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Abstract
The spectral distribution plays a key role in the statistical modelling of multivariate extremes,

as it defines the dependence structure of multivariate extreme-value distributions and charac-

terizes the limiting distribution of the relative sizes of the components of large multivariate

observations. No parametric family captures all possible types of multivariate dependence,

and numerous parametric models have been proposed.

Inference on the spectral distribution is typically based on the pseudo-angles of ‘large’

observations under the assumption that they follow the spectral distribution. There has

been little attention on studying the impact of this approximation on inference, and it turns

out that it can yield significantly biased estimates. We provide a characterization of the

angular distribution of excesses corresponding to the distribution of pseudo-angles of ‘large’

observations that improves direct inference on the spectral distribution in the bivariate setting.

Extremal dependence is at the heart of extreme value modelling and numerous measures

to quantify it have been proposed in the literature. In many applications, datasets seem to

exhibit asymmetry in the dependence between the variables. Many parametric multivariate

extreme-value models can accommodate asymmetry in the sense that the spectral density can

be asymmetric, resulting in a non-exchangeable dependence structure. There has been little

attention paid to quantifying asymmetry at extreme levels, which can be useful for diagnosis

and model checking. We propose a coefficient of extremal asymmetry that quantifies the

asymmetry at extreme levels for pairs of variables. We also propose two non-parametric

estimators of the coefficient of extremal asymmetry and compare their properties through

numerical simulation. The two estimators have diametrically opposed bias-variance trade-

offs. The estimator based on maximum empirical likelihood performs well and is nearly

unbiased.

Key words: Angular distribution of extremes; Bivariate extreme-value modelling; Coefficient

of extremal asymmetry; Pickands dependence function; Spectral distribution.
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Résumé
La distribution spectrale joue un rôle clé dans la modélisation statistique des valeurs extrêmes

multivariées car elle défini la structure de dépendance des distributions des valeurs extrêmes

multivariées et elle caractérise la distribution limite des tailles relatives des composantes des

observations extrêmes. Aucune famille de distribution paramétrique ne couvre l’ensemble

des types de dépendances multivariées possibles et de multiples familles de modèles paramé-

triques ont été proposés dans la littérature scientifique.

L’inférence sur la distribution spectrale est typiquement effectuée par le biais des pseudo-

angles des plus grandes observations de l’échantillon sous l’hypothèse qu’ils proviennent

de la distribution spectrale elle-même. Peu d’attention a été portée sur l’impact de cette

approximation sur l’inférence et il se trouve qu’elle peut engendrer des estimateurs fortement

biaisés. Nous proposons une caractérisation de la distribution angulaires des excès de seuils

qui correspond à la distribution des pseudo-angles des plus grandes observations et qui

améliore l’inférence directe sur la distribution spectrale dans la cas bivarié.

La dépendance extrémale est au coeur de la modélisation des valeurs extrêmes et de

multiples measures pour quantifier cette dépendance ont été proposées dans la littérature

scientifique. Dans les applications, de nombreux jeux de données semblent présenter une

structure de dépendance entre les variables qui soit assymétrique. De nombreux modèles

paramétriques pour les valeurs extrêmes peuvent tenir compte de cette assymétrie dans le

sens où la distribution spectrale peut également être assymétrique conduisant à des structures

de dépendance dont les variables aléatoires ne sont pas échangeables. Peu d’attention a été

portée sur la quantification de l’assymétrie de la dépendance entre les variables aux niveaux

extrêmes alors que cela pourrait être utile comme moyen de diagnostique et dans la validation

de modèles.

Nous proposons un coefficient d’assymétrie extrémale qui quantifie l’assymétrie entre les

réalisations extrêmes d’une paire de variables aléatoires. Nous proposons également deux esti-

mateurs non paramétriques de ce coefficient d’assymétrie extrémale et nous comparons leurs

propriétés par le biais de simulations numériques. Ces deux estimateurs ont des caractéris-

tiques de biais et de variance diamétralement opposées. L’estimateur basé sur la maximisation

de la vraisemblance empirique est meilleur et peu biaisé.

Mots clefs : Coefficient d’assymétrie extrémale ; Distribution angulaire de valeurs extrêmes ;

Distribution spectrale ; Fonction de dépendance de Pickands ; Modélisation de valeurs ex-

trêmes bivariées.
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1 A review of extreme value theory

Extreme value theory (EVT) is the branch of probability theory focussing on the study of the

asymptotic distribution of extreme events, that is, observations that are rare in frequency and

large in magnitude compared to the bulk of observations. Statistics of extremes is the branch

of statistical science concerned with inference on extremes and rare events. It is based on

probability models that allow extrapolation into the tail of distributions, often beyond the

largest observed data.

This chapter provides a survey of extreme value theory and the statistics of extremes in the

finite-dimensional case. The aim is to provide the background for the rest of the thesis, and its

content is well-established in the literature. An accessible introduction to EVT is Coles (2001).

Early monographs and texts include Gumbel (1958), Resnick (1987), and Galambos (1987).

An important contribution in the univariate setting is Embrechts et al. (1997). Leadbetter

et al. (1983) is a standard reference to the literature on extremes of time series. More recent

contributions covering also multivariate EVT include Kotz and Nadarajah (2000), Beirlant

et al. (2004), de Haan and Ferreira (2006), and Resnick (2007). References with a focus on

applications in fields such as environmental sciences, telecommunications, finance, and

insurance include Finkenstädt and Rootzén (2004), Castillo et al. (2005), and Reiss and Thomas

(2007). Recent edited volumes include Dey and Yan (2016) and Longin (2017), the latter being

focused on applications of EVT in finance. Extreme value methodology is being increasingly

used by practitioners from a wide range of fields. Reviews of software for the statistical

modelling of extreme events include Gilleland et al. (2012) and Gilleland (2016).

Models for univariate extreme values are described in Section 1.1, and models for multivari-

ate extremes discussed in Section 1.2. Some topics which are less relevant for the rest of the

thesis are not discussed in this chapter. These include the modelling of spatial extremes, which

has attracted a lot of attention in the extreme value community over the past few years; see

Davison et al. (2012), Cooley et al. (2012), and Ribatet et al. (2016) for reviews and discussion

of recent developments.
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Chapter 1. A review of extreme value theory

1.1 Univariate extremes

The analysis of extreme values dates back to the 1920s, with the characterization of the

asymptotic behaviour of the largest value of a univariate sample. There are many results

describing the stochastic behaviour of sample maxima and minima, upper order statistics

such as the r largest values in a sample, and sample excesses over a high threshold. The two

main kinds of models for exteme values are the block maximum model and the threshold

excesses model.

The block maximum model described in Section 1.1.1 is for the stochastic behaviour of the

largest observation from large samples of independent and identically distributed random

variables. The threshold excesses model described in Section 1.1.2 is for the stochastic be-

havour of observations that exceed a high level, and it is considered more useful for practical

applications as it makes a more efficient use of the data. The threshold excesses model and

the model for the r largest values are both special cases of a point process representation

that simultaneously models the timing and the magnitude of excesses over a high threshold.

This model described in Section 1.1.3. Dependent and non-stationary series are discussed in

Section 1.1.4.

1.1.1 Maxima

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random variables distributed

according to a distribution F . In applications, the Xi usually represent the values of a pro-

cess measured on a regular time-scale (e.g., daily rainfall at some fixed location). For risk

assessment purposes, the focus is often on the stochastic behaviour of the largest of these

n variates, denoted by Mn = max(X1, . . . , Xn). If n is the number of observations in a year,

then Mn represents the annual maximum. However, in some applications such as system

failure models, where the n variates might correspond to the lifetime of the components of

the system, the focus is rather on the minimum of these n variates. Results for minima can

easily be obtained from those for maxima since min(X1, . . . , Xn) =−max(−X1, . . . ,−Xn).

1.1.1.1 Asymptotic distribution of maxima

The cumulative distribution function (CDF) of Mn is

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x) = Pr(X1 ≤ x)×·· ·×Pr(Xn ≤ x) = F n(x).

In applications, F is unknown, so one aims at approximating F n by some appropriate limit

distribution. However, F n converges to a degenerate distribution, putting unit mass at the

upper end of the support of F , that is Mn
D−→xF as n →∞, where xF = sup{x : F (x) < 1}.

It is often possible to stabilize the stochastic behaviour of Mn with a location and scale

transformation, giving rise to max-stable distributions, which are the only possible non-
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1.1. Univariate extremes

degenerate limiting distributions of maxima, similarly to (sum-)stable distributions which

are the only possible non-degenerate limiting distributions of linearly transformed sums of

random variables.

Definition 1.1 (Equality in type). Two distributions F1 and F1 are said to be of the same type

if there exist constants a > 0 and b ∈R such that F1(ax +b) = F2(x) for all x.

Definition 1.2 (Max-stability). A distribution F is said to be max-stable if F k (x) = F (ak x +bk )

for all k ∈N and for some constants ak and bk . A random variable X is said to be max-stable if

its distribution is max-stable.

Max-stability implies that taking the maximum of a collection of i.i.d. random variables

leads to a variable with the same distribution up to changes in location and scale; the distribu-

tion of the maximum is of the same type as that of the initial random variables. The following

result states that if a limiting distribution for rescaled maxima exists, it must be max-stable,

and conversely, that all max-stable distributions are limit laws of maxima of i.i.d. random

variates.

Theorem 1.1 (Limit property of max-stable laws, Embrechts et al. (1997, pp.121)). The class of

max-stable distributions coincides with the class of all possible (non-degenerate) limit laws for

(properly normalised) maxima of i.i.d. random variables.

The forms of the limiting distribution were first studied by Fisher and Tippett (1928), whose

result was subsequently formalized and unified by von Mises (1936), Gnedenko (1943) and

Jenkinson (1955). The following result is the cornerstone of extreme value theory. It states that

if the maximum of i.i.d. random variables can be linearly renormalized in such a way that it

converges in distribution to a non-degenerate limit, then this limiting random variable must

follow the Gumbel distribution, the Fréchet distribution, or the (negative) Weibull distribution.

Theorem 1.2 (extremal types, Embrechts et al. (1997, pp.121)). Let (X j ) j≥1 be a sequence of

i.i.d. random variables and let Mn = max(X1, . . . , Xn). If there exist norming constants an > 0,

bn ∈R, and some non-degenerate probability distribution G such that

Pr

(
Mn −bn

an
≤ x

)
→G(x),

as n →∞ and for every number x ∈R at which G is continuous, then G must be of the same type

as one of the following three distributions:

Type I (Gumbel):

Λ(x) = exp
{
(−exp(−x)

}
, −∞< x <∞;

Type II (Fréchet):

Φα(x) =
0, x ≤ 0,

exp
(−x−α)

, x > 0, α> 0;
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Chapter 1. A review of extreme value theory

Type III (Weibull):

Ψα(x) =
exp

(−(−x)α
)

, x < 0, α> 0,

1, x ≥ 0.

Each of the three types of distributions presented in Theorem 1.2 may appear as a limit

for the distribution of the rescaled maximum, and does so when Λ, Φα, or Ψα is itself the

distribution of the X j s. These three types of limiting distributions have distinct forms of

behaviour, corresponding to different types of behaviour of the tail of the CDF of the Xi s.

The Gumbel distribution has unbounded support and the upper tail of the density decays

exponentially. The Fréchet distribution has a finite lower end of the support and the upper

tail of the density decays polynomially. The Weibull distribution has a finite upper end to its

support.

Definition 1.3 (Extreme value distribution). The distributions Λ, Φα, or Ψα presented in

Theorem 1.2 are collectively called the standard extreme value distributions. Distributions of

the type ofΛ,Φα, orΨα are called extreme value distributions.

By Theorem 1.2, the extreme value distributions are precisely the max-stable distributions.

It is inconvenient to have to work with three possible limiting families, but they can be unified

in a single parametric family of models called the generalized extreme value distribution.

Definition 1.4 (Generalized extreme value distribution). The generalized extreme value (GEV)

distribution with location parameter η ∈R, scale parameter τ> 0, and shape parameter ξ ∈R,

denoted GEV(η,τ,ξ), has CDF

Hη,τ,ξ(x) =


exp

[
−

{
1+ξ

( x −η
τ

)}−1/ξ

+

]
, ξ 6= 0,

exp
[
−exp

{
−

( x −η
τ

)}]
, ξ= 0,

(1.1)

where z+ = max(0, z).

The GEV distribution with PDF h has support supp(h) = {x ∈ R : 1+ ξ(x −η)τ > 0}. For

ξ> 0, ξ= 0, and ξ< 0, the GEV distribution respectively reduces to the heavy-tailed Fréchet,

light-tailed Gumbel, and short-tailed (negative) Weibull distributions. Specifically,

Φ(x;α) ≡ H0,1,1/α{α(x −1)},

Λ(x;α) ≡ H0,1,α(x),

Ψ(x;α) ≡ H0,1,−1/α{α(1+x)}.

For fixed x, we have limξ→0 Hη,τ,ξ(x) = Hη,τ,0(x), so the GEV distribution is continuous in ξ.
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1.1. Univariate extremes

1.1.1.2 Domains of attraction

Theorem 1.2 identifies the three possible limiting distributions for renormalized maxima of

i.i.d. random variables. The class of distributions that are attracted to a particular limiting

distribution is defined as its maximum domain of attraction.

Definition 1.5 (Maximum domain of attraction). A distribution F belongs to the maximum do-

main of attraction of the exteme value distribution H if there exist constants an > 0 and bn ∈R
such that the limiting distribution of (Mn−bn)/an as n →∞ is H , where Mn = max(X1, . . . , Xn),

and X1, . . . , Xn are i.i.d. with distribution F . We write F ∈ MDA(H).

A characterization of the maximum domain of attraction and necessary and sufficient

conditions for F to lie in the different maximum domains of attraction are discussed for

example in Embrechts et al. (1997, Sec. 3.3), Beirlant et al. (2004, Chap. 2), and de Haan and

Ferreira (2006, Sec. 1.1.5 and 1.2).

There are distributions that don’t belong to any maximum domain of attraction, as the

existence of the normalizing constants an and bn is not guaranteed. Such distributions include

the Poisson, geometric, and negative binomial distributions (see e.g., Embrechts et al., 1997,

pp. 118–119). However, essentially all the common continuous probability distributions of

statistics are in MDA(H0,1,ξ) for some value of ξ.

The rate of convergence of the distribution of renormalized maxima to its limiting distri-

bution, when the latter exists, can vary, and it can depend on the particular choice of the

normalizing constants an and bn ; see for example Embrechts et al. (1997, pp. 150–151) and

references therein. For example, the rate of convergence is considered to be fast in the case

of the exponential distribution and to be slow in the case of the normal distribution. Smith

(1982) and Balkema and de Haan (1990) derived rates of convergence for the convergence in

distribution of renormalised sample maxima to the appropriate extreme-value distribution.

1.1.1.3 Inference

Motivated by the extremal types theorem (Theorem 1.2), the GEV distribution is asymptotically

justified as a model for extreme values of a phenomenon of interest. Its application consists in

grouping the data into blocks of equal length, and fitting the GEV distribution to maxima of

non-overlapping blocks of consecutive observations, yielding the so-called block maximum

approach. Let x1, . . . , xN be a series of observations of a phenomenon of interest at regular time

points, e.g., the daily rainfall at a specific location. Supposing that the data can be grouped

into m blocks of n consecutive observations, that is N = mn, with n,m ∈N, one forms m block

maxima y1 = max(x1, . . . , xn), . . . , ym = max(xn(m−1)+1, . . . , xN ). The block maxima y1, . . . , ym are

typically assumed to be i.i.d. observations from the GEV distribution whose parameters are to

be estimated, although in practice observations are only approximated GEV distributed. If the

observations are independent, then the block maxima are also independent. Independence of

the block maxima is likely to be a reasonable approximation even if the observations come
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Chapter 1. A review of extreme value theory

from a dependent series, provided that the block size n is sufficiently large.

Maximum likelihood inference is widely used for the GEV distribution (see e.g., Embrechts

et al., 1997, Sec. 6.3.1). If the block size n is sufficiently large so that the components of the

vector of block maxima y = (y1, . . . , ym) can be regarded as mutually independent, then the

log-likelihood derived from (1.1) for ξ 6= 0 is

l (η,τ,ξ; y) =−m logτ−
(
1+ 1

ξ

) m∑
i=1

log
{

1+ξ
( yi −η

τ

)}
+
−

m∑
i=1

{
1+ξ

( yi −η
τ

)}−1/ξ

+
, (1.2)

which must be maximized subject to the constraint τ> 0. In practice, this expression can be

maximized numerically with standard optimization routines.

The log-likelihood (1.2) yields a non-regular likelihood problem, since the support of the

GEV density depends on the parameter values; the log-likelihood equals −∞ if ξ(yi −η)/τ<−1

for any i . Smith (1985) showed that the usual properties of consistency, asymptotic efficiency

and asymptotic normality of maximum likelihood estimators hold when ξ>−1/2. Prescott and

Walden (1980) provide explicit expressions for the information matrix of the GEV distribution.

The value of ξ depends on the nature of the problem. In most environmental problems one

finds ξ̂≈ 0, and in financial and insurance applications, the data are heavy-tailed and one can

find ξ̂≥ 1, so, maximum likelihood estimation is in principle well-behaved.

Standard errors for parameter estimates can be computed from the inverse of the observed

information matrix, which is also obtained numerically. Confidence intervals are preferably

computed using profile likelihood-based methods (see e.g., Coles, 2001, Sec. 3.3.4); they

provide asymmetric intervals which reflect the right-skewness of the likelihood function often

observed for the shape parameter ξ.

The choice of the block length n is crucial because it corresponds to a trade-off between

bias and variance: blocks that are too small can result in a poor approximation of the limiting

GEV model, leading to bias in estimates and extrapolations; blocks that are too large result

in few block maxima, leading to a large estimation variance. In practice, the blocks are often

pragmatically chosen to be natural periods such as years or months. So, in environmental

applications n = 365 or n = 30 are common choices, whilst in finance it is often n = 250 or

n = 20 as trading occurs in general only on weekdays. Diagnostics such as quantile-quantile

plots or parameter stability plots can be used to determine if the block size is appropriate.

Several other techniques have been proposed for inference on the parameters of the GEV

distribution. Graphical techniques such as quantile-quantile plots are useful for data explo-

ration, model-checking and presenting conclusions. Moment-based techniques in which

functions of model moments are equated with their empirical equivalents are usually ineffi-

cient for extremes as moments may not exist. Probability-weighted moments have proven to

be useful because of their computational simplicity and good small-sample properties, though

they are relatively difficult to extend to more complex data. See for example Hosking et al.
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(1985), Hosking (1990), and Diebolt et al. (2008). Bayesian inference provides an integrated

approach to modelling uncertainty and can also be applied using Markov chain Monte Carlo

(MCMC) algorithms and other types of stochastic computation algorithms; Coles and Powell

(1996) is an important contribution, and Coles (2001, Sec. 9.1) and Beirlant et al. (2004, Chap.

11) provide broad discussions. However, the Bayesian approach requires the user to specify

prior knowledge for the parameters in terms of probability distributions and the tuning of

hyper-parameters is often tricky in practice.

Non-parametric estimators of the shape parameter ξ have also been proposed, such as

the well-known Hill estimator (Hill, 1975), the Pickands estimator (Pickands, 1975), and the

moment estimator introduced by Dekkers et al. (1989) as a generalization of the Hill estimator.

A significant effort has been devoted to studying and improving these estimators, as the shape

parameter ξ is key; it determines the tail weight of the GEV distribution and the predicted

sizes of future extreme events. For example, see Li et al. (2008) and references therein.

1.1.1.4 Generalization with the r largest order statistics

The block maximum approach uses a very limited amount of data (one observation per

block), so that parameter estimates in general have large variances. An extension to the block

maximum model which doesn’t use only the block maxima is the r largest order statistics

model developed by Smith (1986) for the case ξ= 0, and by Tawn (1988b) for the general case,

which consists in fitting the joint distribution of the r largest order statistics to the r largest

observations in each fixed time period (Coles, 2001, Sec. 3.5). The precision of parameter

estimates should be increased due to the inclusion of extra information, but the result is more

vulnerable to departures from the i.i.d. assumption. The r -largest order model is a special

case of the point process representation (see Section 1.1.3).

1.1.2 Threshold excesses

The block maximum approach discussed in Section 1.1.1 only uses the largest observation

in each block; it can be inefficient when more than fixed time period maxima alone are

available. It seems more efficient to use all extreme observations, those that exceed some high

threshold, and to avoid blocking. For this reason, the block maximum approach has been

largely superseded in practice by methods based on threshold excesses (Davison and Smith,

1990), where all the observations exceeding a high threshold are used.

As in Section 1.1.1, let X1, . . . , Xn be independent and identically distributed (i.i.d.) ran-

dom variables distributed according to a distribution F . Here, the focus is on the stochastic

behaviour of the random Nu observations that exceed a high threshold u; denote these ob-

servations by X̃1, . . . , X̃Nu . For each of these exceedances, let Yi = X̃i −u be the sizes of the

excesses.
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1.1.2.1 Distribution of threshold excesses

The generalized Pareto distribution was used by Pickands (1975) to describe the distribution

of the excesses over high thresholds.

Definition 1.6 (Generalized Pareto distribution). The generalized Pareto (GP) distribution

with scale parameter β> 0 and shape parameter ξ ∈R, denoted GP(β,ξ), has CDF

Gβ,ξ(x) =
1− (1+ξx/β)−1/ξ

+ , ξ 6= 0,

1−exp(−x/β)+, ξ= 0,
(1.3)

where z+ = max(0, z).

The GP distribution has upper endpoint xF =−β/ξ if ξ< 0, and otherwise xF =∞. For ξ> 0,

ξ= 0, and ξ< 0, the GP distribution respectively reduces to the ordinary Pareto, exponential,

and Pareto type II distributions. For fixed x, we have limξ→0 Gβ,ξ(x) = Gβ,0(x), so the GP

distribution is continuous in ξ, like the GEV distribution. The GP distribution is in the max

domain of attraction of the GEV distribution with the same shape parameter ξ, that is Gβ,ξ ∈
MDA(H0,1,ξ). Similarly to the max-stability of the GEV distribution, the GP distribution is

threshold-stable, that is, if X ∼ GP(β,ξ) and 0 < v < xF , then X − v | X > v ∼ GP(βv ,ξ) with

βv =β+ξv and the same shape parameter ξ. The mean of the GP distribution exists provided

ξ< 1 and is E(X ) =β/(1−ξ).

The excess distribution over a high threshold, and the corresponding mean excess function

play an important role both in theory and applications.

Definition 1.7 (Excess distribution over a threshold). Let X be a random variable with CDF F .

The excess distribution over the threshold u has CDF

Fu(x) = Pr(X −u ≤ x|X > u) = F (x +u)−F (u)

1−F (u)
, 0 ≤ x < xF −u,

where xF denotes the right endpoint of the support of F .

Definition 1.8 (Mean excess function). The mean excess function of a random variable with

finite mean is

e(u) = E(X −u|X > u).

The distribution of excesses Fu describes the distribution of the excess over the threshold

u, given that the threshold u is exceeded. The mean excess function e(u), also known as the

mean residual life function, gives the mean of Fu as a function of u. If the random variable X

has CDF F =Gβ,ξ, then its excess distribution is

Fu(x) =Gβ(u),ξ(x), β(u) =β+ξu,

8



1.1. Univariate extremes

defined for 0 ≤ x <∞ if ξ≥ 0, and 0 ≤ x <−β/ξ−u if ξ< 0. The excess distribution of a GP

distribution remains GP with the same shape parameter ξ, and a scale parameter β(u) that

grows or shrinks linearly with the threshold u. The mean excess function of the GP distribution

is

e(u) = β+ξu

1−ξ ,

defined for 0 ≤ u <∞ if 0 ≤ ξ< 1, and 0 ≤ u ≤−β/ξ if ξ< 0. The mean excess function is not

defined if ξ≥ 1, as the GP distribution doesn’t have a finite mean in this case. The function

e(u) is linear in the threshold u, a property of the GP distribution that is used in applications

to help determining an appropriate threshold for inference.

The following result states that the set of distributions for which the excess distribution con-

verges to the GP distribution as the threshold u is raised is equivalent to the set of distributions

for which the rescaled maxima converge to a GEV distribution.

Theorem 1.3 (Pickands–Balkema–de Haan, Pickands (1975), Balkema and de Haan (1974)).

Let F be a CDF with right endpoint xF . There exists a positive, measurable function β(u) such

that

lim
u→xF

sup
0≤x<xF−u

|Fu(x)−Gβ(u),ξ(x)| = 0

if and only if F ∈ MDA(Hη,τ,ξ) for ξ ∈R.

Remarkably, the shape parameter of the limiting GP distribution for excesses is equal to the

shape parameter of the GEV limiting distributions for the maxima. Theorem 1.3 is widely ap-

plicable and says that the GP distribution is the canonical distribution for modelling excesses

over a high threshold, since essentially all common continuous probability distributions lie in

MDA(H0,1,ξ) for some value of ξ.

1.1.2.2 Inference

Motivated by the Pickands–Balkema–de Haan theorem (Theorem 1.3), the GP distribution

is asymptotically justified to model the excesses over a high threshold for a phenomenon of

interest. Its application consists in selecting the observations that are above a high threshold,

and fitting the GP distribution to the amount of excesses for these observations, yielding the

so-called peaks over threshold approach. Let x1, . . . , xn be a series of observations of a phe-

nomenon of interest at regular time points, and denote the Nu observations that exceed a high

threshold u by x̃1, . . . , x̃Nu . In the peaks over threshold approach one fits the GP distribution to

the Nu excess amounts y1 = x̃1 −u, . . . , yNu = x̃Nu −u.

