:

/** Internal representation of database queries. */

sealed abstract class QueryRep[T: CodeType, C] {

type Res = T

implicit val Res = codeTypeOf[T]

}

We use local type synonyms (like type Res = T above), and an implicit declaration of the same

name (like the implicit val Res above) in order to facilitate usages of the data type: given

a QueryRep value qr, it allows one to import qr.Res, which brings into scope both a Rep type

synonym and a Rep implicit type representation for it. Moreover, one can easily rename these

symbols on import, as in import qr.{Res => Res2} to avoid name clashes.

Query DSL Constructors

Most of the constructors of this QueryRep GADT closely mirror the syntax of the shallow DSL

and qre unsurprising; we give them below for reference:

case class All[T: CodeType, C](tbl: TableRep[T])

extends QueryRep[TableView[T], C]

234

9.4. An Embedded DSL for Data Definitions and Queries

case class Filter[T: CodeType, C]

(q: QueryRep[TableView[T], C], pred: QueryRep[T => Boolean, C])

extends QueryRep[TableView[T], C]

case class Map[T: CodeType, R: CodeType, C]

(q: QueryRep[TableView[T], C], f: QueryRep[T => R, C])

extends QueryRep[TableView[R], C] {

type Row = T

implicit val Row = codeTypeOf[Row]

}

case class Count[T: CodeType, C](q: QueryRep[TableView[T], C])

extends QueryRep[Int, C] {

type Row = T

implicit val Row = codeTypeOf[Row]

}

case class Join[T: CodeType, R: CodeType, C]

(q1: QueryRep[TableView[T], C], q2: QueryRep[TableView[R], C])

extends QueryRep[TableView[(T, R)], C] {

type Row1 = T

implicit val Row1 = codeTypeOf[Row1]

type Row2 = R

implicit val Row2 = codeTypeOf[Row2]

}

case class Aggregate[T: CodeType, Res: CodeType, C]

(q: QueryRep[TableView[T], C], init: QueryRep[Res, C],

acc: QueryRep[(T, Res) => Res, C])

extends QueryRep[Res, C] {

type Row = T

implicit val Row = codeTypeOf[Row]

}

case class Foreach[T: CodeType, C]

(q: QueryRep[TableView[T], C], f: QueryRep[T => Unit, C])

extends QueryRep[Unit, C] {

type Row = T

implicit val Row = codeTypeOf[Row]

}

Notice that we did not include a predicate in the definition of the Join constructor; this is

because for regularity we represent join calls in the shallow DSL as a composition of Join and

Filter in the internal QueryRep representation.

235

Chapter 9. Application: A Staged Database Compiler

Scala Code Constructors

In addition to constructors mirroring the query DSL, we have several QueryRep cases to repre-

sent normal Scala operations whose semantics we handle explicitly, as they may interact with

the semantics of the other query operators. For instance, we have QueryReps for while loops,

lambda expressions, val bindings, and effectful statements.

case class While[T: CodeType, C]

(cond: QueryRep[Boolean, C], e: QueryRep[T, C])

extends QueryRep[Unit, C] {

type Val = T

implicit val Val = codeTypeOf[T]

}

The Lambda constructor, which represents function values as QueryReps, has an interesting

typing challenge: the type of its body is dependent on the type of the Variable bound by the

lambda. Ideally, we would like to write the following definition:

case class Lambda[R: CodeType, T: CodeType, C]

(param: Variable[R])(body: QueryRep[T, C & param.Ctx])

extends QueryRep[R => T, C] {

type Arg = R

implicit val Arg = codeTypeOf[Arg]

type Ret = T

implicit val Ret = codeTypeOf[Ret]

}

However, Scala 2 does not currently allow class parameters to depend on other parameters of

the same class, so the type of body, QueryRep[T, C & param.Ctx], is rejected by the compiler

because of its dependency on the param class parameter.

There are several ways of solving the problem. One way is to use a type parameter PCtx to

represent the context type of the variable, and then request that the variable’s actual context

match that specific context, using a { type Ctx = PCtx } type refinement:

case class Lambda[R: CodeType, T: CodeType, C, PCtx]

(param: Variable[R] { type Ctx = PCtx }, body: QueryRep[T, C & PCtx])

extends QueryRep[R => T, C] {

// Arg and Ret defined as above

}

An alternative is to use an abstract class for Lambda — leveraging the fact that class fields may

have arbitrary dependencies between each other — and to provide a convenience constructor

for the abstract class:

abstract class Lambda[R: CodeType, T: CodeType, C] extends QueryRep[R => T, C] {

236

9.4. An Embedded DSL for Data Definitions and Queries

val param: Variable[R]

val body: QueryRep[T, C & param.Ctx]

// Arg and Ret defined as above

}

def Lambda[R: CodeType, T: CodeType, C]

(_param: Variable[R])(_body: QueryRep[T, C & _param.Ctx]) =

new Lambda[R, T, C] { val param: _param.type = _param; val body = _body }

Note that the _param.type ascription on the param field is crucial: without it, Scala widens the

type of param to just Variable[R], and the relationship of this value with body is lost.

Both of these approaches work fairly seamlessly in practice; it is only a matter of style which

one to prefer. We adopt the former approach, as it is slightly more concise.

The Nested constructor below represents a val binding if the x variable occurs in rest, or an

effectful statement otherwise:

case class Nested[R: CodeType, T: CodeType, C, XCtx]

(x: Variable[R] { type Ctx = XCtx }, value: QueryRep[R, C],

rest: QueryRep[T, C & XCtx])

extends QueryRep[T, C] {

type Val = R

implicit val Val = codeTypeOf[Val]

}

Finally, we have a QueryRep constructor for uninterpreted pieces of plain Scala code fragments,

to be executed directly and without any query compilation applied to them:

case class PlainCode[T: CodeType, C](cde: Code[T, C])

extends QueryRep[T, C]

9.4.4 Query Lifting

An essential task of our staged database design is that of lifting queries represented using

normal Scala code — based on the shallow DSL — into proper query representations which

are deeply embedded in Squid (presented in the previous subsection). This is done using the

liftQuery method, shown below.

Remember from Section 9.4.1 that to facilitate the task of lifting queries, we use an ANF repre-

sentation for representing the initial Squid code fragment, where each non-trivial expression

is bound to a local val declaration. This is what allows the implementation of liftQuery to

be so simple and straightforward — nested queries are automatically un-nested by ANF, so

we only have to deal with queries bound by val bindings, not queries appearing in arbitrary

subexpressions of general Scala expressions.

237

Chapter 9. Application: A Staged Database Compiler

def liftQuery[T: CodeType, C](query: Code[T, C]): QueryRep[T, C] = query match {

case code''val $x: $xt = $v; $rest: T'' =>

Nested(Some(x), liftQuery(v), liftQuery(rest))

case code''$e; $rest: T'' =>

Nested(None, liftQuery(e), liftQuery(rest))

case code''($param: $typ) => $exp: $ret'' =>

Lambda(param, liftQuery(exp))

case code''while($cond) $e'' =>

While(liftQuery(cond), liftQuery(e))

case code''($tbl: Table[$ty]).all'' =>

val tbl = findTable(tbl).getOrElse(liftingError(''unknown table: ''+ tbl))

All(tbl)

case code''($view: TableView[$ty]).count'' =>

Count(liftQuery(view))

case code''($view: TableView[$ty]).foreach($f)'' =>

Foreach(liftQuery(view), liftQuery(f))

case code''($view: TableView[$ty]).filter($pred)'' =>

Filter(liftQuery(view), liftQuery(pred))

case code''($view: TableView[$ty]).map[$tres]($f)'' =>

Map(liftQuery(view), liftQuery(f))

case code''($view0: TableView[$ty0]).join($view1: TableView[$ty1])($pred)'' =>

Filter(Join(liftQuery(view0), liftQuery(view1)),

liftQuery(code''(ab: ($ty0, $ty1)) => $pred(ab._1, ab._2)''))

case code''($view: TableView[$ty]).aggregate[$tres]($init, $acc)'' =>

Aggregate(liftQuery(view), liftQuery(init), liftQuery(acc))

case _ =>

val cde = adaptCode(query)

PlainCode(cde)

}

The adaptCode function, whose detailed implementation we omit in this presentation, is

applied on Scala code fragments which do not represent queries; it has two purposes:

• To transform all field accesses and method calls performed in these Scala code fragments

into the form they will need to have in the final generated code. In our approach, we

represent the stored user data explicitly, without wrapping it into a class — and possibly

in formats such as the column store representation — so the methods present in the

original class defining the stored data types will be lifted as top-level functions, and their

calls need to be adapted by this adaptCode function.

• To check that no queries are nested somewhere we cannot lift them, for example inside

a lambda passed to an unhandled (unlifted) function. This way, if users mistakenly

use the wrong constructs and write queries which cannot be interpreted and compiled

238

9.5. Basic Optimization and Planning for Queries

properly by our engine, a clean error is reported — as opposed to compiling broken or

suboptimal code, which would lead to surprising performance.

Once we have queries represented in the form above, we can apply some rewritings on them,

and then turn them into query plans, which represent lower-level query implementation

strategies.

9.5 Basic Optimization and Planning for Queries

In this section we briefly review how queries are optimized by rewriting, and then planned

before being turned into efficient low-level code.

9.5.1 Query Rewriting

The primary goal of query rewriting is to make the represented queries more regular and

uniform, as well as to make them amenable to better planning (next subsection), allowing

them to use efficient implementations.

Simple Query Optimizations

There are many rewritings performed by traditional query engines to improve the efficiency of

query implementations.

For instance, we usually want to move the filter operations as close to the data source as

possible, to avoid as many intermediate computations as possible. Given a query such as

Filter(Map(xs, f), pred), if the f computation is cheap (e.g., a field projection), we usually

want to rewrite the query to Map(Filter(xs, x => pred(f(x))), f).

Moreover, we want to merge filter operations together so they can later be properly scrutinized

when later trying to extract join predicate (see Section 9.5.3).

There are more tricky cases, where we need to determine which parts of a filter predicate

contain references to a free variables and which do not; for instance, consider the query

Filter(Join(xs, ys), pred). It is very often possible to separate the parts of pred which

depends on x, on y, and on both, after which we can move the first two to the respective xs and

ys subqueries. For instance, consider the predicate case (x, y) => x > 0 && y > 0 && x > y,

which can be split into x => x > 0, y => y > 0, and case (x, y) => x > y. Like all operations

involving bindings, this is usually an error-prone optimization to perform; thankfully, Squid’s

advanced scope-safe abstractions guarantee that we do not extrude variable references from

predicates, removing a whole class of errors in the design of query optimizers.

239

Chapter 9. Application: A Staged Database Compiler

Join Streamlining

In Scala, for comprehensions are implemented as compositions of map, flatMap, and filter

method calls. This is a very expressive and flexible framework, but it can often be turned into

a more restricted (and more optimizable!) representation. Consider the following query:

for (a <- as; b <- bs; if p(a, b)) yield f(a, b)

This is automatically rewritten by the Scala type checker into:

as.flatMap(a => bs.flatMap(b => (a,b)))

.filter(ab => p(ab._1, ab._2))

.map(ab => f(ab._1, ab._2))

In the case when bs does not refer to a, the same query can be expressed in a much more

precise and direct way as:

as.join(bs)(p)

.map(ab => f(ab._1, ab._2))

The query planner will typically be able to implement the latter in a much more efficient way,

including asymptotic efficiency gains, using different join implementation strategies based on

the properties of the source collections and on the join predicate p.

We can perform that rewriting automatically based on the QueryRep representation. Again, this

requires careful consideration about scopes and free variables, where Squid’s statically-typed

contexts are extremely useful in helping to prevent common mistakes.

9.5.2 Query Plans

The query plan representation, QueryPlan, is another staged data type. It is slightly lower-

level than QueryRep and contains more information on how each subquery is meant to be

implemented. Query plans have a getCode method which is used to emit the actual Scala code

which implements each operator:

sealed abstract class QueryPlan[Res: CodeType, -C] {

def getCode: Code[Res, C]

}

Iteration Plans

The simplest plan is of course the execution of plain Scala code (corresponding to the

PlainCode constructor of QueryRep):

case class PlainExec[Res: CodeType, C](cde: Code[Res, C])

240

9.5. Basic Optimization and Planning for Queries

extends QueryPlan[Res, C] {

def getCode: Code[Res, C] = cde

}

We separate query plans between two categories: general query plans, and iteration query

plans. The latter represents a particular form of queries which iterates over an existing collec-

tion or subquery; it is given below:

/** The plan for some iteration as part of a bigger query plan. */

sealed abstract class IterationPlan[Row: CodeType, -C]

extends QueryPlan[TableView[Row], C] {

def push[C0 <: C](step: Code[Row => Boolean, C0]): Code[Unit, C0]

def foreach[C0 <: C](step: Code[Row => Unit, C0]): Code[Unit, C0] =

push(code{ row: Row => $(step)(row); true })

def getCode: Code[TableView[Row], C] = code''''''

val buff = mutable.Buffer.empty[Row]

${ foreach(code''(row: Row) => buff += row'') }

TableView.fromBuffer(buff)

''''''

}

IterationPlan has a push method for generating code to push values produced byt the plan

into some callback function, until the callback returns false. The foreach method is just

syntax sugar over push.

In the real system, we also have a slightly more complex (and often less efficient) pull method,

which can be used for implementing certain more advanced query plans (like merge joins),

but we do not show it here.

The simplest iteration plan is the one that simply scans the elements of an existing table:

case class Scan[Row: CodeType, C](src: TableRep[Row])

extends IterationPlan[Row, C] {

def push[C0 <: C](step: Code[Row => Boolean, C0]): Code[Unit, C0] = code''''''

val (hasNext, getNext) = ${src.getIter}

while (hasNext() && $step(getNext())) { }

''''''

}

The getIter method from TableRep is used to iterate on the elements of the table; it will use

the underlying staged class (following the approach described in Section 9.3.1).

241

Chapter 9. Application: A Staged Database Compiler

Next, we see iteration plans for selection (i.e., filtering) and projection (i.e., mapping):

case class Selection[Row: CodeType, C]

(src: IterationPlan[Row, C], pred: QueryPlan[Row => Boolean, C])

extends IterationPlan[Row, C] {

def push[C0 <: C](step: Code[Row => Boolean, C0]): Code[Unit, C0] =

src.push(code''(row: Row) => if (${pred.getCode}(row)) $step(row) else true'')

}

case class Projection[Row: CodeType, RowRes: CodeType, C]

(src: IterationPlan[Row, C], f: QueryPlan[Row => RowRes, C])

extends IterationPlan[RowRes, C] {

def push[C0 <: C](step: Code[RowRes => Boolean, C0]): Code[Unit, C0] =

src.push(code''(row: Row) => $step(${f.getCode}(row))'')

}

General Plans

The query plan for aggregating values is not an iteration plan, but it uses one as the source of

the data that is being aggregated:

case class Aggregation[Row: CodeType, Res: CodeType, C]

(src: IterationPlan[Row, C],

init: QueryPlan[Res, C], acc: QueryPlan[(Row, Res) => Res, C])

extends QueryPlan[Res, C] {

def getCode: Code[Res, C] = code''''''

var res = ${init.getCode}

${ src.foreach(code''(row: Row) => res = ${acc.getCode}(row, res)'') }

res

''''''

}

Below is a plan for computing the result of another query first, and then executing the rest of

the query (which corresponds to the Nested query representation):

case class NestedPlan[R: CodeType, T: CodeType, C, XCtx]

(x: Variable[R] { type Ctx = XCtx }, value: QueryPlan[R, C],

rest: QueryPlan[T, C & XCtx])

extends QueryPlan[T, C] {

def getCode: Code[T, C] = {

val restCode = rest.getCode

x.tryClose(restCode) match {

case Some(closed) => code''${value.getCode}; $closed''

case None => code''val $x = ${value.getCode}; $restCode''

}

242

9.5. Basic Optimization and Planning for Queries

case class NestedLoopJoin[Row1: CodeType, Row2: CodeType, C]

(it1: IterationPlan[Row1, C], it2: IterationPlan[Row2, C])

extends IterationPlan[(Row1, Row2), C] {

def push[C0 <: C](step: Code[((Row1, Row2)) => Boolean, C0])

: Code[Unit, C0] =

it1.push(code''''''(row1: Row1) =>

var continue = true

${ it2.push(code''(row2: Row2) => {

continue = continue && $step((row1, row2))

continue

}'''''') }

continue

}'''''')

}
Figure 9.1 – query plan for a nested-loop join

}

}

Earlier, we represented both val bindings and effectful statements using the Nested query

representation; consequently, when emitting code for the corresponding NestedPlan, we make

sure to only generate a val binding if the variable actually occurs in the rest code. Remember

that v.tryClose(b) returns None if v occurs in b, and Some(c) if it does not (where c has a refined

type where v is removed from the context component).

Join Plans

Finally, let us review two possible query plans for implementing joins: the most straightforward

implementation of a join, a naive nested-loop join, shown in Figure 9.1; and a more interesting

hash join implementation, shown in Figure 9.2.

The hash join implementation expects to be given a way of extracting some K key from records

of both sources of the join; it uses this to create an intermediate hash map of the records from

the first source, and uses that map to efficiently find the corresponding records when iterating

on the second source.

9.5.3 Query Planning

There is a vast literature on performing query planning using advanced search heuristics to find

the best possible plans; in a real system, one would design an appropriate algorithms following

these lines. In this thesis however, we only show a very basic query planner implementation,

which is sufficient to illustrate the gist of our staged database compilation approach.

243

Chapter 9. Application: A Staged Database Compiler

case class HashJoin[Row1: CodeType, Row2: CodeType, K: CodeType, C]

(it1: IterationPlan[Row1, C], it2: IterationPlan[Row2, C],

getK1: Code[Row1 => K, C], getK2: Code[Row2 => K, C])

extends IterationPlan[(Row1, Row2), C] {

def push[C0 <: C](step: Code[((Row1, Row2)) => Boolean, C0])

: Code[Unit, C0] = code''''''

val hm = mutable.HashMap.empty[K, mutable.Buffer[Row1]]

${ it1.foreach(code''''''(row1: Row1) => {

val k = $getK1(row1)

val buff = hm.getOrElseUpdate(k, mutable.Buffer.empty)

buff += row1

}'''''') }

${ it2.push(code''''''(row1: Row1) => {

val k = $getK2(row2)

val buff = hm.get(k)

if (buff.isDefined) buff.get.forall { row1 =>

$step((row1, row2))

} else true

}'''''') }

''''''

}
Figure 9.2 – query plan for a hash join on some key K

244

9.5. Basic Optimization and Planning for Queries

/** Turn a basic query into a query plan. */

def planQuery[T, C](rep: QueryRep[T, C]): QueryPlan[T, C] = rep match {

case c: Count[_, C] =>

import c.Row // to get the implicit type representations in scope

Aggregation[Row, Int, C](planIteration(c.q), PlainExec(code''0''),

PlainExec(code''(row: Row, acc: Int) => acc + 1''))

case a: Aggregate[_, _, C] =>

import a.{Row, Res}

Aggregation[Row, Res, C](planIteration(a.q), planQuery(a.init),

planQuery(a.acc))

case f: Foreach[_, C] =>

import f.Row

QueryForEach[Row, C](planIteration(f.q), planQuery(f.f))

case w: While[t, C] =>

import w.Val

QueryWhile(planQuery(w.cond), planQuery(w.e))

case f: Lambda[targ, tres, C, xCtx] =>

import f.{Arg, Res, Ret}

Closure(f.param, planQuery(f.body))

case l: Nested[tx, tres, C, xCtx] =>

import l.{Val, Res}

NestedPlan(l.x, planQuery(l.value), planQuery(l.rest))

case c: PlainCode[t, C] =>

import c.Res

PlainExec(c.cde)

case All(_) | Map(_, _) | Filter(_, _) | Join(_, _) =>

planIteration(rep)

}

Figure 9.3 – Basic general query planning (planIteration is shown in Figure 9.4.)

245

Chapter 9. Application: A Staged Database Compiler

/** Turn an iteration query into a query plan. */

def planIteration[T: CodeType, C](rep: QueryRep[TableView[T], C])

: IterationPlan[T, C] = rep match {

case All(tbl) => Scan(tbl)

case map: Map[typ, tres, C] =>

import map.Row

Projection(planIteration(map.q), planQuery(map.f))

case join: Join[t1, t2, C] =>

import join.{Row1, Row2}

NestedLoopJoin(planIteration(join.q1), planIteration(join.q2))

case Filter(view, pred) =>

def defaultImpl = Selection(planIteration(view), planQuery(pred))

view match { // try to plan more elaborate join implementations:

case join: Join[t1, t2, C] =>

import join.{Row1, Row2}

extractJoinPredicate(pred) match {

case hj: HashJoinPred[k] =>

import hj.K

val impl = HashJoin(planIteration(join.q1),

planIteration(join.q2),

hj.getK1, hj.getK2)

hj.predRest match {

case Some(pred) =>

Selection(impl, planQuery(pred))

case None => impl

}

case _ => defaultImpl

}

case _ => defaultImpl

}

}

Figure 9.4 – Basic iteration query planning.

246

9.6. Evaluation

0 500 1000 1500 2000 2500 3000

Modular

Inlined

Compilation Time (ms)

SM Q1 Q10 Q11 Q12 Q14 Q18 Q19 Q2 Q20 Q3 Q4 Q5 Q6

Figure 9.5 – Compilation times for TPCH queries, comparing a “modular” approach where the
common storage manager (SM) infrastructure used by the queries is factored into a separately-
compiled file, and an “inlined” approach where the required infrastructure is duplicated in
each query.

Figure 9.3 shows how general query plans are created from query representations; there is

nothing really surprising about it. More interestingly, we show how to plan iteration queries

in Figure 9.4. In order to select efficient join implementations when available, at the time

of scheduling a Filter query, we check if the underlying view is a Join query; if so, we try

to extract a useful join predicate from it using the extractJoinPredicate (whose implemen-

tation, based on simple Squid pattern matching, we do not show here). This function may

successfully extract a HashJoinPred predicate, which contains the information we need to

construct a hash join plan from it. More join implementation strategies can be devised and

planned using this strategy — one simply has to add the corresponding join plans, adapt the

extractJoinPredicate function appropriately, and handle the new cases in planIteration.

