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Abstract

Under common processing conditions, both dilute and complex concentrated alloys are often

realized as random alloys, with no correlation in the occupancy of lattice sites by the con-

stituent atom types. The current thesis primary addresses two problems in random alloys,

namely (1) the application of concurrent multiscale modeling and (2) solute-strengthening.

For accurate functioning of a forced-based atomistic-continuum (a/c) couple, it is important

that the underlying material description of the two domains are the same near the a/c in-

terface. A/c coupling of random alloys violates this criterion since the atomistic domain is

inherently inhomogeneous with local fluctuations in atomic configuration and elastic stiffness,

while the continuum is defined with the average elastic constants of the alloy. The resulting

coupling errors are of the order of 100 MPa in long-range spurious stresses and spurious

stress fluctuations near the interface. Two methods of constructing the coupled problem are

proposed in this thesis to mitigate coupling errors. In Method 1, the pad atoms are relaxed

with respect to the atoms in the atomistics domain in the initial construction of the a/c couple,

which eliminates spurious stresses in absence of external loading. Negligible spurious stresses

(≈ 5 MPa) arise on loading the coupled problem. Method 2 replaces the random pad atoms

with average atoms, thus explicitly eliminating fluctuations in the pad region which causes

coupling errors. This methods also yield coupling errors of ≈ 5 MPa, which are negligible

relative to stresses arising in realistic mechanical problems of interest.

The latter part of the thesis deals with solute-strengthening in random alloys. In random

alloys, strengthening is caused by the pinning of dislocation segments in favourable solute

environments. The length scales of dislocation undulation and the energy barrier for unpin-

ning local segments are controlled by solute-dislocation interactions (SDIs) and solute-solute

interactions (SSIs). The SDIs are modeled as the interaction of solute misfit volume with dislo-

cation pressure field, under anisotropic elasticity assumption. Comparison of the anisotropic

theory with isotropic theory shows that the Voigt-averaged elastic constants best reproduce

the anisotropic predictions. SSIs are accounted for in the strengthening theory and it is found

to cause significant additional strengthening (≈ 70% at 10% Al) in dilute Ni(Al) alloys with

strong Al-Al repulsion, but only a negligible increase in strength (≈ 2%) in bcc MoNbTaW com-

plex alloy with larger solute misfit volumes and lower SSIs. Finally, the thesis also studies the
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role of short-range order (SRO) on alloy strengthening and predicts the average strengthening

due to SRO, in terms of solute pair interaction energies, the well-known Warren-Cowley SRO

parameters and alloy composition. The theory accounting for SRO is in progress, however,

the theory in its current state lays the groundwork for realizing the most comprehensive

strengthening theory for alloys of any compositional complexity.

Keywords: random alloys, atomistic-continuum coupling, dislocations, solute-strengthening,

anisotropic elasticity, solute-dislocation interactions, solute-solute interactions, short-range

order.
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Résumé

Dans des conditions de traitement courantes, les alliages concentrés dilués et complexes

sont souvent réalisés sous forme d’alliages aléatoires, sans corrélation dans l’occupation des

sites de réseau par le types d’atomes constitutifs. La thèse principale actuelle aborde deux

problèmes dans les alliages aléatoires, à savoir (1) l’application de la modélisation simultanée

à multiéchelles et (2) le renforcement des solutés.

Pour un fonctionnement précis d’un couple atomistique-continuum (a/c) forcé, il est impor-

tant que la description matérielle sous-jacente des deux domaines soit la même près de l’a/c

interface. Le couplage a/c d’alliages aléatoires viole ce critère car le domaine atomistique

est intrinsèquement inhomogène avec les fluctuations locales de la configuration atomique

et de la rigidité élastique, tandis que le continuum est défini avec les constantes élastiques

moyennes de l’alliage. Les erreurs de couplage qui en résultent sont de l’ordre de 100 MPa en

faux stress longue portée et les fluctuations de faux stress près de l’interface. Deux méthodes

de construction de problèmes couplés sont proposés dans cette thèse pour atténuer les erreurs

de couplage. Dans la méthode 1, le atomes de “pad” sont relâchés par rapport aux atomes dans

le domaine atomistique dans la construction initiale du couple a/c, ce qui élimine les faux

stress en l’absence de chargement externe. De faux stress négligeables (≈ 5 MPa) surviennent

lors du chargement du problème couplé. La méthode 2 remplace les atomes aléatoires par des

atomes moyens, éliminant ainsi explicitement les fluctuations de la zone de pad qui provoque

des erreurs de couplage. Ces méthodes donnent également des erreurs de couplage de ≈ 5

MPa, qui sont négligeables par rapport aux contraintes résultant de problèmes mécaniques

d’intérêt réalistes.

La dernière partie de la thèse traite du renforcement des solutés dans des alliages aléatoires.

Dans alliages aléatoires, le renforcement est causé par l’épinglage des segments de dislocation

dans des environnements solutés favorables. Les échelles de longueur de l’ondulation de

dislocation et la barrière d’énergie pour le détachement des segments locaux sont contrôlées

par les interactions soluté-dislocation (ISD) et les interactions soluté-soluté (ISS). Les ISD sont

modélisés comme l’interaction du volume de soluté inadapté avec champ de pression de dis-

location, sous hypothèse d’élasticité anisotrope. La comparaison de la théorie anisotrope avec

la théorie isotrope montre que les constantes élastiques à moyenne de Voigt reproduisent au

mieux les prévisions anisotropes. Les ISS sont pris en compte dans la théorie du renforcement

et il est constaté qu’elles provoquent un renforcement supplémentaire significatif (≈ 70% à
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10% Al) dans des alliages Ni(Al) dilutés avec une forte répulsion Al-Al, mais seulement une

augmentation négligeable de la résistance (≈ 2%) dans un alliage complexe MoNbTaW bcc

avec des volumes de soluté inadaptés plus grands et des ISS inférieures. Finalement, la thèse

étudie également le rôle de l’ordre à courte distance (OCD) sur le renforcement des alliages

et prédit le renforcement moyen dû au OCD, en termes d’énergies d’interaction de paires de

solutés, le paramètres connus de Warren-Cowley OCD et composition de l’alliage. La théorie

expliquant le OCD est en cours, cependant, la théorie dans son état actuel jette les bases pour

réaliser la théorie de renforcement la plus complète pour les alliages de toute complexité

compositionnelle.

Mots-clés : alliages aléatoires, couplage atomistique-continu, les dislocations, renforcement

de solutés, élasticité anisotrope, interactions soluté-dislocation, interactions soluté-soluté,

ordre à courte distance.
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Introduction

Alloying has been known to mankind since the Bronze Age as a way to improve the properties

of metals. The oldest-known alloy Bronze, formed by the addition of tin to copper, is a class of

ductile alloys with good thermal and electrical conductivity and corrosion resistance, which

has been used extensively by early civilizations to make sculptures and utensils. Brass is

another example of a copper-based alloy of high workability which has been used extensively

in myriad applications. Over the course of time the Bronze Age gave way to the Iron Age, with

the advent of steels, alloys of iron and interstitial carbon, which are stronger than bronze and

more durable. During the course of human civilization, alloying has been extensively used

to create strong, tough and durable structural materials. The demand for more advanced

alloys with other desirable mechanical properties such as creep resistance, resistance to

fatigue failure and corrosion keeps increasing, which is fueled by continuing advancements

in science and technology. Titanium alloys, nickel- and cobalt-based superalloys, zirconium

alloys have been developed for specialized structural applications for example in the blades of

gas turbines, in medical implants and in cladding of fuel rods in nuclear reactors.

Until recently, the paradigm of alloying was to add relatively small amounts of secondary

elements (solutes) to a primary element (host) e.g. aluminium to nickel, magnesium to

aluminium, chromium to nickel, etc. In contrast to this traditional practice of alloying, the past

few decades have seen a surge in research interest for developing alloys with multiple principal

elements in relatively high, often equiatomic, concentrations; this class of alloys is called

high(or medium)-entropy alloys, complex concentrated alloys, or simply multicomponent

alloys. Despite the complex composition, these alloys often form single face-centered cubic

(fcc) or body-centered cubic (bcc) phases without precipitates. As there is no one primary

element in these alloys, all the atoms can be considered as solutes embedded in an average

matrix acting as host, with average elastic and structural properties of the alloys. Notable

examples of complex concentrated alloys include the Cantor alloy (equiatomic CrMnFeCoNi)

and its variants (e.g. NiCoCr) and the refractory complex alloys (Ti-Zr-Hf-Nb-Ta-Mo-W-V

family of high- and medium- entropy alloys). These alloys show superior strength and fracture

toughness in comparison to tradition alloys, as evident from the Ashby plot in Figure 1, which

shows that the NiCoCr-based medium- and high-entropy alloys are among the most damage

tolerant materials on record.
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Figure 1 – Ashby plot of strength versus fracture toughness showing that NiCoCr-based
medium- and high-entropy alloys are among the most damage-tolerant materials on record.
(Extracted from Ref. [1])

Studying complex concentrated alloys can be challenging due to the vast combinatorial

possibilities in composition and constituent elements across the periodic table. Theoretical

models and efficient computational methods must supplement experiments to probe through

the vast combinatorial and compositional space of these complex alloys to find candidates

with desirable mechanical properties for various applications. However, modeling alloys, be

it dilute or complex concentrated, comes with an unprecedented challenge of dealing with

inherent compositional fluctuations in alloys. The general goal of the thesis is to address some

of the challenges in modeling alloys by mitigating the errors due to compositional fluctuations

in certain computational methods and to develop new theoretical models to predict strength

of alloys by carefully treating these fluctuations.

Compositional fluctuations in alloys are associated with length scales. As illustrated in Figure

2b, the concentrations of the constituent atomtypes converge to the ideal concentration for

the equiatomic ternary system, i.e. 1/3, with increasing system size following the Law of Large

Numbers. However, locally the concentration in a solute environment can be far from the
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ideal alloy composition, e.g. the high compositional fluctuation of the innermost box of atoms

in Figure 2a. A line defect in an alloy, for instance a dislocation or a crack front, is subjected

to a fluctuating solute environment along its length. The interaction between the defect and

solutes mechanically through the pressure field of the defect, and also chemically near the

defect core, is associated with length scales dictated by compositional fluctuations. These

lengths scales are associated with the undulation along the length of line defects or the spacing

of local energy minima encountered by the defect as it moves through the alloy. Any model,

whether theoretical or computational, which attempts to model defect behaviour in alloys, e.g.

dislocation emission from crack tip or dislocation glide, must consider these length scales.

1
2
3
4
5
6

(a) 2D schematic of a equi-atomic
ternary alloy

1 2 3 4 5 6
Increasing box size =⇒

0.20

0.25

0.30

0.35

0.40
C

on
ce

nt
ra

tio
n

(b) Compositional fluctuations in a ternary alloy

Figure 2 – Schematic showing decreasing fluctuation in alloy composition with increasing
system size.