The excesses y1, . . . , yNu are assumed to be i.i.d. observations from the GP distribution

whose parameters are to be estimated, although in practice the observations are only approxi-

mately distributed as a GP distribution. Statistical properties of the threshold approach were

9



Chapter 1. A review of extreme value theory

investigated in Davison and Smith (1990). Maximum likelihood estimation is widely used for

inference using the GP distribution (see e.g., Embrechts et al., 1997, Sec. 6.5.1).

The log-likelihood function for a sample y = (y1, . . . , yNu ) of i.i.d. random variables with GP

distribution derived from (1.3) when ξ 6= 0 is

l (β,ξ; y) =−Nu logβ−
(
1+ 1

ξ

)
+

Nu∑
i=1

log

(
1+ξ yi

β

)
+

,

which must be maximized subject to the constraint β> 0. In the case ξ= 0, the log-likelihood

derived from (1.3) is

l (β; y) =−Nu logβ− 1

β

Nu∑
i=1

yi ,

In practice, these expressions can be maximized numerically with standard optimization

routines. The GP distribution is regular for likelihood inference under the same conditions on

ξ as for the GEV distribution.

Other approaches have been proposed for inference on the parameters of the GP distri-

bution. Hosking and Wallis (1987) introduced the method of moments and the method of

probability-weighted moments estimators for the GP distribution. The elemental percentile

method introduced by Castillo and Hadi (1997) overcomes some of the difficulties associated

with maximum likelihood and probability-weighted moment estimation.

A key element in inference is the selection of the threshold u, which entails a trade-off be-

tween bias and variance, similarly to the choice of block size in the block maximum approach.

Taking u too low introduces bias in estimates and predictions because the approximation of

the distribution of excesses with the GP distribution will be poor. Conversely, taking u too high

increases the variance of estimates and predictions because too few observations are used.

Threshold selection is commonly based on graphical procedures that exploit the threshold-

stability property of the GP distribution. The standard practice is to select the lowest possible

threshold, provided that the limiting model provides a reasonable approximation. Two meth-

ods are available for this: one is an exploratory technique carried out prior to estimation based

on the mean residual life plot introduced by Davison and Smith (1990); the other requires to

fit the GP distribution for a grid of possible thresholds and to look for stability of parameter

estimates (e.g., see Coles, 2001, Sec. 4.3.4). However, these graphical procedures are subjective

and cannot be automated. Lots of effort has been devoted to finding good robust threshold

estimators; see Scarrott and MacDonald (2012) and Caeiro and Gomes (2015) for reviews of

some historical threshold estimation approaches and recent developments.

10
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1.1.3 Point process representation

The threshold excesses model discussed in Section 1.1.2 considers only the magnitude of

threshold excesses. In the point process approach, the times at which high-threshold ex-

ceedances occur and the excess values over the threshold are combined into one process on a

two-dimensional plot which, under suitable normalisation, behaves like a non-homogeneous

Poisson process. The block maximum model, r -largest order statistics model discussed in

Section 1.1.1, and threshold excesses model are all special cases of the point process repre-

sentation introduced by Pickands (1971), and illustrated in statistical applications by Smith

(1989).

The following result, which is stated as given in the reference cited, enables the modelling

of extremes with the point process framework.

Theorem 1.4 (Coles (2001, Sec. 7.5)). Let X1, . . . , Xn be a series of i.i.d.random variables. Then,

on regions of the form (0,1)× [u,∞) and for sufficiently large u, the point process

Nn =
{(

i

n +1
, Xi

)
: i = 1, . . . ,n

}
is approximately a Poisson process with intensity measure

Λ {[t1, t2]× (x,∞)} = ny (t2 − t1)
(
1+ξx −η

τ

)−1/ξ

+
, 0 ≤ t1 < t2 ≤ 1, x ≥ u,

where ny is the number of years of observations, and z+ = max(0, z).

The term ny in the expression for Λ is an adjustment that allows one to express extreme

value limits in terms of approximate distributions of annual maxima. The parameters (η,τ,ξ)

are the same, and have the same interpretations, as for the GEV distribution for annual

maxima.

.

For a region of the form Av = [0,1]× [v,∞) for v > u, and containing the points x1, . . . , xNv ,

the likelihood is

L(η,τ,ξ; x1, . . . , xNv ) ∝ τ−Nv exp

{
−ny

(
1+ξv −η

τ

)−1/ξ

+

} Nv∏
i=1

(
1+ξv −η

τ

)−1/ξ−1

+
,

which is to be maximized with the constraint τ> 0. Standard errors and approximate confi-

dence intervals can be obtained in the usual way. Refer to Coles (2001, Chap. 7) for a broader

overview, and for example Embrechts et al. (1997, Chap. 5) for a detailed, mathematically

complete, treatment of the point process representation.
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1.1.4 Dependent and non-stationary series

The block maximum approach, the threshold excesses and the point process representation

discussed above require the sequence of random variables to be i.i.d. However, temporal

dependence or non-stationarity often arise in practice, possibly due to autocorrelation, sea-

sonality, long-term trend, regime changes and dependence to external factors. The modeling

of extreme events for dependant series and non-stationary series is briefly discussed in this

section. Leadbetter et al. (1983) is a standard reference to the literature on extremes of time

series. Other references include Beirlant et al. (2004, Chap. 10) and Coles (2001, Chap. 5–

6). Chavez-Demoulin and Davison (2012) and Reich and Shaby (2016) provide more recent

reviews.

1.1.4.1 Non-stationarity

Non-stationary series have characteristics that change systematically through time. Standard

parametric and nonparemetric modelling techniques can be used to deal with non-stationarity

of real data. The typical approach is to model the extreme value parameters using for example

linear regression (e.g., Smith, 1989; Katz et al., 2002), semi-parametric models based on local

likelihood (e.g., Ramesh and Davison, 2002) or splines (e.g., Chavez-Demoulin and Davison,

2005; Padoan and Wand, 2008). Alternative approaches include to fit a non-stationary extremal

model to the original data (Maraun et al., 2009), or to use the full dataset to detect and estimate

non-stationarities, and then to apply methods for stationary extreme-value modelling to the

resulting residuals. Examples of the latter include Eastoe and Tawn (2009) who apply the

Box–Cox transformation to the original time series where the power transformation depends

linearly on covariates and apply a fixed threshold to the residual sa covariate dependent linear

model, and McNeil and Frey (2000) who filter the returns of financial series with an AR-GARCH

model and use the GPD to fit the tails of the filtered series. Chavez-Demoulin and Davison

(2012, Sec. 4) provide an extensive review of methods dealing with non-stationarity.

1.1.4.2 Dependent series

Extreme value theory for dependent stochastic processes has been extensively developed

(e.g., Leadbetter et al., 1983). The most natural generalization of a sequence of independent

random variables is to strictly stationary series, which correspond to series having stochastic

properties that are homogeneous through time. A time series is strictly stationary if the joint

distribution of every collection of values {X t1 , . . . , X tk } is identical to that of the time-shifted set

{X t1+h , . . . , X tk+h} (e.g., Shumway and Stoffer, 2011, Sec 1.5).

With applications in mind, it is common to consider time series with limited long-range

dependence at extreme levels. The D(un) condition defines the notion of near-independence

of extreme events that are sufficiently distant in time.

Definition 1.9 (D(un) condition). A strictly stationary sequence {Xi } having marginal distri-
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1.1. Univariate extremes

bution F with upper endpoint xF = sup{x : F (x) < 1}, is said to satisfy the D(un) condition if,

for any integers i1 < ·· · < ip < j1 < ·· · < jq with j1 − ip > l ,

∣∣Pr
(
Xi1 ≤ un , . . . , Xip ≤ un , X j1 ≤ un , . . . , X jq ≤ un

)
− Pr

(
Xi1 ≤ un , . . . , Xip ≤ un

)
Pr

(
X j1 ≤ un , . . . , X jq ≤ un

)∣∣≤α(n, l ),

where α(n, ln) → 0 for some sequence ln = o(n), and un → xF as n →∞.

The following result shows that if the D(un) condition is satisfied, then the GEV distribution

is the limiting distribution of maxima of dependent data, thereby justifying the use of the

block maximum approach for most stationary time series.

Theorem 1.5 (Leadbetter (1974)). Let {Xi } be a strictly stationary process for which there exists

sequences of normalizing constants {an > 0} and {bn} and a non-degenerate distribution H such

that Mn = max(X1, . . . , Xn) satisfies

Pr

(
Mn −bn

an

)
→ H(z) n →∞.

If the D(un) condition holds with un = an z +bn for each z for which H(z) > 0, then H is a GEV

distribution.

This remarkable result shows that maxima of stationary series satisfying the D(un) condition

also have a GEV distribution. However, the parameters of the limiting distribution are affected

by the dependence in the series. The relation between the maxima of a dependent sequence

and those of a corresponding independent sequence is summarised in the following result.

Theorem 1.6 (Leadbetter (1983)). Let {Xi } be a stationary process and let {X ∗
i }s be a sequence of

independent random variables with the same marginal distribution. Set Mn = max(X1, . . . , Xn)

and M̃n = max(X̃1, . . . , X̃n). Under suitable regularity conditions,

Pr

(
X̃n −bn

an
≤ z

)
→ H̃(z), n →∞,

for sequences of normalizing constants {an > 0} and {bn}, where H̃ is a non-degenerate distribu-

tion function, if and only if

Pr

(
Xn −bn

an
≤ z

)
→ H(z), n →∞,

where H(z) = H̃θ for some constant θ ∈ [0,1].

Since the extremal types theorem (Theorem 1.2) implies that the only possible non-degenerate

limit H̃ is the GEV distribution, then H is also a GEV distribution, except in the pathological
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Chapter 1. A review of extreme value theory

case θ = 0. If H is a GEV (η,τ,ξ) distribution, then H̃ is a GEV
(
η̃, τ̃, ξ̃

)
distribution with

η̃= η− τ

ξ

(
1−θ−ξ

)
, τ̃= θξτ, ξ̃= ξ,

so the shape parameter is not affected by the temporal dependence. So, Mn is stochastically

smaller than M̃n , implying that serial dependence tends to reduce the sizes of extremes. The

constant θ is called the extremal index and determines by how much Mn is stochastically

larger than M̃n . Another consequence of serial dependence is that extremes tend to occur in

clusters. The extremal index is linked to the size of clusters as θ−1 is the limiting mean cluster

size of clusters of exceedances of increasingly high thresholds, and also to the probability that

an exceedance over a high threshold is the last exceedance of a cluster.

Several estimators of the extremal index θ have been proposed. The classical block and runs

estimators (Beirlant et al., 2004, Sec. 10.3.4) are empirical counterparts of the mean cluster

size and the probability of last exceedence of a block interpretations of the extremal index.

Other estimators include the two-threshold estimator proposed by Laurini and Tawn (2003),

and the intervals estimator proposed by Süveges (2007).

A common approach to circumvent the difficulties caused by temporal dependence is to

use a declustering scheme to filter out a set of approximately independent threshold excesses.

A less wasteful approach which uses all threshold excesses was proposed by Fawcett and

Walshaw (2007, 2012). Within-cluster modelling can be done with first-order Markov chains

using multivariate extreme-value dependence structures (e.g., Smith et al., 1997; Bortot and

Coles, 2003); flexible models for higher order chains are currently lacking.

1.2 Multivariate extremes

Many applied problems are essentially multivariate. However, in two or more dimensions it is

less obvious than in the univariate case what ‘extreme’ means; depending on the application,

one might want to consider an event as extreme if at least one of the component is large, or

if all components are large, or if a function of the components is large, just to mention a few

possibilities. In addition, different types of dependence between the components may arise at

extreme levels, which requires flexible tools to quantify and model extremal dependence for

suitable assessment and extrapolation of the risks of the phenomenon of interest.

The componentwise maximum approach discussed in Section 1.2.1 is the analogue of the

block maximum approach in the univariate case. Section 1.2.2 describes a point process

approach in the multivariate case. The concept of asymptotic independence is discussed in

Section 1.2.3, and some measures of extremal dependence are presented in Section 1.2.4.
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1.2.1 Componentwise maximum approach

1.2.1.1 Multivariate extreme value distributions and max-stability

Let X = (X1, . . . , Xd ) be a d-dimensional random vector with joint CDF F and marginal CDFs

F1, . . . ,Fd . Let {X i }i≥1 with X i = (Xi ,1, . . . , Xi ,d ) be an i.i.d. sequence of random vectors dis-

tributed as X , and let M n = (Mn,1, . . . , Mn,d ) with Mn,i = max(X1,i , . . . , Xn,i ) be the vector of

componentwise maxima of X 1, . . . , X n . The vector M n does not always correspond to an

element of the sequence {X i } as the component maxima Mn,1, . . . , Mn,d may correspond to dif-

ferent elements of the sequence. The aim is to characterize the family of possible asymptotic

distribution for M n as n →∞, after suitable renormalization.

Definition 1.10 (multivariate extreme value distribution). If there exists sequences {an}n≥1

with an = (an,1, . . . , an,d ) > 0, and {bn}n≥1 with bn = (bn,1, . . . ,bn,d ) such that

Pr

(
M n −bn

an
≤ x

)
→G(x), n →∞,

where G is a d-dimensional CDF with non-degenerate margins, then G is a multivariate

extreme value (MEV) distribution.

The characterisation of MEV distributions reduces to that of multivariate max-stable distri-

butions with non-degenerate margins. From univariate extreme value theory and the extremal

types theorem (Theorem 1.2), we know that the margins Gi must be GEV if they are non-

degenerate, that is (Mn,i −bn,i )/an,i → Zi ∼ GEV(ηi ,τi ,ξi ) as n →∞ for j = 1, . . . ,d . So, the

margins are max-stable. Max-stability in the multivariate setting is defined similarly to in the

univariate case.

Definition 1.11 (Max-stability). A d-dimensional distribution F is said to be max-stable if

F k (z) = F (ak z +bk ) for all k ∈N and for some sequences constants {ak } ∈Rd
+ and {bk } ∈Rd . A

random variable X is said to be max-stable if its distribution is max-stable.

Multivariate max-stability requires the max-stability of both the margins and the depen-

dence structure. A common way to separate the dependence structure from the marginal

distribution is using copulas.

1.2.1.2 Copulas

Copulas are broadly used to model the dependence structure in a multivariate setting; see

Nelsen (2006) or Joe (2015) for an introduction. Copulas have gained a lot of attention in the

extreme-value community; see for example Capéraà et al. (1997, 2000) and Coles et al. (1999)

for early contributions, Heffernan (2000) for extremal properties of a large collection of copulas,

Demarta and McNeil (2005) who introduce the skew-t copula, and Mikosch (2006) for a critical

discussion of the use of copulas in extreme value modelling. More recent contributions
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include a detailed discussion of extreme-value copulas by Gudendorf and Segers (2010) and

by Davison et al. (2012) for copula modelling of spatial extemes.

Definition 1.12 (Copula). A d-dimensional copula is a distribution on [0,1]d with standard

uniform margins.

Theorem 1.7 (Sklar (1959)). Let F be the CDF of a joint distribution in Rd with margins

F1, . . . ,Fd . Then there exists a copula C such that for all x = (x1, . . . , xd ) ∈Rd ,

F (x) =C {F1(x1), . . . ,Fd (xd )}. (1.4)

If the margins are continuous, then C is unique. Conversely, if C is a copula and F1, . . . ,Fd

are univariate CDFs, then the function F defined in (1.4) is a joint distribution function with

margins F1, . . . ,Fd .

The copula underlying some joint distribution F may be written as

C (u) = F
{
F−1

1 (u1), . . . ,F−1
d (ud )

}
,

where u = (u1, . . . ,ud ) ∈ [0,1]d , and F−1
i denotes the (generalized) inverse of the margin Fi ,

that is F−1
i (ui ) = inf{x : Fi (x) ≥ ui }.

There exists an extensive catalogue of copulas, including the Archimedean copulas.

Definition 1.13 (Archimedean copula generator). A decreasing, continuous, convex function

ψ : [0,∞) → [0,1] satisfying ψ(0) = 1 and limt→∞ψ(t) = 0 is called an Archimedean copula

generator.

Definition 1.14 (Archimedean copula). A d-variate copula C is Archimedean if there exists a

function ψ : [0,∞) → [0,1] such that

C (u) =ψ{
ψ−1(u1)+·· ·+ψ−1(ud )

}
. (1.5)

In the bivariate case, the construction (1.5) using Archimedean copula generators yields

valid (Archimedean) copulas, but in higher dimensions the Archimedean copula generator

must be completely monotone to yield a valid copula (Nelsen, 2006, Theorem 4.6.2).

An example of bivariate Archimedean copula is the Gumbel copula with parameter θ ≥ 1,

which has generator

ψG(t ;θ) = exp
(
−t 1/θ

)
, t ≥ 1,

yielding copula

CG(u, v ;θ) = exp

[
−

{
(− logu)θ+ (− log v)θ

}1/θ
]

, 0 ≤ u, v ≤ 1.
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Another large class is the class of so-called extreme-value copulas, which result from max-

stable distributions. The max-stability of a d-variate distribution F imples that its underlying

copula CF satisfies CF (u1/n
1 , . . . ,u1/n

d ) =CF (u1, . . . ,ud )1/n for all n.

Definition 1.15 (Extreme-value copula). A d-variate copula C is an extreme-value copula if it

satisfies

C (ut
1, . . . ,ut

d ) =C (u1, . . . ,ud )t , 0 ≤ u1, . . . ,ud ≤ 1, t > 0.

Genest and Rivest (1989) showed that the max-stable attractor of an Archimedean copula is

also an Archimedean copula and that the Gumbel copula is the only max-stable copula that is

Archimedean, so the only possible attractor of an Archimedean copula is the Gumbel copula.

The following result gives a necessary and sufficient condition for a Gumbel copula to be the

max-stable attractor of an Archimedean copula.

Theorem 1.8 (Max-domain of attraction of Archimedean copulas, Genest and Rivest (1989)).

An Archimedean copula with generator ψ and inverse generator φ=ψ−1 is in the max-domain

of attraction of the Gumbel copula with parameter θ ≥ 1 if and only if

lim
t↑1

d

dt

φ(t )

φ′(t )
= θ−1 > 0. (1.6)

Construction principles

1.2.1.3 Marginal standardization

A common approach to modelling multivariate extremes is to proceed in two stages: first,

one estimates the margins, and second, one handles the multivariate dependence of the data

transformed to a common scale. The marginal distributions are typically estimated using uni-

variate extreme value methodology by fitting the GEV distribution to block maxima or the GP

distribution to threshold excedances. Then, using the probability integral transform, the data

are converted to a common scale. Standard uniform margins seem a natural choice given the

extensive literature on copulas. However, due to a mathematically more elegant treatment of

extreme value theory, the data are often transformed to have unit Fréchet margins. The choice

of marginal distribution essentially makes no difference to inference results. Specifically, if the

random vector X = (X1, . . . , Xd ) has joint distribution F and margins Fi , then the transformed

random vector X̃ = (X̃1, . . . , X̃d ), where X̃i = ti (Xi ) with the maps ti (·) =−1/logFi (·), has distri-

bution F̃ with the same dependence structure as F , that is G(z1, . . . , zd ) = G̃{t1(z1), . . . , td (zd )},

and margins F̃i which are unit Fréchet, that is, F̃i (z) = e−1/z , z > 0.
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1.2.1.4 Spectral representation

Theorem 1.9 (Characterization of multivariate extreme value distributions, Pickands (1981)).

If the vector of renormalized maxima is such that (M n −bn)/an
D−→Z ∼G, where G is a non-

degenerate distribution, then

G(z) = exp{−V (z)}, z > 0, (1.7)

where

V (z) = d
∫

Sd

max
( w

z

)
dH(w ), (1.8)

and H is a probability measure on the (d −1)-dimensional simplex Sd = {
w ∈Rd

+ :
∑d

i=1 wi = 1
}

,

satisfying the mean constraints
∫

Sd
wi dH(wi ) = 1/d, i = 1, . . . ,d.

The function V , which we call the exponent function, is homogeneous of order −1, that

is V (kz) = k−1V (z) for k > 0, z > 0. We call the measure H the spectral distribution since it

integrates to one, and to differentiate it from the spectral measure used by some authors and

which has total mass d . The term spectral is widely used in mathematics for many different

things, and while calling H the spectral measure was unfortunate in the first place, it’s too

embedded in the literature to be changed now. If H is differentiable, then dH(w ) = h(w )dw ,

and the function h is called the spectral density. When d = 2, H is a probability distribution

on the interval [0,1], subject to the mean constraint
∫ 1

0 w dH(w) = 1/2.

Equation (1.8) expresses the exponent function V in terms of the spectral distribution

H . Coles and Tawn (1991) found a way to compute the spectral densities h from the partial

derivatives of the exponent function V . In the bivariate case, the spectral density, if it exists, is

h(w) =−1

2

∂2V (x, y)

∂x∂y

∣∣∣∣
x=w,y=1−w

, 0 < w < 1, (1.9)

and the point masses of H , if any, are

H({0}) =− y2

2
lim
x→0

∂

∂y
V (x, y), H({1}) =−x2

2
lim
y→0

∂

∂x
V (x, y). (1.10)

Two important special cases are independence and perfect dependence. When the spectral

distribution H puts masses 1/d on each of the d vertex e i of the (d −1)-dimensional simplex

Sd , then

G(z) = exp
{−(

z−1
1 +·· ·+ z−2

d

)}
, z > 0,

which is the CDF d independent unit Fréchet variables. When the spectral distribution puts

18



1.2. Multivariate extremes

mass 1 on d−1, then

G(z) = exp
{−max

(
z−1)} , z > 0,

which is the CDF of variables that are marginally unit Fréchet, but which are perfectly depen-

dent, that is Z1 = ·· · = Zd with probability one.

Unlike the univariate case, where the extremal types theorem (Theorem 1.2) imples that

one parametric family covers all possible limiting distributions, the class of MEV distributions

cannot be fully described by a finite number of parameters, since any spectral distribution

satisfying the mean constraint yields a valid MEV distribution. So, when it comes to modelling

and inference, one must rely on flexible parametric models or nonparametric techniques.

1.2.1.5 Parametric models

The specification of a parametric model for the limiting distribution G in (1.7) can be achieved

for example by specifying a parametric form for the exponent function V in (1.8), or equiv-

alently the spectral distribution H . A parametric model for G restricts the dependence to a

particular structure, so it is important to build dependence models that are flexible but also

parsimonious and interpretable.

Several parametric families, mainly bivariate ones, have been proposed; for a review see

Kotz and Nadarajah (2000, Sec. 3.4–3.5) or Beirlant et al. (2004, Sec. 9.2.2). Flexible models

in large dimensions are an area of research and new families are still being constructed and

discussed, as in Stephenson (2009), Cooley et al. (2010), Padoan (2011), Ballani and Schlather

(2011), and Segers (2012).

We briefly discuss the four classical bivariate parametric extreme value distributions used

in the simulation study in Chapter 2, namely the logistic, Hüsler–Reiss, Coles–Tawn, and

asymmetric logistic models. The logistic model is a special case of the asymmetric logistic

model but we treat it separately, as the former is the only case of the latter which doesn’t have

point masses at the edge of its support.

Logistic model The oldest parametric family of bivariate extreme value distribution is the

logistic model introduced by Gumbel (1960b). Its exponent function is

V (x, y) = (
x−1/α+ y−1/α)α

, x, y > 0,

where the parameter 0 <α≤ 1 measures the strength of dependence between the two coordi-

nates. The limiting caseα= 1 corresponds to independence, whilst the caseα→ 0 corresponds

to complete dependence. Ledford and Tawn (1998) showed that in a random sample from

this model, the probability that the maxima of the two coordinates occur for the same pair of

observations converges to 1−α as the sample size tends to infinity. It is easy to see that the
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copula of the logistic model is the Gumbel copula with parameter θ = 1/α.

From equations (1.9) and (1.10) one can see that the spectral distribution has no point

masses at 0 or 1, and when α ∈ (0,1), its spectral density is

h(w) = 1−α
2α

{w(1−w)}1/α−2 {
(1−w)1/α+w1/α}α−2

, 0 < w < 1.

The logistic model can be extended to higher dimensions in a straightforward way (e.g., see

Gumbel, 1960a). This simple model is popular but lacks flexibility, as it is symmetric in its

variables.

Asymmetric logistic model The asymmetric logistic model introduced by Tawn (1988a) is

an extension of the logistic model. Its exponent function is

V (x, y) = 1−ψ1

x
+ 1−ψ2

y
+

{(ψ1

x

)1/α
+

(
ψ2

y

)1/α
}α

, x, y > 0,

with dependence parameter 0 <α≤ 1 and asymmetry parameters 0 ≤ψi ≤ 1 for j = 1,2. When

ψ1 = ψ2 this model is symmetric and corresponds to a mixture of independence and the

logistic model, which arises for ψ1 =ψ2 = 1 (see Section 1.2.1.5). The cases ψ1 =ψ2 = 0 or

α = 1 correspond to independence. The strength of the dependence is determined by the

dependence parameterα and the asymmetry parametersψ1,ψ2, since the extremal coefficient,

which is a measure of extremal dependence (Section 1.2.4), is θ2 = 2−ψ1−ψ2+
(
ψ1/α

1 +ψ1/α
2

)α
.

From equation (1.10) one can see that the spectral distribution H has point masses H ({0}) =
(1−ψ2)/2 and H ({1}) = (1−ψ1)/2, so the case ψ1 =ψ2 = 1 corresponding to the logistic model

is the only case where the spectral distribution has no point masses. When α ∈ (0,1), by

equation (1.9) the spectral density is

h(w) = 1−α
2α

(
ψ1ψ2

)1/α {w(1−w)}1/α−2 [
{ψ1(1−w)}1/α+ (ψ2w)1/α]α−2

, 0 < w < 1.

