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Ab initio computation of two-dimensional electronic spectra is an expanding field,

whose goal is improving upon simple, few-dimensional models often employed to ex-

plain experiments. Here, we propose an accurate and computationally affordable ap-

proach, based on the single-trajectory semiclassical thawed Gaussian approximation,

to evaluate two-dimensional electronic spectra. Importantly, the method is exact for

arbitrary harmonic potentials with mode displacement, changes in the mode frequen-

cies, and inter-mode coupling (Duschinsky effect), but can also account partially for

the anharmonicity of the involved potential energy surfaces. We test its accuracy on

a set of model Morse potentials and use it to study anharmonicity and Duschinsky

effects on the linear and two-dimensional electronic spectra of phenol. We find that in

this molecule, the anharmonicity effects are weak, whereas the Duschinsky rotation

and the changes in the mode frequencies must be included in accurate simulations.

In contrast, the widely used displaced harmonic oscillator model captures only the

basic physics of the problem but fails to reproduce the correct vibronic lineshape.
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I. INTRODUCTION

Electronic spectroscopy allows us to study excited electronic states and light-induced

nuclear dynamics. To track this ultrafast dynamics on femtosecond time scales, a range of

time-resolved and two-dimensional spectroscopic techniques were developed. The complex

signals obtained in these experiments are, however, difficult to interpret without the help of

theoretical modeling.1

Most models for describing two-dimensional electronic spectra treat the electronic states

as the system and include nuclear dynamics only approximately, as bath effects. The simplest

approach assumes that nuclear degrees of freedom induce a Gaussian-like or Lorentzian-like

broadening, neglecting completely the coherent nuclear dynamics. Such models are appropri-

ate only if the coherent dynamics is strongly suppressed by the surrounding solvent dynamics.

To account for inhomogeneous (static) broadening, the energy gap between the electronic

states can be averaged over snapshots of different arrangements of the environment.2–4 Al-

ternatively, a swarm of trajectories could be used in Kubo-type calculations, where each

trajectory is equipped with a phase, obtained from the time integral of the energy gap be-

tween the involved electronic states along the trajectory, and the correlation functions are

averaged over the full ensemble;5–10 these approaches are also known as phase averaging,11

Wigner-averaged classical limit,12–14 or dephasing representation.15–17 Such methods are ac-

curate when the curvatures of different potential energy surfaces are similar and in the limit

of strong dephasing, i.e., for short times. Even in this case, however, if the on-the-fly dy-

namics is performed with ab initio electronic structure methods, evolving the full ensemble

of classical trajectories can quickly become prohibitively expensive. To account for both

intramolecular and intermolecular nuclear dynamics in two-dimensional spectroscopy, one

can use the multimode Brownian oscillator model,11,18–20 which considers a few primary har-

monic modes coupled to a large number of low-frequency bath oscillators. For this model,

the spectra can be computed analytically; moreover, the parameters of the model can be

computed efficiently from a single ab initio classical trajectory, as demonstrated in Refs. 21

and 22. This allows one to perform electronic structure computations at a high level of

theory, using, for example, post-Hartree–Fock multiconfigurational wavefunction methods.

Yet, the approach is limited to modeling the molecule as a set of few uncoupled displaced

harmonic oscillators. Such a simple description is inadequate in systems that exhibit strong
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mode-mode coupling, changes in the force constants between the ground and excited elec-

tronic states, or anharmonicity effects. A generalization to a set of uncoupled harmonic

oscillators with both displacement and a possible change in the force constant was proposed

by Fidler and Engel, who used the approximate third-order cumulant expansion.23 Very

recently, the third-order cumulant expansion was also studied as an approximate way to

account for the mode-mode coupling (Duschinsky effect) in both linear24 and nonlinear25

spectra.

There has been little development in the ab initio simulation of two-dimensional elec-

tronic spectra beyond the standard semiclassical methods or displaced harmonic models. To

account for anharmonicity effects26,27 or more general coupled oscillators, one is forced to

employ computationally expensive exact quantum dynamics methods,28–33 such as different

flavors of the multiconfigurational time-dependent Hartree (MCTDH) method34,35, or the

hierarchical equations of motion.36,37 These methods require the pre-computation of the full

potential energy surfaces and are not suitable for a first-principles on-the-fly implementation.

First-principles multi-trajectory semiclassical approaches38–46 and direct quantum dynam-

ics methods, which often use multiple Gaussians,45,47–53 also called coherent or Davydov

states,54–56 to represent the evolving wavepacket, are impractical due to the large number of

required ab initio evaluations.

Here, we propose an efficient semiclassical method to evaluate vibrationally resolved two-

dimensional electronic spectra. The approach, based on Heller’s single-trajectory thawed

Gaussian approximation,57 accounts for inter-mode coupling, changes in the force constants,

and, at least partially, for the anharmonicities of the ground- and excited-state potential

energy surfaces. First, we study how the accuracy of the method depends on the degree

of anharmonicity in the one-dimensional Morse system. The results are compared with the

exact benchmark and with the harmonic approximation, which neglects the anharmonicity

completely. Second, we analyze the effects of Duschinsky coupling and anharmonicity on

the linear absorption and two-dimensional spectra of phenol.
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II. THEORY

A. Third-order response function

The central object in all types of third-order electronic spectroscopy is the third-order

polarization11,58

P (3)(t) =

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1R(t3, t2, t1)E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1), (1)

where E(t) is the electric field of light (without the polarization vector) and

R(t3, t2, t1) =

(
i

~

)3 4∑

α=1

[Rα(t3, t2, t1)−Rα(t3, t2, t1)
∗] (2)

is the third-order response function, expressed in terms of correlation functions