Figure 3 compares the schematic depictions of the energy landscape of a gliding dislocation in

monoatomic elements and multicomponent alloys. Due to symmetry, the energy landscape

in elements has a corrugated pattern with periodic array of alternating ridges and grooves,

commonly known as the Peierls barriers and Peierls valleys respectively. A dislocation resting

in a Peierls valley, under stress and/or thermal excitation, makes a transition over a Peierls

barrier to the next Peierls valley (Figure 3a). In a multicomponent alloy, the energy landscape

is complicated due to the interaction of the dislocation with the surrounding compositional

fluctuations. The troughs and crests in the energy landscape are much deeper and elevated,

respectively, compared to the elemental landscape and the dislocation undulates in response

to the compositional fluctuations so as to have segments lying in the troughs of the energy

landscape to minimize total system energy (Figure 3b). More applied stress is required to

pull out a relaxed dislocation segment from a deeper tough and glide it over a crest, thereby

strengthening the alloy by impeding dislocation motion. The length scales in the composi-

tional fluctuations have translated into length scales associated with the undulations of the

dislocation line, which in turns influences alloy strengthening. The underlying fluctuating

energy landscape of a dislocation in an alloy (i.e. in Figure 3b) cannot actually be determined
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without defining some characteristic segment length of the dislocation line to estimate the en-

ergy cost/gain of its glide, thus emphasizing the importance of length scales in the mechanics

of alloys.

(a) Peierls valley for elemental crystalline solids

crest
trough

(b) Energy landscape for multicomponent alloys

Figure 3 – Schematic comparison of the energy landscape relative to a gliding dislocation in
(a) elements and (b) multicomponent alloys.

Another aspect of compositional fluctuation in context of defect behaviour in alloys, concerns

the range of influence. Since the pressure field of a dislocation or a crack front extends to

infinity, in principle every solute in the system interact with the defect. However, since the

elastic fields decay with distance from the defect and depending on the rate of decay, the

solute fluctuations no longer have a notable impact on defect behaviour beyond a certain

distance from the defect and one can forgo those far-away compositional fluctuations while

studying the defect behaviour. This makes it possible to study defects in alloys using concur-

rent multiscale modeling where the high deformation region around the defect is modeled

with atomistics and the far-field deformation is modeled with a less expensive continuum

approximation, like Finite Element method, with linear elasticity constitutive law. The fluc-

tuating solute environment around the defect is retained by the atomistics model whereas

the far-field continuum model is rid of all compositional fluctuations and is described by the

average elastic properties of the alloy. Replacing finer details of a problem with an average

description is called homogenization; the continuum model mentioned above is one example

of homogenization.
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This thesis explores certain problems involving fluctuations, length scales and homogenization

in alloys. There are two ways to address these problems, viz. (1) computational modeling

and (2) theoretical modeling. While simulating defect behaviour in a multicomponent alloy

the system size is a limiting factor since it dictates the computational cost. As previously

noted, using small system size for simulating defect behaviour will discard compositional

fluctuations that might have influence on the defect behaviour. In contrast, a very large system

size unnecessarily burdens the simulation with more details with little or no relevance to

the defect behaviour of interest. Suitably large domain around the defect is necessary to

retain the compositional fluctuations and the rest of the domain may be homogenized; the

homogenized domain acts a buffer for load transfer connecting the defect to a much larger

external environment. Coupling a homogenous continuum domain to an homogeneous

atomistic region of an alloy presents problems which are unseen in the concurrent multiscale

modeling of monoatomic crystalline systems. The first part of this thesis addresses these

problems and suggest ways to mitigate them.

The other part of this thesis deals with a theoretical framework to predict the strengthening

in alloys due to the solute fluctuations around gliding dislocations. The critical length scales

associated with an undulated dislocation in an alloy and also the critical energy quantities

involved in approximating the rough energy landscape (i.e. in Figure 3b) are identified. The

length scales associated with dislocation undulation are then used as inputs for a mesoscale

model of solute-strengthening for predicting the critical resolved shear stress for dislocation

glide. Such a theoretical framework, albeit rife with assumptions and approximations, captures

the physics well, and therefore can help in efficiently scanning through the vast combinatorial

and compositional space of high-entropy alloys, and thereby supplement experiments in the

search of new alloys with better, more desirable mechanical properties.

The rest of this thesis is organized as follows. Chapter 1 introduces the relevant topics in further

detail and existing literature on concurrent atomistic-continuum coupling and theories for

solute-strengthening are reviewed. Chapter 2 discusses the methods used in this thesis.

The main chapters of this thesis are grouped into two parts: one dealing with concurrent

multiscale modeling and the other with the theory of solute-strengthening. Part I has one

chapter (Chapter 3) dealing with atomistic-continuum coupling of random alloys. Part II has

three chapters — Chapter 4 explores the role of elastic anisotropy on solute-strengthening

of random alloys, Chapter 5 modifies an existing solute-strengthening theory for random

alloys to incorporate the effect of solute-solute interactions and Chapter 6 proposes a new

solute-strengthening theory for alloys with short-range order. Finally, conclusions and open

questions and directions for future research are discussed in Chapter 7 and 8 respectively.
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1 Background

Structural applications of metal alloys have a long history due to their significant enhancement

and control of mechanical properties such as flow strength, ultimate strength, and toughness,

as compared to pure elemental metals. Engineering alloys typically fall into two classes.

Random or solid-solution alloys have a single-phase crystalline structure but with the alloying

elements randomly occupying the lattice sites. Precipitate-strengthened alloys consist of

ordered intermetallic precipitates with a well-defined unit cell that are embedded inside a

matrix material (which itself is often a dilute random alloy). Intermediate to these two limits

are alloys with some short-range order, i.e. not truly random but without long-range order.

The understanding and prediction of the properties of random alloys has seen a resurgence

due to the emergence of High Entropy Alloys (HEAs), which are random single-phase crys-

talline alloys with 5 or more elemental components all at non-dilute concentrations. While

some HEAs may be unstable due to precipitate formation, the existence of stable or metastable

random phases with high atomic complexity is common. Also, some single-phase HEAs are

not entirely random, but show short-range order due to strong underlying solute-solute inter-

actions. Random alloys are nonetheless often obtained because fabrication by annealing at

high temperatures in the solid solution state followed by rapid quenching prevents the devel-

opment of order. The main focus of the thesis is on random alloys, which have applications

in, for instance, the automotive (e.g. Al-Mg alloys), aerospace(Ni-Al γ matrix of the Ni-based

superalloys), and marine(Cu-Ni alloys) industries and also includes the promising medium

and high-entropy alloys with enhanced strength and fracture toughness.

The thesis explores two problems concerning random alloys: (1) atomistic-continuum cou-

pling of these alloys for accurate and efficient study of mechanics boundary value problems

where it is essential to capture atomistic phenomena in some localized region of the random

alloy, for instance problems involving dislocations and cracks; and (2) the solute-strengthening

in random alloys due to pinning of dislocation segments in favourable solute environments

which lowers the total potential energy of the alloy.

This chapter will review the relevant existing literature for (1) concurrent multiscale methods
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Chapter 1. Background

and (2) solute-strengthening in random solid solutions. No prior application of any concurrent

multiscale method to random alloys is known to the author; so the review of concurent

atomistic-continuum coupling will be generic.

1.1 Concurrent multiscale modeling methods

Concurrent multiscale modeling methods aims at reducing the computational cost of mod-

eling a problem with atomistics by resolving only small, strategically chosen sub-domains

of the problem with atomistics and coarse-graining/homogenizing the rest of the problem

domain; the target is to obtain the same results as classical molecular statics (MS) or molecular

dynamics (MD) simulations at a fraction of the computational cost. Figure 1.1 illustrates the

strategy using a specific example of nanoindentation.

Ni

Cu

X Y0
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(a) Full atomistics
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(b) Atomistics coupled with finite elements

Figure 1.1 – Demonstration of a concurrent multiscale strategy in problems with localized
deformation; in this example a nanoindentation experiment. Figure (a) highlights the “interest-
ing” atoms in a full atomistics simulation where plasticity has taken place through dislocation
motion. Figure (b) shows a concurrent multiscale implementation where the “interacting”
atoms are retained while the rest of the problem domain is coarse-grained with finite elements,
assuming linear elasticity as constitutive law. Since the percentage of “interesting” atoms
is quite small in the entire problem domain, the relevance of a multiscale coupling in such
context is overly apparent. (Adapted from Ref. [2])

A number of concurrent multiscale methods has been proposed in the literature, a detailed

review of which is beyond the scope and purpose of this thesis; interested readers are rec-

ommended the following review articles for a comprehensive understanding of the subject

[2, 3, 8–10]. This section aims at introducing the broad classes of concurrent multiscale meth-

ods which will provide the readers with a concise overview of this vast field of research and will

also help the readers in understanding the references to these methods in the later chapters of

this thesis.

A common way to construct a concurrent multiscale problem is domain-decomposition fol-

lowed by displacement coupling (Figure 1.2), where the problem domain is first decomposed
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1.1. Concurrent multiscale modeling methods

in an atomistics sub-domain and a continuum sub-domain1. The continuum domain is gen-

erally solved using the method of finite elements (FE). At the interface of the two sub-domains,

there is an overlap region called the “pad” where information is transferred across the two

sub-domains via “displacement coupling” (Figure 1.2). In the pad region the atoms and nodes

(of FE) are constrained to move together, thus enforcing a displacement coupling across the

interface. Since the continuum constitutive deformation law is generally local, only a layer

of interface nodes is tied to the respective interface atoms. On the contrary, the interatomic

potentials dictating the deformation behaviour of the atomistics domain are non-local and

therefore the pad atoms extend into the continuum domain covering the range of interatomic

interactions and are tied to the respective nodes, the continuum degrees of freedom (DOFs).

This one-to-one displacement coupling of atoms and nodes in the pad region is referred to as

“strong compatibility” and requires fine-meshing the continuum in the pad region. To avoid

this extra effort, some multiscale methods employ “weak compatibility” where the displace-

ment boundary conditions in the pad region are enforced in some average sense or with some

type of penalty method approach; however such methods are generally less accurate [8].

Figure 1.2 – The generic form of the atomistic-to-continuum transition region for concurrent
multiscale methods with domain-decomposition. Filled atoms are the atoms right on the
interface, which coincide with a set of FE nodes in the continuum. The ‘pad’ atoms serve only
as a neighbour environment to the atoms in the atomistic and interface regions. For many of
the methods, some or all of the ‘pad’ atoms are chosen to coincide with nodes in the mesh.
(Extracted from Ref. [3])

1in future the “sub-” of “sub-domain” will be dropped for brevity when referring to atomistics or continuum
sub-domains.
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Chapter 1. Background

The energy of FE region is given by

ΦF E =
elements∑

µ
wµVµWµ

(
Fµ(p)

)
−

nodes∑
i

fi ·pi (1.1)

where wµ are weights we will discuss shortly, Vµ is the volume of elementµ and Wµ is the strain

energy density function. It depends on the deformation gradient Fµ, which is turn depends on

only the displacements of the nodes, p = {p1, p2, . . . , pn}, where wi is the displacement vector

of node i . The deformation gradient within elementµ is fully determined by the displacements

of the nodes defining the element, due to the local nature of the FE formulation. The second

sum is the potential of the external forces, fi applied to the nodes i .