Hüsler–Reiss model The Hüsler–Reiss model is a symmetric model based on the normal

distribution and introduced by Hüsler and Reiss (1989). Its exponent function is

V (x, y) = x−1Φ
{α

2
+α−1 log

( y

x

)}
+ y−1Φ

{
α

2
+α−1 log

(
x

y

)}
, x, y > 0,

with dependence parameter α> 0, and whereΦ denotes the standard normal CDF. Indepen-

dence is obtained in the limit as α→∞. Complete dependence is obtained as α→ 0.

From equations (1.9) and (1.10) one can see that the spectral distribution has no point

20



1.2. Multivariate extremes

masses, and the spectral density is

h(w) = e−α/8

2α{w(1−w)}3/2
φ

{
a−1 log

( w

1−w

)}
, 0 < w < 1,

where φ denotes the standard normal PDF.

Dirichlet model The Dirichlet model introduced by Coles and Tawn (1991) allows for asym-

metry. Its exponent function is

V (x, y) = 1

x

{
1−Be(vx y ;α+1,β)

}+ 1

y
Be(vx y ;α,β+1), x, y > 0,

with parameters α,β > 0, and where Be(vx y ; a,b) is the CDF of the beta distribution with

parameters a and b evaluated at vx y =αx/(αx +βy). The Dirichlet model is symmetric when

α=β. Complete dependence is obtained in the limit as α=β tends to infinity. Independence

is obtained as α=β approaches zero, and when one of α, β is fixed and the other approaches

zero.

From equations (1.9) and (1.10) one can see that the spectral distribution doesn’t have point

masses on 0 or 1, and when α ∈ (0,1), its spectral density is

h(w) = ααββΓ(α+β+1)wα−1(1−w)β−1

2Γ(α)Γ(β){αw +β(1−w)}α+β+1
, 0 < w < 1,

where Γ denotes the Gamma function.

1.2.1.6 Pickands’ dependence function

An alternative representation of (1.8) introduced by Pickands (1981) was the so-called Pickands

dependence function, which is denoted A(w ). In the bivariate case, A is defined on [0,1] and

determined by

V (z1, z2) =
(

1

z1
+ 1

z2

)
A

(
z1

z1 + z2

)
, z1, z2 > 0, (1.11)

and satisfies i) max(t ,1− t ) ≤ A(t ) ≤ 1 for t ∈ [0,1], and ii) A is convex.

The function A lies between the two bounding cases of independence when A(t ) ≡ 1 and

complete dependence when A(t) = max(w,1− t). The scalar A(w) quantifies the strength

of the dependence between the random variables Z1 and Z2, in the ‘direction’ w , where

w = z1/(z1 + z2) is the so-called pseudo-angle of (z1, z2) in pseudo-polar coordinates.

The Pickands dependence function may be expressed in terms of the exponent function.
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Setting z1 = (1− t )−1 and z2 = t−1 in (1.11) yields

A(t ) =V

(
1

1− t
,

1

t

)
, 0 ≤ t ≤ 1, (1.12)

and in terms of the spectral distribution H as

A(t ) = 1− t +2
∫ t

0
H([0, w])dw, 0 ≤ t ≤ 1. (1.13)

Conversely, the spectral distribution is linked to Pickands’ dependence function through

H([0, w]) =


{
1+ A′(w)

}
/2, w ∈ [0,1),

1, w = 1,
(1.14)

where A′ is the right-hand derivative of A, and the point masses of H at 0 and 1 are

H({0}) = 1+ A′(0)

2
, H({1}) = 1− A′(1)

2
,

where A′(1) = sup0≤t<1 A′(t ). If A′ is absolutely continuous, then H is absolutely continuous

on the interior of the unit interval with density h = A′′/2.

Similarly to Archimedean copula generators, which generate Archimedean copulas (see

Section 1.2.1.1), Pickands dependence functions generate extreme-value copulas, since a

bivariate copula may be written in terms of the Pickands dependence function as

C (u, v) = exp

[
log(uv)A

{
log v

log(uv)

}]
, 0 ≤ u, v ≤ 1. (1.15)

The Pickands dependence function may be expressed in terms of the copula of a (bivariate)

max-stable distribution. Setting u = e t−1 and v = e−t in (1.15) yields

A(t ) =− log
{
C

(
e t−1,e−t )} , 0 ≤ t ≤ 1.

The Pickands dependence functions and derivatives for the four models presented in

Section 1.2.1.5 are

A(t ) = {
(1− t )1/α+ t 1/α}α

, A′(t ) = A(t )1−1/α {
t 1/α−1 − (1− t )1/α−1} , 0 ≤ t ≤ 1,

for the logistic model,

A(t ) = (1−ψ1)(1− t )+ (1−ψ2)t + [
{ψ1(1− t )}1/α+ (ψ2t )1/α]α

,

A′(t ) =ψ1 −ψ2 +
{
ψ1/α

2 t 1/α−1 −ψ1/α
1 (1− t )1/α−1}

× [
{ψ1(1− t )}1/α+ (ψ2t )1/α]α−1

, 0 ≤ t ≤ 1,
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for the asymmetric logistic model,

A(t ) = (1− t )Φ

{
α

2
− 1

α
log

(
t

1− t

)}
+ tΦ

{
α

2
− 1

α
log

(
1− t

t

)}
,

A′(t ) =−Φ
{
α

2
− 1

α
log

(
t

1− t

)}
− 1

αt
φ

{
α

2
− 1

α
log

(
t

1− t

)}
+Φ

{
α

2
− 1

α
log

(
1− t

t

)}
+ 1

α(1− t )
φ

{
α

2
− 1

α
log

(
1− t

t

)}
, 0 ≤ t ≤ 1,

for the Hüsler–Reiss model, and

A(t ) = (1− t )
{
1−Be(vt ;α+1,β)

}+ tBe(vt ;α,β+1),

A′(t ) = Be(vt ;α+1,β)+Be(vt ;α,β+1)−1, 0 ≤ t ≤ 1,

where vt =αt/{αt +β(1− t )} for the Dirichlet model.

Figure 1.1 shows the Pickands dependence functions of these four models for different

parameter values.

1.2.1.7 Inference

Motivated by the characterization of multivariate extreme value distributions (Theorem 1.9),

MEV distributions are asymptotically justified to model extreme values of a multivariate

phenomenon of interest. Similarly to the block maximum approach in univariate case, its

application consists in grouping the data into blocks of equal length, and fitting a MEV distri-

bution to componentwise maxima of non-overlapping blocks of consecutive observations.

Let x1, . . . , x N be a series of d-dimensional observations of a phenomenon of interest at

regular time points, e.g., the daily rainfall at a set of specific locations. Supposing that the

data can be decomposed into m blocks of n independent observations, that is N = mn, with

n,m ∈N, one can fit a MEV distribution, either parametrically (e.g., by maximum likelihood)

or nonparametrically, to the m componentwise block maxima y 1 = max(x1, . . . , xn), . . . , y m =
max(xn(m−1)+1, . . . , x N ).

The fitting procedures described in this section are based on the assumption that the asymp-

totic extreme value model is a reasonable approximation for a finite number of observations.

However, the limiting models lie in a big class of distributions, because the spectral distribu-

tion H is nonparametric. Furthermore, limiting models may not be good approximations for

finite samples as the convergence to the limiting distribution can be slow, inducing substantial

bias in estimation and subsequent prediction. Omey and Rachev (1991) show that the rate of

converge depends on that of the corresponding dependence structure and that of the margins

(see Section 1.1.1.2).
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Figure 1.1 – Pickands dependence function of the logistic, Hüsler–Reiss, Dirichlet, and
asymmetric logistic models for different parameter values. The horizontal dashed line
corresponds to independence, and the v-shaped dashed line corresponds to perfect
dependence (comonotonicity).
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Maximum likelihood estimation Parametric estimation requires one to choose a suitable

parametric model for G from the large collection of existing MEV distributions. Let G(·;ψ)

denote the CDF of the chosen parametric model and g (z ;ψ) = ∂dG(z ;ψ)/(∂z1 · · ·∂zd ) its

PDF, whereψ denotes the (finite-dimensional) vector of unknown model parameters which

need to be estimated from the data. Let z1, . . . , zm be the m componentwise maxima trans-

formed to have unif Fréchet margins based on univariate estimation of the GEV distribution

(Section 1.1.1.3) and marginal transformations (Section 1.2.1.3). The likelihood function is

L(ψ; z1, . . . , zn) =
n∏

i=1
g (z i ;ψ),

which is to be maximized with respect toψ, yielding the parameter estimate ψ̂. The variance

of ψ̂ can be estimated using the observed information matrix. In practice, maximization

of the (log-)likelihood and computation of the observed information matrix are performed

numerically.

In dimension d = 2, the joint density function is

g (z1, z2;ψ) = {V1(z1, z2)V2(z1, z2)−V12(z1, z2)}×exp{−V (z1, z2)}, z1, z2 > 0,

where V1(z1, z2) = ∂V (z1, z2)/∂z1, and similarly for V2 and V12. The number of terms in the

expression for the joint density grows extremely fast as the number of dimension d increases,

quickly yielding an intractable likelihood, so alternative methods are needed for inference in

high dimensions. Using the times of occurrence of extreme events, if available, simplifies the

likelihood and also inference; see, e.g., Stephenson and Tawn (2005) and Wadsworth and Tawn

(2014). An alternative is to use a surrogate for the full likelihood such as a composite likelihood,

which is an inference function derived by multiplying a collection of valid likelihood objects

usually related to small subsets of data, e.g., bivariate subsets in the case of pairwise likelihood;

see e.g., Varin and Vidoni (2005), Varin (2008) and Varin et al. (2011). Under mild conditions,

maximum pairwise likelihood estimators are strongly consistent and asymptotically normal.

Using pairwise likelihood seems reliable and avoids the intractability of the likelihood function,

as only bivariate margins need to be specified, provided the parameterψ is identifiable from

them.

A gain of efficiency may occur if the GEV margins and the dependence model are estimated

together. The number of parameters to be estimated is increased by 3d , which makes nu-

merical optimization harder, especially in larger dimensions, but doesn’t yield intractable

(composite) likelihoods. However, jointly modelling the margins and the dependence struc-

ture may not always be desirable. Dupuis and Tawn (2001) show that misspecifying the

dependence structure may have large adverse effects on the estimates of margin parameters.

Goodness-of-fit tests may cast doubt on the hypothesis of extreme value margins, although a

MEV distribution may seem valid for the dependence structure.
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Non-parametric inference Several nonparametric estimators of the Pickands dependence

function have been proposed. Pickands (1981) proposed an estimator that is conceptually

simple and easy to compute, but the resulting estimates may not be valid Pickands dependence

functions. Deheuvels (1991) and Hall and Tajvidi (2000) proposed improved estimators which

satisfy some of the necessary constraints but still fail to be convex. Capéraà et al. (1997)

proposed another estimator which also fails to satisfy some of the necessary constraints.

Marcon et al. (2017) proposed a valid (multivariate) estimator using Bernstein polynomials.

1.2.2 Point process approach

The componentwise block maximum approach discussed in Section 1.2.1 only uses infor-

mation equivalent to one observation in each block, though the componentwise maxima

may not be actual observations. A less data-wasteful alternative is based on a point process

characterization of extremes introduced by de Haan and Resnick (1977). The theory is detailed

in Resnick (1987, Chap. 3 and 5), and summarized in Kotz and Nadarajah (2000, Sec. 3.2) and

Fougères (2003). The main result is an extension of the point process characterization in the

univariate case (Theorem 1.4).

As in Section 1.2.1.1, let X = (X1, . . . , Xd ) be a d-dimensional random vector with joint CDF

F and marginal CDFs F1, . . . ,Fd . Let {X i }i≥1 with X i = (Xi ,1, . . . , Xi ,d ) be an i.i.d. sequence of

random vectors distributed as X , and let M n = (Mn,1, . . . , Mn,d ) with Mn,i = max(X1,i , . . . , Xn,i )

be the vector of componentwise maxima of X 1, . . . , X n . Without loss of generality, suppose

that the margins Fi are unit Fréchet, that is Fi (z) = exp(−1/z), z > 0.

Theorem 1.10 (Convergence of the point process of rescaled observations Resnick (1987,

Prop. 5.11)). If the renormalized vector maxima M n/n
D−→Z ∼G, where G is a non-degenerate

distribution, then the sequence of point processes Pn = {X i /n}n
i=1, for n ≥ 1, converges to a

non-homogeneous Poisson process P on (0,∞) with measure µ.

The scaling factor n in Theorem 1.10 corresponds to the normalizing constants an = n and

bn = 0 for unit Fréchet random variables in Theorem 1.9.

There is a strong connection between the characterization of MEV distributions (Theo-

rem 1.9) and the convergence of the point process of rescaled observations (Theorem 1.10).

Let z = (z1, . . . , zd ) > 0, and consider Az = {x ∈ Rd
+ : x1 > z1 or · · · or xd > zd }. It follows from

Theorem 1.10 and the Poisson property that

Pr(Pn ⊂Ac
z ) = Pr(Pn ∩Az =;) → exp{−µ(Az )}, n →∞.

From Theorem 1.9 and under the assumptions of Theorem 1.10, we have

Pr

(
M n

n
≤ z

)
→G(z) = exp{−V (z)}, n →∞,

where V is the exponent function defined in (1.8). Noting that Pr(Pn ⊂Ac
z ) = Pr(M n/n ≤ z)
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yields exp{−µ(Az )} = exp(−V {z)}, so the limiting Poisson process has measure µ(Az ) =V {z),

for z > 0 or equivalently Az ⊂ (0,∞).

A transformation of X from Cartesian to pseudo-polar coordinates turns out to be useful.

Let

R =
d∑

i=1
Xi , W = X

R
,

respectively be the pseudo-radius and the vector of pseudo-angles of X . Clearly, R > 0,

Wi ∈ [0,1], for i = 1, . . . ,d , and
∑d

i=1 Wi = 1. The components of W correspond to the relative

sizes of the component of X .

The intensity measure dµ of the limiting Poisson process with the pseudo-polar parametriza-

tion, if it exists, is

dµ(r, w ) = d
dr

r 2 dH(w ), (1.16)

where H is the spectral distribution introduced in Theorem 1.9 and describing the structure of

dependence of MEV distributions. Expression (1.16) implies that the intensity measure of the

limiting process P in Theorem 1.10 factorizes across radial and angular components, so the

radial distance is independent from the angular spread, which is determined by the spectral

distribution H , and this remarkable property can be used for inference.

1.2.3 Asymptotic independence

Many multivariate distributions, including the non-degenerate multivariate normal distribu-

tion, lie in the maximum domain of attraction of the boundary case of independence. These

distributions, which are often relevant in applications, need special treatment as indepen-

dence of extreme events of the components is unrealistic.

Definition 1.16 (Asymptotic independence and asymptotic dependence). A d-dimensional

multivariate distribution F which is in the maximum domain of attraction of some MEV

distribution G having margins G1, . . . ,Gd is called asymptotically independent if, for all x =
(x1, . . . , xd ),

G(x) =G1(x1)×·· ·×Gd (xd ).

A d-dimensional random variable is said to be asymptotically independent if its distribution

is asymptotically independent. A d-dimensional distribution or random variable is said to be

asymptotically dependent if it is not asymptotically independent.

Berman (1961) showed that a random vector X = (X1, . . . , Xd ) is asymptotically independent

if all pairs (Xi , X j ) with i 6= j are asymptotically independent. Sibuya (1960) showed that
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a necessary and sufficient condition for the asymptotic independence of a pair of random

variables (X ,Y ) respectively having CDFs FX and Fy is

lim
u↑1

Pr{FY (Y ) > u,FX (X ) > u}

1−u
= 0. (1.17)

Coles et al. (1999) illustrate that asymptotically independent random variables may exhibit

(strong) upper joint tail dependence above high quantiles, that is Pr{FY (Y ) > u,FX (X ) > u}

may be far from zero even for values of u very close to one. Therefore, testing for asymptotic

independence is difficult in practice, as a powerful test requires information very far in the tail.

Several approaches to test bivariate asymptotic independence have been proposed; see e.g.,

Ledford and Tawn (1996, 1997), Coles et al. (1999), Ramos and Ledford (2005), Falk and Michel

(2006), and the references therein. Bacro et al. (2010) proposed the so-called madogram test.

Let (X1,Y1), . . . , (Xn ,Yn) be a sequence of i.i.d. pairs of random variable. Under the hypothesis

of asymptotic independence, the statistic

ν̂W = 1

2n

n∑
i=1

∣∣F̂X (Xi )− F̂Y (Yi )
∣∣ ,

where F̂X and F̂Y respectively are the empirical CDFs of the Xi s and Yi s, is asymptotically

normal.

1.2.3.1 Models for asymptotic independence

Several models have been proposed in the literature to model asymptotic independence, in-

cluding a characterization of bivariate joint tails based on slowly-varying functions proposed

by Ledford and Tawn (1996), with the subsequent generalizations and refinements proposed

by Ledford and Tawn (1997, 1998) and Ramos and Ledford (2009); inverted max-stable dis-

tributions proposed in the bivariate case by Ledford and Tawn (1997) and extended to the

multivariate case by Heffernan and Tawn (2004); the semi-parametric conditional approach

proposed by Heffernan and Tawn (2004); and the alternative limiting point process proposed

Ramos and Ledford (2011). de Carvalho and Ramos (2012) provide a review of statistical

modelling of asymptotically independent data.

The Ledford–Tawn and Ramos–Ledford models provide broader approaches, but only work

for dimensions d = 2,3. The Heffernan–Tawn model provides a broad approach to modelling

in larger dimensions, but the approach is not fully satisfactory as conditioning on different

variables yields incompatible results.

Ledford–Tawn model Let (Z1, Z2) be a pair of non-negatively associated random variables

with joint distribution F and Fréchet margins. The marginal survival functions of Z1 and

Z2 are 1− e−1/z ≈ z−1 for large z. For the two bounding cases of independence and perfect
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dependence, the joint survival function of Z1 and Z2 is Pr(Z1 > z, Z2 > z) = e−α ≈ z−α for large

z, with α= 2 for independence, and α= 1 for perfect dependence. Ledford and Tawn (1996)

proposed to model the joint survival function of (Z1, Z2) with a model that links these two

bounding cases, and suggested

Pr(Z1 > z, Z2 > z) ≈L(z)z−1/η, (1.18)

as z →∞, where 1/2 ≤ η≤ 1 is a constant called the coefficient of tail dependence, and L is

a slowly varying function, that is, L is such that L(tr )/L(r ) → 1 as r →∞ for any finite t > 0.

Under this model, the tail dependence of (Z1, Z2) is characterised by both the constant η,

and the slowly varying function L. The rate of decay in (1.18) is primarily determined by η.

The degree of dependence of large values Z1 and Z2 is determined by η, with larger values

corresponding to stronger association. For a given level η, the relative strength of dependence

is characterized by L.

Distributions satisfying (1.18) can be separated into the following cases:

• Asymptotic dependence if η= 1 and limz→∞L(z) = c for some constant 0 < c ≤ 1. The

degree of dependence is quantified by c. This class comprises all non-independent

bivariate extreme value distributions. The bounding case of perfect dependence has

L(z) = 1.

• Asymptotic independence with positive association if either 1/2 < η< 1 or limz→∞L(z) =
0. This class contains for example the bivariate Gaussian distribution with correlation

coefficient 0 < ρ < 1, for which η= (1+ρ)/2.

• Asymptotic independence and near independence if η = 1/2. This class comprises

bivariate distributions that are exactly independent in the limit but have some weak

dependence at subasymptotic levels due to the fluctuations caused by L. The bounding

case of independence has L(z) = 1.

The class of distributions considered by Ledford and Tawn (1996) can be extended to neg-

atively associated distributions, for which 0 < η < 1/2. This class contains for example the

bivariate Gaussian distribution with correlation coefficient ρ < 0, for which η= (1+ρ)/2. Hef-

fernan (2000) provides the coefficients of tail dependence for a collection of bivariate copulas.

Schlather (2001) shows by a counterexample that (1.18) neither implies nor is implied by the

domain-of-attraction condition.

Ledford and Tawn (1996) proposed an estimator of the coefficient of tail dependence η

which relies on the fact that Pr(Z1 > z, Z2 > z) = Pr{min(Z1, Z2) > z}, and they show that η can

be estimated as the tail index of the (univariate) variable T = min(Z1, Z2).

Ledford and Tawn (1997, 1998) proposed an extension of model (1.18) with the more flexible
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joint tail asymptotic expansion

Pr(Z1 > z1, Z2 > z2) ≈L2(z1, z1)z−1/c1
1 z−1/c2

2 , (1.19)

where c1 + c2 = η, and L2 is a bivariate slowly varying function. Ramos and Ledford (2009)

considered the special case of (1.19) where c1 = c2.

1.2.4 Measures of extremal dependence

Measures of extremal dependence are useful to summarize the level of extremal dependence

for diagnostic and model checking purposes, and discriminate between asymptotic depen-

dence and asymptotic independence. Several measures of extremal dependence have been

proposed in the literature, including the extremal coefficient attributed to Smith (1990), the

coefficient of tail dependence introduced by Ledford and Tawn (1996), and the coefficients χ

and χ) introduced by Coles et al. (1999); see de Carvalho and Ramos (2012) for a review.

Extremal coefficient θd Let Z = (Z1, . . . , Zd ) be a random vector with MEV distribution G

and Fréchet margins, so G(z) = exp{−V (z)}, z > 0. The structure of (extremal) dependence of

Z is entirely determined by the exponent function V , which is homogeneous of order −1. A

simple summary of dependence is the extremal coefficient

θd =V (1, . . . ,1) ∈ [1,d ],

which satisfies θd = 1 for perfectly dependent data, and θd = d for independent data. Since

Pr{max(Z1, . . . , Zd ) ≤ z} = exp{−V (z, . . . , z} = {exp(−1/z)}θd , z > 0,

which correponds to the distribution of θd independent Fréchet variables, the extemal coeffi-

cient can be loosely interpreted as the number of independent components of Z contributing

to max(Z1, . . . , Zd ). The extremal coefficient is only defined for MEV distributions. It can be ex-

pressed in terms of the Pickands dependence function A. In dimension d = 2, equation (1.11)

yields θ2 = 2A(1/2). Estimators of the extremal were proposed by Schlather and Tawn (2003)

and Naveau et al. (2009), among others.

The coefficient is for MEV but one may want to extend it to it to any type of distribution. A

natural generalization is θd = limu↑1 logC (u, . . . ,u)/ logu as for MEV distributions F we have

C (u, . . . ,u) = F {F−1
1 (u), . . . ,F−1

d (u)} = exp[V {−1/logu, . . . ,−1/logu}] = exp{V (1, . . . ,1) logu} =
uV (1,...,1) = uθd .

Coefficient of tail dependence η The coefficient of tail dependence η introduced by Ledford

and Tawn (1996) characterizes the tail decay of the survival joint distribution of a pair of Fréchet

variables (see Section 1.2.3.1). It allows discrimination between asymptotic dependence (η= 1)

30



1.2. Multivariate extremes

and asymptotic independence (0 < η< 1), and measures the strength of extremal dependence

within the class of asymptotically independendent models. Heffernan (2000) provides the

coefficients of tail dependence for a collection of bivariate copulas.

The coefficient η corresponds to the shape parameter ξ of the GEV distribution of the

univariate variable T = min(Z1, Z2) where Z1 and Z2 are Fréchet random variables, so that

univariate threshold methods can be used for inference (Ledford and Tawn, 1996). Alternative

estimators are described in Beirlant et al. (2004, Sec. 9.5.2).

Coefficientsχ andχ Coles et al. (1999) discuss two complementary quantities, χ and χ, that

measure different aspects of extremal dependence for pairs of random variables. Both are

needed to obtain a summary of extremal dependence that is informative for variables that

may be either asymptotically dependent or asymptotically independent.

A way to quantify the extremal dependence of two random variables is to consider the

probability that one variable is large given that the other is large. Let (X ,Y ) be a pair of random

variables with joint distribution F , underlying copula C , and marginal distributions F1 and F2.

The tail dependence index discussed by Coles et al. (1999) is

χ= lim
u↑1

Pr{F2(X2) > u | F1(X1) > u} = lim
u↑1

2− 1−C (u,u)

1−u
,

provided the limit exists. The coefficient χ lies in [0,1] and is not restricted to bivariate MEV

distributions. It quantifies the level of dependence that remains in the limit, allowing one to

assess the level of asymptotic dependence. Given condition (1.17), the random variables X

and Y are asymptotically independent if χ= 0, and asymptotically dependent otherwise. If

χ> 0, χ quantifies the strength of asymptotic dependence, with the intuitive intrepretation

that the larger χ is, the stronger the extremal dependence.

To quantify the level of subasymptotic upper tail dependence at any quantile level u, Coles

et al. (1999) introduced the function

χ(u) = 2− logC (u,u)

logu
, 0 < u < 1, (1.20)

and one has limu↑1χ(u) =χ. In general, the function χ(u) is bounded from below and above

by

2− log{max(2u −1,0)}

logu
≤χ(u) ≤ 1, 0 < u < 1,

which follows from the Fréchet bounds for copulas (e.g., Nelsen, 2006, p. 11). The sign of

χ(u) corresponds to the sign of the association between X and Y at level u, with χ(u) = 0

corresponding to independence, since the variables are by definition positively quadrant

dependent if C (u,u) > u2 (Nelsen, 2006, Sec. 5.2.1).
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The only situation corresponding to asymptotic independence is the bounding case χ=
0, leading the measure to fail to discriminate between the degrees of relative strength of

dependence for asymptotically independent variables. To measure extremal dependence

under asymptotic independence, and by analogy to (1.20), Coles et al. (1999) proposed the

complementary dependence function

χ(u) = 2log(1−u)

logC (u,u)
−1, 0 < u < 1, (1.21)

where

C (u, v) = Pr{FX (X ) > u,FY (Y ) > v} = 1−u − v −C (u, v), 0 ≤ u, v ≤ 1,

is the survival copula. Fréchet bounds for copulas yield

2log(1−u)

log{max(1−2u,0)}
−1 ≤χ(u) ≤ 1, −1 < u < 1.