9.6 Evaluation

It would be hard to evaluate the performance of our limited database system against existing

approaches. Indeed, it would be unfair to compare it with mature industrial engines for the

JVM, as these are designed to handle a lot more scenarios and use cases, and as a result they

will likely have significant overhead compared to our simplistic prototype.

Instead, here we compare the original version of an existing static query compiler previously

built with Squid (call it SQC), to a new modularized version built with Squid + staged classes

(call it MSQC). Previously, SQC generated all the code necessary for dealing with storage man-

agement of the database tables with each query, which resulted in significant recompilation

costs. Moreover, the data structures were generated using ad-hoc mechanisms based on

cobbling strings together, which had proven brittle and limiting. We have reimplemented and

modularized the data structure manipulation of SQC with staged classes (giving MSQC), so

that the storage management code is generated in a reliable way and is compiled only once,

and so that each query can refer to it safely.

Both SQC and MSQC are configured to generate C code at the end of the compilation pipeline,

247

Chapter 9. Application: A Staged Database Compiler

0
200
400
600
800

1000
1200

Q
1

Q
10

Q
11

Q
12

Q
14

Q
18

Q
19 Q

2

Q
20 Q

3

Q
4

Q
5

Q
6

Ru
n

tim
e

(m
s)

Inlined Modular

Figure 9.6 – Running times for the TPCH queries in Figure 9.5, comparing the “modular” and
“inlined” approaches.

and to offload C compilation to the Clang compiler (version clang-900.0.39.2). Figure 9.5

compares the cumulated compilation times of the generated C code of a set of TPCH queries

[Transaction Processing Performance Council, 1999] for SQC (“Inlined”) and MSQC (“Modu-

lar”). We have also verified that the modularization of the compiled query code did not, in

fact, introduce any performance degradation. Figure 9.6 shows that the performance of each

query is comparable for SQC (“Inlined”) and MSQC (“Modular”).

All the measurements in this chapter were made on an Intel Core i7 CPU running at 3.5GHz,

16GB of DDR3 RAM at 2133Mhz, with macOS 10.13.6.

9.6.1 Related Work

There are many database libraries for high-level languages like Scala, such as Slick, Quill, Doo-

bie, etc., which all have creative ways of representing and handle database queries. However,

the vast majority (if not all) of these efforts are focused on accessing external databases. This

project goes much beyond that goal, as it tries to actually implement a database system from

first principles, in a high-level language, using metaprogramming to avoid for paying the cost

of abstraction.

As a corollary, this tight language integration between our query language and our database

implementation makes our system much more flexible (not restricted to the only data types,

operations, and queries supported by SQL). The goal is also to allow users to customize the

database runtime system (query optimization capabilities, query operator implementations,

storage management, etc.), not merely to provide a query-DSL-to-SQL translation.

Finally, contrary to LINQ and other similar approaches, the “expression trees” we lift from

query expressions are typed, thanks to Squid’s support for type-safe netaprogramming. This

means the implementation of the query lifter is inherently safer, as type and scope erros

cannot be introduced by incorrect manipulations of program fragments.

248

9.7. Conclusion

9.7 Conclusion

In this chapter, we have sketched a real-world-inspired staged database compiler. We made

use of staged classes in order to generate efficient reusable data structures at run time. The

metaprogram we have shown uses three successive stages: in the first stage, we compile the

containers used to hold the database data in an efficient way; in the second stage, we compile

individual queries making use of these containers (the queries are assumed to be received

later on, over the network); the last stage corresponds to actually running the queries. We

used cross-stage persistence in order to propagate the type information needed to compile

queries after having compiled the data containers we want to query. Finally, we presented

a more advanced alternative frontend for our system, making full use of Scala’s DSL design

capabilities and Squid’s type-safe analytic metaprogramming.

249

10 Comprehending Monoids with Class

Powerful high-level and languages like Scala and Haskell offer the ability to define expressive

embedded domain-specific languages (EDSL) for writing database queries in them, leveraging

their expressive type systems.

In the previous chapter, we presented a staged database system designed to interact with users

through or an embedded Scala DSL inspired by relational query languages (in addition to its

SQL frontend); however, there is a wide design-space for such query languages, and we have

so far only explored a small corner of it.

This chapter presents the result of my search for the best DSL, to embed in languages like

Scala or Haskell, for expressing queries over collections of data.

We revisit an old concept, monoid comprehension, and explore how to integrate it with a

functional programming language with support for type classes, as well as how it compares to

the more traditional monad comprehension approach. We argue that for expressing queries

over collections of data, our embedding of monoid comprehension can be more flexible,

simpler, more efficient, and safer than its monadic counterpart.

10.1 Background on Comprehension

This sections briefly recalls some background on the common ‘set comprehension’ syntax.

10.1.1 Origins

The comprehension syntax dates all the way back to Cantor’s work on set comprehension

(circa 1874). A set comprehension is an expression of the form
{

x | f (x)
}

, which denotes the

set of all x for which f (x) holds.

Unfortunately, this approach turned out to lead to inconsistencies, as it was too flexible. For

251

Chapter 10. Comprehending Monoids with Class

example, consider the set S defined as:

S = { x | x 6∈ S }

What should be the truth value of the statement S ∈ S? If it is true, then by definition it must

be false, and vice versa. (This is known as Russell’s paradox.)

With their ZFC theory, Zermelo (1908) and Fraenkel (1922) restricted the syntactic form of set

comprehensions, so that the defined set elements be required to “range” over an existing set

X , and that set X as well as the predicate f were not allowed to refer to the set being defined:

S = {
x | x ∈ X , f (x)

}
where S 6∈ FV(X) ∪ FV(f)

This avoided the paradox, but required new axioms to be added to the theory, as a result of the

reduction in the expressiveness of set comprehension.

On the other hand, restricting the scope of the comprehension syntax incidentally made it

useful for programming. As early as the 1970s, programming languages started incorporating

an analogous syntax for building lists of elements from preexisting lists. For example:

L = [
(x, y) | x ← X , f (x), y ← Y , g (x, y)

]
which iterates over two existing lists X and Y and produces a list of pairs, while filtering the

output using predicates f and g .

This of course raises the question: “why just lists?,” and indeed Wadler [1990] showed that

the comprehension syntax could be generalized to any monad. And since in Haskell, the

input/output effect type IO is a monad, one could now conveniently write effectful expressions

such as:

P = [
() | x ← getLine, () ← print x

]
where P is given type IO (), the type of programs that performs side effects and then return the

unit value ().

As an aside, a different syntax was soon preferred for such monadic expressions, the “do”-

notation, which looked closer to the imperative programming constructs that it could be used

to express:

do
{

x ← getLine; () ← print x; return ()
}

10.2 Comprehension for Queries

We have known for a while that list comprehensions are a very natural way to express certain

queries over relational databases [Trinder, 1992, Grust, 2004]. For example, consider the

following SQL query:

252

10.3. Why Monoid Comprehension?

q0 = SELECT name, age FROM Persons WHERE age > 18

...which can be expressed as the list comprehension:

q0 =
[

(name p, age p) | p ←Persons, age p > 18
]

However, not all SQL query features fit well in this encoding. For example, it is not easy to

express grouping aggregations (the SQL GROUP BY form) and ordering (ORDER BY in SQL).

Thus, Jones and Wadler [2007] extended the syntax of list comprehension with generaliza-

tions of these two constructs, and Giorgidze et al. [2011] generalized them to all monadic

comprehensions. Below is an example of that extended syntax (we explain it later in this

chapter): [
f b | (a,b) ← xs, then group by a using g

]
In parallel to all this, another interpretation of comprehension in the context of programming

was devised by Fegaras and Maier [1995, 2000] who generalized list comprehension to monoid

comprehension, instead of going for monads. Here is what that approach looks like:

++{
(x, y) | x ← X , f (x), y ← Y , g (x, y)

}
where ++ here is lis concatenation. It indicates that we are building a list as a result of the

comprehension, telling us how to combine intermediate results. We will explain in more

detail how this works, and why I think it is often better at expressing queries than monad

comprehension.

The goal of this chapter is to shed some light on the possibilities of monoid comprehension

in the context of functional programming with type classes. I believe the approach has not

received the interest it deserves from our community, partly because it had never been properly

embedded within the type system of a functional language.

10.3 Why Monoid Comprehension?

Before we go further, let us quickly recall the semantics of monad comprehension and then

explore that of monoid comprehension, based on some examples.

10.3.1 Semantics of List and Monad comprehension

Given a list comprehension such as:[
g x y | x ← xs, y ← y s, f x y

]
253

Chapter 10. Comprehending Monoids with Class

the Haskell compiler will (at least conceptually1) emit the following code:

q1 = concatMap (\x ->

concatMap (\y ->

if f x y then [g x y] else []

) ys

) xs

where concatMap :: (a -> [b]) -> [a] -> [b] takes a list, maps a list-returning function

over it, and returns the concatenation of all the resulting lists.

The monadic generalization is very similar, but obviously uses monadic operators, which are

strictly more general, instead of list operators:

q1 = (>>= \x ->

(>>= \y ->

if f x y then return $ g x y else mzero

) ys

) xs

The first thing to notice is that this form of comprehension requires full homogeneity between

the sources being iterated, as well as the result being built. In the example above, xs, y s, and q

must all be of the same Monad type m.

10.3.2 Embedding Monoid comprehension in Haskell

In this chapter, I propose an embedding of monoid comprehension in Haskell where type

class resolution is used to implicitly resolve which monoid instance we want to use.

That is, instead of writing ++ { e | ... } (for the list monoid) or &&{ e | ... } (for the boolean ’and’

monoid) as shown in the previous section, we will write just { e | ... } and let the type checker

infer which monoid interpretation to use based on the type of expression e.

This may seem like a very minor change, but I argue that it actually unleashes the expressive

power of monoid comprehension. Indeed, not all monoids can be characterized by a single

operator, as some monoid instances are derived automatically from more primitive ones. We

will see interesting examples of that towards the end of this chapter.

10.3.3 Semantics of Monoid comprehension

Given the following hypothetical syntax for monoid comprehension:

q2 = {
g x y | x ← xs, y ← y s, f x y

}
1Optimizing compilers like the Glasgow Haskell Compiler may, in practice, emit a fast recursive function to

implement this list comprehension.

254

10.3. Why Monoid Comprehension?

The translation would be very close to that of list (or monad) comprehension, except that

instead of concatMap (or >>=) we use foldMap, and instead of wrapping the yielded expression

into a singleton list (or return), we do not wrap it at all:

q2 = foldMap (\x ->

foldMap (\y ->

if f x y then g x y else mempty

) ys

) xs

where foldMap :: (Foldable f, Monoid m) => (a -> m) -> f a -> m takes a monoid-returning

function, maps it over anything that can be folded, and returns the monoidal merge of all the

results.

(Recall that a monoid is a type with an associative binary operation and an ‘identity’ element.)

The important thing to notice now is that contrary to the monadic interpretation, this re-

quires no homogeneity at all between the different parts of the query: xs and y s can be

different Foldable types, and q can be any Monoid!

This becomes more apparent if we examine the type of the query after parameterizing it with

all its free variables:

query f g xs y s = {
g x y | x ← xs, y ← y s, f x y

}
query :: (Monoid m, Foldable f1, Foldable f2) ⇒

(a → b → bool) → (a → b → m) → f1 a → f2 b → m

where we can see that query can be invoked with any combinations of two Foldable inputs

and a Monoid output.

As a concrete example of monoid comprehension defined on heterogeneous types, the follow-

ing query computes a sum from iterating over a list and a set:{
Sum (length y +x) | x ← [1,2,3], y ← Set.fromList [“a”,“bb”,“ccc”]

}
(In Haskell, the Sum “newtype” is used to wrap a numeric type giving it the monoid instance

corresponding with summation — indeed, there are other possible monoid interpretations for

these types, such as Product.)

10.3.4 Encoding

It is clear that the result of a monad comprehension [e | c...] that works on foldable inputs

c... and a monoid result e (which is the case of most comprehensions on collections of data)

255

Chapter 10. Comprehending Monoids with Class

should correspond to the result of an equivalent monoid comprehension { e | c... }, so we say

that monoid comprehension “subsumes” monoidal monad comprehension.

On the other hand, we can encode a monoid comprehension with a list comprehension in a

straightforward way. All we need to do is wrap the comprehension in a fold, and wrap each

source in a toList (both from the Data.Foldable module):

q3 = {
g x y | x ← xs, y ← y s, f x y

}
= fold

[
g x y | x ← toList xs, y ← toList y s, f x y

]
so monoid comprehension offers no gain in terms of pure expressive power. But besides the

slight reduction in syntactic overhead2 and the added flexibility given by heterogeneity, it still

has several advantages over monad comprehension, as we shall see below.

10.3.5 Space Efficiency

First of all, notice that using list comprehension to model database queries needlessly creates

a lot of intermediate list data structures.

In the case of q3 as defined in the previous section, not only will we create one extraneous

list for each source collection (if it is not already a list) but we will also create the cartesian

product of xs and y s as a list of size lengthxs × length y s3 and fold the result into the monoid

returned by g (though if that monoid is sufficiently lazy, the cartesian product list will not be

fully materialized in memory, and will instead be progressively produced and consumed in

constant space).

Compare that with the monoid comprehension approach, which does not create any inter-

mediate data structures at all and is thus asymptotically better in terms of space complexity.

So, why not comprehend monoids directly?

10.4 SQL-style Grouping and Ordering

One of the nice things about monoid comprehension is that it gives us constructs for grouping

and ordering for free, without any additions to the syntax. But first, let us explain how it is

currently done in monad comprehension.

2It is also possible to encode monoid comprehension as a monad comprehension using the continuation
monad and conversions from the input collections that wrap up a call to foldMap in the continuation.

3This is not actually always true: GHC is smart enough to produce efficient loops instead of calls to concatMap
for list comprehensions, to avoid the creation of intermediate lists (concatMap is the official semantics of list
comprehension, but the Haskell language specification does not mandate a particular desugaring). However,
monad comprehensions cannot use the same trick, and have to pay the cost of >>=-based desugaring.

256

10.4. SQL-style Grouping and Ordering

10.4.1 Grouping in monad comprehension

In query languages such as SQL, it is possible to group the result of a query by some fields from

the original input. For example, the SQL query:

q4 = SELECT Avg(p.Salary) FROM Person p GROUP BY p.Age

computes, for each known age, the average salary of the persons of that age found in the table

named ‘Person.’

The grouping construct of SQL does not fit well within the monadic interpretation of compre-

hension, which is why the list [Jones and Wadler, 2007] and monad [Giorgidze et al., 2011]

comprehension syntaxes were extended to accommodate precisely that construct, along with

a construct for ordering. For example, the SQL query above can now be written in Haskell as:

[
average (map salary p) | p ← persons, then group by age p using groupWith

]
where groupWith is the function used to do the grouping, and average simply computes the

average of a list. The trick is that after the then group by expression (and also on the left-hand

side of the |), the meaning of binding p changes from “the person currently iterated” to “the

group of persons currently iterated,” where the groups are determined by the arguments given

to group by and using. So while p has type Person right after the “p ← persons” generator,

it becomes a list of type [Person] after the group by statement, and in the “map salary p”

expression.

While clever, this is a nontrivial and quite idiosyncratic mechanism (I do not know of any

other language in which a construct modifies the meaning of certain bindings without even

mentioning them). And to add to the scoping conundrum, the variables defined in the

comprehension are not in scope of the function passed to ‘using‘, whereas they syntactically

seem to be.

Moreover, if we want to remember the age associated with each average, we have to write:

q4 = [
(the a, average s) | p ← persons,

let a = age p,

let s = salary p,

then group by a using groupWith
]

or slightly more succinctly:

q4 = [
(the age, average salary) | Person{

age, salary
}← persons,

then group by age using groupWith
]

257

Chapter 10. Comprehending Monoids with Class

where the :: Eq a => [a] -> a returns the head of a list and makes sure all the elements

in that list are equal. This is somewhat unsatisfactory, because the is a partial function that

throws runtime exceptions, and it is easy to get that part wrong, for example by writing age

$ the p on the left-hand side of the | (where p is the [Person] variable), which crashes at

runtime, instead of extracting age from the current Person (also named p), on the right-hand

side of the | and then writing the age on the left-hand side, as above.

10.4.2 Grouping in monoid comprehension

Now, what does it take to have grouping in monoid comprehension? Perhaps surprisingly, the

answer is nothing at all! In fact, grouping is trivial in monoid comprehension.

Remember that all grouping does is aggregate elements into “buckets” based on some “key”

extracted from the iterated elements. Well, this is what we would normally use a Map for — we

just need a Map with an instance of Monoid that combines the values of shared keys based

on their own Monoid (or Semigroup) instance, such as Data.HashMap.Monoidal provided by the

monoidal-containers library.4

Here is how to write the example above using a monoid comprehension:

q4 = {
Average (salary p) g̀roupBỳ age p | p ← persons

}
where Average is a newtype5 to aggregate values using their Fractional instance, and groupBy

= flip Data.HashMap.Monoidal.singleton is just syntactic sugar for creating a singleton Map

object, given a key and value.

Assuming the salary field of Person is a Float, the expression above results in a HashMap Int

(Average Float) mapping each age to the average salaray of the persons of that age.

10.4.3 Performance of grouping

According to the GHC specification,6 the monad comprehension encoding of q4 essentially

desugars to:

groupWith (\(age ,salary) -> age) [(age ,salary) |

Person{age ,salary} <- persons] >>= \ys ->

case (fmap (\(age ,salary) -> age) ys, fmap (\(age ,salary) ->

salary) ys) of

(age ,salary) -> return (the age , average salary)

4monoidal-containers: https://hackage.haskell.org/package/monoidal-containers
5the Average newtype is provided at http://hackage.haskell.org/package/average-0.6.1/docs/

Data-Monoid-Average.html
6GHC specification of generalized list comprehension: https://downloads.haskell.org/~ghc/7.8.3/docs/html/

users_guide/syntax-extns.html#generalised-list-comprehensions

258

https://hackage.haskell.org/package/monoidal-containers
http://hackage.haskell.org/package/average-0.6.1/docs/Data-Monoid-Average.html
http://hackage.haskell.org/package/average-0.6.1/docs/Data-Monoid-Average.html
https://downloads.haskell.org/~ghc/7.8.3/docs/html/users_guide/syntax-extns.html#generalised-list-comprehensions
https://downloads.haskell.org/~ghc/7.8.3/docs/html/users_guide/syntax-extns.html#generalised-list-comprehensions

10.4. SQL-style Grouping and Ordering

Notice how this expression computes many intermediate lists. Worse, it traverses the entire

data a grand total of (at least) six times! The traversals are done by the call to groupWith, the

conversion of the input list to a list of tuples, the two fmap applications, and finally calls to the

and average.

On the other hand, the monoid comprehension form desugars to just:

foldMap (\ Person{age ,salary} ->

Average salary `groupBy ` age) persons

which computes its result in a single list traversal and creates no intermediate lists at all. Of

course, we are building a Map, with overall complexity n · log (n), but this complexity is also

present in the monadic form since groupWith needs to pre-sort its input list.

Note that list fusion will likely not remove all the extraneous intermediate lists of the monadic

form (even when specialized to lists), since it makes non-linear use of lists like ys and the

argument to groupWith.

10.4.4 Generality of grouping

You may be thinking that the extended monad comprehension syntax is more flexible, because

it allows us to define separate aggregations on the result, as in:

q5 = [
(sum x, average y) | (x, y, z) ← ls, then group by z using groupWith

]
but in fact, this is trivially expressed in monoid comprehension as well, thanks to the fact that

a tuple of monoids is also a monoid, as in:

q5 = { (
Sum x, Average y

)
g̀roupBỳ z | (x, y, z) ← ls

}
which, contrary to the monadic version, only performs a single traversal of the source data,

accumulating the result of Sum and Average “in parallel.” In fact, there are other parallel monoid

aggregations which cannot actually be expressed with a pure monad comprehension (using

only the ‘group by’ extended syntax), such as:{ (
Sum x g̀roupBỳ y, Average y g̀roupBỳ x

) | (x, y) ← ls
}

Another interesting flexibility of the monad comprehension form is that one can use an

arbitrary grouping function in the using clause, not just groupWith. This flexibility is also

present in the monoid comprehension form, where we would simply use a Map type with a

different Monoid instance as the result of a new groupBy' function.

259

Chapter 10. Comprehending Monoids with Class

10.4.5 Ordering

The extended monad comprehension syntax also has built-in support for processing the

current results of the comprehension, which can be used for ordering it, or dropping some

elements from it, etc. For example, the following expression first “drops” 1 element of its input

list, groups the remaining elements computing their sum, and then “takes” the first two such

grouped sums:

q6 = [
(the a, average s) | (x, y) ← xs,

then drop 1,

then group by y using groupWith,

then take 2
]

The monoid comprehension syntax does not have a built-in way of doing that, but it is easily

encoded by directly applying the processing functions in question:

take 2
{
Sum x g̀roupBỳ y | (x, y) ← drop 1 xs

}
On the other hand, we can again define a new SQL-like construct by simply wrapping things

into a type with the right monoid instance. In the case of ordering, all we have to do is to use a

monoidal map that orders its elements, such as Data.Map.Monoidal provided by the monoidal-

containers package. We can define syntax sugar ‘orderBy = flip Data.Map.Monoidal.singleton‘,

and then use it as in:

q7 = {
(count, [x] òrderBỳ Down y) g̀roupBỳ z | (x, y, z) ← xs

}
which has type HashMap z (Sum Int, Map (Down y)[x]). This query iterates over the (x, y, z)

element of xs, creating one group for each distinct z, and in each of these groups:

1. counts the number of elements in it (where count = Sum 1);

2. creates one list of x for each distinct y , ordering these lists by y in descending order

(Down is a newtype that reverses the canonical order Ord of a type).

This query is interesting because it is neither expressible in SQL nor in pure (extended)

monad comprehension, which demonstrates the versatility of using monoid instances to

compose queries with various meanings.