In the atomistic domain, the atoms are presumed to interact via some interatomic potential

that can be decomposed into an atom-by-atom contribution to the total potential energy.

Only a few studies has attempted to couple atomistics modeled by first principles to FE

where decomposition of total potential energy into atom-by-atom contribution is not possible

[11, 12]; we will not discuss this case over here. Assuming the decomposition is possible, the

energy of the atomistic domain is given by

ΦA =
atoms∑

i

(
Ei (q)− fi ·qi

)
(1.2)

where qi is the displacement of atom i and Ei is the potential energy contribution of atom i .

The summation is over the atoms which are DOFs, which excludes the pad atoms; however

the potential energy contributions Ei of atoms in the vicinity of the atomistic-continuum

interface depends on the pad atom displacements.

Concurrent multiscale methods can be broadly classified based on (1) the general formulation

of the multiscale problem, which categorizes the methods based on whether or not a well-

defined total energy functional exists for the full problem domain and (2) the homogenization

strategy, primarily concerning the way in which the energy density functional Wµ is defined.

Broadly, there are two ways to formulate a concurrent multiscale problem which constitutes

the (1) the energy-based methods and (2) the force-based methods. The energy-based methods

define a total energy functional, ΦA +ΦF E , for the full problem domain and minimize this

energy functional in the case of statics problem or derive forces by differentiating the total

energy functional with respect to the DOFs and use those forces to evolve the problem’s

DOFs in time in the case of dynamics problem. The force-based methods prescribe a force

scheme for DOFs of the coupled problem that is physically motivated, and then either solve

for configuration of atoms and nodes for which the forces are zero (in statics) or evolve the

system in time complying to the prescribed scheme of forces (in dynamics). This can be

done by obtaining the atomistic forces by differentiating the atomistic energy functional

ΦA with respect to the corresponding atomistic DOFs and by obtaining the nodal forces in

the continuum by differentiating the continuum energy functional ΦF E with respect to the
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1.1. Concurrent multiscale modeling methods

corresponding nodal DOFs. In the energy-based methods, the weights wµ in Equation 1.1

are one except for the elements near the coupling interface, where the weights are positive

fractions since part of those elements’ energy contribution is accounted for by the interface

atoms. For force-based methods, wµ is taken unity for all elements while calculating nodal

forces by differentiatingΦF E .

In the energy-based methods, Newton’s third law is violated near the coupling interface if the

numerical approximation to continuum deformation behaviour is local, which is often the

case. This leads to unphysical deformation near the coupling interface, and the spurious forces

responsible are referred to as “ghost forces”. Ghost force corrections have been attempted

by explicitly calculating the spurious forces after constructing the energy-based multiscale

problem and deadloads are added to the affected DOFs to nullify the spurious forces [13].

This procedure corrects for the ghost forces explicitly in absence of any deformation; however

the ghost forces change under loading, so the ghost force correction with fixed deadloads is

associated with an indeterminate error under deformation of the problem domain. One can

re-compute the ghost forces and correct for it with deadloads occasionally, however in that

case there is no longer a well-defined energy functional for the problem and one has basically

moved to the realm of ‘force-based methods’. Some implementations have used non-local

elasticity theory to model the continuum FE which automatically eliminates the ghost-forces

[14]. Also different cluster-based non-local quasicontinuum methods have been developed

which either reduces or eliminates the ghost forces [15, 16].

Unlike energy-based methods, the problem of ghost forces does not arise in force-based

methods and Newton’s third law is satisfied throughout the problem domain since the coupled

multiscale problem is constructed as such with a prescribed force scheme. However, unlike

energy-based methods there is no well-defined total energy functional in the force-based

methods and the system is non-conservative. This can lead to unphysical ‘equilibrium’ solu-

tions which correspond to saddle points or maxima (rather than minima) on some unknown

energy surface and the lack of well-defined energy functional can be problematic in dynamic

systems. However these methods can be reasonably robust if used carefully.

Different concurrent multiscale methods employs different homogenization strategies. The

simplest homogenization technique using FE is to have local constant-strain elements, with

linear elasticity as the constitutive law. In coupled atomistic/dislocation-dynamics (CADD)

[17–19], assumption of linear elasticity in the continuum domain is instrumental for taking

advantage of the principle of superposition for performing dislocation-dynamics. In the

energy-based quasicontinuum (QC) method [13], the strain energy density functional Wµ in

Equation 1.1 is modeled using the Cauchy-Born approximation — constant-strain elements

are used and the energy density of any element µ with deformation gradient Fµ(p) is given by

the potential energy density of an infinite atomistics system deformed with Fµ(p). Note that

with the Cauchy-Born approximation the constitutive law is non-linear but the formulation is

still local. There are cluster-based non-local quasicontinuum methods [15, 16], which approxi-

mates the energy or the forces at any node with clusters of carefully chosen sampling atoms. In

11



Chapter 1. Background

these methods, a subset of all the atoms in a fully atomistic problem is chosen which are called

representative atoms (or rep-atoms). Regions where the rep-atoms are chosen to full atomistic

resolution are basically the atomistic sub-domains and the rest of the problem domain with

sparse population of rep-atoms is for homogenization/coarse-graining — therefore the transi-

tion from fully resolved to coarse-grained is seamless for the cluster-based methods. Shape

functions associated with the rep-atoms are used to interpolate the atomic displacements

with the rep-atom displacements, the latter being the DOFs. Besides the rep-atoms, another

subset of atoms is chosen called the sampling atoms which may or may not be the same as

the set of rep-atoms. There are two approaches to cluster-based formulation. In the one

proposed by Knap and Ortiz [15], atomistic forces on the sampling atoms are calculated, they

are weighted by appropriate weighting factors, then the shape functions are used to inter-

polate these weighted atomistics forces of the sampling atoms into the respective rep-atom

forces which are then used for statics or dynamics simulation. This approach falls under the

“force-based” paradigm since it starts off with a prescription for the rep-atoms forces and

therefore doesn’t suffer from spurious forces by construction but lacks a well-defined energy

functional[16]. The other cluster-based approach [16, 20] calculates the weighted average of

the energies of the sampling atoms using appropriate weights, differentiates it with respect

to atomic displacements to get the forces on each atom in the system and then interpolate

these forces with shape functions to obtain the respective rep-atom forces. This method has a

well-defined energy functional but suffers from force artifacts if the sampling atoms are not

carefully chosen [16]. The weight associated with any sampling atom in either method, is

related to the number of “missing atoms” in the vicinity of the sampling atom which the latter

has replaced, as a part of the coarse-graining protocol. Finally, besides affine interpolation

used in the original QC method, a number of other interpolation schemes have been proposed

which includes higher-order polynomial shape functions, smoothed-particle-based meshless

interpolation schemes and the more recent local maximum-entropy interpolation schemes in

a fully nonlocal energy-based formulation [21].

A critical requirement for a general multiscale model is the ability to adapt to an evolving

deformation. The QC method and the cluster-based methods allow for adaptive model

refinement, allowing the size and shape of the atomistically resolved subdomains to grow and

shrink in response to the evolution of the “interesting” microstructural features (see Figure

1.1). In the CADD method, the continuum domain is enhanced by a discrete dislocation (DD)

framework, allowing dislocations which nucleate in atomistics to move into the continuum,

where they are modeled as computationally less expensive elastic defects which can then

evolve under mutual elastic interactions, complying to some phenomenological mobility law

[17–19].

As discussed so far, at zero temperature, there are a variety of well-established and reasonably

accurate methods of coupling atomistics to a homogenized description. However the move

to treating finite temperature leads to additional complications. Nevertheless, any errors or

inefficiencies present in the static implementation of a coupled method will remain in the

dynamic setting. Indeed some of the multiscale methods may be better suited than others to
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1.2. Solute-strengthening

address the dynamic issues; which is why the implementation of these methods for dynamic

problems has been more dependent on the application in mind. Two principle concerns

presented by dynamic problem in context of concurrent multiscale implementation are the

wave reflections and thermostats [2]. If the system is evolved using forces calculated by

differentiating the total energy functional or the individual energy functionals of each domain,

the short-wavelength phonons present in the atomistics domain will not be supported by the

coarse-grained continuum, causing them to get reflected back at the coupling interface and

get trapped in the atomistics. The wave reflection problem is made worse by our explicit goal

in multiscale models: to make the atomistic domain as small as possible and to represent

the continuum domain as coarsely as we can. Secondly, a thermostatted MD simulation

implementated in a multiscale fashion to study near-equilibrium problems, must account

for the entropy of the “missing atoms” in the coarse-grained region. Various approaches

have been developed to modify the total potential energy functional by taking account of the

entropic contribution of the “missing atoms” [22, 23]; these approaches show good agreement

to direct MD simulations for studying the temperature-dependence of structural and elastic

properties of single-crystal and defect nucleation.

This section reviewed the existing concurrent multiscale techniques. So far, none of the

methods have been applied to random multicomponent alloys. Chapter 3 demonstates the

problems faced in standard force-based coupling of random alloys using simple toy problem

assuming linear elasticity as continuum constitutive law and using constant-strain FE mesh

for the continuum domain. Solutions to these problems are proposed, studied and validated

against both dilute and medium-entropy alloys. Concepts from this study can be borrowed

and extended to other multiscale methods, which has been discussed in Chapter 8.

1.2 Solute-strengthening

Single-phase solid solutions can be broadly classified into substitutional and interstitial alloys.

In substitutional alloys, solutes replace the principle element in some lattice sites, for instance,

Al in Ni matrix for the γ-phase in Ni-based superalloys. MEAs and HEAs are also substutional

alloys in which atoms, considered as solutes embedded in an average matrix, are arranged in a

crystal structure. On the contrary, in interstitial alloys the solutes are not on lattice sites, but

occupy interstitial voids, for instance, carbon in steels occupies the octahedral voids. In this

thesis, we will only focus on solute-strengthening in substitutional alloys.

Theories of solute strengthening in substitutional alloys can be classified into two categories,

strong-pinning and weak-pinning, each with its own characteristic scaling with concentration

and temperature. The strong-pinning theory (Friedel[24], Fleischer[25, 26]) considers the

solute atoms in the plane of the dislocation as independent point obstacles that pin the disloca-

tion, which bows out in the regions between the solutes. On the other hand, the weak-pinning

model (Mott [27] and Labusch [28, 29]) considers the interaction of the dislocation with a

collective solutes environment surrounding the dislocation, and attributes strengthening
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Chapter 1. Background

to the occurence of favorable statistical fluctuations in the solute configuration, when each

individual solute alone would not be strong enough to pin the dislocation at the same stress

level.