The sign of χ(u) corresponds to the sign of the association between X and Y at level u, with

χ(u) = 0 corresponding to independence. The corresponding dependence coefficient is

χ= lim
u↑1

χ(u),

provided it exists, with χ ∈ [−1,1].

The coefficients χ and χ are linked to the extremal coefficient θ2 and the tail dependence

index η. Indeed, if the distribution F is a MEV distribution with Pickands dependence function

A, then by (1.15) we have C (u,u) = uθ2 , where θ2 = 2A(1/2) is the extremal coefficient. Thus

χ(u) = 2−θ2, 0 < u < 1, and thus χ = 2−θ2. In addition, expressing (1.18) in terms of the

survival copula and setting u = e−1/z gives

C (u,u) ≈L(−(1−u)−1)(1−u)1/η,

and substituting into (1.21) yields

χ= lim
u↑1

χ(u) = lim
u↑1

2log(1−u)

logL
{
(1− c)−1

}+η−1 log(1−u)
−1 = 2η−1.

In summary, the complete pair (χ,χ) with χ ∈ [0,1] and χ ∈ [−1,1] is required to measure

extremal dependence of a pair of random variables: (χ> 0,χ= 1) corresponds to asymptotic

dependence and χ measures the strength of extremal dependence in this class; alternatively,

(χ = 0,χ < 1) corresponds to asymptotic independence and χ measures the strength of ex-

tremal dependence in this class.

Coles et al. (1999) suggest estimation of χ(u) and χ(u) by using empirical estimates of C
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and C .
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2 Spectral distributions and the angular
distribution of excesses

The spectral distribution plays a key role in the statistical modelling of multivariate extremes,

as it defines the dependence structure of multivariate extreme-value distributions and charac-

terizes the limiting distribution of the relative sizes of the components of large multivariate

observations. However, no parametric family captures all possible types of multivariate de-

pendence. Numerous parametric models have been proposed, including those of Gumbel

(1961), Tawn (1988a), Hüsler and Reiss (1989), Coles and Tawn (1991), Demarta and McNeil

(2005), and Cooley et al. (2010), and construction principles have been suggested, such as that

in Segers (2012).

Inference on the spectral distribution is typically based on the pseudo-angles of ‘large’

observations under the assumption that their distribution is equal to the spectral distribution.

There has been little if any attention on studying the impact of this approximation on inference,

and it turns out that it can yield significantly biased estimates.

The aim of this chapter is to characterize the angular distribution of excesses corresponding

to the distribution of pseudo-angles of ‘large’ observations, in order to improve direct inference

on the spectral distribution in the bivariate setting. Section 2.1 contains definitions and sets

some notation. In Section 2.2, we illustrate some pitfalls of direct inference on the spectral

distribution using observed pseudo-angles of ‘large’ observations. In Section 2.3, we give a

characterization of the angular distribution of excesses and illustrate it with examples. In

Section 2.4, we describe how to perform maximum likelihood-based parametric inference

using the angular distribution of excesses, and we compare this approach with other classical

parametric approaches through numerical simulations. Section 2.5 concludes the chapter

with a summary.

2.1 Definitions and notation

Let (X ,Y )T be a random vector in R2 which follows a bivariate extreme value distribution

denoted by G having joint CDF G with unit Fréchet margins, that is FX (z) = FY (z) = e−1/z ,
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Chapter 2. Spectral distributions and the angular distribution of excesses

z > 0. Recall from Section 1.2.1.4 that the joint CDF of G can be expressed as

G(x, y) = exp{−V (x, y)}, x, y > 0,

where

V (x, y) = 2
∫ 1

0
max

(
t

x
,

1− t

y

)
dH(t ),

and H is the CDF of some probability distribution H defined on [0,1] and satisfying the mean

constraint∫ 1

0
t dH(t ) = 1/2. (2.1)

The function V is often called the exponent function, and we say that the distribution H is the

spectral distribution associated with the extreme value distribution G.

Definition 2.1. Let G2 denote the set of bivariate extreme value distributions with Fréchet

margins that have a differentiable CDF on R2
+.

The set G2 corresponds to the collection of all bivariate extreme value distributions that

have a PDF. For a distribution G ∈G2, let G denote its CDF and g its PDF.

Definition 2.2. A univariate spectral distribution H is called 01-continuous if its CDF is

continuous on the open interval (0,1). LetH2 denote the set of all 01-continuous univariate

spectral distributions.

The setH2 corresponds to the collection of all univariate spectral distributions that have no

point masses in (0,1). For H ∈H2, let H denote its CDF. Let δ0 and δ1 denote potential point

masses respectively at 0 and 1, and denote the generalized density function of H by

h(t ) = δ0δ(t )+ h̃(t )+δ1δ(t −1), 0 ≤ t ≤ 1, (2.2)

where δ(·) denotes the Dirac delta function and h̃(t ) = dH (t )/dt on (0,1) extended by continu-

ity at 0 and 1. Therefore,∫ 1

0
h̃(t )dt = 1−δ0 −δ1,

showing that h̃ itself is a valid PDF if and only if δ0 = δ1 = 0, in which case h ≡ h̃. The mean

constraint (2.1) implies that∫ 1

0
t h̃(t )dt = 1

2
−δ1. (2.3)

Pseudo-polar coordinates are useful to characterize dependence at extreme levels. Let

the random vector (R,W )T denote the transformation of (X ,Y )T in pseudo-polar coordinates,
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2.2. Pitfalls in inference on the spectral distribution

where the pseudo-radius R = X +Y corresponds to the L1 distance to the origin and the

pseudo-angle W = X /R corresponds to the pseudo-angle with the y-axis. Clearly, R > 0 and

0 <W < 1, since both X and Y follow unit Fréchet distributions.

The spectral distribution H can be interpreted as the limiting distribution of the pseudo-

angle W as R →∞, giving the basis for classical direct inference on H . We use the term angular

distribution for the distribution of the pseudo-angle W for finite values of R to distinguish it

from the spectral distribution H.

2.2 Pitfalls in inference on the spectral distribution

In this section we illustrate how direct inference on the spectral distribution can go wrong

when using a natural approach based on the convergence of the angular distribution of ‘large’

observations, as the threshold z tends to infinity.

In statistics, it is common to rely on asymptotic theory for inference, assuming that the

characteristics of a quantity of interest based on a finite set of observations are (approximately)

equal to the limiting characteristics as the sample size tends to infinity. A classical example

is the use of the Central Limit Theorem in some hypothesis testing procedures. A natural

approach to inference on the spectral distribution is based on this paradigm, relying on the

fact that the spectral distribution H is the limit distribution of the pseudo-angle W when R > z

as z →∞. This approach consists in fitting a model for H to the observed pseudo-angles of

‘large’ observations, which are the subset of observations having a pseudo-radius larger than

some high threshold.

Let (x1, y1), . . . , (xN , yN ) be a sample from a bivariate max-stable distribution with unit

Fréchet margins. The sample is assumed to come from a max-stable distribution, and not only

from a distribution that is in the maximum domain of attraction of a max-stable distribution, in

order to illustrate some specific behaviour of the estimator in the best case scenario. In practice,

data can be transformed to have unit Fréchet margins (see Section 1.2.1.3). Expressed in

pseudo-polar coordinates these observations are (ri , wi ), where ri = xi + yi and wi = xi /ri for

i = 1, . . . , N . Let z > 0 be a large threshold, and let n be the number of ‘large’ observations such

that ri > z. Without loss of generality and to simplify notation, suppose that the observations

are ordered in decreasing order of pseudo-radius, that is r1 ≥ ·· · ≥ rN , so the set of pseudo-

angles for ‘large’ observations is {w1, . . . , wn}.

Figure 2.1 shows scatter plots of pseudo-random samples from the logistic, Hüsler–Reiss,

Dirichlet, and asymmetric logistic models with Fréchet margins both in Euclidean and pseudo-

polar coordinates as well as histograms of pseudo-angles of ‘large’ observations. These his-

tograms seem quite close to the spectral distributions associated with the bivariate extreme

value distributions from which the data were sampled, illustrating the natural approach of

using pseudo-angles of ‘large’ observations to directly estimate the spectral distribution. How-

ever, for the asymmetric logistic distribution, the histogram deviates significantly from the
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Figure 2.1 – Scatter plots of Y versus X (left) and R = X +Y versus W = X /R (middle),
and histograms of W given R > z with z corresponding to the 97.5% empirical quantile
of R (right) for pseudo-random samples of size 20’000 (500 threshold exceedances) from
the logistic, Hüsler–Reiss, Dirichlet, and asymmetric logistic models with Fréchet mar-
gins. The solid green line in the scatter plots shows the threshold z, and observations
with R > z are shown in blue. The solid orange line in the histograms shows the spectral
density function and orange dots show point masses of the spectral distribution.
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2.2. Pitfalls in inference on the spectral distribution

spectral density near the edges of the support. The most frequently observed pseudo-angles

are those near the edges of the support, though the spectral density in these regions is close

to zero. These discrepencies are due to the point masses of the spectral distribution at 0

and 1 and the fact the corresponding pseudo-angles can never be observed, since the magni-

tude of observations is both strictly positive and finite, so 0 < wi < 1 for i = 1, . . . , N . Loosely

speaking, the point masses of the spectral distribution spread onto the support of the distri-

bution of observed pseudo-angles, mainly near the edges of the support. As a consequence,

when the spectral distribution has point masses at 0 and/or 1, the distribution of observed

pseudo-angles is inflated near the edge of the support, and it lacks the point masses. These

discrepencies near the edges of the support may seem minor but can have a significant impact

on inference, as illustrated below.

Maximum likelihood estimation of the spectral distribution using the natural approach

is straightforward. Consider a parametric family of spectral distribution Hθ with parameter

θ ∈Θ⊂Rd and PDF h(·;θ). The maximum likelihood estimate is simply

θ̂a = argmax
θ∈Θ

n∑
j=1

logh(w j ;θ), (2.4)

where the subscript ‘a’ specifies that the estimator is obtained by fitting the asymptotic distri-

bution of the pseudo angles.

Figure 2.2 shows maximum likelihood estimates of the spectral distribution of the logistic,

Hüsler–Reiss, Dirichlet, and asymmetric logistic models based on observed pseudo-angles of

the n = 1′000 largest observations out of N = 40′000 pseudo-random samples generated from

the same models with Fréchet margins. The set-up for these fits is close to ideal for inference

as the sample size is quite large, with 1’000 observations to estimate at most three parame-

ters for univariate distributions having bounded support, the pseudo-angles correspond to

observations with only the largest 2.5% pseudo-radiuses, and there is supposedly no model

misspecification, as the logistic spectral distribution is fitted to data sampled from the logistic

distribution, and so on. The estimates are quite close to the true parameter values for the

first three distributions, but not for the asymmetric logistic distribution, where parameter

estimates are quite far from the true values, resulting in a rather poor estimate of the spectral

distribution. This poor estimate underestimates the occurrence of joint extreme events cor-

responding to the center of the spectral distribution, and could yield wrong conclusions in

applications. The worst estimate in these examples occurs for the model having a spectral

distribution with point masses at 0 and 1. The fact that one can’t observe pseudo-angles equal

to 0 and 1 corresponding to the point masses of the underlying spectral distribution can have

a disastrous impact on inference, as estimation is biased towards a model of the parametric

family having a PDF with high values near the edges of the support. Problems can also arise

in the non-parametric setting and when the underlying distribution has no point masses, as

illustrated below.

Figure 2.3 shows kernel density estimates of the spectral density h from the logistic, Hüsler–
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Figure 2.2 – Histograms of the pseudo-angles W of the 1’000 largest observations
from pseudo-random samples of size 40’000 from the logistic, Hüsler–Reiss, Dirichlet,
and asymmetric logistic models with Fréchet margins. The solid orange lines show the
spectral density function and orange dots show point masses of the spectral distribution.
The solid green lines show the spectral density fitted by maximum likelihood.
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Reiss, Dirichlet, and asymmetric logistic distributions with Fréchet margins based on pseudo-

random samples. Each kernel density estimator is based on n = 1′000 observed pseudo-angles

of ‘large’ observations for several choices of high thresholds using a beta kernel with bandwidth

of n−1/2 ≈ 0.0316, which lead to kernel estimates with a good trade-off between smoothness

and adaptability to the data. These estimators are unlikely to be valid spectral distributions,

as there is no constraint in the estimation to ensure that they satisfy the mean constraint

(2.1). The distribution with the most striking difference between the spectral distribution

and the kernel density estimates is the asymmetric logistic, due to the point masses at 0 and

1. But despite the large number of observations used in the estimation, differences, though

less blatant, are also present for the three other distributions, which don’t have point masses.

These differences are not exclusively due to sampling effects but are repeatedly present in

simulations and simply illustrate the fact that the angular distribution of ‘large’ observations

can be quite different from the spectral distribution, though the former converges to the latter

as the threshold used to select ‘large’ observations tends to infinity. Obviously, the choice of

the threshold level entails a bias-variance trade-off, but the bias might be much larger than

intuition may suggest, even in ideal (and maybe unrealistic) situations where the sample size

is very large, allowing one to choose a quite high threshold z. However, in applications where

only hundreds or a few thousands of observations are available, one might be forced to use

lower thresholds in order to have a reasonable number of data points for inference.

To summarize, the above examples show that the distribution of pseudo-angles of ‘large’

observations can differ significantly from the spectral distribution when the latter is asym-

metric, has point masses at 0 or 1, or has weak extremal dependence, which can then yield

significantly biased estimates.

2.3 Angular distribution of excesses

In this section, we derive a characterization of the angular distribution of excesses and illustrate

it with some examples.

The angular distribution of excesses for z > 0 corresponds to the distribution of pseudo-

angles of observations larger than z, that is the distribution of W | R > z. Let Hz denote the

angular distribution of excesses associated to the spectral distributionH for some z > 0. Let Hz

denote its CDF and hz its generalized PDF. Recall that the spectral distribution H has support

[0,1], while the angular distribution of excesses Hz has support (0,1), since W = X /(X +Y )

and X ,Y > 0.

2.3.1 Characterisation of the angular distribution of excesses

The following result states that a bivariate extreme value distribution G has a PDF if and only if

its associated spectral distribution H has no point mass in (0,1).

Proposition 2.1. A distribution G ∈G2 if and only if its associated spectral distribution H ∈H2.
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ĥ(0.99)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Hüsler–Reiss
α= 2

w

P
D

F

h
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Figure 2.3 – Kernel density estimates of the spectral density h from the logistic, Hüsler–
Reiss, Dirichlet, and asymmetric logistic models with Fréchet margins based on the
largest n = 1′000 observations from pseudo-random samples of size N = n/(1−p) for
p = 0.8,0.9,0.95,0.975,0.99.
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2.3. Angular distribution of excesses

Proof. Suppose that H ∈H2. By definition H has no point mass in (0,1). Denote potential

point masses at 0 and 1 by δ0 = H({0}) and δ1 = H({1}) respectively. Then the exponent

function is

V (x, y) = 2
∫

t∈[0,1]
max

(
t

x
,

1− t

y

)
dH(t )

= 2

(
δ0

y
+ δ1

x

)
+2

∫
t∈(0,1)

max

(
t

x
,

1− t

y

)
dH(t )

= 2

(
δ0

y
+ δ1

x

)
+2

∫ 1

0
max

(
t

x
,

1− t

y

)
h̃(t )dt

= 2

(
δ0

y
+ δ1

x

)
+2

∫ x/(x+y)

0

t

x
h̃(t )dt +2

∫ 1

x/(x+y)

1− t

y
h̃(t )dt , x, y > 0.

Clearly, the exponent function is differentiable for all x, y > 0, and so is the CDF G(x, y) =
exp{−V (x, y)}, x, y > 0. Thus, G ∈G2.

Now, suppose that H ∉H2, so H has at least one point mass in (0,1) and potential point

masses at 0 and 1. Let a1, . . . , an be the locations of the point masses in (0,1), and denote the

generalized density function of H by

h(t ) = H({0})δ(t )+H({1})δ(t −1)+
n∑

i=1
H({ai })δ(t −ai )+ b̃(t ), 0 ≤ t ≤ 1,

where δ(·) denotes the Dirac delta function, and b̃(t ) = d/dt H(t ) on (0,1) \ {a1, . . . , an} and is

extended by continuity at 0, a1, . . . , an , and 1. Then the exponent function is

V (x, y) = 2
∫

t∈(0,1)
max

(
t

x
,

1− t

y

)
dH(t )

= 2

(
H({0})

y
+ H({1})

x

)
+2

n∑
i=1

H({ai })max

(
ai

x
,

1−ai

y

)
+2

{
1

y

∫ x/(x+y)

0
(1− t )h(t )d t + 1

x

∫ 1

x/(x+y)
th(t )d t

}
.

Clearly, the exponent function is not differentiable everywhere for x, y > 0 due to the terms with

maxima. In fact, the set where V is not differentiable is
{
(x, y) : x/(x + y) ∈ {a1, . . . , an}

}
, since V

is not differentiable when ai /x = (1−ai )/y for i = 1, . . . ,n. So, the CDF G(x, y) = exp{−V (x, y)},

x, y > 0 is not differentiable (everywhere). Thus, G ∉G2.

In the following and unless stated otherwise, spectral distributions H are assumed to be

01-continuous. This set of spectral distributions is quite broad, since by Proposition 2.1 the set

of 01-continuous spectral distributions corresponds to the set of all bivariate extreme value

distributions G having a differentiable CDF.

The following result provides a characterization of the angular distribution of excesses Hz ,

that is the marginal distribution of the pseudo-angle W conditioned on the event that the
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Chapter 2. Spectral distributions and the angular distribution of excesses

pseudo-radius R is larger than some finite threshold z > 0.

Theorem 2.1 (Angular distribution of excesses). Let (X ,Y ) be a bivariate random vector having

distribution G ∈ G2, and let H ∈ H2 be the spectral distribution associated with G having

generalized density function

h(t ) = δ0δ(t )+ h̃(t )+δ1δ(t −1), 0 ≤ t ≤ 1,

as in equation (2.2).

Then the density function of the angular distribution Hz of excesses for a finite z > 0 is

hz (w) = f̃z (w)∫ 1
0 f̃z (t )dt

, 0 < w < 1,

where

f̃z (w) = 2h̃(w)

B(w)

{
1−e−B(w)/z}+ 4B0(w)B1(w)

B(w)2w2(1−w)2

{
1−e−B(w)/z − B(w)

z
e−B(w)/z

}
, (2.5)

and

B0(w) = δ0 +
∫ w

0
(1− t )h̃(t )dt , (2.6)

B1(w) = δ1 +
∫ 1

w
t h̃(t )dt , (2.7)

B(w) = 2

{
B0(w)

1−w
+ B1(w)

w

}
. (2.8)

Proof. As usual, let R = X +Y and W = X /R denote the pseudo-radius and the pseudo-angle.

First, we determine the joint density of (R,W ), and then we compute hz , the marginal density

of W conditioned on the event R > z.

From the spectral representation theorem (Theorem 1.9), the joint distribution function of

(X ,Y ) can be written as

G(x, y) = exp
{−V (x, y)

}
, x, y > 0,

where

V (x, y) = 2
∫ 1

0
max

(
t

x
,

1− t

y

)
dH(t ).
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2.3. Angular distribution of excesses

Here t/x < (1− t )/y when t < x/(x + y), so the exponent measure can be written as

V (x, y) = 2

{∫ x/(x+y)

0

1− t

y
dH(t )+

∫ 1

x/(x+y)

t

x
dH(t )

}
= 2

[
1

y

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
+ 1

x

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}]
.

The CDF G is differentiable since G ∈G2. The joint PDF of (X ,Y ) is

g (x, y) = {
Vx (x, y)Vy (x, y)−Vx y (x, y)

}
exp

{−V (x, y)
}

, x, y > 0,

where

Vx (x, y) = ∂

∂x
V (x, y) =− 2

x2

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
,

Vy (x, y) = ∂

∂y
V (x, y) =− 2

y2

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
,

Vx y (x, y) = ∂2

∂x∂y
V (x, y) =− 2

(x + y)3 h̃

(
x

x + y

)
.

Derivations of expressions for Vx (x, y), Vy (x, y), and Vx,y (x, y) are provided in Appendix A.1.

Consider the change of variables r = u1(x, y) = x+y , and w = u2(x, y) = x/(x+y), which has

Jacobian J (x, y) = (x + y)−1. The corresponding inverse transformations are x = v1(r, w) = r w ,

and y = v2(r, w) = r (1−w). Thus, the joint density function of (R,W ) is

fR,W (r, w) = gX ,Y (x, y)×
∣∣J (x, y)

∣∣−1
∣∣∣

x=r w, y=r (1−w)

=
[

2

x2

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
× 2

y2

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
+ 2

(x + y)3 h̃

(
x

x + y

)]
× exp

{
−2

∫ 1

0
max

(
t

x
,

1− t

y

)
dH(t )

}
× (x + y)

∣∣∣∣
x=r w, y=r (1−w)

=
[

4

r 4w2(1−w)2

{
δ1 +

∫ 1

w
t h̃(t )dt

}
×

{
δ0 +

∫ w

0
(1− t )h̃(t )dt

}
+ 2h̃(w)

r 3

]
×exp

{
−2

r

∫ 1

0
max

(
t

w
,

1− t

1−w

)
dH(t )

}
× r

=
[

4

r 4w2(1−w)2

{
δ1 +

∫ 1

w
t h̃(t )dt

}
×

{
δ0 +

∫ w

0
(1− t )h̃(t )dt

}
+ 2h̃(w)

r 3

]
×exp

[
−2

r

{
δ0

1−w
+

∫ w

0

1− t

1−w
h̃(t )dt + δ1

w
+

∫ 1

w

t

w
h̃(t )dt

}]
, r > 0, 0 < w < 1.

Let B0(w) = δ0 +
∫ w

0 (1− t)h̃(t)dt , B1(w) = δ1 +
∫ 1

w t h̃(t)dt , and B(w) = 2{B0(w)/(1− w)+
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B1(w)/w}. Then,

fR,W (r, w) =
{

2h̃(w)

r 2 + 4B0(w)B1(w)

r 3w2(1−w)2

}
exp

[
−2

r

{
B0(w)

1−w
+ B1(w)

w

}]
=

{
2h(w)

r 2 + 4B0(w)B1(w)

r 3w2(1−w)2

}
exp

{
−B(w)

r

}
, r > 0, 0 < w < 1.

For a finite value z > 0, the density function for the distribution of excesses corresponding

to the marginal density of W conditioned on the event R > z is

hz (w) = fW |R (w | R > z) = f̃z (w)∫ 1
0 f̃z (t )dt

, 0 < w < 1,

where f̃z (w) = ∫ ∞
z fR,W (r, w)dr .

Recall that the PDF and the CDF of the inverse gamma distribution with shape parameter

α> 0 and rate parameter β> 0 are respectively

f (x;α,β) = βα

Γ(α)
x−α−1 exp

(
−β

x

)
, F (x;α,β) =

Γ
(
α, βx

)
Γ(α)

, x > 0,

where Γ(·) and Γ(·, ·) respectively denote the gamma function and the upper incomplete

gamma function.

The joint density function fR,W (r, w) can be expressed as the sum of two kernels of the

inverse gamma density function. Hence,

f̃z (w) =
[

2h̃(w)

B(w)
Γ{1,B(w)/r }+ 4B0(w)B1(w)

B(w)2w2(1−w)2Γ{2,B(w)/r }

]∞
z

= 2h̃(w)

B(w)
γ{1,B(w)/z}+ 4B0(w)B1(w)

B(w)2w2(1−w)2γ{2,B(w)/z}

= 2h̃(w)

B(w)

{
1−e−B(w)/z}+ 4B0(w)B1(w)

B(w)2w2(1−w)2

{
1−e−B(w)/z − B(w)

z
e−B(w)/z

}
,

where γ(·, ·) denotes the lower incomplete gamma function.

The PDF hz is the theoretical PDF of pseudo-angles of observations having their pseudo-

radius exceeding the threshold z > 0 when the observations are i.i.d. and come from a bivariate

extreme-value distribution; there is no asymptotic approximation.

Recall that the support of the spectral distribution H is [0,1], whilst the support of the

angular distribution of excesses Hz is (0,1). The following result shows that the density

function hz converges pointwise and up to a factor to the spectral density h when z →∞.
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2.3. Angular distribution of excesses

Proposition 2.2. Under the assumptions of Theorem 2.1,

lim
z→∞hz (w) = h̃(w)

1−δ0 −δ1
, 0 < w < 1.

Proof. A second-order expansion of f̃z (w) (see equation (2.5)) for w ∈ (0,1) when z > 0 is large

yields

f̃z (w) = 2h̃(w)

B(w)

[
1−

{
1− B(w)

z
+ B(w)2

2z2 +O
(
z−3)}]

+ 4A(w)B(w)

B(w)2w2(1−w)2

×
[

1−
{

1− B(w)

z
+ B(w)2

2z2 +O
(
z−3)}− B(w)

z

{
1− B(w)

z
+O

(
z−2)}]

= 1

z
2h̃(w)+ 1

z2

{
−B(w)h̃(w)+ 2A(w)B(w)

w2(1−w)2

}
+O

(
z−3) ,

and thus

lim
z→∞hz (w) = lim

z→∞

h̃(w)+ 1
2z

{
−B(w)h̃(w)+ 2A(w)B(w)

w 2(1−w)2

}
+O

(
z−2

)
∫ 1

0

[
h̃(t )+ 1

2z

{
−B(t )h̃(t )+ 2A(t )B(t )

t 2(1−t )2

}
+O

(
z−2

)]
dt

.

