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Abstract

The use of robots in search and rescue is gaining particular interest, but singular

skills are required to ensure efficient deployments in real missions. To face this

problem, there is a need to develop more intuitive control interfaces. Moreover, to

ensure high performance during high cognitive demanding tasks, such as in search

and rescue missions, there is a need to combine both human’s and robot’s skills.

Respectively, humans and robots can adapt to new situations and optimize the

execution of repetitive tasks. In this regard, novel share-control techniques have

been developed to adapt the human-robot interaction, but to dynamically adapt this

interaction, the information about the human state is missing.

To address these problems, I first developed a novel wearable system that enhances

the control of drones providing a more intuitive flying experience. As shown in

chapter 2, this wearable system tracks the upper body movements and translates

them into commands for a drone. The system has been tested with a simulator

and demonstrated for the teleoperation of a real drone. Moreover, to ensure endur-

ing operations, I proposed a method that drastically reduces communication, and

consequently, improves energy efficiency by 11.9%.

Second, in chapter 3, I presented a machine-learning approach for monitoring the

cognitive workload level of a drone operator involved in search and rescue missions.

My model combines the information of different features extracted from physiolog-

ical signals, such as respiratory activity, electrocardiogram, photoplethysmogram,

and skin temperature, acquired in a non-invasive way. To reduce both subject and

day inter-variability of the signals, I explored different feature normalization tech-

niques. Moreover, I adjusted the learning method for support vector machines to

allow subject-specific optimizations. On a test set acquired from 34 volunteers, the

proposed model distinguished between low and high cognitive workloads with an

average accuracy of 87.3% and 91.2%, while controlling a drone simulator using both

a traditional controller and the proposed FlyJacket design, respectively.
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Abstract

Third, in chapter 4, I presented the integration of the method developed for cogni-

tive workload monitoring, on a new single wearable embedded system, that also

integrates the proposed drone controller design. On the hardware side, it includes

a multi-channel physiological signals acquisition and a low-power processing plat-

form that is suited for cognitive workload monitoring. On the software side, the

proposed system includes novel energy-aware bio-signal processing and embedded

machine learning methods. Moreover, to exploit the trade-offs between the required

accuracy of the available energy of the system, I presented a new application of the

concept of a scalable machine-learning method with different power-saving levels.

Results showed that the proposed self-aware approach yields an increase of 78% of

the battery lifetime without really affecting the classification accuracy.

The proposed system, comprising a drone controller integrating a unit for cognitive

workload monitoring, lays the foundations for the development of new-generation

human-robot interfaces. With the information about the human state, we can close

the loop of traditional share-control techniques, which will be able to dynamically

adapt the level of interaction with semi-autonomous machines based on the need

for the operator.

Keywords: Cognitive Workload, Online Monitoring, Physiological Signals, Sensor

Fusion, Machine Learning, Human-Robot Interaction, Wearable, Embedded Systems,

Drones, Search and Rescue Missions.
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Zusammenfassung

Bei der Suche und der Rettung gewinnt der Einsatz von Robotern besonderes Inter-

esse. Um effiziente Einsätze in realen Missionen zu gewährleisten, sind aber einzig-

artige Fähigkeiten unabdingbar. Um dieses Problem zu lösen, müssen intuitivere

Steuerungsschnittstellen entwickelt werden. Ausserdem muss eine hohe Leistung

bei kognitiv anspruchsvollen Aufgaben gewährleistet werden, z.Bsp. ist es notwendig,

bei Such- und Rettungseinsätzen, die Fähigkeiten von Mensch und Roboter zu kom-

binieren. Entsprechend können Mensch und Roboter sich an neuere Situationen

anpassen und die Ausführung von sich wiederholenden Aufgaben optimieren. In

dieser Hinsicht wurden neuartige Techniken der gemeinsamen Steuerung entwickelt,

um die Mensch-Roboter-Interaktion anzupassen. Um diese Interaktion dynamisch

anzupassen, fehlen aber die Informationen über den menschlichen Zustand.

Um diese Probleme anzugehen, habe ich zunächst ein neuartiges tragbares System

entwickelt, das die Steuerung von Drohnen verbessert und ein intuitiveres Flug-

erlebnis ermöglicht. Wie im Kapitel 2 gezeigt, verfolgt dieses tragbare System die

Bewegungen des Oberkörpers und setzt sie in Befehle für die Drohne um. Das Sy-

stem wurde mit einem Simulator getestet und wurde für die Teleoperation einer

echten Drohne demonstriert. Um einen dauerhaften Betrieb zu gewährleisten, habe

ich darüber hinaus eine Methode vorgeschlagen, die die Kommunikation zwischen

Mensch und Drohne drastisch reduziert. Infolgedessen wird die Energieeffizienz um

11.9% verbessert.

Des weiteren habe ich im Kapitel 3 einen maschinellen Lernansatz für die Überwa-

chung der kognitiven Arbeitsbelastung eines Drohnenoperators vorgestellt, der an

Such- und Rettungseinsätzen beteiligt ist. Mein Modell kombiniert die Informatio-

nen verschiedener Merkmale, die aus physiologischen Signalen extrahiert werden

wie z.B. Atmungsfrequenz, Elektrokardiogramm, Photoplethysmogramm und Haut-

temperatur, die auf nicht-invasive Weise erfasst werden. Um die Variabilität der

Signale sowohl zwischen den Probanden als auch zwischen den Tagen zu reduzie-

ren, untersuchte ich verschiedene Techniken zur Merkmalsnormalisierung. Darüber
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Abstract

hinaus passte ich die Lernmethode für Support-Vektor-Maschinen an, um fachspezi-

fische Optimierungen zu ermöglichen. Auf einem Testsatz, der von 34 Freiwilligen

erworben wurde, unterschied das vorgeschlagene Modell zwischen niedrigen und

hohen kognitiven Arbeitsbelastungen mit einer durchschnittlichen Genauigkeit von

87,3% und 91.2%, während ein Drohnensimulator sowohl mit einem traditionellen

Controller als auch mit dem vorgeschlagenen FlyJacket-Design gesteuert wird.

Drittens habe ich in Kapitel 4 die Integration, der für die Überwachung der kognitiven

Arbeitsbelastung entwickelten Methode, auf einem neuen einzelnen, tragbaren ein-

gebetteten System vorgestellt. Das System integriert auch das vorgeschlagene Design

des Drohnen Controllers. Auf der Hardwareseite umfasst es eine mehrkanalige phy-

siologische Signalerfassung und eine leistungsarme Verarbeitungsplattform, die für

die Überwachung der kognitiven Arbeitsbelastung geeignet ist. Auf der Softwareseite

umfasst das vorgeschlagene System eine neuartige energiebewusste Biosignalver-

arbeitung und eine eingebettete Methode des maschinellen Lernens. Um darüber

hinaus die Kompromisse zwischen der erforderlichen Genauigkeit der verfügbaren

Energie des Systems auszunutzen, stellte ich eine neue Anwendung des Konzepts

einer skalierbaren maschinellen Lernmethode mit verschiedenen Energiesparstufen

vor. Die Ergebnisse zeigten, dass der vorgeschlagene selbstbewusste Ansatz zu einer

Erhöhung der Batterielebensdauer um 78% führt, ohne die Klassifizierungsgenauig-

keit signifikant zu beeinträchtigen.

Das vorgeschlagene System, bestehend aus einem Drohnen-Controller, der eine

Einheit zur Überwachung der kognitiven Arbeitsbelastung integriert, legt den Grund-

stein für die Entwicklung von Mensch-Roboter-Schnittstellen der neuen Generation.

Mit den Informationen über den menschlichen Zustand können wir die Schleife

traditioneller Techniken zur gemeinsamen Steuerung schliessen, die in der Lage sein

werden, den Grad der Interaktion mit halbautonomen Maschinen auf der Grundlage

der Bedürfnisse des Bedieners dynamisch anzupassen.

Stichwörter: Kognitive Arbeitsbelastung, Online-Überwachung, Physiologische Si-

gnale, Sensor-Fusion,Maschinelles Lernen, Mensch-Roboter Interaktion, Tragbar,

Eingebettete Systeme, Drohnen, Such- und Rettungseinsätze.
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Résumé

L’utilisation de robots dans le domaine de la recherche et du sauvetage a récemment

suscité un intérêt particulier. Cependant, des compétences singulières sont néces-

saires pour assurer une bonne efficacité dans des missions réelles. Pour faire face

à ce problème et faciliter le travail des sauveteurs, il est nécessaire de développer

des interfaces de contrôle plus intuitives. De plus, il est connu que les humains,

contrairement aux robots jouissent d’une grande capacité d’adaptation aux situa-

tions inconnues alors que les robots ont une forte capacité a optimiser l’exécution de

taches répétitives. Donc, afin de garantir des performances élevées lors de l’exécution

de tâches cognitivement exigeantes, il est nécessaire de combiner les compétences

humaines et robotiques. À ce sujet, des études récentes ont développé de nouvelles

techniques de contrôle, qui grâce à l’intelligence artificielle, arrivent à adapter le

niveau d’interaction entre l’homme et les robots. Cependant, afin d’adapter dynami-

quement cette interaction entre l’homme et le robot, il manque l’information sur

l’état du pilote.

Pour résoudre ces problèmes, j’ai d’abord développé un nouveau système embarqué

portable qui améliore le contrôle des drones en offrant une expérience de vol plus

intuitive et immersive. Comme présenté dans le chapitre 2, ce système portable

traduit les mouvements du haut du corps en commandes pour le drone. Le système

a été testé avec un simulateur et utilisé pour la téléopération d’un vrai drone. De

plus, pour assurer une longue durée de fonctionnement, j’ai proposé une méthode

qui réduit considérablement la communication et qui par conséquence améliore

aussi l’efficacité énergétique du 11.9%.

Dans un second temps, dans le chapitre 3, j’ai présenté une méthode pour surveiller

l’effort cognitif d’un pilote de drones. Mon modèle combine des caractéristiques

extraites depuis des signaux physiologiques, tels que l’activité respiratoire, l’électro-

cardiogramme, le photopléthysmogramme et la température cutanée. Ces mesures

sont acquises de manière non invasive. Pour réduire l’inter-variabilité des signaux

ix



Abstract

entre les sujets et entre les jours, j’ai aussi exploré différentes techniques pour nor-

maliser ces caractéristiques physiologiques. De plus, j’ai introduit une nouvelle

méthode d’apprentissage pour des machines à vecteurs de support, qui convient aux

optimisations requises par chaque sujet. Sur un ensemble de tests acquis parmi 34

volontaires, le modèle proposé fait la distinction entre des efforts cognitives faibles

et élevées, avec une précision moyenne de 87.3% et 91.2%, en contrôlant un simula-

teur de drone avec à la fois une télécommande traditionnelle ou le nouveau design,

appelé FlyJacket.

Finalement, dans le chapitre 4, j’ai présenté l’intégration de la méthode développée

pour la surveillance de l’effort cognitif sur un nouveau et unique système embarqué,

qui intègre également le nouveau contrôleur de drone proposé. Côté hardware, il

comprend des capteurs pour l’acquisition des signaux physiologiques et une pla-

teforme de traitement adapté à la surveillance cognitive de la charge de travail. Du

côté logiciel, le système portable proposé comprend un nouveau traitement du

signal sensible à la consommation énergétique et des méthodes d’apprentissage

automatique intégrées. De plus, pour exploiter les compromis entre la précision

requise et de l’énergie disponible du système, j’ai présenté une nouvelle application

du concept d’une méthode d’apprentissage automatique évolutive avec différents

niveaux énergétiques. Les résultats ont montré que l’approche proposée permet une

augmentation de 78% de la durée de vie de la batterie sans dégradation significative

de la précision de la classification.

Le système proposé, comprenant un contrôleur de drone et intégrant une unité de

surveillance de l’effort cognitif, pose les bases pour le développement d’interfaces

homme-machine de nouvelle génération. Avec les informations sur l’état du pilote,

nous pouvons compléter les techniques traditionnelles de contrôle partagée, qui

pourront adapter dynamiquement le niveau d’interaction avec des machines semi-

autonomes en fonction du besoin de l’opérateur.

Mots clefs : Charge cognitive, Monitorage, Signaux physiologiques, Fusion de cap-

teurs, Apprentissage automatique, Interaction homme-machine, Technologie por-

table, Système embarqué, Drones, Missions de recharge et sauvetage.
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Riassunto

L’utilizzo dei robot sta riscuotendo un particolare interesse anche nel campo della

ricerca e del salvataggio. Tuttavia, per garantirne una buon utilizzo in missioni reali,

sono necessarie competenze elevate. Per affrontare questo problema e facilitare il

lavoro dei soccorritori, è necessario sviluppare interfacce di controllo più intuitive.

Inoltre, è risaputo che gli esseri umani possono adattarsi a nuove situazioni, mentre

i robot possono ottimizzare l’esecuzione di compiti ripetitivi. Di conseguenza, per

garantire l’esecuzione di compiti cognitivamente molto pesanti, è necessario combi-

nare le abilità di entrambi, vale a dire quelle dell’uomo e quelle dei robot. A questo

proposito, sono state recentemente sviluppate delle tecniche di controllo condiviso,

le quali cercano di adattare il livello di interazione tra uomo e robot, ma per poterlo

fare dinamicamente, manca l’informazione sullo stato del pilota.

Per affrontare questi problemi, ho dapprima sviluppato un nuovo sistema integrato

e indossabile che rende più intuitivo il controllo dei droni. Come mostrato nel

capitolo 2, questo sistema traccia i movimenti della parte superiore del corpo e

li traduce in comandi per il drone. Il sistema proposto è poi stato testato con un

simulatore e utilizzato per il controllo di un vero drone. Inoltre, per garantire un

funzionamento duraturo, ho proposto un metodo che riduce la comunicazione e di

conseguenza, migliora l’efficienza energetica del 11.9%.

In secondo luogo, nel capitolo 3, ho presentato un metodo per monitorare il livello

dello sforzo cognitivo di un pilota di droni. Il mio modello combina diverse caratteri-

stiche estratte da segnali vitali, come l’attività respiratoria, l’elettrocardiogramma,

il fotopletismogramma e la temperatura cutanea, i quali sono acquisiti in modo

non invasivo. Per ridurre l’intervariabilità dei segnali sia del soggetto che del giorno,

ho esplorato diverse tecniche di normalizzazione. Inoltre, ho introdotto un nuovo

metodo di apprendimento per macchine a vettori di supporto, il quale è adatto alle

ottimizzazioni richieste dai vari soggetti. Sulla base di un campione di test acquisito

da 34 volontari, il modello proposto ha riconosciuto deboli e alti sforzi cognitivi con
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una precisione media del 87.3% e del 91.2%, mentre i partecipanti controllavano un

simulatore di drone utilizzando rispettivamente un telecomando tradizionale o il

nuovo controllore, chiamato FlyJacket.

Infine, nel capitolo 4, ho presentato l’integrazione del metodo per il monitoraggio

dello sforzo cognitivo, su un singolo sistema imbarcato e indossabile che a sua volta

integra anche il controllore di drone proposto nel capitolo 2. Dal lato hardware, il

sistema include una serie di sensori per l’acquisizione di segnali vitali e una piattafor-

ma di elaborazione a basso consumo energetico, adatta al monitoraggio dello sforzo

cognitivo. Sul lato software, il sistema include nuovi algoritmi a basso consumo

per l’elaborazione dei segnali e l’integrazione di nuovi metodi di apprendimento

automatico. Inoltre, per sfruttare i compromessi tra la precisione richiesta e l’energia

disponibile del sistema, ho presentato una nuova applicazione del concetto di ap-

prendimento automatico con diversi livelli di risparmio energetico. I risultati hanno

mostrato che l’approccio proposto produce un aumento del 78% della durata della

batteria senza realmente influire sulla precisione della classificazione.

Il sistema proposto, comprendente un dispositivo di controllo per droni che integra a

sua volta un’unità per il monitoraggio dello sforzo cognitivo, il quale getta le basi per

lo sviluppo di interfacce uomo-macchina di nuova generazione. Con le informazioni

sullo stato del pilota, possiamo completare le tradizionali tecniche di controllo

condiviso, che saranno in grado di adattare dinamicamente il livello di interazione

con macchine semi-autonome e in base alle necessità dell’operatore.

Parole chiave: Sforzo cognitivo, Monitoraggio, Segnali vitali, Sensor Fusion, Appren-

dimento automatico, Interazione uomo-macchina, Dispositivo indossabile, Sistemi

imbarcati, Droni, Missioni di ricerca e salvataggio.
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1 Introduction

An unusual event, even exceptional, a fact that breaks or temporally changes the

natural course of things, these are factors that suddenly make the alarm of Search

and Rescue (SAR) teams sound. This alarm denotes a stringent request for assistance.

From that moment on, it is time for the SAR teams to go there, where everyone else

runs away (Fig. 1.1). Often, several complex and dangerous tasks are waiting for

them. Although rescuers are aware of that, it is not always clear how difficult it will

be, especially at the beginning, when chaos dominates. In SAR fast information

and timing are of primary importance. Having the right information from the very

beginning is crucial to evaluate what happens, to efficiently adopt the proper series

of measures aimed at the search for people who are in distress or imminent danger,

and to provide first aid assistance. These measures are typically determined by the

characteristics of the event, that is, the number of victims and both vastness and

type of terrain the mission has to be conducted over.

Figure 1.1 – When everyone else runs away, a firefighter runs into the fire.

In general, to prevail against the event, the attempt is to adopt an offensive tactic.

1



Chapter 1. Introduction

This tactic consists of the deployment of enough means to efficiently counteract

the event, namely, an adequate supply of rescuers, specialists, materials, vehicles,

etc. However, uncontrollable factors, such as weather conditions, may prevent SAR

teams from deploying some equipment and force them to apply a defensive tactic.

For instance, to quickly reach remote areas or to quickly cover extended surfaces,

rescuers typically use helicopters. However, depending on both weather conditions

and time of the day, aerial support may only be provided by a restricted group of

professionals, or maybe not at all. In this case, rescuers have no other solution

than to apply any other measure to at least mitigate as much as possible the wrong

evolution of the event. To this aim, teams of specialists are regularly training and

ready to operate. Training is probably the most important activity in SAR, as it allows

us to face an event without being caught unprepared. It is where rescuers learn

how to use the equipment, operate under time pressure and in difficult conditions.

Training is also a way to find new strategies, to evaluate the risks, and consequently

set the limits to reduce such risks.

Nowadays, to limit rescuers’ exposure to risky situations, SAR teams make use of

unmanned robotic vehicles. The use of Unmanned Aerial Vehicles (UAVs), com-

monly known as drones, was originally limited to the military sphere, but recently,

it gained a particular interest in SAR. Thanks to their limited costs of deployment

and versatility, drones find different interesting applications in SAR. First of all, a

drone can be used to have a better understanding of the situation upon arrival,

but also during the intervention. Gathering information from a chaotic place is

hard and time consuming, because accesses are often difficult and resources rela-

tively limited. A drone can facilitate and accelerate this task, especially providing

information that is not available from a ground perspective [91, 144, 177]. Drones

can also be used for both outdoor and indoor inspections, to search for sources

of fire, source of gas escape, or any other hazardous materials. For instance, as a

firefighter, we used drones for forest fire monitoring (Fig. 1.2a), to determinate the

perimeter, to measure the rate of spread, and to find remaining hot spots. Moreover,

drones can be used to search for missing people, victims caught by an avalanche

(Fig. 1.2b), victims of earthquakes, etc. For instance, drones have been used in Nepal

to identify people trapped in remote areas and evaluate the damage caused by the

earthquake of 2015. Due to the overwhelming needs, Nepal suffered from a short-

age of available manned helicopters. Therefore, the use of drones allowed to leave

precious helicopters for effective rescue missions. Furthermore, drones can be used

to establish communication with victims, or to provide them with first assistance;

namely, with a life jacket (Fig. 1.2c), an automated external defibrillator (Fig. 1.2d),

2



water, oxygen, or simply moral support. In this regard, Swiss Air Rescue (REGA) will

begin to use drones in 2021 to access areas that cannot be reached by helicopters

(www.rega.ch). This Rega drone will be able to autonomously scan large search areas

and identify people in real time, using infrared, thermal, and daylight cameras. An

additional example from SwissDrones is the SDO 50 V2, which is also capable of

providing real-time data and visual information in case of natural disasters to help

first responders and civil protection organizations with better situational awareness

(www.swissdrones.com). This drone has been able to successfully perform several

critical tests including aerial surveillance missions for emergency rescue and disaster

management in China. However, even though these drones find many applications

in the field of SAR, limitations exist in their effective and efficient utilization in real

missions [89, 136].

(a) Forest Fire (b) Mountain Rescue

(c) Lake Rescue (d) Basic Life Support

Figure 1.2 – Search and rescue missions: Applications.
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Chapter 1. Introduction

1.1 Limitations of Unmanned Aerial Vehicles in Search and

Rescue

From the technological point of view, the search and rescue context is extremely

unfriendly. Although there is a vast literature on research efforts towards the de-

velopment of unmanned SAR tools, this research effort stands in contrast to the

practical reality in the field, where unmanned SAR tools have great difficulty finding

their way to the end-users [57]. In general, rather than a replacement for human

rescuers, robotic technology should be intended for performing physical tasks that

are outside of human capabilities, facilitate the execution of a particular task or

augment rescuers’ performance. If the technology performs worse than a human,

it will rarely find employments in real SAR. To be adopted in the SAR field, rescue

robots have to show high capabilities as well as reliability and robustness. Moreover,

the technology must be easy to use and should be deployed extremely quickly. In

principle, rescuers try to use the simplest technologies that are good enough to solve

specific problems. In fact, most of the robotic platforms in use by SAR teams can

be used by everyone. In contrast, platforms that are sensitive or complicated to use

are often discarded due to the challenges related to real-world deployments and the

consequent elevated risk of failure.

In my humble opinion, drones belong to this second category; namely, interesting,

but critical platforms. More than the drone itself, critical is the Human-Machine

Interface (HMI), a mean used by a human to interact with the drone. In other words,

the weakness is the remote controller, a device used to fly a drone, or control any

other remote UAV. Most of these controllers are simple electronic devices, with

buttons, switches, and levers, configured to remotely control the various Degrees of

Freedom (DoF) of the drone. However, although the technology of such devices is

relatively simple and applicable to control different UAVs, an important limitation

exists; that is, the intuitiveness of the control strategy in use. For instance, to decrease

or increase the altitude of a drone, you have to respectively move forward or backward

a leaver of the remote controller. This configuration, or mapping, of the different

commands is not really intuitive, and under stress situations the problematic is even

more emphasized. In fact, operating in extreme conditions, dealing with the scarcity

of human resources, and having the feeling of urgency in finding victims, demands

an important cognitive effort. Therefore, singular skills are required to ensure an

effective and efficient deployment of drones in real missions. Thus, the use of drones

in the SAR field is limited to highly trained professionals [28]. However, the risk of

not being able to perform a mission or to crash the drone is still extremely high.
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To address this problem and facilitate rescuers operating with drones under stressful

conditions, there is a need to work on the improvement of current HMIs. For instance,

an improvement of the control strategy would decrease the training requirements

for the teams and, in general, would improve the reliability of the tool in harsh

conditions, like those in SAR operations. Low operator training requirements are

in fact other important criteria for the adoption of robots in SAR, but this aspect

is often not addressed by the research community [40]. In this regard, researchers

have focused on the improvement of current HMIs. For instance, nowadays, many

novel HMIs often include a screen for visual feedback, which helps the pilot by

providing more information, but it does not really simplify the control strategy. On

the other hand, more recent studies used a completely different approach, which

relies on the use of upper-body gestures recorded with external motion tracking

systems. Although these solutions seem to be more intuitive to use, these tracking

systems mainly relies on different cameras [192] or bulky platforms [81, 162], which

are difficult to carry into a disaster area.

Another solution that can facilitate rescue operations is the use of semi-autonomous

robots. Respectively, humans and robots have the ability to adapt to new situations

and to optimize the execution of repetitive tasks. Therefore, to ensure high perfor-

mance during unique and high cognitive demanding tasks, such as during search

and rescue missions, there is a need to combine both human’s and robot’s skills.

Thanks to recent enhancements in share-control techniques [25] and the achieved

level of drone autonomy [57], we can definitely combine both human’s and robot’s

abilities, and bring robot teleoperation to the next level. However, to dynamically

adapt this human-robot interaction, important information is missing in the loop,

that is, the human state, and in particular, the cognitive workload of the operator.

The cognitive workload is defined as the mental effort required to perform a single or

a combination of tasks [23], and it has been proven to affect operators’ performance,

especially in the case of high-risk and high-demanding situations [103, 115, 175].

Thus, monitoring cognitive workload could provide an important feedback about

the human state, information that could adaptively support the operators according

to their specific needs, improve their performance, and potentially decrease hazards.

In this regard, different studies showed how to assess cognitive workload monitoring

from physiological signals and provided numerous solutions that are suitable for

real-time applications [23,77,146]. However, in the field of SAR missions with drones,

there are no clear indications about the method and physiological signals to use.

Moreover, most of the current studies rely on offline processing performed on a
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computer, a methodology that is not suitable for SAR missions.

1.2 Teleoperation of Unmanned Aerial Vehicles

Since antiquity, there have been stories of men attempting to fly, typically by jumping

off a tower with birdlike wings, stiffened cloaks or other devices, but most attempts

ended in serious injury or death. The legend of Icarus is one of the best known.

1.2.1 A little bit of history

The first form of man-made aircraft may have been the kite (Figure 1.3), which was

invented in Asia before the 5th century BC [36]. During the 3rd century AD, the

Chinese invented the sky lantern [41], an airborne lantern used for military signaling.

The sky lantern is a precursor of the hot air balloon demonstrated in 1783 by the

French brothers Joseph-Michel and Jacques-Étienne Montgolfier. The Montgolfier

brothers developed a hot air balloon and demonstrated the flight of a first unmanned

balloon [35]. Similar unmanned balloons were used in 1848 by Austrian soldiers, who

filled the balloons with explosives and attacked the city of Venice [35]. An interesting

aspect is that to control such unmanned flying objects the inventors used a rope,

which makes it as the first user interface adopted for the control of unmanned flying

objects.

Figure 1.3 – Woodcut print of a kite from John Bate’s 1635 book, The Mysteries of
Nature and Art.
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The evolution of unmanned flying vehicles continued over the years, even if I think

the main objective was to develop manned vehicles. In fact, inventors developed

unmanned platforms mainly to test the feasibility of putting a human on it. An

indisputable approach that is mandatory for the development of manned flying

vehicles (FAA Regulations). A revolution for the teleoperation of unmanned vehicles

is the first radio control patented by the inventor Nicola Tesla in 1898 [178]. This

radio-control was initially intended for the teleoperation of a boat.

The first recorded use of radio control techniques for the teleoperation of UAV dates

back to First World War, only 14 years after the first powered aircraft from the Wright

brothers at Kitty Hawk in North Carolina. In 1917, Prof. Archibald Montgomery Low

used in fact the radio-control technology for the first pilotless winged aircraft in

history, the Ruston Proctor Aerial Target [54]. This project led the way for further

research of UAVs, such as the Hewitt-Sperry Automatic Airplane, also known as

"Flying Bomb", or "Aerial Torpedo", which went from Britain to USA, yielding the

Kettering Bug, an upgraded version of aerial torpedo developed by the US Army.

Although promising demonstrations, the war ended before they could have been

used in a combat scenario. During the Second World War and the Cold War, UAV

Figure 1.4 – Remote piloting of a Queen Bee.

technology have been vastly enhanced. However, due to the warfare orientation and

the elevated costs of development, the use of UAVs was limited to the military sphere.

1.2.2 Traditional Human Drone Interface (UDI)

Only in the 1960’s, thanks to advances in telerobotics maturated in different fields,

such as nuclear power plants, medicine, undersea and space missions [121], but also
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the drastic reduction of the development costs, the market of UAVs opened to the

private sphere. Moreover, breakthroughs in semiconductor technology allowed the

miniaturization of radio-controlled components, which yielded in the development

of traditional controllers, such as the one shown in Figure 1.5. However, later studies

Figure 1.5 – Human-Machine Interface: Traditional controller.

demonstrated that this type of controller is neither natural nor intuitive, as the user

requires training and concentration during operation [68, 118]. Being able to interact

and command robots in natural and efficient ways is crucial, especially in demanding

operations, such as in search-and-rescue or indoor navigation [53].

1.2.3 Graphical User Interface (GUI)

With the advent of computers, researchers developed new technologies, which al-

lowed the creation of new forms of human-machine interaction. Sketchpad, the

first graphical computer-aided design program was developed by Ivan Sutherland in

1963 [171]. In 1968, Douglas Engelbart presented a first live public demonstration of

the mouse, used to manipulate text-based hyperlinks [47]. In 1973, Alan Kay went

beyond text-based hyperlinks and used for the first time a Graphical User Interface

(GUI) as the main interface [88]. Such a GUI allowed the user to provide commands,

each typically characterized by several instructions, and to automatically receive

direct feedback of what has been done. Initially intended for the human-computer

interaction, this technology has been applied for drones teleoperation, few novel

examples are shown in Figure 1.6.

In general, a GUI is characterized by both a control and a feedback panel, typically

displayed on the same screen, as shown in 1.6b. However, hybrid versions exist,

which embed both a traditional-like controller and a touch screen for guidance and

visual feedback, as shown in 1.6a. Nowadays, Virtual Reality (VR) glasses ( 1.6c) are

replacing screens to provide a more immersive interaction. Although GUIs improved
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(a) Hybrid GUI (b) GUI on a Smartphone (c) VR based UI

Figure 1.6 – Graphical User Interface [132]: State of the Art.

both intuitiveness and level of immersion, these interfaces are not yet the most

efficient option, that is, a barrier still subsists between the communication from

human to machine. One step towards overcoming such a barrier is the development

of Natural User Interfaces (NUIs) [53].

1.2.4 Natural User Interface (NUI)

To allow users to engage with machines as they would like, researchers started

applying a user-centered design approach [53]. The idea behind this approach is to

design an interface based on how users will likely use it, by studying their behavior

in real-world tests, and focusing on both requirements and limitations of the end-

users. Following this user-centered approach, researchers were able to develop new

NUIs [160], which allow to harmoniously handle both virtual and real objects. For

this purpose, the most common used mediums are voice [51, 66], tags [43], hand

gestures [70, 167], and body gestures [108, 157]. Figure 1.7 shows an example of

NUI presented in Minority Report, a Spielberg’s movie, which has been a canonical

reference point for designers.

Voice control, originally developed for human-computer interaction, is probably one

of the most natural interfaces that could be used to interact with a machine. In fact,

this type of interface involves the speech, which is the most used way of interaction

between humans. Although the use of the voice offers a solution that is both intuitive

and appealing to the user [53], only few studies in the literature use it to interact with

drones. These studies show the weaknesses of voice control, but demonstrate as

well some important limitations. An example is the work presented in [145], where

a voice controller was developed to recognize and send commands to a fixed wing
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Figure 1.7 – Example of Natural User Interface (NUI) shown in Minority Report, a
Spielberg’s movie.

semi-autonomous UAV. Another exploratory study, considering voice commands for

the interaction with robots in a simulated environment, concluded that to control a

drone lower-level commands (e.g., left and right) are generally preferred by users [85].

From one side, the use of voice allows the development of intuitive and hands-free

interfaces, but on the other hand, real-flight tests showed that ambient wind noise

and conversation can lower the reliability of the voice recognition system [145]. Thus,

in SAR missions, where both high noise and frequent communications are ordinary,

voice control does not find a future.

In a few studies, researchers also used visual tags, in other words, specific pixel

patterns that uniquely encode a predefined set of commands, which robustly and

accurately define what a drone has to do. The use of visual tags is a common practice

in robotics, since no additional device apart from a simple monochromatic camera is

needed. For instance, this approach has been used to control underwater robots [43]

and drones as well [53]. For this purpose, the on-board front facing camera of the

drone can be used, but to avoid the need for being in the visual field of the drone, an

additional cameras placed in front of the pilot. From one side, such an interaction is

simple, since a non-expert user can pick up a predefined set of tags and interact with

the drone in a reliable and safe way. However, the use of a predefined set of tags can

limit the level of interaction to a limited set of actions, such as take off, hover, land,

etc. To face this problem, authors in [53] used a binary coding tag system developed

for producing configurable dictionaries with arbitrary size and number of tags [61].

Although this approach allows to expand the reliable and unique command list that

can be sent to the drone, having too many options may be confusing and in the
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rush the pilot may not be able to find the right tag that has to be shown to the drone.

Therefore, the use of visual tags is not really suitable for SAR missions, where there is

no time to search between the many tags which one is the right one to use.

In some sense, an evolution of the visual tag interaction is given by the use of hand

gestures. In fact, hand-gesture interaction involves both static signs and dynamic

gestures [164, 167], which make it one of the most used NUIs in literature. Static

signs are expressed with a motionless and predetermined finger configuration, while

dynamic gestures are characterized by hand motions [87]. The recognition of both

static and dynamic gestures is addressed in different ways. Initial hand gesture

based NUIs depended on sensors embedded in glove-based devices that directly

measured spatial position and joint angles [13, 52]. Such devices were massive and

limited the interaction between the user and the machine [87]. A development of

new sensors equipped with depth cameras, such as the Kinect™ [107] and the Leap

Motion™ [190], busted the development of new hand gesture based NUIs [104, 138].

Initially, a gesture recognition system based on depth imagery and a depth-based

hand gesture database for drone control was developed in [101]. Subsequently,

a robot that recognized hand gesture commands was successfully tested in real

world scenarios [4]. Further developments of both cameras and depth-based hand

gestures algorithms improved both recognition accuracy and precision [73]. These

deficiencies were in fact limiting the performance of the hand/finger poses extraction,

which was low due to limited camera resolution, high noise and missing data [101].

The hand-gesture interaction is an interesting approach and users find it intuitive, if

a direct transformation between hand and drone movement is applied [53]. However,

this method takes possession of the hands, which cannot be used to execute any

possible parallel task. Therefore, hand-free solutions are more interesting in that

sense.

The first form of visual body interaction reproduces the instinctive behavior of baby

animals, who follow their parents everywhere. Similarly, the idea is applied to let

the drone follow its owner, or its user. To this aim, drones are equipped with an

on-board camera, and computer vision algorithms are used to detect and track the

user’s position. Finally, additional algorithms are applied to let the drone keep both

distance and point of view, even if the user moves or runs [134]. This solution could

be interesting for SAR missions, as the rescuers could freely execute their activity

without having to care about the drone. However, it implies that someone, either a

human or a ground robot, needs to move around to cover the area of interest, and

this can be an evident problem in collapsed or dangerous environments.
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1.2.5 Drone Autonomy

The improvement of user interfaces is also due to recent enhancements in drone

autonomy, which drastically simplify the Human-Machine teleoperations. The well-

documented problems of the Human-Machine teleoperation have been addressed

by three lines of research, which aim to release the work of the pilot by increasing

the level of robots’ autonomy [57].

The first line of research focuses on the sensory-motor autonomy, which aims to

translate high-level human commands into combinations of platform-dependent

control signals (such as pitch, roll, yaw angles or speed). For instance, current

methods of sensory-motor autonomy allow us to reach a given altitude, perform

circular trajectory, move to global positioning system (GPS) coordinates, follow pre-

programmed trajectory using GPS waypoints, and maintain a specific position [112].

The second line of research focuses on the reactive autonomy, which integrates

sensory-motor autonomy to maintain current position or trajectory in the presence

of external perturbations (such as wind or electro-mechanical failure), maintain a

safe or predefined distance from ground, avoid obstacles, coordinate with moving

objects, take off and landing [102, 116].

The third line of research focuses on the cognitive autonomy, which includes reactive

autonomy to perform simultaneous localization and mapping to recognize objects

or persons, to plan (i.e., for battery recharge), to resolve conflicting information,

and to learn [11, 49, 117, 176]. Two examples are shown in Figure 1.8, where a drone

autonomously flights in a forest (Fig. 1.8a) and the cooperation of autonomous

drones assembles an architecture installation (Fig. 1.8b).