Strengthening in alloys is controlled by strong-pinning at cryogenic low temperatures and

low concentrations of solutes. The transition between the two strengthening mechanisms is

a function of temperature, solute concentration and the dislocation core structure. Except

for the most highly localized dislocation cores, the Labusch model has been found to control

the strengthening in random alloys for concentrations greater than ∼ 10−4 and temperatures

greater than 78K [30]. We would focus on Labusch-type models in the thesis, since at tem-

peratures and concentrations relevant for engineering applications and for most dislocation

core structures found in metal alloys, the Labusch model is expected to be the controlling

strengthening mechanism.

A Labusch-type model envisions an intially straight dislocation in a random solute environ-

ment which is allowed to relax and undulate in the glide plane in order to minimize the

potential energy. The undulation causes an increase in dislocation line length which is asso-

ciated with an elastic energy cost, and so the typical configuration of the dislocation is that

which minimizes the total energy as a function of the wavelength ζ and amplitude w of the

dislocation roughening/undulation. Such characteristic length scales of dislocation roughen-

ing then characterizes the spacing between successive energy minima that the dislocation

segments sample while gliding through the alloy (Figure 3b). The temperature and strain-rate

dependent flow stress of the alloy is then dictated by the energy barrier that the segments have

to overcome to go from one minima to the next.

In his original theory, Labusch developed the strengthening model by considering only the

solutes in the glide plane to interact with the dislocation, although the concept is really

three-dimensional in nature. If we think of the interaction as the dislocation pressure field

times the solute misfit volume, then the solutes near the glide plane interacts weakly with an

edge dislocation since the pressure field along the glide plane is zero for elastically isotropic

solid. Whereas solutes few layers away from the glide plane in vicinity of the dislocation

will interact stronger mechanically. Furthermore, the Labusch’s theory assumes an arbitrary

cut-off parameter for capturing the spatial range of interaction of solutes with the dislocation.

A new parameter-free strengthening model has been developed by Leyson et. al [31, 32] based

on the general physical picture of Labusch that predicts the finite-temperature flow stress. This

new theory takes into account all the solutes in the system and does not assume any arbitrary

interaction cut-off. The theory has been validated against simulations and experiments across

many random alloy systems [4, 33]. The solute-strengthening models proposed in this thesis

derive concepts from the Leyson’s theory for random alloys and therefore this theory will be

discussed in further detail in this section.

Leyson’s theory of solute-strengthening first envisions a wavy dislocation in a random alloy

having a wavelength 4ζ and amplitude w as shown in Figure 1.3.
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1.2. Solute-strengthening

Figure 1.3 – Schematic of the low-energy wavy configuration of the dislocation as it moves
through the random field of solutes in a random alloy (Extracted from Ref. [4]).

The potential energy change when a straight dislocation segment of length ζ glides a distance

w is given by,

∆Ep (ζ, w) =∑
i

∑
n

sn
i

(
U n

sd (xi −w, yi )−U n
sd (xi , yi )

)
where, i ∈ {all lattice sites} and n ∈ {all atomtypes} (1.3)

where sn
i is the site occupation variable which takes value 1 if site i is occupied by atomtype n

and 0 otherwise. U n
sd (xi , yi ) is the interaction energy of a solute of type n at (xi , yi ) with the

straight dislocation line along z-axis passing through the origin.

In a random alloy, (1) the probability that site i is occupied by atomtype n is cn , the concen-

tration of type n in the alloy and (2) the occupancy of site i by atomtype n is independent of

the occupancy of any other site j by an atomtype m, where m can be same as n. Thus in a

random alloy, the average change in potential energy ∆Ep (ζ, w) is

〈∆Ep (ζ, w)〉 =∑
i

∑
n
〈sn

i 〉
(
U n

sd (xi −w, yi )−U n
sd (xi , yi )

)
=∑

n
cn

(∑
i

U n
sd (xi −w, yi )−∑

i
U n

sd (xi , yi )

)
= 0 (1.4)

since the sum of interaction energies over all lattice sites remains unchanged when the inter-

action energy map is translated by w . The above result shows that no nett configurational

force acts on the dislocation hindering its motion in a random alloy. Then how strengthening

in the alloy can be achieved by the fluctuations in solute environment?

Dislocation segments get pinned locally in favourable solute environment while attaining

a minimum energy wavy configuration, as idealized in Leyson’s theory with wavelength 4ζ

and amplitude w of roughening. Then it takes stress and/or thermal activation to unpin the

dislocation segments and resume glide. The potential energy decrease when any dislocation
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Chapter 1. Background

segment of length ζ glides a distance w to get pinned at a favourable solute fluctuation is

typically −σ∆Ep , the standard deviation in ∆Ep (ζ, w). However this glide is associated with a

elastic energy cost due to increase in line length of the transition segments (refer Figure 1.3),

which is Γw2/2ζ for w ¿ ζ, where Γ is the dislocation line tension. Therefore the total energy

change for a dislocation of length L to undulate from a straight line to a wavy configuration of

the fashion depicted in Figure 1.3 is given by,

∆Etot(ζ, w) =
(
Γ

w2

2ζ
−σ∆Ep (ζ, w)

)(
L

2ζ

)
(1.5)

We can extract out from σ∆Ep the explicit dependence on dislocation segment length ζ by

writing σ∆Ep = (ζρL)
1
2∆Ẽp(w) where ρL is the density of lattice sites along the dislocation line

direction. ρL equals 1/(
p

3b) for fcc alloys and 1/(2
p

2b) for bcc alloys. The quantity ∆Ẽp(w)

is the standard deviation of the energy change, per periodic length along the dislocation

line, when the dislocation glides a distance w . Using the facts that (1) in random alloys the

occupancy of site i by atomtype n is independent of the occupancy of any other site j by an

atomtype m, where m can be same as n and (2) the sum rule
∑

n cnU n
sd = 0 holds for all sites,

one can derive the following form of ∆Ẽp(w),

∆Ẽp(w) =
(∑

n
cn

∑
i

(
U n

sd (xi −w, yi )−U n
sd (xi , yi )

)2

) 1
2

(1.6)

A characteristic wavelength and amplitude (ζc , wc ) emerge by minimizing the total energy

∆Etot of the long dislocation with respect to both ζ and w . The length ζc is obtained directly as

ζc =
(

4Γ2w4

ρL∆Ẽ 2
p(w)

) 1
3

(1.7)

The amplitude wc then follows from a second minimization ∂∆Etot(ζc (w),w)
∂w = 0 that reduces to

the solution of

∂∆Ẽp(w)

∂w
= ∆Ẽp(w)

2w
(1.8)

For split dislocation cores with large partial separation, the above minimization gives two

solutions for wc . One solution has a high zero-T strength and low zero-stress barrier, and

controls the strength at lower temperatures. The second solution has a lower strength and

higher barrier and controls the strength at higher temperature.

The total reduction in energy per length ζc , ∆Ec =∆Etot(ζc , wc ) 2ζc
L , then sets an energy scale

for pinning of the dislocation. However∆Ec is not the energy barrier for determining thermally

activated motion of the dislocation since it is the typical energy change on moving from one

arbitrary point to another point wc glide distance away. On the contrary, the energy barrier is

the local maximum in energy which a dislocation pinned in a local minima (typically −σ∆Ep )
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1.2. Solute-strengthening

has to overcome to reach the next local minimum in a fluctuating energy landscape (Figure

3b). The length scale wc along the glide plane sets the glide distance between local favorable

and unfavorable solute environments. The local potential energy landscape is modeled as

a sinusoidal function: with minimum located at x = 0 along the glide direction, the energy

of the segment of length ζc at position x is E (x) =∆E ′
b/2(1−cos(πx/wc )) with ∆E ′

b =p
2σ∆Ep .

The potential energy barrier ∆E ′
b is larger than σ∆Ep by

p
2, because the average barrier is the

potential energy difference between the average minimum and the average maximum, not

the average minimum and the zero energy level. The total energy barrier ∆Eb corresponds

to the potential energy cost of moving from a favorable to an unfavorable potential energy

fluctuation over a glide distance wc , minus the gain in the elastic line energy Γw2
c /2ζc , given

by

∆Eb =∆E ′
b −Γ

w2
c

2ζc

= 1.467
(
ρL w2

cΓ∆Ẽ 2
p(wc )

) 1
3

(1.9)

Having determined that the dislocation segments of length ζc pinned in typical energy minima

with barriers of height ∆Eb over a glide distance wc away, we can now use standard analyses

of thermally activated dislocation motion to determine the finite-T and strain-rate dependent

yield stress, as follows. When the material is subjected to an applied resolved shear stress τ,

the energy landscape E (τ, x) must be modified to include the work done by the applied stress,

and so becomes

E(τ, x) = ∆Eb

2
(1−cos(πx/wc ))−τζc bx (1.10)

An applied resolved shear stress τ= τy0 needed to glide the dislocation at T=0K would be such

that the modified energy landscape E (τy0, x) will no longer have a minimum or a maximum in

[0, wc ] but will have an inflection point at x = x̂. To determine the T=0K yield stress, we take

the first and second derivatives of E(τ, x), set both of them to zero and solve the two resulting

equations for (τy0, x̂) as follows,

∂E(x,τ)

∂x

∣∣∣∣
(x̂,τy0)

= π

2

∆Eb

wc
sin

(
πx̂

wc

)
−τy0bζc = 0 =⇒ τy0 = π

2

∆Eb

bζc wc
sin

(
πx̂

wc

)
∂2E(x,τ)

∂x2

∣∣∣∣
(x̂,τy0)

= π2

2

∆Eb

w2
c

cos

(
πx̂

wc

)
= 0 =⇒ cos

(
πx̂

wc

)
= 0 (Inflection at x = x̂ = wc /2)

∴ τy0 = π

2

∆Eb

bζc wc
(1.11)
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The T=0K yield stress τy0 can be simplified using Equations 1.7 and 1.9 as follows,

τy0 = 1.45

(
ρ2

L∆Ẽ 4
p(wc )

Γb3w5
c

) 1
3

(1.12)

The stress-dependent energy barrier height ∆E(τ) can be approximated (within 6%) by [34]

∆E(τ) ≈∆Eb

(
1−

(
τ

τy0

)) 3
2

(1.13)

In combination with an Arrhenius law for the thermal activation, Equation 1.13 leads to a

temperature T and strain-rate ε̇ dependent flow stress given by

τy (T, ε̇) = τy0

(
1−

(
kBT

∆Eb
ln

(
ε̇0

ε̇

)) 2
3

)
(1.14)

where ε̇0 ∼ 104s−1 and kB are a reference strain rate and Boltzmann’s constant, respectively.

With increasing temperature and at stresses below ≈ 0.5τy0, waviness on multiple scales

becomes important [35, 36], but these details are not important for the thesis.

With Equations 1.9, 1.12 and 1.13, Leyson’s theory of solute strengthening predicts the zero-

stress energy barrier, T=0K yield stress and the temperature/strain-rate dependent flow stress

respectively, for random alloys.