Noting that the integrand converges uniformly to h̃(t ) as z →∞, one can interchange the limit

and the integral. Thus,

lim
z→∞hz (w) = h̃(w)∫ 1

0 h̃(t )dt
= h̃(w)

1−δ0 −δ1
, 0 < w < 1.

Proposition 2.2 shows that in the limit the ‘shape’ of the PDF hz is the same as the ‘shape’

of the PDF h on the open interval (0,1), and the two are equivalent if and only if the spectral

distribution doesn’t have point masses. But if the spectral distribution has point masses at 0 or

1, then the two PDFs are proportional up to a factor 1−δ0 −δ1. The consequence of this for

inference is that there is no hope recovering the value of spectral distribution’s point masses

at 0 and 1 directly from the estimated spectral distribution on (0,1) and without additional

assumptions, since this would imply solving a system with two unknowns (δ0 and δ1) but only

one equation (the mean constraint).

2.3.2 Properties of B0 and B1

The functions B0 and B1 are defined in terms of integrals involving the generalized density of

the spectral distribution H. In applications the computation of these functions might require

numerical integration, which can be slow and unstable if the (generalized) spectral density

explodes near 0 or 1, as is the case for example for the logistic distribution with dependence
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Chapter 2. Spectral distributions and the angular distribution of excesses

parameter θ > 0.5. The following result provides expressions that link B0, B1, and B with the

Pickands dependence function and its right-hand derivative, as well as the CDF of the spectral

distribution. These expressions are particularly useful in numerical computations when the

Pickands dependence function is available in an analytic form, which is the case for many

common parametric models.

Lemma 2.1. Let functions B1, B2, and B be as defined in equations (2.6) to (2.8). Then

B0(w) = 1

2

{
A(w)+ (1−w)A′(w)

}
, 0 < w < 1,

B1(w) = 1

2

{
A(w)−w A′(w)

}
, 0 < w < 1,

B(w) = A(w)

w(1−w)
, 0 < w < 1,

H([0, w]) = 1

2
+B0(w)−B1(w), 0 < w < 1,

where A denotes the Pickands dependence function and A′ is the right-hand derivative of A.

Proof. First, note that equation (1.14) gives

H((0, w)) = H([0, w])−δ0 =
1

2

{
1+ A′(w)

}−δ0, 0 ≤ w < 1. (2.9)

By the definitions of B0 (equation (2.6)) and H , we have

B0(w) = δ0 +
∫ w

0
(1− t )h̃(t )dt = H([0, w])−

∫ w

0
t h̃(t )dt , 0 < w < 1.

Integrating by parts and using equation (2.9) yields∫ w

0
t h̃(t )dt = w H((0, w))−

∫ w

0
H((0, t ))dt

= 1

2
w

{
1+ A′(w)

}−δ0w −
∫ w

0

[
1

2

{
1+ A′(t )

}−δ0

]
dt

= 1

2

{
w A′(w)− A(w)+1

}
.

Using equation (1.14) yields

B0(w) = 1

2

{
1+ A′(w)

}− 1

2

{
w A′(w)− A(w)+1

}
= 1

2

{
A(w)+ (1−w)A′(w)

}
, 0 < w < 1. (2.10)
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From the definition of B1 (equation (2.7)) and integrating by parts, we have

B1(w) = δ1 +
∫ 1

w
t h̃(t )dt

= δ1 +H((0,1))−w H((0, w))−
∫ 1

w
H((0, t ))dt , 0 < w < 1.

Since H((0,1)) = 1−δ0 −δ1, and using equation (2.9), we have

B1(w) = 1−δ0 −
1

2
w

{
1+ A′(w)

}+δ0w −
∫ 1

w

[
1

2

{
1+ A′(t )

}−δ0

]
dt

= 1− 1

2
w

{
1+ A′(w)

}− 1

2
{1+ A(1)−w − A(w)}

= 1

2

{
A(w)−w A′(w)

}
, 0 < w < 1. (2.11)

By the definition of B (equation (2.8)), and using equations (2.10) and (2.11), we have

B(w) = 2

{
B0(w)

1−w
+ B1(w)

w

}
= A(w)+ (1−w)A′(w)

1−w
+ A(w)−w A′(w)

w

= A(w)

w(1−w)
, 0 < w < 1.

Consider the expression for H . Using equations (1.14), (2.10) and (2.11), we have

1

2
+B0(w)−B1(w) = 1

2

{
1+ A′(w)

}= H([0, w]), 0 < w < 1.

2.3.3 Examples

2.3.3.1 Independence

Recall that the spectral distribution associated with indepencence has point masses δ0 = δ1 =
1/2, and no mass on the interior of (0,1), that is, h̃(w) ≡ 0. So, the generalized PDF of the

spectral distribution is

h(w) = 1

2
{δ(w)+δ(w −1)}, 0 ≤ w ≤ 1.

From Theorem 2.1, we have

B0(w) = B1(w) = 1

2
, B(w) = 1

w(1−w)
, 0 < w < 1,
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and

f̃z (w) = 1−e−B(w)/z − B(w)

z
e−B(w)/z = γ

{
2,

B(w)

z

}
, 0 < w < 1,

where γ(·, ·) denotes the lower incomplete Gamma function, so the PDF of the angular distri-

bution of excesses is

hz (w) = γ
[
2,{zw(1−w)}−1

]∫ 1
0 γ

[
2,{zt (1− t )}−1

]
dt

, 0 < w < 1. (2.12)

Figure 2.4 shows the theoretical angular distribution of excesses in equation (2.12) for

threshold levels corresponding to the approximate p-quantiles of R with p = 0.5,0.75,0.9,0.95,

and histograms of pseudo-angles W of the largest n = 5′000 observations from bivariate

pseudo-random samples of independent unit Fréchet random variables of sizes N = n/(1−
p). These histograms and the theoretical PDFs show how the point masses of the spectral

distribution spread mainly near the edges of the support for high thresholds z to the entire

support as the threshold lowers.

2.3.3.2 Some parametric models

Theorem 2.1 allows us to derive the expression for the PDF of the angular distribution of

excesses from the spectral distribution. For most parametric models the expression for hz is

intractable and involves an integral which needs to be computed numerically. Figure 2.5 shows

the PDF of the spectral distribution h and the theoretical angular distribution of excesses hz

at threshold levels z corresponding to the approximate p-quantiles of the pseudo-radius R for

p = 0.8,0.9,0.95,0.975,0.99 for the logistic, Hüsler–Reiss, Dirichlet, and asymmetric logistic

models. The density of the angular distribution of excesses of the logistic and Hüsler–Reiss

models appears to be quite close to the spectral density when the extremal dependence of

the model is somewhat strong, that is when the PDF has a bell shape (α< 0.5 for the logistic

model, and, say, α < 1.1 for the Hüsler–Reiss model). In this case, direct inference on the

spectral distribution using pseudo-angles of ‘large’ observations instead of using the angular

distribution of excesses is likely to yield nearly unbiased estimates even with low thresholds.

In the other cases, the angular distribution of excesses increasingly differs from the spectral

distribution as the threshold level lowers, which can yield strongly biased inference even with

high thresholds, as already illustrated in Section 2.2.

2.4 Parametric inference using the angular distribution of excesses

In this section, we describe how to perform maximum likelihood inference on the spectral

distribution using the angular distribution of excesses, and we compare this approach with

two classical parametric approaches.
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Figure 2.4 – Histograms of the pseudo-angle W of the largest n = 5′000 observations
from bivariate pseudo-random samples of independent unit Fréchet random variables
of size N = n/(1−p) for p = 0.5,0.75,0.9,0.95. The solid blue lines show the PDF of the
theoretical angular distribution of excesses for threshold levels z approximately equal
to the p-quantiles of the pseudo-radius R. The solid orange lines show the generalized
density function of the spectral distribution corresponding to independence with point
masses shown as dots.
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Figure 2.5 – PDF of the spectral distribution h and the angular distribution of excesses
hz at threshold levels z corresponding to the approximate p-quantiles of the pseudo-
radius R for p = 0.8,0.9,0.95,0.975,0.99 for the logistic, Hüsler–Reiss, Dirichlet, and
asymmetric logistic models.
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As illustrated in Section 2.2, parametric inference on the spectral distribution can be strongly

biased when done directly with the PDF of the spectral distribution using observed pseudo-

angles of ‘large’ observations. This bias is caused by the fact that the angular distribution of

excesses, which is the distribution corresponding to the observed pseudo-angles of ‘large’

observations, can differ significantly from the spectral distribution, especially for moderately

low thresholds sometimes required in applications due to the scarcity of available data. So,

in order to perform unbiased or at least bias-reduced inference, it seems natural to use the

angular distribution of excesses associated with the spectral distribution.

Let Gθ be a parametric family of bivariate extreme value distribution with Fréchet margins

indexed by a parameter θ ∈Θ⊂ Rd . Let Hθ be the spectral distribution associated with Gθ.

Let H(·;θ) and h(·;θ) respectively denote the CDF and the PDF of the spectral distribution,

and let hz (·;θ) denote the PDF of the angular distribution of excesses associated with Hθ for a

threshold z > 0 as in Theorem 2.1.

Let (x1, y1), . . . , (xN , yN ) be a sample from Gθ. Expressed in pseudo-polar coordinates, these

observations are (ri , wi ) where ri = xi + yi and wi = xi /ri for i = 1, . . . , N . Let z > 0 be a large

threshold, and let n be the number of ‘large’ observations such that ri > z. Without loss of

generality and to simplify notation, suppose that the observations are ordered in decreasing

order of pseudo-radius, that is r1 ≥ ·· · ≥ rN . So, the set of pseudo-angles for ‘large’ observations

is {w1, . . . , wn}.

Maximum likelihood estimation of the spectral distribution using the angular distribution

of excesses is straightforward, at least conceptually, since hz is expressed in terms of the

spectral density h (see Theorem 2.1). The likelihood function is based on the PDF of the

angular distribution of excesses hz , and the corresponding maximum likelihood estimate of θ

is

θ̂p = argmax
θ∈Θ

n∑
j=1

loghz (w j ;θ).

In the numerical simulations presented below we compare the ‘asymptotic’, ‘penultimate’,

and ‘censored’ approaches to maximum likelihood inference on the spectral distribution. The

‘asymptotic’ approach corresponds to the natural approach described in Section 2.2 where

maximum likelihood inference is done with the PDF of the spectral distribution h using the

pseudo-angles of the n observations with pseudo-radius larger than a given threshold z, that is

{w1, . . . , wn}. The corresponding maximum likelihood estimate of θ is given in Equation (2.4).

The ‘penultimate’ approach corresponds to maximum likelihood inference based on the

angular distribution of excesses described above using {w1, . . . , wn}. The ‘censored’ approach

corresponds to the bivariate peaks over threshold method described in Section 1.2.2. The

thresholds zx and zy have been chosen to be equal and such that there are n observations

where at least one of the coordinates is not censored in the likelihood, that is
∑N

j=1 I (x j <
zx )I (y j < zy ) = N−n. In the ‘asymptotic’ and ‘penultimate’ approaches, the likelihood is based
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on only the pseudo-angles of the n largest observations, whilst in the ‘censored’ approach the

likelihood is based on the N observations in Euclidean coordinates, of which n have at most

one censored coordinate in the likelihood.

These approaches are compared for several parametric models using the mean integrated

squared error

MISE(·; H ,θ) = E

[∫ 1

0
{H(w ; ·)−H(w ;θ)}2 dw

]
,

which is estimated empirically from a set of B estimates of θ, each obtained from a Monte

Carlo pseudo-random sample.

Simulation results for data simulated from max-stable models and a non-max-stable model

are respectively presented in Section 2.4.1 and Section 2.4.2. Computations were done using R
(R Core Team, 2017). The data for the max-stable models were generated using the rbvevd
function of the evd package (Stephenson, 2002), and the rCopula of the copula package

(Hofert et al., 2017) was used for non-max-stable model. The fbvpot function of the evd was

used for fitting in the ‘censored’ approach.

The implementation of the ‘penultimate’ approach can be tricky and requires some care.

The evaluation of the PDF hz requires numerical integration of the functions B0, B1, and

f̃z , which can be slow and unstable, for example when the spectral distribution explodes to

infinity near the edges of the support. The alternative expressions for B0 and B1 provided in

Lemma 2.1 allow us to avoid some of the numerical integrations. In addition, the numerical

optimization of the likelihood function can be slow to converge, depending on the algorithm

used. Improving the efficiency of the likelihood optimization requires some testing and

potential transformations of the optimization problem. We found that the Brent algorithm of

the optim function worked best when the model has one parameter, and the Nelder–Mead

algorithm worked best when the model had two parameters or more.

2.4.1 Data from max-stable models

This section presents the simulation results to compare the ‘asymptotic’, ‘penultimate’, and

‘censored’ approaches to maximum likelihood inference on the spectral distribution in the

case where the data are simulated from max-stable models.

Max-stable models, or more specifically the PDF of their associated spectral distributions,

might be symmetric or asymmetric, they might have point masses or no point masses, and

they can have various levels of extremal dependence. In order to cover a large spectrum

of the possible cases, we used the logistic model (Section 1.2.1.5), the Hüsler–Reiss model

(Section 1.2.1.5), the Dirichlet model (Section 1.2.1.5), and the asymmetric logistic model

(Section 1.2.1.5), and for each of them we selected three sets of parameters. Table 2.1 lists

the selected sets of parameters for each model and provides their point masses, their level
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Table 2.1 – List of max-stable models and parameter sets considered in the simulation
study comparing several parametric inference approaches on the spectral distribution.
The characteristics or each model are the point masses at 0 (δ0) and 1 (δ1), the tail
dependence index (χ), and the coefficient of extremal asymmetry (ϕ). The presence of
point masses (PM) in the model is identified with a checkmark. The level of extremal
dependence is marked as weak (W) if χ≤ 0.35, strong (S) if χ> 0.65, and moderate (M)
otherwise. The level of extremal asymmetry is marked as absent (A) if ϕ= 0, strong (G)
if |ϕ| > 0.5, and moderate (M) otherwise.

Extr. Dep. Extr. Asym.

Model δ0 δ1 χ ϕ PM W M S A M S

Logistic
α= 0.3 0 0 0.77 0 – – – X X – –
α= 0.55 0 0 0.54 0 – – X – X – –
α= 0.8 0 0 0.26 0 – X – – X – –

Hüsler–Reiss
α= 0.5 0 0 0.80 0 – – – X X – –
α= 1 0 0 0.62 0 – – X – X – –
α= 2 0 0 0.32 0 – X – – X – –

Dirichlet
α= 3, β= 3 0 0 0.69 0 – – – X X – –
α= 3, β= 0.2 0 0 0.33 -0.29 – X – – – X –
α= 0.2, β= 0.2 0 0 0.20 0 – X – – X – –

Asymmetric logistic
α= 0.2,ψ= (0.8, 0.8) 0.10 0.10 0.68 0 X – – X X – –
α= 0.4,ψ= (0.7, 0.5) 0.25 0.15 0.39 0.31 X – X – – X –
α= 0.6,ψ= (0.6, 0.2) 0.40 0.20 0.14 0.52 X X – – – – X

of extremal dependence as measured by the tail dependence index χ (see Section 1.2.4), and

their level of extremal asymmetry as measured by the coefficient of extremal asymmetry ϕ

(see Section 3.2.1).

For each distribution and each parameter set we generated B = 100 pseudo-random sam-

ples of size N = n/(1−p) for n = 100,1000 and p = 0.9,0.95,0.99. Then, for each sample we

fitted the parametric model corresponding to the model from which the data were generated

using the ‘asymptotic’, ‘penultimate’, and ‘censored’ approaches, allowing us to compare

their performance at estimating the true underlying parameter values. The mean integrated

squared errors of these fits are shown in Tables 2.2 to 2.5. Boxplots of the integrated squared

errors of each fit and the parameter estimates are shown in Appendix B.

The results for the logistic model are shown in Table 2.2 and Figures B.1 to B.6. The ‘penulti-

mate’ approach outperforms the ‘censored’ approach in all cases and for all values of n and

p. The ‘penultimate’ and ‘asymptotic’ approaches perform similarly in the first case (α= 0.3)
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Table 2.2 – Mean integrated squared error (×1000) of B = 100 maximum likelihood
estimates of the logistic model (standard deviation in parenthesis) for data simulated
from the logistic model for three parameter choices using the ‘asymptotic’ (A), ‘penul-
timate’ (P), and ‘censored’ (C) approaches for several choices of threshold level p and
number of excesses n.

Logistic

n p Approach α= 0.3 α= 0.55 α= 0.8

100 0.90 A 1.4 (1.7) 3.4 (3.9) 57.3 (14.1)
100 0.90 P 1.5 (1.9) 2.1 (2.6) 4.1 (6.8)
100 0.90 C 5.8 (18.8) 21.5 (80.0) 12.0 (18.8)

100 0.95 A 1.2 (1.8) 2.6 (3.5) 37.6 (11.2)
100 0.95 P 1.3 (1.8) 2.2 (3.2) 2.9 (4.3)
100 0.95 C 9.3 (27.0) 21.9 (76.0) 26.5 (105.6)

100 0.99 A 1.1 (1.6) 2.0 (3.2) 13.7 (5.9)
100 0.99 P 1.1 (1.6) 2.0 (3.0) 1.7 (2.2)
100 0.99 C 22.9 (42.1) 42.0 (67.0) 31.5 (67.0)

1000 0.90 A 0.2 (0.2) 2.9 (1.1) 57.7 (5.0)
1000 0.90 P 0.1 (0.2) 0.2 (0.2) 0.5 (0.7)
1000 0.90 C 0.3 (0.4) 0.7 (1.0) 0.6 (1.0)

1000 0.95 A 0.1 (0.2) 1.3 (0.8) 36.5 (3.5)
1000 0.95 P 0.1 (0.2) 0.2 (0.2) 0.3 (0.4)
1000 0.95 C 0.3 (0.5) 0.7 (0.9) 1.4 (5.4)

1000 0.99 A 0.1 (0.2) 0.3 (0.6) 13.1 (2.1)
1000 0.99 P 0.1 (0.2) 0.2 (0.5) 0.2 (0.3)
1000 0.99 C 10.0 (34.2) 19.1 (87.8) 13.5 (54.1)

where the extremal dependence is strong, whilst the ‘penultimate’ approach outperforms the

‘asymptotic’ approach in the second case (α = 0.55, mild extremal dependence) when the

threshold is low (p = 0.9 and p = 0.95), and in the third case (α= 0.8, low extremal dependence)

for all thresholds. The bias of the parameter estimators with the ‘penultimate’ approach is

close to zero for all values of p and n, whilst the bias of the parameter estimators with the

‘asymptotic’ approach decreases as the threshold level increases. Increasing the sample size

improves the performance of all approaches.

The results for the Hüsler–Reiss model are shown in Table 2.3 and Figures B.7 to B.12.

Overall, the comparative performances of the three approaches are similar to those for the

logistic model. The ‘penultimate’ approach outperforms the ‘censored’ approach in all cases

and for all values of n and p. The ‘penultimate’ and ‘asymptotic’ approaches perform similarly

in the first case (α= 0.5) where the extremal dependence is strong, whilst the ‘penultimate’

approach outperforms the ‘asymptotic’ approach in the second case (α= 0.1, mild extremal

dependence) when the threshold is low (p = 0.9 and p = 0.95), and in the third case (α= 2,
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Table 2.3 – Mean integrated squared error (×1000) of B = 100 maximum likelihood
estimates of the Hüsler–Reiss model (standard deviation in parenthesis) for data simu-
lated from the Hüsler–Reiss model for three parameter choices using the ‘asymptotic’
(A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold
level p and number of excesses n.

Hüsler–Reiss

n p Approach α= 0.5 α= 1 α= 2

100 0.90 A 0.8 (1.0) 1.6 (2.1) 19.8 (8.6)
100 0.90 P 0.8 (1.0) 1.4 (2.0) 2.5 (4.7)
100 0.90 C 5.9 (17.6) 16.0 (58.8) 16.6 (32.5)

100 0.95 A 0.9 (1.3) 1.4 (1.9) 8.9 (6.0)
100 0.95 P 0.9 (1.3) 1.5 (2.0) 2.1 (2.8)
100 0.95 C 7.0 (19.4) 15.1 (53.3) 26.0 (87.9)

100 0.99 A 0.9 (1.2) 1.5 (2.0) 2.5 (3.4)
100 0.99 P 0.9 (1.2) 1.5 (2.0) 1.7 (2.6)
100 0.99 C 20.1 (33.6) 34.9 (82.5) 53.9 (108.3)

1000 0.90 A 0.1 (0.2) 0.6 (0.6) 18.4 (3.2)
1000 0.90 P 0.1 (0.1) 0.2 (0.3) 0.3 (0.5)
1000 0.90 C 1.1 (8.9) 0.5 (0.6) 0.9 (1.3)

1000 0.95 A 0.1 (0.1) 0.3 (0.4) 8.5 (1.9)
1000 0.95 P 0.1 (0.1) 0.2 (0.2) 0.2 (0.3)
1000 0.95 C 2.1 (12.5) 4.2 (36.6) 1.8 (7.9)

1000 0.99 A 0.1 (0.1) 0.1 (0.2) 1.0 (0.6)
1000 0.99 P 0.1 (0.1) 0.1 (0.2) 0.1 (0.2)
1000 0.99 C 8.4 (25.6) 15.5 (72.1) 8.5 (19.1)

low extremal dependence) for all thresholds. The bias of the parameter estimators with the

‘penultimate’ approach is close to zero for all values of p and n, whilst the bias of the parameter

estimators with the ‘asymptotic’ approach decreases as the threshold increases (most visibly

when n is large). Increasing the sample size improves the performance of all approaches.

The results for the Dirichlet model are shown in Table 2.4 and Figures B.13 to B.21. The

‘penultimate’ approach outperforms the ‘censored’ approach in all cases and for all values of

n and p. The ‘penultimate’ and ‘asymptotic’ approaches perform similarly in the first case

(α= 3 and β= 3) where the extremal dependence is strong, whilst the ‘penultimate’ approach

outperforms the ‘asymptotic’ approach in the second case (α= 3 and β= 0.2, asymmetry) and

in the third case (α= 0.2 and β= 0.2, low extremal dependence) for all thresholds. The bias of

the parameter estimators with the ‘penultimate’ approach is close to zero for all values of p

and n, whilst the bias of the parameter estimators with the ‘asymptotic’ approach decreases

as the threshold level increases. Increasing the sample size improves the performance of all

approaches.
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Table 2.4 – Mean integrated squared error (×1000) of B = 100 maximum likelihood
estimates of the Dirichlet model (standard deviation in parenthesis) for data simu-
lated from the Dirichlet model for three parameter choices using the ‘asymptotic’ (A),
‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold level p
and number of excesses n.

Dirichlet

n p Approach α= 3, β= 3 α= 3, β= 0.2 α= 0.2, β= 0.2

100 0.90 A 2.1 (2.0) 35.6 (10.9) 87.1 (15.0)
100 0.90 P 2.2 (2.2) 3.1 (4.1) 6.9 (16.1)
100 0.90 C 11.8 (31.6) 32.0 (118.2) 24.4 (27.3)

100 0.95 A 2.2 (2.2) 21.7 (8.5) 56.3 (11.4)
100 0.95 P 2.3 (2.2) 2.7 (3.8) 4.4 (4.3)
100 0.95 C 12.4 (32.0) 31.6 (111.3) 28.9 (34.6)

100 0.99 A 1.9 (1.9) 8.8 (5.2) 23.1 (6.9)
100 0.99 P 1.9 (1.9) 2.0 (2.6) 2.4 (2.5)
100 0.99 C 41.9 (56.2) 71.5 (117.7) 51.7 (66.2)

1000 0.90 A 0.4 (0.4) 34.1 (3.8) 85.2 (5.0)
1000 0.90 P 0.2 (0.2) 0.4 (0.5) 1.7 (10.2)
1000 0.90 C 1.0 (4.8) 1.3 (1.5) 1.6 (1.6)

1000 0.95 A 0.2 (0.3) 21.8 (2.8) 56.8 (4.0)
1000 0.95 P 0.2 (0.2) 0.3 (0.4) 0.5 (0.6)
1000 0.95 C 1.2 (4.6) 2.1 (7.8) 2.2 (4.2)

1000 0.99 A 0.2 (0.2) 8.0 (1.5) 22.2 (2.1)
1000 0.99 P 0.2 (0.2) 0.2 (0.3) 0.2 (0.2)
1000 0.99 C 21.2 (54.3) 28.7 (84.0) 10.2 (16.9)

The results for the asymmetric logistic model are shown in Table 2.5 and Figures B.22 to B.33.

The ‘penultimate’ approach outperforms both the ‘asymptotic’ and ‘censored’ approaches

in all cases and for all values of n and p. The bias of the parameter estimators with the

‘penultimate’ approach is close to zero for all values of p and n, except for the dependence

parameter in the third case (α = 0.6 and ψ = (0.6,0.2)) when n = 100 and p = 0.9,0.95 (see

Figure B.31). The bias of the dependence parameter estimators with the ‘asymptotic’ approach

increases as the threshold level p increases. The ‘asymptotic’ approach is unable to recover that

the spectral distribution has point masses, as all estimates of the coefficients of asymmetry are

(roughly) equal to 1. Increasing the sample size improves the performance of the ‘penultimate’

and ‘censored’ approaches, but not for the ‘asymptotic’ approach, which remains unchanged.

To summarize, we find that:

• the ‘penultimate’ approach performs better than the ‘censored’ approach in all cases of

the four distributions;

58



2.4. Parametric inference using the angular distribution of excesses

Table 2.5 – Mean integrated squared error (×1000) of B = 100 maximum likelihood
estimates of the asymmetric logistic model (standard deviation in parenthesis) for data
simulated from the asymmetric logistic model for three parameter choices using the
‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of
threshold level p and number of excesses n.