R1(t3, t2, t1) = C(t2, t3, t1 + t2 + t3), (3)

R2(t3, t2, t1) = C(t1 + t2, t3, t2 + t3), (4)

R3(t3, t2, t1) = C(t1, t2 + t3, t3), (5)

R4(t3, t2, t1) = C(−t3,−t2, t1), (6)

and

C(τa, τb, τc) = Tr[ρ̂µ̂eiĤ2τa/~µ̂eiĤ1τb/~µ̂e−iĤ2τc/~µ̂e−iĤ1(τa+τb−τc)/~]. (7)

In Eq. (7), Ĥi are the vibrational Hamiltonians of the ground (“1”) and excited (“2”)

electronic states, ρ̂ = exp(−βĤ1)/Tr[exp(−βĤ1)] is the vibrational density operator in the

ground electronic state, and µ̂ = µ̂21 = ~̂µ21 · ~ε is the electronic transition dipole moment

projected on the polarization unit vector ~ε of the external electric field. Equations (3)–(6)

rely on the following assumptions: (i) due to the large gap between the electronic states, only

the ground electronic state is initially populated; (ii) Born–Oppenheimer approximation,

i.e., there is no population transfer under field-free evolution; (iii) light pulses are linearly

polarized in the same direction ~ε; (iv) only two electronic states are involved. In the following,

we discuss how to evaluate the components Rα of the response function (2).

B. Zero-temperature limit: Wavepacket picture

In the zero-temperature limit, we assume that only the ground (“g”) vibrational state

|1, g〉 of the ground electronic state is populated initially, i.e., ρ̂ = |1, g〉〈1, g|. Then, we may
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rewrite Eq. (7) in terms of nuclear wavepackets:

C(τa, τb, τc) = 〈1, g|µ̂eiĤ2τa/~µ̂eiĤ1τb/~µ̂e−iĤ2τc/~µ̂e−iĤ1(τa+τb−τc)/~|1, g〉 (8)

= 〈1, g|µ̂eiĤ2τa/~µ̂eiĤ1τb/~µ̂e−iĤ2τc/~µ̂|1, g〉e−iω1,g(τa+τb−τc) (9)

= 〈1, g|µ̂eiĤ′
2τa/~µ̂eiĤ

′
1τb/~µ̂e−iĤ

′
2τc/~µ̂|1, g〉 (10)

= 〈φτb,τa|φ0,τc〉, (11)

where ~ω1,g = 〈1, g|Ĥ1|1, g〉, Ĥ ′i = Ĥi − ~ω1,g, and

φτ,t = e−iĤ
′
1τ/~µ̂e−iĤ

′
2t/~µ̂|1, g〉.

The result (11) has an appealing interpretation in terms of bra and ket wavepackets, which

we represent pictorially for R3 [Eq. (5)] in Fig. 1. The bra wavepacket is first evolved in the

excited electronic state for a time τa = t1 and then for a time τb = t2+t3 in the ground state,

where it is a non-stationary wavepacket due to the initial t1 dynamics on the excited-state

potential energy surface. The ket wavepacket “waits” during the t1 and t2 times and is only

evolved for a time τc = t3 in the excited-state. This simple picture has been discussed in the

literature in the context of pump-probe59 and two-dimensional28 spectroscopy. In general,

during the t1 (coherence) and t3 (detection) times, the bra and ket wavepackets evolve on

different potential energy surfaces, i.e., the system is in a state of electronic coherence;

during t2, also called population or waiting time, both nuclear wavepackets are in the same

electronic state, i.e., the system is in an electronic population state.19

The evaluation of Rα functions requires only one excited-state wavepacket evolution up

to time t1 + t2 + t3 and, in addition, wavepackets propagated in the ground electronic

state starting from the snapshots along the excited-state trajectory. Since such calculations

would be difficult to perform with multiple-trajectory direct dynamics methods, we employ

the efficient, single-trajectory thawed Gaussian approximation.

C. Thawed Gaussian approximation

Within the thawed Gaussian approximation, the time-dependent wavepacket takes the

form of a Gaussian

ψt(q) = e
i
~ [

1
2
(q−qt)T ·At·(q−qt)+pTt ·(q−qt)+γt], (12)
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V1

V2t1

t2 + t3〈ϕt2+t3,t1|

(a)

t3

V1

V2
|ϕ0,t3〉

(b)

V1

V2
|ϕ0,t3〉

〈ϕt2+t3,t1|

(c)

FIG. 1. Evolution of the bra (a, dotted line) and ket (b, solid line) wavepackets of Eqs. (7) and

(11) for τa = t1, τb = t2 + t3, and τc = t3. Their overlap (c) is the R3(t3, t2, t1) component of the

third-order response function R(t3, t2, t1) [see Eqs. (5), (7), and (11)].

where qt and pt are D-dimensional position and momentum vectors, At is a complex and

symmetric D×D matrix with positive-definite imaginary part, and γt is a complex number

whose imaginary part ensures the normalization. D is the number of degrees of freedom.