The key input to the theory are the solute-dislocation interaction energies for solutes occu-

pying different lattice sites, which enters the theory as the normalized energy fluctuation

quantity∆Ẽp(w). The solute-dislocation interaction energies can be determined by atomistics

using semi-empirical potentials or first-principle methods such as DFT. A less computationally

expensive way of calculating these interaction energies is by assuming linear elasticity, which

then reduces the interaction energy at any site to the product of the pressure at that site due to

dislocation and the solute misfit volume, i.e. U (xi , yi ) = p(xi , yi )∆Vn . In the seminal works by

Leyson et. al [31, 32], Leyson computed solute-dislocation interaction energies by first princi-

ples at lattice sites adjacent to the split dislocation core in fcc Al for six solutes. Interaction

energies for all other sites were calculated using the linear elasticity assumption. A smooth

transition between the DFT-computed interaction energies and the ones computed using the

pressure field of uniformly spread dislocation core under linear elasticity assumption, was

reported. Inspired by this result, Varvenne et. al [4] developed a reduced model for elastically

isotropic solid where linear elasticity is used to compute interaction energies. In the reduced

model, the key energy fluctuation quantity ∆Ẽp(w) take the following form,

∆Ẽp(w) = g

(
w,

db

d x

)
µ

1+ν
1−ν

√∑
n

cn∆V 2
n (1.15)
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where g (w, db/d x) is a structure factor which depends on the dislocation roughening amplitude

w and the Burger vector distribution db/d x, which in turn is characterized by a double-

Gaussian centered around each Shockley partial in fcc as schematically depicted in Figure 1.4.

µ and ν are the shear modulus and Poisson’s ratio respectively and ∆Vn is the misfit volume of

solute n. Ref. [4] reported that wc and g for this reduced model does not depend critically on

partial core separation for dp > 10b. The yield stress τy0 is sensitive to partial core spreading σ.

However, a good agreement was reported [4] between the values of τy0 computed by using the

reduced elasticity model with σ= 1.5b and those obtained with DFT-computed interaction

energies. Therefore it is recommended to use σ= 1.5b with the reduced elasticity model.

p p

Figure 1.4 – Burger vector distribution in fcc with split dislocation cores. dp is the distance
between the two Shockley partials and σ is the partial core spreading (Adapted from Ref. [4]).

The reduced model under elasticity assumption has the advantage that it relies on fundamental

material and solute properties: elastic constants Ci j , dislocation Burgers vector b, stable

and unstable stacking fault energies γssf and γusf, dislocation line tension Γ,and the solute

misfit strain tensor εmisfit
i j in the alloy. First-principles methods can compute all of these

quantities, even in the highly-complex HEAs [37]. On the other-hand, mechanical tests are

often carried out on polycrystals, and supplemented by TEM analyses, to obtain experimental

values of properties like the average isotropic elastic constants, Burgers vector (and lattice

constant a), and stacking fault width of the dissociated partials that arise in fcc crystals, from

which γssf can be deduced. The solute misfit volumes ∆V = εmisfit
i i a3/4 for fcc alloys can be

determined in principle from lattice constant measurements on alloys of varying composition.

Thus, if the elasticity approximation is accurate then the theory can be used to rationalize

existing experimental measurements and to predict properties of new alloys via the use of

first-principles computations on candidate alloys [37, 38]. In Chapter 4 we are going to revisit

the reduced model and examine the role of anisotropic elasticity in solute-strengthening of

random alloys .

Till now, we have discussed solute-strengthening in alloys, where different alloy constituents

are distributed randomly on lattice sites. However there are evidences of local chemical
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ordering in alloys, due to underlying solute-solute interactions in the alloy [39–42]. It has

been claimed that short-range order (SRO) has notable effect on the stacking fault energy and

tensile yield strength of alloys [41, 43]. In analogy to the formation of antiphase boundary in

ordered stoichiometric phases on passage of dislocation, it has been demostrated by Fisher

[44] that high energy planar fault also forms in partially ordered alloys due to destruction

of local order, thus giving rise to strengthening. Attempts have been made to estimate this

average strengthening effect based on nearest-neighbour (NN) bond energy model [44] and

also to relate it to Warren-Cowley SRO parameters for first NN interactions [45] and second

NN interactions [46]. According to [45] strengthening due to SRO goes to zero in case of

random alloys. However, Leyson’s model shows that strengthening due to fluctuating solute

environment exists for random alloys due to solute fluctuations over characteristic length

scale ζc of the dislocation. Recently, Ref. [47] proposed an extension of the Leyson-Varvenne

solute-strengthening model to include the effects of SRO, however in their model the statistics

of solute-solute interactions across the glide plane has not been correctly accounted for. In

Chapter 6, we are going to propose a new solute-strengthening model to predict yield strength

of alloys with short-range order. The new theory reverts to the strengthening model for random

alloys in absence of short-range order.
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2 Methods

This chapter introduces the reader to the methods used in this thesis. Section 2.1 discusses

molecular statics calculations with semi-empirical potentials which is used primarily in

Chapter 3 for atomistic-to-continuum coupling and in Chapters 4 and 5 for calculating solute

misfit volume and interaction energy of a solute pair in an alloy. The semi-empirical potentials

used in this thesis are of Embedded-atom (EAM) type, the latter is also discussed in this section.

The section also discusses an average-atom approximation which is relevant for calculating

solute misfit volume and solute pair interaction energies in a random alloy and has also been

used in Chapter 3 for atomistic-continuum coupling of random alloys. Section 2.2 gives a

general introduction to Finite Element method (FEM) for solving the equilibrium equation in

solid mechanics with Dirichlet and Neumann boundary conditions. Finite elements methods

is used in Chapter 3 for atomistic-continuum coupling where the continuum domain is

approximated with FEM. Then force-based atomistic-continuum coupling is discussed in

Section 2.3. Molecular statics calculation of solute misfit volume is discussed in Section

2.4. Section 2.5 discusses the mechanical interaction of two defects in an infinite linear

elastic medium and then discusses the specific cases of solute-dislocation and solute-solute

interactions in both elastic isotropic and anisotropic media. The mechanical interaction of

a solute with a dislocation depends on the pressure field of the dislocation at the location

of the solute. The pressure field of a dislocation in an anisotropic medium does not have

a closed form solution for a general dislocation line orientation with respect to the Burgers

vector, so Section 2.6 discusses the sextic and Stroh formalism of calculating the pressure field

in anisotropic solids. Since the mechanical interaction of a solute pair is negligible, if at all

present, the more relevant chemical interaction energy of two solutes needs to be computed

using molecular statics, which is discussed in Section 2.7. Finally, Section 2.8 introduces some

basic concepts in probability theory which are used quite often in Chapters 5 and 6.

21



Chapter 2. Methods

2.1 Atomistic calculations with Classical Potentials

2.1.1 Energy minimization

In molecular statics, an atomistic system is first constructed where atoms are arranged in

a simulation cell in an initial configuration of atomic positions and then one solves for the

configuration that corresponds to a local minimum in the potential energy landscape of

the atomistic system. The optimization problem is equivalent to finding the configuration

where the force on every atom is zero. Energy minimization is also referred to as relaxation

of the atomistic system. In this thesis, we are interested in metallic systems, where the total

potential energy of the atomistic system is described by semi-empirical many-body potentials

of “Embedded atom method” (EAM) type (discussed in the following section). The EAM

potentials are nonlinear and the energy landscape will be complicated with numerous local

minima. Therefore the solution of energy minimization depends on the initial configuration

of the atomic positions. There are several algorithms for energy minimization, out of which

the conjugate gradient method and the Fast inertial relaxation engine (FIRE) implemented in

the open-source molecular dynamics simulator LAMMPS[48, 49] are used in this thesis.

Boundary condition imposed on the simulation cell plays an important role in relaxation.

For example, when periodic boundary condition is imposed on any pair of opposite sides of

the simulation cell, one can adjust the simulation cell size in that direction to nullify normal

pressure in that direction. This is done with the help of the box/relax fix implemented in

LAMMPS. If periodic boundary condition is imposed in all directions then one can also

change the box shape and volume with the help of this fix to nullify all stress components. This

fix is useful for the calculation of lattice constant and solute misfit volume which is discussed

in Section 2.4.

2.1.2 Embedded atom method

The Embedded atom method (EAM) was developed by Daw and Baskes[50, 51] to create a

semi-empirical many-body interatomic potential for metallic systems for studying hydrogen

embrittlement in metals and various defects in transition metals. The EAM potential is more

accurate than the pair potentials used earlier.

In this method, each atom in the system is viewed as an impurity in a host consisting of all

other atoms and the embedding energy of an impurity is determined by the electron density of

the host before the impurity is added. It is also assumed that the impurity experiences a locally

uniform electron density due to atoms in its surroundings and to a first-order approximation

it is taken as the sum of electron density contributed by each of those neighbouring atoms.

Thus the local electron density of the host at site i is given by,

ρi =
∑
j 6=i

∑
y

s y
j ρy

(∥∥ri j
∥∥)

(2.1)
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2.1. Atomistic calculations with Classical Potentials

where the summation is over neighbouring sites j and s y
j is the occupation variable which is 1

if site j has atomtype y or 0 otherwise. ρy is the electron density of atomtype y and ri j is the

vector joining sites i and j and ‖·‖ is the Euclidean norm.

The core-core repulsion is assumed to take the form of a short-range pairwise repulsion

between the ion cores which is given by Vx y
(∥∥ri j

∥∥)
, which is repulsion between atomtypes x

and y at sites i and j respectively.

The total energy of the system under the EAM approximation is given by,

Etot =
∑

i

∑
x

sx
i Fx (ρi )+ 1

2

∑
i , j

i 6= j

∑
x,y

sx
i s y

j Vx y
(∥∥ri j

∥∥)
(2.2)

where Fx is the embedding energy of atomtype x which depends on the host electron density

at site i .

A related semiempirical potential was proposed by Finnis and Sinclair for transition metals[52],

where the local electron density of the host at site i also depends on the atom type occupying

site i as follows,

ρx
i = ∑

j 6=i

∑
y

s y
j ρx y

(∥∥ri j
∥∥)

when sx
i = 1 (2.3)

The embedding energy functional of local electron density Fx (ρi ) is non-linear function which

makes these semi-empirical potentials of many-body type. Finnis and Sinclair assumed it to

be square-root of the electron density which is indeed a novelty. The square root captures

the dependence of atomic interactions on the local density: as the number of neighbors of

an atom decreases, the strength of the remaining bonds increases. This immediately predicts

an inward relaxation at metallic free surfaces with a tensile surface stress, both of which

are widely observed but not predicted by models in which the cohesive energy is just a sum

of pair potentials[53]. The assumption of square root for embedding function is inspired

by tight-binding theory of metallic cohesion and most semiempirical potential of EAM or

Finnis-Sinclair type has square root in their embedding function.

Since the pair potential V and the electron density ρ are radially symmetric, the EAM repre-

sents a reasonable approximation for materials without preferred bond angles, such as the

FCC metals.