(a) Autonomous forest flight [102]. (b) Flight assembled installation [11].

Figure 1.8 – Autonomous Drones: State of the Art.
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Although all levels of drone autonomy can contribute to relieve the workload of the

pilot, at present in SAR missions, a drone cannot be fully autonomous. In fact, none

of today’s commercial drones have sufficient control autonomy to complete a SAR

mission without skilled human supervision, which makes those operations slow,

dangerous and not scalable [57]. The current level of autonomy allows an optimized

execution of some repetitive tasks, but it does not replace the human’s ability to

adapt to new situations. Thus, to combine both human’s and robot’s abilities, recent

studies focus on share-control techniques [25].

1.2.6 Share-Control

The approaches applied to increase robot autonomy are not yet reliable enough

to leverage in the SAR field. The problem is that SAR missions are unique and it

is extremely difficult to develop a technology that works in all possible scenarios a

SAR mission may hide. Therefore, in order to efficiently perform SAR missions, a

coexistence/collaboration between humans and robots is required. In fact, robots

can be optimized to repeat tasks and enter places that are inaccessible for rescuers

whereas humans have the ability to adapt to new situations. In this regard, share-

control systems have been investigated to modulate the human-robot interaction

and dynamically adapt the level of assistance [25, 135].

Shared control has been shown to help operators of robotic equipment in a wide

range of applications, including transport [1] and assistive technology [26, 189]. As

shown in Figure 1.9, in current share-control techniques, both human and robot

Figure 1.9 – Share-control [135]: State of the Art.

commands are fused to obtain a control signal, that is, a sequence of commands to
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control the robot. Moreover, artificial-intelligence methods are applied to provide

the robot with a learning ability and consequently optimize the robot commands

transmitted to the shared control. Finally, a feedback interface is used to inform the

human about the robot state. In particular, shared control can increase safety and

reliability as well as decrease user workload. However, if the level of assistance is

not well matched to the user’s instantaneous needs and abilities, it may not only

reduce user acceptance, but could also be detrimental. Thus, to ensure an efficient

interaction between rescuers and drones, it seems that something is missing.

The level of assistance does not just depend on the environmental context (as mea-

sured by the robot’s sensors), but also on performance measures [25] and the user’s

control signals [154], which have to be both computed at runtime. In my humble

opinion, the complete control loop for drone teleoperation in SAR missions should

be as the one depicted in Figure 1.10. The electric motors of the drone are controlled

by a Low-Level Control (LL CTRL) inner loop. The low-level control, also called flight

controller, is basically the system of the drone that controls drone’s rotors to produce

the desired outcome. The flight controller might be of different types, and it should

also include both manual or automatic means for starting and stopping the motors,

selecting and regulating the speed, regulating or limiting the torque, and poten-

tially protecting against overloads and electrical faults. Then, a Remote Controller

(R CTRL) is used to interact with the drone and provide the desired combinations

of platform-dependent commands (such as pitch, roll, yaw angles or speed). The

remote controller allows the pilot to remotely control the drone using radio signals.

Then, a High-Level Control (HL CTRL) loop should be added to provide a certain

level of autonomy to the drone. This high-level control is used to target the three

levels of increasing autonomy described in section 1.2.5. Moreover, a Share Control

(SH CTRL) should be included to increase the performance of the human-machine

interaction.

Finally, the last element in the loop is the Human State Monitoring System (HSMS).

Such a monitoring system is the key to provide the necessary feedback, which allows

the share-control to dynamically adjust the level of autonomy based on the real

needs of the pilot. For instance, we could use such information to adjust the speed of

the drone automatically and relieve the pilot from this task. Moreover, we could also

adapt the reactiveness of the drone by adjusting the gains of the controller. In this

way, we can enhance drones’ teleoperation by addressing the fact that pilots have

different abilities and varying performances.

14



1.3. Thesis Contributions
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Figure 1.10 – An advanced share-control loop for drone operations in search and res-
cue missions. Respectively, a Low-Level Control (LL CTRL) and a High-Level Control
(HL CTRL) are responsible for controlling the electric motors and the autonomy of
the drone. The pilot typically uses a Remote Controller (R CTRL) to interact with the
drone. The Share-Control (SH CTRL) unit dynamically adapts the level of autonomy
based on information provided by the drone and by a Human State Monitoring
System (HSMS).

Without the knowledge of the human state, a share-control cannot be aware of the

difficulties encountered by both humans and robots. As shown in Figure 1.9, this is

the case of current share-control techniques, which do not include such feedback.

Therefore, there is a need to investigate the feasibility of providing information about

the human state.

1.3 Thesis Contributions

Being the information of the human state not yet available in the loop, and the

fact that current drone controllers are not at all intuitive, both the human state
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monitoring and the improvement of the existing manual controller are the focus

of this work. As human state information, I decided to target cognitive workload,

as most of the SAR missions require a particular mental effort at the beginning to

understand what to do and to decide how to handle the situation. Tasks that are

often handled in a limited amount of time, but are really demanding. To this aim, I

explored different methods to characterize the cognitive workload in a continuous

and noninvasive way. For the improvement of the manual controller, I investigated

the integration in a wearable system of a recent method that translates upper-body

movements tracked by a 3D camera system into commands for a drone [108]. In

particular, the contributions of this work are shown in Fig. 1.11, and summarized

next.

LL CTRL Drone

Disturbances

Mission

Disturbances

HSMS
(CWMS)

R CTRL
(WDC)

Drone State

Drone Commands

Human State

Mission State

Biosignals

Gestures

Disturbances

Drone Control Loop

Drone Simulator or Real Drone

Proposed Wearable System

Figure 1.11 – Simplified control loop for drone operations in search and rescue
missions. Red boxes highlight the focus of this work. Both the implemented drone
simulator and the selected real drone are simple and only include a Low-Level
Control (LL CTRL). As a Human State Monitoring System (HSMS), I developed a
Cognitive Workload Monitoring System (CWMS). As a Remote Controller (R CTRL), I
developed a Wearable Drone Controller (WDC).
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1.3.1 Wearable Drone Controller (WDC)

To provide a more portable NUI for drone teleoperation, I developed a new Wearable

Drone Controller (WDC), which is based on upper body movements. The proposed

system has been integrated into a soft exoskeleton, called FlyJacket [153], and vali-

dated for the teleoperation of both a simulator and a real drone. To this aim, I ran

different experiments and participated in demonstrations during public events, such

as Cybathlon and EPFL Open Days.

Moreover, to find the best position that a user should assume while using the pro-

posed wearable system, I analyzed the physiological response of different users. The

study showed that sitting is the best position compared with standing and lying.

Finally, to optimize the battery lifetime of the proposed system, I presented a method

that drastically reduces the communication traffic. The method was tested while driv-

ing a real drone with the proposed wearable system and showed an 11.9% reduction

of the total energy consumption.

1.3.2 Cognitive Workload Detection Method

To induce different levels of cognitive workload related to search and rescue missions,

I modified a virtual-reality based drone simulator to include parallel tasks, such as

objects recognition. The simulator was used for the acquisition of a database of

different physiological signals acquired from 34 participants involved in a cognitively

demanding simulated, but immersive SAR mission, 24 using a traditional controller

and 10 using the proposed wearable controller, called FlyJacket.

To characterize the physiological response of cognitive workload, I performed an

exhaustive investigation of relevant features extracted from physiological signals and

I selected the most representative ones.

To reduce both inter-subject and inter-day variability, I explored different feature

normalization techniques showing that a normalization that considers both subject

and day improves the classification results.

To further reduce the inter-subject variability, I provided a new learning method

based on Support Vector Machines (SVMs) suitable for a subject-specific optimiza-

tion. This SVM based method uses two regularization terms, one for learning the

general behaviour, and another one for tuning the model to fit the characteristics of
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a particular data subset.

Finally, I proved the ability of the proposed method to detect low and high levels of

cognitive workload with both traditional controllers and new advanced controllers,

such as the new FlyJacket design, achieving an accuracy of 87.3% and 91.2%, respec-

tively. These results were obtained on an unseen dataset acquired from 34 subjects

while flying a drone simulator and mapping a graphic representation of a damaged

area. These results are better than the latest state-of-the-art studies.

1.3.3 Wearable Cognitive Workload Monitoring System (CWMS)

With this work, I demonstrated the feasibility of using a wearable device to monitor

cognitive workload from physiological signals acquired in a non-invasive way. To

achieve this result, I developed a new wearable multi-channel signal-acquisition and

processing platform, which implements the algorithms presented in Chapter 3. To

succeed, we had to address the stringent processing and memory constraints, which

limit the performance and the execution of the algorithms in embedded devices.

Dealing with such constraints was indeed a challenge, as the proposed multimodal

cognitive workload monitoring method requires the acquisition and the processing

of a large amount of data. Therefore, some basic optimizations were applied to avoid

delays and reduce large memory requirements, which can affect both functionality

and performance. Then, the embedded algorithms and methods have been validated

for online monitoring of low and high levels of cognitive workload, achieving an

accuracy of 75%.

Finally, to optimize energy consumption, I explored the trade-offs between the

required accuracy and the available energy of the system. In this regard, I relied

on the fact that complex classifiers typically reach high detection performance,

but they frequently lack in energy efficiency. On the other hand, simple classifiers

cannot always guarantee high detection performance, but they are energetically

more efficient. Therefore, while dynamically adapting the level of complexity, I

showed that it is possible to gain in energy efficiency without seriously compromising

the detection accuracy. To this aim, I proposed a self-aware approach that exploits a

scalable machine-learning method with different power-saving levels. This approach

is extended to the acquisition level, which yields an increase of 78% of the battery

life and an acceptable accuracy lost with respect to the best universal background

model presented in chapter 3 (i.e., from a theoretical 80.32% to 77.65%).
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1.4 Thesis Outline

The rest of this thesis includes three main chapters, which are self-containing and

structured to include sections covering related works, applied methods, experimental

results, and a conclusion. A final chapter concludes this thesis with a summary and

possible future work. More precisely, each chapter presents the following contents.

Chapter 2 presents the development of a new Wearable Drone Controller (WDC),

which captures upper-body gestures and translates them into commands for the

teleoperation of a drone. As a first result, a comparison with a commercial optical

camera system for motion capture shows that the proposed WDC is accurate while

tracking the gestures required to drive a drone. Then, after being integrated into

a soft exoskeleton, called FlyJacket, the proposed WDC has been experimentally

validated for the teleoperation of both a simulator and a real drone. Moreover,

this chapter includes an investigation to find the best position that a user should

assume while using the proposed WDC. To this aim, I presented an analysis of the

physiological response of different users showing that sitting is the best position

compared with standing and lying. Finally, as an optimization for the design of such

a novel WDC, I presented a method that drastically reduces the communication

traffic, and consequently improves the battery lifetime of the proposed system by

11.9%.

Chapter 3 details the methods used to access cognitive workload detection from phys-

iological signals acquired in a non-invasive way. In particular, I proposed a machine

learning algorithm for a continuous cognitive-workload monitoring. The proposed

multi-modal cognitive workload monitoring model combines the information of 25

features extracted from physiological signals, such as respiratory activity, electrocar-

diogram, photoplethysmogram, and skin temperature, acquired in a non-invasive

way. To reduce both subject and day inter-variability of the signals, I explored differ-

ent feature normalization techniques and I introduced a modified learning method

for support vector machines, which is suitable for subject-specific optimizations. On

a new test set acquired from 34 volunteers, the proposed subject-specific model is

able to distinguish between low and high cognitive workloads with an average accu-

racy of 87.3% and 91.2% while controlling a drone simulator using both a traditional

controller and a new-generation controller called FlyJacket, respectively. Finally, the

results reported in this chapter showed that the proposed model is suitable for both

traditional controllers and new advanced controllers, such as FlyJacket.

Chapter 4 presents the hardware/software co-design of a new wearable embedded
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system for online cognitive workload monitoring. This new wearable includes, on the

hardware side, a multi-channel physiological signals acquisition (respiration cycles,

heart rate, skin temperature, and pulse waveform) and a low-power processing

platform. On the software side, this wearable embedded system includes the bio-

signal processing algorithms presented in chapter 3 and the application of the self-

aware concept for scalable energy embedded machine learning algorithms and

methods for online cognitive workload monitoring. The results showed that the

proposed wearable system can continuously monitor multiple bio-signals, compute

their key features, and provide accurate detection of high cognitive workload levels

with an accuracy of 75% and a time resolution of 1 minute. Such an online cognitive

workload monitoring system could provide valuable inputs to decision making

instances, such as the operator’s state and performance, thus, allowing potential

adaptive support to the operator.

Finally, Chapter 5 concludes this work and provides pointers for future work in this

domain.
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2 Wearable Drone Controller

2.1 Introduction

The use of Unmanned Aerial Vehicles (UAVs), commonly known as drones, was

originally limited to the military sphere, but in the last years, it has become pervasive

in both professional and domestic environments. In fact, thanks to their commer-

cial accessibility and their large degree of versatility, the utilization of drones has

exploded in different fields (e.g., aerial mapping, search and rescue, transportation

and delivery, and even for private leisure [68]). Nowadays, drones are extremely

interesting devices for search and rescue applications. For instance, once a disaster

occurs, rescuers have to gather information to immediately evaluate each emergency

situation upon arrival. This first task is crucial to take the proper decisions and

effectively master the emergency. However, gathering information from a chaotic

place is hard and time consuming, because accesses are often difficult and resources

relatively limited. A drone, or a network of drones, can facilitate and accelerate

this task, especially providing information, which is not available from a ground

perspective. Moreover, drones can be used to establish communication with victims,

or to provide them first assistance (e.g., with water, oxygen, or moral support).

Even though drones find many applications in the field of search and rescue, an

effective and efficient utilization in real missions is still in an embryonic stage. One

of the main problems is that current Human-Machine Interfaces (HMIs), such as

joysticks, keyboards, or touch screens, are neither natural nor intuitive, as the user

requires training and concentration during operation [68, 118]. Drone teleoperation

with traditional remote controllers is in fact a challenging task, which becomes even

more demanding during long-term operations [133] or under stressful conditions
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[194]. In many cases, this limits the use of robots to highly trained professionals [28,

29]. The complexity of current Human-Machine Interfaces (HMIs) may result in a loss

of control bringing the user to unexpected and catastrophic situations (Fig. 2.1), with

the risk of crashing the drone, and consequently, severely compromising the outcome

of a mission. Therefore, there is a growing demand for new HMIs to enhance the

control and better interact with drones [141,155]. The development of more intuitive

control interfaces could improve flight efficiency, reduce errors, and allow users to

shift their attention from the task of control to the evaluation of the information

provided by the drone.

Figure 2.1 – Current controllers are neither natural nor intuitive, and can lead the
user to unexpected situations with catastrophic outcomes. For instance, in 2015, a
drone crashed onto a slalom ski course and nearly hit skier Marcel Hirscher (CNN).

In the last decade, researchers have focused on the improvement of traditional HMIs

by looking for more natural and intuitive solutions. For instance, recent studies

make use of external tracking systems to translate upper body movements into

command for flying robots, or drones [120, 137, 157]. Following the same objective,

other researchers have used moving platforms [81, 162] combined with virtual reality

to control real drones [32]. However, the common weakness of all these studies is

portability. In fact, most of the HMIs presented in these studies rely on bulky setups,

which are not easily transportable. Therefore, further investigation is needed to find

new solutions that are both intuitive to use and portable.

By comparing the approaches found in the literature, we can identify different modes

of operations. For instance, while using traditional controllers, operators typically
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hold the controller in a standing position, but in principle, they could assume almost

any pose (e.g., sitting or lying). On the other hand, platforms such as Birdly [162] and

Hypersuit [81] impose a lying position, which may be more closely associated with

the idea of flying [108]. To the best of my knowledge, there is no study indicating

which one is the most suitable position and which one requires less physical strength.

Therefore, while designing a new portable HMI, this aspect has to be considered.

While operating at the most comfortable position, the user will not only be able to

perform with the least physical effort, but it will probably help to reduce the barrier

of current HMI.

In general, while designing portable devices, one of the main issues is energy con-

sumption [151]. In fact, elevated energy consumption affects the battery lifetime

and consequently also the operational time. To increase the operational time, we

could increase the battery capacity, but this approach will affect the size of the device

and consequently also the portability. Instead, a smarter approach is to reduce the

energy consumption. Thus, for the application targeted in this work, a particular

attention was paid to memory storage and communications [152].

Contributions of this Chapter

The development of a wearable system for drone teleoperation in search and rescue

missions is the focus of the work in this chapter, which proposes the following

contributions:

• To provide a more portable solution, I developed a wearable embedded system

for drone control, which is based on upper body movements. The proposed

system has been integrated into a soft exoskeleton, called FlyJacket [153], and

validated for the teleoperation of both a simulator and a real drone. To this

aim, I ran different experiments and participated in demonstrations during

public events, such as Cybathlon and EPFL Open Days.

• Moreover, to find the best position that a user should assume while using the

proposed wearable system, I analyzed the physiological response of differ-

ent users. The study showed that sitting is the best position compared with

standing and lying.

• Finally, to optimize the battery lifetime of the proposed system, I presented

a method that drastically reduces the communication traffic. The method
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was tested while driving a real drone with the proposed wearable system and

showed a 11.9% reduction of the total energy consumption.

Publications

This work yielded the following publication and patents:

• C. Rognon, S.Mintchev, F. Dell’Agnola, A. Cherpillod, D. Atienza and D. Flore-

ano. "FlyJacket: an Upper-Body Soft Exoskeleton for Immersive Drone Con-

trol." in IEEE Robotics and Automation Letters, 3(3):2362-2369, 2018. Video:

youtu.be/L0FTPYkLKHI

• C. Rognon, D. Floreano, S.Mintchev, A. Concordel, F. Dell’Agnola, D. Atienza,

"Jacket for embodied interaction with virtual or distal robotic device", Inter-

national Patent Application No. PCT/IB2017/055410, filed on September 8,

2017.

• J.Miehlbradt, F. Dell’Agnola, A. Cherpillod, M. Coscia, F. Artoni, S.Mintchev, D.

Floreano, D. Atienza, S.Micera. "Teleoperation with a wearable sensor system",

UK Patent Application No. 1810285.5, filed on June 22, 2018.

Chapter Outline

The rest of the chapter is organized as follows. Section 2.2 gives an overview of the

state of the art about Natural User Interfaces (NUIs), focusing on drone controllers

based on body gestures. Section 2.3 describes the proposed wearable embedded

system for drone control based on upper-body movements. Section 2.4 describes

the steps applied to experimentally validate the system and Section 2.5 reports

the consequent results. Finally, Section 2.6 provides the main conclusions of this

chapter.

2.2 Natural User Interface: State of the Art

In general, but especially in Search and Rescue (SAR) missions, robot teleoperation

with traditional controllers (Fig. 2.2a) is a non-intuitive and challenging task. For

this reason, the use of robots in the SAR field is still restricted to simple missions

and highly trained professionals [28, 29]. Over the last decade, researchers have

focused on the improvement of traditional HMIs by looking for more immersive
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(Fig. 2.2b) or accessible (Fig. 2.2c) solutions, by including a screen for visual feedback

or using smartphones, respectively. However, from the usage point of view, these

new interfaces are not different than a traditional controller.

(a) Traditional controller (b) Interactive controller (c) Smartphone

Figure 2.2 – Drone Controller: State of the Art

More recently, the research community has focused on the development of gesture-

based NUIs [68] to control the flight by following three different approaches, thus

providing more natural and intuitive solutions. The first approach makes use of

moving platforms on which a person can lie horizontally with the arms spread out to

control the flight. Two examples are shown in Figure 2.3, where a user can control

the flight of a simulated bird or wing-suit by moving both hands and arms using

a platform such as Birdly (Somniacs SA, Zurich, Switzerland) [162] or Hypersuit

(Theory, Paris, France) [81]. Although these platforms were designed to let people

fly like a bird in virtual reality, it has been shown that they can also be used for

immersive control of a real drone [32]. Despite the impressive rendering of flight

experiences, these platforms are bulky and heavy, which prevents their usability in

real-world drone operation [153].

(a) Birdly [162] (b) Hypersuit [81]

Figure 2.3 – Natural User Interface (NUI) based on moving platforms.

The second approach relies on the use of upper-body gestures recorded with exter-
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nal motion tracking systems, such as Microsoft Kinect™ [107] and Vicon™ [192].

This approach is used in different studies and allow a person to control a drone

by using a larger variety of hand or body gestures [53, 108, 120, 137, 157]. However,

as shown in Figure 2.4, the required equipment is still quite substantial. In fact,

both a motion tracking system and a computer are needed to acquire, process and

translate the gestures into commands that can be finally sent to the drone. More-

over, such motion tracking systems, Vicon for instance, often require an accurate

calibration process previous utilization. This process requires both time and clean

environments, elements that are not available in SAR.

Figure 2.4 – Natural User Interface (NUI) based on video capture systems [157].

The third approach relies on wearable sensors. The possibility of monitoring human

postures and gesture with wearable sensors has been demonstrated in different

studies [5, 92] and opened the doors to outdoor measurement, such as alpine ski

monitoring [50]. Wearable devices have been used as well in robotics, where it has

been shown that wearable sensors embedded in exoskeletons can enhance both

control intuitiveness and immersion [24, 119]. Indeed, human-robot interfaces can

be improved by focusing on natural human gestures captured by wearable sensors.

Following this approach, a different study used Electromyogram (EMG) sensors,

placed on the forearm, to track hand gesture and control a drone [167]. Although this

approach is quite intuitive, the use of the hands prevents the execution of parallel

tasks. In another study [70], the authors developed a control strategy based on

pointing gestures. This method is intuitive as well and particularly indicated for

the teleoperation of multiple robots. In fact, as shown in Figure 2.5, the user only

needs to indicate which robot has to move and where it has to go. Although this

interaction makes use of the hand, its use is limited in time. Therefore, with the

solution proposed in [70], the user has most of the time its hands free. However, few
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limitations still exist. First of all, this approach is limited to short range operations,

as small errors in the detection of the angles would result in an important drift in

a distant pointed position. Moreover, the user needs to be in visual contact with

the drone permanently, but this problem could be solved with the use of extended

reality. Another problem is the level of immersion. The use of virtual reality could

partially solve this issue, but the immersion would be limited to the environment.

In other words, the user could feel of being located at the place where the robot is

seen (self-location), but he would not be able to experience the sense of owning the

distant robot (self-identification). In fact, to experience a self-identification with a

robot, a link between user and robot should be established. To this aim, the robot

should mirror the human’s motions, posture, or bodily signals [20]. Therefore, a

further investigation considering the body self-consciousness paradigms is needed

to help relocate the user’s perception into the distal drone to improve immersion

and piloting performances.

Figure 2.5 – Natural User Interface (NUI) based on wearable devices [70].

Although a lot of effort has gone into HMI improvements [95], an efficient deploy-

ment of drones in SAR missions is still a challenge. One of the main reasons is

the lack of an appropriate NUI. Traditional solutions are in fact neither natural nor

intuitive [68, 118]. Recent studies based on moving platforms [32] and visual mo-

tion tracking systems [108] seem to address this problem. However, most of these

solutions lack portability, which makes them unsuitable for SAR missions. More-

over, the control strategies are typically based on gestures that are predefined by

the developers, who do not really consider the needs of the final users and force

them to learn and adapt to the proposed solution. This training process is often

not addressed by the research community [40], and in SAR is quite important as

rescuers need to train on many topics. The use of wearable sensors is covered by only
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few studies [70, 167], where the control is carried out from a third-person view or

through a monitor, which limits the immersion. Therefore, there is a need for further

investigation to find easy-to-use and portable solutions.

2.3 Design of a Natural-User Interface for Drone Control

The design of a novel natural-user interface for drone control was handled by a col-

laboration between three laboratories of École Polytechnique Fédérale de Lausanne

(EPFL), namely, Translational Neural Engineering (TNE), Laboratory of Intelligent

Systems (LIS), and Embedded System Laboratory (ESL). In a first phase, we per-

formed an open-loop experiment (described in subsection 2.4.1) to identify the

spontaneous gesture-based interaction strategies of naive individuals with a distant

device, such as a drone. The idea was to exploit this information of the upper-body

motion to develop a natural data-driven body–machine interface to efficiently con-

trol this drone. Moreover, we also wanted to investigate different postures (i.e., lying,

sitting, and standing) to identify which one is the most suitable for the teleoperation

of a drone. In this first phase of the project, my role was limited to the analysis of the

comfort/discomfort of these different postures, to identify the position that requires

the least physical strength. Therefore, as I did not take part in the investigation

aimed to identify the gesture-based interaction with a drone, I will only provide the

important information relative to my work. However, all the details can be found

in [108, 109].

In a second phase, we performed a closed-loop experiment (described in subsec-

tion 2.4.2) to validate the gesture-based interaction strategy. This analysis was done

at TNE and all details can be found in [108,109]. In this phase, my role was to propose

and validate an equivalent, but portable solution, that is, a wearable system (sub-

section 2.3.1) implementing the aforementioned gesture-based interaction strategy

(subsection 2.3.2). As shown in Figure 2.6, the system proposed in [108, 109] was in

fact based on an eight-camera motion capture system from Vicon [192], which is not

easily portable and requires an important calibration process previous utilization.

Finally, in the third and last phase of this collaboration, my wearable system was em-

bedded in a soft upper-body exoskeleton called FlyJacket. The jacket was combined

with a glove to include the control of speed, take off, and landing. Both the FlyJacket

fabric and the glove were designed and developed at LIS, all details about the fabric

design can be found in [153]. In this phase, we organized an experiment (described

in subsection 2.4.3) to validate the teleoperation of a real drone with the FlyJacket
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Figure 2.6 – Natural User Interface (NUI) based on a camera motion capture system.

design.

2.3.1 Proposed Wearable Drone Controller

With the goal of combining portability and intuitiveness, I developed a novel wear-

able embedded system for human-machine interactions, which has been designed

and tested for the teleoperation of a real drone. The proposed system reflects the

intuitive behaviour of the solution proposed in [108], but it is fully wearable and con-

sequently also portable. As shown in Figure 2.7, the controller consists of a wearable

body sensor network, which is composed of a central sensor node (red square on

the human’s chest) connected with additional sensors (red circles). The central node

acquires the signals for the upper-body movement tracking, combines them, and

translates them into commands that are finally transmitted to the drone.

It has been demonstrated that measurements of the torso orientation are enough to

fly a drone at constant speed with relatively high performance [108]. Therefore, I de-

signed a wearable body sensor node that tracks the motion of the torso and decodes

the movements into commands for the drone as proposed in [108]. However, in order

to allow an implementation of more advanced flight styles, I proposed a modular

design that could be extended to implement more advanced control strategies. For

instance, the proposed design can be used with the following configurations:

• one single central node, thus, only one Inertial Measurement Unit (IMU),

• a central node with two additional IMUs,

• a central node with four additional IMUs.

These three configurations are suggested by previous studies [5, 12, 50, 149], which

29



Chapter 2. Wearable Drone Controller

Signal
Acquisition

Sensor
Fusion

Body
Movement
Decoding

Transmission
Unit

Wearable Sensor Node for Drone Control

Figure 2.7 – Context diagram of the proposed wearable drone controller. A cen-
tral wearable sensor node (red square on the human’s chest) embeds the methods
grouped by the dashed-line box. Additional nodes (represented by red circles), or
simply Inertial Measurement Units (IMUs), are used to track the movements of arms.

demonstrate the possibility of tracking the movement of the body segments with

IMUs.

The proposed central node is intended to be placed on the chest or the back of the

torso. In principle, both options are valid [12]. However, I prefer the back rather than

the chest, as it facilitates to embed the sensors in a jacket, which may have a zipper

or buttons on the chest side. The additional IMUs can be placed on the upper arms

and forearms to record the motion of these body segments [12], and can be used, for

instance, to control the Degrees of Freedom (DoF) that were not considered in [108].

2.3.2 Control Strategy: Design and Evaluation

The general idea behind the method applied to find the control strategy implemented

in the proposed drone controller is shown in Figure 2.8. The drone controller, in

particular the control strategy, is the part that has to be identified. The control loop

starts with an action from the user, who applies a command (1) based on its desired

trajectory and the real trajectory of the drone (3). Then, a drone controller translates

the action of the user into commands (2) for the drone. Finally, to identify a proper

control strategy, we measured the actions of the user and the commands applied to
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the drone.

Figure 2.8 – Drone-control identification loop. A user applies an action (1) based
on the trajectory he has in mind and the real trajectory of the drone (3). Then,
a drone controller translates the action of the user into commands for the drone
(2). To identify the controller needed, we measured the actions of the user and the
commands applied to the drone.

The investigation aimed to find the control strategy; that is, the identification of

upper-body gestures for the development of an intuitive control interface was done in

a parallel study at TNE and results can be found in [108]. From my side, I investigated

three different postures that could be suitable for a user to assume while using

the proposed wearable drone controller (i.e., lying, sitting, and standing). In this

regard, we considered both an empirical and an objective evaluation of the level

of discomfort related to a particular posture assumed by the user. The empirical

evaluation relays on a self evaluation provided by the research participants after

each experimental session. On the other hand, the objective evaluation is based

on the physiological response that I measured from the participants, with the aim

of to detect any physiological form of stress that could be assigned to a discomfort

experienced by the participants.

Being comfort a subjective sense of physical or physiological ease and not really

measurable, stress metrics are chosen as suggested in [183]. Therefore, I measured

Electrocardiogram (ECG) and Electrodermal Activity (EDA) to detect if there is any

form of stress factor that could influence the normal execution of the task. All details

about the experiment and sensors are given in sections 2.4.1 and 2.4.1, respectively.

EDA measurements were eventually discarded, as the measurements were too noisy

and did not show any significant response. From the ECG signal, I extracted the

31

http://tne.epfl.ch


Chapter 2. Wearable Drone Controller

R-peaks, which are needed for the analysis of Heart Rate Variability (HRV). For

that purpose, I used an efficient algorithm suitable for real-time applications [130].

Both time and frequency domain methods were considered for the HRV analysis

as described in [174]. For the time domain, I computed features such as the Root-

Mean Square of Successive Differences (RMSSD) and the mean value of the so-called

normal-to-normal (NN) intervals, the intervals between two consecutive QRS peaks.

For the frequency-domain analysis of HRV, I first estimated the Lomb-Scargle Power

Spectral Density (PSD) of the NN intervals [143], and then I computed the power in

the Low Frequency (LF) band (between 0.04 and 0.15 Hz), in the High Frequency (HF)

band (between 0.15 and 0.4 Hz), and the ratio of the two, referred to as the LF/HF

ratio. The experiment conducted in this regard is described in subsection 2.4.1 and

results are shown in subsection 2.5.1.

2.3.3 Wearable Sensor Node for Drone Control: Hardware Design

A block diagram of the proposed wearable body sensor node is shown in Figure 2.9.

The main components and functionalities are briefly described in the next paragraph,

which aims to provide a general overview of the system. Then, in the following

subsections, all components are detailed.

Figure 2.9 – Block diagram of the proposed wearable drone controller.

The real-time signal acquisition and processing is handled by a Microcontroller

32



2.3. Design of a Natural-User Interface for Drone Control

Unit (MCU). An IMU, connected to the MCU via Serial Peripheral Interface (SPI),

is included for tracking the torso movements of the pilot. Finally, a Bluetooth Low

Energy (BLE) module, connected as well to the MCU via SPI, is used to send the

commands (i.e., pitch and roll) to an intermediate device that can transmit the

commands to the drone. For instance, a smartphone or tablet can be used for this

purpose [132]. Moreover, this intermediate device is needed to receive the commands

from the glove, which is used to control the remaining DoF that are not controllable

with the proposed wearable sensor node. The prototype of the proposed wearable

body sensor node is showed in Figure 2.10.

IMU MCU BLE RESET

USART USB SWD ON/OFF

Figure 2.10 – Prototype of the proposed wearable drone controller.

In contrast to the solution proposed in [108], where data from eight cameras are

sent to a computer and used to track the motion of the upper body, this solution

requires fewer sensors. Moreover, the computing is done directly in the proposed

wearable node, with low energy intercommunication between sensors and MCU. In

other words, the upper body movements are acquired by the IMUs, transmitted to

the MCU for decoding, and finally, only few commands are transmitted to the drone.
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Micro-Controller Unit

The core element of the proposed sensor node is a STM32L1 MCU from STMi-

croelectronics [166], which has been used in wireless sensors for medical sensing

applications [169]. The STM32L1 is an ultra-low-power platform equipped with

an Arm®Cortex®-M3 32-bit CPU from 32 kHz up to 32 MHz, 384 Kbytes of Flash

memory, 48 Kbytes of RAM, 12 Kbytes of true EEPROM, and 128-byte backup register.

Such computations and storage resources are not all required for the application

presented in this chapter. Less resources would be enough to assure the usage ca-

pabilities required to control a drone. However, to ensure both monitoring and

processing of physiological signals detailed in chapter 4, a microcontroller with

additional resources is required.

Moreover, the STM32L1 includes analog peripherals; such as, three operational am-

plifiers, a 21-channel 12-bit ADC 1 Msps, a 2-channel 12-bit DAC with output buffers,

two ultra-low-power-comparators, which can be used for instance to monitor input

voltage and battery level. Furthermore, the STM32L1 includes 11 timers; namely,

one 32-bit, eight 16-bit, and two watchdog timers; which assure the synchronization

of the application. Finally, the STM32L1 includes a 12 channels DMA controller and

12 peripheral communication interfaces, namely, one Universal Serial Bus (USB)

2.0, five Universal Synchronous and Asynchronous Receiver-Transmitters (USARTs),

three SPIs, two I2Cs, and one SDIO interface. These interfaces, SPIs in particular, are

used to connect additional on-board modules (i.e., sensors, communication, and

storage modules) to the microcontroller.

Inertial and Magnetic Sensors

There are different valid solutions to measure acceleration, angular speed, and

magnetic field with a single System on Chip (SoC). The most relevant solutions are

reported in Table 2.1. All reported IMUs include a 3-axial accelerometer, a 3-axial

gyroscope, and a 3-axial magnetometer, with similar characteristics in terms of

measurement range, sampling frequency, and power supply, but different energy

consumption. In terms of current consumption the new BMX160 sensor from Bosch

Sensortec is definitely the best choice. Unfortunately, such a device was not available

at the moment of the fabrication of the proposed system. The second best option,

and the best option during design time, is the LSM9DS1 [165] from STMicroelectron-

ics. Such a device was chosen because of its limited energy consumption, but also

because of high performance and low cost. Other solutions, such as the modules of

34



2.3. Design of a Natural-User Interface for Drone Control

the MTi-1-T series including on-board sensor fusion (SF) algorithms were evaluated

as well. Although on-board sensor fusion would limit the load on the application pro-

cessor, such a solution was discarded because of the size, the current consumption,

and the cost that are still considerable.

Sensor Manufacturer Current (mA) Voltage (V) Unit Price
Consumption Range (CHF)

BMX160 (New) Bosch Sensortec 1.59 1.7 - 3.6 ∼6.50
LSM9DS1TR STMicroelec. 1.9 1.9 - 3.6 ∼6.00
ICM-20948 InvenSense 3.1 1.7 - 3.6 ∼7.70
MPU-9250 InvenSense 3.7 2.4 - 3.6 Obsolete
BMX055 Bosch Sensortec 5 1.2 - 3.6 ∼6.40
MTi-1-T (+SF) Xsens >15 2.16 - 3.6 >180.00

Table 2.1 – Comparison of 9-axis IMUs with on-chip 16-bit Analog-to-Digital Con-
verters (ADCs), combining a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis
magnetometer.

Communications

BLE connectivity is provided by nRF8001, a single-chip designed for low-power

operation in the peripheral role (current consumption of 12.7 mA for transmission

and 14.6 mA for reception). The module is particularly interesting for low-power

applications due to its reduced current consumption of 2 mA and 0.5 µA in idle state

and sleep mode, respectively. The BLE module is directly connected via SPI to the

STM32, which controls the nRF8001 operating modes using commands defined by

the Application Controller Interface (ACI).