The wavepacket (12) solves exactly the time-dependent Schrödinger equation

i~|ψ̇t〉 = [T (p̂) + VLHA(q̂)]|ψt〉, (13)

where T (p) = 1
2
pT ·m−1 · p, m is a D ×D symmetric mass matrix and

VLHA(q) = V (qt) + V ′(qt)
T · (q − qt) +

1

2
(q − qt)T · V ′′(qt) · (q − qt), (14)

is the local harmonic approximation of the true potential V (q) about qt, if the Gaussian’s

parameters satisfy the system57

q̇t = m−1 · pt, (15)

ṗt = −V ′(qt), (16)

Ȧt = −At ·m−1 · At − V ′′(qt), (17)

γ̇t = Lt +
i~
2

Tr(m−1 · At). (18)

In Eq. (18), Lt = T (pt) − V (qt) is the Lagrangian of the classical trajectory (qt, pt). The

above equations are interpreted as follows: the phase-space center (qt, pt) of the Gaussian

(12) evolves classically with the exact classical Hamiltonian, the complex matrix At evolves

according to the Hessian computed at the current qt, and the complex number γt is updated

according to the Lagrangian of the classical trajectory (qt, pt) and the matrix At. Since
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the only source of error is the local harmonic approximation (14), the thawed Gaussian

propagation is exact for arbitrary, multi-dimensional harmonic potentials.

The method was originally proposed for problems involving short-time dynamics, such as

photodissociation spectra.60 However, its accuracy appears to be surprisingly satisfactory in

molecular systems even at longer times, because many molecules are only weakly to mod-

erately anharmonic.61,62 Using a single thawed Gaussian wavepacket, which is the essence

of Heller’s thawed Gaussian approximation, is rather restrictive but also very efficient for

on-the-fly dynamics coupled to ab initio electronic structure. The on-the-fly ab initio thawed

Gaussian approximation63 proved useful in treating efficiently anharmonicity effects on linear

absorption,61,62,64,65 emission,65,66 and photoelectron spectra,64 as well as in understanding

nuclei-induced electronic decoherence in attosecond experiments.67 Recently, we extended

our on-the-fly implementation of the single-Gaussian approach to simulate frequency- and

time-resolved pump-probe spectra,68 similar to the earlier work by Rohrdanz and Cina69 and

Braun et al.70 on model potentials. Although ensembles of thawed Gaussians were largely

discarded and replaced by frozen Gaussians due to the numerical instabilities that often ap-

pear in nonadiabatic dynamics simulations, thawed Gaussians are being reintroduced, e.g.,

in the semiclassical hybrid dynamics71–73 or Gaussian-based MCTDH,74–76 and especially for

spectroscopic applications,77–80 due to their ability to describe couplings between different

degrees of freedom.81

D. Two-dimensional electronic spectroscopy

A variety of different third-order experiments can be simulated through the computa-

tion of the response function (2).11 For example, the full response function is needed for

evaluating transient absorption spectra with finite-duration pulses.82 Here, we focus on the

two-dimensional electronic spectra

Sα(ω3, ω1) = Re

∫ ∞

0

dt3

∫ ∞

0

dt1Rα(t3, 0, t1)e
iω3t3±iω1t1 , (19)

obtained from the individual correlation functions Rα with t2 = 0 (i.e., at zero delay time).

Spectra at nonzero delay could be obtained by using t2 > 0 in Eq. (19). Spectra Sα represent

the ideal signals obtained in the limit of ultrashort pulses. In a more general setting with

finite pulses, the two-dimensional spectra are computed from the time-dependent polariza-

tion (1), which involves explicitly the electric fields.19,83 To ensure that all spectra appear
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at positive frequencies ω1, nonrephasing spectra (α = 1, 4) are computed with the positive

sign in the exponent of Eq. (19), while the negative sign is used for the rephasing spectra

(α = 2, 3).19 Furthermore, it is easy to see from Eqs. (3)–(6) that R1(t3, 0, t1) = R4(t3, 0, t1)

and R2(t3, 0, t1) = R3(t3, 0, t1); hence, we will show only two sets of spectra: S1 ≡ S4 and

S2 ≡ S3. In general (i.e., for arbitrary t2), correlation functions R1 and R2 are associated

with the stimulated emission process because the system evolves in the excited state during

the population time t2; functions R3 and R4 correspond to the ground-state bleaching be-

cause the system is in the ground electronic state during the t2 delay time. For t2 = 0, one

cannot distinguish between these two processes.

To analyze the accuracy of different approximate approaches, we introduce the spectral

contrast angle

cos θ =
S(ref) · S
‖S(ref)‖‖S‖ , (20)

between the reference [S(ref)] and approximate (S) spectra, where

S(1) · S(2) =

∫
dω1

∫
dω3S

(1)(ω3, ω1)S
(2)(ω3, ω1) (21)

is the inner product of two two-dimensional spectra and ‖S‖ =
√
S · S is the associated

norm.

III. COMPUTATIONAL DETAILS

A. One-dimensional models: Harmonic and Morse potentials

An arbitrary one-dimensional harmonic potential,

VHarmonic(q;Veq, qeq, ω) = Veq +
1

2
mω2(q − qeq)2, (22)

is described by the equilibrium position qeq, energy minimum Veq, and frequency ω. We set

the mass m = 1 in all of our model calculations. Let us also define a one-dimensional Morse

potential,

VMorse(q;Veq, qeq, ω, χ) = Veq +
ω

4χ
[1− e−

√
2mωχ(q−qeq)]2, (23)

in terms of the anharmonicity parameter χ and the parameters Veq, qeq, and ω, which relate

to the harmonic potential (22) fit to the Morse potential at qeq.
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We construct a set of one-dimensional systems composed of the ground-state harmonic

potential,

V1(q) = VHarmonic(q;V1,eq = 0, q1 = 0, ω1 = 1) (24)

and the excited-state Morse potentials,

V2(q) = VMorse(q;V2,eq = 0, q2 = 1.5, ω2 = 0.9, χ), (25)

of variable anharmonicity χ ranging from 0.006 to 0.02. The initial vibrational state, i.e., the

ground vibrational state of the ground electronic state, is a Gaussian due to the ground-state

harmonic potential. The exact two-dimensional electronic spectra are compared to approxi-

mate spectra evaluated either with the harmonic approximation or with the thawed Gaussian

approximation. Within the harmonic approximation, the excited-state Morse potential is

replaced by the harmonic potential

V2(q) ≈ VHarmonic(q;V2,eq, q2, ω2). (26)

Note that the harmonic result does not depend on the anharmonicity parameter χ of the

Morse potential.

