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Supplementary note 1: Fundamentals of the proposed coding technique 

Standard single-pulse systems 

Distributed optical fibre sensors implemented in the time domain are all based on the concept of optical time-

domain reflectometry (OTDR), in which the sensing fibre is interrogated by an optical pulse launched at the fibre 

near-end. While the pulse propagates through the fibre, the light backscattered from the pulse is recorded as a 

function of time and then digitally processed to spatially resolve the local information (e.g. temperature, strain, 

etc.). Such measured discrete-time signal, shown as purple curve in Supplementary Fig. 1 and designated here as 

𝑟𝑠
𝑚(𝑛), is essentially a sampled single-pulse response 𝑟𝑠(𝑛) merged with zero-mean additive noise 𝑒𝑠(𝑛): 

𝑟𝑠
𝑚(𝑛) = 𝑟𝑠(𝑛) + 𝑒𝑠(𝑛)            1 ≤ 𝑛 ≤ 𝑁𝑠 (1) 

where n is an integer variable linearly related to the time t through the sampling rate 𝑓𝑠, as 𝑡 = 𝑛/𝑓𝑠, and 𝑁𝑠 is 

the total number of sampled points representing the data length of 𝑟𝑠
𝑚(𝑛), 𝑟𝑠(𝑛) and 𝑒𝑠(𝑛). 

 

Supplementary Fig. 1. Schematic illustration for the working principle of the single-pulse system. 

For a linear time-invariant (LTI) system, the single-pulse response 𝑟𝑠(𝑛) can further be expressed by the linear 

convolution1 between a single-pulse signal 𝑝(𝑛) (see green dots in Supplementary Fig. 1) and the fibre impulse 

response ℎ(𝑛), so that Supplementary Eq. (1) can be rewritten as: 

𝑟𝑠
𝑚(𝑛) = 𝑝(𝑛)⨂ℎ(𝑛) + 𝑒𝑠(𝑛) (2) 

where sign ⨂ denotes linear convolution. Defining a pulse duration 𝑇𝑝 and a fibre length 𝐿ℎ, the number of 
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points in 𝑝(𝑛)  and ℎ(𝑛)  are 𝑁𝑝 = 𝑇𝑝𝑓𝑠  and 𝑁ℎ = 2𝐿ℎ𝑓𝑠/𝑣𝑔 , respectively, where 𝑣𝑔  is the pulse group 

velocity in the fibre. This further yields the relation 𝑁𝑠 = 𝑁𝑝 + 𝑁ℎ − 1 according to the definition of the linear 

convolution. Supplementary Eq. (2) is often equivalently represented in the discrete-frequency domain as:  

𝑅𝑠
𝑀(𝑘) = 𝑃(𝑘)𝐻(𝑘) + 𝐸𝑆(𝑘)        −

𝑁𝑠
2
≤ 𝑘 ≤

𝑁𝑠
2
− 1 (3) 

where 𝑅𝑠
𝑀(𝑘) , 𝑃(𝑘) , 𝐻(𝑘)  and 𝐸𝑆(𝑘)  are the respective 𝑁𝑠 -point discrete Fourier Transform (DFT)1 of 

𝑟𝑠
𝑚(𝑛), 𝑝(𝑛), ℎ(𝑛) and 𝑒𝑠(𝑛), over the fundamental frequency interval [−𝑓𝑠/2, 𝑓𝑠/2] with spacing of 𝑓𝑠/𝑁𝑠. 

Note that this process requires to pad 𝑝(𝑛) and ℎ(𝑛) with 𝑁𝑠 − 𝑁𝑝 and 𝑁𝑠 − 𝑁ℎ zeros, in order to increase 

their length to 𝑁𝑠 before performing the DFT.  

Since 𝑒𝑠(𝑛) represents a single realization of the additive white Gaussian noise (AWGN), which is a wide-

sense stationary real-valued random process1, it can be characterized by its variance 𝜎𝑒
2 expressed as: 

𝜎𝑒
2 = 𝛾𝑒𝑒(0) =

1

𝑁𝑠
∑𝑒𝑠(𝑛)

2

𝑁𝑠

𝑛=1

=
1

𝑁𝑠
2
∑ |𝐸𝑆(𝑘)|

2

𝑁𝑠
2
−1

𝑘=−
𝑁𝑠
2

(4) 

where 𝛾𝑒𝑒(0) represents the autocorrelation coefficient of 𝑒𝑠(𝑛) at zero delay. 

Proposed pulse-coded system 

Similar to the aforementioned single-pulse interrogation, for a given 𝑁𝑐 -point coded optical pulse sequence 

𝑐𝑓(𝑛) (see Fig. 1 in Results) launched into the sensing fibre, the measured response 𝑟𝑐
𝑚(𝑛) can be respectively 

described in discrete-time and discrete-frequency domains as: 

𝑟𝑐
𝑚(𝑛) = 𝑐𝑓(𝑛)⨂ℎ(𝑛) + 𝑒𝑐(𝑛)   

       𝐹      
↔            𝑅𝑐

𝑀(𝑘) = 𝐶𝐹(𝑘)𝐻(𝑘) + 𝐸𝐶(𝑘) (5) 

where 𝑟𝑐
𝑚(𝑛) and 𝑒𝑐(𝑛) are both 𝑁𝑟-point discrete-time signals (𝑁𝑟 = 𝑁𝑐 + 𝑁ℎ − 1), and F denotes 𝑁𝑟-point 

DFT operation. Note that 𝑒𝑐(𝑛) is another single realization of the same AWGN shown in Supplementary Eqs. 