An auxiliary configurable interface, which can be either a master Inter-Integrated

Circuit (I2C) bus or a USART, is included to access external devices, allowing the

devices to gather additional sensor data or to communicate with a PC.

To allow data collection and facilitate data storage, the proposed platform also

mounts a Micro SD Flash Socket, which can support microSD cards with capacities

up to 2 Gbytes. This storage option has been included to avoid data streaming for

applications related to data collection, where sending all sensed data over the radio

to a remote device would be energetically inefficient.

A Serial Wire Debug (SWD) interface is included to communicate with the STM32
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microcontroller located on the platform through the ST-LINK/V2 debugger and

programmer. Alternatively, Device Firmware Upgrade (DFU) utility can be used to

interact with the STM32 system memory bootloader, running from the Flash of the

microcontroller, thus allowing internal memory programming through USB, which

is also used to supply the device and charge the battery.

Power Management

A switch is used to control the power-on sequence of the node. When the node is

powered down, the power regulators are disabled and the board reset is low. The

node can also be reinitialized by pushing the reset button.

Lowering the duty cycle of interaction between the peripherals is a key aspect to

extend battery life. To this aim, the peripherals (e.g., sensors, microSD card, USB

module) are powered off by firmware when not in use. However, this is not feasible

with applications that require high frequency data capture. In this regard, the pro-

posed hardware provides features, such as timers and customized interrupt lines, to

simplify application programming and enhance event-driven applications, which

can be used to improve power management.

Moreover, the STM32L1 microcontroller offers different operational modes; namely,

Standby mode (down to 305 nA), Stop mode (down to 0.475 µA), Low-power run

mode (11 µA), and Run mode (230 µA/MHz); and a wake-up time of 8 µs, which can

assure the low-power usage capabilities of the proposed sensor node.

2.3.4 Wearable Drone Controller: Software Design

The software running on the MCU is divided into four steps, namely, signal ac-

quisition, sensor fusion, body movement decoding, and transmission. The signal

acquisition step aims to acquire the motion of the IMU. The measurements are fused

to estimate the orientation of the sensor, which being located on the torso of the

pilot tracks the movements of the pilot’s trunk. Then, a body movement decoding al-

gorithm is applied to translate the movements into commands for the drone. Finally,

the communication unit treats the commands and sends them to the drone.
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Signal Acquisition

The signals acquired from the IMU are acceleration, angular velocity, and magnetic

field. The sampling frequency is chosen according to [12], where it is reported that

25 Hz is usually adequate for swimming; 50 Hz is often adequate for activities such

as the tennis serve, if the impact of the ball and racket is not the focus of the study;

and 100 Hz is often needed for quantitative analysis of activities as fast as a golf

swing. Assuming a dynamic of the gestures needed to control a drone comparable

with the movements in swimming, I selected a sampling frequency greater than

25 Hz. In particular, considering the options provided by the sensors, I have chosen

a range of ±4 g and sampling frequency at 119 Hz for the accelerometer; a range

of ±500 deg/s and sampling frequency at 119 Hz for the gyroscope; and a range

of ±4 Gauss and sampling frequency at 80 Hz for the magnetometer. Due to the

physical characteristics of the sensors, the choice for a common sampling frequency

was not possible. Therefore, I selected such a configuration to offer a sensor fusion

based on samples that are updated within the worst case delay of only 25 ms, which

is less than the human response time perceived as instantaneous [111].

Sensor Fusion

The orientation of the torso is computed with a gradient descent algorithm [99]

implemented on the MCU. The algorithm is based on the measurements of the

IMU, which are fused to estimate the orientation of the sensor and consequently

also the orientation of the torso of the pilot. In particular, I estimated the lateral

bending angle, the sagittal bending angle, and the rotational angle [5, 195, 196]. The

gradient descent algorithm was selected for its performance and ability to operate at

low sampling rates, which significantly reduces the power consumption [99]. Since

the dynamic of the movements is slow, the gradient descent algorithm runs at a

frequency of 50 Hz, which is a good compromise between performance and power

consumption.

Body Movements Decoding

For the considered case study, where a drone is flying at a constant speed, only roll

and pitch angles are controlled. These commands are computed from the orientation

of the pilot’s trunk, as suggested by the parallel study conducted at TNE and reported

in [108]. The mapping of the trunk’s movements into drone commands are defined
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as follow:

[
Pitch

Roll

]
=

[
0 1 0

1 0 2

]Lateral Bending Angle

Sagittal Bending Angle

Rotational Angle

 (2.1)

Communication Unit

To decrease the energy consumption due to communications [150], I proposed a

simple method that reduces the transmission rate and consequently also the energy

consumption of the system. The pseudo-code of the applied algorithm is reported in

Algorithm 1.

Algorithm 1 Communication

1: procedure TRANSMIT(x[k])
2: Xprev ← x[k −1], . . . ,x[k −N −1]
3: Xcurr ← x[k], . . . ,x[k −N ]
4: if RMS(Xcurr −Xprev) > threshold then
5: y ← mean(Xcurr)
6: Send(y)

Let x[k] be a vector including both Roll[k] and Pitch[k], the commands that have to

be transmitted to the drone at instant k. Given the finite sequence of N +1 previous

commands Xprev defined as follows:

Xprev = x[k −1], . . . ,x[k −N −1] (2.2)

and the sequence Xcurr including the current command x[k] and the N = 9 previous

ones:

Xcurr = x[k], . . . ,x[k −N ] (2.3)

I calculated the Root Mean Square (RMS) of their difference as follows:

RMS(Xcurr −Xprev) =
√∣∣Xcurr −Xprev

∣∣2 (2.4)

Finally, only if RMS(Xcurr −Xprev) is greater than a certain threshold, the mean value

of the sequence Xcurr is transmitted to the drone. Otherwise, nothing is sent, in

other words, commands generated from small pilot’s adjustments that are below the
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threshold are not transmitted. The moving average approach, that is, the mean value

of the sequence Xcurr, is applied to remove high frequency noise [108]. Moreover, it

attenuates any possible sudden correction of the trajectory of the drone that may

result from an accumulation of not transmitted commands.

The threshold is chosen based on a trade-off between communication reduction and

control accuracy. A high threshold will drastically reduce the transmission rate and

consequently deteriorate the control accuracy. On the other hand, a small threshold

will not reduce the transmission rate and transmit the entire sequence of commands

without affecting the control accuracy. To quantify the control accuracy, I used the

Root Mean Square Error (RMSE) between the transmitted signal and y , where y for

this purpose is the mean value of the sequence Xcurr computed at every iteration

(i.e., before the if case of line 4 in Algorithm 1). The transmission reduction factor is

calculated as the ratio between transmitted commands and the commands received

by the Algorithm 1. The value of this threshold is reported in subsection 2.5.4 and

obtained from experimental data collected as described in subsection 2.4.1.

2.4 Experimental Validation

The proposed wearable system was validated with three main experiments, which

were approved by the École Polytechnique Fédérale de Lausanne Brain Mind Institute

Ethics Committee for Human Behavioral Research and the Ethics Committee Geneva.

In the first two experiments, a First-Person View (FPV) of the flight was shown

through a Head-Mounted Display (HMD).

The first Virtual Reality (VR) based experiment was organized to collect data aimed to

design the control strategy. Moreover, we collected data to evaluate different postures

that a user could assume while controlling a drone (i.e., lying, sitting, and standing).

The second experiment, again in a virtual environment, aimed at comparing the

performance of the proposed system against an eight-camera motion capture system

from Vicon [192]. Data collected from this experiment was used to fix the threshold

introduced in Equation 2.3.4. Finally, the third experiment was designed to validate

the proposed sensor node while controlling a real drone.

For the first experiment, we recruited 19 young healthy participants, 17 of which com-

pleted the experiment (23.7 ± 1.1 years old, one woman). The two participants who

decided to interrupt the experiment suffered from VR sickness and their data were

excluded from the analyses. Unfortunately, we were not able to recruit a gender bal-
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anced sample of participants, as the contacted women did not manifest a particular

interest in this study. However, considering that in 2018, only 9.9% of the firefighter

in Switzerland were women [56], around 5% in England [69], and 7% in United

States [33], the selected sample of participants is quite representative. In general,

participants were not used to VR experiences. Participants reported considerable

experience with videogames (i.e., 5.9 ± 1.1), rated from a scale between 1 (none) and

7 (regular use). However, the abilities acquired while playing videogames cannot

be translated into the gestural interface used in this study, as this type of control

interface is different than traditional keyboards or joysticks. Moreover, participants’

experience with VR was rated only 1.4 ± 1 out of 7. Therefore, participants’ experi-

ences with videogames should not have an impact on the use of the gesture-based

control strategy under evaluation.

For the second experiment, I recorded data from three new participants (30.7 ± 6.4

years old), one woman and two men, who volunteered to participate in the study.

The same three participants, who showed to have good skills in flying a drone in

the VR simulator, were recruited for the third experiment as well. It is important to

remind that in both the second and the third experiment, under evaluation is the

implementation only, and not the control strategy as it was for the first experiment.

Therefore, the fact that volunteers have particular skills is absolutely not relevant.

The reason for this biased choice was simply to avoid as much as possible any risk of

crashing the drone. All participants provided informed consent and volunteered to

participate in the study. The details about the experiments are provided next.

2.4.1 Open-loop Experiment with Virtual Reality

To collect data for designing the control strategy and determining the recommended

posture, we proceeded as sketched in Figure 2.11. Both a drone simulator for PC and

an auto-pilot were developed at LIS, see [108] for details. The auto-pilot provided a

sequence of maneuvers (Figure 2.11 (2)), which forced the drone simulator to follow

a predefined flying trajectory (Figure 2.11 (3)). Then, the participants were asked to

recognize (Figure 2.11 (a)) and follow the trajectory of the simulated drone by apply-

ing self-selected and flight-like upper-body movements (Figure 2.11 (b)). Finally, to

design the control strategy and to evaluate the postures that a user could assume

while controlling a drone (i.e., lying, sitting, and standing), we collected data from

both participants and the simulator. From participants, we recorded upper-body

movements, physiological signals (Figure 2.11 (1)), and position. Participants also

filled a questionnaire aimed to evaluate different aspects of the experiment, such
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as enjoyment, tiredness, audio-video quality, clarity of the provided instructions,

and any lack of training time. More important, they evaluated the difficulty of per-

forming the proposed tasks and ranked the different positions considering comfort,

intuitiveness, and level of immersion. From the simulator, we stored the applied

sequence of maneuvers. Being this work a collaboration between different labs, I

reported in section 2.5.1, the results that I obtained from the physiological signals.

For more details, please refer to [108, 109].

Figure 2.11 – Graphical representation of the open-loop approach applied for the
design of the control strategy.

Experimental setup

As shown in Figure 2.12, research participants controlled the FPV flight simulator

while lying (on the left), sitting (in the center), and standing (on the right). They

wore an HMD (Oculus Rift, Development Kit 2, Oculus VR, LLC), different reflective

markers, and sensors.

The simulator was created using FlightGear with the YASim dynamic models and was

running on a PC. Low-level controls, such as propeller thrust and flap inclination

were regulated through PID controllers implemented in a C++ software running in

parallel. This software also generated a randomized maneuver list before each flight

sequence. For synchronizing the beginning of each maneuver, voltage pulses were

sent to the motion capture system through an Arduino board.
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Figure 2.12 – Setup of the open-loop experiment. A participant, wearing a Head-
Mounted Display (HMD), different reflective markers, and sensors; and performing
turning maneuvers while lying (on the left), sitting (in the center), and standing (on
the right). In the background, a PC running the drone simulator and the acquisition
routines.

Signal acquisition

To define the control strategy as well as the number and the position of the sensors

that will be required to drive the drone, both muscular activity (32 muscles) and

kinematics of the upper body were monitored [108]. For the muscular activity, we

used two wireless transmission systems (Desktop DTS, Noraxon Inc., USA) and

superficial Ag-AgCl electrodes (Kendall H124SG, EMG electrodes, 30x24 mm) located

as shown in Figure 2.13 (green rectangles). The kinematic activity was measured

with Vicon, an optical camera system for motion capture.

To evaluate the stress level that could be related to uncomfortable postures, I mea-

sured both ECG and EDA [183], using INYU, a wearable device from SmartCar-

dia [169]. ECG, in particular lead II, was acquired from the thorax (red ellipses in

Figure 2.13), while EDA was measured on the shoulder (blue circles in Figure 2.13).

EDA is typically measured from fingers, but as we wanted to have sensors that could

be integrated into a jacket, we opted for this unusual location, which has been

demonstrated to be a valid alternative [191]. Both measurements were acquired with

a sampling frequency of 250 Hz.

As an assessment, a questionnaire was used to collect a self-evaluation of both the

applied self-selected control strategy (i.e., the flight-like upper-body movements)

and the comfort level of the proposed postures (i.e., lying, sitting, and standing).
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Figure 2.13 – Sensor placement for the open-loop experiment. Gray lines represent
the upper-body segments, yellow circles the kinematic markers, green rectangles the
Electromyogram (EMG) sensors, red ellipses the Electrocardiogram (ECG) electrodes,
and blue circles indicate the Electrodermal Activity (EDA) electrodes.

Study protocol

The beginning of the experiment is characterized by a setup phase, which includes

a period for providing the necessary explanations to the participants and the time

for the sensor placement. Then, the participants were shown an automatically

controlled flight sequence in FPV through an HMD, and were instructed to follow

the movements of the simulated drone using self-selected and flight-like upper-

body movements. The proposed sequence consisted of ten alternations between

6-seconds constant forward (FW) motions (speed 12 m/s) and 7-seconds directional

maneuvers, such as Right banked turn, Left banked turn, Upward pitch, and Down-

ward pitch, presented in a randomized order. To assist the participant in recognizing

the maneuvers they have to perform, each new maneuver was notified by a text

indication one second prior to its start. After each sequence, a resting period is

proposed to recover and to fill a questionnaire (Q). Each posture-related phase was

repeated twice, one for each drone (i.e., quadcopter and fixed-wing drone). A graph-

ical representation of the experimental protocol is shown in Figure 2.14. The use

of two different types of drones aimed to verify if the control strategy was suitable

for both types of drones. However, this analysis was performed in a parallel project

(see [108, 109] for more details).
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Q

Figure 2.14 – Protocol of the open-loop experiment. The experiment starts with a
setup phase including a period for explanations and sensor placement. Then, as a
flying phase, we consider all combinations between drone (i.e., quadcopter and fixed-
wing drone) and posture (i.e., lying, sitting, and standing). For each combination,
presented in a randomized order, we propose ten alternations of constant forward
(FW) motions and maneuvers, such as, Right banked turn, Left banked turn, Upward
pitch, and Downward pitch, presented in a randomized order as well. After each
sequence, a resting period is proposed to recover and to fill a questionnaire (Q).

2.4.2 Closed-loop Experiment with Virtual Reality

The closed-loop experiment principally aimed to validate the control strategy pro-

posed in Equation 2.1 and developed based on the open-loop experiment (subsec-

tion 2.4.1). A second objective, but not less important, was to compare the perfor-

mance in a virtual environment of the wearable system against the eight-camera

motion capture system from Vicon. For this purpose, we used the same VR based

flight simulator used in the open-loop experiment, but focusing on a simulated fixed-

wing drone, flying with a constant speed of 12 m/s. Figure 2.15 shows a graphical

representation of the setup used for this experiment.

During the experiment, participants were asked to follow a flight trajectory charac-

terized by cloud-shaped waypoints. To this aim, they had to correct (Figure 2.15 (a))

the real flying trajectory (Figure 2.15 (3)) and follow the waypoints by applying (Fig-

ure 2.15 (b)) trunk movements. The upper-body kinematics activities (Figure 2.15 (1))

of the participants were acquired with both the proposed wearable system and the

camera motion capture system. The proposed wearable system computed both roll

and pitch commands (Figure 2.15 (2a)) as described in subsection 2.3.4 and trans-

mitted without the optimization described in Equation 2.3.4 to a PC for comparison.

Although the output commands of both systems were recorded for comparison, only

the commands (Figure 2.15 (2b§)) based on the camera motion capture system were
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Figure 2.15 – Graphical representation of the control loop applied to compare the
proposed wearable drone controller with a controller based on a camera motion
capture system.

streamed to the control routine for controlling the simulator in soft real-time. Finally,

the comparison of the outcomes of both gesture-based control systems was done

offline on a PC.

Experimental setup

Participants flew the simulator with the movement of their torso. To this aim, they

wore an HMD (Oculus Rift, Development Kit 2, Oculus VR, LLC), different reflective

markers, and sensors, as shown on the left side of Figure 2.16. A view of the VR

environment seen by the participants through the HMD is shown on the right side of

the figure. To provide visual feedback of the movements performed by the volunteers,

an avatar was added to the scene instead of the drone. Such an avatar was also used

at the beginning of the experiment to instruct the participants about the control

strategy to adopt.

Acquired signals

The proposed wearable sensor node was used to track the kinematics of the torso.

As a reference, the camera motion capture system from Vicon was used to acquire

the kinematics from the raw marker positions, which were imported into a custom

Matlab routine using Vicon’s DataStream SDK. The routine extracted the angular

excursions of the torso, computed the corresponding pitch and roll angles for the
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Figure 2.16 – Setup for drone control systems comparison in a virtual environment.
On the left a participant flying in Virtual Reality (VR). On the right, a scene displayed
in the Head-Mounted Display (HMD) worn by the participants.

virtual drone as described in Eq. 2.1, and transmitted the latter values to the simulator

after applying a moving average filter to prevent instabilities.

Figure 2.17 – Sensor placement for the closed-loop experiment. Gray lines represent
the upper-body segments, yellow circles the kinematic markers, and red circles
indicate the wearable sensor nodes.

Study protocol

After a brief explanation about the goal of the study and the protocol of the experi-

ment, participants were equipped with the sensors and HMD. Subsequently, they

were first shown a one-minute demonstration sequence during which the simulated
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aircraft was autonomously flying through a predefined trajectory, while an avatar

displayed the control movements corresponding to the motion of the participant

and consequently of the aircraft as well. The participants were then asked to fly

along a randomly generated trajectory characterized by forty-two cloud-shaped

waypoints (diameter 0.6 m) and distributed every 40 m. To follow the waypoints,

the participants had to alternate five distinct manoeuvers (i.e., constant forward

motion, right-banked turn, left-banked turn, upward pitch, and downward pitch).

The participants repeated this flying sequence six times. A graphical representation

of the experimental protocol is shown in Figure 2.18.
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Flying phase (6x)
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Q

Figure 2.18 – Protocol of the closed-loop experiment. The experiment starts with
a setup phase including a period for explanations, sensor placement, and a demo
used to instruct the participants. Then, we propose six flying sequences consisting
of five alternations of constant forward (FW) motions and maneuvers, such as, Right
banked turn, Left banked turn, Upward pitch, and Downward pitch, presented in a
randomized order. After each sequence, a resting period is proposed to recover and
to fill a questionnaire (Q).

2.4.3 Experiment with a real drone

The third and last experiment presented in this chapter aimed to test the proposed

wearable system for the teleoperation of a real drone (Figure 2.19). Moreover, I tested

Algorithm 1 and applied it to reduce the communication rate, consequently, also the

energy consumption.

During this experiment, participants controlled a real drone with upper-body ges-

tures (Figure 2.19 (1b)), which were translated into low-level commands (Figure 2.19 (2b))

from the proposed wearable drone controller. For safety reasons, the proposed wear-

able drone controller was interfaced with the drone thought a safety interface. Such

a safety interface was there to prevent crashes of the drone. To this aim, an operator
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constantly supervised the trajectory of the drone (Figure 2.19 (3)) and was ready to

take control and fly the drone with a traditional controller. In other words, with the

safety interface, the operator selected which commands had to be forwarded to the

drone (Figure 2.19 (2)); namely, those coming from the wearable drone controller

(Figure 2.19 (2b)), thus, from the participant; or those coming from the traditional

controller (Figure 2.19 (2a)), thus, the commands provided by the operator (Fig-

ure 2.19 (1a)).

Figure 2.19 – Graphical representation of the control loop applied to fly a real drone.

Experimental setup

For this experiment, the proposed wearable system was integrated in a soft exoskele-

ton called FlyJacket [153], as shown in Fig. 2.20. Participants wore the FlyJacket

design with arm supports and a smart glove capable of detecting predefined finger

gestures through capacitive sensors placed on each finger and the palm. The com-

mands for the drone were computed with the proposed wearable system, sent to

the safety interface (implemented on a PC), and further transmitted to the drone as

detailed in [32].
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Figure 2.20 – Setup used for flying a real drone with FlyJacket.

The gloves were used to set points of interest by pressing the middle, or the ring finger,

against the thumb depending on the desired nature of the point to set. According

to the regulation of the Swiss Firefighters, different colors can be used to describe

the nature of the point of interest; that is, yellow to indicate rescue situations, red for

fire, blue for both water sources and damages, and green for escape ways. As shown

in Fig. 2.21, the points of interest were displayed on a map, which can be used to

facilitate the planning of a SAR mission. The glove was also used to send high-level

commands to the drone; namely, automatic takeoff, landing, and return home.

Figure 2.21 – Map showing the covered flight trajectory of the real drone and the
identified points of interest (i.e., red and green circles).

The flight was performed with a Bebop 2, a quadcopter from Parrot [131], mimick-
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ing the flight dynamic of a fixed-wing drone. The drone streamed real-time video

feedback of the fly to the goggles that participants were wearing. The trajectory of

the drone was displayed on a computer, as shown in Fig. 2.21. Red and green dots

are points of interest that a participant set during the flight. The point of interest

also appeared in the center of the field of view of the drone (white cross in Fig. 2.22).

The numbers above the recorded points indicate the estimated distance between

the point and the drone in meters. All points of interest can be directly added and

removed during the flight from both the map and the field of view displayed on the

HMD.

Figure 2.22 – View from the camera of the drone. The same view is shown to the pilot
through the Head-Mounted Display (HMD).

Study protocol

The experimental scenario was designed to reproduce a simulated and simplified

SAR mission. In this context, participants were asked to take off and follow a figure-

eight flight trajectory. Moreover, we asked to randomly geotag some points of interest,

which could represent, for instance, injured people or dangerous areas.

2.5 Experimental Results

The three main results reported in this section are the following. First, I reported the

analysis of the postures assumed by the participants while interacting with the drone

simulator. Second, I reported a comparison between Flyjacket, the proposed new-
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generation controller based on IMUs integrated in an upper-body soft exoskeleton,

and an optical camera system for motion capture from Vicon. Finally, I evaluated the

flight of a real drone controlled with the FlyJacket design, providing an estimation

of the reduction of the energy consumption achieved with the method applied for

optimizing the communication rate.

2.5.1 Body Posture Evaluation

A subjective evaluation provided by the research participants revealed that the body

posture (i.e., sitting, standing or lying face down) does not affect the control strategy,

or the subjective levels of comfort and immersion (Figure 2.23) [108, 109].

Figure 2.23 – Subjective evaluation of the control strategy (Figure from [109]). In
particular, the impact of both the participant’s position and the flight style. Fig. A
reports the sensation of flying on a 7-point scale (0: strongly disagree, 7: strongly
agree). Fig. B shows the most intuitive body postures with the fixed-wing flight style.
Fig. C shows the most intuitive body postures with the quadcopter flight style.

Although there is a little preference for the lying and the sitting positions to respec-

tively control a fixed-wing drone and a quadcopter, there is no statistically significant

difference revealing that the aircraft (simulated fixed-wing drone or quadcopter), or

the participant’s position (sitting, standing or lying face down) is affecting the control

strategy or the perceived levels of comfort and immersion [108, 109].

This result is confirmed by the physiological response of the participants shown in

Figure 2.24. The only significant difference is observed in the RR-intervals extracted

from ECG, which can be attributed to the physical effort made by the participants.
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In fact, it is well known that standing is physically more demanding than sitting.

Therefore, the RR-interval is shorter while standing than sitting. Following the

same line of argument, while lying the RR-interval should be higher than sitting and

standing. However, to control a drone while lying, it implies to lift the torso from time

to time, which is an activity that can be physically very demanding. Consequently,

while lying, we noticed a short RR-interval, which is significantly shorter (p<0.001)

than RR-intervals measured while sitting and standing (see Figure 2.24).
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Figure 2.24 – Physiological response of the research participants. The error bars
show the standard deviation, the three asterisks indicate a significant difference with
p<0.001, and n.s. means not significant.

Finally, to facilitate the translation towards the control of a real drone, we selected the

sitting position, which requires only light equipment, yet is safer for the operator than

standing upright. Moreover, as physical activities might affect cognitive measures,

by minimizing the physical activity, we can reduce possible incertitude related to the

cognitive workload monitoring.

Participants also reported a preference for a fixed-wing drone rather than a quad-

copter. However, the young research participants (mostly students) mainly ignore the

real needs of search and rescue missions. Therefore, this results should be considered

with caution and as a general indication only.
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2.5.2 FlyJacket performance vs. Vicon

As an evaluation of FlyJacket’s performance, Figure 2.25 shows the absolute values

of the difference between the angles acquired with FlyJacket and those measured

with Vicon. The statistical relationship, or association, between the two systems, was

evaluated with Pearson’s correlation coefficients, which are 0.86, 0.96, and 0.90, for

Lateral Bending Angle, Sagittal Bending Angle, and Rotational Angle, respectively.

Moreover, I reported the RMSE, the RMS of the difference between the angles ac-

quired with FlyJacket and those acquired with Vicon. The values are: 3.81, 2.24, and

6.50 degrees, for Lateral Bending Angle, Sagittal Bending Angle, and Rotational Angle,

respectively.
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Figure 2.25 – FlyJacket vs. Vicon.

The difference between the systems comes from different aspects. An error is intro-

duced by the implemented sensor-fusion algorithm, which can cause an RMSE up

to 7° at 10 Hz [99]. Moreover, movement artifacts may also contribute to increase

this error. To have a reliable reference, the upper-body trunk orientation was mea-

sured with adhesive reflective markers attached to both the sternum and the spinal

column [108]. Therefore, neglecting the tiny skin layer that covers the bones in those

locations, we can say that the reference was basically at the skeleton level of the

participant. Instead, the measurements acquired with the proposed wearable sensor

node were more on the surface level, as the node was attached to a belt and fixed

around the chest of the participants. With such a light FlyJacket design, we noticed
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that some movements, for instance of the arms, slightly affected the orientation of

the node.

A parallel study showed that both intuitiveness and performance were more consis-

tent when using the proposed system than when performing the same task with a

traditional controller [153]. Therefore, we can conclude that although such a differ-

ence may be relevant in other fields, such as in rehabilitation, it does not seem to

play a crucial role while controlling a drone. Moreover, this difference does not seem

to be perceived by the user, but this conclusion has to be taken with a grain of salt, as

it comes from informal observations made during public events and demos.

2.5.3 FlyJacket used to fly a real drone

The FlyJacket design has been tested for the teleoperation of a real drone. During

this test, the supervisor took control of the drone only a few times during the training

but let the user fly through the figure-eight trajectory while performing the test.

Figure 2.26 shows the difference between the FlyJacket commands and the corre-

sponding response of the drone orientation for both pitch and roll. The Pearson’s
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Figure 2.26 – Teleoperation of a real drone. Difference between the FlyJacket com-
mands and the corresponding response of the drone orientation.

correlation coefficient between the commands provided by FlyJacket and the drone

attitude is greater than 0.88. In particular, 0.93, and 0.88, for pitch and roll angles,
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respectively. The RMS of the difference between the angles computed with FlyJacket

and those assumed by the drone are 2.47 and 1.85 degrees, for pitch and roll angles,

respectively. Such a difference can result from the method proposed for optimizing

the communication, but it can also come from external disturbances such as wind.

Indeed, wind can easily affect the orientation of the drone, which can cause part of

the difference reported in Figure 2.26. Other aspects to consider are the dynamic of

the drone and its onboard control-loop, which tries to maintain the stability of the

drone and to follow the given reference. Because of its dynamics, the drone cannot

instantaneously follow the desired trajectory. Therefore, we can expect to have a

minimal transition time, in which both the desired and the assumed orientations do

not necessarily match.

These results show that the drone can follow the commands provided by the pilot

while using FlyJacket. Moreover, during the experiment, all participants were able to

follow the figure-eight trajectory as requested without any particular problem and

without crashing the drone. Therefore, we can conclude that the FlyJacket design is

capable of controlling a simulator (based on a formal evaluation with 17 volunteers

presented in section 2.4.2, but also based on our informal observations collected

during various demonstrations, such as, NCCR-Robotics annual retreats and industry

days, EPFL open days, etc.). Moreover, three short experiments of 10 minutes each

(described in section 2.4.3) demonstrated the feasibility of controlling a real drone.

2.5.4 Power Saving by Reducing the Communication Rate

The method applied to reduce the communication rate is analysed in this subsection.

To this aim, Figure 2.27 shows the trade-off between the transmission (Tx) rate (or

transmission reduction) and the RMSE; that is, the difference between the resampled

version of the transmitted (sparse) sequence of commands and the original sequence.

This RMSE is used to quantify the quality of the transmitted sequence and it can

also be seen as some kind of quantization error that increases or decreases as a

function of the selected threshold. As explained in Section 2.3.4, this threshold is the

maximum RMS difference between current and previous commands, and it defines

when to send or not a command. From Figure 2.27 we can see that a high threshold

yields a reduction of the communication rate, but on the other hand, this reduction

is paid for by a deterioration of the quality of the transmitted signal.

The data used to plot Figure 2.27 was obtained from the recordings of a flight without

applying any threshold. Then, I computed both RMSE and Tx Rate that would result
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by selecting different thresholds. Finally, this plot gives an estimation of the effects

on the quality of the transmitted sequence and the possible transmission reduction

that can derive.

The choice of this threshold depends on the limitations imposed by the application,

which defines how much the communication can be reduced and how big is the

error that can be introduced. For this particular experiment, I arbitrarily selected a

threshold equal to 1. This choice resulted to be a good compromise, as the communi-

cation was reduced by 50% and the RMSE was less than 1°, which was not perceived

by the participants. However, it would be interesting to push this threshold up to

the limit when a human starts to perceive the error introduced. Thus, to finalize

the optimization of this communication reduction, new experiments should be

considered.
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Figure 2.27 – Evaluation of both the transmission (Tx) rate and the introduced Root
Mean Square Error (RMSE) as a function of different thresholds.

To quantify the communication reduction in terms of current consumption, we

can refer to the measurements reported in Table 2.2. This table shows the average

values of both current consumption (i ) and time (t) of the proposed sensor node

being in a particular state, namely, processing, sending, and sleeping. By choosing a

threshold equal to 1, the transmission rate is reduced by 50% and the total current

consumption of the node is reduced from 19.36 mA to 18.52 mA. Consequently, this
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choice yields a 4.34% reduction of the energy consumption of the proposed wearable

sensor node. Moreover, by turning off the BLE module while not in use, the average

current consumption can be further reduced by 1.47 mA, which results in a total

reduction of the energy consumption of 11.9%. Of course, as the minimal connection

interval of the BLE module is 1.25 ms, the BLE module can be turned off even if the

Algorithm 1 is not applied, but in this case the energy consumption is only reduced

by 7.4%.

Tx Processing Sending Sleeping Total
Rate iP (mA) tP (ms) iT x (mA) tT x (ms) iS (mA) tS (ms) iTot (mA)
100% 25.7 1.68 38.4 4 17.4 44.3 19.36
50% 25.7 1.74 38.4 2 17.4 46.3 18.52
0% 25.7 1.74 - - 17.4 48.3 17.68

Table 2.2 – Average current consumption (i ) and run time (t ) of the proposed sensor
node; while being in a particular state, namely, processing, sending, and sleeping;
and while sending the commands with an average transmission (Tx) rate of 100, 50,
and 0%.

The 50% communication reduction is a result of the particular case of a pilot flying

through a figure-eight trajectory, which could be applied in a SAR mission. How-

ever, different reduction factors could be obtained during a straight or aerobatic

flights, where the reduction could be respectively more or less important. Moreover,

these results are limited to the analysis of the proposed wearable sensor node while

acquiring, processing, and sending data via BLE to a third device (e.g., PC, tablet,

smartphone, or customized embedded system), which is constantly located in a

range of one or two meters. Therefore, the variation of the energy consumption due

to different ranges of operation is not considered in this work, as well as the energy

consumption of the third device used to forward the commands to the drone.

2.6 Conclusion

In this chapter, I have proposed the design of a wearable embedded system for

drone teleoperation in SAR missions. The control strategy is based on upper-body

movements derived from a spontaneous representation of the interaction. Therefore,

as demonstrated in [108, 153], the proposed wearable and intuitive interface can

reduce the training time required to reach proficiency and improve the reliability

of teleoperated activities. The proposed wearable embedded system has been de-

veloped and integrated into a soft exoskeleton, called FlyJacket. The system has
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been interfaced and demonstrated for the teleoperation of both a simulated and

a real drone, during experiments and events, such as Cybathlon and EPFL Open

Days. The use of FlyJacket leaves both arms and hands-free allowing the execution

of complementary tasks, such as geotagging points of interests or sending high-level

commands to the drone.

The accuracy of the motion capture has been compared with an optical camera

system from Vicon, which is the leading developer of motion capture products

and services for the life sciences, entertainment, virtual reality, and engineering

industries. The results showed that the proposed wearable solution can track the

movements required to drive a drone. Of course, the tracking accuracy can be

improved, but still, a parallel study showed that participants’ performance was

more consistent when using FlyJacket than when performing the same task with a

traditional controller [153].

Moreover, I proposed a method that reduces the communication rate and conse-

quently also the energy consumption of the system. Compared to a typical system

that is continuously streaming the commands, the proposed approach can reduce

the transmission volume of the system up to 50%, which does not seem to affect

the perception of the user. Such a drastic reduction of the transmission volume

yields a reduction of the energy consumption, which is up to 11.9% for the proposed

wearable drone controller, called FlyJacket. Being this conclusion drawn from only 30

minutes of fly, through a figure-eight trajectory, and based on a BLE communication

unit, further analysis is needed to provide a more formal evaluation of the final gain

and when the reduction of communication starts to be perceived by the user. Of

course, the energy-saving really depends on the flying trajectory, a straight fly allows

a higher energy saving, while an acrobatic flight will not allow saving much energy.

Indeed, the energy-saving will be amplified while using a proper communication

protocol, where the energy required to send commands to a drone is typically higher

than the one required from BLE to send data to a nearby computer. Therefore, the

results are a bit conservative, but they demonstrate that it is possible to save energy.

Another way to save energy would be to make sleep mode more efficient. As reported

in table 2.2, the system is using 17.4 mA while doing nothing, and this is too much.

One of the reasons for this high current consumption is that in some prototypes,

I found resistors erroneously placed instead of capacitors, and this causes an un-

desired increase in the current consumption. This erroneous placement has been

encountered a second time, where one prototype mounted the MCU rotated by 90

58



2.6. Conclusion

degrees. Although I carefully checked afterward, there could be a little component

that still causes an undesired current consumption. Other sources of elevated current

consumption are the linear regulators used for providing the different power sup-

plies as well as the passive filters added to isolate the analogical part from the digital.

Therefore, a redesign of these circuits could easily reduce energy consumption.

Although it has been shown that the proposed system can be used for the teleopera-

tion of a real drone, this solution presents a limitation. The proposed wearable drone

controller only controls two of the six DoF of a drone (i.e., roll and pitch). Other DoF,

such as longitudinal (forward and backward) and vertical (upward and downward)

movements, were controlled with a glove. Lateral (right and left) movements, as well

as the rotation among the vertical axis (yaw movement), were not addressed in this

work. Therefore, a further investigation, considering the use of additional sensors to

track the movements of hands, arms, and head, is needed to include the mapping of

the missing DoF. Such a study will provide a comfortable and complete solution that

could be used in SAR missions with drones, and its use could be easily extended to

different fields, machines, and populations, including leisure purposes.
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3 Cognitive Workload Detection
Method

3.1 Introduction

In search and rescue missions, rescuers have to simultaneously focus on multiple

tasks. More precisely, on top of the already challenging task of flying a drone, rescuers

have to recognize the situation and quickly take proper decisions to rescue victims

that are frequently in danger of life. Moreover, rescuers have to deal with both scarcity

of human resources and time pressure. Therefore, rescuers could potentially have to

control multiple drones to simultaneously execute complementary or parallel tasks,

or to cover big areas in less time.