Next, we compare the harmonic and thawed Gaussian approximations for a one-dimensional

system composed of two Morse potentials

V1(q) = VMorse(q;V1,eq, q1, ω1, χ = 0.01), (27)

V2(q) = VMorse(q;V2,eq, q2, ω2, χ = 0.01), (28)

with the same degree of anharmonicity. The exact initial state is no more a Gaussian.

However, in the thawed Gaussian simulations, we approximate it by the vibrational ground

state of the harmonic potential (24) fitted to the ground-state Morse potential (27) at

its minimum. The harmonic approximation replaces both ground-state and excited-state

potential energy surfaces by the harmonic potentials; the result is the same as for the

harmonic-Morse system described above.

Wavepacket propagation was performed for 150 steps in both t1 and t3 times and with

a time step of 0.2. The transition dipole moment was set to 1 (Condon approximation).

Correlation functions R1, R2, R3, and R4 were multiplied by a Gaussian damping func-

tion exp[−a(t21 + t23)] with a = 0.014427, resulting in the Gaussian broadening (half-width at
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half-maximum of 0.2) of the spectra along both frequency axes. The exact spectra were com-

puted in the eigenstate representation, which is feasible for these one-dimensional systems

since both harmonic and Morse eigenfunctions are known;84 the associated Franck-Condon

overlaps were computed numerically.

B. On-the-fly ab initio calculations

The electronic structure of phenol was modeled using the density functional theory with

the PBE0 functional and 6-311G(d, p) basis set, as implemented in the Gaussian 16 quantum

chemistry package.85 Excited-state calculations were performed with the time-dependent

density functional theory. This choice of electronic structure theory provides ground-state

frequencies similar to those computed at the MP2/aug-cc-pVDZ level (see Table II of the

supplementary material and Ref. 86) and transition energies along the excited-state trajec-

tory that agree, up to an approximately constant shift (which results only in a shift of the

computed spectrum but does not affect its shape), to those evaluated at the EOM-CCSD/6-

311G(d, p) level (Fig. 1 of the supplementary material). A single ab initio excited-state

trajectory was run for 1000 steps starting from the ground-state optimized geometry; sub-

sequent ground-state classical trajectories were propagated for 500 steps. Overall, the cal-

culations allow the evaluation of the correlation functions with 500 steps in both t1 and t3

delay times; t2 delay was set to zero. All dynamics simulations used a time step of 0.25 fs

and a standard second-order Verlet integrator. The ab initio calculations evaluated not only

the energies and gradients at each step but also the Hessians of the electronic energy. These

potential energy data were transformed to ground-state normal mode coordinates and used

to propagate the 33-dimensional wavepacket according to Eqs. (15)–(18). After evolving the

ground- and excited-state Gaussian wavepackets, the correlation functions were computed

using Eqs. (3)–(6), (11), and the expression

〈ψ1|ψ2〉 =

√
(2π~)D

det(−iδA)
exp

{
i

~

[
−1

2
δξT · (δA)−1 · δξ + δη

]}
(29)
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for the overlap of two thawed Gaussian wavepackets with parameters qi, pi, Ai, and γi

(i = 1, 2). In Eq. (29), we defined vectors and scalars

ξi := pi − Ai · qi, (30)

ηi := γi −
1

2
(ξi + pi)

T · qi, (31)

as well as the notation δΛ := Λ2 − Λ∗1 for Λ = A, ξ, η.

To construct the harmonic model, also known as the generalized Brownian oscillator

model,24 of phenol, an additional Hessian was computed at the optimized excited-state geom-

etry. This corresponds to the so-called adiabatic Hessian or adiabatic harmonic model.63,87

Two more approximate models were also studied: The uncoupled harmonic model was ob-

tained by neglecting the off-diagonal terms of the excited-state Hessian expressed in terms

of the ground-state normal modes. The displaced harmonic oscillator model, also called the

Brownian oscillator model, was constructed by replacing the excited-state Hessian in the

adiabatic harmonic model by the ground-state Hessian; this specific way of constructing the

displaced harmonic oscillator parameters is called the adiabatic shift approach.63,87 When ap-

plied to any of these different harmonic potentials, the thawed Gaussian propagation is exact

and enables an efficient evaluation of linear and two-dimensional spectra. Although explicit

expressions are available for the evaluation of linear absorption and emission spectra of har-

monic systems,88 no such analytical approaches have been presented for the two-dimensional

spectra of arbitrarily shifted, distorted, and rotated harmonic potentials.

Spectra simulations assumed Condon approximation for the transition dipole moment.

Linear absorption spectra were computed from the first 500 steps of the excited-state

wavepacket autocorrelation function (see Fig. 2 of the supplementary material, where the

convergence is confirmed, and Ref. 63 for more details) and were broadened by a Gaus-

sian with half-width at half-maximum of 120 cm−1; same broadening was used for the two-

dimensional spectra along both ω1 and ω3 frequency axes. This corresponds to a phenomeno-

logical inhomogeneous broadening; homogeneous broadening due to direct system-bath in-

teractions is neglected. The system-bath coupling would be needed for spectra at later delay

times t2 > 0, as the system would have time to relax and dissipate energy to the environ-

ment; we assume that the response functions with t2 = 0 and t1, t3 < 125 fs are only weakly

affected by the system-bath coupling.
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FIG. 2. Exact, thawed Gaussian, and harmonic two-dimensional electronic spectra for the

harmonic-Morse system described in Sec. III A with the anharmonicity of the excited-state Morse

potential χ = 0.01. Spectral regions A, B, and C, discussed in the main text, are indicated on the

harmonic spectra.