(1), (2) and (4), so that it shares the same variance 𝜎𝑒
2 as that of 𝑒𝑠(𝑛). It must be mentioned that this is true only 

when the thermal noise is dominant, so that the variance of the detection noise is not affected by the power of 

signal reaching the photo-detector, i.e. not affected by single pulse or code sequence used for the interrogation. 

This condition can be realised by carefully designing the energy enhancement factor defined in Results, as will be 

elaborated in Supplementary notes 3 and 4. Knowing that 𝑐𝑓(𝑛)  can further be expressed by the linear 

convolution between 𝑑𝑓(𝑛)  (See Fig.1 in Results) and the single pulse 𝑝(𝑛) , supplementary Eq. (5) can be 

rewritten as: 

𝑟𝑐
𝑚(𝑛) = 𝑑𝑓(𝑛)⨂𝑝(𝑛)⨂ℎ(𝑛) + 𝑒𝑐(𝑛)   

       𝐹      
↔            𝑅𝑐

𝑀(𝑘) = 𝐷𝐹(𝑘)𝑃(𝑘)𝐻(𝑘) + 𝐸𝐶(𝑘) (6) 

where 𝑑𝑓(𝑛) = 𝑓(𝑛)𝑑(𝑛) , which can be obtained by retrieving the energy of each optical pulse in 𝑐𝑓(𝑛) 

measured at the fibre input. This way the following decoding process can be performed: 

𝑟𝑠
𝑑(𝑛) = 𝐼𝐷𝐹𝑇 [

𝑅𝑐
𝑀(𝑘)

𝐷𝐹(𝑘)
] = 𝐼𝐷𝐹𝑇 [𝑃(𝑘)𝐻(𝑘) +

𝐸𝐶(𝑘)

𝐷𝐹(𝑘)
] = 𝑟𝑠(𝑛) + 𝐼𝐷𝐹𝑇 [

𝐸𝐶(𝑘)

𝐷𝐹(𝑘)
] (7) 

resulting in a decoded single-pulse response 𝑟𝑠
𝑑(𝑛) that consists of the targeted single-pulse response 𝑟𝑠(𝑛) and 

a noise term that is affected by 𝐷(𝑘). The measure of whether the decoder 𝐷(𝑘) attenuates or magnifies the 

original input noise is given by the variance of the noise after decoding, which can be characterized based on 

Supplementary Eq. (4): 
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∑ |

1
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|
2
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2
−1
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(9) 

is defined here as the noise scaling factor that should be minimized to achieve a high SNR. Knowing that 𝑑𝑓(𝑛) 

is 𝑁𝑥-point upsampling of 𝑁𝑢-point signal 𝑢𝑓(𝑛) as shown in Fig. 1 and expressed here: 

𝑑𝑓(𝑛) = ∑ 𝑢𝑓(𝑚)𝛿(𝑛 −𝑚𝑁𝑥)

𝑁𝑢

𝑚=1

       1 ≤ 𝑛 ≤ 𝑁𝑑 (10) 

|𝐷𝐹(𝑘)| is therefore equivalent to 𝑁𝑥 replicas of |𝑈𝐹(𝑘)|, as shown in Supplementary Fig. 2 and proved here:  

  𝐷𝐹(𝑘) = ∑𝑑𝑓(𝑛)𝑒
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(11) 

It is clear that the mean value of |1/𝐷𝐹(𝑘)|
2 is identical to that of |1/𝑈𝐹(𝑘)|

2 regardless of the upsampling 

points 𝑁𝑥.  

 

Supplementary Fig. 2. Spectral behaviour of a |𝐷𝐹(𝑘)| and b |𝑈𝐹(𝑘)| for 𝑁𝑥 = 3. 

Through this relation, the noise scaling factor 𝑄 can be rewritten as: 

𝑄 =
1

𝑁𝑟
∑ |

1

𝑈𝐹(𝑘)
|
2

𝑁𝑟
2
−1

𝑘=−
𝑁𝑟
2

(12) 

Given the energy enhancement factor 𝐹𝐸 = ∑ 𝑢𝑓(𝑛)
𝑁𝑢
𝑛=1  and the code length 𝑁𝑢, in |𝑈𝐹(𝑘)|

2 there is a fixed 

main lobe centred at 𝑘 = 0  with a peak value of |𝑈𝐹(0)|
2 ≡ 𝐹𝐸

2 , covering the frequency interval 

[−𝑁𝑟/(2𝑁𝑢), 𝑁𝑟/(2𝑁𝑢)], as shown in Supplementary Fig. 3(a). This property results in a fixed dip at the centre 

𝐷𝐹 𝑘

𝑈𝐹 𝑘



of |1/𝑈𝐹(𝑘)|
2 , with an approximate power (integrated value over the mentioned frequency interval) of 

3𝑁𝑟/(2𝐹𝐸
2𝑁𝑢), as shown by the shaded area in Supplementary Fig. 3(b).  

 

Supplementary Fig. 3. Spectral behaviour of a |𝑈𝐹(𝑘)|
2 and b |1/𝑈𝐹(𝑘)|

2. 