2.1.3 Average-atom approximation for random alloys

Random alloys are multicomponent crystalline solids where the occupancy of any lattice site

by an atom type is independent of the atomtypes in the other lattice sites. The average-atom

theory is a mean field approximation for random alloys, where a fictituous single-component

potential called “average atom” is developed from the multicomponent potential for the
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random alloy, which approximates the average total potential energy of the random alloy.

Therefore this approximation can be used to predict average bulk properties of a random

alloy, like lattice constants and elastic constants, while avoiding computationally expensive

calculations for these average properties using explicit random alloys with actual atomtypes

— the latter needs large simulation cell size for convergence of the bulk properties to an

average. This approximation gives good predictions for average defect properties, like surface

energy, stable stacking fault energy, misfit volume of a solute in random alloy and solute-solute

interaction energy [54]. In this thesis, this approximation is used for atomistic-continuum

coupling of random alloys in Chapter 3.

For a random alloy described by EAM potential, the total potential energy of the alloy for any

particular arrangement of atomtypes on lattice sites is given by Equation 2.2 in the previous

section. The average total potential energy of a random alloy is given by,

〈Etot({sx
i })〉 =∑

i

∑
x
〈sx

i Fx (ρi )〉+ 1

2

∑
i , j

i 6= j

∑
x,y

〈sx
i s y

j 〉Vx y
(∥∥ri j

∥∥)
(2.4)

where 〈·〉 is the expectation operator.

In a random alloy, the probability of any site i to be occupied by atomtype x is given by cx

which is the concentration of atomtype x in the alloy. Therefore the expectation sx
i = cx for

all site i and atomtype x. Since the occupancies of different lattice sites by atomtypes are

independent, the expectation of the product of occupation variables 〈sx
i s y

j 〉 can be decoupled

as 〈sx
i 〉〈s y

j 〉 for all i 6= j . Using the above expectation expressions, Equation 2.4 can be simplified

as follows,

〈Etot〉 =
∑

i

∑
x
〈sx

i 〉〈Fx (ρi )〉+ 1

2

∑
i , j

i 6= j

∑
x,y

〈sx
i 〉〈s y

j 〉Vx y
(∥∥ri j

∥∥)
(
Since the electron density ρi does not have sx

i

)
=∑

i

∑
x

cx〈Fx (ρi )〉+ 1

2

∑
i , j

i 6= j

∑
x,y

cx cyVx y
(∥∥ri j

∥∥)
(2.5)

With the expectation 〈Fx (ρi )〉 is approximated as Fx (〈ρi 〉) and the average electron density at

site i is given by,

〈ρi 〉 =
∑
j 6=i

∑
y
〈s y

j 〉ρy
(∥∥ri j

∥∥)
(refer Equation 2.1)

= ∑
j 6=i

∑
y

cyρy
(∥∥ri j

∥∥)
(2.6)
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2.2. Static equilibrium in solid mechanics and Finite Elements Method

the average atom (or A-atom) potential of EAM type is defined as

FA
def= ∑

x
cx Fx , ρA

def= ∑
y

cyρy and VA A
def= ∑

x,y
cx cyVx y (2.7)

which gives E A
def= 〈Etot〉 =

∑
i

FA

(∑
j 6=i

ρA
(∥∥ri j

∥∥))+ 1

2

∑
i , j

i 6= j

VA A
(∥∥ri j

∥∥)

For calculation of defect properties like misfit volume and solute pair interaction energy, it is

necessary for the average atom to interact with the real atomtypes. In that case, we define the

pair interaction between a real atomtype x and the A-atom as

Vx A
def= ∑

y
cyVx y and therefore, VA A

def= ∑
x

cxVx A (2.8)

The average atom approximation was first proposed by Smith et. al [55] and then validated

against true random alloys by Varvenne et.al [54].

2.2 Static equilibrium in solid mechanics and Finite Elements Method

Figure 2.1 – A continuum domainΩwith Dirichlet boundary condition over ∂Ωu with specified
displacement u0 and Neumann boundary condition over ∂Ωt with traction T (n).

Let us consider a solid defined by domainΩ and subjected to Dirichlet and Neumann bound-

ary conditions as illustrated in Figure 2.1. In absence of any body force and inertial force over

the domainΩ, the solid is said to be under mechanical equilibrium if the following condition

is satisfied at every point of theΩ,

σi j , j = 0 ∀i = 1,2,3 (2.9)
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where σi j are the components of stress tensor and , j is the partial derivative w.r.t to spatial

coordinate x j . Here, Einstein summation rules for repeated indices applies. The above

equation is called the “equilibrium equation” and it is a differential form of writing force

balance. Static equilibrium is further ensured by Dirichlet (or displacement ) boundary

condition, which specifies the displacement at the boundary.

Components of stress tensor are functions of the displacement field u(x), where x ∈ Ω. A

symmetric strain tensor can be defined in terms of displacement field as follows,

εkl
def= 1

2
(uk,l +ul ,k ) (2.10)

The generalized Hooke’s law then relates the components of stress to the components of strain

εkl linearly as follows,

σi j =Ci j kl εkl (2.11)

where Ci j kl are elastic constants which form a fourth-rank tensor called the “elastic modulus

tensor”.

Due to different symmetry considerations, the elastic modulus tensor has the following sym-

metry properties,

Ci j kl =C j i kl and Ci j kl =Ci j lk and Ci j kl =Ckl i j (2.12)

which reduces the maximum number of independent elastic constants in the tensor to 21.

Using Equations 2.10 and 2.11 and the symmetry property Ci j kl =Ci j lk , one can rewrite the

generalized Hooke’s law in terms of displacements as follows,

σi j =Ci j kl uk,l (2.13)

The equilibrium equation in Equation 2.9 can be rewritten as,

Ci j kl uk,l j = 0 ∀i = 1,2,3 (2.14)

The above second order differential equation can be written in weak form which can be then

solved numerically for displacements using Finite Element Method (FEM), discussed below.

We first augment Equation 2.14 with test functions vi (x) and then take integral as follows,∫
Ω

Ci j kl uk,l j vi d 3x = 0 (2.15)
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2.2. Static equilibrium in solid mechanics and Finite Elements Method

Using integration by parts, the above equation reduces to the weak form,

−
∫
Ω

Ci j kl uk,l vi , j d 3x +
∫
Ω

Ci j kl (uk,l vi ), j d 3x = 0

Applying divergence theorem to the second term,

Weak form −
∫
Ω

Ci j kl uk,l vi , j d 3x +
∮
∂Ω

Ci j kl uk,l vi n j dS = 0 (2.16)

where ∂Ω is the boundary surface of the domainΩ and n j is the j th component of the normal

to the surface ∆S on the boundary.

The test functions vi (x) are chosen such that they are zero at ∂Ωu (See Figure 2.1). So the weak

form turns out to be,

Weak form −
∫
Ω

Ci j kl uk,l vi , j d 3x +
∮
∂Ωt

Ci j kl uk,l vi n j dS = 0 (2.17)

Applying symmetry property Ci j kl =C j i kl to the first term in Equation 2.17, the weak form

can be expressed in terms of stress and strain and surface traction T (n)
i as follows,

−
∫
Ω
σi j (u) εi j (v ) d 3x +

∮
∂Ωt

T (n)
i (u) vi dS = 0 (2.18)

where, T (n)
i (u) =σi j (u)n j

The above equation of weak form is consistent with the Theorem of Minimum potential energy,

if in the sense of variations, the test functions vi are considered arbitrary small variations in

displacements δui known as virtual displacements.

For solving the weak form with FEM [56], we first mesh (or discretize) the domainΩ in non-

intersecting elements. The vertices of elements are called nodes. If there are n nodes we

choose n trial functions φ1,φ2, · · · ,φn , one for each node, such that φk = 1 at node k and zero

at all other nodes (local trial functions). We then express the displacement ui at any point in

Ω as a linear combination of the trial functions, as
∑n

p=1 U p
i φ

p , where U p
i are the coefficients

which we will be solving using the weak form. We also need to choose n test functions, which

we choose to be the same as the trial functions φp ’s in the Galerkin method. Following the

discretization with trial functions, the weak form in Equation 2.17 turns into a system of 3n

equations with 3n unknowns U p
i in three-dimensions,

−
n∑

p=1

3∑
k=1

U p
k

∫
Ω

Ci j kl φ
p
,l φ

q
, j d 3x︸ ︷︷ ︸

K pq
ki

+
∮
∂Ωt

T (n)
i (u)φq dS︸ ︷︷ ︸

F q
i

= 0
q=1,2,··· ,n
i=1,2,3

(2.19)

Let U be a 3n size vector with components U p
k and K be a 3n ×3n matrix with elements K pq

ki
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and F be a 3n size vector with force components F q
i . Note that the traction T (n)

i (u) over the

domain boundary ∂Ωt is a input to the FEM. In matrix form the discretized form of the weak

form can then be written as,

K pq
ki up

k = F q
i ⇐⇒ KU = F (2.20)

where K is known as the stiffness matrix. Using symmetry propery Ci j kl =Ckl i j , one can show

that matrix K is symmetric; this is also an outcome of using the same trial functions as test

functions. Note that Equation 2.20 resembles the equilibrium condition for a system of n

nodes in three dimensions, connected by linear springs.

In Chapter 3 constant-strain tetrahedral elements are used to mesh the continuum domain

[57]. The matrix K will be highly sparse — for any node p the only nonzero K pq entries are for

nodes q which share a common element will node p. In this thesis, the open-source library

DOLFIN [58, 59] has been used to compute the stiffness matrix, and open-source parallel

sparse direct solver MUMPS [60, 61] is used to solve the system of linear equations (2.20).

Since the trial functions are local, all interior nodes which are not on the domain boundary

∂Ωwill have zero entries in F. The entries in the F vector for boundary nodes in ∂Ωt can be

computed with the surface integral in Equation 2.19.

To deal with the Dirichlet boundary condition, the matrix equation (2.20) is representated as

follows with partitioned matrices and vectors,[
K′ K0

K0 K′′

][
U′

U0

]
=

[
F′

F0

]
(2.21)

where U0 are the prescribed displacements at the nodes on the boundary ∂Ωu with Dirichlet

boundary condition. We solve for U′ by solving the following system of linear equations,

K′U′ = F′−K0U0 (2.22)

F0, corresponding to boundary nodes in ∂Ωu , can then be computed with the solution of U′,
using F0 = K0U′+K′′U0.

Note that boundary nodes cannot have prescribed tractions and prescribed displacements

simultaneously, or in other words, ∂Ωu and ∂Ωt cannot overlap.

In Chapter 3 we have also used periodic boundary condition (PBC). Figure 2.2 demonstrates

the situation for a 1D rod discretized with 5 nodes. For finite length, the end nodes has different

stiffness compared to the interior nodes. On the contrary, the infinite rod represented with 5

nodes with PBC on the end nodes, shows the all the nodes has the same stiffness; it is in fact

expected since in case of PBC there is no real boundary to the overall problem.
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simulation length

image nodes

(a) Finite rod (b) Infinite rod

[ [ [ [
Figure 2.2 – Illustration of the periodic boundary condition in 1D and the resulting stiffness
matrix with nonzero entries.