IV. RESULTS AND DISCUSSION

A. Model potentials

1. Harmonic-Morse system

Two-dimensional spectra for the harmonic ground-state potential and Morse excited-

state potential are shown in Fig. 2. The exact nonrephasing spectrum appears only along

the diagonal, whereas the rephasing spectrum exhibits a characteristic checkerboard pattern

due to vibronic transitions that involve various ground- and excited-state vibrational states.
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Already at first sight, it is clear that the spectra evaluated within the thawed Gaussian ap-

proximation reproduce the exact spectra well, which is not the case for the harmonic results.

The nonrephasing harmonic spectrum flattens out at higher frequencies (spectral region A

indicated in the top right panel of Fig. 2), unlike the exact and thawed Gaussian spec-

tra, which exhibit clear vibronic peaks at these frequencies. Similar effects are seen in the

rephasing spectra, mostly in the spectral region labeled B (see Fig. 2, bottom right). Again,

the exact spectrum is composed of a long vibronic progression up to ω3 = 6, which, in the

harmonic approximation, is truncated around ω3 = 4. In the region C, the harmonic spec-

trum is missing negative vibronic peaks, which are reproduced well by the thawed Gaussian

approximation. The thawed Gaussian approximation, however, suffers from another form

of error: as in linear spectroscopy (see, e.g., Ref. 64), artificial negative peaks may also

appear in the two-dimensional spectra, which is most obvious in the nonrephasing spectrum

of Fig. 2 around (ω1, ω3) ≈ (−1,−1).

We now compare the exact and approximate spectra at different levels of anharmonicity

by measuring the error (see Fig. 3) through the spectral contrast angle [Eq. (20)]. The

thawed Gaussian approximation exhibits smaller errors in the computed spectra than the

harmonic approximation at all levels of anharmonicity and for both rephasing and non-

rephasing spectra. As expected, the accuracy of both approximate approaches deteriorates

as the anharmonicity of the system increases.

2. Morse-Morse system

Two-dimensional rephasing spectra of the system composed of two Morse potentials, both

with the anharmonicity parameter χ = 0.01, are shown in Fig. 4. As in the harmonic-Morse

system, the errors of the harmonic spectrum are observed in the spectral regions B and C;

the accuracy of the thawed Gaussian spectrum is not much affected by the additional an-

harmonicity in the ground-state potential surface. To analyze further the two approximate

methods, we inspect one-dimensional cuts of the two-dimensional spectra along two differ-

ent values of ω1 frequency (Fig. 5). We see clearly that the thawed Gaussian approximation

recovers the positions and intensities of the vibronic peaks both at low ω1 ≈ 1 and high

ω1 ≈ 4 frequencies. Harmonic results recover qualitatively the spectral cut at the lower ω1

frequency (Fig. 5, top) but fail to recover the vibronic peaks at the higher ω1 frequency

13



Thawed Gaussian approx. Harmonic
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FIG. 3. Errors of the thawed Gaussian and harmonic spectra of the harmonic-Morse system, mea-

sured by the spectral contrast angles [Eq. (20)] at different values of the anharmonicity parameter

χ.

FIG. 4. Exact, thawed Gaussian, and harmonic rephasing spectra of the Morse-Morse system

described in Sec. III A (anharmonicity χ = 0.01).

(Fig. 5, bottom). Notably, the negative peak at ω3 ≈ −1 is missing in the spectrum cal-

culated within the harmonic approximation. Such errors could, in practice, seriously affect

the interpretation of the experiments. One of the main challenges in two-dimensional elec-
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Exact Thawed Gaussian approx. Harmonic
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FIG. 5. One-dimensional cuts of the two-dimensional spectra of Fig. 4 at ω1 ≈ 1 (top) and ω1 ≈ 4

(bottom).

tronic spectroscopy is to assign spectral features to either vibrational or electronic degrees

of freedom.89–91 If the simulation, for example, based on a model harmonic potential, cannot

reproduce the vibronic peaks found in the experimental spectra, these peaks might end up

incorrectly assigned to another electronic state or another excitation process.

B. Two-dimensional electronic spectrum of phenol

Phenol is an ultraviolet chromophore present in proteins as the residue of the natu-

rally occurring amino acid tyrosine. Recently, accurate electronic structure methods were

employed to simulate its two-dimensional electronic spectrum94,95 in an attempt to explore

theoretically the capabilities of this spectroscopic technique to resolve the features specific to

chromophore-chromophore interactions in oligopeptides and, more generally, in proteins.3,96

These recent calculations included multiple electronic states but neglected the vibronic struc-

ture of the individual electronic transitions. Here, we present a complementary result: we

focus only on the ground and first excited electronic states, i.e., we neglect the excited-state

absorption process, but study in detail the vibronic lineshape of the ground-state bleach-

ing/stimulated emission signal. The methods we use neglect the nonadiabatic effects; this is
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FIG. 6. Experimental linear absorption spectrum of Ref. 92 (data extracted with

WebPlotDigitizer93) and the spectra computed with the on-the-fly ab initio thawed Gaussian ap-

proximation, harmonic approximation, uncoupled harmonic model (“Uncoupled”), and displaced

harmonic oscillator (DHO) model. For ease of comparison, the computed spectra are shifted in

frequency and scaled in intensity so that they all match at the maximum of the experimental

spectrum (see Sec. IV of the supplementary material for details).