The problem is that any multi-tasking operation is cognitively very demanding and

high levels of cognitive workload can negatively affect human performance [103, 115,

175]. Consequently, operating under high cognitive workload levels can severely

compromise the execution of the mission and lead to failure with catastrophic

outcomes [194]. Therefore, to ensure an efficient execution of the missions, there is a

need for an online tracking system that provides the necessary information about the

cognitive workload of each of the rescuers (i.e., subject-specific cognitive workload

monitoring). In other words, by detecting the cognitive overload of each rescuer in a

subject-specific manner, actions (e.g., replacing the rescuer that is overloaded) could

be taken to better distribute human resources and ensure the success of the mission.

To assess cognitive workload, researchers typically use surveys [75,148], performance

metrics to evaluate the execution of the task [38, 100], and information from physio-

logical signals [23]. However, neither surveys nor performance metrics are suitable in

search and rescue missions. Surveys only provide subjective and sporadic measure-
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ments, and are not always reliable [2]. Moreover, rescuers cannot stop their mission

to fill a questionnaire. Also, performance metrics have to be defined in advance, but

since every rescue mission is unique, reliable performance metrics are difficult to

set up. On the other hand, physiological signals can be acquired in a noninvasive

way without disturbing the work of the rescuers. Therefore, the use of physiological

signals seems to be the most promising solution to assess continuous monitoring of

cognitive workload [23, 77, 146].

Several studies combine physiological signals with different machine learning algo-

rithms for cognitive workload monitoring in different fields [21, 77]. However, to the

best of my knowledge, I am the first to address the cognitive workload monitoring of

pilots involved in search and rescue missions with drones.

Contributions of this Chapter

Non-invasive online cognitive workload monitoring from physiological signals in

search and rescue missions with drones is the focus of the work in this chapter, which

proposes the following contributions:

• To induce different levels of cognitive workload related to search and rescue

missions, I modified a virtual-reality based drone simulator to include parallel

tasks, such as objects recognition. The simulator was used for the acquisition

of different physiological signals acquired from 34 participants involved in a

cognitively demanding simulated, but immersive Search and Rescue (SAR)

mission, 24 using a traditional controller and 10 using the proposed wearable

controller, called FlyJacket.

• To characterize the physiological responses of cognitive workload, I performed

an exhaustive investigation of relevant features extracted from physiological

signals and I selected the most representative ones.

• To reduce both inter-subject and inter-day variability, I explored different

feature normalization techniques showing that a normalization that considers

both subject and day improves the classification results.

• To further reduce the inter-subject variability, I provided a new learning method

based on Support Vector Machines (SVMs) suitable for a subject-specific op-

timization. This SVM-based method uses two regularization terms, one for
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learning the general behaviour, and another one for tuning the model to fit the

characteristics of a particular data subset.

• Finally, I proved the ability of my method to detect low and high levels of

cognitive workload with both traditional controllers and new advanced con-

trollers, such as the new FlyJacket design, achieving an accuracy of 87.3% and

91.2%, respectively. These results are obtained from a test set acquired from 34

subjects while flying a drone simulator and mapping a graphic representation

of a damaged situation. My results are better than the latest state-of-the-art

studies.

Publications

This work yielded the following publications:

• F. Dell’Agnola, P.-K. Jao, A. Arza, R. Chavarriaga, J. d. R. Millán, D. Floreano,

and D. Atienza. Machine Learning Based Monitoring of Cognitive Workload

in Rescue Missions with Drones. IEEE Transaction on Affective Computing, In

preparation.

• G. Masinelli, A. Arza, F. Dell’Agnola, and D. Atienza. SPARE, SPectral peAk

REcovery: full PPG pulsewave reconstruction. IEEE Journal of Biomedical

and Health Informatics, In preparation.

• P.-K. Jao, R. Chavarriaga, F. Dell’Agnola, A. Arza, D. Atienza, and J. d. R. Millán.

EEG Correlates of Difficulty Levels in Dynamical Transitions of Simulated

Flying and Mapping Tasks. IEEE Transactions on Human-Machine Systems,

Accepted on October 2020.

• F. Dell’Agnola, N. Momeni, A. Arza, and D. Atienza. Cognitive workload mon-

itoring in virtual reality based rescue missions with drones. 22nd Interna-

tional Conference on Human-Computer Interaction (HCII), Copenhagen, Den-

mark, 2020.

• N. Momeni, F. Dell’Agnola, A. Arza, and D. Atienza. Real-Time Cognitive

Workload Monitoring Based on Machine Learning Using Physiological Sig-

nals in Rescue Missions. 41st International Engineering in Medicine and Biol-

ogy Conference (EMBC), Berlin, Germany, 2019.
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• F. Dell’Agnola, L. Cammoun, and D. Atienza. Physiological Characterization

of Need for Assistance in Rescue Missions with Drones. IEEE International

Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2018.

Chapter Outline

The rest of the chapter is organized as follows. Section 3.2 gives an overview of the

related work in the field of cognitive workload monitoring from physiological signals.

Section 3.3 describes my design approach. Section 3.4 details the filtering stage used

to remove the noise from the signals. Section 3.5 describes the feature selection

method applied for the characterization of cognitive workload from physiological

signals. Section 3.6 introduces a classification method suitable for embedded sys-

tems. Section 3.7 describes the setup of the experiment and Section 3.8 reports my

results. Finally, Section 3.9 presents the main conclusions of this chapter.

3.2 Cognitive Workload Monitoring: State of the Art

Cognitive workload characterization and estimation have been addressed by a large

number of studies in different areas, which aim to characterize either the perfor-

mance or the distress of a person involved in a particular task or situation [45,86,146].

In this section, I reviewed the state-of-the-art studies that apply machine learn-

ing techniques to detect cognitive workload induced by high cognitive tasks. In

particular, I analyzed in detail the works that use unobtrusively measured phys-

iological signals. Although Electroencephalogram (EEG) is one of the most used

signals [15, 146], it is not considered in my analysis because of the intrusiveness of

the electrodes in real-life applications [110].

Table 3.1 summarizes the most recent and significant studies. This table includes the

performed task (used to induce different levels of cognitive workload), the measured

physiological signals, the type of signal segmentation (i.e., window length and over-

lap), the applied machine learning methods, the targeted classes, and the results of

the classification (i.e., Accuracy, Sensitivity, and Specificity).
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My analysis identified, for most of the studies presented in the literature, the follow-

ing common methodological steps: signal acquisition and preprocessing (filtering

and segmentation), feature extraction, feature normalization, dimension reduction

or feature selection, and classification or regression. However, although the method-

ology is well established, discrepancies are found in different steps. Hence, in the

following, I reviewed these discrepancies.

First, significant differences have been observed on the physiological measures,

which are Electrodermal Activity (EDA) [30, 62, 114, 161], Electrocardiogram (ECG)

[30, 62, 113, 114, 161, 187], Photoplethysmogram (PPG) [113, 114], Respiratory Activity

(RSP) [30,113,114], and peripheral Skin Temperature (SKT) [113,114]. Although it has

been shown that the use of multiple physiological signals can increase the detection

accuracy [113], the type and number of signals, and in particular the features used to

assess cognitive workload, often differ and strictly depend on the case study (e.g., the

type of task used to induce different levels of cognitive workload) [23, 78, 98]. Thus,

there is no clear definition of the best selection of signals and features to be used to

assess cognitive workload in general.

Then, the applied segmentation used to extract the features from the signals also

depends on the case study. In particular, the window lengths reported in Table 3.1

vary in a range from 25 to 300 seconds. Moreover, different window overlaps are

applied either to increase the size of the dataset [113,114] or to provide more frequent

estimations in time [30, 63]. These differences can be explained by the fact that

physiological methods do not provide a direct measurement of the workload, but

rather they give information about how the individuals themselves respond to a

particular load [23]. Therefore, a different signal segmentation may be applied

depending on the dynamics of the physiological response induced by a particular

cognitive workload.

An additional aspect that I observed in the literature review was that features are

often normalized to standardize their ranges. Moreover, as suggested in [124], this

normalization should be considered to reduce intra- and inter-subject variability

caused by age, gender, time of day and other factors. However, not all studies

reported whether or not a normalization was applied [124]. Moreover, it was not

always clear how the normalization was done, and if it was applied to make any

distinction between training and test sets. The point is that to properly emulate and

test the behaviour of the system, data from the test set should be normalized based

on the parameters obtained from the training set [124].
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Moreover, other differences clearly exist in the choice of machine learning methods.

The size of the training data and the specification of the system requirements (e.g.,

computational complexity, power and latency) may explain the different selections

of machine learning algorithms. In fact, as most of the studies typically start with

a limited amount of data, simple models like SVM [30, 63, 74], Linear Discriminant

Analysis (LDA) [62, 76], Logistic Regression (LR) [161], and Decision Tree (DT) [114],

are the most used machine learning techniques. In contrast, complex models such

as Artificial Neural Network (ANN) [187], Random Forest (RF) [74, 114], and very

recent models like Extreme Gradient Boosting (XGB) [113], have been less used so

far. In any case, even if SVM has been the most used classifier in this field, there is no

consistent indication whether it is the best model or not for different case studies.

Finally, my analysis shows that the highest levels of accuracy that have been obtained

are in the range from 82 to 99%. This wide range is mainly due to the different

experimental protocols, methodologies, and number of considered classes in each

study. Moreover, the very high accuracy reported by different studies may be affected

by overfitting since the evaluation of the proposed model is limited to the cross-

validation stage [30, 62, 63, 161, 187]. In particular, only a few studies in this field

evaluated the model in cross-validation as well as in an additional unseen test set

(i.e., a set that has never been used in training) [113, 114], even though a proper

estimation of the generalization power of a proposed model requires a final test on

new observations.

In conclusion, there is a need to further investigate the contribution of each physio-

logical signal, the impact of data normalization, and the performance of the selected

classifier on unseen data in the context of rescue mission with drones, which are not

appropriately covered in the literature.

Furthermore, it has to be considered that the workload is multidimensional [75]

and the results from the aggregation of three broad aspects [23, 78, 98]. First, the

workload depends on the type of task (mental or physical demand), as well as the

amount of work and number of tasks to perform (load level). Second, it is affected by

time, in particular by the duration of the interval of the temporal demand. Third, the

subjective psychological experiences modulate the level of workload perceived by a

subject (i.e., subject’s capabilities, learning skills, and effort). Therefore, it is key to

investigate cognitive workload in the particular field of interest, and subsequently

consider the subjective workload level perceived by each person, as suggested in [27].
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3.3 Cognitive Workload Detection Method

In this section, I described the general design of a machine learning algorithm

suitable for the development of a wearable embedded system for online cognitive

workload monitoring (Fig. 3.1, blocks with solid line). To design such a system, I

applied different statistical pattern recognition methods (Fig. 3.1, blocks with dashed

line) based on experimental data. The analysis was done off-line, but the final system

was tested by emulating online processing (i.e. using causal spectral filters and

computing the features only taking into account past information).
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PPG

SKT
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PPG

SKT

Preprocessing

• Filtering
• Segmentation

Preprocessing

• Filtering
• Segmentation

Signals
Acquisition and Preprocessing

Feature Extraction
• Delineation
• Feature Extraction
• Normalization

Feature Extraction
• Delineation
• Feature Extraction
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Feature Selection
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ML Design
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(†)
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Figure 3.1 – Overview of the process for the design of a cognitive workload monitoring
method. Blocs with dashed line represent the applied design/optimization methods
based on training data (‡), while blocs with solid lines represent the final system eval-
uated with testing data (†). The method is based on multiple physiological signals,
such as Respiratory Activity (RSP), Electrocardiogram (ECG), Photoplethysmogram
(PPG), and peripheral Skin Temperature (SKT). In particular, the method is applied
to select the features that better characterize the cognitive workload and can be used
by a Machine-Learning (ML) algorithm, such as an Universal Background Model
(UBM) or a Subject-Specific Model (SSM).

The system is divided into three main steps (Fig. 3.1, blocks with dotted line):

• Signals Acquisition and Preprocessing,

• Features Extraction and Selection,
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• Cognitive Workload Monitoring.

The first step of the cognitive workload monitoring system is the signal acquisition.

In this work, I collected experimental data for both design and evaluation of the pro-

posed cognitive workload monitoring method. Then, once the data was collected, a

preprocessing step was applied to remove artifacts from the signals. Moreover, a slid-

ing window was applied for signal segmentation, which defined the time resolution

of the workload monitoring system.

The features extraction phase is the following step, which included the generation of

a feature vector that best represented the physiological response induced by different

workloads. For an exhaustive investigation, I chose an exploratory approach in which

I extracted a large number of different features in both time and frequency domains.

Then, since physiological signals exhibited high intra- and inter-subject variability

as a result of age, gender, time of day and other factors [124], I investigated different

normalization methods. Next, I applied different features selection methods, which

allowed us to define the best subset of features that should be used in the final

system.

Finally, the cognitive workload monitoring step includes the prediction of a dis-

crete cognitive workload level. For the design of the cognitive workload monitoring

method, I considered the most common machine learning techniques based on

pattern recognition algorithms suitable for implementation in embedded systems.

Moreover, I considered a personalized learning approach to consider the highly

person-dependent variance in the physiological response of an induced workload.

The performance of my method is then evaluated with the NASA Task Load Index

(NASA-TLX), which is a subjective and multidimensional assessment tool that rates

perceived workload [75].

3.4 Signals Acquisition and Preprocessing

For a thorough exploration of the physiological changes induced by cognitive work-

load, I measured RSP, ECG, PPG, SKT, and EDA, which could be measured with

wearable units. These signals were the ones that are typically used in the litera-

ture [34,123]. Their main physiological manifestations related to cognitive workloads

were reported in Table 3.2 and described in Sec. 3.4.1.
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Table 3.2 – Measurable physiological manifestations related to induced cognitive
workloads and affected by the Sympathetic Nervous System (SNS), the Parasympa-
thetic Nervous System (PSNS), and Hypotalai-Adrena (HPA) axis.

Signals Physiological manifestation to workload response Sensor
location

RSP SNS activation and PSNS counterbalance Thorax

ECG Both HPA axis and SNS activation, and PSNS counter-
balance

Thorax

PPG Neurohypophysis, HPA axis, and SNS activation, and
PSNS counterbalance

Ear

SKT Neurohypophysis and SNS activation Finger

3.4.1 Physiological Process behind Cognitive Workload

While performing a very demanding task, one of the effects driven by the Autonomic

Nervous System (ANS) activation that involves both a Sympathetic Nervous System

(SNS) activation and a Parasympathetic Nervous System (PSNS) counterbalance, is

the need for more oxygen. This increased oxygen demand triggers faster and deeper

respiration [10]. Therefore, RSP should be measured to track changes in cognitive

workloads [30].

Another effect driven by ANS activation is the cardiac response, which is affected by

the Hypotalai-Adrena (HPA) axis as well. This response is associated with variabilities

in heart rate, defined as Heart Rate Variability (HRV), which can be obtained by

monitoring the ECG signal. Consequently, the above relationship can explain the

heart’s ability to respond to multiple physiological and environmental stimuli [38].

The activation of the neurohypophysis, the HPA axis, and the ANS leads to changes

in blood volume, peripheral blood vessels resistance, and cardiac response, which

can be derived from the pulse wave. Therefore, features from the PPG are needed to

detect those physiological changes induced by cognitive tasks [10, 63].

Moreover, it has been proved that a cognitive task causes peripheral vasoconstric-

tion [10, 63], which are regulated by the vasoregulatory system and driven by both

neurohypophysis and SNS. Therefore, SKT is needed to detect the variations in

peripheral temperature that are associated with peripheral vasoconstriction.
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3.4.2 Signals Preprocessing

The first preprocessing step consists of removing the artifacts from the different

signals with the following causal filters. To both ECG and PPG signals, I applied

a baseline wander with cut-off frequency at 0.3 Hz [106]. Next, I applied as well

a 32nd-order bandpass Finite Impulse Response (FIR) filter with a linear phase

and Hamming window with cutoff frequencies at 0.3 and 30 Hz for ECG and cutoff

frequencies at 0.1 and 5 Hz for PPG [10]. Moreover, I applied a 4th-order Butterworth

Infinite Impulse Response (IIR) bandpass filter with cutoff frequencies at 0.03 and

0.9 Hz to the RSP signal. Nevertheless, because of the slow response time of the SKT

thermistor (1.1 sec.), which avoided the high frequency noise to affect the signal, no

filter is applied to the acquired SKT signal.

Finally, I applied a time-series segmentation of all the acquired physiological signals,

which were thus divided into a sequence of samples in windows of 60 seconds.

3.5 Features Extraction and Selection

Following the methodology described in Section 3.3, I performed an offline investi-

gation to select the features that have to be considered in the final system. To this

aim, I first extracted from the segmented signals a complete set of features for an

exhaustive assessment of the person’s physiological response induced by cognitive

workload. Then, I selected the best set of features that is rich in discriminatory

information with respect to the physiological states induced by different levels of

cognitive workload.

Finally, to emulate the online monitoring system, I limited the feature extraction

step to the optimal set of features, which was then normalized and given as input to

the developed machine learning algorithm for cognitive workload monitoring.

3.5.1 Feature Extraction

For the design of the cognitive workload monitoring system, the feature extraction

process included three main steps. First, I delineated the segmented signal to detect

points of interest (e.g., signal onset, peak, offset, etc.). Second, I extracted physiologi-

cal markers, which were a combination of different delineated points and provided

information about the physiological state of the person (e.g., heart rate). Finally,

I computed features in both time and frequency domains. For the time domain,
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I used standard statistical features (i.e., mean, median, mode, standard deviation,

variance, root mean square, and power), extracted either from the physiological

markers or from the segmented signals directly. However, in the frequency domain,

the features were computed specific to the characteristic of the physiology. Fig. 3.2

shows a schematic representation of the signal processing and feature extraction

process.
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Figure 3.2 – Schematic representation of the signal processing and feature extrac-
tion processes. In particular the filtering and delineation of Photoplethysmogram
(PPG), Electrocardiogram (ECG), Respiratory Activity (RSP), and Skin Temperature
(SKT), to extract parameters, such as RR-interval, PP-interval, Pulse Amplitude (PA),
Pulse Transit Time (PTT), Pulse Rising Time (PRT), Power Spectral Density (PSD),
Respiratory Sinus Arrhythmia (RSA), RSP Period (Prd), RSP Rate, Inhalation (Inh) and
Exhalation (Exh) time, etc. All these parameters are used to compute either statistical
or frequency domain features.

Following an extensive literature review and by applying the experience from pre-
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vious projects [38], I increased the number of both time and frequency domain

analytical methods applied to a single segment of a physiological signal. I concluded

upon 384 features: 127 from RSP, 38 from ECG, 190 from PPG, 2 from SKT, and 27

from Respiratory Sinus Arrhythmia (RSA). However, thanks to the applied feature

selection method, my final system only used 25 features, 10 from RSP, 2 from ECG,

10 from PPG, 2 from SKT, and 1 from RSA. These 25 features are listed in Table 3.4

(page 93). Finally, as EDA did not show any significant correlated response with

the induced cognitive workload, the signal was discarded. More details about the

delineation and feature extraction for each considered signal are provided next.

Respiratory activity (RSP)

To extract the features from the RSP signal, I first delineated the signal based on the

differences between adjacent samples of the filtered signal defined as:

∆x[k] = x[k]−x[k −1] (3.1)

Then, by applying a threshold, I detected from the sign of ∆x the falling and rising

edge, which coincided with the end of the inhalation (RSP-peaks) and the end of the

exhalation (RSP-valleys), respectively. Then, all the pairs of peaks and valleys having

a difference smaller than 20% of the mean respiration amplitude were removed as

suggested by [74], because they may be assigned to artifacts instead of real respiratory

cycles.

Next, from the delineated RSP, I extracted the following physiological markers: both

Inhalation (Inh) and Exhalation (Exh) time, the ratio between the two (Inh/Enh),

inhalation and exhalation amplitudes, respiratory period (RSPPrd), and respiratory

rate (RSPRate). Moreover, I computed their numerical differences using Eq. 3.1. Fi-

nally, I calculated the statistical features of the segmented respiratory signal, of its

difference given by Eq. 3.1, and of all the aforementioned RSP physiological markers.

In the frequency domain, I computed the power of the segmented signal in four

different bands of equal bandwidth, namely 0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1 Hz.

Additionally, I considered the normalized band power as well, which was obtained

by dividing each of the aforementioned band powers by the total power in the 0-1 Hz

band.
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Electrocardiogram (ECG)

From the filtered ECG signal, I computed the so-called Normal-to-Normal (NN)

intervals, which are the intervals between normal QRS complexes that were detected

with the delineation method described in [130]. Then, I computed features in the

time domain describing the HRV [174]. More precisely, I computed the statistical

features of the successive NN-intervals and the interval differences of successive

NN-intervals. I also computed the number of interval differences of successive NN-

intervals greater than 50 ms (NN50) and the proportion derived by dividing NN50 by

the total number of NN-intervals (pNN50) within the processing window.

Additionally, I obtained several geometrical features from the Poincaré (or Lorenz)

plot indicating vagal and sympathetic functions [188]. In particular, I extracted the

length of the transverse axis (T ), which was vertical to the line NNk = NNk+1; the

length of the longitudinal axis (L), which was parallel with the line NNk = NNk+1; the

Cardiac Sympathetic Index (CSI), defined as L/T ; the modified CSI (L2/T ); and the

Cardiac Vagal Index (CVI), defined as log10(LT ) [174, 188].

Moreover, I extracted HRV features from the frequency-domain, as proposed in [174].

In particular, I computed the power in two frequency bands, namely, Low Frequency

(LF) component (frequency between 0.04 and 0.15 Hz) and High Frequency (HF)

component (frequency between 0.15 and 0.4 Hz). LF and HF powers were obtained

from the estimation of the Lomb-Scargle Power Spectral Density (PSD) of the NN-

intervals [143]. The power values were divided by the total power minus the Very

Low Frequency (VLF) component (frequency ≤ 0.04 Hz). Moreover, I computed the

power sum LF + 1/HF and the ratio LF/HF.

Furthermore, I extracted novel features from the HF band. The first one, called

RRHF gauss, was the mean frequency of a Gaussian distribution used to fit the Lomb-

Scargle PSD estimated in the HF band. This feature describes the shifting in fre-

quency of the PSD in the HF band, where the shift is mainly caused by the respiratory

activity [159]. The second one was called RRHF pond and was defined as:

RRHF pond =
∑

f ∈HF f PSD{RR[k]}( f )∑
f ∈HF PSD{RR[k]}( f )

(3.2)

Finally, I also computed the power of the HF divided into 5 sub-bands of equal length

(RRHF sband Xn), where the subscript index X = {1, · · · ,5}.
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Photoplethysmogram (PPG)

According to [10], I delineated the PPG signal and I extracted the following physio-

logical markers: the Pulse Period (PP), the time interval between two consecutive

pulse peaks; the Pulse Amplitude (PA), the difference between the pulse peak and the

pulse onset; the Pulse Transit Time (PTTM), the time interval between the R-Peak in

the ECG signal and the instant when the PPG pulse reaches half of its onset-to-peak

amplitude; the Pulse Rising Time (PRT), the time interval between the pulse onset

and the pulse peak; and the Pulse Rising Speed (PRS), the ratio between amplitude

difference and time interval computed from the points of the pulse wave located at

75% and 25% of the onset-to-peak amplitude, respectively.

From each of the aforementioned PPG physiological markers, I extracted features in

both time and frequency domains, following the methodology applied to compute

HRV from NN-intervals.

Peripheral Skin Temperature (SKT)

From the SKT signal, I directly extracted the SKTGradient and the SKTPower of the

signal. The SKT Gradient was computed as the mean of the difference between the

portion of samples recorded during the first second of the window, acquired at a

sampling frequency fs , and the samples from the final one second of the window,

namely:

SKTGradient =
1

fs

fs∑
k=0

(
SKT[k]−SKT[60 fs −k]

)
(3.3)

Then, the SKT Power was the average power of the signal computed over the entire

window of samples:

SKTPower = 1

60 fs

60 fs∑
k=0

SKT[k]2 (3.4)

Respiratory Sinus Arrhythmia (RSA)

Finally, I monitored Respiratory Sinus Arrhythmia (RSA), which is the natural vari-

ation in the heart rate that is associated with the respiratory cycle. Thus, it was

measured from the ECG signal. RSA has been used as a noninvasive measure of
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cardiac vagal tone, as a marker of PSNS tone [140] and thus, it could be used as a

marker of the disruption of homeostasis induced by a highly demanding task.

Since RSA and cardiac vagal tone could dissociate under certain circumstances [71],

I considered the hypotheses that these differences could come from external factors,

such as a need to compensate for changes in cognitive workload.

RSA was estimated from the non-uniform time series of successive NN-intervals,

which I interpolated using a linear function and I resampled at 2 kHz to be compared

with the RSP signal. Then, I filtered the resulting uniform time series of successive

NN-intervals with a 4th order band-pass Butterworth filter with cutting frequency at

0.15 and 0.4 Hz yielding an RSA. Indeed, this resampling frequency is quite unusual

(normally around 4 Hz [71]). The reason is that I used a single sampling frequency for

simplifying the synchronization of all acquired signals and the executed task, which

required a sampling frequency of 2 kHz. Therefore, to avoid the interpolation of both

RSA and RSP signals for comparison, I decided to work at 2 kHz.

From the computed RSA, I extracted features that aim to evaluate the agreement

with the measured RSP signal, but first, both RSP and RSA signals were normalized

to zero mean and unit variance. The first feature was the time delay of the RSA with

respect to the RSP (RSALag), which was estimated by computing the cross-correlation

of RSA and RSP. I also computed the phase shift between the two signals, which was

given by Equation 3.5.

RSAPhase = cos−1
(

RSP ·RSA

‖RSP‖ ·‖RSA‖
)

(3.5)

Subsequently, I extracted features based on the Tukey mean-difference plot, also

called the Bland-Altman plot [19], to compare both RSA and RSP measurements. To

this end, I computed the statistical features of the difference between the two signals

and the mean of the two:

R0 = RSP−RSA (3.6)

A0 = (RSP+RSA)/2 (3.7)

I also considered the statistical features of different log transformations of the mea-
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surements, which yielded the following equations:

Rb = l ogb(RSP)− logb(RSA) (3.8)

Ab = (logb(RSP)+ logb(RSA))/2,∀b = {n,2,10} (3.9)

where the subscript b denoted the base of the logarithm (i.e., n, 2, and 10).

3.5.2 Features Normalization

Since the relative range of each feature varies widely, a normalization was applied

so that each one contributed approximately equally to the classification problem.

Hence, I applied a min-max normalization, which scaled the features within a 0-1

range.

Moreover, to address the problem related to both inter-subject and inter-day vari-

ability [38, 124], I investigated the following 3 different types of normalization. First,

the total normalization (TN) consists of a normalization based on the full training

set. Second, the subject dependent normalization (SN) consists of a normalization

based on each training subset relative to a specific subject. Finally, the day and sub-

ject dependent normalization (DSN) affects each portion of the training set relative

to both a specific day and a specific subject. Consequently, both the training and

the test sets were scaled accordingly, using the parameters obtained only from the

training set.

Finally, I selected the best normalization strategy that better emphasized the discrim-

inant power of the features and their ability to classify the problem. In other words,

I selected the method that gave the highest Fisher Discriminant Ratio (FDR) [185]

of the normalized feature sets, which were obtained by applying one of the three

proposed normalization methods (i.e., TN, SN, or DSN). Then, from the original

training set, I created three different data sets, and each of them was normalized with

one of the proposed normalization methods. Finally, I evaluated the classification

performance of an SVM that used as input one of the three data sets, but with a

common set of 14 features obtained after applying both feature pre-selection and

Recursive Features Elimination (RFE), as described next (see subsection 3.5.3). This

common set of features was chosen to avoid any bias, which can come from the use

of a different type or number of features. The results were reported in Sec. 3.8.2.
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3.5.3 Features Selection

Given the large number of features considered for the exhaustive characterization of

cognitive workload, I divided the feature selection process into two main steps. First,

as a pre-reduction to suppress the features that did not give any discriminatory in-

formation, I applied filter methods, which were particularly effective in computation

time and robust to overfitting. Then, as a final reduction to consider the possible

interactions between features, I applied embedded methods, which performed fea-

ture selection and classification simultaneously. Both feature selection steps were

performed once with data from the training set.

For the pre-reduction of the feature space, I applied the following three meth-

ods. First, I applied a two-sample Student’s t-test [185], which selected statistically

discriminant features. As an alternative to Student’s t-test, we could use Kruskal-

Wallis [185], which does not require normality assumptions of the distribution. While

using this alternative, this first feature reduction step is a bit more conservative, in

the sense that it keeps a few more features. However, those extra features resulted

to have the lowest discriminant power, which was visible on the following step of

this feature selection process. Second, the discriminant features were ranked based

on their FDR, which gave a score based on their ability to discriminate the problem.

Lastly, I further reduced the feature space by removing the features that gave any

redundant information. In particular, I removed the less discriminant features that

were correlated with others with a Pearson’s correlation coefficient above 0.95, which

indicated a very strong correlation [3].

For the final reduction of the feature space, I applied RFE [72], which is an embedded

method that uses an external estimator to assign weights to features. These weights

were then used to prune the least important features from the current set. This

procedure recursively pruned the selected features until all feature weights were

different from 0. In this work, I applied RFE based on different classifiers; namely,

LR, LDA, SVM, RF, and XGB; which I named: RFE-LR, RFE-LDA, RFE-SVM, RFE-RF,

and RFE-XGB, respectively.

3.6 Cognitive Workload Monitoring

For the cognitive workload monitoring I explored the use of different machine learn-

ing algorithms. In particular, I investigated the use of linear models, namely LR, LDA,

SVM, and Gaussian Naive Bayes (GNB), for a feasibility check. Then, I investigated
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the use of non-linear models, such as k-Nearest Neighbors (k-NN), Quadratic Dis-

criminant Analysis (QDA), SVM with a Radial Basis Function (RBF) as kernel, DT, RF,

and XGB, with the aim of reducing the bias. The accuracy of each model in detecting

high levels of cognitive workload was evaluated based on a 5-fold cross-validation.

To this aim, the training set was randomly divided into folds of equal sizes (groups of

samples). The prediction function was learned using four folds, and the fold left out

was used for validation. The procedure was followed for each of the five folds. The

performance measure reported by the cross-validation was then the average of the

five evaluations.

Moreover, I considered a personalized learning approach to deal with the highly

person-dependent variance. To this aim, I compared the performance of both a

Universal Background Model (UBM) and a Subject-Specific Model (SSM).

3.6.1 Model for Cognitive Workload Monitoring

To estimate cognitive workload I chose for both UBM and SSM a linear SVM, which

has the following prediction model [18]:

y(x) = wT x+b (3.10)

where x is the input vector, w is the weight vector, and b is the offset. The correspond-

ing optimal hyperplane separating the two classes is defined by the relation:

y(x) = wT x+b = 0 (3.11)

Therefore, an input vector x was then assigned to class 1 if y(x) ≥ 0 and to class −1

otherwise. Although the prediction model of both UBM and SSM was the same, the

difference laid in the objective function. All the details are given in subsection 3.6.2

and subsection 3.6.3.

The parameters of both UBM and SSM were chosen based on a 5-fold cross-validation

on the training set. For this validation I used a stratified split that preserves the same

percentage for each target class as in the complete training set and also preserves the

same percentage of data relative to the subject of interest. Then, the generalization

of both models was tested on an unseen test set.
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The performance of the models was evaluated based on: accuracy, the proportion

of both true positives and true negatives results among the total number of cases;

precision, or confidence, the proportion of predicted positive cases that are correctly

real positives; recall, or sensitivity, the proportion of real positive cases that are cor-

rectly predicted positive; Receiver Operating Characteristic (ROC); and in particular,

based on the F1-score, the weighted average of the precision and recall.

3.6.2 Training of the Universal Background Model

The considered UBM was based on SVM with soft margins [18], which relaxed the

condition for the optimal hyperplane (Eq. Equation 3.11) and allowed possible over-

laps of the class-conditional distributions. As for a normal soft-margin SVM, the

objective function of the UBM was defined as follows:

arg min
w,b,ξi

1

2
wT w+C

∑
i∈D

ξi , (3.12)

subject to ti (wT xi +b) ≥ 1−ξi , ξi ≥ 0; (i ∈ D)

where the regularization term C and the non-negative variables ξi relax the con-

straints of an otherwise hard-margin SVM. The data x in the training dataset D

comprises N input vectors x1, · · · , xN , with corresponding target values t1, · · · , tN ,

and where ti ∈ {−1,1}. The parameter C is analogous to the inverse of a regulariza-

tion coefficient because it controls the trade-off between minimizing training errors

and controlling model complexity. A regularization term C = 0.1 is chosen from a

log10 scale ranges from 0.001 to 1000 based on a stratified 5-fold cross-validation on

the training set.

3.6.3 Training of the Subject-Specific Model

As well as for the UBM, the considered SSM was based on a soft-margin SVM. How-

ever, in order to adapt the model to a specific subject, I modified the objective

function of the original soft-margin SVM (Equation 3.12) to include two different

soft-margins. The first soft-margin (Cs) changes the degree of importance that is

given to false estimations of samples coming from a particular subset of data, which

can be a particular subject (S). In other words, the term weighed by Cs allows a mini-

mization of the errors (ξ) for all the x in the training set related to a specific subject
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(x ∈ S). Instead, the second soft-margin (C ) affects the rest of the dataset minimizing

the errors ξ for all the x in the training set that are related to other subjects (x 6∈ S).

Therefore, the final objective function for the SSM was defined as:

arg min
w,b,ξi

1

2
wT w+C

∑
i 6∈S

ξi +Cs
∑
i∈S

ξi (3.13)

subject to ti (wT xi +b) ≥ 1−ξi , ξi ≥ 0; (i ∈ D)

Cs >C

With this model, I stated a preference for margins that classified the training data

correctly, but I softened the constraints to allow for non-separable data with different

penalties. To promote the minimization of the total sum of the penalties ξi ∀i ∈ S,

despite the minimization of the total sum of the penalties ξi ∀i 6∈ S, I chose Cs to be

greater than C . As usual, the regularization terms have to be large enough to avoid

under-fitting, but not too much to avoid over-fitting as well. Based on a stratified

5-fold cross-validation on the training set, both regularization terms C = 0.001 and

Cs = 0.1 are chosen from a log10 scale in a ranges from 0.001 to 0.1 and from 0.1 to

100, respectively. Although both regularization terms seem to be bounded by the

considered range, I kept the lower bounds as they are to avoid possible problems of

under-fitting.

3.7 Experimental Setup

Collecting data in a real search and rescue mission is complex, because of the random

frequency the events occur, but also because there are many variables that are

still undefined. Therefore, to collect clean data for building a cognitive workload

monitoring model and validate my approach, I used the simulator for search and

rescue missions with drones, as used in [38], following two carefully designed study

protocols (sections 3.7.2 and 3.7.3).

A first experiment was conducted to characterize cognitive workload levels in search

and rescue mission with drones through physiological signals, to build a model

for continuous monitoring, and to evaluate the contribution of a subject-specific

approach. A second experiment was done to evaluate the quality of the system

in case of the use of new advanced controllers, such as the FlyJacket design [153].