Asymmetric logistic

α= 0.2 α= 0.4 α= 0.6
n p Approach ψ= (0.8, 0.8) ψ= (0.7, 0.5) ψ= (0.6, 0.2)

100 0.90 A 83.7 (22.3) 44.9 (7.2) 144.9 (17.6)
100 0.90 P 6.4 (5.4) 9.1 (8.5) 9.1 (9.2)
100 0.90 C 18.8 (33.9) 26.8 (37.9) 26.7 (27.3)

100 0.95 A 103.4 (30.7) 38.6 (3.7) 107.2 (12.4)
100 0.95 P 6.3 (6.5) 6.1 (5.3) 6.0 (5.2)
100 0.95 C 17.9 (23.8) 35.2 (71.1) 19.4 (13.1)

100 0.99 A 163.0 (38.2) 42.4 (4.7) 56.6 (9.0)
100 0.99 P 5.0 (4.9) 6.2 (6.9) 3.4 (3.4)
100 0.99 C 31.8 (37.5) 55.1 (82.6) 26.1 (27.1)

1000 0.90 A 82.4 (6.8) 43.8 (2.0) 148.2 (6.1)
1000 0.90 P 0.5 (0.6) 0.8 (0.8) 0.8 (0.7)
1000 0.90 C 2.1 (4.8) 2.5 (3.4) 4.4 (4.7)

1000 0.95 A 103.7 (8.0) 37.3 (0.7) 107.5 (4.6)
1000 0.95 P 0.5 (0.4) 0.6 (0.5) 0.5 (0.7)
1000 0.95 C 1.7 (4.9) 2.1 (2.5) 2.9 (5.4)

1000 0.99 A 156.5 (13.5) 41.5 (1.8) 54.7 (2.7)
1000 0.99 P 0.5 (0.5) 0.6 (0.6) 0.3 (0.4)
1000 0.99 C 16.4 (35.7) 28.3 (91.4) 21.5 (87.4)

• the ‘penultimate’ approach performs better than the ‘asymptotic’ approach when the

spectral distribution has point masses, is asymmetric, or when the extremal dependence

is weak, which corresponds to situations where the angular distribution of excesses

differs from the spectral distribution for high thresholds;

• the ‘penultimate’ approach doesn’t improve much on the ‘asymptotic’ approach when

the spectral distribution is symmetric with no point mass and extremal dependence is

strong, which corresponds to the situation where the angular distribution of excesses

doesn’t differ much different from the spectral distribution for high thresholds;

• the bias of the parameter estimators with the ‘penultimate’ approach is close to zero for

the three threshold levels and the two numbers of excesses;

• the parameter estimators with the ‘asymptotic’ approach are consistently biased, though

the bias decreases as the threshold increases, except for the dependence parameter of
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the asymmetric logistic distribution, whose bias increases as the threshold increases;

• increasing the threshold level (for a fixed number of excesses) improves the performance

of both the ‘penultimate’ and the ‘asymptotic’ approaches by reducing the variance of

the parameter estimates for both approaches and by reducing the bias of parameter

estimators of the ‘asymptotic’ approach (the bias of the ‘penultimate’ approach is colse

to zero), except for the asymmetric logistic model, as mentioned above;

• increasing the threshold level (for a fixed number of excesses) tends to decrease the

performance of the ‘censored’ approach;

• increasing the number of observations (for a fixed threshold level) improves the perfor-

mance of all approaches except the ‘asymptotic’ approach with the asymmetric logistic

model, where the performance is unchanged.

These findings underscore that using the PDF of the spectral distribution to perform direct

inference on the spectral distribution using pseudo-angles of ‘large’ observations yields poor

results when the spectral distribution is asymmetric, when it has point masses, or when the

extremal dependence is low. Using the ‘penultimate’ approach always yields better (or at

least similar) results than the ‘asymptotic’ approach. Another advantage of the ‘penultimate’

approach is that, unlike the ‘asymptotic’ approach, the threshold choice doesn’t involve a bias-

variance trade-off when the data come from a max-stable model, as the angular distribution

of excesses is the exact distribution of the pseudo-angles of observations above a threshold,

whilst the spectral distribution is the asymptotic distribution of pseudo-angles when the

pseudo-radius tends to infinity.

2.4.2 Data from non-max-stable models

In applications, it is unlikely to have data from exactly max-stable models, and the aim of

inference is to estimate the max-stable attractor. This section presents simulation results to

compare the ‘asymptotic’, ‘penultimate’, and ‘censored’ approaches to maximum likelihood

inference on the spectral distribution when the data are simulated from non-max-stable

models.

2.4.2.1 Non-max-stable models

The non-max-stable models considered for the simulation study are: (i) the ‘Joe model’ and (ii)

the ‘asymmetric Joe model’, both having Fréchet margins and their structure of dependence

determined by a copula.

Joe model The Joe model is based on the bivariate Joe/B5 copula (Joe, 2015, Sec. 4.7.1)

CJ(u, v ;θ) = 1−
[

1−
{

1− (1−u)θ
}{

1− (1− v)θ
}]1/θ

, 0 ≤ u, v ≤ 1,
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with parameter θ ≥ 1, transformed to have Fréchet margins. The copula CJ is Archimedean

respectively with generator and inverse generator

ψJ(s;θ) = 1− (
1−e−s)1/θ , s ≥ 0, φJ(t ;θ) =− log

{
1− (1− t )θ

}
, 0 < t ≤ 1.

Genest and Rivest (1989) showed that the max-stable attractor of an Archimedean copula is

also an Archimedean copula and that the Gumbel copula is the only max-stable copula that

is Archimedean, so the only possible attractor of the bivariate Joe/B5 copula is the Gumbel

copula, and its parameter value can be obtained from Theorem 1.8. We have

d

dt

φJ(t ;θ)

φ′
J(t ;θ)

= d

dt

{
1− (1− t )θ

}
log

{
1− (1− t )θ

}
θ(1− t )θ

= 1+ log
{

1− (1− t )θ
}
+ θ−1

θ

{
1− (1− t )θ

} log
{
1− (1− t )θ

}
(1− t )θ

,

and by l’Hôpital’s rule

lim
t↑1

log
{
1− (1− t )θ

}
(1− t )θ

= lim
t↑1

−1

1− (1− t )θ
=−1,

yielding

lim
t↑1

d

dt

φJ(t ;θ)

φ′
J(t ;θ)

= 1

θ
,

so by Theorem 1.8 the bivariate Joe/B5 copula with parameter θ ≥ 1 is attracted by the Gumbel

copula with the same parameter θ. Therefore, the Joe model with parameter θ > 1 is in the

max-domain of attraction of the logistic model with parameter α= 1/θ, since the copula of

the logistic model is the Gumbel copula.

Asymmetric Joe model The ‘asymmetric Joe model’ is based on an asymmetric version of

the Joe copula with Fréchet margins. The asymmetric version of the Joe copula used here is

obtained with the Khoudraji device (see Section 1.2.1.2) mixing the independence copula and

the bivariate Joe/B5 copula. Consider the asymmetric Joe copula

CAJ(u, v ;ψ1,ψ2,θ) = u1−ψ1 v1−ψ2CJ(uψ1 , vψ2 ;θ), 0 ≤ u, v ≤ 1,

where CJ is bivariate Joe/B5 copula with parameter θ ≥ 1, and mixing parameters 0 ≤ψ1,ψ2 ≤ 1.

The Joe/B5 copula is the special case where ψ1 = ψ2 = 1. The max-stable attractor of the

asymmetric Joe copula is the limiting copula of CAJ
(
u1/n , v1/n

)n
as n →∞. We have

CAJ
(
u1/n , v1/n)n = u1−ψ1 v1−ψ2CJ

(
uψ1/n , vψ2/n ;θ

)n
.
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Since the Joe/B5 copula CJ is in the domain of attraction of the Gumbel copula CG with the

same parameter θ, we have

lim
n→∞CAJ

(
u1/n , v1/n)n = u1−ψ1 v1−ψ2CG

(
uψ1 , vψ2 ;θ

)
= u1−ψ1 v1−ψ2 exp

[
−

{
(− logu)θ+ (− log v)θ

}1/θ
]

,

which is the copula of the asymmetric logistic model, so the asymmetric Joe model is in the

max-domain of attraction of the asymmetric logistic model.

2.4.2.2 Simulation study

For each non-max-stable model and each parameter set we generated B = 100 pseudo-random

samples of size N = n/(1−p) for n = 100,1000 and p = 0.9,0.95,0.99. Then, for each sample

we fitted the parametric max-stable attractor of the model from which the data were generated

using the ‘asymptotic’, ‘penultimate’, and ‘censored’ approaches, allowing us to compare their

performance at estimating the parameter values of the max-stable limiting distribution. The

mean integrated squared errors of these fits are shown in Tables 2.6 and 2.7. Boxplots of the

integrated squared errors of each fit and the parameter estimates are shown in Appendix B.

The results for the Joe model are shown in Table 2.6 and Figures B.34 to B.39. The compara-

tive performance of the three approaches varies from one case to the other, but overall the

performance of the ‘asymptotic’ and the ‘penultimate’ approaches improves as the threshold

level p increases, unlike the ‘censored’ approach, for which it deteriorates. In the first case

(θ = 1/0.3), the ‘asymptotic’ approach outperforms the ‘penultimate’ approach for p = 0.9, but

both approaches perform similarly for p = 0.95,0.99, and they both outperform the ‘censored’

approach for all values of n and p. In the second case (θ = 1/0.55), the ‘asymptotic’ approach

performs best for all values of n and p, but the performance of the ‘penultimate’ approach is

comparable to the ‘asymptotic’ for p = 0.99, whilst the ‘censored’ approach doesn’t perform

well for most values of p and n. In the third case (θ = 1/0.8), the ‘penultimate’ approach

performs best and the ‘asymptotic’ approach performs worst. In all cases, increasing the

sample size improves the performance of the three approaches, and, as one would expect,

the bias of the three approaches reduces as the threshold level p increases. The ‘censored’

approach has largest variance, whilst the other two approaches have similar variances.

The results for the asymmetric Joe model are shown in Table 2.7 and Figures B.40 to B.51.

In all cases and for all values of n and p, the ‘penultimate’ approach performs best and the

‘asymptotic’ performs worst. The bias of the parameter estimates with the ‘penultimate’

approach is close to zero for all values of p and n, whilst the bias of the dependence parameter

estimates with the ‘asymptotic’ approach increases as the threshold level p increases. The

‘asymptotic’ approach is unable to recover that the spectral distribution has point masses as

all estimates of the coefficients of asymmetry are (roughly) equal to 1. Increasing the sample

size improves the performance of the ‘penultimate’ estimator, whilst the performance of the
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Table 2.6 – Mean integrated squared error (×1000) of B = 100 maximum likelihood
estimates of the logistic model (standard deviation in parenthesis) for data simulated
from the Joe model for three parameter choices using the ‘asymptotic’ (A), ‘penultimate’
(P), and ‘censored’ (C) approaches for several choices of threshold level p and number
of excesses n.

Joe

n p Approach θ = 1/0.3 θ = 1/0.55 θ = 1/0.8

100 0.90 A 1.4 (2.1) 1.1 (1.6) 44.1 (9.9)
100 0.90 P 1.8 (2.7) 6.2 (7.4) 9.0 (10.1)
100 0.90 C 4.5 (14.5) 11.7 (51.2) 11.9 (18.3)

100 0.95 A 1.8 (2.2) 1.7 (2.6) 27.2 (9.2)
100 0.95 P 1.9 (2.4) 4.0 (4.6) 6.8 (7.6)
100 0.95 C 7.1 (22.9) 13.7 (48.3) 20.0 (92.4)

100 0.99 A 1.1 (1.2) 2.0 (2.8) 10.2 (5.8)
100 0.99 P 1.1 (1.2) 2.6 (3.8) 3.1 (3.3)
100 0.99 C 25.2 (45.2) 37.4 (91.9) 40.6 (103.4)

1000 0.90 A 0.3 (0.3) 0.2 (0.2) 44.5 (3.9)
1000 0.90 P 0.6 (0.5) 3.8 (2.0) 5.6 (3.3)
1000 0.90 C 0.6 (0.7) 1.7 (1.7) 2.0 (2.4)

1000 0.95 A 0.2 (0.2) 0.2 (0.2) 27.4 (3.0)
1000 0.95 P 0.2 (0.3) 1.7 (1.3) 3.0 (2.0)
1000 0.95 C 0.4 (0.6) 0.9 (1.2) 1.3 (1.7)

1000 0.99 A 0.1 (0.2) 0.2 (0.3) 10.0 (2.1)
1000 0.99 P 0.1 (0.2) 0.4 (0.5) 0.9 (0.9)
1000 0.99 C 13.7 (40.1) 16.5 (73.4) 15.8 (77.0)

‘asymptotic’ approach improves or deteriorates depending on the case.

To summarize, we find that:

• the ‘penultimate’ approach performs better than the ‘censored’ approach in nearly all

cases of the two non-max-stable models;

• the ‘penultimate’ approach performs better than the ‘asymptotic’ approach when the

spectral distribution of the max-stable attractor has point masses and is asymmetric;

• the ‘penultimate’ approach doesn’t improve much on the ‘asymptotic’ approach when

the spectral distribution of the max-stable attractor is symmetric with no point mass, and

extremal dependence is strong, which corresponds to the situation where the angular

distribution of excesses doesn’t differ much different from the spectral distribution of

the attractor for high thresholds;
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Table 2.7 – Mean integrated squared error (×1000) of B = 100 maximum likelihood
estimates of the asymmetric logistic model (standard deviation in parenthesis) for
data simulated from the asymmetric Joe model for three parameter choices using the
‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of
threshold level p and number of excesses n.

Asymmetric Joe

θ = 1/0.2 θ = 1/0.4 θ = 1/0.6
n p Approach ψ= (0.8, 0.8) ψ= (0.7, 0.5) ψ= (0.6, 0.2)

100 0.90 A 84.9 (22.3) 45.5 (9.0) 148.2 (20.0)
100 0.90 P 6.5 (5.3) 9.0 (9.0) 7.2 (6.7)
100 0.90 C 20.5 (31.1) 30.5 (70.2) 23.4 (16.1)

100 0.95 A 107.5 (28.2) 38.3 (2.7) 107.0 (15.1)
100 0.95 P 5.5 (4.5) 6.5 (5.0) 6.1 (5.9)
100 0.95 C 22.9 (44.8) 28.4 (47.3) 22.0 (17.6)

100 0.99 A 161.7 (42.4) 42.9 (4.7) 54.0 (7.8)
100 0.99 P 5.3 (5.3) 4.5 (4.1) 2.8 (2.4)
100 0.99 C 26.8 (34.8) 42.0 (56.7) 35.0 (59.9)

1000 0.90 A 84.7 (7.4) 43.0 (1.8) 146.0 (5.5)
1000 0.90 P 0.6 (0.6) 0.9 (0.8) 0.8 (0.6)
1000 0.90 C 3.3 (13.9) 7.2 (53.4) 7.8 (38.3)

1000 0.95 A 103.4 (9.1) 37.2 (0.7) 106.1 (4.3)
1000 0.95 P 0.6 (0.5) 0.8 (0.9) 0.6 (0.6)
1000 0.95 C 2.4 (6.6) 4.1 (14.8) 3.6 (5.0)

1000 0.99 A 156.3 (14.0) 41.6 (1.8) 54.0 (2.7)
1000 0.99 P 0.6 (0.7) 0.7 (0.8) 0.4 (0.4)
1000 0.99 C 25.8 (43.4) 25.3 (78.7) 17.7 (31.3)

• parameter estimators with the ‘penultimate’ approach have some bias for low thresholds

but it is close to zero for large thresholds, unlike those of the ‘asymptotic’ and ‘censored’

approaches which might be biased for all considered thresholds, and in some cases their

bias might even increase as the threshold level increases;

• increasing the threshold level (for a fixed number of excesses) improves the performance

of the ‘penultimate’ approach, but counterintuitively, it might damage the performance

of the ‘asymptotic’ and the ‘censored’ approaches;

• increasing the threshold level (for a fixed number of excesses) tends to decrease the

performance of the ‘censored’ approach;

• increasing the number of observations (for a fixed threshold level) improves the perfor-

mance of all approaches, though not necessarily a lot for the ‘asymptotic’ and ‘censored’

approaches.
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These findings underscore that using the PDF of the spectral distribution to perform direct

inference on the spectral distribution using pseudo-angles of ‘large’ observations yields poor

results when the spectral distribution is asymmetric, when it has point masses, or when the

extremal dependence is low. Using the ‘penultimate’ approach always yields better (or at least

similar) results than the ‘asymptotic’ approach.

2.5 Summary

In this chapter, we provided a characterization of angular distribution of excesses correspond-

ing to the distribution of pseudo-angles of ‘large’ observations, in order to improve direct

inference on the spectral distribution in the bivariate setting.

In particular, we illustrated the pitfalls of inference on the spectral distribution using

the standard ‘asymptotic’ approach based on the convergence of the angular distribution

of ‘large’ observations to the spectral distribution as the radial threshold tends to infinity

(Section 2.2). Then we provided a characterization of the angular distribution of excesses

corresponding to the distribution of pseudo-angles of ‘large’ observations, allowing us to

avoid model misspecification due to the use of finite observations when making inference

on the spectral distribution (Section 2.3), and we showed that potential point masses of

the spectral distribution cannot be recovered from direct inference using the ‘asymptotic’

approach. Finally, we investigated the performance of maximum likelihood inference on

spectral distributions using the angular distribution of excesses, and compared it with two

classical parametric approaches, namely the natural ‘asymptotic’ approach and a censored

likelihood approach, through numerical simulations with datasets from both max-stable and

non-max-stable models (Section 2.4). When the data come from a max-stable model, our

simulation study showed that our ‘penultimate’ approach outperforms both the ‘asymptotic’

and the ‘censored’ approaches, except when the underlying spectral distribution is symmetric

with no point mass, and extremal dependence is strong, in which case the ‘penultimate’ doesn’t

improve much on the ‘asymptotic’ approach. In addition, inference with the ‘penultimate’

approach is unbiased for all radial threshold levels, unlike the ‘asymptotic’ approach where

counterintuitively the bias might even increase as the threshold level increases. We obtained

similar results when data come from a non-max-stable model, which is most often the case in

practice. However, in this case the estimator using our ‘penultimate’ approach is biased like

the other approaches due to model misspecification, as one estimates the spectral distribution

of the max-stable attractor of the distribution from which the data come.

To conclude, the angular distribution of excesses that we introduced improves maximum

likelihood inference on the spectral distribution by removing model misspecification due to

the use of finite observations.
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3 Extremal asymmetry

Extremal dependence is at the heart of extreme value modelling and numerous measures to

quantify it have been proposed in the literature, including the extremal coefficient θd , the tail

dependence index η proposed by Ledford and Tawn (1996), and the pair of coefficients (χ,χ)

advocated by Coles et al. (1999) that are briefly discussed in Section 1.2.4.

In many applications, datasets seem to exhibit asymmetry in the dependence structure

between the variables. Many parametric MEV models can accommodate asymmetry in the

sense that the spectral density can be asymmetric, resulting in a non-exchangeable depen-

dence structure. Such models include the bilogistic (Joe et al., 1992), the Dirichlet (Coles and

Tawn, 1991), the asymmetric logistic (Tawn, 1988a), and the skew-t and skew-normal (Padoan,

2011). However, there has been little if any attention on quantifying asymmetry at extreme

levels, which can be useful for diagnosis and model checking. In this chapter, we propose a

coefficient of extremal asymmetry that quantifies the asymmetry at extreme levels for pairs of

variables.

3.1 The coefficientsχ andχ revisited

Coles et al. (1999) advocated measuring extremal dependence with coefficientsχ andχ defined

as the limits of quantile-based functions (see Section 1.2.4). However, these functions lack

the probabilistic interpretation of their respective limits, so we prefer to consider alternative

functions that also have χ and χ as their limits but have such interpretations.

3.1.1 Definitions and notation

Let (X ,Y ) be a bivariate random vector with joint CDF F , underlying copula C , and margins

FX and FY . For simplicity, suppose that FX and FY are continuous, in which case the copula C

is unique; see Theorem 1.7. Let U = FX (X ) and V = FY (Y ) be the transformed variables with

uniform margins.
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The (upper) tail dependence index introduced by Joe (1993) is

χ= lim
u↑1

Pr{FY (Y ) > u | FX (X ) > u} = lim
u↑1

Pr(V > u |U > u),

provided the limit exists. The number χ ∈ [0,1] can be interpreted as the asymptotic tendency

for one variable to be extreme given that the other variable is extreme. If χ= 0, the variables

are asymptotically independent, and are asymptotically dependent otherwise.

To quantify the upper tail dependence at any quantile level u, Coles et al. (1999) introduced

the functions

χl(u) = 2− logC (u,u)

logu
, χl(u) = 2log(1−u)

logC (u,u)
−1, 0 < u < 1,

and one has limu↑1χ(u) =χ and χ= limu↑1χl(u).

To have probabilistic interpretations of the quantile-based functions defining χ and χ, we

use the function

χp(u) = Pr(V > u |U > u) = 2− 1−C (u,u)

1−u
, 0 < u < 1,

which was used by Joe (1993) to define χ, and we introduce the function

χp(u) = 2u

1−C (u,u)
−1, 0 < u < 1.

Based on the definition of χ, we define an alternative extremal dependence function

χp(u) = Pr(V > u |U > u) = 1−2u +C (u,u)

1−u
, 0 < u < 1, (3.1)

and it follows that

χ= lim
u↑1

χp(u).

Definition (3.1) differs slightly from the functionχ(u) introduced by Coles et al. (1999), denoted

here by χl(u). The index ‘l’ in the above quantile-based function indicates that they are

based on logarithms, whilst the index ‘p’ indicates that the functions have a probability

interpretation.

3.1.2 Properties of χp

By the Fréchet bounds for copulas, any bivariate copula C has the bounds max(u1 +u2 −
1,0) ≤C (u1,u2) ≤ min(u1,u2) for all (u1,u2) ∈ [0,1]2, so the extremal dependence function is
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bounded from below and above by

1−2u +max(2u −1,0)

1−u
≤χp(u) ≤ 1, 0 < u < 1.

In the case of independence C (u,u) = u2, and the corresponding extremal dependence func-

tion is χp(u) = 1−u. Therefore, variables are positively (resp. negatively) associated above

quantile u if and only χp(u) > 1−u (resp. χp(u) < 1−u).

3.1.3 Example: max-mixture model

Let’s compute χp(u) and χ when one of the variables is a max-mixture that depends on the

second variable.

Let Z1 and Z2 be two independent unit Fréchet random variables. For some 0 ≤α≤ 1, let

X = max{αZ1, (1−α)Z2} and Y = Z1. By construction, the random variable Y is unit Fréchet,

and so is X , since

Pr(X ≤ x) = Pr

{
Z1 ≤

x

α
, Z2 ≤

x

(1−α)

}
= e−α/x e−(1−α)/x = e−1/x , x > 0.

Let FZ denote the unit Fréchet distribution function, and define U = FZ (X ), V = FZ (Y ),

and z = F−1
Z (u) for u ∈ [0,1]. Then,

Pr(U > u,V > u) = Pr(X > z,Y > z) = Pr(Y > z)−Pr(Y > z, X ≤ z).

Noting that Pr(Y > z) = Pr(Z1 > z) = 1−e−1/z , and

Pr(Y > z, X ≤ z) = Pr[Z1 > z,max{αZ1, (1−α)Z2} ≤ z]

= Pr

{
z < Z1 ≤

z

α
, Z2 ≤

z

(1−α)

}
= (

e−α/z −e−1/z)e−(1−α)/z

= e−1/z −e−(2−α)/z ,

we have

Pr(U > u,V > u) = 1−2e−1/z +e−(2−α)/z = 1−2u +u2−α, 0 < u < 1.

Thus,

χp(u) = 1−2u +u2−α

1−u
, 0 < u < 1,

69



Chapter 3. Extremal asymmetry

and by l’Hôpital’s rule

χ= lim
u↑1

2− (2−α)u1−α =α,

so X and Y are asymptotically dependent if α> 0, the case α= 0 corresponding to indepen-

dence.

3.1.4 Extreme-value distributions

In this section, we provide a characterization of the extremal dependence function χp(u)

based on the extremal coefficient θ2.

Recall from the characterization of extreme value distributions (Theorem 1.9) that bivariate

extreme value distributions with unit Fréchet margins have the form

G(x, y) = exp{−V (x, y)}, x, y > 0,

where one can write

V (x, y) =
∫ 1

0
max

(
w

x
,

1−w

y

)
dH(w),

and H is a measure on [0,1] satisfying the mean constraint∫ 1

0
w dH(w) = 1.

The exponent function V is homogenous of order −1, so V (x, x) = x−1V (1,1), and the extremal

coefficient is defined as θ2 =V (1,1) = 2A(1/2), where A is the Pickands dependence function.

The following result gives the expression for the extremal dependence function χp(·) for

extreme value distributions and recalls the link between the coefficient χ and the extremal

coefficient θ2, which is well known (Section 1.2.4).

Proposition 3.1 (Characterization of extremal dependence). Let (X ,Y ) be a bivariate random

vector following an extreme value distribution G with extremal coefficient θ2 and unit Fréchet

margins. Then, the extremal dependence function is

χp(u) = 1−2u +uθ2

1−u
, 0 < u < 1, (3.2)

and the extremal dependence coefficient is χ= 2−θ2.