an acceptable approximation for the dynamics in the first excited state of phenol, as demon-

strated by the MCTDH simulations performed on a vibronic-coupling Hamiltonian model

of phenol.86

The linear absorption spectrum of phenol was computed with four different approximate

methods: the on-the-fly ab initio thawed Gaussian approximation, harmonic approximation,

uncoupled harmonic model, and displaced harmonic oscillator model (Fig. 6). Harmonic

and on-the-fly thawed Gaussian spectra (Fig. 6, top) are similar in accuracy for this spe-

cific system: while the thawed Gaussian propagation results in more accurate intensities of

the low-frequency peaks, namely, the 0–0 transition at ≈ 36350 cm−1 and the shoulder at

≈ 36800 cm−1, the harmonic approximation gives a better estimate of the high-frequency

region and the tail of the spectrum. One of the main disadvantages of the thawed Gaussian
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approximation, the appearance of artificial negative spectral intensities, shows up clearly in

the absorption spectrum of phenol. Although the simulated harmonic and thawed Gaussian

spectra resemble the experiment, there are remaining differences, most notably in the inten-

sities of the spectral peaks. These errors could be either due to anharmonicity effects not

captured by the approximate thawed Gaussian wavepacket propagation or due to the errors

in the potential energy data evaluated with an approximate electronic structure method.

Fairly small difference between the harmonic and thawed Gaussian spectra suggests that

the anharmonicity effects are weak and that the remaining errors in our simulation are due

to the inaccuracies of the electronic structure theory. In the bottom panel of Fig. 6, we show

the results of two more approximate approaches—the uncoupled harmonic and displaced

harmonic oscillator models. These spectra clearly deviate from the experiment, indicating

the importance of both mode distortion (changes in mode frequencies) and intermode cou-

plings (Duschinsky effect). When going from the displaced harmonic model, which neglects

mode distortion, to the uncoupled harmonic model, which includes mode distortion, the

peaks broaden but still exhibit inaccurate intensities. Additional inclusion of the Duschin-

sky effect, which is achieved by moving to the (coupled) harmonic model, improves the

intensities.

The two-dimensional spectra simulated with different approximate methods are shown

in Fig. 7. Again, the uncoupled harmonic and displaced harmonic oscillator models predict

spectra that differ substantially from the harmonic and thawed Gaussian results, which are,

in turn, similar to each other. Therefore, based on both linear and two-dimensional spectra

simulations, we may conclude that the anharmonicity effects are truly weak in the ground

and first excited states of phenol, at least in the region explored by the nuclear wavepacket

for short time after the photoexcitation. More precisely, the anharmonicity effects are much

weaker than the effects of the Duschinsky rotation and frequency changes, which are, in con-

trast, significant, as demonstrated by the simulations based on the uncoupled or displaced

harmonic models. The anharmonicity could, however, play a role at longer simulation times,

needed, for example, to simulate high-resolution spectra. We note that most simulations

supporting experimental results are nowadays performed with the simplified displaced har-

monic oscillator model, which captures the basic physics of the problem, but is inadequate

in certain cases, such as the presented example of phenol.

Interestingly, the spectrum spans a broad range of frequencies in both ω1 and ω3, which
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FIG. 7. Rephasing two-dimensional electronic spectra of phenol at t2 = 0 computed with the on-

the-fly ab initio thawed Gaussian approximation, harmonic approximation, uncoupled harmonic

model, and displaced harmonic oscillator (DHO) model. The spectra correspond to the stimulated

emission (S2) and ground-state bleaching (S3) processes (S2 = S3 for t2 = 0). Computed spectra

were shifted along both frequency axes and scaled in intensity as in Fig. 6.

is in stark contrast with the simulations of Ref. 94. More specifically, the broad vibronic

ground-state bleach/stimulated emission spectrum is expected to overlap strongly with the

excited-state absorption signals of phenol and even with the signals of other amino acid

residues (compare our results with those for a noninteracting benzene-phenol dimer in Fig. 3

of Ref. 94). Hence, an accurate treatment of vibronic effects is needed to simulate realistic

spectra and to help explain these overlapping, unresolved spectral features. Our results

also support indirectly the concluding part of Ref. 94, where a two-color ultraviolet-visible

experiment is proposed to resolve transitions to charge-transfer states (see Fig. 6 of Ref. 94),

which appear only when the two chromophores are close to each other. In the visible region

of frequency ω3, there are fewer spectroscopic transitions and these charge transfer states

could be easily distinguished from the states of the individual chromophores even with broad

vibronic features included.
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V. CONCLUSIONS AND OUTLOOK

We have presented a new method for simulating vibrationally resolved two-dimensional

electronic spectra that is exact for any shifted, distorted, and coupled harmonic model and,

in addition, can approximately account for anharmonicity effects. The method, based on

the thawed Gaussian approximation, is shown to be superior to the harmonic approximation

for a series of Morse models of varying anharmonicity. On the example of phenol, we show

that inter-mode couplings and changes in the mode frequencies, both of which are frequently

neglected in simulations, can be crucial for recovering the correct vibronic shape of the two-

dimensional electronic spectra. In this specific case, the anharmonicity is shown to be weak,

which could allow further studies on the nonlinear spectra of phenol based on the harmonic

approximation. For example, our results could be augmented by constructing harmonic

models with more accurate electronic structure methods, in order to simulate excited-state

absorption signals. For systems that do exhibit anharmonicity effects, we propose the on-

the-fly ab initio thawed Gaussian approximation as a computationally affordable approach

beyond harmonic approximation.