Since 𝑄  equals to the mean value of |1/𝑈𝐹(𝑘)|
2  (blue curve in Supplementary Fig. 3(b)), it can be 

decomposed as: 
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where the first right-hand term represents the mean value of the shaded area in Supplementary Fig. 3(b), which 

remains fixed for given 𝐹𝐸 and 𝑁𝑢 (i.e. independent of the detailed code distribution); the second right-hand 

term represents the mean value outside the shaded area, which depends on the detailed code distribution and is 

more critical for the determination of the minimum value of 𝑄. Applying Cauchy inequality to the second right-

hand term of Supplementary Eq. (13): 
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and making use of the equality given by the Parseval’s theorem1: 
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the following relation can be retrieved: 
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which further results in: 
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Defining 𝑁𝑢 = 𝑚𝐹𝐸, Supplementary Eq. (17) can be rewritten as:  

𝑄 ≥
3

2𝑚𝐹𝐸
3 +

𝑚𝐹𝐸

𝑚𝐹𝐸
2 − 𝐹𝐸

2 −
2

𝑚𝐹𝐸
2 − 𝐹𝐸

2 ≈
𝑚

(𝑚−1)𝐹𝐸
     𝑓𝑜𝑟  𝑚 > 1 𝑎𝑛𝑑 𝐹𝐸 > 10 (18) 

This approximation requires 𝐹𝐸 > 20, which is a reasonable condition to make the implementation of coding 

techniques meaningful for distributed sensors (sizeable SNR improvement). Note that this minimum value of 𝑄 

can be reached only if the off-peak spectral region of |𝑈𝐹(𝑘)|
2 (see supplementary Fig. 3) is perfectly flat as 

required by the Cauchy inequality in Supplementary Eq. (14), which is theoretically impossible to obtain2. 

However, the flatter the spectrum, the closer between 𝑄 and the right-hand term of Supplementary Eq. (18), for 

any given 𝐹𝐸 and 𝑚. Taking this into account and based on the expression of the coding gain (i.e. 𝐺𝑐 = √1/𝑄, 

as defined in Results), the following relation can be obtained: 

𝐺𝑐 < √
𝐹𝐸(𝑚 − 1)

𝑚
(19) 

in which the right-hand term represents the theoretical maximum of the coding gain 𝐺𝑐. 

 

Supplementary note 2: Distributed genetic algorithm (DGA) 

In order to evaluate the efficiency and effectiveness of the proposed DGA method, a simple brute-force method 

has been implemented for comparison, targeting a unipolar binary code sequence with total bit number 𝑁𝑢 = 120 

and energy enhancement factor 𝐹𝐸 = 40. More than 100 million sequences are randomly generated in a 10-hour 

brute-force searching, and the corresponding probability distribution of coding gain 𝐺𝑐 = √1/𝑄 is shown in 

Supplementary Fig. 4, where the red vertical line represents the standard reference coding gain 𝐺𝑟 = √𝐹𝐸/2 ≈

4.47. Results show that most values of 𝐺𝑐 are less than 3 and clustered around 1.9, while the largest 𝐺𝑐 reaches 

only 3.84 that is still much smaller than 𝐺𝑟 , indicating that the brute-force method is impractical to search for an 

acceptable sequence that can approach the coding gain provided by conventional codes (e.g. Simplex and Golay).  

       
Supplementary Fig. 4. a probability distribution of 𝐺𝑐  resulted from 10-hours brute-force searching and b 

probability of 𝐺𝑐 distributed from 3.6 to 5 (zoom-in of Supplementary Fig. 4a). 

Compared with the brute-force method, DGA has been demonstrated as an effective way to search the 

optimal/sub-optimal sequence. Supplementary Fig. 5 shows the 𝐺𝑐 distribution searched by DGA at the initial 

generation and 1st, 3rd, 16th, 74th, and 144th iterations, in which each figure contains an inset showing a zoom-in 

ranging from 2.972 to 𝐺𝑟 . It can be found that the 𝐺𝑐 distribution in the initial generation is similar to the one 

shown in Supplementary Fig. 4 due to the same random initialization process. This distribution changes in the 

evolutionary process, and eventually converges at an optimal 𝐺𝑐 = 4.35 that is 97% of 𝐺𝑟  (0.12 dB less than 

𝐺𝑟). Whilst obtaining much better performing 𝐺𝑐, the computational time of DGA searching is ~135 minutes, 

being order-of-magnitude more time-efficient than the brute-force method. 



 

Supplementary Fig. 5. DGA-enabled 𝐺𝑐  distribution of a initial generation and b 1st, c 3rd, d 16th, e 74th, f 144th 

iterations. All insets show a zoom-in of the 𝐺𝑐 distributed from 2.972 to 𝐺𝑟. 

 

Supplementary note 3: Noise analysis for unipolar coded BOTDA 

In this note the impact of detection noise on general unipolar coded-BOTDA systems is analytically modelled, 

aiming to provide a quantitative guideline for the optimisation of the energy enhancement factor 𝐹𝐸 (defined in 

Results) under given experimental conditions. It turns out that some Brillouin-gain-dependent noises that are 

negligible in long-range single-pulse BOTDA, may however be significantly enhanced (even becoming dominant) 

in unipolar coded-BOTDA due to the large cumulated Brillouin gain. This noise enhancement may substantially 

compromise the SNR improvement brought by the theoretical coding gain 𝐺𝑐, depending on the value of 𝐹𝐸. In 

other words, 𝐹𝐸 must be properly designed to secure the system operating at a desired 𝐺𝑐.  