2.3 Force-based atomistic-continuum coupling

Force-based a/c coupling is built upon the idea of domain decomposition [62]. A given bound-

ary value problem is decomposed into an atomistic domain where full atomistic resolution is

desired and a continuum domain where elastic deformations are deemed sufficiently accurate.

Figure 2.3 shows a schematic of the decomposition, with notations described below. The two

domains interact mechanically via an overlap region. The atomistic system includes so-called

pad atoms that are slaved to the deformation of the continuum. Conversely, the atom posi-

tions along the atom/continuum interface define a displacement boundary condition for the

deformations in the continuum domain.

The atomistic and continuum domains have independent energy functionals E A and EC , re-

spectively. The atomistic energy functional depends on the true atom positions (rA), including

those atoms along the atom/continuum interface and denoted by I with positions (rI), and

the positions of the pad atoms (rP) that are considered part of the atomistic system. The

continuum energy functional depends on the interface atom positions (rI) as boundary nodes

and the nodal positions (rC) of the (discretized) continuum domain. Any other force and

displacement boundary conditions acting on degrees of freedom rA or rC in each domain

can be included in the standard manner discussed in Sections 2.1.1 and 2.2. The equilibrium

solution of a given boundary value problem specified on the total domain of the problem is

then achieved, in principle, by an iterative process of (i) solving the atomistic problem while

holding the pad atoms fixed, which generates new interface positions (rI), (ii) solving the

continuum problem for the nodal degrees of freedom rC, (iii) computing the pad atom posi-

tions rP by interpolation of the nodal positions, and (iv) returning to solve the new atomistic

problem with the new pad atom positions. In practice, the iterative approach is not necessary

[63, 64] but it aids in conceptualizing the solution process.
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Pad atoms/
nodes

Interface nodes/
atoms

atoms

Continuum nodes

Figure 2.3 – Schematic illustration of force-based relaxation of a/c couple. The problem
domain is decomposed into atomistic and continuum sub-domains,ΩA andΩC respectively.
In the overlap region, the pad atoms derive their displacements uPuPuPuPuPuPuPuPuPuPuPuPuPuPuPuPuP from the underlying
continuum nodes and the interface nodes derive their displacements uI from the interface
atoms. Equilibrium equations for the two sub-domains are solved simultaneously, with
traction and displacement boundary conditions (t over ∂Ωt and u over ∂Ωu respectively).

In application to elemental crystals having a Bravais lattice, the reference state for both

atomistic and continuum domains, including the pad region, is the stress-free perfect lattice

structure. Creation of the initial structure is then straightforward where the atoms in the

atomistic domain are arranged in a crystalline structure and the surrounding continuum

domain is discretized using Finite Elements. It is also common, for accuracy, to refine the

discretization of the continuum domain down to the atomic scale in the pad region. Pad atoms

then also correspond to continuum nodes, and there is no need to interpolate continuum

nodal positions to the pad atom sites.

2.4 Solute misfit volume

In Part II of this thesis dealing with solute-strengthening in alloys, the solute-dislocation

interaction energy is estimated using linear elasticity assumption where the solute misfit

volume interacts mechanically with the pressure field of the dislocation. The solute misfit

volumes, used as inputs, are calculated using molecular statics (performed with LAMMPS)

with EAM interatomic potentials and the Average atom method (Section 2.1.3). A simulation

cell is first constructed with all the lattice sites occupied by average atoms corresponding to

the random alloy. Periodic boundary conditions are imposed on all sides. Care has been taken

so that the periodic boundary condition does not create a stacking fault on any face of the

simulation cell. Also, the simulation cell size conforms to the average lattice parameter of

the random alloy which is also the average atom lattice parameter — so the simulation cell

is under zero pressure by construction. One average atom in the centre of the simulation

cell is replaced with a solute atom of the random alloy. Energy minimization is performed

allowing the simulation cell to change volume in order to attain zero pressure (Section 2.1.1).
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2.5. Interaction of two defects in an infinite linear elastic medium

The change in volume of the simulation cell as a result of energy minimization and pressure

relaxation is noted, which in turn is the misfit volume of the corresponding solute. Misfit

volumes of all the solutes (constituents) of the random alloy are computed using the same

procedure described above. The relaxation of the simulation cell volume to zero pressure is

performed using the “fix box/relax” implemented in LAMMPS.

2.5 Interaction of two defects in an infinite linear elastic medium

Part II of this thesis calculates the solute-dislocation and solute-solute interaction energies,

which plays an important role in the strengthening of alloys. The interaction of two defects

has a mechanical component that can be computed using linear elasticity theory and a

chemical/nonlinear component, which decays with increasing distance between the two

defects. In this section we will be deriving the expression for mechanical interaction energy

of two defects in an infinite elastic medium. Then specific cases of solute-solute and solute-

dislocation interaction energies will be discussed.

Figure 2.4 – A domainΩ in an infinite linear elastic medium bounded by ∂Ω, which contain
two sub-domainsΩ∗

1 andΩ∗
2 with eigenstrains ε1,∗ and ε2,∗.

A defect is associated with an eigenstrain, which does not arise due to externally applied trac-

tion. Figure 2.4 shows two defects in an infinite elastic medium, which are regionsΩ∗
1 andΩ∗

2

with eigenstrains ε1,∗ and ε2,∗. Each defect in its reference stress-free state is associated with a

strain ε1,∗ and ε2,∗ (which is not an elastic strain), at every point in Ω∗
1 and Ω∗

2 respectively.

When embedded in an elastic matrix, the eigenstrain of the defect induces elastic strain and

stress fields at every point inside and outside the defect. The domain Ω in Figure 2.4 is an

arbitrary region containing the two defects.

Let σ1,el
i j be the components of the elastic stress field due to defect 1 in the infinite linear

elastic medium if defect 2 didn’t exist, that is ε2,∗
i j = 0; likewise let σ2,el

i j be the elastic stress field

if ε1,∗
i j = 0. ε1,el

i j and ε2,el
i j are the corresponding elastic strain fields. The total strain is a sum of
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the elastic strain and the eigenstrain,

εtot
i j = εel

i j +ε∗i j (2.23)

Using principle of superposition, the total strain energy inside the domainΩ can be decoupled

into the strain energies due to defect 1 and 2 individually in absence of the second defect, plus

an energy of interaction of the two defects,

W = 1

2

∫
Ω

(σ1,el
i j +σ2,el

i j )(ε1,el
i j +ε2,el

i j )dV

= 1

2

∫
Ω
σ1,el

i j ε1,el
i j dV + 1

2

∫
Ω
σ2,el

i j ε2,el
i j dV + 1

2

∫
Ω

(σ1,el
i j ε2,el

i j +σ2,el
i j ε1,el

i j )dV (2.24)

where the last term in the second equation is the interaction energy. Using the symmetry

relation for elastic stiffness tensor Ci j kl =Ckl i j (see Equation 2.12), one can show σ1,el
i j ε2,el

i j =
σ2,el

i j ε1,el
i j .

Therefore the interaction energy of two defects in an infinite linearly elastic medium is given

by,

Eint =
∫
Ω
σ1,el

i j ε2,el
i j dV =

∫
Ω
σ2,el

i j ε1,el
i j dV (2.25)

We can rewrite the interaction energy in term of eigenstrain using the relation in Equation

2.23 as follows

Eint =
∫
Ω
σ1,el

i j ε2,tot
i j dV −

∫
Ω
σ1,el

i j ε2,∗
i j dV

And since ε2,∗
i j is zero everywhere outsideΩ∗

2 ,

Eint =
∫
Ω
σ1,el

i j ε2,tot
i j dV −

∫
Ω∗

2

σ1,el
i j ε2,∗

i j dV (2.26)

The first term can be further simplified using integration by parts and equilibrium condition

as ∫
Ω
σ1,el

i j ε2,tot
i j dV =

∫
Ω
σ1,el

i j u2
i , j dV =

∫
Ω

(σ1,el
i j u2

i ), j dV −
∫
Ω�
��>

0
σ1,el

i j , j u2
i dV

Using divergence theorem,∫
Ω
σ1,el

i j ε2,tot
i j dV =

∫
∂Ω
σ1

i j n j u2
i d A =

∫
∂Ω

T 1
i u2

i d A

where , j in the subscript implies differentiation with respect to j . Note that we have dropped

the “el” from the superscipt of the stress field due to defect 1 since outsideΩ∗
1 , the stress field
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2.5. Interaction of two defects in an infinite linear elastic medium

is always elastic.

Therefore, the interaction energy of two solutes in an infinite linearly elastic medium turns

out to be,

Eint =−
∫
Ω∗

2

σ1
i jε

2,∗
i j dV +

∫
∂Ω

T 1
i u2,tot

i d A (2.27)

Note that the first term is independent of the choice of integration domain Ω as long as it

contains the two defects. The second term depends on the choice of the integration domain;

however if the domainΩ spans the entire three-dimensional space with no traction at infinity,

the second term goes to zero. So we will only consider the first term as the interaction energy.

The stress tensor can be decomposed into hydrostatic and deviatoric components as follows

σi j = pδi j + (σi j −pδi j ) (2.28)

where, p = pressure =−1

3
σi i

Similarly, the strain tensor can be decomposed into hydrostatic and deviatoric components

too as follows,

εi j = εvolδi j + (εi j −εvolδi j ) (2.29)

where, εvol = volumetric strain = 1

3
εi i

Using Equations 2.28 and 2.29, the interaction energy in Equation 2.27 can be further simplified

as follows,

Eint =
∫
Ω∗

2

p1ε
2,∗
vol dV +

∫
Ω∗

2

(σ1
i j −p1δi j )(ε2,∗

i j − 1

3
ε2,∗

volδi j )dV (2.30)

If defect 2 is a dilatational solute, which is a relevant case for the thesis, and we assume that

the regionΩ∗
2 is so small that the pressure field p1 of defect 1 is uniform withinΩ∗

2 , then we

can write the interaction energy as

Eint = p1

∫
Ω∗

2

ε2,∗
vol dV ≈ p1∆V2 (2.31)

where ∆V2 is the misfit volume of solute atΩ∗
2 .

Recalling Equation 2.25, one can also express the interaction energy as the product of the

pressure field of the second defect and the misfit volume of the first, therefore

Eint ≈ p1∆V2 = p2∆V1 (2.32)
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2.5.1 Elastic interaction of solute pair

Isotropic case

The elastic displacement field due to a centre of dilatation in an infinite isotropic medium [65]

u ∝ x

‖x‖3 (2.33)

Therefore, the volumetric strain ∇·u is zero everywhere except at the centre of dilatation and

so is the pressure. Therefore, recalling Equation 2.31 we can conclude that two dilatational

solute in an infinite isotropic medium do not interact.