Considering that in previous experiments, participants reported some symptoms
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(a) Gamepad Setup (b) Screenshot of the flying and mapping 3 ob-
jects (F3M) task

(c) FlyJacket Setup

Figure 3.3 – The figure on the left (3.3a) shows the setup used to control the simulator
with the gamepad while the figure on the right (3.3c) shows the use of FlyJacket.
The figure in the middle (3.3b) shows a screenshot of the search and rescue drone
simulator, where the layout of the buttons and the current task are displayed on
the top-left and top-right corners, respectively. The purple arrow on the bottom
indicates the direction of the next waypoint (black circles). The red cross above the
arrow indicates the center of the drone. The cubes in the middle are the objects to
be detected by pressing a button on the controller.

of sickness due to the use of Virtual Reality (VR) glasses, I decided to use for both

experiments a screen instead of VR. This decision avoided, first, diseases between

participants and, second, incomplete data collection caused by an eventual need to

prematurely stop the experiment.

In contrast with the gamepad, where the movements were limited to the thumbs,

the use of FlyJacket implies movements of both arms and torso. Therefore, when

comparing tasks involving different type of movements, there is a risk of yielding

in a performance overestimation. Thus, to avoid as much as possible any possible

miss-classification caused by movement artifacts, I trained the machine learning

algorithm with the data collected during the experiment with the gamepad. Then, to

do a final tuning of the SSM, I only used the data of the first trial of the experiment

with FlyJacket. Finally, the data of the second trial of the experiment with FlyJacket

was used as test set.

All the signal processing, features extraction, machine learning design, and classifi-

cation were done using Matlab R2016a [184].
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3.7.1 Search and Rescue Drone Simulator

As presented in [38], the simulator consists of a simplified search and rescue scenario,

where the pilot of a drone has to deal with two different activities, namely, flying

and mapping. The flying activity consists in flying a drone following a randomly

generated trajectory depicted by spherical waypoints. Instead, the mapping activity

consists in mapping the situation of a disaster area, which is represented by cubes of

4 different colors randomly distributed over the flying trajectory.

The colors are: yellow to indicate rescue situations, red for fire, blue for water dam-

ages, and green for accidents. The colors were chosen according to the regulation of

the Swiss Firefighters [64]. An overview of the scenario is shown in Fig. 3.3.

Using the simulator, I modulated both flying and mapping activities to induce dif-

ferent levels of cognitive workload. The same principle was applied in [38] and in

MATB-II [158], where different tasks were combined to induce different levels of

workload. Here, flying and mapping activities were combined yielding in four differ-

ent tasks: Baseline (B), Flying (F), Mapping 3 objects (3M), and Flying and Mapping

3 objects (F3M), which are described next.

Baseline (B)

As baseline I considered a flying sequence controlled by an auto-pilot. During this

task, no special activity was required, the participants only had to watch the sequence.

This sequence put the participants in a framework that was the same for the entire

experiment, avoiding as much as possible changes of uncontrollable variables. This

task had the lowest expected workload level of this study.

Recovery (R)

What we call the recovery (R) phase is nothing else than a repetition of the baseline.

The only difference comes from the fact that R was proposed after a sequence of

tasks, and not at the beginning as B. The use of this recovery phase is reserved for

future studies, which aim to investigate how long the physiological signals need to

return to their baseline values.
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Flying (F)

For the flying task, the participants were asked to pilot the drone flying as close as

possible through the center of the waypoints, no mapping activity was required. A

medium/high workload level was expected in this task.

Mapping 3 Objects (3M)

This task consisted of mapping three objects that were randomly displayed on the

screen at a time. The flight was carried out by the auto-pilot, as in B. During this

task, the participants were asked to press the button on the controller that had the

same color as the object displayed on the screen. The total number of objects to be

mapped was 240 per session, i.e., 60 per color. As in F, a medium/high workload level

was expected in this task.

Flying and Mapping 3 Objects (F3M)

This task consisted of performing both F and 3M simultaneously. As multitasking

skills were required to perform F3M, I considered that this task induced a high level

of cognitive workload.

3.7.2 Study Protocol 1: Use of a Gamepad

During this experiment, participants sat in front of a screen and controlled the

simulator with a gamepad from Logitech [96], as shown in Fig. 3.3a. To avoid as

much as possible false detection caused by artefacts, participants were asked not to

talk and to avoid as much as possible any kind of unnecessary movements. Otherwise,

they were free to rest and move during the resting periods.

The experiment started with a setup phase, in which after providing the study and

protocol explanations to the participants, I placed the sensors for the physiological

signals acquisition. Then, participants started with a warm-up phase to get familiar

with the simulator. This warm-up sequence included a mix of both flying and

mapping activities as presented in F3M. However, the mapping activity only involved

the detection of one object at a time.

The rest of the protocol is shown in Fig 3.4. After warm-up, participants performed

the first trial, which started with a baseline of five minutes and followed by a sequence
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including F3M, 3M, and F, executed in a randomized order. A resting period of 3

minutes was enforced after each task, This period also allowed participants to fill a

questionnaire (Q), based on the NASA-TLX procedure.

Finally, the participants performed two additional trials, namely Trial 2 and Trial 3.

These two additional trials started with a baseline and continued with a randomized

sequence of F3M, 3M and F. Both trials ended with R followed by a resting period,

in which the NASA-TLX was filled again. Each task presented in Trial 2 and 3 lasted

three minutes.

B
(5’)

Rest
(3’)

F3M
(5’)

Rest
(3’)

3M
(5’)

Rest
(3’)

F
(5’)

Rest
(3’)

Trial 1

B
(3’)

F3M
(3’)

3M
(3’)

F
(3’)

R
(3’)

Rest
(3’)

Trial 2

B
(3’)

F3M
(3’)

3M
(3’)

F
(3’)

R
(3’)

Rest
(3’)

Trial 3

Training set, used for design and cross-validation

Testing set, used for final reporting

Q Q Q Q

Q

Q

Figure 3.4 – Protocol of the experiment with the gamepad. The trials start with a
baseline (B), which is followed by the tasks flying and mapping 3 objects (F3M),
mapping 3 objects (3M), and flying (F), presented in a randomized order. Then, it
includes a recovery (R) period, which is equal to B, but presented after a sequence
of tasks. Finally, after each task or sequence, a resting period is proposed to fill a
questionnaire (Q).

As shown in Fig. 3.4, I used all data acquired during both Trial 1 and Trial 2 as training

set, and all data collected during Trial 3 as test set. I am aware that this split does

not truly respect independent temporality of data because both training and test

data sets are taken from the same day and not from a day that is not used for training

(as it would be in a real application). Therefore, this choice may overestimate the

generalization performance of the system. However, as I expected an inter-day

variability of the physiological responses [38, 124], I assumed that a daily calibration

of the system would be required, which implied a need for some data of the same
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day. A further investigation over different days could potentially avoid the button on

such a daily calibration, but this analysis was left for a future study.

3.7.3 Study Protocol 2: Use of FlyJacket

In this case, participants controlled the drone simulator with FlyJacket and mapped

the disaster situation with the simultaneous use of both left and right Oculus Touch

controllers [125], as shown in Fig. 3.3c.

The experiment started with a setup and a warm-up phase, as in the previous experi-

ment (Sec. 3.7.2). Then, participants performed two trials as shown in Fig. 3.5, which

started with a baseline of five minutes and followed by a sequence including F3M,

and F executed in a randomized order. Again, a resting period of three minutes was

enforced after each task, where the participants filled the questionnaire.

B
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(3’)

F
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Trial 1
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F3M
(5’)

Rest
(3’)

F
(5’)

Rest
(3’)

Trial 2

Training set, used for SSM’s tuning

Testing set, used for final reporting

Q Q Q

Q Q Q

Figure 3.5 – Protocol of the experiment with FlyJacket. The trials start with a baseline
(B), which is followed by the tasks flying and mapping 3 objects (F3M), and flying (F),
presented in a randomized order. After each task, a resting period is proposed to fill
a questionnaire (Q).

Being this second experiment only for proving the feasibility of detecting both low

and high levels of the cognitive workload with the proposed method, I decided to

present a reduced protocol to prevent participants from doing long, tedious and

tiring experiments. Therefore, I considered this protocol with only two trials, with

three tasks of five minutes each, and keeping the use F for future studies.
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3.7.4 Acquired Signals

I recorded RSP, ECG, PPG, SKT, and EDA in a noninvasive way through the Biopac

MP160 data acquisition system [16] with a sampling frequency of 2 kHz. We also

recorded EEG, but its use was reserved for a different study, which has been published

recently [83]. EEG was not considered for this work due to the obtrusiveness of the

sensors, which are not integrable into a jacket.

3.7.5 Research Participants

The experiment with the gamepad was done by 24 participants (6 females and 18

males) aged between 21 and 39 years old (27.7± 4.8), who performed the study

protocol twice in two sessions that took place on different days.

The experiment with Flyjacket was done by 10 additional participants (3 females

and 7 males) aged between 22 and 30 years old (26.8±2.3), who participated in the

experiment on a single day session.

All 34 participants provided informed consent and volunteered to participate in the

study. The participants were healthy, free of any cardiac abnormalities and were

receiving no medical treatment. The ethical approval for this study was obtained

from the Cantonal Ethics Commissions for Human Research Vaud and Geneva,

ethical approval application number PB2017-00295.

3.8 Experimental Results

Given the recorded data set of study protocol 1, I selected the best combination of

normalization, feature selection, and classification methods suitable for cognitive

workload monitoring. The methods were obtained based on the cross-validations

workflow including 747 observations. Finally, I showed the performance of the

proposed methods on two unseen test sets, including 260 and 57 observations from

study protocols 1 and 2, respectively.

3.8.1 Self-perception of induced cognitive workload

The reported overall workload on each task perceived by the 34 participants based

on the NASA-TLX is shown in Fig. 3.6. A one-way Analysis of Variance (ANOVA) [59]

conducted on the influence of the tasks confirms that participants have perceived
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different levels of workload. Furthermore, a multiple pairwise comparison analysis

using the Student’s t-test with up to 164 samples revealed, except for 3M vs. F,

statistical significant mean differences (p-value < 0.001). The missing values in

the data range were excluded from this multiple comparison. More precisely, all

comparisons with the 3M task were limited to 144 samples, as the protocol with the

FlyJacket setup was performed without executing this task.
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Figure 3.6 – Cognitive workload level perceived by the participants while performing
baseline (B), flying (F), mapping 3 objects (3M), and both flying and mapping 3
objects (F3M). The results are based on the NASA-TLX. Student’s t-tests with up to
164 samples were applied (n.s.: not significant, and ***: p < 0.001).

However, as shown in Fig. 3.6, the perceived level of cognitive workload has a large

variance. A two-way ANOVA revealed that such a large variance came from a signif-

icant (p < 0.001) effect of task, day, and subject on the level of cognitive workload,

F(3,414) = 1637.19, F(1,414) = 28.70, F(33,414) = 48.93, respectively. Therefore, the

results of the NASA-TLX confirmed the need for both a day- and a subject-specific

approach.

Although there was a significant difference in the perceived workload between most

of the tasks, Fig. 3.6 shows that the distribution of both F and 3M presented a large

overlap with F3M. Instead, the difference between tasks B and F3M was clear. There-

fore, as I first wanted to check if I could detect low and high levels of cognitive

workload, I focused on the extreme cases, which were induced by tasks B and F3M,

respectively. The use of F and 3M was left for a future investigation, where a fine-
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grained cognitive workload monitoring would be targeted.

3.8.2 Features discriminant power emphasized by normalization

To reduce the variance introduced by the different participants as well as by the fact

that they did the experiment on different days, I investigated different normalization

approaches (i.e., TN, SN, and DSN) as described in Section 3.5.2. After applying each

normalization approach, I firstly evaluated the discriminant power of the features

based on their FDR. Results are shown in Fig. 3.7, where it can be seen that DSN

better emphasises the discriminant power of the features. In comparison with TN,

the FDR of the most important feature was emphasised by a factor of 80.9% or 166.9%,

over SN or DSN, respectively.
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Figure 3.7 – Comparison of different normalization methods affecting the discrimi-
nant power of the features. A day and subject dependent normalization (DSN) shows
a higher Fisher Discriminant Ratio (FDR) than a subject dependent normalization
(SN) and a total normalization (TN).

Secondly, following the methodology presented in Sec. 3.3, I compared how each

normalization approach contributed to the classification problem by using a linear

SVM model. I noticed that the normalization affected the feature selection process,

which selected 14 features after TN or SN, or 25 features after DSN. Therefore, to

avoid biased results caused by the use of a different number of features, I used for

this comparison the first 14 most discriminant features selected by RFE-SVM after

TN, SN, or DSN normalization. Fig. 3.8 shows the ROC and the F1-score of the SVM

combined with the different normalization methods, where it can be seen that once
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again DSN outperforms both TN and SN.
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Figure 3.8 – Effect of different normalization methods on cognitive workload moni-
toring with Support Vector Machine (SVM). The use of a day and subject dependent
normalization (DSN) shows a higher performance than a subject dependent normal-
ization (SN) and a total normalization (TN).

My results showed that feature normalization plays an important role during both

features selection and classification. DSN normalization gave better results (a bigger

F1-score) compared to SN and TN. Similar trends were obtained by applying RFE

with other classifiers, such as LR or LDA. Therefore, I selected DNS as normalization

method.

3.8.3 Physiological featuring of cognitive workload

By applying the filter methods presented in Section 3.5.3, I eliminated 282 non-

informative features from the normalized (based on DSN) 384 features initially

considered for an exhaustive cognitive workload characterization. In particular, I

reduced the dimension of the feature space from 384 down to 168 features with

the two-sample Student’s t-test, and down to 102 features by checking their linear

correlation.

Although, the above pre-selection step drastically reduced the feature space, the use

of such an amount of features requires models with high capacity and may lead to

overfit if trained with a limited dataset like ours. Therefore, to obtain a reasonable

feature set that can be used for cognitive workload monitoring, a further dimension
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Table 3.3 – Feature selection performance while combining both Recursive Fea-
tures Elimination (RFE) and classification methods, such as Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
Support Vector Machine (SVM), with both linear and Radial Basis Function (RBF)
kernels, Gaussian Naive Bayes (GNB), k-Nearest Neighbors (k-NN), Decision Tree
(DT), Random Forest (RF), and Extreme Gradient Boosting (XGB).

Embedded Features Selection (number of selected features)

No RFE (102) RFE-XGB (5) RFE-LR (10) RFE-LDA (12) RFE-SVM (25)

Accuracy of different classifiers

Classifiers Train CV Train CV Train CV Train CV Train CV

LR 93 85 85 85 90 86 90 87 91 86

LDA 94 84 85 86 91 85 91 87 92 87

QDA 100 82 87 86 90 87* 92 87 95 88

SVMLin 88 87 85 87* 89 86 87 86 89 88*

SVMRBF 92 87* 87 88* 91 86 92 88 93 87

GNB 84 85 85 88* 86 86 86 85 88 88

k-NN 91 85 90 87* 91 85 92 87* 92 87

DT 90 85 89 84 90 80 88 76 90 84

RF 90 87 90 85 90 85 90 85 92 85

XGB 94 87 90 85 92 84 91 85 93 85

(*) Best F1-score: 89 88 88 89 90

reduction based on an embedded method was applied, as presented in Section 3.5.3.

The features space was reduced from 102 to 5, 10, 12 and 25 by applying RFE-XGB,

RFE-LR, RFE-LDA, RFE-SVM, respectively. A consistent set of features was found by

RFE based on LR, LDA, and SVM. For the case of RFE-XGB, I used a low-complex

model to avoid overfitting and inconsistent results. In particular, I limited the model

to 10 estimators and three as the maximum depth of each decision tree. Such a

low-complex RFE-XGB showed a drastic lower selection compared to other methods.

Without banning the ensemble methods from building complex models, RFE does

not converge to the same result if executed several times. In contrast, by limiting the

model complexity, RFE provides a reproducible result. However, this trick does not
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help the RFE-RF method, which did not converge to a consistent solution. Indeed,

the model always selected a different set of features every time the method was

applied, even by reducing the model complexity (i.e. number of estimators and

maximum depth of tree as I did for RFE-XGB). Therefore, such complex models are

not suitable for small datasets, which oblige the use of low complex models.

The feature set obtained after applying both filter and embedded methods is shown

in Table 3.4. Although the number of selected features varies between 5 and 25

depending on the applied embedded methods, a common subset of features was

identified. I observed that the features obtained by RFE-LR, RFE-LDA and RFE-

XGB were almost all included in the feature set obtained by RFE-SVM. In particu-

lar, RSPRate Median and SKTPower were selected by all the four methods, followed by

RSPPrd Median, SKTGradient, RSAR2 Std, PRTMedian, RSPRate Diff RMS and PPMedian, which

were selected by three methods out of four. Therefore, this result suggested that these

eight features seem to be the most important ones in terms of cognitive workload

characterization in the context of this experiment.

Additionally, I investigated the effect of using the different feature sets obtained

with the considered RFE methods on different classification methods. Results are

presented in Table 3.3, where I reported both the training and the cross-validation

accuracy of each RFE and classification method combination.

A significant difference between training and cross-validation accuracy indicated

a sign of overfitting (e.g., QDA with 102 features). Moreover, I reported the best

cross-validation F1-score for each applied RFE method. Although there seem to

be no significant differences across methods, the highest best F1-score, as well as

the best cross-validation accuracy, were reached when linear SVM was applied on

both RFE and classification. Therefore, RFE-SVM was the employed feature selection

method hereafter.

3.8.4 Classifiers for cognitive workload monitoring

A ROC curve was used to further evaluate the performance of the considered classi-

fiers. I reported in Figure 3.9 the ROC curve of cognitive workload classification in

cross-validation. In particular, for greater clarity of the illustration, I only reported

the results of the best classifiers (Area Under the Curve (AUC) > 0.94), namely LR,

LDA, k-NN, linear SVM, and SVM with RBF kernel. My results showed that, with the

amount of data available, the use of non-linear models did not really increase the
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Table 3.4 – Mean (µ) and standard deviation (σ) of the most important features used
to detect low and high levels of cognitive workload, induced by baseline (B) and by
both flying and mapping 3 objects (F3M), respectively. The last column shows the
p-value of the two-sample t-test. The features are grouped by physiological signals,
namely Respiratory Activity (RSP), Electrocardiogram (ECG), Photoplethysmogram
(PPG), and Skin Temperature (SKT).

Task B Task F3M p-Val < 10−x

Physiological Features µ±σ µ±σ x

RSPRate Mean
1,4 0.28±0.22 0.71±0.23 107

RSPRate Median
1,2,3,4 0.28±0.23 0.71±0.23 106

RSPPrd Mean
1,2,3 0.61±0.25 0.22±0.21 90

InhTime Median
1 0.53±0.31 0.20±0.23 52

ExhTime Median
1 0.63±0.29 0.32±0.28 45

InhTime Mean
1 0.50±0.31 0.22±0.25 38

InhTime RMS
3,4 0.44±0.30 0.19±0.25 31

RSAR2 Std
1,3,4 0.40±0.28 0.57±0.28 17

RSPPks Mode
1 0.61±0.29 0.50±0.30 08

RSPRate Diff RMS
1,2,3 0.33±0.29 0.42±0.29 06

RSPPSD3n
1 0.35±0.29 0.43±0.30 05

RSPPSD1n
1 0.48±0.35 0.41±0.31 04

RRHF gauss
1,3 0.32±0.23 0.68±0.26 74

RRHF sband 3n
1 0.47±0.32 0.30±0.28 15

RRLorenz L2
2 0.49±0.30 0.35±0.26 11

RRCVI
2 0.54±0.29 0.42±0.28 10

PPHF sband 5n
1 0.23±0.25 0.46±0.30 28

PARMS
1,2 0.53±0.35 0.32±0.27 20

PALorenz L
1 0.44±0.33 0.26±0.25 17

PRSMean
2 0.38±0.35 0.55±0.31 13

PPCSI
1 0.46±0.29 0.33±0.26 11

PACSI modified
2 0.40±0.30 0.28±0.27 09

PRTMedian
1,2,3 0.44±0.31 0.56±0.31 08

PTTM Mode2
1 0.50±0.35 0.58±0.28 05

PPMedian
1,2,3 0.55±0.31 0.47±0.28 05

PTTM HF pond
1 0.47±0.28 0.54±0.29 05

PRTLFp1oHF
1 0.38±0.31 0.30±0.27 05

PPMode2
1 0.55±0.33 0.49±0.28 04

SKTPower
1,2,3,4 0.61±0.35 0.37±0.30 24

SKTGradient
1,2,3 0.57±0.29 0.38±0.26 20

Selected feature with: 1RFE-SVM, 2RFE-LDA, 3RFE-LR, 4RFE-XGB
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detection accuracy. Instead, non-linear models tended to introduce a larger variance

between training and cross-validation accuracy.
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Figure 3.9 – Comparison between the best classifiers on cross-validation. Bigger
markers denote the performance of the different models based on their correspond-
ing cross-validated threshold or offset b.

As illustrated in Fig. 3.9, linear SVM shows a higher F1-score and a better ROC curve,

in particular by comparing the bigger markers representing the performance of the

models based on their corresponding cross-validated threshold or offset b. Therefore,

a linear SVM was selected for my further investigation.

Although this choice was made to reach the highest classification accuracy, it may

not be the optimal solution for embedded implementations. Other solutions consid-

ering fewer features may be preferred for implementations in low-power embedded

systems, where the power consumption may play an important role. However, my

results indicated a certain flexibility in terms of the number of features that have to be

used. In fact, the best F1-score was quite similar for all the applied feature selection

embedded methods. Moreover, except for DT, the cross-validation accuracy reported

in Table 3.3 after RFE was in a restricted range, between 84 and 88%. This range

variability seemed to be more dependent on the selected classifier (difference >
4.5%) rather than the number of selected features (difference < 3.5%). In fact, a linear

SVM with an input of only five features could provide a reduced implementation

complexity with a loss of only 1% of classification accuracy.
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3.8.5 Classification improved with the SSM

Once I selected the set of features (i.e., 25 features with RFE-SVM) and the classifica-

tion method, a linear SVM, I tested the contribution of a subject-specific approach

compared to a use of a general model (i.e., SSM vs. UBM). First, I trained the models

as described in Section 3.6. The regularization term C = 0.1 of the UBM was selected

based on a 5-fold cross-validation on the training set. However, for the SSM I selected

C = 0.001 and CS = 0.1, which were the most common regularization terms found

with a 5-fold cross-validation on the training set applied for all the 24 participants.

Finally, Table 3.5 reports the comparison between UBM and SSM, which were tested

on an unseen test set emulating an online cognitive workload monitoring. The

average accuracy of the UBM is 80.4% and is improved to 87.3% by the use of the

SSM. Both the Wilcoxon rank-sum test [193] and the McNemar’s test [42] over the

Table 3.5 – Performance of a Universal Background Model (UBM) vs. a Subject-
Specific Model (SSM) on a test set collected from participants using a gamepad
(Study 1, subsection 3.7.2).

Model class precision recall F1-score samples

B 0.81 0.76 0.79 123

UBM F3M 0.80 0.84 0.82 137

avg 0.80 0.80 0.80 260

B 0.89 0.83 0.86 123

SSM F3M 0.86 0.91 0.88 137

avg 0.87 0.87 0.87 260

260 samples indicated that the SSM showed a statistically significant improvement

of the classification performance (p-value < 0.01).

Although an improvement was reached for all the participants on cross-validation

while using the SSM, one participant over 24 did not show the expected improvement

on the final test set. This result may be explained by the need for more training

data that could be used to better fits the physiological response of that particular

participant.

However, as shown in Table 3.6, the higher performance of the SSM compared to

the UBM is confirmed on the test set acquired using FlyJacket (Study protocol 2,

Sec 3.7.3). In fact, a global accuracy of 89.5% is reached by the UBM and is improved
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to 91.2% by the use of the SSM. Both the Wilcoxon rank-sum test and the McNemar’s

test over the 57 samples indicated again that the SSM showed a statistically significant

improvement of the classification performance (p-value < 0.05).

Table 3.6 – Performance of a Universal Background Model (UBM) vs. a Subject-
Specific Model (SSM) on a test set collected from participants while FlyJacket (Study
2, subsection 3.7.3).

Model class precision recall F1-score samples

B 0.87 0.93 0.90 29

UBM F3M 0.92 0.86 0.89 28

avg 0.89 0.89 0.89 57

B 0.88 0.97 0.92 29

SSM F3M 0.96 0.86 0.91 28

avg 0.91 0.91 0.91 57

The reason for the better performance of the SSM compared to the UBM is that the

SSM takes advantage of all the observations with a different weight. The observa-

tions related to other participants contribute by letting the model learn the general

behaviour, with a regularization term C that allows a higher misclassification of such

observations. However, the observations related to the specific subject contribute by

tuning the model with a regularization term CS that stresses the margins between

the classes for that particular subject. Therefore, a combination of both relaxed

and stressed soft margins, introduced by the regularization term C and CS , respec-

tively, allows both the learning of the general behaviour and the tuning of the model

that better suits a specific subject. In light of the above, I could conclude that the

personalized model performed in general better than the universal model.

Moreover, the results obtained by the SSM were comparable with the state-of-the-art

(See Table 3.1), in particular with the work presented in [113]. Although a similar

accuracy was reached, my model was simpler and used a reduced number of features.

Another important difference was found in how the test set was selected. The authors

in [113] achieved an accuracy of 86% with a randomly selected test set. Instead, I

selected as test set the data from the last trial performed by each subject, namely

Trial 3. For any classification problem that broke the interchangeability hypothesis,

such as the time dependent cognitive workload monitoring, a random training/test

split should be avoided, as it yielded to a biased evaluation of the model. With a
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random split, the model learnt from prospective data, which were normally not

available when designing and training a prediction model. Moreover, the model was

evaluated based on retrospective data, which were too similar to the training data.

Consequently, the classifier tended to look better than it really was. Therefore, to

estimate how well a model will work with new data, a time dependent training/test

split should be considered.

Although the evaluation of my model was less biased compared with the literature,

there was still a minor risk of performance overestimation. In fact, both training and

test sets were taken from the same day and not only from a day that was not used for

training. Therefore, this choice did not fully generalize how well a model would work

with data collected on new days, as the proposed model required a daily calibration.

The slightly better performance achieved by the classifier while using FlyJacket

instead of the gamepad was assigned to the increased amount of training data. In

fact, for the case of FlyJacket, the weights of the classifier were tuned based on all

data collected during study protocol 1 including Trial 1 of study protocol 2. A quick

test considering less training data (ignoring Day 2 of study protocol 1) reduced the

accuracy of the UBM from 86% to 82%.

A potential limitation while using FlyJacket is the possible effect of movement ar-

tifacts, which may differ from Task B to Task F3M and could potentially affect the

classification accuracy. Therefore, for a better understanding of where movement

artifacts, if any, could affect the physiological features in use, I performed multiple

times the Wilcoxon rank-sum test [193] (i.e., one test per feature) comparing both

scenarios, namely, data acquired from participants using the gamepad versus data

acquired while using the FlyJacket setup. In this comparison, the Wilcoxon rank-sum

test revealed that there is no evidence of stochastic dominance between most of the

features (p-val > 0.05), except for eight of them, namely, PPCSI, PPHF sband 5n, PARMS,

PTTM HF pond, RSPPrd Mean, RSPRate Diff RMS, RSAR2 Std, and RSPEsp Time Median. With

these results, we can conclude that most of the features (about two-third) are robust

to movement artifacts, but eight of them (about one-third) may be affected.

However, the Wilcoxon rank-sum test revealed a significant stochastic dominance in

three features (i.e., SKTAverage Power, RSPInsp Time Mean, and RSPEsp Time Median); while

performing a within-group comparison; that is, a comparing among subjects who

used only the gamepad. Similarly, the Wilcoxon rank-sum test revealed a significant

stochastic dominance in seven features (i.e., PPCSI, PPHF sband 5n, PARMS, PRTMedian,

PTTM HF pond, RSPInsp Time Mean, and RSPRate Diff RMS), while performing a compari-
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son among subjects who used only the FlyJacket setup. Therefore, being most of the

significant dominance present in both within and between groups, it is difficult to

conclude that movements are affecting the results, exception made for RSPPrd Mean

and RSAR2 Std.

However, the risk of biasing the results due to movement artifacts is minimized

by the fact that 86.9% of the samples used to train the classifier comes from study

protocol 1 (with the gamepad), in which the movements were minimal and limited

to the thumbs. Moreover, all features, normalization coefficients, and regularization

terms were also chosen based on data coming from study protocol 1 exclusively.

Therefore, if any movement artifact is present, it should not significantly influence

the classification.

3.8.6 Emulated online cognitive workload monitoring

A visual representation of the emulated online cognitive workload monitoring of both

UBM and SSM is shown in Fig. 3.10. Since the order of the tasks was randomized,

I only reported the 76 samples of the sequences having consecutive transitions

between B and F3M tasks. This analysis was based on the experiment performed with

the gamepad (Study protocol 1, Trial 3). During the first 180 seconds, participants

performed the B task, which had a low level of workload. For the last 180 seconds,

participants perform the F3M task, which had a higher level of workload. The

detection was done on the test set, where features were extracted from a 60 seconds

sliding window and no overlap. Negative and positive scores denoted low and high

workloads, respectively. A Wilcoxon rank-sum test with 76 samples indicated that

the scores before and after 180 seconds were significantly different (p-value < 10−8).

Another interesting aspect that turns out from Fig. 3.10 is the contradictory differ-

ence between the averaged predicted scores of the UBM and SSM. As the SSM is

performing better than the UBM, I would expect to see a bigger absolute value of the

averaged score of the SSM than to the one of the UBM. However, the upper margin

of the standard deviation of the predicted score reported in the interval between 60

and 180 seconds (Task B) and the lower margin in the interval between 240 and 360

seconds (Task F3M) seem to be similar for both UBM and SSM. This behaviour may

be explained by the attempt of the SVM to choose the hyperplane that maximized

the distance from it to the nearest data point on each side. Thus, as the SVM tends to

maximize the margins, the performance of the SVM based SSM may be limited to a

consistent but marginal improvement.
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Figure 3.10 – Comparison of a Universal Background Model (UBM) vs. a Subject-
Specific Model (SSM) on a simulated online cognitive workload monitoring (60
seconds sliding window and no overlap). A negative score denotes low workloads
and a positive score denotes high workloads. Participants performed the B task for
180 seconds, followed by the F3M task for other 180 seconds.

By comparing Fig. 3.6 and Fig. 3.10, we can see that both perceived and detected

cognitive workload were affected by a large variance. However, as shown in Fig. 3.10,

such a variance was partially reduced by the use of the SSM, which contributed to

better fit the physiological response of a single subject.

3.9 Conclusion

In this work, I proposed a reliable subject-specific machine learning algorithm

for continuous cognitive-workload monitoring in search and rescue missions with

drones. My multi-modal cognitive workload monitoring model combines the infor-

mation of features extracted from physiological signals (i.e, RSP, ECG, PPG, and SKT)

acquired in a non-invasive way.

I performed an exhaustive investigation involving up to 384 features and concluded

that only 25 are required to get the highest classification accuracy. In addition, I

explored different feature normalization techniques to reduce both subject and day

inter-variability. My results showed that a combination of both day and subject
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normalization improved the detection accuracy. Moreover, I introduced a novel SVM

based learning method suitable for subject-specific optimizations. In particular, this

model could distinguish between low and high cognitive workload with an average

accuracy of 87.3%, on an unseen test set. Furthermore, I tested my model on 10 new

participants using the flight simulator with an advanced controller, FlyJacket [153],

and the proposed model reached an average accuracy of 91.2%.

In conclusion, my model can be used to monitor cognitive workload while driving a

drone in real-life applications, with both traditional and advanced drone controllers,

such as FlyJacket. Moreover, information of the cognitive workload perceived by

the user, which can be reliably obtained with the proposed model in real time, can

be used to improve shared-control systems [25], by modulating the human-robot

interaction and dynamically adapt the level of assistance. An adaptive interaction

between rescuers and drones is, in fact, a key factor to ensure an efficient execution

of the missions.
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4 Wearable and Multimodal Cogni-
tive Workload Monitoring System

4.1 Introduction

Cognitive workload affects operators’ performance, mainly in the case of high-risk

and high-demanding situations [103, 115, 175]. Thus, an unobtrusive and real-time

cognitive workload monitoring system could provide important feedback about the

operator’s state and resulting performance in decision-making instances. Therefore,

such a system could adaptively support the operators according to their specific

needs, improve their performance, and potentially decrease hazards.

In the last years, the assessment of cognitive workload monitoring from physiological

signals has been addressed in different studies [23, 77, 146], providing numerous

solutions that are suitable for real-time applications. A combined use of different

physiological signals seems to be the most reliable approach, as due to its multi-

dimensional nature, cognitive workload provokes multiple physiological reactions,

which are visible in Respiratory Activity (RSP), Electrocardiogram (ECG), pulse wave

through Photoplethysmogram (PPG), Skin Temperature (SKT) and Electrodermal

Activity (EDA) [10, 30, 113]. Thanks to the recent explosion of commercial wearable

devices, different studies have started to use them for the detection of cognitive

workload [30, 62, 63, 114]. However, the use of such wearable devices is limited to

data acquisition and storage, either onboard [30, 62] or on a cloud [63, 114], and the

inference typically relies on a post processing approach. The reason is that onboard

multimodal data processing is often not allowed by the manufacture or limited by

the computational resources offered by these wearables. Therefore, to address the

online cognitive workload monitoring, there is a need for new wearable embedded

systems that can do both physiological signals acquisition and edge processing.
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The design of such a real-time wearable embedded system presents two main chal-

lenges. First, stringent processing and memory constraints of an embedded device

can limit the performance and the execution of the algorithms, which should be com-

pleted within a specified time. Dealing with such constraints is indeed a challenge, as

a multimodal cognitive workload monitoring system requires the acquisition and the

processing of a large amount of data. Therefore, optimizations need to be considered

to avoid delays and potentially large memory requirements, which can affect both

functionality and performance.

Second, energy consumption should be maintained as low as possible to gain in size

and battery life. Therefore, efficient and smart algorithms are needed to guarantee

high performance in terms of energy consumption, accuracy, and robustness. In

this regard, it should be possible to dynamically adapt the level of complexity by

addressing the trade-offs between the required accuracy and the available energy

of the system. A previous work targeting emotion recognition [58] motivates this

assumption. The authors showed that a complex classifier typically reaches high

detection performance, but it frequently lacks in energy efficiency. On the other

hand, a simple classifier cannot always guarantee high detection performance, but it

is energetically more efficient. Therefore, they presented an algorithm that continues

increasing the model complexity until the system is confident about its detection.

Then, it finally provides the result. That solution has the advantage of assuring the

best detection performance all the time. However, it obliges to acquire and store all

physiological signals required for eventual further processing, which is not optimal

in terms of energy efficiency. Therefore, instead of switching to the next model until

the system is confident about its current detection, I propose to provide the first

obtained result, and if needed, to select a new model only for the next detection

cycle.

To verify these hypotheses, in this chapter, I presented a new wearable embedded

system design for online cognitive workload monitoring in search and rescue mis-

sions with drones. On the hardware side, it includes a multi-channel physiological

signals acquisition and a low-power processing platform, which is suited for cogni-

tive workload monitoring. On the software side, the proposed wearable embedded

system includes novel energy-aware bio-signal processing and the application of

a self-aware concept for scalable energy consumption. To this aim, different em-

bedded machine learning algorithms and methods are used for online cognitive

workload monitoring, exploiting the trade-offs between the required accuracy and

the available energy of the system.
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Contributions of this Chapter

The realization of a wearable system for non-invasive online cognitive workload mon-

itoring from physiological signals in Search and Rescue (SAR) missions with drones

is the focus of the work in this chapter, which proposes the following contributions:

• To achieve non-invasive online cognitive workload monitoring and explore the

trade-offs between the required accuracy and the energy consumption. To this

purpose, I present a novel wearable system for physiological signal acquisition

and online processing.

• The proposed multi-channel signal-acquisition and processing platform in-

cludes embedded algorithms and methods that have been validated for online

monitoring of low and high levels of cognitive workload, achieving an accuracy

of 75%.

• To optimize energy consumption, I propose a self-aware approach that exploits

a scalable machine-learning method with different power-saving levels, which

yields an increase of 78% of the battery life. The approach shows an acceptable

accuracy loss with respect to the best universal background model presented

in chapter 3 (i.e., from a theoretical 80.32% to 77.65%).