The analysis is here performed based on the setup shown in Fig. 5, in which a polarization scrambler is 

employed to mitigate the impact of polarization pulling effects3,4 and a pre-amplifier (EDFA2) is used to enhance 

the SNR5. The noise model is established by assuming that the BFS profile is uniform, corresponding to the worst-

case scenario, i.e., the negative impact of the Brillouin-gain dependent noises is the most detrimental. Considering 

both the optical noise and detector noise, for the th single acquisition (i.e. non-averaged), the photocurrent of the 

detected optical signal (raw coded BOTDA trace) at the Brillouin resonance can be expressed as3: 

𝐼(𝑡, ) = 𝜂𝐴𝑃𝑠
𝐷𝐶 exp[−𝐺(𝑡, )] + 𝑒𝑃𝐷(𝑡, ) + 𝑒𝑠−ASE(𝑡, ) + 𝑒𝑠−𝑆𝑝𝐵𝑆(𝑡, ) (20) 

where 𝑡 stands for the sampling time, 𝜂 ≈ 1 A/W is the responsivity of the photodiode, 𝐴 is the EDFA gain, 

𝑃𝑠
𝐷𝐶  is the power of DC-probe entering the EDFA; 𝑒𝑃𝐷, 𝑒𝑠−ASE and 𝑒𝑠−𝑆𝑝𝐵𝑆 are photo-detection current noise, 

signal-ASE beating noise and signal-SpBS beating noise, respectively; 𝐺(𝑡, ) represents the net Brillouin gain 

at the Brillouin resonance provided by all pulses in the coding sequence, expressed as: 

𝐺(𝑡, ) =∑𝑔𝐵(𝑡)

𝑁𝑢

𝑖=1

𝑢𝑓(𝑖)𝑐𝑜𝑠
2𝜑(𝑖, 𝑡, ) (21) 

where 𝑔𝐵(𝑡) is the single-pulse Brillouin gain at the Brillouin resonance, 𝑁𝑢 and 𝑢𝑓(𝑖) denote the code 

bit number and the amplitude of the 𝑖𝑡ℎ coded pulse, respectively, 𝜑(𝑖, 𝑡, 𝑛) is the relative polarization 

angle between the 𝑖𝑡ℎ coded pulse and the probe wave, which is randomly distributed over the interval 



[0, π]. To retrieve such net Brillouin gain to reconstruct the BGS, the logarithmic normalization3 is applied 

on Supplementary Eq. (20), resulting in: 

𝐺𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑡, ) = ln [
𝐼(𝑡, )

𝜂𝐴𝑃𝑠
𝐷𝐶
] = ln {exp[−𝐺(𝑡, )] +

𝑒𝑃𝐷(𝑡, ) + 𝑒𝑠−ASE(𝑡, ) + 𝑒𝑠−𝑆𝑝𝐵𝑆(𝑡, )

𝐴𝑃𝑠
𝐷𝐶

}

        ≈ −𝐺(𝑡, ) +
𝑒𝑃𝐷(𝑡, )

𝐴𝑃𝑠
𝐷𝐶 exp[𝐺(𝑡, )]

+
𝑒𝑠−ASE(𝑡, )

𝐴𝑃𝑠
𝐷𝐶 exp[𝐺(𝑡, )]

+
𝑒𝑠−𝑆𝑝𝐵𝑆(𝑡, )

𝐴𝑃𝑠
𝐷𝐶 exp[𝐺(𝑡, )]

(22)
          

 

whose repeatability is affected by 4 noise sources present in the 4 terms, respectively: 

I) Polarization noise (presented in the first term of Supplementary Eq. (22)), which results from the polarization 

fading effect as described by Supplementary Eq. (21) and can be characterized by its standard deviation (STD) as: 

𝜎𝑝𝑜𝑙(𝑡) = 𝐾√G(𝑡, )
2 − G(𝑡, )

2
≈
𝐾𝐺(𝑡)

√2𝐹𝐸
(23) 

where 𝐺(𝑡) is the mean accumulated linear Brillouin gain at the Brillouin resonance, which does not suffer from 

polarization noise. Mathematically, 𝐺(𝑡) = 𝐺(𝑡, ) = 𝐹𝐸𝑔𝐵(𝑡)/2, where 𝐹𝐸 is the energy enhancement factor. 

Note that 𝐾 is a scaling factor that accounts for the longitudinal fluctuations of the local Brillouin gain standard 

deviation caused by rotations of the local polarization principle axis. Such phenomenon can be visualized in 

single-pulse BOTDA, as exemplified in Supplementary Fig. 6(a), where the Brillouin gain at some fibre positions 

are always close to 𝑔B/2, regardless of the pump pulse polarization state. This variability can be quantified by 

the variance of the local polarization fading, as shown in Supplementary Fig. 6(b). Different from the single-pulse 

BOTDA, such a phenomenon is averaged in a coded BOTDA system since the cumulated Brillouin gain 

𝐺(𝑡, ) is attributed to all code pulses that interact with the probe wave at different fibre locations. Here the 

scaling factor 𝐾  is obtained by calculating the square root of the ratio between the average variance and 

maximum variance of the trace shown in Supplementary Fig. 6(b), leading to 𝐾 = 0.67. As demonstrated below, 

this characterization of 𝐾 leads to good theoretical noise estimations, matching well with experimental data. 