Finally, let us also give a short outlook on how to include features that are missing in the

current method. First, as a wavefunction method, the thawed Gaussian approximation is

not suitable for treating systems at non-zero temperature. We have shown recently that this

limitation can be overcome efficiently with the so-called thermo-field dynamics theory.97

Currently, we are exploring the application of this idea to the computation of nonlinear

spectra. Second, the method is originally constructed for isolated systems. An obvious, “ab

initio way” to augment the system with an environment would be to include a number of

solvent molecules directly into the system. To account for inhomogeneous broadening, the

dynamics would have to be repeated for different conformations of the solute-solvent system.

Alternatively, the bath effects could be treated through a number of low-frequency harmonic

oscillators coupled to the system; the procedures for computing the parameters of the bath

oscillators are well-studied in the literature. The extensions that include temperature and

environment effects would enable accurate and efficient first-principles simulation of time-

resolved (t2 > 0) two-dimensional electronic spectra in the condensed phase.
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SUPPLEMENTARY MATERIAL

See the supplementary material for ground- and excited-state optimized geometries,

normal-mode frequencies and displacements, validation of the electronic structure method,

wavepacket autocorrelation function, and frequency shifts applied to the computed spectra

of phenol. Supplementary material contains Refs. 98–105.
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35J. Krčmář, M. F. Gelin, and W. Domcke, Chem. Phys. 422, 53 (2013).

36J. Xu, R. X. Xu, D. Abramavicius, H. D. Zhang, and Y. J. Yan, Chinese J. Chem. Phys.

24, 497 (2011).

37Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).

38J. Tatchen and E. Pollak, J. Chem. Phys. 130, 041103 (2009).

39M. Ceotto, S. Atahan, S. Shim, G. F. Tantardini, and A. Aspuru-Guzik, Phys. Chem.

Chem. Phys. 11, 3861 (2009).

40M. Ceotto, S. Atahan, G. F. Tantardini, and A. Aspuru-Guzik, J. Chem. Phys. 130,

234113 (2009).

41M. Buchholz, F. Grossmann, and M. Ceotto, The Journal of Chemical Physics 144,

094102 (2016).

42M. Buchholz, F. Grossmann, and M. Ceotto, J. Chem. Phys. 147, 164110 (2017).

43F. Gabas, R. Conte, and M. Ceotto, J. Chem. Theory Comput. 13, 2378 (2017).

44F. Gabas, G. Di Liberto, R. Conte, and M. Ceotto, Chem. Sci. 9, 7894 (2018).

45M. Bonfanti, J. Petersen, P. Eisenbrandt, I. Burghardt, and E. Pollak, J. Chem. Theory

Comput. 14, 5310 (2018).

46M. Micciarelli, F. Gabas, R. Conte, and M. Ceotto, J. Chem. Phys. 150, 184113 (2019).

47T. J. Mart́ınez, M. Ben-Nun, and R. D. Levine, J. Phys. C 100, 7884 (1996).

48B. F. E. Curchod and T. J. Mart́ınez, Chem. Rev. 118, 3305 (2018).

49D. V. Makhov, C. Symonds, S. Fernandez-Alberti, and D. V. Shalashilin, Chem. Phys.

493, 200 (2017).

50M. Šulc, H. Hernández, T. J. Mart́ınez, and J. Vańıček, J. Chem. Phys. 139, 034112
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I. GROUND- AND EXCITED-STATE OPTIMIZED GEOMETRIES,

FREQUENCIES, AND RELATIVE DISPLACEMENTS

TABLE I. Optimized geometries (in Å) of the ground and first excited electronic states of phenol

at the PBE0/6-311G(d, p) level of theory.

S0 S1

X Y Z X Y Z

C -0.000 0.940 0.000 -0.930 0.038 -0.008

C -1.199 0.232 0.000 -0.298 -1.235 -0.019

C -1.183 -1.158 0.000 1.120 -1.261 0.037

C 0.021 -1.849 0.000 1.831 -0.039 0.010

C 1.215 -1.134 0.000 1.190 1.218 -0.036

C 1.212 0.252 0.000 -0.230 1.264 0.006

O 0.049 2.296 0.000 -2.269 0.119 0.002

H -0.848 2.639 0.000 -2.630 -0.770 0.097

H -2.146 0.767 0.000 -0.882 -2.132 -0.199

H -2.123 -1.700 0.000 1.656 -2.201 0.062

H 0.031 -2.933 0.000 2.917 -0.072 0.018

H 2.163 -1.662 0.000 1.773 2.129 -0.061

H 2.134 0.822 0.000 -0.787 2.185 0.126

2



TABLE II. Ground- and excited-state frequencies and dimensionless relative displacements be-

tween the two states. Frequencies are given in cm−1. Dimensionless displacements are defined as

|
√
ωi/~q2,i|, where ωi is the i-th ground-state frequency and q2,i is the excited-state position in

the mass-scaled normal mode coordinate i of the ground state. Both ground- and excited-state

frequencies are listed in the descending order.