Proof. Let C be the copula underlying the CDF G , let FZ be the unit Fréchet CDF FZ (z) = e−1/z ,

z > 0, and let u = F−1
Z (z). Noting that, for 0 < u < 1,

C (u,u) =G
{
F−1

Z (u),F−1
Z (u)

}= exp
[−V

{−1/logu,−1/logu
}]= exp

{
log(u)V (1,1)

}= uθ2 ,
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it follows from equation (3.1) that the extremal dependence function is

χp(u) = 1−2u +uθ2

1−u
, 0 < u < 1,

and by l’Hopital’s rule the extremal dependence coefficient is

χ= lim
u↑1

χp(u) = 2−θ2.

This result implies that for extreme value distributions with Fréchet margins the probability

Pr(Y > z | X > z) for any z > 0 depends only on the extremal coefficient θ2. In addition,

rewriting equation (3.2) yields

θ2 =
log

{
2u −1+ (1−u)χp(u)

}
logu

, 0 ≤ u ≤ 1,

which may be the basis of a new estimator of θ2.

3.2 A coefficient of extremal asymmetry

In this section, we introduce a coefficient of extremal asymmetry which quantifies the level of

asymmetry in the structure of dependence between two random variables at extreme levels.

3.2.1 Definitions and notations

Our characterization of extremal asymmetry is based on the relative tendency of one variable

to be larger than the other, given that both are extreme.

Definition 3.1 (Partial extremal dependence coefficients). Define the partial extremal depen-

dence functions

ψ+(u) = Pr(V >U |U > u,V > u), 0 ≤ u < 1,

ψ0(u) = Pr(V =U |U > u,V > u), 0 ≤ u < 1,

ψ−(u) = Pr(V <U |U > u,V > u), 0 ≤ u < 1,

provided Pr(U > u,V > u) > 0, in which caseψ+(u)+ψ0(u)+ψ−(u) = 1. If Pr(U > u,V > u) = 0,

set ψ+(u) =ψ0(u) =ψ−(u) = 0. The partial extremal dependence coefficients are defined as

ψ+ = lim
u↑1

ψ+(u), ψ0 = lim
u↑1

ψ0(u), ψ− = lim
u↑1

ψ−(u),

provided the limits exist.
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The number ψ+ ∈ [0,1] can be interpreted as the tendency for the second variable to be

more extreme than the first, given that both variables are extreme. Similar interpretations

hold for ψ0 and ψ−. The partial extremal dependence functions are linked to the extremal

dependence function χp(·) by

ψ+(u) = Pr(V >U ,U > u)

χp(u)(1−u)
, ψ0(u) = Pr(V =U ,U > u)

χp(u)(1−u)
, ψ−(u) = Pr(V <U ,V > u)

χp(u)(1−u)
,

for 0 < u < 1.

Definition 3.2 (Coefficient of extremal asymmetry). Define the extremal asymmetry function

ϕ(u) = ψ+(u)−ψ−(u)

ψ+(u)+ψ−(u)
, 0 < u < 1, (3.3)

with the convention that ϕ(u) = 0 when ψ+(u)+ψ−(u) = 0, and define the coefficient of

extremal asymmetry

ϕ= lim
u↑1

ϕ(u),

when the limit exists.

The number ϕ ∈ [−1,1] reflects the tendency of one variable to be more extreme than

the other, given that both variables are extreme. If ϕ> 0, then the first variable tends to be

asymptotically larger than the second, and vice versa if ϕ< 0. If ϕ= 0, we say that variables X

and Y are asymptotically symmetric, and asymptotically asymmetric otherwise. If ψ0(u) ≡ 0,

then the extremal asymmetry function simplifies to ϕ(u) = 2ψ+(u)−1.

It is obvious from the definitions that if (X ,Y ) are symmetric in the sense that their copula

is such that C (u, v) =C (v,u), 0 ≤ u, v ≤ 1, then X and Y are asymptotically symmetric. Many

bivariate copulas are asymptotically symmetric, including the boundary cases of comono-

tonicity (perfect dependence) and countermonotonicity, and independence, archimedian

copulas, and copulas of elliptical distributions.

3.2.2 Example: max-mixture model

Let’s compute the coefficient of extremal asymmetry for the max-mixture model defined in

Section 3.1.3, using the same notation.

First, let’s compute ψ+(u). We have

Pr(V >U ,U > u) = Pr(Y > X , X > z) = Pr(Y > X )−Pr(Y > X , X ≤ z). (3.4)
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The first term of the right-hand side of (3.4) may be written as

Pr(Y > X ) = Pr[Z1 > max{αZ1, (1−α)Z2}]

= Pr[Z1 > (1−α)Z2]

=
∫ ∞

0
dz1

1

z2
1

e−1/z1 e−(1−α)/z1

= 1

2−α
[
e−(2−α)/z1

]∞
0

= 1

2−α .

The second term of the right-hand side of (3.4) may be written as

Pr(Y > X , X ≤ z) = Pr[Z1 > max{αZ1, (1−α)Z2},max{αZ1, (1−α)Z2} ≤ z]

= Pr

[
(1−α)Z2 < Z1 ≤

z

α
, Z2 ≤

z

(1−α)

]
=

∫ z/(1−α)

0
dz2

1

z2
2

e−1/z2
[
e−α/z −e−1/{z2(1−α)}]

= e−α/z e−(1−α)/z −
∫ z/(1−α)

0
dz2

1

z2
2

e−(2−α)/{z2(1−α)}

= e−1/z − 1−α
2−αe−(2−α)/z .

Substituting these two terms into (3.4) and using u = e−1/z yields

Pr(V >U ,U > u) = 1− (2−α)u + (1−α)u2−α

2−α .

Thus

ψ+(u) = 1− (2−α)u + (1−α)u2−α

(2−α)
(
1−2u +u2−α) ,

and by l’Hôpital’s rule

ψ+ = lim
u↑1

(1−α)u1−α−1

(2−α)u1−α−2
= 1.

Now, let’s compute ψ−(u). We have

Pr(V <U ,V > u) = Pr(Y < X ,Y > z) = Pr(Y > z)−Pr(Y ≥ X ,Y > z).
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Since Pr(Y > z) = Pr(Z1 > z) = 1−e−1/z , and

Pr(Y ≥ X ,Y > z) = Pr[Z1 ≥ max{αZ1, (1−α)Z2}, Z1 > z]

= Pr

{
Z1 > z, Z2 ≤

Z1

(1−α)

}
=

∫ ∞

z
dz1

1

z2
1

e−1/z1 e−(1−α)/z1

= 1−e−(2−α)/z

2−α ,

and using u = e−1/z we have

Pr(V <U ,V > u) = (2−α)(1−u)−1+u2−α

2−α .

Therefore

ψ−(u) = (2−α)(1−u)−1+u2−α

(2−α)
(
1−2u +u2−α) ,

and by l’Hôpital’s rule

ψ− = lim
u↑1

u1−α−1

(2−α)u1−α−2
= 0.

It follows that ψ0(u) = 1−ψ+(u)−ψ−(u) = 0 for all u ∈ [0,1], reflecting the fact that Pr(U =
V ) = 0.

Finally, the extremal asymmetry function is

ϕ(u) = α
(
1−u2−α)

(2−α)
(
1−2u +u2−α) , 0 < u < 1.

If α= 0, corresponding to the case of independence between Z1 and Z2, the extremal asym-

metry function simplifies to ϕ(u) = 0, and thus ϕ = 0. If 0 < α ≤ 1, then by l’Hôpital’s rule

the coefficient of extremal asymmetry is ϕ= 1, so X and Y are asymptotically asymmetric if

0 <α≤ 1.

3.2.3 Extreme-value distributions

The following result gives the extremal asymmetry functionϕ(·) and the coefficient of extremal

asymmetry ϕ for bivariate extreme value distributions.

Proposition 3.2 (Characterization of extremal asymmetry). Let (X ,Y ) be a bivariate random

vector following an extreme value distribution G with Pickands dependence function A and unit

Fréchet margins, and suppose that the exponent distribution associated with G is differentiable.
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3.2. A coefficient of extremal asymmetry

Then, the extremal asymmetry function is

ϕ(u) = A′(1/2)
(
1−u2A(1/2)

)
θ

(
1−2u +u2A(1/2)

) , 0 < u < 1, (3.5)

where A′ is the derivative of A, and the coefficient of extremal asymmetry is

ϕ= A′(1/2)

2−2A(1/2)
. (3.6)

Proof. Let H be the spectral distribution associated with G , let h be its density function, and let

V be the exponent function such that G(x, y) = exp{−V (x, y)}, x, y > 0. Let’s start by deriving

the expressions of the partial tail functions ψ+(u) and ψ−(u) and the extremal asymmetry

function ϕ(u).

The probability that both X and Y exceed a threshold z > 0 is

Pr(Y > X , X > z) =
∫ ∞

z

∫ ∞

x

∂2

∂x∂y
G(x, y)dy dx =−

∫ ∞

z

[
G(x, y)Vx (x, y)

]∞
y=x dx.

We have G(x, y) → FZ (x) = e−1/x as y →∞, and G(x, x) = exp{−V (x, x)} = e−V (1,1)/x . Recall that

V (x, y) = 2
∫ 1

0
max

(
w

x
,

1−w

y

)
dH(w), x, y > 0,

and since w/x < (1−w)/y when w < x/(x + y), we have

V (x, y) = 2
∫ x/(x+y)

0

1−w

y
dH(w)+2

∫ 1

x/(x+y)

w

x
dH(w).

Letting Vx (x, y) = ∂V (x, y)/∂x, and recalling equation (A.1) we have

Vx (x, y) =− 2

x2

∫ 1

x/(x+y)
wh(w)dw. (3.7)

Thus,

Vx (x, x) =− 2

x2

∫ 1

1/2
wh(w)dw =− 2

x2 H−,

where H− := ∫ 1
1/2 w dH(w), and by the mean constraint,

lim
y→∞Vx (x, y) =− 2

x2

∫ 1

0
wh(w)dw =− 1

x2 ,
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so

Pr(Y > X , X > z) =−
∫ ∞

z

{
e−1/x (−1)

x2 −e−V (1,1)/x (−2)

x2 H−
}

dx

=
[

e−1/x − 2H−

V (1,1)
e−V (1,1)/x

]∞
z

= 1−e−1/z − 2H−

V (1,1)

{
1−e−V (1,1)/z} ,

and thus

Pr(V >U ,U > u) = 1−u − 2H−

θ

(
1−uθ

)
.

Writing H+ = ∫ 1/2
0 (1−w)dH(w), we have

θ = 2
∫ 1

0
max(w,1−w)dH(w) = 2

∫ 1/2

0
(1−w)dH(w)+

∫ 1

1/2
w dH(w) = 2(H++H−). (3.8)

Hence,

ψ+(u) = 1−u −2H−θ−1(1−uθ)

1−2u +uθ
,

and by l’Hopital’s rule

ψ+ = lim
u↑1

2H−uθ−1 −1

θuθ−1 −2
= 1−2H−

2−θ = 1−2H−

1−2H−+1−2H+ = 1

1+RH
, (3.9)

where RH = (1−2H+)/(1−2H−).

We have 0 ≤ H− ≤ 1/2 since h(w) > 0, and by the mean constraint

H− =
∫ 1

1/2
w dH(w) ≤

∫ 1

0
w dH(w) = 1

2
,

thus 0 ≤ 1−2H− ≤ 1. Note also that 0 ≤ H+ ≤ 1/2 since (1−w)h(w) > 0, and

H+ =
∫ 1/2

0
(1−w)dH(w) ≤

∫ 1

0
(1−w)dH(w) =

∫ 1

0
dH(w)−

∫ 1

0
w dH(w) = 1− 1

2
= 1

2
,

implying that 0 ≤ 1−2H+ ≤ 1, and thus from equation (3.9) 0 ≤ ψ+ ≤ 1. If H+ = H−, then

ψ+ = 1/2, and if H− > H+, then ψ+ < 1/2.

Similarly, the probability of a joint excess can also be written as

Pr(Y < X ,Y > z) =
∫ ∞

z

∫ ∞

y

∂2

∂x∂y
G(x, y)dy dx =−

∫ ∞

z

[
G(x, y)Vy (x, y)

]∞
x=y dy.
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3.2. A coefficient of extremal asymmetry

We have G(x, y) → FZ (x) = e−1/y as x →∞, and G(y, y) = exp{−V (y, y)} = e−V (1,1)/y . Also,

Vy (x, y) = ∂

∂y
V (x, y) = 2

y

(
1− x

x + y

)
h

(
x

x + y

)
(−1)

(x + y)2

+2
∫ x/(x+y)

0
(1−w)

(−1)

y2 h(w)dw

− 2

x

(
x

x + y

)
h

(
x

x + y

)
(−1)

(x + y)2

=− 2

y2

∫ x/(x+y)

0
(1−w)h(w)dw.

Thus,

Vy (y, y) =− 2

y2

∫ 1/2

0
(1−w)h(w)dw =− 2

y2 H+,

and

lim
x→∞Vy (x, y) =− 2

y2

∫ 1

0
(1−w)h(w)dw =− 1

y2

by the mean constraint, so

Pr(Y < X ,Y > z) =−
∫ ∞

z

{
e−1/y (−1)

y2 −e−V (1,1)/y (−2)

y2 H+
}

dy

=
[

e−1/y − 2H+

V (1,1)
e−V (1,1)/y

]∞
z

= 1−e−1/z − 2H+

V (1,1)

{
1−e−V (1,1)/z} ,

and thus

Pr(V <U ,V > u) = 1−u − 2H+

θ

(
1−uθ

)
.

Hence,

ψ−(u) = 1−u −2H+θ−1(1−uθ)

1−2u +uθ
,

and by l’Hopital’s rule

ψ− = lim
u↑1

2H+uθ−1 −1

θuθ−1 −2
= 1−2H+

2−θ = 1−2H+

1−2H−+1−2H+ = 1

1+R−1
H

.

Then, by equation (3.8) the extremal asymmetry function is

ϕ(u) = θ−1(1−uθ)(H+−H−)

1−u −θ−1(1−uθ)(H−+H+)
= 2θ−1(1−uθ)(H+−H−)

1−2u +uθ
. (3.10)
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Now, note that

H+−H− =
∫ 1/2

0
(1−w)dH(w)−

∫ 1

1/2
w dH(w) =

∫ 1/2

0
dH(w)− 1

2
(3.11)

by the mean constraint that applies to H (w). From the definition of the Pickands dependence

function, A(t ) =V {(1− t )−1, t−1} for 0 ≤ t ≤ 1. Thus

A(t ) = 2
∫ 1

0
max{w(1− t ), (1−w)t }dH(w)

= 2t
∫ t

0
(1−w)dH(w)+2(1− t )

∫ 1

t
w dH(w)

+2(1− t )
∫ t

0
w dH(w)−2(1− t )

∫ t

0
w dH(w)

= (1− t )+2
∫ t

0
(t −w)dH(w),

and

A′(t ) = 2
∫ t

0
dH(w)−1. (3.12)

Substituting equations (3.11) and (3.12) into (3.10) yields

ϕ(u) = A′(1/2)(1−uθ)

θ(1−2u +uθ)
, (3.13)

and by l’Hopital’s rule

ϕ(u) = A′(1/2)(1−uθ)

θ(1−2u +uθ)
, u ∈ [0,1).

Since χ= 2−θ and θ = 2A(1/2), we have the following equivalent expressions

ϕ= A′(1/2)

2−θ = A′(1/2)

χ
= A′(1/2)

2{1− A(1/2)}
.

By the convexity of A, the slope of the Pickand dependence function is bounded from below

and above by

−2{1− A(1/2)} ≤ A′(1/2) ≤ 2{1− A(1/2)}.

The denominator in is just a normalization factor ensuring that ϕ ∈ [−1,1].
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3.2. A coefficient of extremal asymmetry

3.2.3.1 Example: Asymmetric logistic distribution

The bivariate asymmetric logistic distribution function is

G(x, y) = exp

[
−1−ψ1

x
− 1−ψ2

y
−

{(ψ1

x

)1/α
+

(
ψ2

y

)1/α
}α]

, x1, x2 > 0,

where 0 ≤ψ1,ψ2 ≤ 1, and 0 <α≤ 1. The corresponding exponent function is

V (x, y) = 1−ψ1

x
+ 1−ψ2

y
+

{(ψ1

x

)1/α
+

(
ψ2

y

)1/α
}α

,

and the stable extremal dependence function is

l (v1, v2) = (1−ψ1)v1 + (1−ψ2)v2 +
{
(ψ1v1)1/α+ (ψ2v2)1/α}α

.

The spectral density for 0 < w < 1 is

h(w) =−1

2

∂2

∂x∂y
V (x, y)

∣∣∣∣
x=w,y=1−w

= 1

2
(1/α−1)ψ1/α

1 ψ1/α
2 {w(1−w)}−1/α−1

{(ψ1

w

)1/α
+

( ψ2

1−w

)1/α
}α−2

= 1

2
(1/α−1)(ψ1ψ2)1/α {w(1−w)}1/α−2

[
(ψ2w)1/α+{

ψ1(1−w)
}1/α

]α−2
.

Pickand’s dependence function is

A(t ) = l (1− t , t ) = (1−ψ1)(1− t )+ (1−ψ2)t + [
{ψ1(1− t )}1/α+ (ψ2t )1/α]α

,

and its derivative is

A′(t ) =ψ1 −ψ2 +
[
ψ2(ψ2t )1/α−1 −ψ1{ψ1(1− t )}1/α−1][

{ψ1(1− t )}1/α+ (ψ2t )1/α]α−1
.

Thus,

A(1/2) = 1

2

{
2−ψ1 −ψ2 +

(
ψ1/α

1 +ψ1/α
2

)α}
,

and

A′(1/2) =ψ1 −ψ2 +
(
ψ1/α

2 −ψ1/α
1

)(
ψ1/α

1 +ψ1/α
2

)α−1

From equation (3.2) with θ = 2A(1/2) we have

χ(u) = 1−2u +u2A(1/2)

1−u
,

and

χ=ψ1 +ψ2 −
(
ψ1/α

1 +ψ1/α
2

)α
.
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From equation (3.13) we have

ϕ(u) = A′(1/2)
{
1−u2A(1/2)

}
2A(1/2)

{
1−2u +u2A(1/2)

} ,

and

ϕ= A′(1/2)

2{1− A(1/2)}
.

3.2.3.2 Extremal asymmetry function in terms of the copula

This section provides expressions for ϕ(u) and ϕ in terms of the underlying copula.

Since A(t ) =− logC
(
e−(1−t ),e−t

)
, we have

A′(t ) = e−tCy
(
e−(1−t ),e−t

)−e−(1−t )Cx
(
e−(1−t ),e−t

)
C

(
e−(1−t ),e−t

) ,

and thus

A′(1/2) = e−1/2
{
Cy

(
e−1/2,e−1/2

)−Cx
(
e−1/2,e−1/2

)}
C

(
e−1/2,e−1/2

) .

Substituting uθ =C (u,u) into equation (3.13) yields

ϕ(u) = A′(1/2){1−C (u,u)} logu

logC (u,u){1−2u +C (u,u)}
.

3.3 Estimation

In this section, we describe two non-parametric approaches to estimating the coefficient of

extremal asymmetry.

3.3.1 Empirical approach

Natural estimators of the functions of extremal dependence and extremal asymmetry are

obtained using empirical estimates of the probabilities involved in the definition of these

functions. Rewriting equations (3.1) and (3.3) in terms of the transformed variables U = FX (X )

and V = FY (Y ) yields

χp(u) = Pr(V > u,U > u)

1−u
,

and

ϕ(u) = Pr(V >U ,U > u)−Pr(V <U ,V > u)

Pr(V >U ,U > u)+Pr(V <U ,V > u)
.
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3.3. Estimation

On the basis of independent realizations (x1, y1), . . . , (xN , yN ) and transformed observations

ui = F̂X (xi ) and vi = F̂Y (yi ), the estimators of these functions are

χ̂p(u) =
N−1 ∑N

i=1 I (ui > u, vi > u)

1−u
,

ϕ̂(u) =
∑N

i=1{I (vi > ui ,ui > u)− I (vi < ui , vi > u)}∑N
i=1{I (vi > ui ,ui > u)+ I (vi < ui , vi > u)}

.

Natural estimators of the marginal distributions FX and FY are obtained with the modified em-

pirical distribution function F̂X (t ) = (N +1)−1 ∑N
i=1 I (xi < t ) and F̂Y (t ) = (N +1)−1 ∑N

i=1 I (yi <
t ).

Coefficients χ and ϕ can be estimated respectively by χ̂p(u) and ϕ̂(u) for some appropriate

threshold u close to one, since χ andϕ are respectively the limits of χp(u) andϕ(u) when u ↑ 1

(Section 3.1.1 and Definition 3.2).

3.3.2 Empirical likelihood approach

An alternative non-parametric approach to estimate the coefficients χ and ϕ is to estimate the

spectral distribution non-parametrically and to derive estimates of the coefficients from the

relation between the coefficients and the spectral distribution. We illustrate this approach

with the maximum empirical likelihood estimator introduced by Einmahl and Segers (2009).

Let (x1, y1), . . . , (xN , yN ) be a sample from a bivariate max-stable distribution with unit

Fréchet margins. In practice, data can be transformed to have unit Fréchet margins (see

Section 1.2.1.3). Expressed in pseudo-polar coordinates these observations are (ri , wi ), where

ri = xi + yi and wi = xi /ri for i = 1, . . . , N . Let z > 0 be a large threshold, and let n be the

number of ‘large’ observations such that ri > z. Without loss of generality and to simplify

notation, suppose that the observations are ordered in decreasing order of pseudo-radius,

that is r1 ≥ ·· · ≥ rN , so the set of pseudo-angles for ‘large’ observations is {w1, . . . , wn}.

The maximum empirical likelihood estimator places masses p1, . . . , pn on w1, . . . , wn in

order to maximize the log empirical likelihood

l (p1, . . . , pn) =
n∑

i=1
log pi ,

subject to the probability constraint
∑n

i=1 pi = 1 and the mean constraint
∑n

i=1 wi pi = 1/2. By

the method of Lagrange multipliers, the solution is

pi =
1

n

1

1+λ(wi −1/2)
, i = 1, . . . ,n,
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where λ ∈R is the Lagrange multiplier associated to the mean constraint, defined implicitly by

n∑
i=1

wi −1/2

1+λ(wi −1/2)
= 0,

which has a unique solution in (−1/max(wi −1/2),−1/min(wi −1/2)), provided that min wi <
1/2 < max wi , which happens with probability one as n →∞.

Let Ĥ ([0, t ]) =∑n
i=1 pi I (wi ≤ t ) be the non-parametric estimator of the spectral distribution.

From Equation (1.13) the estimator of the Pickands dependence function is

Â(t ) = 1− t +2
∫ t

0
Ĥ([0, w])dw = 1− t +2

n∑
i=1

pi (t −wi )I (wi ≤ t ), 0 ≤ t ≤ 1,

and from Equation (1.14) the estimator of the right-hand derivative of the Pickands depen-

dence function is

Â′(t ) = 2Ĥ([0, t ])−1 = 2
n∑

i=1
pi I (wi ≤ t )−1, 0 ≤ t < 1.

From Proposition 3.1 and recalling that θ2 = 2A(1/2), the estimator of the coefficient of

extremal dependence is

χ̂= 1−4
n∑

i=1
pi (1/2−wi )I (wi ≤ 1/2),

and from Proposition 3.2 the estimator of the coefficient of extremal asymmetry is

ϕ̂=
∑n

i=1 pi I (wi ≤ 1/2)−1/2

1/2−2
∑n

i=1 pi (1/2−wi )I (wi ≤ 1/2)
.

3.4 Simulation study

This section presents the simulation results to compare the ‘empirical’ and ‘empirical likeli-

hood’ approaches to estimate the coefficient of extremal asymmetry in the case where the

data are simulated from max-stable models.

Max-stable models, or more specifically the PDF of their associated spectral distributions,

might be symmetric or asymmetric, they might have point masses or no point masses, and

they can have various levels of extremal dependence. In order to cover a large spectrum

of the possible cases, we used the logistic model (Section 1.2.1.5), the Hüsler–Reiss model

(Section 1.2.1.5), the Dirichlet model (Section 1.2.1.5), and the asymmetric logistic model

(Section 1.2.1.5), and for each of them we selected three sets of parameters, as in Chapter 2.

Table 2.1 lists the selected sets of parameters for each model and provides their point masses,

their level of extremal dependence as measured by the tail dependence index χ (see Sec-

tion 1.2.4), and their level of extremal asymmetry as measured by the coefficient of extremal
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3.4. Simulation study

Table 3.1 – Bias (×100) and RMSE (×100) of B = 1000 estimates of the coefficient of
extremal asymmetry for data simulated from the logistic model for three parameter
choices using the ‘empirical’ (E) and ‘empirical likelihood’ (EL) approaches for several
choices of data sample size N and threshold level u.

Logistic

N u Approach α= 0.3 α= 0.55 α= 0.8

1000 0.9 E -22.6 / 23.7 -43.4 / 44 -68.2 / 68.5
1000 0.9 EL 0.7 / 9.4 1.5 / 13.2 1.8 / 23.2
1000 0.95 E -24.7 / 27 -46 / 47.2 -71.9 / 72.5
1000 0.95 EL 0.6 / 13.4 1 / 19.6 1 / 38.4
1000 0.99 E -31.9 / 41.2 -53.7 / 59.2 -77.8 / 80.1
1000 0.99 EL -0.2 / 34.9 -3.6 / 51.3 -28.8 / 82.3
5000 0.9 E -21.8 / 22.1 -43 / 43.1 -67.6 / 67.7
5000 0.9 EL 0 / 4 0.2 / 5.6 0.5 / 10.9
5000 0.95 E -22.8 / 23.3 -45 / 45.2 -70.9 / 71.1
5000 0.95 EL 0.1 / 5.7 -0.1 / 8.5 0.8 / 16.3
5000 0.99 E -24.9 / 27 -47.8 / 49 -74.2 / 74.7
5000 0.99 EL 0.5 / 13.2 0 / 19 1.9 / 42

asymmetry ϕ.