 

 

Supplementary Fig. 6. a 20 consecutive normalized single-pulse Brillouin traces obtained without averaging over a 

2 km-long SMF at the peak resonance frequency, using a peak pump power around 35 dBm to secure the polarization 

noise domination. b variance of the corresponding local polarization noise. Both insets represent a zoom-in of the 

respective figure in the range from 0.2 km to 0.3 km. 



II) Photo-detection noise (second term in Supplementary Eq. (22)), attributed to thermal noise and shot noise. 

However, due to the low optical probe power reaching the receiver, the shot noise contribution can usually be 

ignored. Thus, the noise STD is only related to the thermal noise and can be expressed as: 

𝜎𝑃𝐷(𝑡) ≈
√𝜎𝑡ℎ

2

𝑃𝑆
𝐷𝐶 exp[𝐺(𝑡)]

(24) 

where 𝜎𝑡ℎ
2  is the thermal noise variance, which can be readily characterized by measuring the photodetector 

output without input light5. 

III) Signal-ASE beating noise (third term in Supplementary Eq. (22)). The probe signal reaching the receiver 

beats with the ASE noise introduced by the pre-amplifier, resulting in a noise standard deviation calculated as: 

𝜎𝑠−𝐴𝑆𝐸 ≈
√2𝐹𝑁𝑞(𝐴 − 1)𝐴𝑃𝑠

𝐷𝐶 exp[−𝐺(𝑡)] 𝐵𝑒
𝐴𝑃𝑠

𝐷𝐶 exp[−𝐺(𝑡)]

≈ √
2𝐹𝑁𝑞(𝐴 − 1)𝐵𝑒
𝐴𝑃𝑠

𝐷𝐶 exp[−𝐺(𝑡)]
      (25)

 

where 𝐹𝑁 is the noise figure of the EDFA, 𝑞 is the electron charge and 𝐵𝑒 is the noise equivalent bandwidth 

that can be optimized to be equal to the signal bandwidth 𝐵𝑠 through digital filtering6.  

IV) Signal-SpBS beating noise (fourth term in Supplementary Eq. (22)). This noise comes from the beating 

between the SpBS originated from the coded pulse sequence and the probe signal reaching the photodetector. To 

calculate the noise standard deviation, the electric fields of the probe signal (𝐸⃗ 𝑆) and pump-induced SpBS (𝐸⃗ 𝐵) 

after the EDFA in front of the detector are firstly described as: 

𝐸⃗ 𝑆(𝑡) = 𝑥̂√𝐴𝐸𝑠(𝑡)𝑒𝑥𝑝(𝑗𝜔𝑜𝑡) (26) 

𝐸⃗ 𝐵(𝑡) = [𝑥̂cos𝜃 + 𝑦̂sin𝜃]√𝐴𝐸𝑏(𝑡)exp[𝑗(𝜔𝑜 + ∆𝜔)𝑡 + 𝛷𝑘] (27) 

where 𝑥̂ and 𝑦̂ stand for the local polarization direction of the probe and its respective orthogonal direction; 

∆𝜔  is the relative optical frequency offset between the probe and SpBS; the angle 𝜃  is the relative local 

polarization rotation of the SpBS with respect to the local probe, which varies in the range of [0, 𝜋 2 ]; and Φ𝑘 

is the random pump-probe phase difference. Thus the detected optical power is: 

𝑃(𝑡) ∝ (𝐸⃗ 𝐵(𝑡) + 𝐸⃗ 𝑆(𝑡)) (𝐸⃗ 𝐵
∗(𝑡) + 𝐸⃗ 𝑆

∗(𝑡))

                 = 𝐴𝐸𝑠
2(𝑡) + 𝐴𝐸𝑏

2(𝑡) + 2𝐴𝐸𝑠(𝑡)𝐸𝑏 (𝑡)cos(𝜃) cos[∆𝜔𝑡 + Φ𝑘] (28)
 

The first right-hand term represents the probe signal reaching the photodetector. The second term is the SpBS 

component amplified by EDFA, corresponding to a small deterministic signal. The third term however represents 

the signal-SpBS beating noise, whose normalized standard deviation can be calculated as: 

𝜎𝑠−𝑆𝑝𝐵𝑆 =
√〈{2𝐴𝐸𝑠(𝑡)𝐸𝑏(𝑡) cos(𝜃) cos[∆𝜔𝑡 + Φ𝑘]}

2〉

𝐴𝑃𝑠
𝐷𝐶 exp[−𝐺(t)]

                  =
√𝐴𝐸𝑠

2(𝑡)𝐴𝐸𝑏
2(𝑡)

𝐴𝑃𝑠
𝐷𝐶 exp[−𝐺(t)]

= √
𝑃𝑆𝑝𝐵𝑆(𝑡)

𝑃𝑠
𝐷𝐶 exp[−𝐺(t)]

(29)

 

where 𝑃𝑆𝑝𝐵𝑆 represents the optical power of the SpBS light. 