Publications

This work yielded the following publications:

• F. Dell’Agnola, U. Pale, A. Arza, and D. Atienza. Wearable Embedded Sys-

tem for Multimodal Cognitive Workload Monitoring. IEEE Transactions on

Biomedical Circuits and Systems, In preparation.

• V. Montesinos, F. Dell’Agnola, A. Arza, and D. Atienza. Multi-Modal Acute

Stress Recognition Using Off-the-Shelf Wearable Devices. 41st International

Engineering in Medicine and Biology Conference (EMBC), Berlin, Germany,

2019.

Chapter Outline

The rest of the chapter is organized as follows. Section 4.2 gives an overview of the

state of the art, covering the field of cognitive workload monitoring from physiologi-
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cal signals, the wearable device that has been used for that purpose, and the main

applications applying the concept of self-awareness. Section 4.3 gives an overview of

the proposed system. Section 4.4 and Section 4.5 provide the details of both hard-

ware and software design, respectively. Section 4.6 describes the validation steps

applied to obtain the results reported in Section 4.7, together with a discussion of

the validation approach. Finally, Section 4.8 presents the main conclusions of this

chapter.

4.2 Cognitive Workload Monitoring Systems: State of the Art

The mental effort required to perform a single or a combination of tasks is called

cognitive workload [23]. Its monitoring has been addressed in different studies,

allowing the development of different algorithms and methods. Compared to surveys

[75, 148] and performance metrics [38, 100], the use of physiological signals is the

most promising method to assess a continuous and unobtrusive monitoring [23].

Moreover, due to its multi-modal physiological response, many studies showed that

the cognitive workload can be detected from a combination of different physiological

signals, such as RSP, ECG, PPG, SKT, EDA, and Electroencephalogram (EEG) [23, 77,

146]. However, most of the proposed methods mainly rely on bulky setups [16, 186]

used for data acquisition and on computers for offline post-processing [161, 187].

As reported in Table 4.1, in more recent studies, researchers started using portable

devices [30, 62, 63] as well as wearable sensors [14, 65, 114]. However, most of these

wearable devices are simple acquisition systems, such as Empatica E4 [46] and

Everion® [17] wristbands, where data are collected and stored locally or on a cloud,

for visualization or post-processing on a computer. Although this type of devices is

interesting for data acquisition, the limited accessibility of onboard data processing

and software personalization is often a weakness, especially in terms of energy

consumption. In fact, the streaming and the storage of such a significant volume of

data is energetically not efficient, in particular, if data storage is on a cloud instead of

locally. Therefore, to reduce data streaming and consequent energy consumption,

edge processing has to be considered, that is, the processing has to be done as much

as possible on the sensor node.
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4.2.1 Bio-signal acquisition with fitness devices

This type of approach, namely, edge processing, has been already applied in many

fields, such as in fitness monitoring. Since the late 20th century, the development

of new wearable fitness tracking devices has grown considerably. Initially, such

wearable devices were simple pedometer or heart rate monitoring, and now, a variety

of fitness parameters are directly computed in the new generation of wearables. Few

examples are Suunto [172], Garmin [60], Polar [139], Fitbit [55], and Jawbone UP [84].

Although many wearable devices exist to monitor physical exercise and life style daily

activity, they are mainly designed to target that specific application only. Thus, they

are not easily adaptable to other applications, such as cognitive workload monitoring.

More flexible solutions are instead offered by smartwatches (e.g. from Apple [9],

Huawei [80], and Samsung [156]), which can be fully programmable by experts.

However, these watches still lack sensors, such as RSP, ECG and SKT. Moreover, the

access to raw data is often not allowed. In fact, as the measurements are particularly

susceptible to degradation, signal conditioning is typically applied by hardware or by

proprietary low-level algorithms, which are not accessible to the users. For instance,

in such devices, the heart rate is traditionally computed as a windowed average of

RR intervals in terms of beats per minute, which makes the measurement more

robust to noise due to motion artifacts, environment, and user error [67]. However,

such a conditioning step can remove important information of the signal and affect

the computation of features such as Heart Rate Variability (HRV), as the variability

is attenuated by averaging the RR intervals. Therefore, the extraction of reliable

features with fitness-oriented devices is a problem.

4.2.2 Bio-signal acquisition with healthcare devices

The development of reliable wearable devices including both signal acquisition

and online processing has been addressed as well in the field of healthcare, where

detecting a disease with a wearable device is particularly interesting for two main

reasons. First, it saves lives, as an early detection of critical abnormal situations

allows a prompt reaction from the medical service. In this regard, many diseases

has been addressed in the literature, such as the detection of myocardial infarction

[163], paroxysmal atrial fibrillation [37], and epilepsy [58], with platforms such as

INYU [169] and e-Glass [197]. The second reason focuses on reducing the costs of

close and continuous medical supervision and care of particular diseases, such as

sleep apnea [168], and episodes of arrhythmia [151]. The data analysis required by a

continuous supervision of a patient suffering from such diseases is unsustainable for
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traditional healthcare delivery systems, as specialists have to process a lot of data to

find sometimes only few abnormal localised episodes. Therefore, wearable devices

have been widely used to offer large-scale and cost-effective solutions to this problem.

The use of wearable and miniaturized sensors, able to continuously measure and

report abnormal and unforeseen situations, can indeed provide the ubiquitous, long-

term and even real-time monitoring required by the patients without hospitalization

[152]. However, although this technology has transformed healthcare by allowing

continuous monitoring of patients, the type and number of sensors are limited,

and some physiological signals are not available on a single platform. For instance,

INYU [169] obtains vital signs such as ECG, RSP and EDA, but not PPG, nor SKT. The

SHIMMER baseboard allows physiological measurements such as ECG and EDA,

but not RSP, PPG, nor SKT. To including these measurements, the systems require

external expansion platforms, which will affect the communication rate and increase

energy consumption. Therefore, there is a need to develop a new wearable device for

physiological signals acquisition and processing that can be used for online cognitive

workload monitoring.

4.2.3 Embedded systems and the concept of self-awareness

The lack of reliable and open platforms is also limiting the investigation and the devel-

opment of new techniques targeting optimizations in terms of energy consumption.

In this regard, different studies demonstrated the efficiency of application-oriented

optimization methods, which address the trade-off between the required accuracy of

the embedded application and the available energy of the system. These techniques

rely on the concept of self-awareness, introduced to describe the knowledge about

the system itself and the environment in which it operates [90, 94]. Self-awareness

has three main phases that are translated into an Observe-Decide-Act (ODA) loop.

First, observations are collected and evaluated to determine the possible actions to

fulfill the system’s objectives (e.g., reduce energy consumption and increase detec-

tion performance). Then, a decision is made based on the best use of the available

actions and applied to meet the system’s goals [79]. Self-awareness is indeed the key

to designing new intelligent wearable systems and the topic has been the subject

of different studies [31, 90, 94]. In some studies, researchers started considering

this concept in embedded systems [6] and even in System on Chip (SoC) [44, 82],

enabling correct functionality within desired constraints despite the presence of

highly dynamic changes in both the application and the environment [7, 48, 142].

Recently, the concept of self-awareness has been applied to biomedical applications
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and, in particular, in the context of medical wearable systems such as seizure detec-

tion systems [58], where different conditions of both the patient and the environment

can significantly affect the quality of the output of the system. In [173], the authors

measured different parameters such as the system’s confidence in order to improve

the observation process of emotion recognition and get a high-quality description

of the system from raw data. In [8], the authors adopted situation-awareness and

personalized data (e.g., gender and age) to increase the accuracy of remote health

monitoring from wearable sensors. Although a wide range of studies applied the

concept of self-awareness, it has not been considered yet for cognitive workload

monitoring.

Moreover, current methods mainly rely on the awareness of environmental situ-

ations, but recent approaches have started to put the focus on the classification

performance [58,129]. However, these recent methods mainly focus on the optimiza-

tion of the machine-learning stage only, that is, without fully extending the concept

to the acquisition layer. Extending the optimization to the acquisition layer is very

important, as this layer is often responsible for the highest energy consumption of

an embedded system [8, 151, 152]. Therefore, further investigations are needed.

In conclusion, previous studies in cognitive workload monitoring have mainly fo-

cused on offline approaches using bulky setups or multiple wearable systems. There-

fore, a further effort has to be made to target online approaches and minimize the

invasiveness of current systems in the context of cognitive workload monitoring.

Moreover, in the literature of biomedical systems, the concept of self-awareness has

started to be explored, but its use has never been considered for energy-efficient

designs of systems monitoring cognitive workload. Therefore, the limitations of wear-

able systems, in terms of computational resources and energy consumption, need to

be further investigated to exploit the concept of self-awareness, while also consid-

ering its impact on real-time cognitive workload detection based on physiological

signals.

4.3 Self-Aware and Energy-Scalable System for Cognitive Work-

load Monitoring

This section provides a high-level description of the proposed real-time wearable

detection system. As an overview, Figure 4.1 shows a graphical representation of the

main architectural blocks designed to detect cognitive workload with this system.
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Figure 4.1 – Overview of the proposed self-aware and energy-scalable wearable
system for online cognitive workload monitoring.

The main architecture of the applied embedded machine-learning technique in-

cludes few standard steps, namely, preprocessing (i.e., filtering and delineation),

feature extraction, and classification. These steps are the ones presented in Chap-

ter 3. However, for the classification, I used a linear Support Vector Machine (SVM)

without any subject-specific optimization, that is, I used a single model for all sub-

jects. The main reasons motivating this choice were the followings: This simple SVM

achieves a good performance compared to other classifiers, it avoids overfitting due

to its low capacity, and is particularly interesting for embedded implementations.

Therefore, it is the proper candidate to verify the feasibility of an online cognitive

workload detection with an embedded device. More details about the embedded

machine-learning technique applied to target cognitive workload monitoring are

given in Sec. 4.3.2.

To improve the energy efficiency of the system, and consequently, the battery life

while maintaining high detection accuracy, I present a novel self-aware energy-

management (Section 4.3.1). This energy-management is an application of the

self-aware concept for scalable energy consumption. This application relies on an

additional strength of the SVM, which provides a score indicating the likelihood

that a label comes from a particular class. This score is used as a measure of self-

awareness, that is, an estimation of the detection confidence. Then, based on the

estimated confidence, the model selects the desired level of complexity to detect

the cognitive workload exploiting the trade-offs between the required accuracy and

the available energy of the system. For this particular case, I arbitrarily chose three

levels of complexity, which resulted in the use of three SVM models, one for each

level. Although the proposed self-aware approach relies on SVMs, this approach is

not restricted to this particular type of classifier. However, it applies to any binary
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classification technique that provides a non-binary score (e.g., likelihood, detection

probability, and similarity score).

4.3.1 Self-Aware Energy Management

The original concept of self-awareness is usually applied to adapt the model to

specific situations [90, 94]. Similarly, this concept finds an application in cognitive

workload monitoring, as a wide range of studies showed the need for different combi-

nations of physiological signals, which depend on the situation [23,77,146]. However,

this is not the purpose of this work. Instead, it should be possible to dynamically

adapt the level of the model complexity (e.g., by adjusting the number of input fea-

tures) to improve energy efficiency while keeping the highest detection performance.

A work targeting emotion recognition [129] motivates this assumption. There, the au-

thors showed that a simple classifier, although energetically efficient, cannot always

guarantee high detection performance. On the other hand, a complex classifier can

achieve high detection performance, but it cannot provide high energy efficiency.

Therefore, I addressed this trade-off by proposing an application of the self-aware

concept for online energy-scalable embedded machine-learning algorithms in the

field of cognitive workload monitoring.

Proposed Self-Aware Energy-Scalable Model

The main idea behind this self-aware energy-management technique is to start

providing a detection with the simplest machine-learning model, which shows an

acceptable detection performance and minimum energy consumption. Then, based

on how confident this detection is, the model is kept or replaced. Figure 4.2 shows the

overall flow of a cycle of the proposed energy-scalable embedded machine-learning

algorithm.

The work in [58] presents a similar approach used for epileptic seizures detection.

In brief, that algorithm continues increasing the model complexity until the system

is confident about its detection. Then, it finally provides the result. That solution

has the advantage of assuring the best detection performance during the complete

considered time. However, it obliges to acquire and store all physiological signals

required for eventual further processing, which is not optimal in terms of energy

efficiency. Therefore, instead of switching to the next model until the system is

confident about its current detection, I propose to provide the first obtained result,
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Figure 4.2 – Self-aware concept of energy-scalable embedded machine-learning
algorithms and methods for online cognitive workload monitoring.

and if needed, to select a new model only for the next detection cycle.

Here, I extended the concept of self-awareness and energy scalable machine-learning

system down to the acquisition level, proposing a solution energetically more ef-

ficient. On the other hand, the confidence detection of this solution relies on an

evaluation delayed by one cycle. In other words, the confidence level depends on the

score provided by the previous detection cycle (i.e., 60 seconds before the current

one), which may differ from the confidence of the current detection. Therefore, the

proposed solution may pay the price of the improvement in energy efficiency with a

possible drop in detection performance.
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To control the trade-off between detection performance and energy consumption, I

had to evaluate both strengths and constraints of the proposed cognitive workload

detection method. Moreover, to design this multi-level approach, I had to identify the

possible levels that this energy-scalable machine-learning system should have. For

this purpose, I first analyzed the sensitivity of the system to identify the importance

of each physiological signal. Then, I evaluated the complexity of the algorithms

running on the microcontroller. This evaluation aimed to identify the computational

effort needed to process the acquired signals and its consequent energy consumption.

Finally, I measured the average energy consumption of the system switching between

the levels to estimate the battery lifetime.

Levels of Energy-Scalable

To validate this approach, I proposed a case study with the following three levels of

scaled-energy embedded machine-learning algorithms based on a linear SVM.

Level 0 relies on features extracted from a single physiological signal, namely, the

RSP signal. This choice was motivated by the results reported in Section 4.7, where I

showed that the features of this signal were the most important and enough to get an

accurate estimation of the cognitive workload. The use of a single sensor drastically

reduced the energy consumption of the system while preserving an acceptable

classification accuracy.

Level 1 avails from the features extracted from RSP, ECG, and SKT, that is, all features

except those from PPG. This choice was encouraged by the power-saving obtained by

removing PPG. As reported in Section 4.7, both PPG signal acquisition and processing

were the most expensive in terms of energy consumption compared to the other

signals. Moreover, as reported in Section 4.7, the classification accuracy was lightly

affected by the removal of the PPG features. Therefore, Level 1 offered an acceptable

classification accuracy while it drastically reduced the energy consumption of the

system.

Level 2 benefits from the features extracted from all signals, which allowed accurate

detection of different levels of cognitive workload. Although Level 2 is the most

accurate in terms of classification accuracy, the energy consumption of this model

is the highest, as both the number of active sensors and the computation effort

required in Level 2 are the most important.

Although I proposed only three levels of energy scalability, the method also applies to
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a general case of multiple levels (L) of machine-learning models, which can address

different trade-offs between detection performance and energy consumption.

Proposed Self-Aware Manager

To switch between the three different levels, I used the likelihood score provided

by the SVM. As shown in Figure 4.3, when the absolute value of this score is lower

than a certain threshold (i.e., close to the separation hyperplane), the classification

is considered inaccurate. Consequently, as previously explained, the system needs

to select a model with a higher level of complexity for the next detection cycle. On

the other hand, when the absolute value of the score is high, the classification is

considered accurate, and a simple model can be used for the next detection.

|score[k −1]|

0.8

0.3

0

(Threshold 0)

(Threshold 1)

Level 0

Level 1

Level 2

Figure 4.3 – Switching principle of the Self-Aware Manager

In this specific case of three levels of scalability, we need to define two thresholds.

Intuitively, we could set these thresholds equal to 1, as it is the hard margin of SVM.

However, to generalize the approach to cases in which the data are not linearly sepa-

rable, I selected the thresholds from values in a range between 0 and the maximum

absolute value of the resubstitution score; that is, the score derived by applying a

model to the training data from which it was learned. The obtained thresholds are

0.3 and 0.8, which split Level 1 from Level 2 and Level 0 from Level 1, respectively.

These thresholds were validated with a development set randomly extracted from

the training data collected during the experiments described in Chapter 3.
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4.3.2 Embedded Machine-Learning Algorithm

As shown in Algorithm 2, the training phase of the proposed classification procedure

includes two main steps. The first step consists of training the classifiers of each level

(l ), with the selected training set (Xtr ) and the corresponding ground-truth labels

(ytr ) (Lines 2 and 3). The second step aims to define the (L−1) required thresholds

needed to switch between the levels (Lines 4 to 15). To this aim, the algorithm iterates

the possible threshold candidates (th) in a range from 0 to thMax with an increment of

0.05, where thMax is the maximum absolute resubstitution score (Lines 5 to 15). Then,

if the absolute value of the previous score is smaller than the threshold candidate, the

score is calculated with the model of level l , otherwise, it is calculated with a more

complex model, that is, the model of level l +1. Next, the sign of the current score

yields the target, that is, the estimated class associated with the current k observation

of the development (dv) set (Line 11). Lines 6 to 11 apply to all Ndv observations

of the development set. Once all targets are available, the algorithm computes the

accuracy (Line 12). Finally, if the accuracy reaches a plateau (Line 13), the algorithm

assigns the obtained value to threshold l (Line 14), and it stops the iteration (Line

15). The algorithm repeats Lines 5 to 15 for each needed threshold.

Algorithm 2 Self-Aware Classification - train phase

1: procedure TRAIN(Xtr,ytr,Xdv,ydv,L, thMax)
2: for l ← 0 to L−1 do
3: SVMl Train(Xtr,ytr) . Train all SVMs

4: for l ← 0 to L−2 do . Search for L−1 thresholds
5: for th ← 0 to thMax do . Iterate possible values for threshold[l ]
6: for k ← 1 to Ndv do . Iterate data in development set
7: if |score[k −1]| > th then . Check good confidence
8: score[k] ← SVMl Predict(Xdv[k]) . Compute score
9: else

10: score[k] ← SVMl+1 Predict(Xdv[k]) .Use complex model

11: target[k] ← sign(score[k]) . Compute target

12: accuracy[th] ←∑Ndv

k=1(target[k] == ydv[k])/Ndv) . Compute accuracy
13: if |accuracy[th]−accuracy[th−1]| < ξ then . Accuracy plateau
14: threshold[l ] ← th . Store threshold[l ]
15: break . Stop searching for threshold[l ]

16: return SVM, threshold

Once the energy-scaled models of each level are trained, and the thresholds indicat-

ing the confidence bounds are defined, the full self-aware machine-learning model
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is ready to be used for inference. To this end, Algorithm 3 shows the classification

procedure. The algorithm starts by selecting level 0 (Line 2) and checks if the absolute

value of the previous score is higher than threshold 0 (Line 3). If it is not the case, it

means that the previous inference was not confident enough; that is, the absolute

value of the score was too close to 0. In this case, the algorithm repeats the process

from Line 2 by selecting a higher level. If instead, the previous inference provided

a high score, the algorithm uses the model corresponding to the selected level to

process the observation Xte[k] of the test set and calculate the score (Line 4). Finally,

it exits the loop (Line 5), computes the target (Line 6), and returns the values of both

score and target (Line 7).

Algorithm 3 Self-Aware Classification - test phase

1: function TEST(Xte[k],SVM,L, score[k −1], threshold)
2: for l ← 0 to L−1 do
3: if |score[k −1]| > threshold[l ] or l == L−1 then . Check confidence
4: score[k] ← SVMl Predict(Xte[k]) . Compute score
5: break . Stop iteration

6: target[k] ← sign(score[k]) . Compute target
7: return score[k], target[k]

4.4 Multi-Sensor Hardware Design

To assess cognitive workload monitoring from physiological signals, I designed

the wearable system presented in this section. This wearable platform has been

introduced in Chapter 2, where I presented the section related to the control of a

drone. In this section, I provide a description of the remaining components and

functionalities, which are intended for cognitive workload monitoring.

Figure 4.4 shows the complete block diagram of the proposed wearable system,

where I highlighted the principal components. An Ultra-Low Power (ULP) 32-bit

Microcontroller Unit (MCU) Arm Cortex-M3 is the core of this system, and it is

responsible for both online computing and power management. For the signal acqui-

sition, the system connects a validated set of commercial off-the-shelf components,

intended for the acquisition of different physiological signals. Moreover, an Inertial

Measurement Unit (IMU), an additional module including a 3-axis accelerometer,

gyroscope, and magnetometer, is intended for gesture recognition as introduced

in chapter 2. However, the measurements of this IMU can serve as well for signal

artifacts removal. Furthermore, the platform includes different communication
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technologies allowing interconnections with external devices, such as a PC, tablets,

smartphones, or even smartwatches. Finally, the platform includes a Micro SD Card

socket for onboard data storage. Figure 4.5 shows the prototype of the proposed

wearable system, and in particular a picture of both front ( 4.5a) and rear ( 4.5b)

views.

Figure 4.4 – Block diagram of the proposed wearable system.

4.4.1 Micro-Controller Unit

The core element of the proposed sensor node is a STM32L1 MCU from STMi-

croelectronics [166], which has been used in wireless sensors for medical sensing

applications [169]. The STM32L1 is an ultra-low-power platform equipped with

an Arm®Cortex®-M3 32-bit CPU from 32 kHz up to 32 MHz, 384 Kbytes of Flash

memory, 48 Kbytes of RAM, 12 Kbytes of true EEPROM, and 128-byte backup regis-

ter. Among all these characteristics, the crucial ones are the CPU and the memory,

namely, the Flash and the RAM. This MCU offers a good compromise between com-

putational capabilities, storage, and energy consumption. The use of a Cortex-M0

would allow a further reduction of energy consumption, but the computational re-

sources would be insufficient for this application. On the other hand, a Cortex-M4

has much more resources than a Cortex-M3, but it suffers from elevated energy

consumption.

The STM32L1 also includes analog peripherals, such as three operational amplifiers,
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IMU MCU BLE RESET
ECG

Connector

SKT
Connector

EXTI USART USB ON/OFF
BCM

Connector

(a) PCB front view.
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(b) PCB back view.

Figure 4.5 – Prototype of the proposed wearable system.
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a 21-channel 12-bit ADC 1 Msps, a 2-channel 12-bit DAC with output buffers, two

ultra-low-power-comparators, which can be used for instance to monitor input

voltage and battery level. Moreover, the STM32L1 includes 11 timers, namely, one

32-bit, eight 16-bit, and two watchdog timers to assure the synchronization of the

application. Finally, the STM32L1 includes a 12-channel DMA controller and 12

peripheral communication interfaces, namely, one Universal Serial Bus (USB) 2.0,

five Universal Synchronous and Asynchronous Receiver-Transmitters (USARTs),

three Serial Peripheral Interfaces (SPIs), two I2Cs, and one SDIO interface. These

interfaces, SPIs in particular, are used to connect additional on-board modules (i.e.,

sensors, communication, and storage modules) to the MCU.

4.4.2 Bio-Sensing Modules

For the acquisition of the physiological signals, different bio-sensing modules are

connected to the MCU through an SPI. Table 4.2 summarizes the selected modules

and their possible configurations. These modules include both voltage and optical

sensors as follows.

Table 4.2 – Bio-sensors characteristics

Signal Component Sampling
frequency

Range Precision

ECG ADS1292 [179] 8 kHz ± 2.42 V 24 bits

RSP ADS1292 [179] 8 kHz 2-10 kΩ 24 bits

PPG AFE4490 [181] 5 kHz ± 1.2 V 22 bits

SKT LMT70 [182] 1 MHz 20−42° 12 bits

BCM AFE4300 [180] 860 Hz 0-2.5 kΩ 16 bits

A Low-Power, 2-Channel, 24-Bit Analog Front-End is mounted for both ECG and

RSP measurements. The signal acquisition rate can be up to 8 kHz, but a sampling

frequency of 125 Hz is more than enough for the targeted application. The input

range of ± 2.42 V and a precision of 24 bits allow to detect extremely weak signals

ranging from 0.5 mV to 5.0 mV (such as ECG), which is affected by a DC component

of up to ± 300 mV (resulting from the electrode-skin contact), and a common-mode

component resulting from the potential between the electrodes and the ground (up

to 1.5 V).

An additional module is connected for PPG and Pulse Oximetry, that is, the AFE4490
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Analog Front-End from Texas Instruments [181]. This module comprises a receiver

channel with a 22-bit Analog-to-Digital Converter (ADC) and a LED transmit section

(with an integrated LED driver). The sampling frequency is up to 5 kHz and it is very

configurable in terms of timings, which allows complete control of the acquisition of

the signal.

Moreover, an analog temperature sensor (i.e. LMT70 from Texas Instruments [182])

is connected to the 12-bit ADC of the MCU for SKT measurements. The sensor has

an accuracy of 0.05°C from 20°C to 42°C. The sampling frequency can be up to 1

MHz, which is the one of the ADC integrated in the MCU.

Finally, the system also includes an additional 16-bit Analog Front-End (i.e. AFE4300)

[180] for body impedance measurements, which can be used to measure Body

Composition Monitor (BCM), Impedance Cardiogram (ICG), EDA, and RSP. The

sampling rate is up to 860 Hz.

4.4.3 Communications

As explained in Section 2.3.3, Bluetooth Low Energy (BLE) connectivity is provided by

nRF8001, a single-chip designed for low-power applications (current consumption of

12.7 mA for transmission, 14.6 mA for reception, 2 mA in idle state and 0.5 µA in sleep

mode). The BLE module is directly connected via SPI to the MCU, which controls the

nRF8001 operating modes utilizing commands defined by the Application Controller

Interface (ACI).

For accessing external devices, allowing data gathering from other sensors or com-

munications with a PC, the device offers an auxiliary configurable interface, which

can be either through an Inter-Integrated Circuit (I2C) bus or a USART.

The proposed platform also mounts a Micro SD Flash Socket supporting microSD

cards with capacities up to 2 Gbytes. This option allows quick data collection and

onboard storage without the need for streaming data over the radio to a remote

device, which would be energetically inefficient.

For programming the MCU, there are two options. First, through a Serial Wire Debug

(SWD) interface and the ST-LINK/V2 debugger and programmer. Alternatively, it

is possible to program the MCU through USB. In this regard, the Device Firmware

Upgrade (DFU) utility has to be used to manage the interaction with the STM32

system memory bootloader, running from the Flash of the MCU, thus allowing
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internal memory programming. USB is also used to supply the device and charge

the battery.

4.4.4 Power Management

A switch controls the power-on/off sequence of the device; that is, it enables the

power regulators and releases the reset line of the MCU. If needed, the reset button

can pull down again the reset line, causing a reinitialization of the MCU. To assure the

low-power usage capabilities of the proposed sensor node, the power management of

the proposed system involves the control of both the MCU and its peripherals. To this

aim, and to achieve the best compromise between low energy consumption, short

startup time, and available wakeup sources, the MCU offers different operational

modes (see Table 4.3).

Table 4.3 – Power modes of the Microcontroller Unit (MCU) (from Run/active down
to Standby mode), with the corresponding current consumption and wakeup time to
Run mode.

Operational mode Current consumption Wakeup time

Run mode (from Flash) 230 µA/MHz 0 µs

Sleep mode (from Flash) 43 µA/MHz 0.4 µs

Low-power run mode 11 µA 3 µs

Low-power sleep mode 4.4µA 46 µs

Stop mode with RTC 1.35 µA <8 µs

Stop mode without RTC 0.475 µA <8 µs

Standby mode with RTC 1.15 µA 58 µs

Standby mode without RTC 0.305 µA 58 µs

Run mode is the normal operating mode, where all the required resources of the

MCU are active. The current consumption of the MCU in this mode can be down to

230 µA/MHz, and about 10.5 mA with a code executed from the Flash at 32 MHz. In

Sleep mode, only the Central Processing Unit (CPU) is stopped, while all resources of

the MCU continue to operate and can wake up the CPU when an interrupt occurs.

Sleep mode power consumption is about 2 mA at 32 MHz with all peripherals off.

The MCU can be woken up in 0.4 µs by any interrupt or event. Low-Power Run mode

is achieved by reducing the clock frequency and the number of enabled resources.
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Moreover, the internal regulator goes in low-power mode to minimize its operating

current. Low-Power Sleep mode is achieved by entering Sleep mode with the internal

voltage regulator in Low-power mode. In Low-power sleep mode, both the clock

frequency and the number of enabled resources are limited. The system reverts to

the run mode with the regulator on, when the wakeup sequence is triggered by an

event or an interrupt. Stop mode achieves the lowest power consumption while

retaining the Random Access Memory (RAM) and register contents and Real-Time

Clock (RTC). To reach this mode, all clocks are stopped, exception made for the

RTC, which can remain active. The internal voltage regulator is in low-power mode.

The MCU can be woken up in 8 µs by interrupts or events on specific external lines.

Standby mode achieves the lowest power consumption. All clocks are stopped, apart

from the RTC, which can continue being active. The internal voltage regulator is

switched off so that the entire VCORE domain is powered off. After entering Standby

mode, the RAM and register contents are lost except for registers in the Standby

circuitry. The MCU exits Standby mode in 60 µs when an external reset (NRST pin)

or a rising edge on one of the three WKUP pins occurs. Otherwise, if the RTC is still

active, the MCU can be woken up by an IWDG reset, an RTC alarm (A or B), an RTC

tamper event, an RTC timestamp event, or an RTC Wakeup event.

Last but not least, the MCU is also responsible for the power management of the

peripherals (e.g., sensors, SD card, BLE module). Table 4.4 shows the power modes of

the different peripherals, with the corresponding current consumption and wakeup

time. Indeed, lowering the duty cycle of the interaction between peripherals is an

essential aspect to extend battery lifetime. Although this is not feasible with appli-

cations that require high-frequency data capture, the proposed application still has

room for maneuver to enhance power management, where peripherals can be pow-

ered off by firmware when not in use. In this regard, the MCU provides features, such

as timers and customized interrupt lines, that simplify the programming allowing

the implementation of event-driven applications.

4.5 Real-Time Software Design and Implementation

The SW architecture proposed for the implementation of the cognitive workload

detection is shown in Fig. 4.1 of Sec. 4.3. The processing flow of this architecture

includes five main layers, namely, signal acquisition, filtering, delineation, feature

extraction, and classification. This flow applies to all signals (i.e., PPG, ECG, RSP,

and SKT). To allow a future parallelization, the processing of each signal is managed
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Table 4.4 – Power modes of the different peripherals, with the corresponding current
consumption and wakeup time.

Front-End Current consumption Wakeup time

(Active) (Standby)

ADS1292 [179] 0.223 mA 0.053 mA 10 ms

AFE4300 [180] 0.97 mA 0.1 mA 1 ms

AFE4490 [181] 0.1 mA + LED 0.1 mA 1000 ms

LMT70 [182] 9.2µA 50 nA 0.6 ms

nRF8001 [122] 12.7 mA(1) 1.6 mA 2-10 ms

(1) Current consumption while transmitting.

independently to each other. The objective is also to create an independent and

modular implementation, providing a flexible solution that is suitable for applica-

tions different than cognitive workload detection. To this aim, the different layers of

the software are distributed into separate routines, at least one for each layer and

signal. The execution of these routines is activated by Interrupt Requests (IRQs),

triggered either by sensors, starting the corresponding Interrupt Service Routine

(ISR) of the acquisition layer, or by timers, which start the other ISRs. An overview

of the IRQ sources (i.e., timers and interrupt lines) that trigger them is shown in

Table 4.5, together with the corresponding activation frequency.

Table 4.5 – Distributed processing using interrupts and timers

Processing step SKT ECG RSP PPG

Acquisition ADC1 (1 s) EXTI2 (8 ms) EXTI2 (0.2 s) EXTI3 (15.625 ms)

Filtering - EXTI2 (8 ms) TIM7 (3 s) TIM7 (3 s)

Delineation TIM10 (1 s) TIM6 (1.75 s) TIM7 (3 s) TIM7 (3 s)

Feature extraction
and classification

TIM5 (60 s) TIM5 (60 s) TIM5 (60 s) TIM5 (60 s)

To balance system throughput versus interrupt latency, we assigned different In-

terrupt Priority Levels (IPLs). For instance, to avoid any loss of data, all IRQs of

the acquisition layer need to be treated more quickly than others. Moreover, as the

amount of processing in the acquisition layer is limited, it makes sense to assign a

higher priority to that kind of interrupt. Therefore, the acquisition has the highest
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IPL than others. Then, to assure a real-time detection, a second level of priority is

assigned to the layer executing both feature extraction and classification. Finally, a

third level of priority is assigned to the middle layer, that is, the layer in charge of

delineating the acquired signals.

4.5.1 Signal Acquisition

The first layer of the proposed system architecture is the signal acquisition. This

layer represents the lowest level of the full architecture, that is, the interface with the

sensors. In this layer, the samples of each signal are acquired, converted, and stored

in a circular buffer for later use from the upper layers.

As previously introduced, the signal acquisition is handled by ISRs, which are trig-

gered by IRQs coming from the corresponding sensors every time a sample is avail-

able, that is, at a predefined sampling rate. All the ISRs of the acquisition layer have

equal priority, but the highest one compared to the rest of the system. This means

that the system acquires any available samples regardless of what the system is cur-

rently processing. The only exception is made when the system is already acquiring

another signal. In this case, the new acquisition will be executed right after the one

in execution.

Once a sensor triggers its corresponding ISR, the MCU reads the input sample from

the registers of the sensors. As the ADCs of the sensors have different precision (i.e.,

different numbers of bits), the system truncates the sample and keeps only the 16

Most Significant Bits (MSBs). This truncation is applied to standardize the precision

and obtained a uniform input datatype. This standardization is applied to allow

a multiple utilization of functions that are common for most of the signals. For

instance, the function for computing the Power Spectral Density (PSD) is needed

by RSP, ECG, and PPG. Therefore, the use of different datatype would require three

different implementations of that function. Obviously, such a truncation causes a

loss of information. However, there is a considerable gain in both processing time

and memory usage.

Optimizing memory usage is indeed a must, as the acquisition layer saves a con-

siderable amount of data. This storage involves the use of circular buffers, which

sizes depend on length of the window and both input and output rates, respectively,

the sampling frequency and the time required to process the stored data. Therefore,

being the processing time quite important, there is a need for allocating circular
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Table 4.6 – Selected sampling frequency, processing window length, and buffer size
used at the acquisition layer for each signal.

Signal Sampling frequency (Hz) Window length (s) Buffer size (bytes)

ECG 125 1.75 1000

PPG 64 3 1200

RSP 5 3 300

SKT 5 1 2

buffers with significant size to prevent data overwriting. Table 4.6 shows the selected

sampling frequency, the processing window length, and the buffer size used at the

acquisition layer for each signal. To determine the size of each buffer we multiply

the sampling frequency with the window length, the number of bytes per sample

(i.e., two, as the data type is an unsigned short), and an additional factor to avoid

overwriting, that is, between two and three.

4.5.2 Filtering and Delineation

Once a desired sequence of samples is acquired, a preprocessing is applied. This

process is managed by timers, which trigger the ISRs of the filtering and delineation

layers, to respectively remove the noise and extract the points of interest (e.g., signal

onsets and peaks) from the corresponding discrete-time signal.

To this purpose, different digital filters are applied. The ECG signal is processed using

a relative energy filter as described in [126]. This filter is applied at the acquisition

layer, as it can filter sample by sample. However, both RSP and PPG are filtered using

optimized functions from the CMSIS-DSP library and the process applies every 3

seconds. In particular, the RSP signal is filtered using a 10-order bandpass Finite

Impulse Response (FIR) filter with cutting frequencies at 0.03 and 0.5 Hz. Instead, the

PPG signal is filtered using a 32-order bandpass FIR filter with cutting frequencies

at 0.1 and 5 Hz. Filtered data is stored in circular buffers so that it is accessible by

the delineation layer at any time. The size of these buffers is the same as the one

reported in Table 4.6. The only exception is the case of the ECG signal, where each

sample is directly filtered at the acquisition layer. Therefore, it requires only one

buffer.