260

10.5. Conclusions on Monoid Comprehension in Haskell

10.5 Conclusions on Monoid Comprehension in Haskell

In summary, we have seen that monoid comprehension is a useful alternative to list or monad

comprehension, especially in the context of expressing queries over collections of data. Indeed,

in this specific context it is:

• more flexible, since it allows iterating over heterogeneous data sources without coer-

cions while being able to produce any monoid result in one go, and since it can express

advanced queries (that monad comprehension cannot directly) simply by composing

monoid instances together;

• simpler, as it has a straightforward desugaring, and does not need any extensions for

expressing SQL-like queries (we have grouping and ordering “for free”);

• more efficient, because it requires fewer traversals of the processed data and fewer

intermediate collections — in fact exhibiting asymptotically better space efficiency;

• safer, as it does not require the use of partial functions like ‘the‘ to perform basic tasks

such as grouping while retaining the grouping key.

10.6 Generalized Monoid Comprehension in Scala

We have also implemented monoid comprehension in Scala, following precisely the same

type-class-based approach as seen in the previous section in the context of Haskell.

In the example below, we demonstrate an embedding in Scala, whose for-comprehension

syntax is not necessarily monadic and can easily be repurposed to accept a monoidal interpre-

tation:

for { fname <- fileNames

word <- streamFile(fname).characters.splitOn(' ')

if word.nonEmpty }

yield (avg(word.length.toDouble),

count().groupedBy(word.toLowerCase))

This query iterates over all the words contained in a set of files and aggregates the global

average word length as well as per-word case-insensitive occurrence counts. This is desugared

to a composition of map, flatMap and filter, which we have overloaded to aggregate monoids.

For example, one signature of map is (A => R) => As => R where R has to be a monoid and As has

to be a finite source of A elements. The type inferred is (Option[Avg[Double]], Map[String,

NonZero[Nat]]).

261

Chapter 10. Comprehending Monoids with Class

Canonical Semigroup Associated Canonical Monoid Properties

(NonZero[Nat], _ + _) (Nat, _ + _, 0) C
(List[T], _ ++ _) (List[T], _ ++ _, Nil) O F

(NonEmpty[Set[T]], _ union _) (Set[T], _ union _, Set.empty) C I F
(Max[Nat], _ max _) (Max[Nat], _ max _, 0) C I
(Max[Int], _ max _) (Option[Max[Int]], _.flatMap(m=>m max _), None) C I

(Streamed[T], _ concat _) (Streamed[T], _ concat _, Streamed.empty) L O
(Incr[Set[T]], _ concat _) (Incr[Set[T]], _ concat _, Incr.empty) I L O

(Map[K,NonZero[Nat]], _ merge _) (Map[K,NonZero[Nat]], _ merge _, Map.empty) C F

Table 10.1 – Some example canonical semigroup instances, their associated canonical monoid
forms, and their properties. Where C = commutative, I = idempotent, L = lazy, and for data
sources O = ordered, F = finite.

10.6.1 The Full Monoid Comprehension Calculus

There is more to the monoid comprehension calculus (MCC) than the monoid comprehension

syntax. Crucially, not all combinations of monoids are normally allowed in a given monoid

comprehension. For example, if one of the generators is a set, the result type cannot be a list,

because that would make the semantics of the query dependent on the order in which the set

is iterated (which is unspecified).

Restrictions imposed on the allowed combinations of monoids not only make query semantics

deterministic, but also give more freedom to the query engine, which has more options for

parallelizing query executions.

In the rest of this section, we briefly describe a generalization of MCC (including the restrictions

on monoid combinations), as part of our Scala embedding — to the best of our knowledge the

first such typed embedding.

10.6.2 Semigroups and Canonical Monoids

Reasoning exclusively about monoids is too restrictive; semigroups (which are like monoids,

but do not require a zero element) come up when we know that an aggregation will at least

consume one element — this is the case when grouping elements into a map, as each sub-

aggregate for a given key will have at least one element, otherwise the key simply would not be

in the map.

In our Scala embedding, we represent aggregations using the standard monoid and semi-

group instances7 of the types involved in the yield-expression of the query. In order to use

non-standard instances (such as product on integers instead of sum), we use zero-overhead

wrapper types; for example, we have product(x:N) of type Product[N], max(x:O) of type Max[O]

(for types O with an Ordering instance), etc.

7We use the open-source cats functional programming library for Scala, which provides type classes such as
Monoid and CommutativeMonoid, as well as many standard instances (https://github.com/typelevel/cats).

262

https://github.com/typelevel/cats

10.6. Generalized Monoid Comprehension in Scala

Many aggregation types are semigroups but not monoids; for example, minimum on nat-

ural numbers or union on non-empty sets. In particular, we defined the NonZero[N] and

NonEmpty[X] wrapper data types, which are zero-overhead “phantom subtypes” (so that

NonZero[N] <: N and NonEmpty[Xs] <: Xs) that statically add more information to a type — a

sort of simple type refinement — and these types are only semigroups when their wrapped

type is a monoid. Note that any semigroup can be lifted to a monoid by wrapping it in an

Option type, where None becomes the ad-hoc zero element, but some semigroups actually have

more natural monoid generalizations than wrapping them in an Option type. For example,

the canonical monoid form of NonZero[Nat] is Nat, and Nat itself is both a semigroup and a

monoid.

Naturally, it should be illegal to write a comprehension that, for instance, aggregates the mini-

mum age in a list of persons, i.e., for { p <- persons } yield min(p.age) (because if persons

is empty, the result is ill-defined). However, it would make for a poor user experience to flat-out

reject such queries and require users to write yield Some(min(p.age)); instead, we defined a

type class which automatically lifts a semgroup to its “canonical monoid” when required. In

the case above, it will give our query return type Option[Min[Nat]]. On the other hand, count()

has return type NonZero[Nat] whose canonical monoid is Nat, not Option[NonZero[Nat]], so a

query ending with yield count() will have return type Nat, while a query ending with yield

count().groupedBy(k) (which is really syntactic sugar for the singleton Map(k -> 1)) will have

return type Map[K, NonZero[Nat]]. Table 10.1 gives some more examples.

10.6.3 Heterogeneous Collection Types

In its original formulation, the monoid comprehension calculus of Fegaras and Maier [1995,

2000] distinguishes between whether the source collection monoids are ordered, may contain

repeated elements, or both — which determines which properties the result monoid should

have, respectively: commutative, idempotent, or both (to have the kind of properties alluded

to in the previous section). We refine and generalize these notions with more source properties

and their associated monoid restrictions, namely: if the source collection is NonEmpty the result

only needs to be a semigroup; and if the source is not known to be finite, then the result

monoid must be what we call “lazy” or “incremental” (this allows aggregating streams and

defining infinite stream pipelines).

All these conditions and restrictions are enforced statically via Scala’s type system, using

implicit-based overloading together with Scala’s mechanism for prioritization of implicit

search, so that the most specific (i.e., the less restrictive) for comprehension interface is

selected automatically depending on the types of the source collections.

263

Chapter 10. Comprehending Monoids with Class

10.7 Optimizing Monoid Comprehension Queries with Squid

The query language we described in the previous sections is user-friendly and safe, relying on

compile-time implicit resolution and type classes. But because it is directly embedded as a

Scala library, queries expressed in this way can execute very slowly. This is mainly due to:

• The absence of query optimization and query planning, which are normally performed

by performance-oriented query engines: users typically express queries optimizing

for clarity and intuition, rather than performance, so there are often better ways of

executing a given query than by naively executing each of its subqueries as they were

written by the user; for example, we may want to select efficient join implementations

based on the shape and properties of each particular subquery or data source, as well as

unnest subqueries that are embedded inside predicates or aggregated results.

• The level of indirection and inefficiency introduced by our high-level abstractions. For

example, grouping queries use lots of intermediate immutable map objects to compose

their results (in particular, one singleton map is created for each element of the result

being aggregated); moreover, we perform most monoid operations through virtual

calls, sometimes through several layers of abstraction, such as when aggregating the

previously-mentioned maps using composed monoid type class instances.

Both problems can be solved by deeply embedding monoid comprehension queries, as we

have done for the query DSL presented in Section 9.4. Once the queries are internally repre-

sented in a way that can be inspected and transformed, we can apply the many well-known

query optimization techniques which have been devised in the literature [Fegaras and Maier,

2000, Fegaras and Noor, 2018], solving the first problem; moreover, we can then emit more

efficient code for the optimized queries by generating low-level imperative code that imple-

ments the high-level functional query operations, solving the second problem. In addition,

the techniques described in Chapter 4 for performing compile-time optimization of user code

(using the optimize macro), using the @embed annotation to see through intermediate user

definitions, as well as online normalizing rewriting, also come in useful in this context.

In the rest of this section, we briefly outline our solution to optimizing the monoid compre-

hension calculus using Squid, without going into too much detail.

10.7.1 Motivating Example

As an example, consider the following monoid comprehension query, which lists the best-paid

employees and their salary, for each department, and performs some side effect for good

measure:

264

10.7. Optimizing Monoid Comprehension Queries with Squid

def bestPaidPerDept(ds: List[Department], es: Set[Employee])

: List[(Department, Option[(Set[Employee], Int)])] = {

for (d <- ds) yield {

log(''Processing department: '' + d.name)

val emp_sal_opt = for (e <- es if e.dept == d) yield Set(e).maxBy(e.salary)

List((d, emp_sal_opt.map(_.toPair)))

}

}

Above, we assume that Set(e).maxBy(e.salary) returns a MaxBy[Set[Employee], Int], on

which the method toPair returns a (Set[Employee], Int). The MaxBy[M, N] data type is is

just a wrapper over a pair of an M and an N, with a monoid instance which accumulates all M

corresponding with the maximum N — the properties of that monoid instance are inherited by

the properties of the M monoid.8

A straightforward but naive execution of this query would loop over the departments ds,

and at each iteration loop over the entire employees table es. But there are asymptotically

more efficient ways of computing the same result; for example, taking notice of the equality

predicate e.dept == d, we could compute a hash join of ds and es.

10.7.2 Optimization Approach

To achieve the better optimization, users of our monoid comprehension library can wrap their

code in the library’s optimize block, as follows:

def bestPaidPerDept ... = optimize {

... // query as before

}

Our goal is to then generate optimized lower-level code which looks like the following:

def bestPaidPerDept ... = {

val result_0 = mutable.HashMap[Department, (mutable.Buffer[Employee], Int)]()

val eit = employees.iterator

while (eit.hasNext) {

val e = eit.next

val d = e.dept

val s = e.salary

result_0(d) = Some(result_0.get(d) match {

case r @ Some((buff, n)) =>

if (s == n) {

8Note that the query above would have been rejected if we had written something like
List(e).maxBy(e.salary), because List is not commutative and idempotent, unlike the es collec-
tion we perform the comprehension from.

265

Chapter 10. Comprehending Monoids with Class

buff += e

r

} else if (s > n) (Buffer(e), s) else r

case None => (Buffer(e), s)

})

}

val result_1 = mutable.ListBuffer[(Department, Option[(Set[Employee], Int)])]()

val dit = employees.iterator

while (dit.hasNext) {

val d = dit.next

log(''Processing department: '' + d.name)

val r = result_0.get(d) match {

case Some((buff, n)) => Some((buff.toSet, n))

case None => None

}

result_1 += ((d, r))

}

result_1.toList

}

Performance-wise, the code above is an improvement in two ways: first, it uses only low-level

imperative constructs with little indirection, notably for the intermediate collections (mutable

sets, map, and list buffer), avoiding the basic overhead of functional abstractions; and second,

it traverses each of Department and Employee only once — the latter was traversed ds.size

times in the naive execution.

We do not want users to have to write such code manually: it is much harder to read, write,

debug, maintain, etc. None of the existing programming-languages-centered optimization

approaches I know are able to perform these kinds of both low-level and high-level query

optimizations on plain user code expressed in a general-purpose language. The one I know

which comes closest is probably the work by Fegaras and Noor [2018], also a compile-time

Scala embedding approach, though they use their own parser and type checker, limiting the

language integration aspect and contributing to an impedance mismatch (although they do

allow calling external Scala functions from the query).

10.7.3 Deeply Embedding Monoid Comprehensions

The first step in building an optimizing compiler for our DSL is to turn plain Scala code into

precise internal representations of the queries the code represents. We do that just like in

Section 9.4.4, by defining a liftQuery function to recursively compose the internal query

representation:

def liftQuery[T: CodeType, C](q: Code[T, C]): QueryRepr[T, C] = q match { ... }

266

10.7. Optimizing Monoid Comprehension Queries with Squid

The QueryRep data type we use is largely similar to the one seen in Section 9.4.3, except that it

focuses on the constructs of monoid comprehension instead of the more relational-algebra

DSL of Section 9.4. In particular, we have a representation for general comprehensions:

case class Comprehension[R: CodeType, C]

(productions: Productions[R, C], mon: StagedMonoid[R, C])

extends QueryRep[R, C]

sealed abstract class Productions[R, -C]

case class Production[A: CodeType, R, C, VCtx]

(src: Path[A, C], v: Variable[A] { type Ctx = VCtx },

rest: Productions[R, C & VCtx])

extends ProductionBase[R,C]

case class Yield[R,C](pred: QueryRep[Bool, C], cde: QueryRep[R, C])

extends Productions[R, C]

The Path data type represents the source of each production in a comprehension; it will usually

be a collection, or the results of a previous comprehension.

As we traverse the query, we lift monoid instances into StagedMonoid representations. The

goal is to recognize monoids for which we have low-level imperative implementations avail-

able; for instance, as shown in the previous subsection, to aggregate maps efficiently we

use the mutable.Map data structure from the Scala standard library instead of the less effi-

cient immutable.Map, though we still convert the end result of each query into the immutable

representation mandated by our functional monoid comprehension calculus interface.

10.7.4 Query Rewriting and Planning

The query rewriting we perform follows the same patterns as seen earlier, applying well-known

optimization techniques available for the monoid comprehension calculus. Following Fegaras

and Noor [2018], in order to plan efficient monoid query implementations, we actually turn

our staged monoid comprehension representation into a more traditional relational query

plan representation (like the one shown in Section 9.5.2), from which we can generate the

usual fast low-level query implementations.

267

Conclusions and Future Work

The problems of optimizing programs and of designing efficient software systems is as old as

the field of computer science. A great variety of approaches have been proposed, but there is

still tremendous progress to be made in the domain: we are still far from having the tools to

easily reap most of the benefits of high-level languages without paying for them at runtime.

In this thesis, we have explored approaches focusing on the manipulation of program frag-

ments in a statically-typed setting. We have extended the state of the art in several direction: by

giving statically-typed quasiquotes analytic capabilities, such as pattern matching and rewrit-

ing code values, by enforcing hygiene via a new affine type system to manipulate bindings as

first-class entities, and by generalizing code manipulation to classes, and not just expressions,

via staged classes.

This has allowed us to define several new approaches to designing efficient systems, including

a polymorphic yet efficient library for linear algebra, a stream fusion engine improving on the

state of the art, a demonstration of query compilation by rewriting, and a staged SQL database

system prototype.

Moreover, we have explored new techniques related to efficient data processing and program

optimization, such as an embedded domain-specific language for expressing queries over

collections of data, an a partial graph reduction approaches to optimizing functional programs

aggressively in the presence of recursion, improving on existing inlining approaches.

In the future, there are many promising avenues which I would like to explore on the same

topic as this thesis:

• Make use of a graph-based intermediate representation technique I have developed

during my PhD9 to build more advanced domain-specific optimizing compilers, which

could see through function definitions while avoiding code duplication. An idea would

be to let users annotate existing nodes in the graph with custom representations storing

arbitrary information, and use rewrite rules to combine such representations, in order to

influence the generation of efficient code from the corresponding representations. The

9This graph-based intermediate representation work was not presented here because it is quite independent
from the Squid framework, which was the focus of this thesis. However, this graph IR can be used as one of the
possible Squid IR implementations, though it is still work in progress.

269

Conclusions and Future Work

graph IR would help bring together these different user-defined representations across

function boundaries, allowing the optimal compilation of domain-specific programs.

• Developing further the staged classes work, perhaps by integrating it more tightly with

an existing general-purpose programming language, so as to improve the metaprogram-

ming user experience.

• Developing a more comprehensive database compilation framework, integrated with

a Scala EDSL for monoid comprehension (as in Chapter 10), and with support for

being integrated into user applications at compilation time, providing support for fast

lightweight database features without leaving the host programming language. In fact, I

have already started this work with the help of several students, under the code name

dbStage.

270

A Improved GADT Reasoning in Scala

Generalized algebraic data types (GADTs) are an expressive programming language feature

which lets programmers encode advanced type-based invariants as part of the definition of a

program’s data types. These invariants can be used to restrict the possible run-time shapes

taken by such structures, as well as to existentially quantify type information inside them.

GADTs are an important tool in the design of type-safe language representations, and es-

pecially popular in the field of domain-specific language compilers. As mentioned in the

previous chapter, some of the typing problems that arise in the context of pattern matching

with statically-typed quasiquotes (existential types and refined types) require specifically the

same reasoning power as GADTs.

However, the interaction of GADTs with subtyping has been shown to be non-trivial and

potentially problematic [Scherer and Rémy, 2013]. GADTs have been notoriously difficult to

implement correctly in Scala, due to Scala’s advanced subtyping constructs not found in other

languages with GADTs. Both major Scala compilers, Scalac and Dotty, were recently known

to have type soundness holes related to GADTs. In particular, covariant GADTs have led to

paradoxes related to Scala’s inheritance model.

This has been a problem for Squid, since its statically-typed quasiquotes require support for

GADT reasoning. To overcome the shortcomings of the Scala compiler, Squid macros have

reimplemented some ad-hoc GADT reasoning to offer a safe code manipulation interface for

users, who would otherwise have to resort to unsafe casts. However, the soundness of these

extensions deserves some special consideration.

In this chapter, we informally explore foundations for GADTs within Scala’s core type system

(the pDOT calculus), in order to guide a principled understanding and implementation of

GADTs in both Scala and Squid.

271

Appendix A. Improved GADT Reasoning in Scala

A.1 Introduction

Generalized algebraic data types (GADT) were proposed to encode expressive invariants

through types [Xi et al., 2003, Cheney and Hinze, 2003, Kennedy and Russo, 2005]. For instance,

Figure A.1 defines a GADT to represent well-typed terms of simply-typed λ-calculus, similarly

to Rompf and Odersky [2010]. Expr is a GADT because each of its cases extends Expr with

different type arguments. The eval function maps each value of type Expr[A] into a value of

type A.

enum Expr[A] {

case Lit(n: Int) extends Expr[Int]

case Var[A](a: A) extends Expr[A]

case Add(lhs: Expr[Int], rhs: Expr[Int]) extends Expr[Int]

case Fun[A, B](fun: Expr[A] => Expr[B]) extends Expr[A => B]

case App[A, B](fun: Expr[A => B], arg: Expr[A]) extends Expr[B]

}

def eval[A](e: Expr[A]): A = e match {

case Lit(n) => n

case Var(x) => x

case Add(a,b) => eval(a) + eval(b)

case f: Fun[a,b] => (x: a) => eval(f.fun(Var(x)))

case App(fun,arg) => eval(fun)(eval(arg))

}

Figure A.1 – GADT in Scala, using Dotty’s new enum syntax.

Why does type checking the eval function require special reasoning? First, in all but the Var

case, the type of the scrutinee e is refined from Expr[A] to a more precise type. For example,

Lit extends Expr[Int], so if e matches Lit(n), we can deduce that A = Int. This allows n,

which has type Int, to agree with eval’s expected return type A. Second, in addition to refining

A, the Fun and App cases uncover existential types (unknown types that do not appear in the

function’s signature); in the App case, which matches against patterns of type App[X,A] <:

Expr[A], type X is unknown, but has to be treated consistently as it appears in the two extracted

subexpressions fun and arg. In the Fun case, we have to use a type pattern f: Fun[a,b] to bind

the uncovered existential type a so we can use it in a required type annotation.

Today, this specific example already works well in Dotty, the future Scala 3 compiler. However,

there are several lingering unresolved issues with GADTs in Scala:

Subtle soundness issues. Scala GADTs have been plagued with type soundness issues. The

scalac compiler uses approximate reasoning that easily leads to runtime crashes [Parreaux

272

A.2. Closed GADTs in Core Scala and DOT

et al., 2017a], while Dotty GADTs are still unsound, despite some recent substantial improve-

ments, and are subject to ongoing work.1

Declaration-site variance. Scala supports declaration-site variance, a convenient way of

defining subtyping relationships between parameterized types. For instance, in Figure A.1

we could make Expr covariant to encode the λ calculus with subtyping. However, Dotty then

rejects our definition of eval as ill-typed, and requires adding unsafe casts. It is unclear whether

definitions like eval actually are unsafe, or whether Dotty is overly conservative; indeed, sound

typing rules for pattern matching on open GADTs is an open problem [Giarrusso, 2013].2

To address these problems and to gain confidence in the soundness of GADTs in Scala, we

believe necessary to justify them in terms of Scala’s core foundations, which have been formal-

ized as the Dependent Object Types calculus (DOT) [Amin et al., 2016], later extended to the

more comprehensive pDOT [Rapoport and Lhoták, 2019].

This short chapter makes the following contributions:

• Drawing from the Expr motivating example, which we believe to be quite representative,

we informally sketch how to encode closed GADTs, first in full Scala, and then in a core

Scala subset which can be mapped to pDOT easily. We show that eval actually is safe

with a covariant Expr, and thus argue Scala should improve its support for variant GADTs

(Section A.2).

• We consider the more general case of open GADTs, and sketch a minimal extension to

Core Scala which allows encoding them. We explain the mismatch between such en-

coding and Scala’s treatment of type parameters, and following that insight we propose

improvements to Scala usability which would allow sound pattern matching on variant

open GADTs (Section A.3).

• We propose improvements to Scala usability related to GADTs and declaration-site

variance, by giving an old experimental feature of Dotty (since removed) a second

chance, providing clear motivations for it.

Our examples and our encodings are available in full at https://github.com/Blaisorblade/

scala19_gadt_code.

A.2 Closed GADTs in Core Scala and DOT

In this section, we focus on encoding closed GADTs. By “closed,” we mean those GADTs which

can be defined using the new Dotty enum syntax. Slightly more generally, we mean a flat class

1See pull requests #5736 and #6398 at https://github.com/lampepfl/dotty.
2Scherer and Rémy [2013] did consider the problem of GADTs with subtyping, but in the context of OCaml,

where they made simplifying assumptions that are not necessary in Scala, such as limiting the reasoning to type
equality constraints only, as opposed to more precise subtyping constraints.