         

Supplementary Fig. 7. a 𝜎𝑠−𝐴𝑆𝐸
2 + 𝜎𝑃𝐷

2 , 𝜎𝑠−𝑆𝑝𝐵𝑆
2 + 𝜎𝑝𝑜𝑙

2  and their summation at the fiber far end as a function of 𝐹𝐸, 

and b Ratio between 𝜎𝑠−𝑆𝑝𝐵𝑆
2 + 𝜎𝑝𝑜𝑙

2  and 𝜎𝑠𝑖𝑛𝑔𝑙𝑒
2 . 

The above-derived expressions enable analytically characterising the noises superposed on the Brillouin gain 

trace at any fibre location. Here we focus on the fibre far-end, where the SNR is the weakest in single-pulse 

BOTDA thus the coding gain (SNR improved by coding) is the most demanding. To fully benefit from coding, 

the total noise at the fibre far-end should remain almost unchanged between single-pulse and coded BOTDA 

schemes (e.g. tolerating < 10% difference in noise variance), which in turn requires to optimize the energy 

enhancement factor 𝐹𝐸 defined in Results. Supplementary Fig. 7(a) shows the variances of the above-mentioned 

noises at the fibre far-end as a function of factor 𝐹𝐸, for the case of 2 m spatial resolution BOTDA experiments 

(described in Results). It can be seen that when 𝐹𝐸 = 1 (corresponding to the optimised single-pulse Brillouin 

gain of 2.5%), the signal-ASE beating noise and photo-detection noise (𝜎𝑠−𝐴𝑆𝐸
2 + 𝜎𝑃𝐷

2  ) are dominant, so that 

𝜎𝑠𝑖𝑛𝑔𝑙𝑒
2 = 𝜎𝑠−𝐴𝑆𝐸

2 + 𝜎𝑃𝐷
2 . As 𝐹𝐸 gets larger, other noises, i.e. polarization noise and single-SpBS beating noises 

(𝜎𝑝𝑜𝑙
2 + 𝜎𝑠−𝑆𝑝𝐵𝑆

2  ), gradually increase and become non-negligible. Based on Supplementary Fig. 7(a), the ratio 

between the noise variances in coded (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) and single-pulse (𝜎𝑠𝑖𝑛𝑔𝑙𝑒

2 ) BOTDA schemes as a function of 𝐹𝐸, is 

calculated and shown in Supplementary Fig. 7(b). It can be found that 40 is the optimum (maximum acceptable) 

value of 𝐹𝐸, which secures a maximum 10% difference between the two noise variances (i.e. noise remains almost 

unchanged between single-pulse and coded BOTDA schemes).  

 

Supplementary Fig. 8. The standard deviations of theoretically predicted noise and measured noise as a function of 

distance for a single-pulse scheme and b GO-coded scheme.  

In such an ideal case (𝐹𝐸 ≈ 40), the theoretically calculated standard deviations of different noises and the total 

noise as a function of the fibre position are all shown in Supplementary Fig. 8(b), in which the theoretical 

prediction (red curve) of the total noise standard deviations matches well with the experimental result (blue curve), 

verifying the proposed noise model. Results also demonstrate that all Brillouin-gain dependent noises become 

negligible close to the fibre far-end (i.e. total noise of coded-BOTDA is approximately equal to that of single-

pulse BOTDA shown in Fig. 8(a)), thanks to the proper design of 𝐹𝐸.  

To demonstrate that this limitation of 𝐹𝐸 (imposed by the additional Brillouin-gain dependent noises) is not 



exclusive in the here proposed GO-code, a comparative experiment has been performed with a 255-bit Simplex 

coded BOTDA. Experimental parameters are the same as those in Results, where 𝐹𝐸  is also set to 40. 

Supplementary Fig. 9(a) shows the decoded Brillouin trace at the resonance peak frequency (averaged 1024 times), 

compared to single-pulse Brillouin traces averaged by 1024 and 65536 times (representing 9 dB SNR difference 

between them), exhibiting similar behaviours as the those in Fig. 3(b) obtained by the proposed GO-code. 

Supplementary Fig. 9(b) illustrates the SNR of each trace versus distance, showing similar level of deterioration 

as that of GO-code (see Fig. 3(c)). This demonstrates that the negative impact of Brillouin-gain-dependent noises 

on the SNR enhancement is inherent to coding techniques, regardless of the coding scheme being used. 

 

Supplementary Fig. 9. The experimental result of 255-bit Simplex coded BOTDA. a The decoded and measured trace 

along the sensing fibre. b SNR profile of each trace. 

It is worth to mention that the Brillouin-gain-dependent noises are more detrimental in Cyclic coding. This is 

because the coded sequences spread all along the fibre, so that the noise induced by the strong signal originating 

from the fibre near-end will impact on the SNR of the weak signal originating from the fibre far-end. This is 

experimentally demonstrated with 𝐹𝐸 ≈ 40, as shown in Supplementary Fig. 10(a). By comparing with the noise 

level in a single-pulse scheme (Supplementary Fig. 8(a)), the noise floor of the Cyclic coding response is globally 

higher. This means that the theoretical coding gain at the fibre far-end cannot be realised using Cyclic codes (i.e. 

there is nearly no actual coding gain), as shown in Supplementary Fig. 10(b).  