Mode S0 frequencies S1 frequencies Displacement

1 3889 3806 0.012

2 3222 3242 0.127

3 3216 3232 0.041

4 3201 3225 0.079

5 3192 3193 0.066

6 3171 3182 0.165

7 1682 1579 0.215

8 1668 1499 0.077

9 1544 1492 0.143

10 1511 1468 0.027

11 1388 1439 0.085

12 1361 1340 0.082

13 1314 1320 0.553

14 1207 1181 0.016

15 1190 1159 0.035

16 1175 1148 0.028

17 1100 1022 0.113

18 1055 996 0.587

19 1015 987 0.708

20 989 854 0.081

21 969 822 0.360

22 890 678 0.044

23 840 631 0.819

24 825 608 0.724

25 766 542 0.174

26 702 527 0.079

27 631 519 0.113

28 536 498 0.972

29 519 400 0.003

30 421 345 0.893

31 409 297 0.111

32 352 187 0.357

33 232 117 0.218
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II. EQUATION-OF-MOTION COUPLED CLUSTER SINGLES AND

DOUBLES (EOM-CCSD) TRANSITION ENERGIES ALONG THE

EXCITED-STATE TRAJECTORY
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FIG. 1. The energy gaps between the excited and ground electronic states of phenol evaluated

along the first 500 steps of the excited-state ab initio trajectory at the PBE0/6-311G(d, p) level of

theory, compared to the transition energies computed using the EOM-CCSD/6-311G(d, p) method.

The nearly constant shift in the transition energies induces only a constant frequency shift in the

computed spectra, but does not affect their shape.
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III. WAVEPACKET AUTOCORRELATION FUNCTION FOR THE

LINEAR ABSORPTION SPECTRUM
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FIG. 2. Top: Undamped (red, dashed) and damped (blue, solid) wavepacket autocorrelation func-

tion 〈1, g|e−iĤ′
2t/~|1, g〉, evaluated with the on-the-fly ab initio thawed Gaussian approximation, and

the damping (black, dotted), which is a Gaussian function exp(−t2/2σ2t ) with σt =
√

2 ln 2/HWHM,

where HWHM is the half-width of half-maximum of the broadening Gaussian function in the fre-

quency domain (HWHM= 120 cm−1, as reported in the main text). Bottom: Absorption spectra

computed as the Fourier transforms of the first 500 (blue, solid) or 1000 (red, dashed) steps of

the damped autocorrelation function (blue, solid line in the top panel). For the given damping,

500 steps (125 fs) of the autocorrelation function are sufficient to obtain a converged absorption

spectrum, as demonstrated by the comparison of simulated spectra in the bottom panel.
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IV. SHIFTS IN FREQUENCY APPLIED TO THE CALCULATED

SPECTRA OF PHENOL

To facilitate the comparison between the calculated and experimental spectral lineshapes,

we shift the simulated spectra along the frequency axis and scale their intensity so that all

spectra match at the maximum of the experimental spectrum. To reproduce the exact po-

sition of the spectrum, one would need to predict accurately the vertical excitation energy,

which is difficult even with fairly accurate electronic structure methods. As shown in Ta-

ble III, values obtained at different levels of theory vary greatly. For example, the method

used in this work, PBE0/6-311G(d,p), predicts the vertical excitation energy of 5.25 eV, mul-

ticonfigurational complete active space self-consistent field (CASSCF) method gives 4.85 eV,

whereas the second-order perturbation theory restricted active space (RASPT2) method re-

duces the excitation energy to 4.47 eV. Based on the frequency shift that we employed

to overlap the simulated thawed Gaussian and experimental spectra (see Table IV), we

propose the value of 4.83 eV as the most accurate prediction of the vertical excitation en-

ergy. Note that this quantity cannot be deduced from the experimental spectrum. Some

authors, e.g., in Ref. 1, incorrectly compared their results with the 0–0 transition energy

(36350 cm−1 ≈ 4.51 eV), which is typically much lower than the vertical energy gap at

the Franck–Condon geometry; others, e.g., in Ref. 2, compared their prediction with the

transition energy of the maximum-intensity peak of the spectrum (4.61 eV), which is not

necessarily equal to the vertical excitation energy. Our prediction is, in fact, far from those

values, emphasizing the importance of simulating full vibronic spectra for the accurate esti-

mation of the vertical excitation energy.

By neglecting anharmonicity, Duschinsky rotation, or mode distortion, one inevitably

modifies the estimated zero-point energy in the excited electronic state, which, in turn,

affects the overall position of the absorption spectrum. Therefore, the spectra computed

with different anharmonic and harmonic methods differ not only in shape but are also

shifted differently. To compare fairly the spectral lineshapes, we translate each simulated

spectrum with its own value of the frequency shift.
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TABLE III. Vertical excitation energies for the phenol S1 ← S0 electronic transition evaluated

at different levels of theory. Standard notation M1/B1//M2/B2 is used to denote the excitation

energy evaluated with method M1 and basis set B1 at the ground-state minimum optimized with

method M2 and basis set B2. For brevity, we do not list all values found in the literature and refer

the reader to Refs. 2–7 for more computational results.

Electronic structure method Vertical excitation energy (eV)

PBE0/6-311G(d, p)//PBE0/6-311G(d, p) 5.25a

EOM-CCSD/6-311G(d, p)//PBE0/6-311G(d, p) 5.11a

CASSCF(10,10)/aug-cc-pVDZ//MP2b/aug-cc-pVDZ 4.85c

MRCId/aug-cc-pVDZ//MP2/aug-cc-pVDZ 4.75e

RASPT2(0,0/8,7/2,12)/ANO-L(432,21)-aug//CASSCF(8,7)/ANO 4.47f

a This work.
b Second-order Møller–Plesset perturbation theory.
c Ref. 8
d Multireference configuration interaction.
e Ref. 9
f Ref. 1 See also other values reported therein.

TABLE IV. Overall frequency shifts (in cm−1) introduced into the calculated linear and two-

dimensional spectra of phenol. Same shifts were used along both frequency axes in two-dimensional

electronic spectra.

Method Shift

On-the-fly ab initio thawed Gaussian approximation -3380

Harmonic approximation -3440

Uncoupled harmonic approximation -3760

Displaced harmonic oscillator model -4740
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