273

https://github.com/Blaisorblade/scala19_gadt_code
https://github.com/Blaisorblade/scala19_gadt_code
https://github.com/lampepfl/dotty

Appendix A. Improved GADT Reasoning in Scala

or trait hierarchy where (1) there is a single, sealed parent; (2) each implementing case is final;

(3) each case extends the parent exactly once.

A.2.1 Encoding of ADTs and Pattern Matching

It is well-known that structurally-recursive pattern-matching on sealed hierarchies of data

types can be emulated using fold functions. This technique allows encoding algebraic data

types in System F through the Church/Böhm-Berarducci encoding [Böhm and Berarducci,

1985, Jansen, 2013]; however, recursion that is not structural becomes awkward to expres and

inefficient [Koopman et al., 2014].

On the other hand, in a setting with general recursion and recursive types, such as Scala (and

its foundation DOT), we can instead express pattern matching through the Scott/Parigot

encoding, which supports unrestricted recursion. In object-oriented languages, this encoding

is equivalent to using external visitors [Oliveira et al., 2008, Hofer and Ostermann, 2010]:

one simply defines a “visitor” method in the superclass, which will be implemented by each

subclass of the hierarchy. For instance, we can encode the Option data type as follows:

abstract class Option[+A] {

def visit[R]: (Some[A] => R, None.type => R) => R

}

class Some[+A](a: A) extends Option[A] {

def visit[R] = (visitSome, visitNone) => visitSome(this)

}

object None extends Option[Nothing] {

def visit[R] = (visitSome, visitNone) => visitNone(this)

}

A.2.2 GADTs and Object-Oriented Languages

As we have seen in Section A.1, GADTs are essentially ADTs with both existential types and type

(in)equality3 proofs to be uncovered via pattern matching [Xi et al., 2003, Cheney and Hinze,

2003, Scherer and Rémy, 2013]. It is also well-understood that GADT-like type hierarchies can

be defined in object-oriented languages [Kennedy and Russo, 2005, Emir et al., 2007]. The

attentive reader will have guessed where we are going with this. We will encode GADTs in

Scala using visitor methods. As a first step, we need to figure out how to encode existential

types and subtyping proofs without using GADTs.

3These “inequality” proofs are subtyping proofs, in the case of a language with subtyping like Scala.

274

A.2. Closed GADTs in Core Scala and DOT

A.2.3 Existential types and Subtyping Proofs

In Scala, the primary way of representing existential types is via abstract type members, which

are denoted using path-dependent types. However, an alternative encoding of existential

types is to use higher-rank polymorphism [Böhm and Berarducci, 1985], which we will use in

our first encoding approach.

On the other hand, Scala has first-class subtyping proofs thanks to its bounded abstract

type members. Indeed, getting hold of an object ev of type ev: { type Ev >: S <: T } is

equivalent to having a proof, evidence, or witness that S <: T.

Though the DOT calculus does not require the explicit usage of ev to leverage such proof

(having ev in the typing context being considered sufficient), this property is known to make

type checking in DOT undecidable [Nieto, 2017, Rompf and Amin, 2015a]. In practice, Scala

users normally have to apply these proofs explicitly. For example, if one wishes to “upcast” a

value s of type S to a type T where S <: T does not hold syntactically, one has to write s: ev.Ev

(a type ascription). We can make this approach more convenient by defining the following data

type, used for manipulating subtyping proofs, which also doubles as an implicit conversion:

import scala.language.implicitConversions

abstract class <:< [-A, +B] extends Conversion[A,B] {

type Ev >: A <: B

def apply(a: A): B = a: Ev

}

implicit def Refl[A]: A <:< A = new {

type Ev = A

}

This is the same as the data type of the same name <:< defined in the standard library, except

that we have an additional Ev type member, which can be leveraged when the automatically-

inserted apply function is not enough on its own. For example, we can convert a list ls of type

List[S] into a List[T] given some ev: S <:< T at no runtime cost, by writing ls: List[ev.Ev].

A.2.4 Closed GADT Encoding in Scala

Figure A.2 shows the encoding of a covariant version of Expr in Scala — that is, we show

how to encode pattern matching on covariant GADTs using other mechanisms. Thanks to

this encoding, the soundness of closed GADTs with declaration-site variance reduces to the

soundness of the rest of Scala (without GADTs).

We use implicit function types [Odersky et al., 2017], of syntax given S => T, in order to allow

callers to implicitly leverage the subtyping evidence relevant to each case. In the Lit class’

implementation of visit, an evidence of Int <:< A is implicitly created and passed to the Lit

275

Appendix A. Improved GADT Reasoning in Scala

abstract class Expr[+A] {

def visit[R]: (

Lit: given (Int <:< A) => Lit => R,

Var: Var[A] => R

Add: given (Int <:< A) => Add => R,

App: [B] => App[B,A] => R,

Fun: [B, C] => given ((B => C) <:< A) => Fun[B,C] => R,

) => R

}

final case class Lit(n: Int) extends Expr[Int] { s =>

override def visit[R] =

(Lit, Add, App, Fun, Var) => Lit.apply(this)

}

// other cases similarly defined...

def eval[A](e: Expr[A]): A = e.visit[A](

Lit = l => l.n,

Add = p => eval(p.lhs) + eval(p.rhs),

App = [B] => a => eval(a.fun).apply(eval(a.arg)),

Fun = [B, C] => f => ((x: B) => eval[C](f.fun(Var(x)))),

Var = v => v.a

)

Figure A.2 – An encoding of the closed, covariant GADT in Figure A.1. This
code leverages polymorphic function types, which use the [X] => F[X]

syntax, analogous to system F’sΛ/∀ binders.

276

A.2. Closed GADTs in Core Scala and DOT

visitor (because within class Lit, we know that A is a supertype of Int). This piece of subtyping

evidence is then leveraged, in the Lit case of eval, to upcast l.n, which has type Int, into type

A.

While the encoding is elegant and intuitive, it is not fully satisfactory since full Scala is known

to still have soundness holes (see e.g., [Amin and Tate, 2016]). Therefore, we now propose an

encoding into Core Scala, a Scala subset that we describe next.

A.2.5 Core Scala and DOT

We define Core Scala as the specific subset of Scala that can be translated into the dependent

object type calculus in a straightforward manner. Since we will make use of singleton types,

which are not supported in DOT, we target in particular the pDOT dialtect of DOT [Rapoport

and Lhoták, 2019], which soundly extends DOT with singleton types (and with paths, a feature

we do not use).

DOT and pDOT do not directly support classes, but there are several examples in the litera-

ture of how to encode them [Amin et al., 2016, Gruetter, 2016, Rapoport and Lhoták, 2019].

Essentially, a class is represented as an abstract type whose upper bound specifies the class

API, along with some constructors for building instances of the class.

The encoding, as described above, of non-generic classes (classes without type parameters)

is straightforward. Furthermore, we can encode generic classes as non-generic classes plus

abstract type members: each class type parameter is turned into an abstract type member of

the class, and applications of the class’ type constructor to some arguments are represented

as refinements of the class type (with type intersections).

For instance, a class Foo[A] { val a: A } can be represented as a class FooBase { type A;

val a: A } together with a type shorthand type Foo[A0] = FooBase { type A = A0 }, which

refines FooBasewith type member A = A0. We refer to the literature for more concrete examples

[Amin et al., 2016, Rapoport and Lhoták, 2019, Odersky et al., 2016].

A.2.6 Closed GADT Encoding in Core Scala

Figure A.3 shows an encoding of covariant Expr in Core Scala. The parameterized type alias

Expr[+A0] is not definable in DOT but can be inlined at its call sites before translation.

Indeed, we have encoded by hand the full Figure A.3 in pDOT syntax following the class

encoding mentioned earlier.4 This encoding can be seen in Appendix B.

One central insight of this encoding is that we do not need separate <:< witnesses, nor do

we need polymorphic function types. This is because (1) we now use an abstract type A to

4We have not mechanically verified that this code can be typechecked in (p)DOT, due to the lack of an actual
implementation of these systems.

277

Appendix A. Improved GADT Reasoning in Scala

type Expr[+A0] = ExprBase { type A <: A0 }

abstract class ExprBase { s =>

type A

def visit[R]: (

Lit: Lit & s.type => R,

Add: Add & s.type => R,

App: App & s.type => R,

Fun: Fun & s.type => R,

Var: Var & s.type => R

) => R

}

abstract class Fun extends ExprBase {

type B; type C

type A = B => C

val fun: Expr[B] => Expr[C]

override def visit[R] =

(Lit, Add, App, Fun, Var) => Fun(this)

}

// other cases similarly defined...

def eval[A](e: Expr[A]): A = e.visit[A](

Lit = l => l.n: l.A,

Add = p => (eval(p.lhs) + eval(p.rhs)): p.A,

App = a => eval(a.fun).apply(eval(a.arg)): a.A,

Fun = f => ((x: f.B) => eval[f.C](f.fun(Var(x)))): f.A,

Var = v => v.a: v.A

)

Figure A.3 – An encoding of the closed GADT in Figure A.1 in Core Scala.

278

A.3. Open GADTs

represent the type parameter of the same name, and A is now visible from the outside; (2) A is

refined in each subclass of Expr (see the definition of type A in class Fun); and (3) in the visitor

method, we intersect the types of the extracted objects with the self-type s of the current

instance. Thus, following normal DOT rules for type intersections, we are able to define eval

by simply using the abstract type A itself as subtyping proof. Interestingly, to represent GADTs

in Core Scala, we did not need to add any of the typical mechanisms commonly used to

type check GADTs, such as special type equality proofs and coercions [Sulzmann et al., 2011,

Garrigue and Rémy, 2013].

A.2.7 Summary

We argue that Scala should handle closed GADTs well, irrelevant of variance, given the insight

of how they should be represented in Scala’s core type system.

Naturally, one should develop a general formal explanation of this process — here we have

merely tried to give an intuition about what that process could be. As explained further in

Section A.4, this formalization effort has already been started by Waśko [2020], following the

model presented here.

A.3 Open GADTs

We now show an encoding of “open” GADTs — GADTs that are not sealed or do not have a flat

hierarchy. These are useful because they can be extended with new constructors in a modular

way, providing a solution to the expression problem [Rompf and Odersky, 2010].

Our previous encoding does not readily generalize to open GADTs, as the visit method

received handlers for a fixed list of constructors, while open GADTs would require different

lists of constructors for different extensions.

A.3.1 Class Instance Matching

To achieve our new encoding, we assume Core Scala and (p)DOT are extended with a primitive

runtime-class instance matching mechanism, which mirrors type matches in Scala:

s match {

case x_1: C_1 => t1

case x_2: C_2 => t2

...

}

This construct branches on the runtime class of s, comparing it with classes C1, C2, etc. and

evaluating the corresponding branch t1, t2, etc.

279

Appendix A. Improved GADT Reasoning in Scala

To keep the extension simple, we only allow matching against simple class names, not arbitrary

types, avoiding the complexities of Scala’s type matching syntax. Since Core Scala has no class

type parameters, we also avoid soundness problems due to the erasure of type parameters

(in Scala, a type match like case _: Option[Int] is rejected because it cannot be checked at

runtime).

In order to type the RHS of each branch of the class-matching expression, we bind the cor-

responding pattern variable x_i with type C_i & s.type (similarly to Figure A.3). In terms of

operational semantics, we must tag class instances with their class at run time, as is done in

Java runtime systems. Formalizing this extension is out of scope for this chapter.

With this extension, encoding an open version of Expr becomes as simple as dropping the

visit method from the previous encoding of Figure A.3, using type matches instead:

def eval[A](e: Expr[A]): A = e match {

case l: Lit => l.n: l.A

/* other cases... */

}

A.3.2 Understanding an Old Paradox

Giarrusso [2013] first noticed that certain desirable typing rules on covariant open GADTs are

in fact unsound. For example, given:

trait Expr[+A]

class Const[+A] extends Expr[A]

the Scala 2 type checker would assume that if e: Expr[A] and if e is an instance of Const, then

e: Const[A]. But this assumption is false, because in Scala, one can extend covariant types

like Expr multiple times, with different type arguments. Concretely, this allows us to break the

Scala 2 compiler’s assumption by, for instance, defining the object Unsound as follows, which

extends Expr[Int] and is an instance of Const, but not of Const[Int]:

object Unsound extends Const[Any] with Expr[Int]

Viewing type parameters as type members not only makes the problem obvious, but also

suggests how to make the assumption true without allowing definitions such as Unsound. In

our interpretation, the classes from the above paradox instance would be translated as follows:

type Expr[+A] = ExprBase { type A$0 <: A }

type Const[+A] = ConstBase { type A$1 <: A }

trait ExprBase { type A$0 }

class ConstBase extends ExprBase {

type A$0 <: A$1

type A$1

}

280

A.3. Open GADTs

Notice that while translating the type parameters of each class, it is crucial to pick different

type member names, so they do not conflict with each other (this reflects Scala’s established

semantics that the type parameters in different classes are distinct, even if they have the same

name). The subtyping relationship arising from inheritance of a variant base class is expressed

via refinements of these abstract type members.

With the above definition, the assumption from the paradox is obviously false: given e: Expr[A]

and e: ConstBase, we cannot conclude that e: Const[A]. Moreover, the assumption actually

becomes true if we use a different interpretation of inheritance from variant base classes: if we

instead declared type A$0 = A$1 in ConstBase, this would prevent further extending Expr with

incompatible type arguments, and would allow us to derive the required type equality proofs.

A.3.3 Solution: Invariant Inheritance

Giarrusso [2013] also proposes a solution to the paradox: a syntax for “invariant inheritance,”

class Const[+T] extends Expr[=T], which forbids definitions such as Unsound by simply forbid-

ding further instantiation of Expr in children of Const.

Following our new insights into the paradox, we propose this syntax to instead behave consis-

tently with our encoding of type parameters as type members, translating those type argument

marked with = to type equalities rather than subtype refinements.

This interpretation still forbids definitions like Unsound while also allowing further extensions

of Expr, as long as they conform in their type arguments. For example, in the code below, Z

should be able to extend Expr via both Valued and Const, as they are compatible:

trait Valued extends Expr[Int] { def v: Int }

object Z extends Const[0] with Valued { def v = 0 }

Remark that if we had written Valued extends Expr[=Int] above, the code of Z would have not

compiled, as it would have had conflicting definitions for the parameter to Expr.

Interestingly, Dotty already has partial support for invariant inheritance (implemented specifi-

cally to counter Giarrusso’s paradox in common cases), but it is restricted to case classes and

not expressible otherwise. This makes the approach somewhat irregular and “magical” as it is

not expressible in terms of regular features, unlike all other case class features.

A.3.4 Type Parameters as Members

In Scala, class type parameters (unlike type members, as in our encoding), cannot be refer-

enced from the outside of a class. However, there are cases where having access to these types

is actually very useful.

Therefore, we propose to allow the use of ‘type’ as a prefix for type parameters which, in

281

Appendix A. Improved GADT Reasoning in Scala

analogy with ‘val’, would make the corresponding type publicly visible from the outside.

One possible motivating example is the following, which cannot be expressed in current Scala,

and which describes a pair of two covariant expressions which happen to precisely share the

same type argument A = T:

enum Expr[type +A] {

case StrLit() extends Expr[String]

case IntLit() extends Expr[Int]

}

case class ExprPair[T](

_1: Expr[Any] { type A = T },

_2: Expr[Any] { type A = T }

)

The type modifier signifies that the type member from our encoding can be referenced (and

therefore, also refined) in Scala source code outside of the class.

Based on this, we define ExprPair class which can only contain two Expr values of the same

class. If Expr was invariant, a simple pair (Expr[T], Expr[T]) would have this property. For

variant GADTs however, this can only be expressed by refining the type members with proper

type equalities. Assuming that the compiler supports proper GADT reasoning, it should then

become possible to verify that the following pattern matching expression is exhaustive:

def m[A](p: ExprPair[A]) = p match {

case (StrLit, StrLit) => ... // here we know String <: A

case (IntLit, IntLit) => ... // here we know Int <: A

}

Such a pattern match would not be exhaustive if the input was merely of type (Expr[T],

Expr[T]). Indeed, we could for example pass in the value (IntLit(), StrLit()) by instantiat-

ing the method m as m[Any].

Additionally, type parameters as members would solve current limitations sometimes encoun-

tered in variant classes. Consider the following types:5

abstract class Type[A]

abstract class Expr[+A](ty: Type[_ <: A])

We cannot make ty have type Type[A] here, as that would be a violation of covariance. This

results in problems when one wants to extract the precise type representation of an Expr, to

which we cannot give an accurate type. One can always use the encoding of Figure A.3, but it

is clunky and splits type in two parts, also resulting in subpar error messages (in which the

type alias will usually be expanded). Under our proposal, we could simply write:

5Unlike expressions, type representations like Type[A] generally need to be invariant, for soundness reasons.

282

A.4. Further Work on GADTs in Scala

abstract class Expr[type +A](ty: Type[this.A])

and given an e of type Expr[T], value e.ty would then be typed as Type[e.A], which would not

violate the covariance of the type parameter A.

A.4 Further Work on GADTs in Scala

Squid and its GADT-reasoning extension were designed for Scala 2 around 2017–18. Since

then, the GADT situation in Scala has been steadily improving.

Independently of this work, Aleksander Boruch-Gruszecki and Martin Odersky have imple-

mented advanced GADT support in Dotty, the compiler for the upcoming version 3 of the

Scala language. Their implementation records constraints based on the types of matched

values, and leverages the information gathered from these constraints automatically so that

users often do not have to use explicit type ascriptions. In the light of the work presented

here, their approach can be likened to an elaboration phase, which automatically inserts type

ascriptions in order to make the Scala code well-typed according to Scala’s core typing rules.

The work presented in this chapter was recently extended by Waśko [2020] for a master project

with Aleksander Boruch-Gruszecki. Waśko made more formal the correspondence between

our interpretation of GADTs in Scala and traditional GADTs, by showing how to encode the

λ2,Gµ calculus of guarded recursive datatype constructors (another name for GADTs) by Xi

et al. [2003] in pDOT using the technique described here.

A.5 Conclusion

GADTs in Scala have historically been poorly understood. In this chapter, we showed that they

can be explained in terms of simpler features already present in Scala’s core type system. We

sketched different encodings of GADTs, demonstrating the tight correspondence between,

on one hand, the type (in)equality proofs and existential types that underlie traditional ap-

proaches to GADT reasoning and, on the other hand, bounded abstract type members and

intersection types, which are core to Scala.

283

B Complete Encoding of GADT in pDOT

In this appendix, we give a complete encoding of Figure A.3 in pDOT.

val exprsMod =

new { exprs =>

type ExprBase = µ { s =>

type A

val `match`:

∀ (r: { type R })

∀ (Lit: exprs.Lit & s.type => r.R,

Plus: exprs.Plus & s.type => r.R,

App: exprs.App & s.type => r.R,

Fun: exprs.Fun & s.type => r.R,

Var: exprs.Var & s.type => r.R): r.R

}

type Lit = exprs.ExprBase ∧ {

type A = Int

val n: Int

}

val newLit: ∀(x: Int) exprs.Lit =

λ x. new {

type A = Int

val n = x

val `match` =

λ r Lit Plus App Fun Var. Lit(self)

}

type Plus = exprs.ExprBase ∧ {

type A = Int

val lhs: exprs.ExprBase ∧ { type A <: Int }

val rhs: exprs.ExprBase ∧ { type A <: Int }

285

Appendix B. Complete Encoding of GADT in pDOT

}

val newPlus:

∀ (lhs: exprs.ExprBase ∧ { type A <: Int },

rhs: exprs.ExprBase ∧ { type A <: Int })

exprs.Plus =

λ llhs lrhs . new { self =>

type A = Int

val lhs = llhs

val rhs = lrhs

val `match` =

λ r Lit Plus App Fun Var. Plus(self)

}

type App = exprs.ExprBase ∧ µ { self =>

type B

val fun:

exprs.ExprBase { type A <: self.B } =>

exprs.ExprBase { type A <: self.A }

val arg: exprs.ExprBase { type A <: self.B }

}

val newApp: ∀(bT: { type B }, aT: { type A })

∀ (fun: exprs.ExprBase { type A <: bT.B } =>

exprs.ExprBase { type A <: aT.A })

∀ (arg: exprs.ExprBase { type A <: bT.B }).

exprs.App ∧ {

type A = aT.A; type B = bT.B } =

λ bT aT lfun larg. new {

type A = aT.A

type B = bT.B

val fun = lfun

val arg = larg

val `match` =

λ r Lit Plus App Fun Var. App(self)

}

type Fun = exprs.ExprBase ∧ µ { self =>

type B

type C

type A = self.B => self.C

val fun:

exprs.ExprBase { type A <: self.B } =>

exprs.ExprBase { type A <: self.C }

}

286

val newFun: ∀(bT: { type B }, cT: { type C })

∀ (fun: exprs.ExprBase { type A <: bT.B } =>

exprs.ExprBase { type A <: cT.C }).

exprs.Fun ∧ {

type B = bT.B; type C = cT.C } =

λ bT cT lfun. new { self =>

type B = bT.B

type C = cT.C

type A = self.B => self.C

val fun = lfun

val `match` =

λ r Lit Plus App Fun Var. Fun(self)

}

type Var = exprs.ExprBase ∧ µ { self =>

val a: self.A

}

val newVar:

∀ (aT: {type A}) ∀(a: aT.A)

exprs.Var ∧ { type A = aT.A } =

λ aT la. new {

type A = aT.A

val a = la

val `match` =

λ r Lit Plus App Fun Var. Var(self)

}

} :

µ { exprs =>

/* Omitted, see discussion below. */

}

// encode function eval as function eval.rec

val eval = new { self =>

val rec: ∀(e: exprsMod.ExprBase) e.A = λe.

e.`match`

(λ l. l.n)

(λ p. eval.rec(p.lhs) + eval.rec(p.rhs))

(λ a. eval.rec(a.fun)(eval.rec(a.arg)))

(λ f. λx. eval.rec(f.fun(exprsMod.newVar(x))))

(λ v. v.a)

}

Value exprsMod encodes the whole module containing the code in Figure A.3. Each class Foo

287

Appendix B. Complete Encoding of GADT in pDOT

is encoded by declaring a type member Foo and a value member newFoo, which encodes the

constructor of Foo.