 

Supplementary Fig. 10. a The standard deviations of theoretically predicted noise and measured noise as a function 

of distance for Cyclic coding. SNR profile of each trace for Cyclic coding and single pulse with: b optimised pulse peak 

power, c only 10 mW pulse peak power 

It is also worth to mention that the theoretical coding gain of Cyclic code realised in some literature (e.g. [58] 

cited in the main text) results from a non-optimised pulse peak power in both single-pulse and Cyclic coding 

schemes (10 times below the MI threshold). In this case, the signal-dependent noise is much lower, so that the 

actual coding gain is close the theoretical value; however, this is of limited relevance since the absolute SNR with 

coding (red curve in Supplementary Fig. 10(c)) is even lower than that of an optimised single-pulse scheme as 

represented by the blue curve on the previous graph in Supplementary Fig. 10(b).  

Note also that, with optimised pulse power, both aperiodic and Cyclic codes cannot bring decisive SNR 



improvement in short distance sensing as well. Supplementary Fig. 11(a) and (b) shows the noise profile of 

aperiodic code and Cyclic code for a 25 km sensing range, respectively, while Supplementary Fig. 11(c) shows 

the SNR obtained over the entire sensing fibre for both codes as well as for the single pulse case. It can be clearly 

found that both types of codes cannot provide decisive SNR improvement along the 25 km range, due to the 

additional signal-dependent noise induced by the code sequences themselves (noise that dominates the 

measurement). However, it is very relevant to notice that the total noise in the case of Cyclic code remains constant 

all over the measured trace (as shown in Supplementary Fig. 11(b)), while the total noise reduces with distance 

for the aperiodic code, as shown in Supplementary Fig. 11(a). This behaviour is essentially due to the pulse 

distribution over the sensing fibre, explaining the higher SNR improvement provided by aperiodic codes at longer 

sensing ranges compared to Cyclic coding as demonstrated in Supplementary Figs. 9 and 10. 

   

Supplementary Fig. 11. Noise profiles for a aperiodic code and b cyclic code. c SNR profile over distance for single-

pulse, aperiodic code and cyclic code cases. 

All results indicate that there is no benefit brought by Cyclic coding when comparing with a fully optimised 

single-pulse scheme for any sensing range. Note however that, for a non-optimised pulse power, cyclic coding 

can be effective as demonstrated by previous publications, though this non-optimised condition has not yet proved 

to bring any global advantage in real conditions. 

Supplementary note 4. Noise analysis of coded ROTDR system 

In coded ROTDR systems, the use of coding increases the spontaneous Raman backscattering power, which may 

lead to a non-negligible shot-noise level in photo-detector, compromising the expected coding gain. This note 

describes the limitations imposed by these two phenomena and presents a model that can quantitatively define the 

optimal energy enhancement factor 𝐹𝐸. 

Considering the limitations imposed by amplified spontaneous Raman scattering (ASpRS), it must be noted 

that each code pulse simultaneously generates forward and backward Raman scattering components. In the case 

of a single pulse, the forward Stokes and anti-Stokes components interact with the pump pulse over an effective 

optical fibre length determined by the walk-off distance and optical losses. In the case of coding, return-to-zero 

format is required to avoid interactions between code pulses and Raman components generated by adjacent pulses 

in the sequence, which may occur due to group velocity differences among spectral components. Under this 

condition, the threshold power for forward ASpRS turns out to be equivalent to the single pulse case, i.e. being 

around 1 W for metre-scale spatial resolutions.  

Having fixed the peak pump power (e.g. to 1 W as in this case), the optimal energy enhancement factor 𝐹𝐸 is 

primarily defined by the photo-detection noise. Indeed, a good balance between thermal noise and shot noise must 

be achieved to obtained the real benefits from coding, i.e. to enhance the SNR by the expected coding gain. While 

the thermal noise of APD is constant at a given temperature, shot noise increases with the input optical power. 

The variance of the shot noise 𝜎𝑠
2 in an APD detecting the coded anti-Stokes SpRS signal, and ignoring dark 

current, is given by7: 



𝜎𝑠
2(𝑧) = 2𝑞𝑀2𝐹𝐴𝑅𝐹𝐸𝑃𝑠𝑖𝑛𝑔𝑙𝑒(𝑧)𝐵 (30) 

where 𝑞  is the elementary charge, 𝑀  is the mean APD gain factor, 𝐹𝐴 is the APD excess noise 

factor, 𝑅 is the APD responsivity, Psingle(𝑧) is the single-pulse power response of the anti-

Stokes SpRS, and 𝐵 is the electrical bandwidth. Supplementary Eq. (30) is experimentally validated 

for the case of 2 m SR, as shown in Supplementary Fig. 12(a), where the variance of the equivalent APD noise in 

the single-pulse case (𝐹𝐸 = 1) is characterised as 1.6 ∗ 10−3 𝑉2, corresponding to the contribution of thermal 

noise. Note that this behaviour is enhanced in the case of APD when compared to PIN photodetectors, due to the 

impact of the avalanche amplification process and induced excess noise (i.e. because M2𝐹𝐴 ≫ 1).  

  

Supplementary Fig. 12. a Measured and calculated noise variance as a function of the energy enhancement factor. b 

Measured and simulated noise of coded ROTDR trace as a function of distance. 