For each distribution and each parameter set we generated B = 1000 pseudo-random

samples of sizes N = 1000,5000. Then, for each sample we estimated the coefficient of

extremal asymmetry using the ‘empirical’ and ‘empirical likelihood’ approaches with the same

number of observations n, which corresponds to the number of transformed observations

(ui , vi ) having both components larger than the parameter u = 0.9,0.95,0.99. The number n

can vary from one sample to the other but both estimation approaches use the same number

of observations on the same sample, allowing us to compare their performance at estimating

the true underlying coefficient values. The biases and root mean squared errors (RMSE) for

these estimates are shown in Tables 3.1 to 3.4.

The results are similar for the four models and the three sets of parameters. Unsurprisingly,

increasing the sample size yields better estimators, and raising the threshold u yields worse

estimators. The ‘empirical likelihood’ method performs better than the ‘empirical’ method

in terms of both bias and RMSE for all parameter values, with a few exceptions when the

threshold u is the highest and the extremal dependence of the model is weak, which yields a

small sample size n. The ‘empirical likelihood’ estimators have low biases and most of their

RMSEs are due to their variance. Conversly, most of the ‘empirical’ estimators’ RMSE is due to

bias.

The difference between these two approaches, which yield estimators with drastically differ-

ent characteristics, lies in the subsets of observations that are used in estimation and the way
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Table 3.2 – Bias (×100) and RMSE (×100) of B = 1000 estimates of the coefficient
of extremal asymmetry for data simulated from the Hüsler–Reiss model for three
parameter choices using the ‘empirical’ (E) and ‘empirical likelihood’ (EL) approaches
for several choices of data sample size N and threshold level u.

Hüsler–Reiss

N u Approach α= 0.5 α= 1 α= 2

1000 0.9 E -19.5 / 20.8 -36.6 / 37.3 -63.5 / 63.8
1000 0.9 EL 0.1 / 8.4 0.1 / 10.8 0.1 / 19.1
1000 0.95 E -21 / 23.4 -38.7 / 40 -66.4 / 67
1000 0.95 EL 0.1 / 11.8 -0.4 / 15.3 -0.5 / 28.8
1000 0.99 E -30 / 39.1 -47.4 / 53 -73.6 / 76.3
1000 0.99 EL -1.7 / 30.4 -3.4 / 43.1 -21.3 / 73.9
5000 0.9 E -18.9 / 19.1 -35.8 / 35.9 -62.7 / 62.7
5000 0.9 EL 0 / 3.5 0.4 / 4.7 0.7 / 8.5
5000 0.95 E -19.6 / 20 -37.2 / 37.5 -65.6 / 65.7
5000 0.95 EL 0.1 / 4.9 0.5 / 6.7 0.5 / 12.7
5000 0.99 E -22.3 / 24.4 -39.7 / 40.9 -68.8 / 69.4
5000 0.99 EL -0.4 / 11.7 0.4 / 15.9 1.1 / 32

they are used. The ‘empirical’ estimator is computed directly from the coefficient’s definition

but ϕ̂ is approximated by ϕ̂(u), wheras the ‘empirical likelihood’ estimator is computed indi-

rectly from a biased estimator of the spectral distribution but ϕ̂ is not approximated by ϕ̂(u).

It seems from the simulations that it is better to estimate ϕ indirectly from a biased estimator

of the spectral distribution rather than through estimating the extremal asymmetry function

at level u < 1.

3.5 Summary

In this chapter, we introduced a coefficient of extremal asymmetry for pairs of variables and

which quantifies the relative tendency of one variable to be larger than the other, given that

both are extreme. This can be used for diagnosis and model checking in the bivariate setting.

We provided a characterization of extremal asymmetry in the case where the variables

follow a bivariate extreme value distribution. The coefficient of asymmetry has strong ties

with the Pickands dependence function and its derivative.

We introduced two non-parametric estimators of the coefficient of extremal asymmetry

and compared their performance through numerical simulations. The two estimators have

diametrically opposed bias-variance trade-offs. Compared to the empirical estimator based

on the definition of the coefficient, the estimator based on maximum empirical likelihood

performed better, often much better, both in terms of root mean squared error and bias.
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Table 3.3 – Bias (×100) and RMSE (×100) of B = 1000 estimates of the coefficient of
extremal asymmetry for data simulated from the Dirichlet model for three parameter
choices using the ‘empirical’ (E) and ‘empirical likelihood’ (EL) approaches for several
choices of data sample size N and threshold level u.

Dirichlet

N u Approach α= 3, β= 3 α= 3, β= 0.2 α= 0.2, β= 0.2

1000 0.9 E -30.1 / 31 -82.1 / 82.4 -73 / 73.3
1000 0.9 EL -0.2 / 10.1 -4.9 / 19 0.3 / 27.3
1000 0.95 E -31.8 / 33.5 -85.2 / 85.7 -77.3 / 77.7
1000 0.95 EL -0.4 / 14.4 -2.5 / 28.1 -0.6 / 47.4
1000 0.99 E -40.5 / 47.6 -94.6 / 97 -82.9 / 84.7
1000 0.99 EL -2.7 / 37.7 -21.2 / 78.5 -42.2 / 88.3
5000 0.9 E -29.4 / 29.6 -81.1 / 81.1 -72.6 / 72.7
5000 0.9 EL 0.1 / 4.2 -5.3 / 9.6 -0.2 / 12.9
5000 0.95 E -30.5 / 30.8 -84.1 / 84.2 -76.5 / 76.6
5000 0.95 EL 0.2 / 6.1 -2.9 / 12.2 -0.6 / 20
5000 0.99 E -33 / 34.6 -87.6 / 88.2 -79.9 / 80.3
5000 0.99 EL 0.1 / 14.7 0.5 / 30.2 -0.6 / 52.7

Table 3.4 – Bias (×100) and RMSE (×100) of B = 1000 estimates of the coefficient of
extremal asymmetry for data simulated from the asymmetric logistic model for three
parameter choices using the ‘empirical’ (E) and ‘empirical likelihood’ (EL) approaches
for several choices of data sample size N and threshold level u.

Asymmetric logistic

α= 0.2 α= 0.4 α= 0.6
N u Approach ψ= (0.8, 0.8) ψ= (0.7, 0.5) ψ= (0.6, 0.2)

1000 0.9 E -31.3 / 34.4 -36.3 / 37.3 -32.9 / 33.3
1000 0.9 EL -0.2 / 12.8 4.7 / 18.7 13.7 / 36.4
1000 0.95 E -33.7 / 38.8 -39.4 / 41.1 -36.9 / 37.5
1000 0.95 EL -0.2 / 18.5 1.5 / 28.3 5.4 / 54.9
1000 0.99 E -45 / 56.8 -42.5 / 48.2 -41 / 42.7
1000 0.99 EL -0.4 / 48.4 -5.7 / 67.8 -28.9 / 59.4
5000 0.9 E -30 / 30.8 -36.7 / 36.9 -32.9 / 33
5000 0.9 EL -0.1 / 5.7 4.7 / 9.3 15.5 / 21.5
5000 0.95 E -31.5 / 32.9 -39.4 / 39.8 -37.2 / 37.3
5000 0.95 EL 0 / 8.1 2.1 / 12.4 7.4 / 26.9
5000 0.99 E -33.9 / 39 -41.7 / 43.2 -40.4 / 40.8
5000 0.99 EL 0.8 / 19.4 0 / 30.5 -1.4 / 58.7
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4 Perspective

This chapter discusses aspects that were not investigated in this thesis and that are left for

future work.

In Chapter 2, we introduced the angular distribution of excesses in the bivariate setting.

It can be expected that the difference between the spectral distribution, which is often of

interest in inference, and the angular distribution of excesses, from which the observations

used in inference are drawn, also negatively impacts, possibly in a worse way, direct inference

in dimensions d > 2. It seems clear that the characterization of the angular distribution of

excesses could be extended to the multivariate setting and used to improve inference on the

spectral distribution.

The angular distribution of excesses was used to improve parametric inference on the

spectral distribution. It can be expected that the angular distribution of excesses can also

be used to improve inference in a semi-parametric or nonparametric setting. We made

an attempt to develop such a non-parametric estimator based on the idea of the empirical

likelihood estimator introduced by Einmahl and Segers (2009). The expression of the empirical

likelihood for the angular distribution of excesses is rather intricate, and we couldn’t find

an analytical simplification for the maximization problem using Lagrange multipliers like

Einmahl and Segers (2009), so we tried to solve the high-dimensional non-linear optimization

problem with non-linear constraints using numerical routines in R. The results were not

conclusive. Moreover, this approach has two conceptual drawbacks. First, the fitted spectral

distribution might have mass were there shouldn’t be mass, as the locations of the atoms are

given by the observed pseudo-angles. Second, this approach fails to put potential mass at the

edges of the support, though it might be possible to address this by adapting the empirical

likelihood approach. We also made an attempt to develop a semi-parametric estimator

which approximates the spectral distribution by a mixture of beta distributions and a discrete

distribution with point masses at the edges of the support. This approach seems appealing

conceptually, as mixtures of beta distribution are dense in the space of probability density

functions on the unit interval and point masses at the edges can easily be accommodated.

However, we also encountered difficulties in numerically solving the optimization problem to
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Chapter 4. Perspective

obtain the fitted distribution.

In Chapter 3, we proposed a coefficient of extremal asymmetry and two non-parametric

estimators. The asymptotic properties of these estimators are not formally investigated in

this thesis, but it seems clear that both can be shown to be consistent and asymptotically

normal under suitable conditions. The empirical estimator is purely moment-based, so it

can be expected to be consistent and asymptotically normal under the usual conditions for

extremal estimation, i.e., u → 1, N →∞ and N (1−u) →∞. The properties of the empirical

likelihood-based estimator will depend on those of the empirical likelihood estimator of the

spectral distribution, whose good asymptotic properties were established by Einmahl and

Segers (2009) using empirical process theory, so it too can be expected to have standard

limiting behaviour.
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A Computational details

A.1 Derivation of Vx , Vy , and Vx ,y

This section contains the derivation of the partial and mixed partial derivatives of the bivariate

exponent measure used in proofs on page 45, and on page 75.

Recall that

V (x, y) = 2

y

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
+ 2

x

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
,

where the h̃ is the continuous part of the generalized density function of a spectral distribution

H ∈H1, and δ0 and δ1 respectively denote the point masses at 0 and 1.

The partial derivative of V (x, y) with respect to x is

Vx (x, y) = ∂

∂x
V (x, y)

= ∂

∂x

2

y

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
+ ∂

∂x

2

x

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
= 2

y

{(
1− x

x + y

)
h̃

(
x

x + y

)
y

(x + y)2

}
− 2

x2

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
− 2

x

x

x + y
h̃

(
x

x + y

)
y

(x + y)2

=− 2

x2

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
. (A.1)
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Appendix A. Computational details

The partial derivative of V (x, y) with respect to y is

Vy (x, y) = ∂

∂y
V (x, y)

= ∂

∂y

2

y

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
+ ∂

∂y

2

x

{
δ1 +

∫ 1

x/(x+y)
t h̃(t )dt

}
=− 2

y2

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
− 2

y

(
1− x

x + y

)
h̃

(
x

x + y

)
x

(x + y)2

+ 2

x

x

x + y
h̃

(
x

x + y

)
x

(x + y)2

=− 2

y2

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
.

Finally, the mixed partial derivative of V (x, y) is

Vx y (x, y) = ∂2

∂x∂y
V (x, y)

=− ∂

∂x

2

y2

{
δ0 +

∫ x/(x+y)

0
(1− t )h̃(t )dt

}
=− 2

y2

(
1− x

x + y

)
h̃

(
x

x + y

)
y

(x + y)2

=− 2

(x + y)3 h̃

(
x

x + y

)
.
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B Simulation results for parametric fits
of spectral distribution

This appendix contains graphical results of numerical simulations performed to compare the

performance of the ‘asymptotic’, ‘penultimate’, and ‘censored’ approaches to estimate the

spectral distribution of the logistic, Hüsler–Reiss, Dirichlet, and asymmetric logistic models

for three parameter choices each and several choices of threshold level p and number of

threshold excesses n. The simulation procedure and the estimation approaches are described

in Section 2.4.
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Appendix B. Simulation results for parametric fits of spectral distribution

B.1 Logistic model

B.1.1 Caseα= 0.3
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Figure B.1 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the logistic model based on data simulated from the logistic model with
dependence parameter α= 0.3 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘cen-
sored’ (C) approaches for several choices of threshold level p and number of excesses n.
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B.1. Logistic model
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Figure B.2 – Boxplots comparing dependence parameter estimates of the logistic model
based on data simulated from the logistic model with dependence parameter α= 0.3
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution

B.1.2 Caseα= 0.55
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Figure B.3 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the logistic model based on data simulated from the logistic model with
dependence parameter α = 0.55 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.
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B.1. Logistic model
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Figure B.4 – Boxplots comparing dependence parameter estimates of the logistic model
based on data simulated from the logistic model with dependence parameter α= 0.55
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution

B.1.3 Caseα= 0.8
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Figure B.5 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the logistic model based on data simulated from the logistic model with
dependence parameter α= 0.8 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘cen-
sored’ (C) approaches for several choices of threshold level p and number of excesses n.
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B.1. Logistic model
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Figure B.6 – Boxplots comparing dependence parameter estimates of the logistic model
based on data simulated from the logistic model with dependence parameter α= 0.8
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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B.2 Hüsler–Reiss model

B.2.1 Caseα= 0.5
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Figure B.7 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the Hüsler–Reiss model based on data simulated from the Hüsler–Reiss
model with dependence parameter α= 0.5 using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n.
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B.2. Hüsler–Reiss model
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Figure B.8 – Boxplots comparing dependence parameter estimates of the Hüsler–Reiss
model based on data simulated from the Hüsler–Reiss model with dependence param-
eter α= 0.5 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches
for several choices of threshold level p and number of excesses n. The dashed red lines
show the true parameter value.
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B.2.2 Caseα= 1
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Figure B.9 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the Hüsler–Reiss model based on data simulated from the Hüsler–Reiss
model with dependence parameter α= 1 using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n.
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Figure B.10 – Boxplots comparing dependence parameter estimates of the Hüsler–Reiss
model based on data simulated from the Hüsler–Reiss model with dependence param-
eter α= 1 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches
for several choices of threshold level p and number of excesses n. The dashed red lines
show the true parameter value.
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B.2.3 Caseα= 2
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Figure B.11 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the Hüsler–Reiss model based on data simulated from the Hüsler–Reiss
model with dependence parameter α= 2 using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n.
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B.2. Hüsler–Reiss model
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Figure B.12 – Boxplots comparing dependence parameter estimates of the Hüsler–Reiss
model based on data simulated from the Hüsler–Reiss model with dependence param-
eter α= 2 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches
for several choices of threshold level p and number of excesses n. The dashed red lines
show the true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution

B.3 Dirichlet model

B.3.1 Caseα= 0.2 and β= 0.2
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Figure B.13 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the Dirichlet model based on data simulated from the Dirichlet model
with parameters α= 0.2 and β= 0.2 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.

104



B.3. Dirichlet model
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Figure B.14 – Boxplots comparing first parameter estimates of the Dirichlet model
based on data simulated from the Dirichlet model with parameters α= 0.2 and β= 0.2
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.15 – Boxplots comparing second parameter estimates of the Dirichlet model
based on data simulated from the Dirichlet model with parameters α= 0.2 and β= 0.2
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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B.3. Dirichlet model

B.3.2 Caseα= 3 and β= 0.2
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Figure B.16 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the Dirichlet model based on data simulated from the Dirichlet model
with parameters α= 3 and β= 0.2 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.

107



Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.17 – Boxplots comparing first parameter estimates of the Dirichlet model
based on data simulated from the Dirichlet model with parameters α= 3 and β= 0.2
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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B.3. Dirichlet model
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Figure B.18 – Boxplots comparing second parameter estimates of the Dirichlet model
based on data simulated from the Dirichlet model with parameters α= 3 and β= 0.2
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution

B.3.3 Caseα= 3 and β= 3
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Figure B.19 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the Dirichlet model based on data simulated from the Dirichlet model
with parameters α = 3 and β = 3 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.
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B.3. Dirichlet model
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Figure B.20 – Boxplots comparing first parameter estimates of the Dirichlet model
based on data simulated from the Dirichlet model with parameters α= 3 and β= 3
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution

A P C

0
5

10
15

20
25

30

p = 0.90, n = 100

Approach

β̂

A P C

0
5

10
15

20
25

30

p = 0.95, n = 100

Approach

β̂

A P C

0
5

10
15

20
25

30

p = 0.99, n = 100

Approach

β̂

A P C

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

p = 0.90, n = 1000

Approach

β̂

A P C

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

p = 0.95, n = 1000

Approach

β̂

A P C

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

p = 0.99, n = 1000

Approach

β̂

Dirichlet
α= 3, β= 3

Figure B.21 – Boxplots comparing second parameter estimates of the Dirichlet model
based on data simulated from the Dirichlet model with parameters α= 3 and β= 3
using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several
choices of threshold level p and number of excesses n. The dashed red lines show the
true parameter value.
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B.4. Asymmetric logistic model

B.4 Asymmetric logistic model

B.4.1 Caseα= 0.2 andψ= (0.8, 0.8)
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Figure B.22 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the asymmetric logistic model based on data simulated from the asymmet-
ric logistic model with parameters α= 0.2 and ψ= (0.8,0.8) using the ‘asymptotic’ (A),
‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold level p
and number of excesses n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.23 – Boxplots comparing dependence parameter estimates of the asymmetric
logistic model based on data simulated from the asymmetric logistic model with
parameters α= 0.2 and ψ= (0.8,0.8) using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n. The dashed red lines show the true parameter value.
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B.4. Asymmetric logistic model
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Figure B.24 – Boxplots comparing first asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the asymmetric logistic model
with parameters α= 0.2 and ψ= (0.8,0.8) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.25 – Boxplots comparing second asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the asymmetric logistic model
with parameters α= 0.2 and ψ= (0.8,0.8) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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B.4. Asymmetric logistic model

B.4.2 Caseα= 0.4 andψ= (0.7, 0.5)
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Figure B.26 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the asymmetric logistic model based on data simulated from the asymmet-
ric logistic model with parameters α= 0.4 and ψ= (0.7,0.5) using the ‘asymptotic’ (A),
‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold level p
and number of excesses n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.27 – Boxplots comparing dependence parameter estimates of the asymmetric
logistic model based on data simulated from the asymmetric logistic model with
parameters α= 0.4 and ψ= (0.7,0.5) using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n. The dashed red lines show the true parameter value.
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B.4. Asymmetric logistic model
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Figure B.28 – Boxplots comparing first asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the asymmetric logistic model
with parameters α= 0.4 and ψ= (0.7,0.5) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.29 – Boxplots comparing second asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the asymmetric logistic model
with parameters α= 0.4 and ψ= (0.7,0.5) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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B.4. Asymmetric logistic model

B.4.3 Caseα= 0.6 andψ= (0.6, 0.2)
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Figure B.30 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the asymmetric logistic model based on data simulated from the asymmet-
ric logistic model with parameters α= 0.6 and ψ= (0.6,0.2) using the ‘asymptotic’ (A),
‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold level p
and number of excesses n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.31 – Boxplots comparing dependence parameter estimates of the asymmetric
logistic model based on data simulated from the asymmetric logistic model with
parameters α= 0.6 and ψ= (0.6,0.2) using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n. The dashed red lines show the true parameter value.
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B.4. Asymmetric logistic model
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Figure B.32 – Boxplots comparing first asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the asymmetric logistic model
with parameters α= 0.6 and ψ= (0.6,0.2) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.33 – Boxplots comparing second asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the asymmetric logistic model
with parameters α= 0.6 and ψ= (0.6,0.2) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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B.5. Joe model

B.5 Joe model

B.5.1 Case θ = 1/0.3
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Figure B.34 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the logistic model based on data simulated from the Joe model with
dependence parameter θ = 1/0.3 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.35 – Boxplots comparing dependence parameter estimates of the logistic
model based on data simulated from the Joe model with dependence parameter θ =
1/0.3 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for
several choices of threshold level p and number of excesses n. The dashed red lines
show the true parameter value.
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B.5. Joe model

B.5.2 Case θ = 1/0.55
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Figure B.36 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the logistic model based on data simulated from the Joe model with
dependence parameter θ = 1/0.55 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.37 – Boxplots comparing dependence parameter estimates of the logistic
model based on data simulated from the Joe model with dependence parameter θ =
1/0.55 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for
several choices of threshold level p and number of excesses n. The dashed red lines
show the true parameter value.
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B.5. Joe model

B.5.3 Case θ = 1/0.8
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Figure B.38 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the logistic model based on data simulated from the Joe model with
dependence parameter θ = 1/0.8 using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.39 – Boxplots comparing dependence parameter estimates of the logistic
model based on data simulated from the Joe model with dependence parameter θ =
1/0.8 using the ‘asymptotic’ (A), ‘penultimate’ (P), and ‘censored’ (C) approaches for
several choices of threshold level p and number of excesses n. The dashed red lines
show the true parameter value.
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B.6. Asymmetric Joe model

B.6 Asymmetric Joe model

B.6.1 Caseα= 1/0.2 andψ= (0.8, 0.8)
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Figure B.40 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the asymmetric logistic model based on data simulated from the Asym-
metric Joe model with parameters α= 1/0.2 and ψ= (0.8,0.8) using the ‘asymptotic’
(A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold
level p and number of excesses n.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.41 – Boxplots comparing dependence parameter estimates of the asymmetric
logistic model based on data simulated from the Asymmetric Joe model with param-
eters α = 1/0.2 and ψ = (0.8,0.8) using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n. The dashed red lines show the true parameter value.
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B.6. Asymmetric Joe model
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Figure B.42 – Boxplots comparing first asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the Asymmetric Joe model with
parameters α= 1/0.2 and ψ= (0.8,0.8) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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Appendix B. Simulation results for parametric fits of spectral distribution
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Figure B.43 – Boxplots comparing second asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the Asymmetric Joe model with
parameters α= 1/0.2 and ψ= (0.8,0.8) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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B.6. Asymmetric Joe model

B.6.2 Caseα= 1/0.4 andψ= (0.7, 0.5)
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Figure B.44 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the asymmetric logistic model based on data simulated from the Asym-
metric Joe model with parameters α= 1/0.4 and ψ= (0.7,0.5) using the ‘asymptotic’
(A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold
level p and number of excesses n.
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Figure B.45 – Boxplots comparing dependence parameter estimates of the asymmetric
logistic model based on data simulated from the Asymmetric Joe model with param-
eters α = 1/0.4 and ψ = (0.7,0.5) using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n. The dashed red lines show the true parameter value.
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Figure B.46 – Boxplots comparing first asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the Asymmetric Joe model with
parameters α= 1/0.4 and ψ= (0.7,0.5) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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Figure B.47 – Boxplots comparing second asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the Asymmetric Joe model with
parameters α= 1/0.4 and ψ= (0.7,0.5) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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B.6. Asymmetric Joe model

B.6.3 Caseα= 1/0.6 andψ= (0.6, 0.2)
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Figure B.48 – Boxplots comparing the integrated squared error of maximum likelihood
estimates of the asymmetric logistic model based on data simulated from the Asym-
metric Joe model with parameters α= 1/0.6 and ψ= (0.6,0.2) using the ‘asymptotic’
(A), ‘penultimate’ (P), and ‘censored’ (C) approaches for several choices of threshold
level p and number of excesses n.
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Figure B.49 – Boxplots comparing dependence parameter estimates of the asymmetric
logistic model based on data simulated from the Asymmetric Joe model with param-
eters α = 1/0.6 and ψ = (0.6,0.2) using the ‘asymptotic’ (A), ‘penultimate’ (P), and
‘censored’ (C) approaches for several choices of threshold level p and number of excesses
n. The dashed red lines show the true parameter value.
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A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.90, n = 100

Approach

ψ̂
1

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.95, n = 100

Approach

ψ̂
1

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.99, n = 100

Approach

ψ̂
1

A P C

0.
4

0.
6

0.
8

1.
0

p = 0.90, n = 1000

Approach

ψ̂
1

A P C

0.
4

0.
6

0.
8

1.
0

p = 0.95, n = 1000

Approach

ψ̂
1

A P C

0.
4

0.
6

0.
8

1.
0

p = 0.99, n = 1000

Approach

ψ̂
1

Asymmetric Joe
θ = 1/0.6, ψ= (0.6,0.2)

Figure B.50 – Boxplots comparing first asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the Asymmetric Joe model with
parameters α= 1/0.6 and ψ= (0.6,0.2) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.

141



Appendix B. Simulation results for parametric fits of spectral distribution

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.90, n = 100

Approach

ψ̂
2

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.95, n = 100

Approach

ψ̂
2

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.99, n = 100

Approach

ψ̂
2

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.90, n = 1000

Approach

ψ̂
2

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.95, n = 1000

Approach

ψ̂
2

A P C

0.
2

0.
4

0.
6

0.
8

1.
0

p = 0.99, n = 1000

Approach

ψ̂
2

Asymmetric Joe
θ = 1/0.6, ψ= (0.6,0.2)

Figure B.51 – Boxplots comparing second asymmetry parameter estimates of the asym-
metric logistic model based on data simulated from the Asymmetric Joe model with
parameters α= 1/0.6 and ψ= (0.6,0.2) using the ‘asymptotic’ (A), ‘penultimate’ (P),
and ‘censored’ (C) approaches for several choices of threshold level p and number of
excesses n. The dashed red lines show the true parameter value.
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