To improve readability, we omit type annotations from terms when they can be inferred

directly from their types. We also omit the type of exprsMod: this type declares the interface for

exprsMod members. For a value member definition val foo: FooType = ..., the interface is

just val foo: FooType. For type members type Foo = Body the interface we choose is type

Foo <: Body. This omits the lower bound, preventing the creation of values of Foo from outside

exprsMod, except by going through the encoded constructor newFoo; this is how nominal class

types are encoded by (p)DOT’s structural type system [Amin et al., 2016]. For instance, Lit is

encoded as follows:

type Lit <: exprs.ExprBase ∧ {

type A = Int

val n: Int

}

// Value members are just declared, giving their types.

val newLit: ∀(x: Int) exprs.Lit

288

C Organization of the Streams Optimizer

In this appendix, we give more details on the way a library should be structured in order to

benefit from Squid-based Quoted Staged Rewriting, using the streams library seen in Chapter 5

as an example.

Scala Restrictions. Squid makes extensive use of macros, which currently have some restric-

tions: Scala code defined in some project P cannot be executed at compile-time in P itself or

in a project that P depends on — one may have to “stratify” program definitions into different

sub-projects.

The Strm Library. It is organized in a single project as follows: in the lib package, the shallow

Strm definitions as seen in Figure 5.1, with an @embed annotation to automatically lift method

definitions; in the compiler package, the ANF-based “embedding” used as the IR in which to

manipulate the code (Squid supports different IRs [Parreaux et al., 2017b]), defined as follows:

object Embedding extends SchedulingANF
with OnlineOptimizer with StandardEffects

{ object Desug extends Transformer with Desugaring
object Norm extends Transformer
with StandardNormalizer with LogicNormalizer

def pipeline = Desug.pipeline andThen Norm.pipeline
embed(Strm)

}

Object Embedding extends the SchedulingANF base IR and the StandardEffects trait to benefit

from effect annotations on standard Scala constructs. It extends OnlineOptimizer in order

to perform some online rewriting — provided via the pipeline method, which applies some

desugaring and then some normalization. The embed(Strm) call, executed when Embedding is

initialized, registers in this IR the Strm methods lifted earlier by @embed.

The stream fusion optimizer itself is implemented in the compiler.StrmOptimizer class, which

defines successive optimization phases Flow, Lowering and LowLevel:

class StrmOptimizer extends Optimizer
{ def pipeline = (

Flow.pipeline
andThen Lowering.pipeline

289

Appendix C. Organization of the Streams Optimizer

andThen LowLevel.pipeline)
}
object Flow extends Embedding.Transformer

with SimpleRuleBasedTransformer
with BottomUpTransformer
with FixPointTransformer

{ rewrite { ... } }
object Lowering extends Embedding.Transformer with ...
object LowLevel extends Embedding.Transformer with ...

The way Flow is defined above is equivalent to the annotation-based way seen in the thesis,

which is only syntax sugar (i.e., @bottomUp @fixedPoint val Flow = rewrite{ ... }). The role

of LowLevel is to apply low-level transformations at the end of the pipeline, such as flatten-

ing variables holding an option type into a boolean variable isDefined and an unwrapped

currentValue variable.

In order to use this optimizer, one has to instantiate class StaticOptimizer[strm.compiler.StrmOptimizer]

and,

from another project, invoke its optimize{ ... } macro.

290

D Code of the Microbenchmarks

Below we list the code corresponding to the Baseline (name postfixed with _baseline) and De-

fault (name postfixed with _shallow) microbenchmarks in Figure 5.4. The code for Rewritten

is the same as the code for Default but surrounded with an optimize{...} block. The code

of Staged is the one presented in [Kiselyov et al., 2017]. Most of the Baseline code below was

reused from [Kiselyov et al., 2017] with the author’s authorization.

The inputs consisted of arrays of small integer elements with cardinalities |v |= 100,000,000,

|vHi |= 10,000,000, |vLo |= 10, |vFaZ |= 10,000, and |vZaF |= 10,000,000.

def sum_baseline(): Int = {

var i=0

var sum=0

while (i < v.length) {

sum += v(i)

i += 1

}

sum

}

def sum_shallow(): Int = fromArray(v).fold(0)(_ + _)

def sumOfSquares_baseline(): Int = {

var i=0

var sum=0

while (i < v.length) {

sum += v(i) * v(i)

i += 1

}

sum

}

def sumOfSquares_shallow(): Int = {

fromArray(v).map(x => x * x).fold(0)(_ + _)

}

291

Appendix D. Code of the Microbenchmarks

def sumOfSquaresEven_baseline(): Int = {

var i=0

var sum=0

while (i < v.length) {

if (v(i) % 2 == 0)

sum += v(i) * v(i)

i += 1

}

sum

}

def sumOfSquaresEven_shallow(): Int = {

fromArray(v)

.filter(y => y % 2 == 0)

.map(x => x*x)

.fold(0)(_ + _)

}

def cart_baseline(): Int = {

var d, dp=0

var sum=0

while (d < vHi.length) {

dp = 0

while (dp < vLo.length) {

sum += vHi(d) * vLo(dp)

dp +=1

}

d += 1

}

sum

}

def cart_shallow(): Int = {

fromArray(vHi)

.flatMap(d => fromArray(vLo).map (dp => dp * d))

.fold(0)(_ + _)

}

def filters_baseline(): Int = {

var i=0

var sum=0

while (i < v.length) {

if (v(i) > 1 && v(i) > 2 && v(i) > 3 && v(i) > 4

&& v(i) > 5 && v(i) > 6 && v(i) > 7)

sum += v(i)

i += 1

}

292

sum

}

def filters_shallow(): Int = {

fromArray(v)

.filter(x => x > 1)

.filter(x => x > 2)

.filter(x => x > 3)

.filter(x => x > 4)

.filter(x => x > 5)

.filter(x => x > 6)

.filter(x => x > 7)

.fold(0)(_ + _)

}

def maps_baseline(): Int = {

var i=0

var sum=0

while (i < v.length) {

sum += v(i) * 1*2*3*4*5*6*7

i += 1

}

sum

}

def maps_shallow(): Int = {

fromArray(v)

.map(x => x * 1)

.map(x => x * 2)

.map(x => x * 3)

.map(x => x * 4)

.map(x => x * 5)

.map(x => x * 6)

.map(x => x * 7)

.fold(0)(_ + _)

}

def dotProduct_baseline(): Int = {

var counter = 0

var sum = 0

while (counter < vHi.length) {

sum += vHi(counter) * vHi(counter)

counter += 1

}

sum

}

def dotProduct_shallow(): Int = {

293

Appendix D. Code of the Microbenchmarks

fromArray(vHi)

.zipWith(fromArray(vHi))(((a,b) => a * b))

.fold(0)(_ + _)

}

def flatMap_after_zipWith_baseline(): Int = {

var counter1 = 0

var sum = 0

while (counter1 < vFaZ.length) {

val item1 = vFaZ(counter1) + vFaZ(counter1)

var counter2 = 0

while (counter2 < vFaZ.length) {

val item2 = vFaZ(counter2)

sum += item2 + item1

counter2 += 1

}

counter1 += 1

}

sum

}

def flatMap_after_zipWith_shallow(): Int = {

val xs = vFaZ

val ys = vFaZ

fromArray(xs)

.zipWith(fromArray(xs))(_ + _)

.flatMap(x => fromArray(ys).map(y => (x + y)))

.fold(0)(_ + _)

}

def zipWith_after_flatMap_baseline(): Int = {

var sum = 0

var index1 = 0

var index2 = 0

var flag1 = (index1 <= vZaF.length - 1)

while (flag1 && (index2 <= vZaF.length - 1)) {

var el2 = vZaF(index2)

index2 += 1

var index_zip = 0

while (flag1 && (index_zip <= vZaF.length - 1)) {

var el1 = vZaF(index_zip)

index_zip += 1

var elz = vZaF(index1)

index1 += 1

flag1 = (index1 <= vZaF.length - 1);

sum = sum + elz + el1 + el2

294

}

}

sum

}

def zipWith_after_flatMap_shallow(): Int = {

val xs = vZaF

val ys = vZaF

fromArray(xs)

.flatMap(x => fromArray(ys).map(y => (x + y)))

.zipWith(fromArray(xs))(_ + _)

.fold(0)(_ + _)

}

def flatMap_take_baseline(): Int = {

var counter1 = 0

var counter2 = 0

var sum = 0

var n = 0

var flag = true

val size1 = v.length

val size2 = vLo.length

while (counter1 < size1 && flag) {

val item1 = v(counter1)

while (counter2 < size2 && flag) {

val item2 = vLo(counter2)

sum = sum + item1 * item2

counter2 += 1

n += 1

if (n == 20000000)

flag = false

}

counter2 = 0

counter1 += 1

}

sum

}

def flatMap_take_shallow(): Int = {

val vHi = v

fromArray(vHi)

.flatMap(x => fromArray(vLo).map(y => (x * y)))

.take(20000000)

.fold(0)(_ + _)

}

def zip_flat_flat_baseline(): Int = {

295

Appendix D. Code of the Microbenchmarks

val vHi = v

var sum = 0

var index11 = 0

var index12 = 0

var index21 = 0

var index22 = 0

var taken = 0

var goOn = true

val toTake = 20000000

while (index11 < vHi.length && taken < toTake && goOn) {

index12 = 0

while (index12 < vLo.length && taken < toTake && goOn) {

val el1 = vHi(index11) * vLo(index12)

if (index22 > vHi.length) {

index21 += 1

index22 = 0

}

if (index21 >= vLo.length) goOn = false

else if (index22 < vHi.length) {

sum += el1 + vLo(index21) * vHi(index22)

taken += 1

index22 += 1

}

index12 += 1

}

index11 += 1

}

sum

}

def zip_flat_flat_shallow(): Int = {

val s0 = fromArray(v)

.flatMap(x => fromArray(vLo).map(y => (x * y)))

val s1 = fromArray(vLo)

.flatMap(x => fromArray(v).map(y => (x * y)))

(s0 zipWith s1)(_ + _).take(20000000).fold(0)(_ + _)

}

def zip_filter_filter_baseline(): Int = {

val xs = vHi

val ys = vHi

var counter1 = 0

var counter2 = 0

var sum = 0

val size1 = xs.length

296

val size2 = ys.length

while (counter1 < size1 && counter2 < size2) {

while (!(xs(counter1) > 5) && counter1 < size1)

counter1 += 1

if (counter1 < size1) {

val item2 = ys(counter2)

if (item2 > 5) {

sum += xs(counter1) + item2

counter1 += 1

}

counter2 += 1

}

}

sum

}

def zip_filter_filter_shallow(): Int = {

val xs = vHi

val ys = vHi

(fromArray(xs) filter (_ > 5)

zipWith

fromArray(ys) filter (_ > 5)

)(_ + _).fold(0)(_ + _)

}

297

Bibliography

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for

large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams, D. P. Friedman, E. Kohlbecker,

G. L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M.

Pitman, M. Wand, William Clinger, and Jonathan Rees. Revised4 report on the algorithmic

language Scheme. SIGPLAN Lisp Pointers, IV(3):1–55, July 1991. ISSN 1045-3563. doi:

10.1145/382130.382133. URL https://doi.org/10.1145/382130.382133.

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools,

and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional,

2004. ISBN 0321227255.

Michael D. Adams. Towards the essence of hygiene. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15,

page 457–469, New York, NY, USA, 2015. Association for Computing Machinery. ISBN

9781450333009. doi: 10.1145/2676726.2677013. URL https://doi.org/10.1145/2676726.

2677013.

Yanif Ahmad and Christoph Koch. DBToaster: A SQL compiler for high-performance delta

processing in main-memory databases. PVLDB, 2(2):1566–1569, 2009.

Nada Amin and Ross Tate. Java and Scala’s Type Systems Are Unsound: The Existential Crisis of

Null Pointers. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, pages 838–848,

New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4444-9. doi: 10.1145/2983990.2984004.

URL http://doi.acm.org/10.1145/2983990.2984004.

Nada Amin, Karl Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The

Essence of Dependent Object Types. In Sam Lindley, Conor McBride, Phil Trinder, and Don

Sannella, editors, WadlerFest 2016. Springer, 2016.

Johan Anker and Josef Svenningsson. An EDSL approach to high performance Haskell pro-

gramming. In ACM Haskell Symposium, pages 1–12, 2013.

299

https://doi.org/10.1145/382130.382133
https://doi.org/10.1145/2676726.2677013
https://doi.org/10.1145/2676726.2677013
http://doi.acm.org/10.1145/2983990.2984004

Bibliography

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New York, NY,

USA, 1992. ISBN 0-521-41695-7.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,

Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark SQL:

Relational Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD’15, pages 1383–1394, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-2758-9.

Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin Keijzer, Bo Lyckegård,

Anders Persson, Mary Sheeran, Josef Svenningsson, and András Vajda. Feldspar: A domain

specific language for digital signal processing algorithms. In 8th IEEE/ACM International

Conference on Formal Methods and Models for Codesign (MEMOCODE), pages 169–178.

IEEE, 2010.

Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Engdal, and Anders

Persson. The Design and Implementation of Feldspar an Embedded Language for Digital

Signal Processing. In Proceedings of the 22Nd International Conference on Implementation

and Application of Functional Languages, IFL’10, pages 121–136, Berlin, Heidelberg, 2011.

Springer-Verlag. ISBN 978-3-642-24275-5.

Alan Bawden. Quasiquotation in Lisp. In ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM), pages 4–12. ACM, 1999.

Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.

Automatic differentiation in machine learning: A survey. arXiv preprint arXiv:1502.05767,

2015a.

Atilim Gunes Baydin, Barak A Pearlmutter, and Jeffrey Mark Siskind. DiffSharp: Automatic

Differentiation Library. arXiv preprint arXiv:1511.07727, 2015b.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume

Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU and

GPU math compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Binders by day, labels

by night: Effect instances via lexically scoped handlers. Proc. ACM Program. Lang., 4(POPL),

December 2019. doi: 10.1145/3371116. URL https://doi.org/10.1145/3371116.

Christian Bischof, Peyvand Khademi, Andrew Mauer, and Alan Carle. ADIFOR 2.0: Automatic

differentiation of Fortran 77 programs. IEEE Computational Science and Engineering, 3(3):

18–32, 1996.

Christian H Bischof, HM Bucker, Bruno Lang, Arno Rasch, and Andre Vehreschild. Combining

source transformation and operator overloading techniques to compute derivatives for

MATLAB programs. In Source Code Analysis and Manipulation, 2002. Proceedings. Second

IEEE International Workshop on, pages 65–72. IEEE, 2002.

300

https://doi.org/10.1145/3371116

Bibliography

Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by evaluation. In Pro-

ceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10, pages 135–146, New

York, NY, USA, 2010. ACM. ISBN 978-1-4503-0252-4. doi: 10.1145/1863523.1863540. URL

http://doi.acm.org/10.1145/1863523.1863540.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effekt: Capability-

passing style for type-and effect-safe, extensible effect handlers in scala. Journal of Func-

tional Programming, 30, 2020.

Eugene Burmako. Scala Macros: Let Our Powers Combine!: On How Rich Syntax and Static

Types Work with Metaprogramming. In Proceedings of the 4th Workshop on Scala, SCALA

’13, pages 3:1–3:10, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2064-1.

Eugene Burmako. Unification of compile-time and runtime metaprogramming in scala. page

240, 2017a. doi: 10.5075/epfl-thesis-7159. URL http://infoscience.epfl.ch/record/226166.

Eugene Burmako. Scala meta. http://scalameta.org/, 2017b. Accessed: 2017-07-20.

Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed Lambda-programs

on term algebras. Theoretical Computer Science, 39:135–154, January 1985. ISSN 0304-3975.

doi: 10.1016/0304-3975(85)90135-5. URL http://www.sciencedirect.com/science/article/

pii/0304397585901355.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. Implementing multi-stage

languages using ASTs, gensym, and reflection. In Frank Pfenning and Yannis Smarag-

dakis, editors, Generative Programming and Component Engineering, pages 57–76, Berlin,

Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-39815-8.

Jacques Carette and Oleg Kiselyov. Multi-stage programming with functors and monads:

Eliminating abstraction overhead from generic code. Sci. Comput. Program., 76(5):349–375,

May 2011. ISSN 0167-6423.

Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially evaluated:

Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,

19(05):509–543, 2009.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael

Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic

programming language. Journal of statistical software, 76(1), 2017.

Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasgen, Jim Gray, W. Frank King III,

Bruce G. Lindsay, Raymond A. Lorie, James W. Mehl, Thomas G. Price, Gianfranco R. Putzolu,

Patricia G. Selinger, Mario Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford W. Wade,

and Robert A. Yost. A history and evaluation of system R. Commun. ACM, 24(10):632–646,

1981.

301

http://doi.acm.org/10.1145/1863523.1863540
http://infoscience.epfl.ch/record/226166
http://scalameta.org/
http://www.sciencedirect.com/science/article/pii/0304397585901355
http://www.sciencedirect.com/science/article/pii/0304397585901355

Bibliography

P. P. Chang and W.-W. Hwu. Inline function expansion for compiling C programs. In Proceedings

of the ACM SIGPLAN 1989 Conference on Programming Language Design and Implementa-

tion, PLDI ’89, pages 246–257, New York, NY, USA, 1989. ACM. ISBN 0-89791-306-X.

Arthur Charguéraud. The locally nameless representation. Journal of Automated Reasoning,

49(3):363–408, 2012.

Arun Chauhan and Ken Kennedy. Optimizing strategies for telescoping languages: Procedure

strength reduction and procedure vectorization. In Proceedings of the 15th International

Conference on Supercomputing, ICS ’01, page 92–101, New York, NY, USA, 2001. Association

for Computing Machinery. ISBN 158113410X. doi: 10.1145/377792.377812. URL https:

//doi.org/10.1145/377792.377812.

Chiyan Chen and Hongwei Xi. Meta-programming through typeful code representation.

Journal of Functional Programming, 15(6):797–835, 2005. doi: 10.1017/S0956796805005617.

James Cheney and Ralf Hinze. First-class phantom types. Technical report, Cornell University,

2003.

James Cheney, Sam Lindley, and Philip Wadler. A practical theory of language-integrated

query. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional

Programming, ICFP ’13, pages 403–416, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-

2326-0.

Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In Pro-

ceedings of the 13th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’08, page 143–156, New York, NY, USA, 2008. Association for Computing Machinery.

ISBN 9781595939197. doi: 10.1145/1411204.1411226. URL https://doi.org/10.1145/1411204.

1411226.

Adam Chlipala. Ur: statically-typed metaprogramming with type-level record computation.

In ACM Sigplan Notices, volume 45, pages 122–133. ACM, 2010.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):

56–68, 1940. doi: 10.2307/2266170.

Koen Claessen, Mary Sheeran, and Bo Joel Svensson. Expressive Array Constructs in an

Embedded GPU Kernel Programming Language. In Proceedings of the 7th Workshop on

Declarative Aspects and Applications of Multicore Programming, DAMP ’12, pages 21–30,

NY, USA, 2012. ACM.

Cliff Click. Global code motion/global value numbering. In Proceedings of the ACM SIGPLAN

1995 Conference on Programming Language Design and Implementation, PLDI ’95, pages

246–257, New York, NY, USA, 1995. ACM. ISBN 0-89791-697-2.

Cliff Click and Keith D. Cooper. Combining analyses, combining optimizations. TOPLAS,

17(2):181–196, March 1995. ISSN 0164-0925. doi: 10.1145/201059.201061. URL http:

//doi.acm.org/10.1145/201059.201061.

302

https://doi.org/10.1145/377792.377812
https://doi.org/10.1145/377792.377812
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
http://doi.acm.org/10.1145/201059.201061
http://doi.acm.org/10.1145/201059.201061

Bibliography

Cliff Click and Michael Paleczny. A simple graph-based intermediate representation. In Papers

from the 1995 ACM SIGPLAN Workshop on Intermediate Representations, IR ’95, pages 35–49,

New York, NY, USA, 1995. ACM. ISBN 0-89791-754-5. doi: 10.1145/202529.202534. URL

http://doi.acm.org/10.1145/202529.202534.

Albert Cohen, Sébastien Donadio, Maria-Jesus Garzaran, Christoph Herrmann, Oleg Kise-

lyov, and David Padua. In search of a program generator to implement generic trans-

formations for high-performance computing. Science of Computer Programming, 62(1):

25 – 46, 2006. ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.2005.10.013. URL

http://www.sciencedirect.com/science/article/pii/S0167642306000724. Special Issue on

the First MetaOCaml Workshop 2004.

Duncan Coutts. Stream fusion : practical shortcut fusion for coinductive sequence types. PhD

thesis, University of Oxford, UK, 2011.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists to streams

to nothing at all. In Proceedings of the 12th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’07, page 315–326, New York, NY, USA, 2007. Association

for Computing Machinery. ISBN 9781595938152. doi: 10.1145/1291151.1291199. URL

https://doi.org/10.1145/1291151.1291199.

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Çetintemel, and Stanley B.

Zdonik. Tupleware: “big” data, big analytics, small clusters. In 7th Biennial Conference on

Innovative Data Systems Research (CIDR), 2015.

Ryan Culpepper and Matthias Felleisen. Taming macros. In Third International Conference on

Generative Programming and Component Engineering (GPCE) 2004, Vancouver, Canada,

October 24-28, 2004. Proceedings, pages 225–243, Berlin, Heidelberg, 2004. Springer Berlin

Heidelberg.

Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM

Conference on LISP and Functional Programming, LFP ’90, pages 151–160, New York, NY,

USA, 1990. ACM. ISBN 0-89791-368-X.

Rowan Davies. A temporal-logic approach to binding-time analysis. In Logic in Computer

Science, 1996. LICS’96. Proceedings., Eleventh Annual IEEE Symposium on, pages 184–195.

IEEE, 1996.

Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the

ACM (JACM), 48(3):555–604, 2001.

Oege de Moor and Ganesh Sittampalam. Generic Program Transformation, pages 116–149.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN 978-3-540-48506-3. doi: 10.1007/

10704973_3. URL https://doi.org/10.1007/10704973_3.

Oege de Moor and Ganesh Sittampalam. Higher-order matching for program transformation.

Theoretical Computer Science, 269(1-2):135–162, 2001.

303

http://doi.acm.org/10.1145/202529.202534
http://www.sciencedirect.com/science/article/pii/S0167642306000724
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1007/10704973_3

Bibliography

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A Probabilistic Prolog and

Its Application in Link Discovery. In Proceedings of the 20th International Joint Conference

on Artifical Intelligence, IJCAI’07, pages 2468–2473, San Francisco, CA, USA, 2007. Morgan

Kaufmann Publishers Inc.

Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. In

Learning in graphical models, pages 75–104. Springer, 1998.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina, Mike

Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso,

and Pat Hanrahan. Liszt: A domain specific language for building portable mesh-based

PDE solvers. In Proceedings of 2011 International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011. Association

for Computing Machinery. ISBN 9781450307710. doi: 10.1145/2063384.2063396. URL

https://doi.org/10.1145/2063384.2063396.

Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: a multi-stage

language for high-performance computing. In ACM SIGPLAN Notices, volume 48, pages

105–116. ACM, 2013.

Zachary DeVito, Daniel Ritchie, Matt Fisher, Alex Aiken, and Pat Hanrahan. First-class runtime

generation of high-performance types using exotypes. In Proceedings of the 35th Conference

on Programming Language Design and Implementation, page 11. ACM, 2014.

Stephen Dolan. Fun with Semirings: A Functional Pearl on the Abuse of Linear Algebra. In

Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’13, pages 101–110, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0.

Conal M. Elliott. Beautiful differentiation. In Proceedings of the 14th ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP ’09, pages 191–202, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-332-7.

Burak Emir, Martin Odersky, and John Williams. Matching Objects with Patterns. In Erik Ernst,

editor, ECOOP 2007 – Object-Oriented Programming, Lecture Notes in Computer Science,

pages 273–298. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-73589-2.

Martin Erwig and Steve Kollmansberger. Functional pearls: Probabilistic functional program-

ming in Haskell. Journal of Functional Programming, 16(1):21–34, 2006.

Andrew Farmer. HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell

Compiler. PhD thesis, University of Kansas, 2015.

Andrew Farmer, Christian Hoener zu Siederdissen, and Andy Gill. The HERMIT in the stream:

Fusing stream fusion’s concatmap. In Proceedings of the ACM SIGPLAN 2014 workshop on

Partial evaluation and program manipulation, pages 97–108. ACM, 2014.

304

https://doi.org/10.1145/2063384.2063396

Bibliography

Leonidas Fegaras and David Maier. Towards an effective calculus for object query languages.

SIGMOD Rec., 24(2):47–58, May 1995. ISSN 0163-5808. doi: 10.1145/568271.223789. URL

https://doi.org/10.1145/568271.223789.

Leonidas Fegaras and David Maier. Optimizing object queries using an effective calculus. ACM

Trans. Database Syst., 25(4):457–516, December 2000. ISSN 0362-5915. doi: 10.1145/377674.

377676. URL https://doi.org/10.1145/377674.377676.

Leonidas Fegaras and Md Hasanuzzaman Noor. Compile-time code generation for embedded

data-intensive query languages. In 2018 IEEE International Congress on Big Data (BigData

Congress), pages 1–8, 2018.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of compiling

with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming

Language Design and Implementation, PLDI ’93, pages 237–247, New York, NY, USA, 1993.

ACM. ISBN 0-89791-598-4. doi: 10.1145/155090.155113. URL http://doi.acm.org/10.1145/

155090.155113.

Shaun A Forth. An efficient overloaded implementation of forward mode automatic differen-

tiation in MATLAB. ACM Transactions on Mathematical Software (TOMS), 32(2):195–222,

2006.

Franz Franchetti, Yevgen Voronenko, and Markus Püschel. Formal loop merging for signal

transforms. PLDI ’05, pages 315–326. ISBN 1-59593-056-6. doi: 10.1145/1065010.1065048.

URL http://doi.acm.org/10.1145/1065010.1065048.

Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel. Operator

language: A program generation framework for fast kernels. In Domain-Specific Languages,

pages 385–409. Springer, 2009.

Yoshihiko Futamura. Partial evaluation of computation process–an approach to a compiler-

compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations: Type-safe,

generative, binding macros in MacroML. In ACM SIGPLAN Notices, volume 36, pages 74–85.

ACM, 2001.

Jacques Garrigue and Didier Rémy. Ambivalent types for principal type inference with GADTs.

In Asian Symposium on Programming Languages and Systems, pages 257–272. Springer,

2013.

Paolo G. Giarrusso. Open GADTs and Declaration-site Variance: A Problem Statement. In

Proceedings of the 4th Workshop on Scala, SCALA ’13, pages 5:1–5:4, New York, NY, USA,

2013. ACM. ISBN 978-1-4503-2064-1.

Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A language and program for complex

Bayesian modelling. The Statistician, pages 169–177, 1994.

305

https://doi.org/10.1145/568271.223789
https://doi.org/10.1145/377674.377676
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/1065010.1065048

Bibliography

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation. FPCA,

pages 223–232. ACM, 1993.

Andrew John Gill. Cheap deforestation for non-strict functional languages. PhD thesis, Univer-

sity of Glasgow, 1996.

George Giorgidze, Torsten Grust, Nils Schweinsberg, and Jeroen Weijers. Bringing back

monad comprehensions. In Proceedings of the 4th ACM Symposium on Haskell, Haskell

’11, page 13–22, New York, NY, USA, 2011. Association for Computing Machinery. ISBN

9781450308601. doi: 10.1145/2034675.2034678. URL https://doi.org/10.1145/2034675.

2034678.

Michele Giry. A categorical approach to probability theory. In Categorical aspects of topology

and analysis, pages 68–85. Springer, 1982.

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum.

Church: A language for generative models. arXiv preprint arXiv:1206.3255, 2012.

Google. Protocol buffers. https://github.com/protocolbuffers/protobuf, 2008. Accessed:

2019-04-06.

Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Probabilistic

programming. In Proceedings of the on Future of Software Engineering, pages 167–181. ACM,

2014.

Samuel Gruetter. Connecting Scala to DOT. MSc semester project, EPFL, June

2016. URL https://github.com/samuelgruetter/dot-calculus/blob/master/doc/

Connecting-Scala-to-DOT/report.pdf.

Torsten Grust. Monad Comprehensions: A Versatile Representation for Queries, pages 288–

311. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-662-05372-0. doi:

10.1007/978-3-662-05372-0_12. URL https://doi.org/10.1007/978-3-662-05372-0_12.

Michael Haidl, Michel Steuwer, Tim Humernbrum, and Sergei Gorlatch. Multi-stage Pro-

gramming for GPUs in C++ Using PACXX. In Proceedings of the 9th Annual Workshop on

General Purpose Processing Using Graphics Processing Unit, GPGPU ’16, pages 32–41, New

York, NY, USA, 2016. ACM. ISBN 978-1-4503-4195-0. doi: 10.1145/2884045.2884049. URL

http://doi.acm.org/10.1145/2884045.2884049. event-place: Barcelona, Spain.

G. W. Hamilton. Distillation: Extracting the essence of programs. In Proceedings of the 2007

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipula-

tion, PEPM ’07, pages 61–70, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-620-2. doi:

10.1145/1244381.1244391. URL http://doi.acm.org/10.1145/1244381.1244391.

Laurent Hascoet and Valérie Pascual. The Tapenade Automatic Differentiation Tool: Principles,

Model, and Specification. ACM Trans. Math. Softw., 39(3):20:1–20:43, May 2013. ISSN 0098-

3500.

306

https://doi.org/10.1145/2034675.2034678
https://doi.org/10.1145/2034675.2034678
https://github.com/protocolbuffers/protobuf
https://github.com/samuelgruetter/dot-calculus/blob/master/doc/Connecting-Scala-to-DOT/report.pdf
https://github.com/samuelgruetter/dot-calculus/blob/master/doc/Connecting-Scala-to-DOT/report.pdf
https://doi.org/10.1007/978-3-662-05372-0_12
http://doi.acm.org/10.1145/2884045.2884049
http://doi.acm.org/10.1145/1244381.1244391

Bibliography

David Herman. A theory of typed hygienic macros. PhD thesis, Northeastern University, 2010.

David Herman and Mitchell Wand. A theory of hygienic macros. In European Symposium on

Programming, pages 48–62. Springer, 2008.

Christian Hofer and Klaus Ostermann. Modular domain-specific language components in

Scala. In Proceedings of the Ninth International Conference on Generative Programming and

Component Engineering, GPCE ’10, pages 83–92, New York, NY, USA, 2010. ACM. ISBN 978-

1-4503-0154-1. doi: 10.1145/1868294.1868307. URL http://doi.acm.org/10.1145/1868294.

1868307.

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Polymorphic embed-

ding of DSLs. In Proceedings of the 7th international conference on Generative programming

and component engineering, pages 137–148. ACM, 2008.

Robin J. Hogan. Fast Reverse-Mode Automatic Differentiation Using Expression Templates in

C++. ACM Trans. Math. Softw., 40(4):26:1–26:16, July 2014. ISSN 0098-3500.

Paul Hudak. Building domain-specific embedded languages. ACM Computing Surveys (CSUR),

28(4es):196, 1996.

Paul Hudak. Modular domain specific languages and tools. In Proceedings of the 5th Inter-

national Conference on Software Reuse, ICSR ’98, pages 134–, Washington, DC, USA, 1998.

IEEE Computer Society. ISBN 0-8186-8377-5.

Gérard Huet and Bernard Lang. Proving and applying program transformations expressed

with second-order patterns. Acta informatica, 11(1):31–55, 1978.

Jun Inoue, Oleg Kiselyov, and Yukiyoshi Kameyama. Staging Beyond Terms: Prospects and

Challenges. In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation

and Program Manipulation, PEPM ’16, pages 103–108, New York, NY, USA, 2016. ACM.

ISBN 978-1-4503-4097-7. doi: 10.1145/2847538.2847548. URL http://doi.acm.org/10.1145/

2847538.2847548.

Jan Martin Jansen. Programming in the λ-calculus: From Church to Scott and back. In

Essays Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday on The Beauty of

Functional Code - Volume 8106, pages 168–180, Berlin, Heidelberg, 2013. Springer-Verlag.

ISBN 978-3-642-40354-5. doi: 10.1007/978-3-642-40355-2_12. URL https://doi.org/10.

1007/978-3-642-40355-2_12.

Dean F Jerding, John T Stasko, and Thomas Ball. Visualizing interactions in program executions.

In Proceedings of the 19th international conference on Software engineering, pages 360–370.

ACM, 1997.

Neil D Jones, Carsten K Gomard, and Peter Sestoft. Partial evaluation and automatic program

generation. Peter Sestoft, 1993.

307

http://doi.acm.org/10.1145/1868294.1868307
http://doi.acm.org/10.1145/1868294.1868307
http://doi.acm.org/10.1145/2847538.2847548
http://doi.acm.org/10.1145/2847538.2847548
https://doi.org/10.1007/978-3-642-40355-2_12
https://doi.org/10.1007/978-3-642-40355-2_12

Bibliography

Simon L. Peyton Jones. Compiling haskell by program transformation: A report from the

trenches. In HanneRiis Nielson, editor, Programming Languages and Systems - ESOP ’96,

volume 1058 of Lecture Notes in Computer Science, pages 18–44. Springer Berlin Heidelberg,

1996. ISBN 978-3-540-61055-7. doi: 10.1007/3-540-61055-3_27. URL http://dx.doi.org/10.

1007/3-540-61055-3_27.

Simon Peyton Jones and Philip Wadler. Comprehensive comprehensions. In Proceedings of the

ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, page 61–72, New York, NY, USA,

2007. Association for Computing Machinery. ISBN 9781595936745. doi: 10.1145/1291201.

1291209. URL https://doi.org/10.1145/1291201.1291209.

Manohar Jonnalagedda and Sandro Stucki. Fold-based fusion as a library: A generative

programming pearl. In Proceedings of the 6th ACM SIGPLAN Symposium on Scala, pages

41–50. ACM, 2015a. ISBN 978-1-4503-3626-0. doi: 10.1145/2774975.2774981. URL http:

//doi.acm.org/10.1145/2774975.2774981.

Manohar Jonnalagedda and Sandro Stucki. Fold-based Fusion As a Library: A Generative

Programming Pearl. In Proceedings of the 6th ACM SIGPLAN Symposium on Scala, SCALA

2015, pages 41–50, Portland, OR, USA, 2015b. ACM. ISBN 978-1-4503-3626-0.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky.

Staged parser combinators for efficient data processing. In Acm Sigplan Notices, volume 49,

pages 637–653. ACM, 2014.

Nicolai M Josuttis. The C++ standard library: a tutorial and reference. Addison-Wesley, 2012.

Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev, Christoph Koch, and Martin

Odersky. Yin-Yang: Concealing the deep embedding of DSLs. GPCE 2014, pages 73–82.

ACM, 2014.

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. Combinators for impure yet hy-

gienic code generation. Science of Computer Programming, 112 (part 2):120–144, November

2015. doi: 10.1016/j.scico.2015.08.007.

Jerzy Karczmarczuk. Functional differentiation of computer programs. ACM SIGPLAN Notices,

34(1):195–203, 1999.

Manos Karpathiotakis, Ioannis Alagiannis, Thomas Heinis, Miguel Branco, and Anastasia

Ailamaki. Just-in-time data virtualization: Lightweight data management with ViDa. In

CIDR, 2015.

Gershon Kedem. Automatic differentiation of computer programs. ACM Trans. Math. Softw., 6

(2):150–165, June 1980. ISSN 0098-3500.

Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the 12th ACM

SIGPLAN International Conference on Functional Programming, ICFP ’07, pages 177–190,

New York, NY, USA, 2007. ACM. ISBN 978-1-59593-815-2. doi: 10.1145/1291151.1291179.

URL http://doi.acm.org/10.1145/1291151.1291179.

308

http://dx.doi.org/10.1007/3-540-61055-3_27
http://dx.doi.org/10.1007/3-540-61055-3_27
https://doi.org/10.1145/1291201.1291209
http://doi.acm.org/10.1145/2774975.2774981
http://doi.acm.org/10.1145/2774975.2774981
http://doi.acm.org/10.1145/1291151.1291179

Bibliography

Andrew Kennedy and Claudio V. Russo. Generalized algebraic data types and object-oriented

programming. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-

oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 21–40,

New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0.

Andrew Kennedy and Don Syme. Design and Implementation of Generics for the .NET

Common Language Runtime. In Proceedings of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, PLDI ’01, pages 1–12, New York,

NY, USA, 2001. ACM. ISBN 978-1-58113-414-8. doi: 10.1145/378795.378797. URL http:

//doi.acm.org/10.1145/378795.378797. event-place: Snowbird, Utah, USA.

Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic modal type system for

Lisp-like multi-staged languages. In ACM SIGPLAN Notices, volume 41, pages 257–268. ACM,

2006.

Oleg Kiselyov. Typed tagless final interpreters. In Generic and Indexed Programming, pages

130–174. Springer, 2012.

Oleg Kiselyov. The design and implementation of BER MetaOCaml. In International Sympo-

sium on Functional and Logic Programming, pages 86–102. Springer, 2014.

Oleg Kiselyov. MetaOCaml – an OCaml dialect for multi-stage programming, 2017. URL https:

//web.archive.org/web/20170725111517/http://okmij.org/ftp/ML/MetaOCaml.html.

Oleg Kiselyov. Reconciling abstraction with high performance: A MetaOCaml approach. Found.

Trends Program. Lang., 5(1):1–101, June 2018. ISSN 2325-1107. doi: 10.1561/2500000038.

URL https://doi.org/10.1561/2500000038.

Oleg Kiselyov and Chung-Chieh Shan. Embedded probabilistic programming. In Domain-

Specific Languages, pages 360–384. Springer, 2009.

Oleg Kiselyov, Yukiyoshi Kameyama, and Yuto Sudo. Refined environment classifiers. In Asian

Symposium on Programming Languages and Systems, pages 271–291. Springer, 2016.

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream fusion,

to completeness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, pages 285–299. ACM, 2017.

P. Klint, T. v. d. Storm, and J. Vinju. Rascal: A domain specific language for source code analysis

and manipulation. In 2009 Ninth IEEE International Working Conference on Source Code

Analysis and Manipulation, pages 168–177, Sept 2009.

Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Building efficient query

engines in a high-level language. PVLDB, 7(10):853–864, 2014.

Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. In Pro-

ceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design and

309

http://doi.acm.org/10.1145/378795.378797
http://doi.acm.org/10.1145/378795.378797
https://web.archive.org/web/20170725111517/http://okmij.org/ftp/ML/MetaOCaml.html
https://web.archive.org/web/20170725111517/http://okmij.org/ftp/ML/MetaOCaml.html
https://doi.org/10.1561/2500000038

Bibliography

Implementation, PLDI ’94, pages 147–158, New York, NY, USA, 1994. ACM. ISBN 0-89791-

662-X.

Christoph Koch. Incremental query evaluation in a ring of databases. In Proceedings of the

Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA, pages 87–98. ACM, 2010.

Christoph Koch. Abstraction without regret in database systems building: a manifesto. IEEE

Data Eng. Bull., 37(1):70–79, 2014.

Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei, and

Amir Shaikhha. DBToaster: Higher-order delta processing for dynamic, frequently fresh

views. The VLDB Journal, 23(2):253–278, 2014. ISSN 1066-8888.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic macro

expansion. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming,

LFP ’86, pages 151–161, New York, NY, USA, 1986. ACM. ISBN 0-89791-200-4.

Pieter Koopman, Rinus Plasmeijer, and Jan Martin Jansen. Church Encoding of Data Types

Considered Harmful for Implementations: Functional Pearl. In Proceedings of the 26Nd 2014

International Symposium on Implementation and Application of Functional Languages,

IFL ’14, pages 4:1–4:12, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3284-2. doi:

10.1145/2746325.2746330. URL http://doi.acm.org/10.1145/2746325.2746330.

Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. Generating code for holistic query

evaluation. In Proc. International Conference on Data Engineering (ICDE), pages 613–624,

2010.

Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture:

A probabilistic programming language for scene perception. In Proceedings of the ieee

conference on computer vision and pattern recognition, pages 4390–4399, 2015.

HyoukJoong Lee, Kevin J Brown, Arvind K Sujeeth, Hassan Chafi, Tiark Rompf, Martin Odersky,

and Kunle Olukotun. Implementing domain-specific languages for heterogeneous parallel

computing. IEEE Micro, 31(5):42–53, 2011.

Roland Leißa, Klaas Boesche, Sebastian Hack, Richard Membarth, and Philipp Slusallek.

Shallow embedding of DSLs via online partial evaluation. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Generative Programming: Concepts and Experiences,

GPCE 2015, pages 11–20, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3687-1.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless Gradients in

Numpy. In ICML 2015 AutoML Workshop, 2015.

Geoffrey Mainland. Why it’s nice to be quoted: Quasiquoting for haskell. In Proceedings of

the ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07, pages 73–82, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-674-5.

310

http://doi.acm.org/10.1145/2746325.2746330

Bibliography

Geoffrey Mainland. Explicitly heterogeneous metaprogramming with MetaHaskell. In Pro-

ceedings of the 17th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’12, page 311–322, New York, NY, USA, 2012. Association for Computing Machinery.

ISBN 9781450310543. doi: 10.1145/2364527.2364572. URL https://doi.org/10.1145/2364527.

2364572.

Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and

Martin Rinard. Probabilistic programming with programmable inference. In Proceedings of

the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 603–616. ACM, 2018.

I. Masliah, M. Baboulin, and J. Falcou. Meta-programming and Multi-stage Programming for

GPGPUs. In 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core

Systems-on-Chip (MCSOC), pages 369–376, September 2016. doi: 10.1109/MCSoC.2016.49.

Luke Maurer, Paul Downen, Zena M. Ariola, and Simon Peyton Jones. Compiling without

continuations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2017, pages 482–494, New York, NY, USA, 2017.

ACM. ISBN 978-1-4503-4988-8. doi: 10.1145/3062341.3062380. URL http://doi.acm.org/10.

1145/3062341.3062380.

Conor McBride and James McKinna. Functional pearl: I am not a number—i am a free

variable. In Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, page

1–9, New York, NY, USA, 2004. Association for Computing Machinery. ISBN 1581138504.

doi: 10.1145/1017472.1017477. URL https://doi.org/10.1145/1017472.1017477.

James McKinna and Robert Pollack. Pure type systems formalized. In Typed Lambda Calculi

and Applications, pages 289–305. Springer, 1993.

Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling Object, Relations and

XML in the .NET Framework. SIGMOD ’06, pages 706–706. ACM, 2006. ISBN 1-59593-434-0.

doi: 10.1145/1142473.1142552. URL http://doi.acm.org/10.1145/1142473.1142552.

Marjan Mernik. Formal and Practical Aspects of Domain-Specific Languages: Recent Develop-

ments: Recent Developments. IGI Global, 2012.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L Ong, and Andrey Kolobov.

BLOG: Probabilistic Models with Unknown Objects. Statistical relational learning, page 373,

2007.

Robin Milner. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17(3):348 – 375, 1978. ISSN 0022-0000. doi: https://doi.org/

10.1016/0022-0000(78)90014-4. URL http://www.sciencedirect.com/science/article/pii/

0022000078900144.

Tom Minka, John Winn, John Guiver, and David Knowles. Infer.net 2.4, 2010. microsoft research

cambridge, 2014.

311

https://doi.org/10.1145/2364527.2364572
https://doi.org/10.1145/2364527.2364572
http://doi.acm.org/10.1145/3062341.3062380
http://doi.acm.org/10.1145/3062341.3062380
https://doi.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1142473.1142552
http://www.sciencedirect.com/science/article/pii/0022000078900144
http://www.sciencedirect.com/science/article/pii/0022000078900144

Bibliography

Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal

of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-virtualized. In Proceed-

ings of the ACM SIGPLAN 2012 workshop on Partial evaluation and program manipulation,

pages 117–120. ACM, 2012.