Since the total anti-Stokes SpRS power reaching the detector reduces as a function of distance along the sensing 

fibre, the additional noise introduced over the ROTDR traces decreases with distance. To fully benefit from 

coding, the total noise at the fibre far-end should remain almost unchanged between single-pulse and coded 

ROTDR schemes (i.e., noise near the fibre-end in both schemes should be dominated by thermal noise), requiring 

to optimise the energy enhancement factor 𝐹𝐸 . Based on Supplementary Eq. (30) and considering the fibre 

attenuation, 𝐹𝐸 = 44 is calculated for the case of 2 m SR and the 39 km long sensing fibre used in Results, as 

shown in Supplementary Fig. 12(b). It can be determined that the noise near the far fibre-end (between 35 and 39 

km) is highly dominated by the thermal noise, since the noise variance over this section is visually identical to 

that outside the fibre. 

 

Supplementary note 5. Experimental results with 1 m spatial resolution 

Similar to the demonstration of GO-coded BOTDA with 2 m spatial resolution (SR), as shown by Fig. 3 in Results, 

experiments are here carried out at 1 m SR. This enables the use of a longer code sequence, thus expecting a larger 

SNR improvement. Due to the broadened Brillouin spectral response when using 1 m SR, a wider frequency scan 

(300 scans) with a frequency step of 1 MHz is performed. Temporal Brillouin traces are averaged 1024 times, 

leading to a total measurement time of ~5.7 min. The optimised single-pulse Brillouin gain peak is 0.5%, 

determining an optimal energy enhancement factor 𝐹𝐸 = 200. The decaying amplitude imposed by the EDFA 

gain saturation leads to an optimal 723-bit GO-code sequence that offers a theoretically evaluated coding gain of 

9.3 dB, being only 0.7 dB lower than the standard reference coding gain (10 dB, √(200/2) = 10 times in 

linear scale). Similar to the demonstration performed at 2 m SR, relevant results are shown in Supplementary Fig. 

13(a)-(c), respectively, where the reference curves (black) are obtained using the single-pulse scheme with 74182 

averages, representing a reference SNR improvement equal to the expected coding gain (10𝑙𝑔√74182/1024 =

9.3 𝑑𝐵). As anticipated, the additional Brillouin-induced noises still compromise the performance of GO-code 

measurements at the fibre near-end, while showing a negligible effect at the fibre far-end.  



 

 

Supplementary Fig. 13. Experimental results of BOTDA with 1 m SR. a 723-bit normalised coding sequence 𝑐𝑓(𝑛) 

measured at the fibre input (blue) and the retrieved 𝑑𝑓(𝑛) (red). Inset: Zoom-in of normalised 𝑐𝑓(𝑛) and 𝑑𝑓(𝑛) over 

a time span from 24.8 𝜇𝑠 to 25 𝜇𝑠. b Temporal BOTDA gain traces at fibre Brillouin resonance. c SNR profiles over 

the entire sensing fibre. 

Measurements of ROTDR with 1 m SR are then performed. In this case, the optimised energy enhancement 

factor 𝐹𝐸 is determined to be 150, leading to a 450-bit code that takes into account the decaying trend of the 

sequence envelop. The GO-code found by DGA exhibits a theoretical coding gain of 𝐺𝑐 = 8.67 dB, being 0.71 

dB below the standard reference coding gain 𝐺𝑟  = 9.38 dB. Similar to the demonstrations in Fig. 4, relevant 

results associated to 1 m SR are illustrated in Supplementary Fig. 14(a)-(c). The SNR improvement at the fibre 

far-end is found to be 8.63 dB, perfectly matching the theoretical value.  

 

 

Supplementary Fig. 14. Experimental results of ROTDR with 1 m SR. a 450-bit normalised coding sequence 𝑐𝑓(𝑛) 

measured at the fibre input (blue) and the retrieved 𝑑𝑓(𝑛) (red). Inset: Zoom-in of normalised 𝑐𝑓(𝑛) and 𝑑𝑓(𝑛) over 

a time span from 24.8 𝜇𝑠 to 25 𝜇𝑠. b Retrieved temperature profiles for single pulse (blue) and GO-code (red). c SNR 

profiles over the entire sensing fibre. 



Supplementary References 

1. Proakis, J. G. & Manolakis, D. G. Digital Signal Processing: Principles, Algorithms, and Applications 4th 

edn (Pearson Education, Inc., 2007). 

2. Golay, M. Sieves for low autocorrelation binary sequences. IEEE Transactions on Information Theory 23, 

43–51 (1977). 

3. Yang, Z., Li, Z., Zaslawski, S., Thévenaz, L. & Soto, M. A. Design rules for optimizing unipolar coded 

Brillouin optical time-domain analyzers. Opt. Express 26, 16505–16523 (2018). 

4. Soto, M. A, Tur, M., Lopez-Gil, A., González-Herráez, M. & Thévenaz, L. Polarisation pulling in Brillouin 

optical time-domain analysers. 25th Optical Fiber Sensors Conference (OFS),1-4 (2017).  

DOI: 10.1117/12.2267649. 

5. Wang, S., Yang, Z, & Soto, M. A. & Thévenaz, L. Study on the signal-to-noise ratio of Brillouin optical-time 

domain analyzers. Opt. Express 28, 19864–19876 (2020). 

6. Zaslawski, S., Yang Z., & Thévenaz, L. On the 2D Post-Processing of Brillouin Optical Time-Domain 

Analysis. J. Lightwave Technol. https://doi.org/10.1109/JLT.2020.2967091 (2020). 

7. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics Ch. 18, 784–803 (Wiley, 2007). 