The delineation layer applies to detect relevant fiducial points from the different
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signals. For instance, the delineation applied to the ECG signal yields the R peaks;

RSP delineation yields both peaks and valleys; and PPG delineation yields signal

onsets, peaks, and the points with the maximum slope between onsets and peaks. As

reported in Table 4.7, these fiducial points are the source of different physiological

parameters.

The successive difference of the fiducial points of the ECG results in the RR-intervals.

From RSP, inhalation and exhalation time (INHtime and EXHtime, respectively), as

well as the respiration rate (RSPrate) and period (RSPperiod) are calculated. Parameters

related to the PPG signal are Peak-to-Peak interval (PP), Pulse Rising Time (PRT), and

Pulse Amplitude (PA). Figure 4.6 shows a graphical overview of these fiducial points

and parameters extracted from the different signals.

Table 4.7 – Delineated points and bio-parameters for each physiological signal

Signal Delineated points bio-parameters

ECG R-peaks RR-intervals

PPG Pulse onset, slope, and peak PA, PP, and PRT

RSP Pulse onset and peak INHtime, EXHtime, and RSPPeriod

Finally, the physiological parameters are stored in circular buffers as well. Table 4.8

shows the size of these buffers, where the size of each buffer is obtained by multiply

the maximum frequency with the number of parameters per period, the number of

bytes per parameter (i.e., two, as the data type is again an unsigned short), and an

additional factor to avoid overwriting, that is, 1.5.

Table 4.8 – Maximum points per minute, number of parameters per period, and
buffer size used at the acquisition layer for each signal.

Signal Maximum frequency Number of parameters Buffer size (bytes)

ECG 200 Beats per min. 1 600

PPG 200 Pulses per min. 3 1800

RSP 40 Breaths per min. 3 360

SKT - 2 4
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Figure 4.6 – Delineated points and parameters extracted from each physiological
signal.

4.5.3 Feature Extraction and Classification

In the last layer, the physiological parameters are read from the respective buffers

and used to compute the features needed to detect cognitive workload. This process

extracts both time and frequency domain, including simple statistical features, such

as mean, median, and Root Mean Square (RMS); as well as more complex ones, such

as normalised power in specific frequency bands. Most of the functions used to

compute these features have been ported to C from a Matlab version, which was

implemented in the investigation presented in chapter 3. However, to compute the

PSD, the approach involving a linear interpolation and the Fast Fourier Transform

(FFT) with functions from the CMSIS-DSP library were preferred to the Lomb-Scargle

periodogram implementation. The use of the CMSIS-DSP library resulted in a con-

siderable gain in computational time.

Once all features are calculated using the parameters extracted from the physiolog-

ical signals, a normalisation step is applied using pre-selected values. Finally, the

classification is performed using the pre-trained SVM, leading to a workload classifi-

cation every 60 seconds. For the computation of all features, the algorithm requires

126



4.5. Real-Time Software Design and Implementation

708 bytes, which are equally divided between physiological features, parameters

used for the normalization, and weights of the SVM.

4.5.4 Synchronization

At the highest layer, TIM5 guarantees the synchronization required by the application,

that is, the cognitive workload monitoring. The idea is the following. At the lowest

layer, independent ISRs carry out the acquisition of the different signals and stores

the sample in separate buffers. Then, at the middle level, other ISRs process the

acquired signals to delineate the fiducial points, which are stored into additional

buffers. Finally, the ISR at the highest layer marks the instant indicating the fiducial

points that have to be processed, compute the features from these points, and

classifies the cognitive workload. In this last step, two options of synchronization are

possible.

The first option is that whenever TIM5 triggers an interrupt, the corresponding ISR

compute all the featured and classifies the cognitive workload from the fiducial

points delineated up to that moment. This option is the simplest one. Thus, it is the

approach selected for validating the feasibility of classifying cognitive workload with

a wearable device. As with most of the simple solutions, this one presents as well an

inconvenience that is important to mention. Once TIM5 triggers an interrupt, the

ISRs of the middle layer may not have finished with the delineation of the signals.

These missing points let the application computing the cognitive workload from

windows that, in the worst case, it may be shifted from 3 seconds for both PPG

and RSP and from 1.75 seconds for ECG. Therefore, this solution can present a

synchronization error of up to 5%. However, considering the slow dynamics of the

signals, the introduced error can be neglected as a first approximation.

To avoid this error, I propose a second approach, which is the following. Once TIM5

triggers the interrupt, let’s say at time t , the ISR of the highest layer should let the

ISRs of the middle layer finishing the delineation of samples acquired up to that

moment. In this case, all windows are synchronized with each other. However, as

we need to wait for all the pending delineations to be completed, this approach may

introduce a variable delay of up to 15% before providing the estimation of cognitive

workload. Moreover, this approach is a bit more complex to handle because there is

a need to mark the samples acquired up to time t , recognize the fiducial points that

characterize the signals before that time, use them for the computation of all required

features, classify the cognitive workload, and leave for the next cycle the fiducial
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points that were delineated, but characterize the signals after time t . Therefore, this

approach is left for future optimizations.

4.6 Setup and Validation Process

This section describes both the setup and the approach used to validate the proposed

system. As shown in Fig. 4.7, the validation of the proposed platform includes both

hardware (HW) and software (SW) validation. On the HW side, I mainly checked the

signal acquisition, and in particular, the quality of the signals compared to a certified

acquisition system from Biopac [16] used as a reference. Whereas, on the SW side, I

checked the execution of the implemented algorithms at different layers. To this aim,

I compared the embedded implementation with the original Matlab version running

on a PC. Finally, at the end of this section, I described the validation of the proposed
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Figure 4.7 – Validation Method.

self-aware energy-scalable optimization.

4.6.1 Hardware Validation Process

The hardware validation is performed at different levels of abstraction from behav-

ioral, down to layout. As a first step, we tested the functionalities of the different

components embedded in the platform as well as all communication interfaces of
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the system, namely, SPI, USART, and BLE. Second, we tested the acquisition layer,

which is crucial for the performance of the final application.

Although checking all functionalities and communication is essential, in this context,

it is worth focusing on the process applied to validate the acquisition layer. First of all,

the use of validated off-the-shelf sensing components already provides the basis for a

reliable signal acquisition. Moreover, a visual evaluation of the physiological signals

acquired with the proposed platform provided satisfying results during different

tests and demos. However, a formal validation of the proposed platform relies on the

comparison with a certified acquisition system. To this aim, I measured the signal

quality to quantitatively evaluate the acquisition layer.

As reported in [127, 128], the definition of signal quality differs depending on the

application. There, the authors defined the signal quality in two ways:

• Basic quality: The main peaks (e.g., R-peaks of ECG and pulse peaks of PPG)

are clearly identifiable. For instance, in the case of ECG and PPG, a basic

quality is fundamental to guarantee a reliable Heart Rate (HR) extraction as

well as the detection of some types of arrhythmias. Therefore, depending on

the physiological signal, it should allow either HRV or Pulse Rate Variability

(PRV) analysis.

• Diagnostic quality: Both main peaks and secondary waveforms are clearly

identifiable. For ECG, P (if present), QRS, and T waveforms are clear. For PPG,

the pulse wave waveforms are clean with systolic and diastolic waves visible.

In this case, the signals allow clinical diagnosis.

In the context of this work, a basic quality is enough, that is, the ability to delineate

the main peaks, which are the ones used to compute the features describing the

physiological response generated by cognitive workloads. Therefore, I considered

the ability to delineate these points of interest as a metric for evaluating the signal

quality. To this aim, I delineated the physiological signals acquired with both the

proposed system and Biopac with the method described in subsection 4.5.2. The

full process was done offline on a computer and the result of this signal quality

evaluation is shown in subsection 4.7.1.
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4.6.2 Software Validation Process

The functionality of the system is verified by emulating an online cognitive workload

detection from a given input data stored into the SD Card. This testing data consists

of physiological signals collected during the experiment described in chapter 3. For

this validation, the signals were down-sampled and scaled to meet the characteristics

of the acquisition layer.

For emulating the real-time acquisition, all sensors were active to let them trigger

an interruption once a sample was ready. In this way, instead of reading the mea-

surements from the sensors, we took the corresponding measurement from the SD

Card. Then, the algorithm processes the data and provides a result of the estimated

cognitive workload. This estimation, as well as the relevant values extracted from

the layers characterizing the onboard processing, are stored into the SD Card for

an offline comparison with the original Matlab implementation running on a PC.

This approach was selected to provide a reliable evaluation of the implemented

algorithms by taking advantage of the available dataset.

The analysis is divided into three different steps. First, we analyze the filtering and

the delineation of the fiducial points extracted from RSP, ECG, and PPG. This analysis

does not apply to SKT, as we directly extracted the features without a delineation.

To this aim, we evaluated the number of matched fiducial points detected on board,

and those detected offline with the Matlab implementation. The quality of the

delineation is evaluated with sensitivity, predictivity, and mean error as the distance

between matched points. Second, we validated the features extraction layer, where

features were calculated from a 60-seconds window of parameters computed from

the fiducial points. In this case, we reported the measurements of the relative error

and the Pearson’s correlation coefficient for assessment of feature changes. Finally,

at the application level, we evaluated the full system by comparing the cognitive

workload prediction computed in real-time by our system versus the PC based

analysis.

4.6.3 Validation of the Self-Aware and Energy-Scalable Method

The multi-level approach for energy scalability and self-awareness allows controlling

the trade-off between detection performance and energy consumption according

to the constraints of the proposed application, namely, online cognitive workload

detection. To evaluate the benefit of optimizing this trade-off, we first determined the
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complexity of the embedded algorithms. To this aim, the computation complexity

was determined by measuring the time required to process each physiological signal,

that is, the time required for both filtering and delineation, as well as the time

required to extract both time and frequency domain features.

Second, I analyzed the sensitivity of the system by considering different configura-

tions. To this aim, I used several SVMs, where each model has as input a particular

subset of features extracted from either all or only a limited amount of physiological

signals. This analysis aimed to identify the importance of each physiological signal

and quantified the impact of using a scaled model. The accuracy achieved from

these models was the metric used to characterize the signal importance. These

results, combined with the computational complexity, yielded the definition of the

energy-scalable levels of operation, as introduced in Section 4.3.1.

Third, I measured the energy consumption of the system considering the config-

urations required from each energy-scalable level. In particular, I first measured

the total supply current of the system, while all components were in a low-power

mode. Then, I measured again the current while switching on and off the main

components, namely, MCU, RSP/ECG sensor, PPG sensor, and BLE module. With

these measurements, we could estimate the supply current required for each level of

operation.

Finally, I computed the theoretical maximum accuracy of the system and its esti-

mated battery life, while considering the benefit of the proposed energy-scalable

machine-learning method.

4.7 Results

In this section, I provide an evaluation of the proposed system. First, I reported

the results of the hardware validation, which aimed to evaluate the quality of the

hardware described in Section 4.4, and in particular the acquisition layer. Second, I

reported the results of the software integration, including an evaluation of each layer

of the software described in Section 4.5. These results came from an emulation of an

online cognitive workload monitoring with data stored in the SD Card. This approach

was chosen to have the same input data for both the embedded implementation and

the reference implementation running on a PC. Then, I presented a summary of the

computation complexity, followed by an evaluation of the sensitivity of the system.

The analysis of both computation complexity and system sensitivity was crucial and
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validated the choice of the selected energy scalable operation levels described in

Section 4.3. Right after, I reported the energy consumption of each level, obtained

by measuring the contribution of each function individually. Finally, I showed the

benefits of the proposed self-aware energy-scalable machine-learning model. In this

regard, I presented the theoretical detection performance as well as an estimation of

the gain in battery life.

4.7.1 Multi-Channel Acquisition Platform: Hardware Validation

One of the principal aspects of the hardware validation is the evaluation of the

acquisition layer, which is responsible for acquiring the physiological signals that are

necessary for cognitive workload detection. To validate this layer, I compared the

signals acquired through the proposed system with those obtained from a validated

acquisition system from Biopac. As explained in Section 4.6.1, the metric used for

this comparison is the capability to detect the main fiducial points. In particular,

Table 4.9 reports the results of this ability (evaluated over 23 segmented windows of 60

seconds), which was evaluated with sensitivity, positive predictive value, mean error

(distance in seconds between the peaks detected from both signals), and standard

deviation of this distance.

Table 4.9 – Evaluation of the fiducial points delineated from the physiological signal
acquired with the proposed system. The metrics are sensitivity, positive predictive
value, mean error, and standard deviation of the mean error.

Delineated points Sensitivity Predictivity Mean error Standard dev.

(p.u.) (p.u.) (sec) (sec)

ECG R-peaks 0.964 ± 0.087 0.976 ± 0.036 0.012 ± 0.004 0.003 ± 0.005

PPG peaks 0.848 ± 0.129 0.859 ± 0.112 0.041 ± 0.037 0.025 ± 0.033

PPG onsets 0.853 ± 0.129 0.865 ± 0.113 0.040 ± 0.037 0.024 ± 0.033

RSP peaks 0.771 ± 0.222 0.931 ± 0.151 0.525 ± 0.334 0.320 ± 0.226

RSP onsets 0.787 ± 0.194 0.940 ± 0.117 0.518 ± 0.333 0.327 ± 0.187

The results are promising. The quality of ECG is enough for this application, as the

ability to detect the fiducial points is essentially equivalent in both cases. The quality

of PPG accuses a little degradation, but in principle, it should not affect the final

classification more than 1-2%. This estimation was obtained by perturbing the inputs

of the classifier with errors of such amplitude, and the classifier showed a minimal
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variation of the result. Regarding RSP, we can draw a similar conclusion. Here,

both sensitivity and mean error indicates some discrepancies in the signals. These

discrepancies may result from the fact that RSP was measured from the variation of

the thoracic impedance, while with Biopac, we used a strap stretched around the

chest to capture both expansion and contraction of the rib cage.

4.7.2 Online Cognitive Workload Monitoring: Software Validation

As explained in subsection 4.6.2, the first step of the software validation consists

of an evaluation of the delineation layer, which is responsible for detecting the

fiducial points of the physiological signals. To validate this layer, I compared the

number of onboard detected peaks that match those detected with the Matlab

implementation running on a PC. In principle, there should be no difference, as the

method implemented in the MCU is the same as the one implemented in Matlab.

However, a lack of precision is expected due to the limited computational resources

of the MCU, such as the absence of a floating-point unit, as well as the need to use

16-bit operations instead of 32-bit to mitigate the limited storage capabilities.

Table 4.10 reports the results evaluated over 87 segmented windows of 60 seconds,

including sensitivity, positive predictive value, mean error (distance in seconds

between the peaks detected with the embedded implementation and the reference

Matlab implementation running on a PC), and standard deviation of this error.

The results are promising, the mean error is less than 0.14, while sensitivity and

predictivity are greater than 84% and 85%, respectively. Considering that these

delineated points are used to compute features over a 60-seconds window, which

includes many of them, such a little error seems not affecting the final result.

The second validation step involves the feature extraction layer. In this regard,

Figure 4.8 shows a box-plot representing a distribution of the overall feature similari-

ties. In particular, it shows the measurements of the relative distance between the

reference implementation and the Spearman’s correlation coefficient. The results

presented here quantify the quality of the features extracted from the fiducial points

every 60 seconds. Ideally, we should have a relative distance close to 0 and a corre-

lation coefficient close to 1. However, a quick test revealed that the classification

accuracy accuses only 1-2% points of reduction associated with an upward 5% shift

in the mean of the input parameter distribution. Therefore, even if some features do

not match exactly the values from the Matlab implementation, there is an acceptable

5% margin of error.
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Table 4.10 – Evaluation of the fiducial points delineated from each physiological
signal. The metrics are sensitivity, positive predictive value, mean error, and standard
deviation of the mean error.

Delineated points Sensitivity Predictivity Mean error Standard dev.

(p.u.) (p.u.) (sec) (sec)

ECG R-peaks 0.844 ± 0.221 0.855 ± 0.241 0.066 ± 0.029 0.039 ± 0.012

PPG peaks 0.844 ± 0.134 0.897 ± 0.176 0.009 ± 0.015 0.006 ± 0.005

PPG onsets 0.851 ± 0.109 0.908 ± 0.156 0.012 ± 0.015 0.009 ± 0.008

RSP peaks 0.898 ± 0.123 0.916 ± 0.121 0.093 ± 0.056 0.065 ± 0.029

RSP onsets 0.854 ± 0.155 0.921 ± 0.154 0.139 ± 0.072 0.100 ± 0.039

In general, most of the features have high similarity and correlation values, such

as PPMedian, PARMS, PRTMedian, RSPRate Mean, SKTGradient, and SKTPower, while others

are less similar, such as RRHF Band 3n, PPCSI, PPHF Band 5n, PALorenz L, RSPPSD1n, and

RSPPSD3n. From these listed features, we can see that the lack of similarities comes

from the frequency domain features, which are the most complex to compute. Once

again the limited computational resources of the embedded system, such as the

absence of double-precision and a floating-point unit, affect the exactness of the

feature computation. Although the feature extraction implementation has a non-

negligible margin of improvement, the errors introduced at this layer do not seem

to significantly affect the results of the classification. Therefore, these results are

sufficient, even if I was expecting a much better quality of the features.

Finally, the last validation step applies to the classification layer, which provides an

estimation of the cognitive workload touching a human. The attained results show

that the embedded implementation of the model used for Level 2 (i.e., the model

using all available features) achieves an accuracy of 75%, which is 5 percentage points

lower than the 80.32% obtained from the reference implementation running on a

PC. As I already mentioned, we have to consider that compared to PCs, embedded

systems have limited processing and storage resources. These limitations affect

the computation of various features, which are in part responsible for this drop in

performance.

The feature normalization step is responsible as well, where a drastic truncation

of the coefficients used to normalize the features can yield a reduction of up to

2 percentage points of the accuracy. From these results, we can conclude that,
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Figure 4.8 – Feature extraction evaluation. The metrics are the relative error related
to the reference implementation and the Spearman’s correlation coefficient.

in terms of accuracy, the impact of the errors produced by the feature extraction

layer is comparable to the ones generated by feature normalization. However, as

the computation effort of the normalization layer is almost negligible, compared

to the processing required by feature extraction, the impact of a little error at this

normalization level is very high. Therefore, we can conclude that the normalization

requires high precision, while feature extraction can benefit from some constraints

relaxation.

From these results, I can draw the first conclusion by saying that the embedded

implementation of all different used functions to process all the signals and estimate

cognitive workload works. Therefore, the proposed embedded solution is suitable

for cognitive workload monitoring. Now, with this result in mind, we can evaluate

the individual computational cost of all the implemented functions.

4.7.3 Evaluation of Computation Complexity

The computation complexity of the implemented functions used to extract the dif-

ferent set of features is presented here. In this regard, Table 4.11 reports the time

required by the MCU to process a 60-second segmentation window of data. The mea-

surement are divided per signal and per processing layer, namely, preprocessing (i.e.,
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filtering and delineation) and feature extraction, in both time and frequency domain.

Finally, these features are processed by the final layer, that is, the classification or

inference layer, which provides an estimation of the cognitive workload level in less

than 0.04 ms. The first conclusion we can draw from these results is that since the

Table 4.11 – Computation time (ms) of a 60-second signal window processing.

Signals Preprocessing Features Extraction Total

(Filtering + Delineation) (Time domain) (Freq. domain)

SKT - 0.325 - 0.325

ECG 130.580 24.666 9795.080 9950.326

PPG 134.471 5.189 39199.017 39338.677

RSP 6.580 1.506 2280.228 2288.314

51577.642

required processing time does not exceed 60 seconds, all computations can be done

on a low-power MCU Arm Cortex-M3 meeting the real-time constraints needed to

provide a cognitive workload estimation every 60 seconds.

Moreover, we also observe that the computation of frequency-domain features is very

high. Such a significant computation effort is due to the need for computing a Lomb-

Scargle PSD estimation of a successive sequence of delineated points. This applies

to the case of ECG and PPG, where PSD is computed once for each sequence of

RR-intervals extracted from ECG and four times for the different series of delineated

points extracted from PPG. For the case of RSP, the computation is faster, as the

spectrum is computed only once and directly from the filtered signal with a normal

FFT. The main problem here is that as a first attempt, to compute all required spectra

and to make the system working, we used existing and standard functions, which are

not at all optimized.

The optimization of the approach applied to calculate the PSDs is in the process. In

this regard, we expect to have a drastic reduction in computation, that is, up to 200

times faster than the current implementation. As proof of this claim, a preliminary re-

sult showed that the use of functions from the CMSIS-DSP library drastically reduced

the computation time of the RSP spectrum, where an optimized function computed

its FFT and all related features in less than 10 ms. Of course, the computation of the

PSD of both ECG and PPG is trickier. In this case, the required spectra come from an

unevenly-spaced sequence of samples (e.g., RR-intervals), and therefore, the com-
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putation requires a different approach. However, although the frequency-domain

processing of both ECG and PPG is a bit more complex than the processing of RSP, we

expect a comparable improvement, by interpolating the unevenly-spaced samples

to allow the use of an optimized FFT for these signals as well. Although I expect a

drastic reduction in the computation effort of the frequency-domain features, still it

will not be lower than the computation cost of the time-domain features. Therefore,

we could expect that by removing the frequency-domain features, we could save in

computation, and consequently, also in energy consumption.

By checking again the results reported in Table 4.11, we can also see that features

extracted from PPG are the ones requiring the most significant computational effort,

that is, 65.5% of the available processing time (i.e., 60 seconds). It follows the pro-

cessing of ECG and RSP, which require 16.5% and 3.8%, respectively. The processing

of SKT is instead negligible. Therefore, we can also conclude that, if we want to gain

in energy efficiency, PPG is a possible candidate to be discarded.

To summarize, a horizontal evaluation of the results reported in Table 4.11 shows

that, in terms of computational effort, frequency-domain features are a weakness.

Moreover, a vertical evaluation shows that PPG suffers from a significant computa-

tional complexity. Therefore, if we only examine the computational effort, I could

suggest discarding the use of frequency-domain features to save energy consumption.

However, if we consider the expected improvements in computation, the impact

of removing these features will be minor and limited to the processing level. By

removing frequency-domain features, it indeed only affects the computation and

does not allow to power-off the sensors, as they still have to remain active to ac-

quire the signals needed to compute the time-domain features. Therefore, I do

not consider this option in this work. However, it could be considered to build an

additional intermediate energy-scaled level. Alternatively, by adopting the approach

of removing an unnecessary signal, we can extend the concept of energy-scalable

machine-learning down to the acquisition layer. Therefore, we can benefit from both

processing reduction and optimized use of sensors.

4.7.4 Evaluation of System Sensitivity and Energy-Scalable Levels

Although the evaluation of the computation complexity relies on measurements ob-

tained from the embedded implementation, the estimation of the system sensitivity

is the result of an analysis using the method and models implemented on a PC. This

analysis aims first, to determine both the most and less discriminant signals, and
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then, define the energy-scalable levels by addressing the trade-off between the con-

tribution of the features from different physiological signals and their computation

complexity.

In this regard, Table 4.12 reports both the theoretical classification accuracy (values

from the Matlab implementation) and the computational costs (measurements of

the algorithms running on the MCU) of different reduced models, namely, models

designed to only use a particular set of physiological signals. From the upper part

of this table, we can see a considerable drop in accuracy (down to 83.51% in cross

validation), if the model cannot benefit from RSP. In contrast, by removing ECG, SKT,

or PPG, the accuracy drops down only to 87.44%, 88.18%, and 86.92%, respectively.

Two factors drive these drops, specifically, the quantity and the quality of the features.

By removing the RSP signal, we first affect the quantity, as we almost remove half of

the features. However, from the lower part of the table, we can see that the drop is

less significant if we exclude the other half of the features, that is, by keeping only

the ten features from RSP. In this case, the accuracy is 84.02%, which is higher than

the 83.51% obtained with 13 features from PPG, ECG, and SKT. Thus, by removing

the RSP signal, we also affect the quality of the input set of features. Therefore, we

can conclude that RSP is the most relevant physiological signal compared to PPG,

ECG, and SKT all together. This trend is confirmed in the test set.

Table 4.12 – Accuracy and computational costs for different scaled models.

Active signals Features Accuracy (%) Computation (%)

CV Test

RSP PPG ECG SKT 22 88.33 80.32 85.96 (L2)

RSP PPG ECG - 20 88.18 72.87 85.96

RSP PPG - SKT 19 87.44 77.66 69.38

RSP - ECG SKT 14 86.92 68.09 20.40 (L1)

- PPG ECG SKT 13 83.51 58.51 82.15

RSP - - - 9 84.02 62.23 3.81 (L0)

- PPG - - 8 72.45 53.19 65.56

- - ECG - 3 77.30 54.26 16.58

- - - SKT 2 71.65 50.53 <0.01

(L0), (L1), and (L2) indicate the signals chosen for Level 0, 1, and 2, respectively.

Table 4.12 reports as well the computational effort relative to the available processing
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time, that is, the percentage of the time the system has to be active to compute an

estimation of the cognitive workload. The computational effort of each scenario

is computed by summing up the corresponding values of Table 4.11 divided by 60

seconds. These results show that by using only one signal, that is, RSP, we can ensure

a nonrandom cognitive workload detection with a very minimal computational

effort. Once again, this is the reason why I chose this configuration for the model of

Level 0.

Moreover, Table 4.12 shows that, by adding the contribution of ECG and SKT on

top of RSP, it is possible to improve the accuracy without increasing too much the

computational effort. This configuration characterizes the model selected for Level 1.

This choice benefits from the fact that SKT acquisition has a negligible cost and

its use shows an increase in classification accuracy. Moreover, both RSP and ECG

comes from the same sensor, which means that while acquiring RSP, we get the

measurements of ECG almost for free. Therefore, with the model selected for Level 1,

we gain in accuracy by paying only in computational effort.

Finally, the model based on all physiological signals is the one selected for Level 2, as

it reaches the highest performance, at least in terms of classification accuracy. The

computational effort of this model is instead very high, but this is the price to pay to

attain such accuracy. However, based on the original hypothesis, the idea is to limit

the use of such a complex model only when strictly necessary. To quantify this need

for complexity, I show, in the next section, an evaluation of the use of these three

proposed levels based on the dataset collected during the experiment presented in

Chapter 3. However, first, let’s see how much is the current consumption of each

level.

4.7.5 Evaluation of the Energy-Scalable Machine-Learning Method

Each level has its acquisition configuration and computation complexity, which

results in the different current consumptions, as shown in Table 4.13. These values

are computed from a weighted average of the current consumption measured from

each module (i.e., sensors, MCU, BLE, etc.), considering the time while they are

either active or in low-power mode.

It is worth to mention that the final active time of the MCU also includes a switching

period of 0.3%, which comes from the fact that the MCU needs some time to wake

up from or to enter in low-power mode. For the application presented in this work, I
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Table 4.13 – Average current consumption of the different components operating un-
der the proposed energy-scalable levels. In bracket the values while always acquiring
all signals.

Current consumption (mA)

Module Level 0 Level 1 Level 2

MCU 14.3 16.1 23.5

RSP/ECG 1.0 1.0 1.0

PPG 0.4 (8.4) 0.4 (8.4) 8.4

Bluetooth 0.014 0.014 0.014

Total 15.7 (23.7) 17.5 (25.5) 32.9

considered two low-power modes, namely, Sleep mode and Stop mode, which have

a wake-up time of 0.4 µs and up to 8 µs, respectively. Thus, considering the wake-up

sources and frequencies presented in Table 4.5, the MCU respectively spends 10 ms

and 184 ms switching from/to Sleep and Stop modes to/from Active mode, every

minute. Therefore, as the total time of activity (i.e., computation and switching time)

does not exceed 100%, both modes are suitable for this application. However, due to

its energy efficiency, Stop mode is preferred, as it allows a higher increase in battery

life.

A further gain in battery life is also achieved by extending the concept of self-

awareness and energy-scalable machine-learning method down to the acquisition

level. As proof of this claim, Figure 4.9 shows a comparison of the weighted current

consumption for each level, while always acquiring the full set of signals, and while

optimizing the acquisition by sampling only the required signals. In the case of a

full signal acquisition, the reduction of the current consumption is limited to the

processing stage. However, by optimizing the acquisition, we can further reduce the

current consumption by 24 percentage points. In the case of full signal acquisition,

the reduction of the current consumption is limited to the processing stage. However,

by optimizing the signal acquisition as well, we can further decrease the current

consumption by 24 percentage points. This gain comes entirely from the PPG sensor

usage optimization, where the current consumption of the sensor is reduced from

8.4 mA down to 0.4 mA, when not in use. This non-null current consumption is

because, in Level 0 and Level 1, the sensor is not fully powered down, instead it goes

in a low-power mode allowing to retain all configurations. This mode was chosen to
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Figure 4.9 – Current consumption of the proposed levels while always acquiring all
signals and acquiring only the required ones.

avoid the need for reconfiguring the sensor all the time.

Although both Table 4.13 and Figure 4.9 show a considerable reduction in current

consumption, the system cannot work full time in Level 0. Therefore, to produce

a reliable classification, the system has to continuously switch between the three

different levels of energy-scalable machine-learning models. In this regard, Table 4.14

shows an estimation of the expected average current consumption, which is the

result of an emulated online cognitive workload detection running on a PC and

based on data from the experiment described in Chapter 3. The results show that

based on the test set, which is composed of 188 minutes collected from 24 subjects,

the system runs 114 minutes in Level 0, 47 minutes in Level 1, and 27 minutes in

Level 2. A similar result is obtained while acquiring all signals, that is, 111 minutes in

Level 0, 52 minutes in Level 1, and 25 minutes in Level 2. Therefore, the proposed

self-aware approach reduces the average current consumption from 32.9 mA to 25.4

mA, while acquiring all signals, and down to 18.6 mA, while extending the concept of

self-awareness down to the acquisition level.

As highlighted in Figure 4.10, the current consumption of the proposed strategy is

almost half compared to a standard approach. Indeed, the system shows a decrease

of the classification accuracy, but this reduction is less than 0.3 percentage points,

which is acceptable considering the important gain in energy efficiency.
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Table 4.14 – Average current consumption of the different energy-scalable models of
each level. In bracket the values while always acquiring all signals.

Time (min) Unit current (mA) Total current (mA)

Level 0 114 (111) 15.7 9.5 (14.0)

Level 1 47 (52) 17.5 4.4 (7.1)

Level 2 27 (25) 32.9 4.7 (4.4)

Total 188 - 18.6 (25.4)

Single-level
(Level 2)

Multilevel
(Full Acq.)

Multilevel
(Optimized Acq.)

0.0

0.2

0.4

0.6

0.8
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0.8 0.79 0.78

Current consumption (p.u.)
Classification accuracy

Figure 4.10 – Current consumption and classification accuracy for the different
approaches, namely, a single-level model, a multi-level model acquiring all signals,
and the proposed multilevel model acquiring only the required signals.
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As a recap, Table 4.15 shows the main results achieved with the application of the

concept of self-awareness and energy-scaled machine-learning. In particular, we

can see that the battery life can be increased from 12.7 to 22.6 hours without really

affecting the classification accuracy. The theoretical accuracy of the proposed self-

aware system exploiting three different levels of energy-scalable machine-learning is

in fact 77.65%, which is still comparable to the 80.32% reached while using the full

model, that is, the model used for Level 2. The results also show that both multilevel

approaches (i.e., the multilevel models with full and optimized acquisitions) spend

more or less the same amount of time in the different levels. This result suggests

that most of the time, the system is correct with its prediction about the level to use.

Therefore, we can conclude that adapting the level with a delay of 60 seconds is not a

problem.

Table 4.15 – Comparison of the different approaches in terms of accuracy, time spent
in the various levels, average current consumption, and estimated battery life.

Approach Accuracy Time (%) Avg. current (mA) Battery life (h)

(L0, L1, L2) (420 mAh)

Single level
(Full Acq.)

80.32 0, 0, 100 32.9 12.7

Multilevel
(Full Acq.)

78.72 59, 28, 13 25.4 16.5

Multilevel
(Opt. Acq.)

77.65 61, 25, 14 18.6 22.6

4.8 Conclusions

Rescuers often operate in stressful conditions, which increases in cognitive workload

so that it could compromise the outcome of a mission. Therefore, there is a need

to detect high levels of cognitive workload to assist them and prevent a possible

drop in performance. To address this problem, in this chapter, I proposed the

hardware/software co-design of a wearable embedded system for monitoring the

cognitive workload of humans engaged in drone teleoperations during search and

rescue missions.

On the hardware side, the proposed system includes different sensors and a micro-

controller allowing both non-invasive physiological signals acquisition and online
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processing. On the software side, the proposed system includes novel energy-aware

bio-signal processing algorithms and an application of the self-aware concept for

scalable energy consumption. To this aim, different embedded machine-learning al-

gorithms and methods are used for online cognitive workload monitoring, exploiting

the trade-offs between the required accuracy and the available energy of the system.

The results showed that the proposed multi-channel signal-acquisition and process-

ing platform, which included embedded algorithms and methods, were validated

for online monitoring of low and high levels of cognitive workload, thus achieving

an accuracy comparable to the reference Matlab implementation running on a PC.

Moreover, the proposed optimization scheme, based on a self-aware approach that

exploited a scalable machine-learning method with different power-saving levels,

allowed an increase of 78% of the battery lifetime. Compared to the best universal

background model, the approach also showed an acceptable accuracy lost (i.e., from

80.32% to 77.65%).

In conclusion, I proposed and validated a wearable system for the particular case of

cognitive workload monitoring. However, the multi-channel physiological signals

acquisition platform together with the implemented energy-aware modular signal

processing architecture are also suitable for different bio-monitoring applications.

For instance, the proposed platform could be used to detect stress induced by fatigue

[21], pain [97], or emotional problems [93], such as depression, anxiety, and anger.

The proposed system yields to lay the foundations for the development of novel share-

control strategies, which could improve the teleoperation of drones or distant robots

in general. In this regard, the information of the human state, and in particular, the

intensity of cognitive workload, is the key to dynamically adapt the level of autonomy

based on the real needs of the operator.
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To conclude this thesis, I would like to highlight hereafter the main contributions of

my research work together with some research directions that could be addressed in

future works.

5.1 Summary and Conclusions

Thanks to recent enhancements in both artificial intelligence and share-control

techniques, both human and robot abilities can be combined. These merging skills

can ensure high performance during unique and high cognitive demanding tasks,

such as in search and rescue missions. However, to bring robot teleoperation to

such a level, there is a need to develop control solutions that are both portable and

intuitive to use. Moreover, to dynamically adapt human-robot interaction, there is a

need to consider the information of the human state.

In this thesis, I first developed a new wearable embedded system for drone control,

which tracks upper-body movements and translates them into commands for a

drone. The proposed solution is fully portable, it allows both indoor and outdoor

deployments, and compared to traditional controllers, it is more intuitive to use.

Then, I investigated and proposed a method for cognitive workload monitoring from

physiological signals, which is suitable for embedded solutions. Finally, I enhanced

both hardware and software design of the wearable embedded system for drone

control to integrate the online cognitive workload monitoring as well. My work paves

the way for new personalized and adaptive share-control techniques. In particular,

thanks to the continuous and noninvasive monitoring of the human state, the level
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of control can be dynamically adapted based on the real needs of the pilot.

In the following subsections, I provide a more detailed summary of the contributions

described in this thesis.

5.1.1 Wearable Drone Controller

A control strategy, based on upper-body movements derived from a spontaneous

representation of human-drone interactions, was implemented in a wearable em-

bedded system. Such a system offers an intuitive and effective interface, which can

reduce the training and improve the reliability of teleoperated activities. Moreover,

the proposed system was embedded into a soft exoskeleton, which compared to

the state of the art, provided a more portable and intuitive solution. Therefore, my

system could be used by different populations to control various types of machines

in different fields, including Search and Rescue (SAR) missions with drones, but

also for leisure purposes. Beyond the implementation, I analyzed the system to

reduce energy consumption. Knowing that wireless communication is often one

of the weaknesses of embedded systems in terms of energy consumption, I pro-

posed a method that drastically reduced the transmission volume, and consequently

also the energy consumption. Compared to a typical system that is continuously

streaming the commands, the proposed solution showed a reduction of the trans-

mission volume up to 50%, yielding up to 11.9% gain of the energy consumption.