Fabian Nagel, Gavin Bierman, and Stratis D. Viglas. Code generation for efficient query

processing in managed runtimes. Proc. VLDB Endow., 7(12):1095–1106, August 2014. ISSN

2150-8097.

Shayan Najd, Sam Lindley, Josef Svenningsson, and Philip Wadler. Everything old is new again:

Quoted domain-specific languages. In Proceedings of the 2016 ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation, PEPM 2016, pages 25–36, New York, NY,

USA, 2016. ACM. ISBN 978-1-4503-4097-7.

Aleksandar Nanevski. Meta-programming with names and necessity. In Proceedings of the

Seventh ACM SIGPLAN International Conference on Functional Programming, ICFP ’02,

pages 206–217, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

Aleksandar Nanevski and Frank Pfenning. Staged computation with names and necessity.

Journal of Functional Programming, 15(6):893–939, 2005.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.

ACM Transactions on Computational Logic (TOCL), 9(3):23, 2008.

Sri Hari Krishna Narayanan, Boyana Norris, and Beata Winnicka. ADIC2: Development of a

component source transformation system for differentiating C and C++. Procedia Computer

Science, 1(1):1845–1853, 2010.

Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware. PVLDB,

4(9):539–550, 2011.

Gregory Neverov and Paul Roe. Metaphor: A Multi-stage, Object-Oriented Programming Lan-

guage. In Gabor Karsai and Eelco Visser, editors, Generative Programming and Component

Engineering, Lecture Notes in Computer Science, pages 168–185. Springer Berlin Heidelberg,

2004. ISBN 978-3-540-30175-2.

Abel Nieto. Towards Algorithmic Typing for DOT (Short Paper). In Proceedings of the 8th

ACM SIGPLAN International Symposium on Scala, SCALA 2017, pages 2–7, New York, NY,

USA, 2017. ACM. ISBN 978-1-4503-5529-2. doi: 10.1145/3136000.3136003. URL http:

//doi.acm.org/10.1145/3136000.3136003.

Martin Odersky and Adriaan Moors. Fighting bit Rot with Types (Experience Report: Scala

Collections). In Ravi Kannan and K. Narayan Kumar, editors, IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science, volume 4 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 427–451, Dagstuhl, Germany, 2009.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-13-2.

312

http://doi.acm.org/10.1145/3136000.3136003
http://doi.acm.org/10.1145/3136000.3136003

Bibliography

Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In OOPSLA, pages

41–57, San Diego, CA, USA, 2005. ISBN 1-59593-031-0.

Martin Odersky, Guillaume Martres, and Dmitry Petrashko. Implementing Higher-kinded

Types in Dotty. In Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala, SCALA

2016, pages 51–60, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4648-1. doi: 10.1145/

2998392.2998400. URL http://doi.acm.org/10.1145/2998392.2998400.

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro

Stucki. Simplicitly: Foundations and applications of implicit function types. Proc. ACM

Program. Lang., 2(POPL), December 2017. doi: 10.1145/3158130. URL https://doi.org/10.

1145/3158130.

Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus Püschel. Spiral

in Scala: Towards the systematic construction of generators for performance libraries. In

Proceedings of the 12th International Conference on Generative Programming: Concepts &

Experiences, GPCE ’13, pages 125–134, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-

2373-4.

Junpei Oishi and Yukiyoshi Kameyama. Staging with Control: Type-safe Multi-stage Pro-

gramming with Control Operators. In Proceedings of the 16th ACM SIGPLAN International

Conference on Generative Programming: Concepts and Experiences, GPCE 2017, pages 29–40,

New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5524-7. doi: 10.1145/3136040.3136049.

URL http://doi.acm.org/10.1145/3136040.3136049. event-place: Vancouver, BC, Canada.

Bruno C d S Oliveira and William R Cook. Extensibility for the masses. In European Conference

on Object-Oriented Programming, pages 2–27. Springer, 2012.

Bruno C.d.S. Oliveira, Meng Wang, and Jeremy Gibbons. The visitor pattern as a reusable,

generic, type-safe component. In Proceedings of the 23rd ACM SIGPLAN Conference

on Object-Oriented Programming Systems Languages and Applications, OOPSLA ’08,

page 439–456, New York, NY, USA, 2008. Association for Computing Machinery. ISBN

9781605582153. doi: 10.1145/1449764.1449799. URL https://doi.org/10.1145/1449764.

1449799.

Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implicits.

In Proceedings of the ACM International Conference on Object Oriented Programming Systems

Languages and Applications, OOPSLA ’10, pages 341–360, New York, NY, USA, 2010. ACM.

ISBN 978-1-4503-0203-6.

Nuno Oliveira, Maria João Pereira, Pedro Henriques, and Daniela Cruz. Domain specific

languages: A theoretical survey. INForum’09-Simpósio de Informática, 2009.

Lionel Parreaux and Christoph Koch. Comprehending monoids with class (ex-

tended abstract). 2018. URL https://icfp18.sigplan.org/details/tyde-2018/12/

Extended-Abstract-Comprehending-Monoids-with-Class.

313

http://doi.acm.org/10.1145/2998392.2998400
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3158130
http://doi.acm.org/10.1145/3136040.3136049
https://doi.org/10.1145/1449764.1449799
https://doi.org/10.1145/1449764.1449799
https://icfp18.sigplan.org/details/tyde-2018/12/Extended-Abstract-Comprehending-Monoids-with-Class
https://icfp18.sigplan.org/details/tyde-2018/12/Extended-Abstract-Comprehending-Monoids-with-Class

Bibliography

Lionel Parreaux and Amir Shaikhha. Multi-stage programming in the large with staged

classes. In Proceedings of the 19th ACM SIGPLAN International Conference on Genera-

tive Programming: Concepts and Experiences, GPCE 2020, New York, NY, USA, 2020. ACM.

doi: 10.1145/3425898.3426961. URL https://doi.org/10.1145/3425898.3426961.

Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. Quoted Staged Rewriting: A practi-

cal approach to library-defined optimizations. In Proceedings of the 16th ACM SIGPLAN

International Conference on Generative Programming: Concepts and Experiences, GPCE

2017, pages 131–145, New York, NY, USA, 2017a. ACM. ISBN 978-1-4503-5524-7. doi:

10.1145/3136040.3136043. URL http://doi.acm.org/10.1145/3136040.3136043.

Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. Squid: Type-safe, hygienic, and

reusable quasiquotes. In Proceedings of the 2017 8th ACM SIGPLAN Symposium on Scala,

SCALA 2017. ACM, 2017b. ISBN 978-1-4503-5529-2/17/10.

Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. Unifying analytic

and statically-typed quasiquotes. Proc. ACM Program. Lang., 2(POPL), December 2017c.

doi: 10.1145/3158101. URL https://doi.org/10.1145/3158101.

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. Towards improved

GADT reasoning in scala. In Proceedings of the Tenth ACM SIGPLAN Symposium on Scala,

Scala ’19, page 12–16, New York, NY, USA, 2019. Association for Computing Machinery.

ISBN 9781450368247. doi: 10.1145/3337932.3338813. URL https://doi.org/10.1145/3337932.

3338813.

Barak A Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework:

Lambda the ultimate backpropagator. ACM Transactions on Programming Languages and

Systems (TOPLAS), 30(2):7, 2008.

Tomas Petricek, Gustavo Guerra, and Don Syme. Types from Data: Making Structured Data

First-class Citizens in F#. In Proceedings of the 37th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’16, pages 477–490, New York,

NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908115. URL

http://doi.acm.org/10.1145/2908080.2908115. event-place: Santa Barbara, CA, USA.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules: Rewriting as a

practical optimisation technique in GHC. ACM SIGPLAN, September 2001.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Technical Report

137, Charles River Analytics, 2009.

Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In ACM SIGPLAN Notices,

volume 23, pages 199–208. ACM, 1988.

Randy Pollack, Masahiko Sato, and Wilmer Ricciotti. A canonical locally named representation

of binding. Journal of Automated Reasoning, 49(2):185–207, 2012.

314

https://doi.org/10.1145/3425898.3426961
http://doi.acm.org/10.1145/3136040.3136043
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3337932.3338813
https://doi.org/10.1145/3337932.3338813
http://doi.acm.org/10.1145/2908080.2908115

Bibliography

F. Pottier. Static name control for FreshML. In 22nd Annual IEEE Symposium on Logic in

Computer Science (LICS 2007), pages 356–365, 2007.

François Pottier. An overview of cαml. Electronic Notes in Theoretical Computer Science, 148

(2):27 – 52, 2006. ISSN 1571-0661. Proceedings of the ACM-SIGPLAN Workshop on ML (ML

2005).

Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M Veloso, Bryan W

Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, et al. SPIRAL: code

generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

WV Quine. Mathematical logic. 1940.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and

Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism, locality,

and recomputation in image processing pipelines. In Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’13, page 519–530,

New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320146. doi:

10.1145/2491956.2462176. URL https://doi.org/10.1145/2491956.2462176.

Marianna Rapoport and Ondřej Lhoták. A path to DOT: Formalizing fully-path-dependent

types. 2019. URL http://arxiv.org/abs/1904.07298.

Nico Reißmann. Utilizing the value state dependence graph for haskell. 2012.

Morten Rhiger. First-class open and closed code framgents. Trends in Functional Programming,

6:127–144, 2005.

Morten Rhiger. Programming Languages and Systems: 21st European Symposium on Program-

ming, ESOP 2012, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, chapter

Staged Computation with Staged Lexical Scope, pages 559–578. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012a. ISBN 978-3-642-28869-2.

Morten Rhiger. Hygienic quasiquotation in Scheme. In Proceedings of the 2012 Annual

Workshop on Scheme and Functional Programming, pages 58–64. ACM, 2012b.

Tiark Rompf. Reflections on LMS: exploring front-end alternatives. In Proceedings of the 2016

7th ACM SIGPLAN Symposium on Scala, pages 41–50. ACM, 2016.

Tiark Rompf and Nada Amin. From F to DOT: Type Soundness Proofs with Definitional

Interpreters. October 2015a. URL https://arxiv.org/abs/1510.05216v2.

315

http://www.R-project.org/
https://doi.org/10.1145/2491956.2462176
http://arxiv.org/abs/1904.07298
https://arxiv.org/abs/1510.05216v2

Bibliography

Tiark Rompf and Nada Amin. Functional pearl: a SQL to C compiler in 500 lines of code. In

Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,

ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pages 2–9, 2015b.

Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach to

runtime code generation and compiled DSLs. In Proceedings of the Ninth International

Conference on Generative Programming and Component Engineering, GPCE ’10, pages 127–

136, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0154-1. doi: 10.1145/1868294.1868314.

URL http://doi.acm.org/10.1145/1868294.1868314.

Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Martin Odersky,

and Kunle Olukotun. Building-blocks for performance oriented DSLs. Electronic Proceedings

in Theoretical Computer Science, 66:93–117, Sep 2011. ISSN 2075-2180. doi: 10.4204/eptcs.

66.5. URL http://dx.doi.org/10.4204/EPTCS.66.5.

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, HyoukJoong Lee,

Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky. Optimizing data structures

in high-level programs: new directions for extensible compilers based on staging. In POPL,

pages 497–510, 2013.

Tiark Rompf, Nada Amin, Thierry Coppey, Mohammad Dashti, Manohar Jonnalagedda, Yannis

Klonatos, Martin Odersky, and Christoph Koch. Abstraction without regret for efficient data

processing. In Data-Centric Programming Workshop, 2014.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant com-

putations. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’88, pages 12–27, New York, NY, USA, 1988. ACM. ISBN

0-89791-252-7. doi: 10.1145/73560.73562. URL http://doi.acm.org/10.1145/73560.73562.

Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects. In ECOOP,

pages 258–282. Springer, 2012.

Adrian Sampson, Kathryn S. McKinley, and Todd Mytkowicz. Static Stages for Heterogeneous

Programming. Proc. ACM Program. Lang., 1(OOPSLA):71:1–71:27, October 2017. ISSN

2475-1421. doi: 10.1145/3133895. URL http://doi.acm.org/10.1145/3133895.

Taisuke Sato. A glimpse of symbolic-statistical modeling by PRISM. Journal of Intelligent

Information Systems, 31(2):161–176, October 2008.

Yuhi Sato, Yukiyoshi Kameyama, and Takahisa Watanabe. Module generation without regret.

In Proceedings of the 2020 ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation, PEPM 2020, page 1–13, New York, NY, USA, 2020. Association for Computing

Machinery. ISBN 9781450370967. doi: 10.1145/3372884.3373160. URL https://doi.org/10.

1145/3372884.3373160.

316

http://doi.acm.org/10.1145/1868294.1868314
http://dx.doi.org/10.4204/EPTCS.66.5
http://doi.acm.org/10.1145/73560.73562
http://doi.acm.org/10.1145/3133895
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3372884.3373160

Bibliography

Gabriel Scherer and Didier Rémy. GADTs Meet Subtyping. In Matthias Felleisen and Philippa

Gardner, editors, Programming Languages and Systems, Lecture Notes in Computer Science,

pages 554–573. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-37036-6.

Maximilian Scherr and Shigeru Chiba. Implicit staging of EDSL expressions: A bridge between

shallow and deep embedding. In Richard Jones, editor, ECOOP 2014 – Object-Oriented

Programming: 28th European Conference, Uppsala, Sweden, July 28 – August 1, 2014. Pro-

ceedings, pages 385–410, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-

662-44202-9.

Maximilian Scherr and Shigeru Chiba. Almost first-class language embedding: Taming staged

embedded DSLs. In Proceedings of the 2015 ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences, GPCE 2015, pages 21–30, New York,

NY, USA, 2015. ACM. ISBN 978-1-4503-3687-1.

Denys Shabalin. Hygiene for scala. Technical report, 2014. URL http://infoscience.epfl.ch/

record/215109.

Denys Shabalin, Eugene Burmako, and Martin Odersky. Quasiquotes for Scala. Technical

report, 2013. URL http://infoscience.epfl.ch/record/185242.

Amir Shaikhha and Lionel Parreaux. Finally, a Polymorphic Linear Algebra Language (Pearl).

In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented Programming

(ECOOP 2019), volume 134 of Leibniz International Proceedings in Informatics (LIPIcs), pages

25:1–25:29, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

ISBN 978-3-95977-111-5. doi: 10.4230/LIPIcs.ECOOP.2019.25. URL http://drops.dagstuhl.

de/opus/volltexte/2019/10817.

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and

Christoph Koch. How to architect a query compiler. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16, pages 1907–1922, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-3531-7.

Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis. Destination-

passing style for efficient memory management. In Proceedings of the 6th ACM SIGPLAN

International Workshop on Functional High-Performance Computing, FHPC 2017, pages

12–23, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5181-2.

Amir Shaikhha, Mohammad Dashti, and Christoph Koch. Push versus Pull-Based Loop Fusion

in Query Engines. Journal of Functional Programming, 28:e10, 2018a.

Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, Simon Peyton Jones, and Christoph

Koch. Efficient differentiable programming in a functional array-processing language. arXiv

preprint arXiv:1806.02136, 2018b.

Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In Proceedings

of the 2002 ACM SIGPLAN workshop on Haskell, Haskell ’02, pages 1–16. ACM, 2002.

317

http://infoscience.epfl.ch/record/215109
http://infoscience.epfl.ch/record/215109
http://infoscience.epfl.ch/record/185242
http://drops.dagstuhl.de/opus/volltexte/2019/10817
http://drops.dagstuhl.de/opus/volltexte/2019/10817

Bibliography

Tim Sheard, Zine-el-abidine Benaissa, and Emir Pasalic. DSL implementation using staging

and monads. In Proceedings of the 2nd Conference on Domain-specific Languages, DSL ’99,

pages 81–94, New York, NY, USA, 1999. ACM. ISBN 1-58113-255-7.

Tim Sheard, James Hook, and Nathan Linger. GADTs + extensible kinds = dependent program-

ming, 2005.

Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: Programming with

binders made simple. In Proceedings of the Eighth ACM SIGPLAN International Conference

on Functional Programming, ICFP ’03, pages 263–274, New York, NY, USA, 2003. ACM. ISBN

1-58113-756-7. doi: 10.1145/944705.944729.

AnthonyM. Sloane. Lightweight language processing in kiama. In JoãoM. Fernandes, Ralf

Lämmel, Joost Visser, and João Saraiva, editors, Generative and Transformational Techniques

in Software Engineering III, volume 6491 of Lecture Notes in Computer Science, pages 408–

425. 2011.

Morten H Sørensen and Robert Glück. An algorithm of generalization in positive supercompi-

lation. In Proceedings of ILPS’95, the International Logic Programming Symposium. Citeseer,

1995.

Daniele G. Spampinato and Markus Püschel. A basic linear algebra compiler. CGO ’14, pages

23:23–23:32. ACM, 2014. ISBN 978-1-4503-2670-4. doi: 10.1145/2544137.2544155. URL

http://doi.acm.org/10.1145/2544137.2544155.

James Stanier. Removing and restoring control flow with the value state dependence graph.

Master’s thesis, University of Sussex, 2012.

James Stanier and Des Watson. Intermediate representations in imperative compilers: A

survey. ACM Comput. Surv., 45(3):26:1–26:27, July 2013. ISSN 0360-0300.

Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. Generating per-

formance portable code using rewrite rules: From high-level functional expressions to

high-performance OpenCL code. ACM SIGPLAN Notices, 50(9):205–217, 2015.

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel

Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin,

Nga Tran, and Stan Zdonik. C-Store: A Column-oriented DBMS. In Proceedings of the

31st International Conference on Very Large Data Bases, VLDB ’05, pages 553–564. VLDB

Endowment, 2005. ISBN 1-59593-154-6.

Nicolas Stucki, Aggelos Biboudis, and Martin Odersky. A practical unification of multi-stage

programming and macros. Proceedings of the 17th ACM SIGPLAN International Conference

on Generative Programming: Concepts and Experiences, page 14, 2018. doi: 10.1145/3278122.

3278139. URL http://infoscience.epfl.ch/record/257176.

318

http://doi.acm.org/10.1145/2544137.2544155
http://infoscience.epfl.ch/record/257176

Bibliography

Arvind Sujeeth, HyoukJoong Lee, Kevin Brown, Tiark Rompf, Hassan Chafi, Michael Wu,

Anand Atreya, Martin Odersky, and Kunle Olukotun. OptiML: An implicitly parallel domain-

specific language for machine learning. In Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pages 609–616, 2011.

Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Martin

Odersky, and Kunle Olukotun. Forge: Generating a high performance DSL implementation

from a declarative specification. In Proceedings of the 12th International Conference on

Generative Programming: Concepts & Experiences, GPCE ’13, page 145–154, New York, NY,

USA, 2013. Association for Computing Machinery. ISBN 9781450323734. doi: 10.1145/

2517208.2517220. URL https://doi.org/10.1145/2517208.2517220.

Martin Sulzmann, Manuel Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System F

with type equality coercions. January 2011. ISBN 978-1-59593-393-5. URL https://www.

microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions/.

Josef Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions. ICFP

’02, pages 124–132. ACM, 2002. ISBN 1-58113-487-8. doi: 10.1145/581478.581491. URL

http://doi.acm.org/10.1145/581478.581491.

Bo Joel Svensson and Josef Svenningsson. Defunctionalizing push arrays. In Proceedings of the

3rd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC ’14, pages

43–52, NY, USA, 2014. ACM. ISBN 978-1-4503-3040-4.

Kedar Swadi, Walid Taha, Oleg Kiselyov, and Emir Pasalic. A monadic approach for avoiding

code duplication when staging memoized functions. In Proceedings of the 2006 ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,

PEPM ’06, page 160–169, New York, NY, USA, 2006. Association for Computing Machinery.

ISBN 1595931961. doi: 10.1145/1111542.1111570. URL https://doi.org/10.1145/1111542.

1111570.

Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo Fisher, Tao Liu, Brian Mc-

namara, Daniel Quirk, Matteo Taveggia, Wonseok Chae, Uladzimir Matsveyeu, and Tomas

Petricek. Strongly-typed language support for internet- scale information sources.

Donald Syme. Leveraging .NET meta-programming components from F#: integrated queries

and interoperable heterogeneous execution. In Proceedings of the 2006 Workshop on ML.

ACM, 2006.

Walid Taha. Multi-stage programming: Its theory and applications. PhD thesis, Oregon

Graduate Institute of Science and Technology, 1999.

Walid Taha. Domain-Specific Program Generation: International Seminar, Dagstuhl Castle,

Germany, March 23-28, 2003. Revised Papers, chapter A Gentle Introduction to Multi-stage

Programming, pages 30–50. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN

978-3-540-25935-0.

319

https://doi.org/10.1145/2517208.2517220
https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions/
https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions/
http://doi.acm.org/10.1145/581478.581491
https://doi.org/10.1145/1111542.1111570
https://doi.org/10.1145/1111542.1111570

Bibliography

Walid Taha and Michael Florentin Nielsen. Environment classifiers. SIGPLAN Not., 38(1):

26–37, January 2003. ISSN 0362-1340.

Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In ACM

SIGPLAN Notices, volume 32, pages 203–217. ACM, 1997.

Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations.

Theor. Comput. Sci., 248(1-2):211–242, 2000.

Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. How to Architect a Query Compiler,

Revisited. In Proceedings of the 2018 International Conference on Management of Data,

SIGMOD ’18, pages 307–322, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-4703-7. doi:

10.1145/3183713.3196893. URL http://doi.acm.org/10.1145/3183713.3196893. event-place:

Houston, TX, USA.

Transaction Processing Performance Council. TPC-H, an Ad-Hoc, Decision Support Benchmark.

1999. URL http://www.tpc.org/tpch.

Phil Trinder. Comprehensions, a query notation for DBPLs. In Proceedings of the Third

International Workshop on Database Programming Languages: Bulk Types & Persistent Data:

Bulk Types & Persistent Data, DBPL3, page 55–68, San Francisco, CA, USA, 1992. Morgan

Kaufmann Publishers Inc. ISBN 1558602429.

Valentin F. Turchin. Metacomputation: Metasystem transitions plus supercompilation. In

Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Partial Evaluation, pages 481–

509, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-70589-5.