Finally, the proposed wearable embedded system, called FlyJacket, was interfaced

and demonstrated for the teleoperation of both a drone simulator and a real drone

during different experiments, but also in public events, such as Cybathlon and École

Polytechnique Fédérale de Lausanne (EPFL) Open Days.

5.1.2 Cognitive Workload Detection Method

To address continuous cognitive-workload monitoring in search and rescue missions

with drones, I proposed a reliable subject-specific machine-learning algorithm based

on Support Vector Machine (SVM). My multi-modal model fused the contributions

of some important features to assess cognitive workload monitoring. These features

came from different physiological signals (i.e., RSP, ECG, PPG, and SKT) acquired in

a non-invasive way. Then, to reduce both subject and day inter-variability, I explored

different feature normalization techniques. The results showed that a combination

of both day and subject normalization improved the detection accuracy. Finally, the
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proposed SVM model was tested on a new test set, demonstrating the capability

of detecting both low and high cognitive workload levels with an average accuracy

of 87.3% and 91.2%, by using a traditional controller and my wearable embedded

system based on torso movements, respectively.

5.1.3 Wearable Cognitive Workload Monitoring System

To the best of my knowledge, online cognitive workload monitoring has not been

addressed yet in the field of search and rescue. Therefore, to fill this gap, I proposed

a hardware/software co-design of a wearable embedded system for online cognitive

workload monitoring from physiological signals. On the hardware side, this wearable

system included a multi-channel physiological signals acquisition and a low-power

processing platform that was suited for both drone control and cognitive workload

monitoring. On the software side, the proposed system included novel energy-

aware bio-signal processing and the application of a self-aware concept for scalable

energy consumption. The proposed multi-channel signal-acquisition and processing

platform was validated for online monitoring of low and high levels of cognitive

workload, achieving accuracy comparable to the reference Matlab implementation

running on a PC. Moreover, the proposed optimization scheme, based on a self-

aware approach that exploits a scalable machine-learning method with different

power-saving levels, allowed an increase of 78% of the battery lifetime. Compared to

the best universal background model, the approach showed an acceptable accuracy

lost, that is, from 80.32% to 77.65%.

5.2 Future Work

In this section, I provide some possible research directions that could be taken based

on the research findings described in this thesis. In particular, I highlighted some of

the short- and long-term possible research lines.

5.2.1 Suggestions for Drone Control Improvements

In this work, I designed and presented a wearable device to controls both roll and

pitch commands of a drone. To control the remaining Degrees of Freedom (DoF),

instead, we used a glove. The problem is that this glove is limiting the use of the

hands, which should remain free to handle any possible parallel task. Therefore,

further investigation is needed to integrate the control of all DoF into the jacket.
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In this regard, new experiments following the guidelines and methods presented

in [108] should take place, but now, the methods should be applied to identify the

way to control the remaining DoF.

By integrating the control of all DoF into a single system, it will avoid the need for an

additional device, which collects all the commands and forward them to the drone.

Instead of an additional device, the central node could manage the transmission

of these commands, but for this purpose, the node should provide the appropriate

communication interface, which is a long-range RF transmitter. Then, the method

applied to reduce the communication ratio should be adapted to consider the impact

of the distance. In this regard, the communication rate should not fall below a

minimum acceptable value, which will prevent the loss of control. Therefore, this

communication rate should increase while operating at long distances, and decrease

otherwise.

Another possible research line involves the translation of the pilot’s gesture into

steering commands, which relies on linear transformations with weights that were

maintained constant across participants. The choice of these weights is critical, as

high values can yield to overshoot, and little values typically cause slow responses.

During the experiments, I noticed that there seems to be some correlation between

movement amplitude and flying expertise. Novices usually behave quite a lot, while

experts tend to control the drone with small, smooth, and precise movements. Thus,

it is preferred to use little weights for novices to attenuate bumpy movements, while

higher weights are more appropriate for experts. Therefore, to find the proper com-

promise avoiding both overshoots and too slow responses, there is a need to address

the trade-off between control weights and pilots expertise. A system with variable

weights could fit a more extended range of the population.

5.2.2 Perspectives in Cognitive Workload Characterization

In this work, I presented a method that detects low and high levels of cognitive

workload. Preliminary results, which we recently published in [39], showed that an

Extreme Gradient Boosting (XGB) was able to detect high, medium, and low cogni-

tive workload levels, with an accuracy of 62.9%. If we consider the little difference

between the induced levels of cognitive workload, the results are promising and

demonstrate that fine-grain detection is feasible, even in the field of SAR missions.

However, the results of the three-class XGB present a sign of overfitting, which is

due to the limited amount of training data used to fit the parameters of such a high
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capacity model. Therefore, there is a need to investigate the problem of multi-class

cognitive workload detection more deeply. In particular, I suggest to collect more

data and better tune the parameters of that model. Additional data from different

cognitive workload conditions would allow fine-grain detection, and most likely, also

a regression, which could also represent the coupling between cognitive workload

and performance.

Although cognitive workload detection has already been covered in different fields,

the main problem is always the same, that is, finding a ground truth and derive

a model. However, the fact that both environment and human expertise affect

the perception of cognitive workload can change everything. Therefore, as this

experiment is based on a simulated and controlled environment, the subjects were

not exposed to the same stressful conditions as they would be in the case of real

SAR missions. In particular, no real drone was employed, there was no fire, and no

one was in real danger. Therefore, there is a need to further investigate unexpected

physiological changes in the field during real-life rescue missions with drones, to

estimate the possible benefits of person-specific thresholds indicating the need for

assistance. Moreover, there is a need to quantify cognitive workload in different

fields to define a unified metric that can be used as a standard reference. To this

aim, I think that we should include a context coherence adaptation and define how a

particular feature change based on external factors or activity.

5.2.3 Future of Online Cognitive Workload Monitoring

A possible research line would be the investigation of the use of less discriminating

features, which are correlated with the selected ones. In the process of feature re-

duction, I selected the most discriminant features and discarded all the correlated

ones, without considering the computational cost. This choice was made to achieve

the best performance in terms of classification accuracy. However, to improve the

hardware/software co-design, we should now consider both the computational cost

as well as the discriminatory power of the features. In this way, we could select

additional power-saving levels and better address the trade-off between classifica-

tion accuracy and energy consumption. In this regard, the first possible approach

could be to consider new energy-saving levels by differentiating between time and

frequency domain features. Then, we could build supplementary levels by replacing

the features with high computational costs with those that are correlated and require

a lower computational effort.
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Before going in this direction, the software (SW) implementation needs to be opti-

mized. In this regard, indeed, there is still a considerable margin for improvement,

and in particular, in the computation of the frequency-domain features, which are

responsible for the main computational effort. Although the CMSIS-DSP library

provides a collection of optimized functions for signal processing, which can drasti-

cally reduce the computation time, it would be interesting to further optimize the

computation of these frequency-domain features by extracting only the necessary

frequency bands. While using the function from the CMSIS-DSP library, we compute

the full spectra, which contain frequency bands that are useless in this specific ap-

plication. Therefore, an optimization of such functions can further reduce both the

computation of these frequency-domain features and memory usage.

An additional aspect that should be optimized is the filtering layer, which suffers from

a similar problem. To lower the computational effort, we used functions from the

CMSIS-DSP library. However, such functions need a fixed amount of data as input

and oblige the storage of raw samples, causing a waste of memory that is almost twice

higher than what it is needed. Therefore, instead of combining the filtering process

with the delineation, I would suggest integrating this part at the acquisition level. By

implementing the filtering process at the acquisition level, it would be possible to

process every sample one by one. In this way, the storage of raw samples would be

limited to a number given by both order and type of filter. Of course, this approach

should be implemented and optimized to achieve performances comparable to the

functions provided by the CMSIS-DSP library.

A new interesting research line could be the use of a different sampling approach,

namely, the event-based sampling. This method has been validated for the acqui-

sition of Electrocardiogram (ECG) [170], but not yet for other signals. Therefore, it

would be interesting to extend this approach to signals such as Respiratory Activity

(RSP), Photoplethysmogram (PPG), and Skin Temperature (SKT), and apply the meth-

ods in applications such as the one presented in this work. From preliminary studies

performed at Embedded System Laboratory (ESL), we observed that for measure-

ments, such as PPG, RSP, and Inertial Measurement Unit (IMU), where at least some

portions of the signal present a low dynamic, event-based sampling works pretty

well. The idea is simple. While using standard sampling, we approximate a signal

with a concatenation of short linear interpolations. Now, by extending this concept

of linear interpolation, we can acquire fewer samples and save energy while still

describing the signals with enough precision. I think that such an approach could

further reduce the energy consumption of the system, but it involves a significant
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redesign of both hardware and software. Indeed, from the hardware side, the acquisi-

tion layer would need a redesign as current sensors are not designed to support such

a sampling method. Similarly, the software side would need to be adapted for the

processing of such unevenly sampled data. To this aim, new methods are needed,

such as the one proposed to delineate ECG [198].

To further reduce energy consumption, we could further reduce both the supply

voltage and the operating frequency [151]. Moreover, it would be interesting to

consider the use of a multi-core Microcontroller Unit (MCU) instead of a single-

core [22]. In this regard, most of the processing is already parallelized, that is, the

processing for each signal. However, further efforts should be made to address the

parallelization of the complex functions, which could allow an additional energy-

saving when running on different cores. With such a multi-core architecture, we

could turn on and off the cores based on the needs, as I do with the sensors. In this

way, we can extend the concept of self-awareness, not only at the acquisition and

the processing layers, but also at the hardware level of the MCU. Therefore, we could

further reduce the energy consumption while operating at different energy-scalable

levels.

Finally, for the development of the proposed wearable drone controller with an

embedded unit for cognitive workload monitoring, I considered a design that was

not too fragile and also suitable for research purposes. Therefore, I used commercially

available off-the-shelf components of medium size. These components were the

best options at the design time. However, some of those components are now

available in a smaller size, and others, such as MCUs and Bluetooth Low Energy

(BLE) modules, are now embedded in single Application-Specific Integrated Circuits

(ASICs), providing solutions that are energetically more efficient. Therefore, an

update of the design should be addressed before bringing the product to the market.

Moreover, to further reduce both size and energy consumption, the integration of

the full system into a single ASIC would be an option to consider.

5.2.4 Human-State: An Input for New Share-Control Techniques

In this work, I validated the use of the proposed wearable system for the particular

case of cognitive workload monitoring. However, the cognitive workload is not

the only information that characterizes the human state. For instance, other stress

factors induced by fatigue [21] or emotional problems [93], such as depression,

anxiety, and anger, affect the human state. Moreover, both motivation and the
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feeling of self-confidence also play a crucial role [147]. These factors affect the effort

that an operator will put into the execution of a difficult task. Therefore, further

investigations are necessary to include supplementary knowledge of the human

state.

As I already mentioned, the proposed system paved the way for the development

of novel share-control strategies, which could improve the teleoperation of distant

robots. Indeed, the information about the human state is the key to dynamically

adapt the level of autonomy based on the operator’s needs. To enhance current

share-control techniques, I think we could use such information to adapt the control

weights of the drone. In particular, we could adapt both the reactiveness and speed of

the drone by using the information about the human state. In this way, we could also

address the fact that pilots have different abilities. However, further investigations

are required to identify how to use such information in a more precise manner.

5.3 Retrospective

Designing experiments to collect data is always challenging. There are many factors

to consider, and for sure, something can go wrong. As a perfectionist, quite a positive

person, and sometimes maybe a bit too ambitious, I designed my first experiments

by directly trying to address the complex problem. Finally, as there was no much to

conclude from these experiments, I did not report them in my thesis. However, with

these tests, I had the chance to learn that sometimes you have to do it wrong, but not

on purpose, just by accepting that it is not precise as it should be. This process is part

of the design of the experiment. If you want to learn about something, you have to

take measurements. I remember my thesis co-director, Prof. Diego Barrettino, gave

me this advice at some point, and indeed, he was right. With these lines, I want to say

that it is crucial to do preliminary essays to understand what you need for the final

experiments. To recap, I recommend to start with simple cases, simplistic problems,

get experience, and move to more complex dilemmas with good knowledge and the

proper equipment.

Designing embedded systems is a fascinating activity. You need to analyze the appli-

cation to identify both requirements and constraints. Then, you set the specifications,

define the system architecture, design block diagrams, data flow graphs, etc. Next,

you can design and develop both hardware and software. Finally, you test the system

at different levels for checking the functionalities of both hardware and software and

ensure that the system is without errors and defects. What I reported in my thesis
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was the result of this process, including the main decisional and validation steps.

What I did not mention was that designing an embedded system is already quite

laborious, and this process is even worst when the system is intended for research

purposes. Often, in this case, many requirements and specifications are unknown

at the beginning. On the other hand, you can relax some constraints (e.g., aesthetic

finishes, dimension reduction, etc.) because the system is not supposed to go to the

market, or at least not in the immediate future.

For the design of the proposed system, I considered different options, such as the

number and the type of sensors. The idea was to extend the design targeting other

possible applications addressed in our lab, such as the prediction of atrial fibrilla-

tion [37] and the detection of epileptic seizures [58]. Therefore, because of these

additional and sometimes not well-defined requirements, the design process took

longer than expected. For the hardware design, I had the chance to benefit from a

solid starting point, that was, a consolidated prototype of a wearable device devel-

oped at ESL from previous students. Thanks to my predecessors, I was able to reuse

part of the design of such a system, adapt it to my needs, and add the missing ele-

ments. The prototyping we did it at EPFL, where I had all the support I needed. The

software design was instead more complex. On one hand, I had the chance to benefit

from the help of many students, who helped me implementing and testing different

functionalities. But, on the other hand, I also had bad luck with some of them who

did something that was not utilizable in the final implementation. A bunch of such

little works had to be reviewed, corrected, cleaned, and adapted. At some point,

Napoleone Bonaparte said: "If you want a thing done well, do it yourself." With this

sentence, I don’t want to say that I don’t make mistakes. To err is human. However, I

wonder sometimes if instead of delegating some work to students, who occasionally

were not that motivated, I would not have done it faster by myself. Anyway, I guess

this is part of a Ph.D. student’s life, where you still have to learn how to learn, and

you have to learn how to teach.

153

http://esl.epfl.ch
http://www.epfl.ch




Bibliography

[1] D. A. Abbink, M. Mulder, and E. R. Boer. Haptic shared control: smoothly

shifting control authority? Cognition, Technology & Work, 14:19–28, 2011.

[2] B. Ahmed, H. M. Khan, J. Choi, and R. Gutierrez-Osuna. ReBreathe: A cali-

bration protocol that improves stress/relax classification by relabeling deep

breathing relaxation exercises. IEEE Transactions on Affective Computing,

7(2):150–161, Apr 2016.

[3] H. Akoglu. User’s guide to correlation coefficients. Turkish journal of emergency

medicine, 18(3):91–93, 2018.

[4] V. Alvarez-Santos, R. Iglesias, X. Pardo, C. Regueiro, and A. Canedo-Rodriguez.

Gesture-based interaction with voice feedback for a tour-guide robot. Journal

of Visual Communication and Image Representation, 25(2):499 – 509, 2014.

[5] K. Aminian and B. Najafi. Capturing human motion using body-fixed sensors:

Outdoor measurement and clinical applications. Computer Animation and

Virtual Worlds, 15(2):79–94, 2004.

[6] A. Aminifar. Analysis, design, and optimization of embedded control systems,

volume 1746. Linköping University Electronic Press, 2016.

[7] A. Aminifar, P. Tabuada, P. Eles, and Z. Peng. Self-triggered controllers and

hard real-time guarantees. In Design, Automation Test in Europe Conference

Exhibition (DATE), pages 636–641, 2016.

[8] A. Anzanpour, I. Azimi, M. Götzinger, A. M. Rahmani, N. TaheriNejad, P. Lil-

jeberg, A. Jantsch, and N. Dutt. Self-awareness in remote health monitoring

systems using wearable electronics. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2017, pages 1056–1061, 2017.

155



Bibliography

[9] Apple. Watch. https://www.apple.com/watch.

[10] A. Arza, J. M. Garzón-Rey, J. Lázaro, E. Gil, R. Lopez-Anton, C. de la Camara,

P. Laguna, R. Bailon, and J. Aguiló. Measuring acute stress response through

physiological signals: towards a quantitative assessment of stress. Medical

and Biological Engineering and Computing, pages 1–17, Aug 2018.

[11] F. Augugliaro, S. Lupashin, M. Hamer, M. Male, Cason Hehn, M. W. Mueller,

J. Willmann, F. Gramazio, M. Kohler, and R. D’Andrea. The flight assembled

architecture installation: Cooperative construction with flying machines. IEEE

Control Systems Magazine, 34(4):46 – 64, 2014.

[12] R. Bartlett. Introduction to Sports Biomechanics. Routledge, 2 edition, 2008.

[13] T. Baudel and M. Beaudouin-Lafon. Charade: Remote control of objects using

free-hand gestures. Commun. ACM, 36(7):28–35, July 1993.

[14] S. Betti, R. M. Lova, E. Rovini, G. Acerbi, L. Santarelli, M. Cabiati, S. D. Ry,

and F. Cavallo. Evaluation of an integrated system of wearable physiological

sensors for stress monitoring in working environments by using biological

markers. IEEE Transactions on Biomedical Engineering, 65(8):1748–1758, 2018.

[15] S. Betti, R. Molino Lova, E. Rovini, G. Acerbi, L. Santarelli, M. Cabiati, S. Del Ry,

and F. Cavallo. Evaluation of an integrated system of wearable physiological

sensors for stress monitoring in working environments by using biological

markers. IEEE Transactions on Biomedical Engineering, 65(8):1748–1758, Aug

2018.

[16] Biopac. MP160 Data Acquisition Systems. https://www.biopac.com/product/

mp150-data-acquisition-systems.

[17] Biovotion. Everion. https://www.biovotion.com/everion/.

[18] C. Bishop. Pattern Recognition and Machine Learning. Springer, Jan 2006.

[19] J. M. Bland and D. G. Altman. Statistical methods for assessing agreement

between 2 methods of clinical measurement. Lancet, 8476:307–310, 1986.

[20] O. Blanke. Multisensory brain mechanisms of bodily self-consciousness. Na-

ture Reviews Neuroscience, 13:556–571, 2012.

156

https://www.apple.com/watch
https://www.biopac.com/product/mp150-data-acquisition-systems
https://www.biopac.com/product/mp150-data-acquisition-systems
https://www.biovotion.com/everion/


Bibliography

[21] G. Borghini, L. Astolfi, G. Vecchiato, D. Mattia, and F. Babiloni. Measuring

neurophysiological signals in aircraft pilots and car drivers for the assessment

of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral

Reviews, 44:58–75, Jul 2014.

[22] R. Braojos, A. Dogan, I. Beretta, G. Ansaloni, and D. Atienza. Hardware/soft-

ware approach for code synchronization in low-power multi-core sensor nodes.

In Design, Automation, and Test in Europe (DATE) Conference and Exhibition,

pages 1–6, 2014.

[23] B. Cain. A Review of the Mental Workload Literature. Toronto. Defence Research

and Development Canada, 07 2007.

[24] C. Carignan, J. Tang, and S. Roderick. Development of an exoskeleton haptic

interface for virtual task training. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), volume 369, pages 3697–3702, 12 2009.

[25] T. Carlson, R. Leeb, R. Chavarriaga, and J. D. R. Millán. Online modulation

of the level of assistance in shared control systems. In IEEE International

Conference on Systems, Man and Cybernetics, 2012.

[26] T. Carlson and J. d. R. Millán. Brain-controlled wheelchairs: A robotic architec-

ture. IEEE Robotics and Automation Magazine, 20(1):65–73, 2013. The original

accepted preprint was entitiled: "The Robotic Architecture of an Asynchronous

Brain–Actuated Wheelchair".

[27] D. Carneiro, P. Novais, J. C. Augusto, and N. Payne. New methods for stress

assessment and monitoring at the workplace. IEEE Transactions on Affective

Computing, 10(2):237–254, Apr 2019.

[28] J. Casper and R. R. Murphy. Human-robot interactions during the robot-

assisted urban search and rescue response at the World Trade Center. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003.

[29] J. Y. C. Chen, M. J. Barnes, and M. Harper-Sciarini. Supervisory control of

multiple robots: Human-performance issues and user-interface design. IEEE

Transactions on Systems Man and Cybernetics Part C (Applications and Re-

views), 41(4):435–454, Jul 2011.

[30] L.-l. Chen, Y. Zhao, P.-f. Ye, J. Zhang, and J.-z. Zou. Detecting driving stress in

physiological signals based on multimodal feature analysis and kernel classi-

fiers. Expert Systems with Applications, 85:279–291, Nov 2017.

157



Bibliography

[31] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. L. Minku, and L. Esterle.

The handbook of engineering self-aware and self-expressive systems. ArXiv,

abs/1409.1793, 2014.

[32] A. Cherpillod, S. Mintchev, and D. Floreano. Embodied Flight with a Drone.

CoRR, abs/1707.0, 2017.

[33] J. Chua. Recruiting female firefighters: Closing the gender gap, 2018 (accessed

October 12, 2020).

[34] B. Cinaz, B. Arnrich, R. La Marca, and G. Tröster. Monitoring of mental work-

load levels during an everyday life office-work scenario. Personal and Ubiqui-

tous Computing, 17(2):229–239, Feb 2013.

[35] T. Crouch, N. Air, and S. Museum. Lighter Than Air: An Illustrated History of

Balloons and Airships. Johns Hopkins University Press, 2009.

[36] T. Crouch, S. N. Air, and S. Museum. Wings: A History of Aviation from Kites to

the Space Age. Smithsonian National Air and Space Museum, 2003.

[37] E. De Giovanni, A. Aminifar, A. Luca, S. Yazdani, J.-M. Vesin, and

D. Atienza Alonso. A patient-specific methodology for prediction of paroxys-

mal atrial fibrillation onset. Computing in Cardiology, 44, 2017.

[38] F. Dell’Agnola, L. Cammoun, and D. Atienza. Physiological characterization

of need for assistance in rescue missions with drones. In IEEE International

Conference on Consumer Electronics (ICCE), pages 1–6, Jan 2018.

[39] F. Dell’Agnola, N. Momeni, A. Arza, and D. Atienza. Cognitive workload mon-

itoring in virtual reality based rescue missions with drones. In 12th Inter-

national Conference on Virtual, Augmented and Mixed Reality, Copenhagen,

Denmark, July 2020.

[40] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena,

M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella, R. Siegwart, and D. Scara-

muzza. The current state and future outlook of rescue robotics. Journal of

Field Robotics, 36:1167–1269, October 2019.

[41] Y. Deng and P. Wang. Ancient Chinese Inventions. Cultural China series. China

Intercontinental Press, 2005.

[42] T. G. Dietterich. Approximate statistical tests for comparing supervised classi-

fication learning algorithms. Neural computation, 10(7):1895–1923, 1998.

158



Bibliography

[43] G. Dudek, J. Sattar, and A. Xu. A visual language for robot control and pro-

gramming: A human-interface study. In Proceedings 2007 IEEE International

Conference on Robotics and Automation, pages 2507–2513, 2007.

[44] N. Dutt, A. Jantsch, and S. Sarma. Toward smart embedded systems: A self-

aware system-on-chip (soc) perspective. ACM Transactions on Embedded

Computing Systems (TECS), 15(2):1–27, 2016.

[45] F. T. Eggemeier, G. F. Wilson, A. F. Kramer, and D. L. Damos. Workload assess-

ment in multi-task environments. In Multiple Task Performance. Taylor &

Francis, 1991.

[46] Empatica E4. Real-time physiological data streaming and visualization. https:

//www.empatica.com.

[47] D. C. Engelbart and W. K. English. A research center for augmenting human

intellect. In Proceedings of the December 9-11, 1968, fall joint computer confer-

ence, part I, pages 395–410, 1968.

[48] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao. Architecting self-aware software

systems. In 2014 IEEE/IFIP Conference on Software Architecture, pages 91–94,

2014.

[49] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for

mobile robots with uncertain localization. IEEE Robotics and Automation

Letters, 3(4):3019–3026, Oct 2018.

[50] B. Fasel, J. Spörri, J. Kröll, E. Müller, and K. Aminian. Using inertial sensors for

reconstructing 3d full-body movement in sports - possibilities and limitations

on the example of alpine ski racing. In 33rd International Conference on

Biomechanics in Sports, Poitiers, 2015.

[51] A. R. Fayjie, A. Ramezani, D. Oualid, and D. J. Lee. Voice enabled smart drone

control. In 2017 Ninth International Conference on Ubiquitous and Future

Networks (ICUFN), pages 119–121, 2017.

[52] S. S. Fels and G. E. Hinton. Glove-talk: a neural network interface between a

data-glove and a speech synthesizer. IEEE Transactions on Neural Networks,

4(1):2–8, 1993.

[53] R. A. S. Fernández, J. L. Sanchez-Lopez, C. Sampedro, H. Bavle, M. Molina, and

P. Campoy. Natural user interfaces for human-drone multi-modal interaction.

159

https://www.empatica.com
https://www.empatica.com


Bibliography

In 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pages

1013–1022, 2016.

[54] R. Finn and S. Scheding. Developments and Challenges for Autonomous Un-

manned Vehicles: A Compendium, volume 3. Springer-Verlag Berlin Heidel-

berg, 01 2010.

[55] Fitbit. Smartwatches and trackers for fitness and lifestile. https://www.fitbit.

com.

[56] G. FKS. Feuerwehrstatistik 2018, 2018 (accessed October 12, 2020).

[57] D. Floreano and R. J. Wood. Science, technology and the future of small

autonomous drones. Nature, 521:460–466, 05 2015.

[58] F. Forooghifar, A. Aminifar, L. Cammoun, I. Wisniewski, C. Ciumas, P. Ryvlin,

and D. Atienza. A self-aware epilepsy monitoring system for real-time epileptic

seizure detection. Mobile Networks and Applications, 2019.

[59] D. A. Freedman. Statistical Models: Theory and Practice. Cambridge University

Press, 2 edition, 2009.

[60] Garmin. Sport watch. https://www.garmin.com.

[61] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez.

Automatic generation and detection of highly reliable fiducial markers under

occlusion. Pattern Recognition, 47(6):2280 – 2292, 2014.

[62] D. Giakoumis, D. Tzovaras, and G. Hassapis. Subject-dependent biosignal

features for increased accuracy in psychological stress detection. International

Journal of Human-Computer Studies, 71(4):425–439, Apr 2013.

[63] M. Gjoreski, M. Luštrek, M. Gams, and H. Gjoreski. Monitoring stress with a

wrist device using context. Journal of Biomedical Informatics, 73:159–170, Sep

2017.

[64] D. Goepfert, R. Karlen, M. Hartmann, G. Stäheli, S. Enz, H. Cina, J. Signer,

M. Thalmann, M. Knöri, H. Benz, and P. Zurkirchen. Reglement Einsatzführung.

Feuerwehr Koordination Schweiz FKS, Bern, 2015.

[65] A. Golgouneh and B. Tarvirdizadeh. Fabrication of a portable device for stress

monitoring using wearable sensors and soft computing algorithms. Neural

Computing and Applications, pages 1–23, 6 2019.

160

https://www.fitbit.com
https://www.fitbit.com
https://www.garmin.com


Bibliography

[66] R. Gomez, K. Nakamura, T. Kawahara, and K. Nakadai. Multi-party human-

robot interaction with distant-talking speech recognition. In 7th ACM/IEEE

International Conference on Human-Robot Interaction (HRI), pages 439–446,

Mar 2012.

[67] L. Gonzalez, T. Paniagua, N. Starliper, and E. Lobaton. Signal quality for rr

interval prediction on wearable sensors. In 41st Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology Society (EMBC), pages

2525–2528, 2019.

[68] M. A. Goodrich and A. C. Schultz. Human-Robot Interaction: A Survey. Foun-

dations and Trends® in Human-Computer Interaction, 1(3):203–275, 2007.

[69] Gov.uk. Fire and rescue authorities operational statistics, 2017 (accessed Octo-

ber 12, 2020).

[70] B. Gromov, L. M. Gambardella, and A. Giusti. Robot Identification and Lo-

calization with Pointing Gestures. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2018.

[71] P. Grossman and E. W. Taylor. Toward understanding respiratory sinus arrhyth-

mia: Relations to cardiac vagal tone, evolution and biobehavioral functions.

Biological Psychology, 74(2):263–285, Feb 2007.

[72] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer

classification using support vector machines. Machine Learning, 46:389–422,

2002.

[73] J. Han and N. Gold. Lessons learned in exploring the leap motion™ sensor for

gesture-based instrument design. In Internation Conference on New Interfaces

for Musical Expression. Goldsmiths University of London, 2014.

[74] L. Han, Q. Zhang, X. Chen, Q. Zhan, T. Yang, and Z. Zhao. Detecting work-

related stress with a wearable device. Computers in Industry, 90:42–49, Sep

2017.

[75] S. G. Hart and L. E. Staveland. Development of NASA-TLX (Task Load Index):

Results of Empirical and Theoretical Research, volume 52 of Advances in Psy-

chology, pages 139–183. Elsevier, 1988.

[76] J. A. Healey and R. W. Picard. Detecting stress during real-world driving tasks

using physiological sensors. IEEE Transactions on Intelligent Transportation

Systems, 6(2):156–166, Jun 2005.

161



Bibliography

[77] J. Heard, C. E. Harriott, and J. A. Adams. A survey of workload assessment

algorithms. IEEE Transactions on Human-Machine Systems, 48(5):434–451,

Oct 2018.

[78] T. Heine, G. Lenis, P. Reichensperger, T. Beran, O. Doessel, and B. Deml. Elec-

trocardiographic features for the measurement of drivers’ mental workload.

Applied Ergonomics, 61:31–43, May 2017.

[79] H. Hoffmann, M. Maggio, M. Santambrogio, A. Leva, and A. Agarwal. Seec: A

framework for self-aware computing. Computer Science and Artificial Intelli-

gence Lab (CSAIL), Technical report, 11 2010.

[80] Huawei. Watch. https://consumer.huawei.com/en/wearables/watch2.

[81] Hypersuit. Hypersuit. https://www.hypersuit.fr.

[82] A. Jantsch, N. Dutt, and A. M. Rahmani. Self-awareness in systems on chip—a

survey. IEEE Design & Test, 34(6):8–26, 2017.

[83] P.-K. Jao. Decoding Cognitive States under Varying Difficulty Levels. EPFL,

Lausanne, 2020.

[84] Jawbone. UP. https://jawbone.com/up.

[85] G. Jones, N. Berthouze, R. Bielski, and S. Julier. Towards a situated, multimodal

interface for multiple uav control. In 2010 IEEE International Conference on

Robotics and Automation, pages 1739–1744. IEEE, 2010.

[86] D. Kahneman. Attention and effort. Prentice-Hall, Englewood Cliffs, NJ, 1973.

[87] D. M. Kaushik and R. Jain. Gesture based interaction nui: an overview. arXiv

preprint arXiv:1404.2364, 2014.

[88] A. Kay. User interface: A personal view. The art of human-computer interface

design, pages 191–207, 1990.

[89] M. N. H. Khan and C. Neustaedter. An exploratory study of the use of drones

for assisting firefighters during emergency situations. Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems, 2019.

[90] S. Kounev, J. O. Kephart, A. Milenkoski, and X. Zhu. Self-Aware Computing

Systems. Springer International Publishing, 1st edition, 2017.

162

https://consumer.huawei.com/en/wearables/watch2
https://www.hypersuit.fr
https://jawbone.com/up


Bibliography

[91] C. Kyrkou, S. Timotheou, P. Kolios, T. Theocharides, and C. Panayiotou. Drones:

Augmenting our quality of life. IEEE Potentials, 38(1):30–36, 2019.

[92] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester. A survey on

wireless body area networks. Wireless Networks, 17(1):1–18, 2011.

[93] B. G. Lee, T. W. Chong, B. L. Lee, H. J. Park, Y. N. Kim, and B. Kim. Wear-

able Mobile-Based Emotional Response-Monitoring System for Drivers. IEEE

Transactions on Human-Machine Systems, 47(5):636–649, 2017.

[94] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, J. Torre-

sen, and X. Yao. A survey of self-awareness and its application in computing

systems. In Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems

Workshops, pages 102–107. IEEE, 2011.

[95] Y. Lim, S. Ramasamy, A. Gardi, T. Kistan, and R. Sabatini. Cognitive Human-

Machine Interfaces and Interactions for Unmanned Aircraft. Journal of Intelli-

gent & Robotic Systems, pages 1–20, Oct 2017.

[96] Logitec. Gamepad F310. https://support.logi.com/hc/en-us/articles/

360024326793.

[97] D. Lopez-Martinez and R. Picard. Multi-task neural networks for personalized

pain recognition from physiological signals. In Seventh International Confer-

ence on Affective Computing and Intelligent Interaction Workshops and Demos

(ACIIW), pages 181–184, 2017.

[98] R. J. Lysaght, S. G. Hill, a. O. Dick, B. D. Plamondon, P. M. Linton, W. W. Wier-

wille, a. L. Zaklad, a. C. Bittner Jr, and R. J. Wherry. Operator workload: Com-

prehensive review and evaluation of operator workload methodologies. United

States Army Research Institute for the Behavioral Sciences, Technical Report,

1989.

[99] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. Estimation of IMU

and MARG orientation using a gradient descent algorithm. IEEE International

Conference on Rehabilitation Robotics, 2011.

[100] H. Mansikka, K. Virtanen, and D. Harris. Dissociation between mental work-

load, performance, and task awareness in pilots of high performance aircraft.

IEEE Transactions on Human-Machine Systems, 49(1):1–9, Feb 2019.

163

https://support.logi.com/hc/en-us/articles/360024326793
https://support.logi.com/hc/en-us/articles/360024326793


Bibliography

[101] T. Mantecón, C. R. del Blanco, F. Jaureguizar, and N. García. New generation of

human machine interfaces for controlling UAV through depth-based gesture

recognition. In R. E. Karlsen, D. W. Gage, C. M. Shoemaker, and G. R. Gerhart,

editors, Unmanned Systems Technology XVI, volume 9084, pages 93 – 103.

International Society for Optics and Photonics, SPIE, 2014.

[102] D. Mantegazza, J. Guzzi, L. M. Gambardella, and A. Giusti. Vision-based control

of a quadrotor in user proximity: Mediated vs end-to-end learning approaches.

In International Conference on Robotics and Automation (ICRA), 2018.

[103] A. Marinescu, S. Sharples, A. Ritchie, T. S. López, M. McDowell, and H. Morvan.

Exploring the relationship between mental workload, variation in performance

and physiological parameters. IFAC-PapersOnLine, 49(19):591–596, 2016.

[104] A. Mashood, H. Noura, I. Jawhar, and N. Mohamed. A gesture based kinect

for quadrotor control. In 2015 International Conference on Information and

Communication Technology Research (ICTRC), pages 298–301. IEEE, 2015.

[105] G. Masinelli, F. Forooghifar, A. Arza, A. Aminifar, and D. Atienza. Self-aware

machine learning for multimodal workload monitoring during manual labor

on edge wearable sensors. IEEE Design Test, pages 1–1, 2020.

[106] C. R. Meyer and H. N. Keiser. Electrocardiogram baseline noise estimation

and removal using cubic splines and state-space computation techniques.

Computers and Biomedical Research, 10:459–470, 1977.

[107] Microsoft Azure. Kinect. https://azure.microsoft.com/services/kinect-dk.

[108] J. Miehlbradt, A. Cherpillod, S. Mintchev, M. Coscia, F. Artoni, D. Floreano, and

S. Micera. Data-driven body-machine interface for the accurate control of

drones. Proceedings of the National Academy of Sciences, 115(31):7913–7918,

Jul 2018.

[109] J. C. Miehlbradt. Body-machine interfaces for non-homologous human-

machine interactions. EPFL, Lausanne, 2019.
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