Vlad Ureche, Cristian Talau, and Martin Odersky. Miniboxing: Improving the speed to code

size tradeoff in parametric polymorphism translations. In Proceedings of the ACM SIGPLAN

2013 Conference on Object Oriented Programming, Systems, Languages and Applications

(OOPSLA’13), number CONF, 2013.

Vlad Ureche, Aggelos Biboudis, Yannis Smaragdakis, and Martin Odersky. Automating ad hoc

data representation transformations. In Proceedings of the 2015 ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2015, pages 801–820, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3689-5.

David Vandevoorde and Nicolai M. Josuttis. C++ Templates. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2002. ISBN 978-0-201-73484-3.

Todd L. Veldhuizen. C++ Templates as Partial Evaluation. arXiv:cs/9810010, October 1998. URL

http://arxiv.org/abs/cs/9810010. arXiv: cs/9810010.

Todd L. Veldhuizen and Dennis Gannon. Active libraries: Rethinking the roles of compilers

and libraries, 1998.

Stratis Viglas, Gavin M. Bierman, and Fabian Nagel. Processing declarative queries through

generating imperative code in managed runtimes. IEEE Data Eng. Bull., 37(1):12–21, 2014.

320

http://doi.acm.org/10.1145/3183713.3196893
http://www.tpc.org/tpch
http://arxiv.org/abs/cs/9810010

Bibliography

Eelco Visser. A survey of rewriting strategies in program transformation systems. Electronic

Notes in Theoretical Computer Science, 57:109–143, 2001.

Eelco Visser. Meta-programming with concrete object syntax. In Proc. International Conference

on Generative Programming and Component Engineering (GPCE), pages 299–315. Springer,

2002.

Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building program optimizers

with rewriting strategies. ICFP ’98, pages 13–26, 1998. ISBN 1-58113-024-4. doi: 10.1145/

289423.289425. URL http://doi.acm.org/10.1145/289423.289425.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP’88, pages

344–358. Springer, 1988.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP

and Functional Programming, LFP ’90, page 61–78, New York, NY, USA, 1990. Association

for Computing Machinery. ISBN 089791368X. doi: 10.1145/91556.91592. URL https:

//doi.org/10.1145/91556.91592.

Philip Wadler. The expression problem. Java-genericity mailing list, 1998.

Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, November 2015. ISSN

0001-0782. doi: 10.1145/2699407. URL https://doi.org/10.1145/2699407.

Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark Rompf. Backpropagation

with callbacks: Foundations for efficient and expressive differentiable programming. In

Advances in Neural Information Processing Systems, pages 10200–10211, 2018.

Takahisa Watanabe and Yukiyoshi Kameyama. Program generation for ML modules (short

paper). In Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation, PEPM ’18, page 60–66, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450355872. doi: 10.1145/3162072. URL https://doi.org/10.1145/

3162072.

Radosław Waśko. Formal foundations for GADTs in scala. 2020. URL http://infoscience.epfl.

ch/record/277075.

Matthew J Weinstein and Anil V Rao. Algorithm 984: ADiGator, a toolbox for the algorithmic

differentiation of mathematical functions in MATLAB using source transformation via

operator overloading. ACM Trans. Math. Softw, 2016.

Edwin Westbrook, Mathias Ricken, Jun Inoue, Yilong Yao, Tamer Abdelatif, and Walid Taha.

Mint: Java multi-stage programming using weak separability. ACM Sigplan Notices, 45(6):

400–411, 2010.

Thomas Würthinger. Extending the graal compiler to optimize libraries. In Companion

to the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 41–42. ACM, 2011.

321

http://doi.acm.org/10.1145/289423.289425
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/2699407
https://doi.org/10.1145/3162072
https://doi.org/10.1145/3162072
http://infoscience.epfl.ch/record/277075
http://infoscience.epfl.ch/record/277075

Bibliography

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In

Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’03, pages 224–235, New York, NY, USA, 2003. ACM. ISBN 1-58113-628-5.

doi: 10.1145/604131.604150. URL http://doi.acm.org/10.1145/604131.604150.

Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. SPL: A Language and

Compiler for DSP Algorithms. In Proceedings of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, PLDI ’01, pages 298–308, New York,

NY, USA, 2001. ACM. ISBN 1-58113-414-2.

Jeremy Yallop. Staged Generic Programming. Proc. ACM Program. Lang., 1(ICFP):29:1–29:29,

August 2017. ISSN 2475-1421.

Jeremy Yallop and Oleg Kiselyov. Generating mutually recursive definitions. In Proceedings

of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,

PEPM 2019, page 75–81, New York, NY, USA, 2019. Association for Computing Machinery.

ISBN 9781450362269. doi: 10.1145/3294032.3294078. URL https://doi.org/10.1145/3294032.

3294078.

Jeremy Yallop and Leo White. Modular macros. In OCaml Users and Developers Workshop,

volume 6, 2015.

Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect handlers via tunneling. Proc.

ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290318. URL https://doi.org/

10.1145/3290318.

322

http://doi.acm.org/10.1145/604131.604150
https://doi.org/10.1145/3294032.3294078
https://doi.org/10.1145/3294032.3294078
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3290318

Lionel Parreaux | Curriculum vitae
Route de Chavannes 68 – 1007 Lausanne – Switzerland

Æ +41 79 135 48 94 • Q lionel.parreaux@gmail.com
� lptk.github.io/about • ¯ lparreaux • � LPTK

Education
EPFL (Swiss Federal Institute of Technology) Lausanne
Ph.D. in Computer Science 2014–2020
NUS (National University of Singapore) Singapore
Academic exchange (1 semester) Fall 2013
INSA Lyon (National Institute of Applied Science) Lyon
M.Sc. (Engineering Degree) in Computer Science 2009–2014
Languages: French (mother tongue) English (bilingual) Spanish (intermediate)
Research interests: Programming languages, type systems, compiler design, domain-specific
languages, and database technology. I believe that improving the performance, safety, and usability
of high-level programming is essential to the future of software engineering as a whole.

Publications

+ Lionel Parreaux and Amir Shaikhha. 2020. Multi-stage Programming in the Large with
Staged Classes. In Proceedings of the 19th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE 2020). DOI: https://doi.org/
10.1145/3425898.3426961

+ Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal Type
Inference with Subtyping Made Easy (Functional Pearl). In Proc. ACM Program. Lang. 4,
ICFP, Article 124 (ICFP 2020). DOI: https://doi.org/10.1145/3409006

+ Amir Shaikhha and Lionel Parreaux. 2019. Finally, a Polymorphic Linear Algebra Language.
In 33rd European Conference on Object-Oriented Programming (ECOOP 2019).
DOI: https://doi.org/10.4230/LIPIcs.ECOOP.2019.25

+ Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso. 2019. Towards im-
proved GADT reasoning in Scala. In Proceedings of the Tenth ACM SIGPLAN Symposium on
Scala (SCALA 2019). DOI: https://doi.org/10.1145/3337932.3338813

+ Lionel Parreaux and Christoph E. Koch. 2018. Comprehending Monoids with Class (Extended
Abstract). In Proceedings of Type-Driven Development (TyDe 2018).
https://icfp18.sigplan.org/details/tyde-2018/12

+ Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. 2018. Unifying
Analytic and Statically-Typed Quasiquotes. In Proc. ACM Program. Lang. (POPL 2018).
DOI: https://doi.org/10.1145/3158101

+ Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Quoted staged rewriting:
a practical approach to library-defined optimizations. In Proceedings of the 16th ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences
(GPCE 2017). DOI: https://doi.org/10.1145/3136040.3136043

+ Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. 2017. Squid: type-safe, hygienic,
and reusable quasiquotes. In Proceedings of the 8th ACM SIGPLAN International Symposium
on Scala (SCALA 2017). DOI: https://doi.org/10.1145/3136000.3136005

1/4

323

+ Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and
Christoph Koch. 2016. How to Architect a Query Compiler. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD 2016).
DOI: https://doi.org/10.1145/2882903.2915244

Recognition

Awards. .

+ (2017) GPCE Best Paper Award (Quoted Staged Rewriting paper).
+ (2014) EPFL EDIC PhD program fellowship.

Presentations, Seminars, and Invitations. .

+ (July 2019) Towards improved GADT reasoning in Scala. Conference talk, SCALA.
+ (June 2018) Fearless Metaprogramming with Squid. Invited talk, DIMA lab, TU Berlin.
+ (June 2018) Fearless Metaprogramming with Squid. Invited talk, Amazon Berlin.
+ (September 2018) Comprehending Monoids with Class. Type-Driven Development, St. Louis.
+ (January 2018) Unifying analytic and statically-typed quasiquotes. Conference talk, POPL.
+ (December 2017) Unifying analytic and statically-typed quasiquotes. Invited talk, EPFL LAMP.
+ (October 2017) Quoted Staged Rewriting: a Practical Approach to Library-Defined Optimizations.
Conference talk, GPCE.

+ (October 2017) Squid: Type-Safe, Hygienic, and Reusable Quasiquotes. Conference talk, SCALA.
+ (September 2017) Quoted Staged Rewriting: a Practical Approach to Library-Defined Optimiza-
tions. Invited talk, EPFL LAMP.

+ (2017, 2018, 2019) Google Compiler and Programming Language Summit, Munich.
+ (2016) Google PhD Student Summit on Compiler & Programming Technology, Munich.

Open Source Contributions. .

+ Simple-sub (52 stars) � https://github.com/LPTK/simple-sub

+ Squid (171 stars) � https://github.com/epfldata/squid

+ dbStage (12 stars) � https://github.com/epfldata/dbstage

+ Boilerless (38 stars) � https://github.com/lptk/boilerless

References. .

+ Christoph E. Koch, EPFL, Lausanne. christoph.koch@epfl.ch
https://people.epfl.ch/christoph.koch

+ Simon Peyton Jones, Microsoft Research, Cambridge. simonpj@microsoft.com
https://www.microsoft.com/en-us/research/people/simonpj/

+ Martin Odersky, EPFL, Lausanne. martin.odersky@epfl.ch
https://lampwww.epfl.ch/~odersky/

+ Viktor Kuncak, EPFL, Lausanne. viktor.kuncak@epfl.ch
http://lara.epfl.ch/~kuncak/

2/4

324

Experience

Research. .

Research Intern, Optimization and Spreadsheets EPFL, Lausanne
Microsoft Research, Cambridge Summer 2018 (3 months)
+ Started the design and implementation of a novel intermediate representation (IR) for optimizing

pure functional languages, based on a graph representation with incremental substitution constructs.
+ Designed a domain-specific language (DSL) for dynamic programming, as a way to capture common

patterns of spreadsheet formulae, and worked on using the graph IR to optimize that DSL.
PhD Semester Project, Metaprogramming Tools EPFL, Lausanne
Data Analysis Theory and Applications Laboratory (DATA Lab) Spring 2015
+ Implemented a quasiquotation engine for SC (Systems/Compiler co-design framework written in Scala),

making use of advanced macros and type introspection.
+ Benchmarked the macro implementation to optimize hot spots and enhance the user experience.
Report available on this link.
PhD Semester Project, Type Systems EPFL, Lausanne
Lab for Automated Reasoning and Analysis (LARA Lab) Fall 2014
+ Formalized a novel Type and Effect System based on regular-expression regions.
+ Proved its safety regarding memory management (no dangling pointers; no memory leaks).
Report available on this link.
Research Intern, Type Systems EPFL, Lausanne
Lab for Automated Reasoning and Analysis (LARA) Summer 2014 (5 months)
+ Explored the design and implementation of Seagl, a programming language I designed allowing safe memory

management without garbage collection, thanks to an effect system. The report is available on this link.

Industry. .

R&D Intern, C++ Research Engineering Palaiseau
Thales Research & Technology Summer 2013 (3 months)
+ Refactored and improved the usability of the open source C++ library paradiseo.1
+ Implemented/tested new simulated annealing algorithm from a research paper; it was added to paradiseo.

Developer Intern, Build Systems and Testing Boulogne Billancourt
DxO Labs (Image processing software) Summer 2012 (3 months)
+ Set up a regression testing framework in Python, generating results in HTML5.
+ Coded a build system using CMake and Python.
+ Integrated these critical tools, significantly increasing the productivity of core developers (8 to 10 persons).

Teaching Assistantship. .

CS-452: Foundations of Software (2019)
CS-449: Systems for Data Science (2018, 2019)
CS-210: Functional Programming (2018)
CS-251: Theory of Computation (2017)
CS-422: Database Systems (2016)
CS-110: Information, Computation, Communication (2016)
CS-111: Programming I (2015, 2017)
MATH-186: Mathematics II (2015)

1 Paradiseo: � https://github.com/nojhan/paradiseo

3/4

325

Notable projects. .

+ (2017–Present) Implementing dbStage,2 a staged database compilation framework based on
Squid. The goal of dbStage is to allow programmers to embed low-footprint database systems
right inside their applications, with no impedance mismatch, all the while benefitting from the
usual advanced database optimization techniques.

+ (2016–Present) Developed the Squid3 type-safe metaprogramming framework for Scala, which
extends the state of the art in multi-stage programming in several directions: it allows for pattern
matching and rewriting existing code; it guarantees type- and scope-safety of metaprograms;
it adds support for manipulating not only expressions but also definitions like classes and methods.

+ (2018) As part of the Microsoft Hackathon 2018, created a language called MLScript which
implemented MLsub type inference, compiled to Javascript, and could extract type information
from TypeScript libraries for interoperability.

+ (2016) Developed Boilerless,4 a macro annotation that makes defining Scala class hierarchies
more concise, and which influenced the design of the later enum syntax in Scala 3.

+ (2014) Led development of the final subject of the Cod’INSA 2014 programming contest –
a real-time multiplayer game interacting with Java, Python and C++ artificial intelligences written
by the candidates, using Apache Thrift, Swing, and a web-based interface.5
The project was a success and allowed ranking the different teams according to their results.

References. .

Available on page 2.

2 dbStage: � https://github.com/epfldata/dbstage
3 Squid: � https://github.com/epfldata/squid
4 Boilerless: � https://github.com/LPTK/Boilerless
5 Cod’INSA final 2014: � https://github.com/cod-insa/cod-insa-2014

4/4

326

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Statically-Typed Code Manipulation with Analytic Quasiquotes
	Introduction
	Basics of Quasiquotation
	Analytic Quasiquotes
	Statically-Typed Quasiquotes
	Quasiquotes in Various Languages
	Best of Both Worlds

	Expressing Code Manipulation
	Explicit Approaches
	Existing Scala Quasiquotes
	Limitations of Scala Reflection Quasiquotes

	Code Manipulation with Squid Quasiquotes
	Basics of Squid Quasiquotes
	Pattern Matching and Rewriting
	Type Representation Implicits
	Matching and Extracting Unknown Types
	Nonlinear Pattern Variables
	Cross-Quotation References
	Cross-Stage References and Cross-Stage Persistence
	Runtime Compilation and Cross-Stage Persistence
	Automatic Function Lifting and Unlifting
	Higher-Order Pattern Variables
	Code Combinators
	Call-By-Name Reduction Example

	Safety Properties of Squid Quasiquotes
	Hygiene
	Scope Safety
	Type Safety
	GADT Reasoning
	Pattern Matching Exhaustiveness
	Safety of Rewriting

	Example: A Quoted ANF Conversion
	Type-Safe & Hygienic Macros for Scala
	Related Work
	Existing Quasiquotation Systems
	Unification of Runtime and Compile-time Metaprogramming
	Type-Safe Code Manipulation
	Program Transformation

	Application: A Polymorphic Yet Efficient Linear Algebra Library
	Introduction
	Motivation
	Pilatus Design
	Tagless Final
	Semi-Ring and Ring
	Module
	Linear Map
	Pull Array and Control-Flow Constructs

	Matrix Algebra
	Vector: Module + Pull Array
	Matrix: Linear Map + Vector
	Putting It All Together

	Interpreted Languages
	Standard Matrix Algebra
	Graph DSL for Reachability and Shortest Path
	Probabilistic Linear Algebra Language
	Differentiable Linear Algebra DSL

	Staging and Optimisation
	Augmented Multi-Stage Programming
	Staging Pilatus
	Staged Representation Optimisations
	Algebraic Optimisations
	Fixed-Size Matrix DSL
	Fused DSL

	Evaluation
	Related Work
	Linear Algebra Languages and Libraries
	Deforestation and Array Fusion
	Automatic Differentiation and Differentiable Programming
	Probabilistic Programming

	Conclusions

	The Modular Implementation of Squid
	Introduction
	The Intermediate Representation Base
	Closed Worlds
	Language Virtualization
	Open Worlds
	Support for IR Manipulation
	Intermediate Representation Reinterpretation
	One Interface to Rule Them All
	Implementation of Squid Quasiquotes in Scala
	Compilation of Squid Quasiquotes
	Cross-Quotation References
	Required Properties of the Macro System
	Use of Runtime Reflection and Metaprogramming

	Related Work
	Quasiquotes for Domain-Specific Languages

	Optimizing High-Level Libraries with Quoted Staged Rewriting
	Introduction
	Staging and Extensible Compilers
	User-Defined Rewriting
	Quoted Staged Rewriting

	Multi-Stage Programming Limitations Exemplified
	Staging the Power Function
	New Optimization Opportunity
	Limitations of Staging

	Quoted Staged Rewriting
	Rewriting Math.pow
	Extending the Rewriting
	Hybrid Approaches and Online Rewriting
	Guarantees and Control
	Modularity of Rewritings
	Composing Uses of QSR Libraries
	Optimizing Existing Libraries

	Enabling Quoted Staged Rewriting
	Effect-Sensitive A-Normal Form (ANF)
	Effect System
	Scalability of Code Pattern Matching

	Application: A New Approach to Stream Fusion
	Previous Approaches
	Stream Fusion by CPS and Inlining
	The Problem with flatMap
	Enabling More Fusion by QSR
	Correctness of the Stream Fusion Scheme
	Extensibility of Optimizations
	When Everything Else Fails — Fusing flatMap the Hard Way
	Evaluation
	Performance
	Productivity

	Conclusion

	Improved Safety and Expressivity for Analytic Metaprogramming
	Introduction
	Motivating Example
	Limitations of Higher-Order Abstract Syntax
	Non-lexically-scoped Open Code Manipulation
	Early Example of Rewriting

	Presentation of Contextual Squid
	Handling of Open Code in Contextual Squid
	Rewrite Rules and Polymorphism
	Fixed Point Rewritings
	Free Variables and Substitution
	Speculative Rewrite Rules
	Motivating Example: Array of Tuples Optimization

	Formalization of the Core Language
	Syntax
	Type System
	Operational Semantics
	Soundness of Lambda-braces

	Implementation in Scala
	Application: Query Compilation By Rewriting
	Systems as multi-level DSLs
	Schema Specialization
	Row-to-Column Store Transformer

	Related Work
	Conclusion

	Hygienic Scope Polymorphism
	Introduction
	Metaprogramming Hygiene Beyond Macros
	Hygiene Via the Type System
	Naive Interpretation of Context Polymorphism

	A Negative Result: No Hygiene With Plain Names
	Core Problem
	Reified Context Parameters
	Reified Weakening
	Context Evidence Opacity and Transparency
	A Problematic Program

	Hygiene Via Affine First-Class Bindings in Lambda-square-beta
	First-Class Bindings in Squid
	Presentation of Lambda-square-beta
	Soundness
	Straightforward Extensions

	Implementation in Squid
	Example Applications
	Bindings reversal
	Encoding Cross-Stage Persistence for a Staged Database
	A safer take on flatMap streamlining

	Related Work

	Multi-Stage Programming in the Large with Staged Classes
	Introduction
	Presentation of Staged Classes
	Classes in Scala
	The Vector Class, Staged
	Staged Class Instantiation
	Generative Programming to Avoid Repetition
	Generalizing the Vector Arity
	Generalizing the Element Type
	Direct and Staged Inheritance
	Staged Class Caching
	Generic Methods
	Putting It All Together

	Use Case: Typed Type Providers
	An Embedded DSL for Record Type Providers
	Implementing the Type Provider DSL
	Type Provision From Data Samples
	Evaluation

	Related Work
	Conclusion

	Application: A Staged Database Compiler
	Motivation
	Architecture of the Staged Database System
	Specialized Container Classes
	Column Store Meta-Container Class
	Loading and Emitting Data Efficiently

	Compiling Queries On The Fly
	An Additional Stage for Compiling Queries

	An Embedded DSL for Data Definitions and Queries
	Shallow DSL
	Internal Representation of the Database
	Query Representation
	Query Lifting

	Basic Optimization and Planning for Queries
	Query Rewriting
	Query Plans
	Query Planning

	Evaluation
	Related Work

	Conclusion

	Comprehending Monoids with Class
	Background on Comprehension
	Origins

	Comprehension for Queries
	Why Monoid Comprehension?
	Semantics of List and Monad comprehension
	Embedding Monoid comprehension in Haskell
	Semantics of Monoid comprehension
	Encoding
	Space Efficiency

	SQL-style Grouping and Ordering
	Grouping in monad comprehension
	Grouping in monoid comprehension
	Performance of grouping
	Generality of grouping
	Ordering

	Conclusions on Monoid Comprehension in Haskell
	Generalized Monoid Comprehension in Scala
	The Full Monoid Comprehension Calculus
	Semigroups and Canonical Monoids
	Heterogeneous Collection Types

	Optimizing Monoid Comprehension Queries with Squid
	Motivating Example
	Optimization Approach
	Deeply Embedding Monoid Comprehensions
	Query Rewriting and Planning

	Conclusions and Future Work
	Improved GADT Reasoning in Scala
	Introduction
	Closed GADTs in Core Scala and DOT
	Encoding of ADTs and Pattern Matching
	GADTs and Object-Oriented Languages
	Existential types and Subtyping Proofs
	Closed GADT Encoding in Scala
	Core Scala and DOT
	Closed GADT Encoding in Core Scala
	Summary

	Open GADTs
	Class Instance Matching
	Understanding an Old Paradox
	Solution: Invariant Inheritance
	Type Parameters as Members

	Further Work on GADTs in Scala
	Conclusion

	Complete Encoding of GADT in pDOT
	Organization of the Streams Optimizer
	Code of the Microbenchmarks
	Bibliography
	Curriculum Vitae