Anisotropic case

The volumetric strain, and therefore the pressure, due to a centre of dilatation in an infinite

anisotropic medium is not zero outside of the centre of dilatation. Therefore dilatational

solutes interact with each other mechanically in an anisotropic medium. Eshelby has derived

the expression for the interaction energy of two dilational solutes of misfit volumes ∆V1 and

∆V2 in an infinite anisotropic medium of cubic symmetry as follows [66]

Eint = 15

4π
f C44

(
1− 1

A

)
Γ

r 3∆V1∆V2 (2.34)

where,

f =
1 for fcc

1/2 for bcc

A = Zener anisotropy ratio = 2C44

C11 −C12

r = Distance between the two solutes

Γ= l 4 +m4 +n4 − 3

5

(l ,m,n) = Direction cosines of the line joining the two solutes

It is well-known that Al-Al repulsion in Ni-Al alloys is strong, with Eint = 0.243 eV. The misfit

volume of Al in Ni is ∆VAl = 1.62 Å3, lattice parameter of Ni is aNi = 3.518 Å, elastic constants

of Ni are (C11,C12,C44) = (275,154,127) GPa. All these values are computed using DFT [67].

In fcc, the first nearest neighbour is along {110}-direction for which Γ = −0.1 and in Ni the

first nearest neighbour is at a distance r = aNi/
p

2 = 2.4876 Å. Substituting the above values in

Equation 2.34, we get the interaction energy due to mechanical interaction Eint =−0.00845 eV,

which is orders of magnitude lower than the DFT-computed value and the sign is opposite.

Therefore, we can conclude that elastic interaction between solutes in negligible and one

must perform atomistic simulation to accurately determine solute-pair interaction energy.

Section 2.7 discusses how to calculate solute pair interaction energy using molecular statics
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2.6. Elastic field of a straight dislocation in elastically anisotropic solid

and average-atom method for alloys described by semi-empirical interatomic potentials like

the Embedded Atom Method.

2.5.2 Elastic interaction of solute with dislocation

Recalling 2.31, the elastic interaction energy of a dilatational solute with a straight dislocation

is the product of the pressure due to the dislocation at the site with the solute and the misfit

volume of the solute. Calculation of solute misfit volume using molecular statics and average-

atom method for alloy has been discussed in Section 2.4. Using the principle of superposition

for linearly elastic solids, the pressure field of a straight dislocation with Burgers vector b

along the glide plane can be expressed as a sum of the pressure fields due the edge and screw

components.

The pressure due to an edge dislocation of Burgers vector magnitude be in an elastically

isotropic infinite medium, at a point r distance away from the dislocation which subtends an

angle θ with respect to the glide direction is given by

p(r,θ) = µbe

3π

(1+ν)

(1−ν)

sinθ

r
(2.35)

where µ and ν are the shear modulus and Poisson’s ratio respectively.

The pressure due to a screw dislocation in an elastically isotropic infinite medium is zero every-

where, which is why dilatational solutes do not interact elastically with the screw component

of a dislocation.

If the infinite medium is elastically anisotropy, calculation of dislocation stress field becomes

involved. In fact, except for certain slip systems meeting certain symmetry requirements, we

do not have closed form solution for the dislocation stress field [68]. Section 2.6 discusses the

methods for calculating the dislocation stress field in an infinite anisotropic medium for any

arbitrary orientation of the dislocation line and Burgers vector.

2.6 Elastic field of a straight dislocation in elastically anisotropic

solid

This section reviews the sextic theory and the Stroh formalism for deriving the displacement

and stress field of a straight dislocation in an anisotropic media. It is a brief review and

interested readers must refer Chapter 13 of Ref. [68] for more details.

Here we will be solving the equilibrium equation 2.14 stated in Section 2.2 with prescribed

constraints in displacement and traction as shown in Figure 2.5.
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0
0

(a) Constraint in displacement (b) Traction boundary condition

Figure 2.5 – Constraints in displacement field and tractions in a problem with an infinite
straight dislocation at the origin. The dislocation line vector ξ (not shown) is along e3 pointing
out of the page. bk is the kth component of the Burgers vector b. F/L is the net force per unit
length along the dislocation line acting on the surface of a rod parallel to the dislocation and
containing it, as shown in the figure with the contour.

First the basic steps for solving the equilibrium equation for the straight dislocation will be

discussed, following which the Stroh formalism will be introduced.

Step 1: Identification of the general form of the displacement field

The solution of the equilibrium equation (Equation 2.14) for the displacements uk will be of

the form,

uk = Ak f (η) (2.36)

where

η= x1 +px2 (2.37)

and where p and Ak are constants.

Step 2: Obtaining p and Ak

With the substitution of uk in Equation 2.14 and cancellation of common factor ∂2 f /∂η, the

equilibrium equation reduces to the form,

ai k Ak = 0 (2.38)

where

ai k = ci 1k1 + (ci 1k2 + ci 2k1)p + ci 2k2p2 (2.39)

The linear equations (2.38) have a nonzero solution for Ak only when the determinant of
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2.6. Elastic field of a straight dislocation in elastically anisotropic solid

the matrix {ai k } is zero, which in turn gives a sixth-order equation in p with roots pα (α =
1,2,3,4,5,6).

For each root pα there is a set of Ak (α) that satisfy Equations 2.38. What is relevant is the ratio

of the components of any {Ak (α)} vector.

The roots pα occur in pairs of complex conjugates. Ak (α) also occurs in corresponding pairs

of complex conjugates. So one just needs to consider three roots p1, p2, p3 and corresponding

Ak (1), Ak (2), Ak (3) and then Equation 2.36 becomes,

uk = Re

[
3∑

α=1
Ak (α) fα(ηα)

]
(2.40)

where Re mean the “the real part of”. The fα are three arbitrary analytic functions.

Step 3: Identification of the general functional form of f (η)

The stresses involve the derivatives d f /dη; like stresses, the functions d f /dη are also single-

valued and continuous except at the origin. A Laurent series of the form,

d f

dη
=

∞∑
r=−∞

a′
rη

r (2.41)

satisfies such criterion.

Integration of the relation (2.41) gives the functional form of f (η) as follows,

f (η) = D

2πi
lnη+

∞∑
r=−∞

arη
r (2.42)

The power series terms are not characteristics of a straight dislocation in an infinite medium,

so only the logarithmic term is retained in the subsequent discussion.

Step 4: Using the constraints in displacement and traction to find the only remaining unknown

D

The complex variable η can be expressed in Euler’s exponential form η= |η|e iθ, where θ is the

argument of η. Then lnη= ln |η|+ iθ.

∆uk in displacement constraint, shown in Figure 2.5, translates into lnη= i∆θ. If the imginary

part of p, Im(p) is positive, a counterclockwise path around the dislocation corresponds to

a counterclockwise path in the η complex plane. On the contrary, for a negative Im(p), a

counterclockwise path around the dislocation would be a clockwise path in the η plane. Thus

across the cut lnη=∓2πi which implies ∆ f =∓D .
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Therefore the constraint on displacement shown in Figure 2.5 becomes,

Re

[
3∑

α=1
∓Ak (α)D(α)

]
= bk k = 1,2,3 (2.43)

With Equations 2.43, we have three equations for six unknowns, the real and imaginary parts of

D(n) for n = 1,2,3. The other three equations are provided by the traction boundary condition

shown in Figure 2.5, the requirement that there is not net force on the dislocation core. If one

carries out the surface integral for the force per unit length and equals it to zero, the following

set of three equations can be derived with which we can obtain every D(n),

Re

[
3∑

α=1
∓Bi 2k (α)Ak (α)D(α)

]
= 0 i = 1,2,3 (2.44)

where, Bi j k (α) = ci j k1 + ci j k2pα

Using Equations 2.43 and 2.45, one can determine the real and imaginary parts of D(α) for

α= 1,2,3.

Step 5: Obtain expressions for displacement and stress field by substitution

Substituting the expression for f (η) in Equation 2.42 (and ignoring the power series terms) in

Equation 2.40, we get,

uk = Re

[
1

2πi

3∑
α=1

Ak (α)D(α) lnηα

]
(2.45)

σi j = Re

[
1

2πi

3∑
α=1

Bi j k (α)Ak (α)D(α) η−1
α

]
(2.46)

The steps described above is the sextic theory for solving the equilibrium equation for a infinite

system with a straight dislocation.

The Stroh formalism generalizes the sextic theory where the coordinates x1, x2 and ξ does not

need to align with e1,e2,e3. Also it provides an explicit expression for D(α).

First we define an orthonormal basis (m,n,ξ) different from (e1,e2,e3), such that coordinates

x1 and x2 points towards m and n respectively and ξ is the dislocation line direction such

ξ= m ×n.

For any point x with components defined with respect to (e1,e2,e3), the quantity η will be,

η= m · x +p n · x (2.47)
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Let the component of the elastic modulus tensor ci j kl be defined with respect to (e1,e2,e3).

We define a metric “()” such that (ab) j k = ai ci j kl bl .

Given the above definitions and general set-up, the matrix {ai k } in Equation 2.38 becomes

(mm)+[(mn)+(nm)]p+(nn)p2. Till now we have just rewritten quantities in the sextic theory

with change of basis.

The departure comes with the definition of a second vector L, related to A(= {Ak }) by

L =−[(nm)+p(nn)]A (2.48)

We also define a six-dimensional vectorζby combining A and L in the fashion {A1, A2, A3,L1,L2,L3}.

With these definitions, Equation 2.38 can be written as a six-dimensional eigenequation

N ·ζ= p ζ (2.49)

where, N =
[

−(nn)−1(nm) −(nn)−1

−[(mn)(nn)−1(nm)− (mm)] (mn)(nn)−1

]

which can then be solved for eigenvalues pα,α = 1,2, · · · ,6 and the corresponding Aα and

Lα. Notice the difference from the sextic theory (in Step 2), where we solved the sixth-order

equation for det({ai k }) = 0 to get the pα and Aα.

It can be shown that the following orthogonality relation holds between Aα and Lβ (where

α,β= 1,2, · · · ,6 are indexes over the six solutions of p),

Aα ·Lβ+ Aβ ·Lα = δαβ (2.50)

The orthogonality relation is a pivotal result of the Stroh formalism since it facilitates in getting

an explicit form for D(α).

The boundary conditions that the Burgers circuit has a discontinuity b and that there are no

external force at the dislocation core (Step 4) become,

6∑
α=1

∓D(α)Aα = b (2.51)

6∑
α=1

∓D(α)Lα = 0 (2.52)

Multiplying Equation 2.51 by Lβ and Equation 2.52 by Aβ, then summing and using the

orthogonality relation (2.50), we readily determine that,

D(α) =∓Lα ·b (2.53)
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Thus Stroh theory gives an explicit form for D(α). With D(α) known, the solution for the

displacement and stresses can be inferred from Equations 2.46 as follows (Step 5),

u = 1

2πi

6∑
α=1

∓Aα[Lα ·b] lnηα (2.54)

σi j = 1

2πi

6∑
α=1

∓ci j kl [ml +pαnl ]Ak (α)[Lα ·b] η−1
α (2.55)

2.7 Solute pair interaction energies

Interaction energy of solute pairs in a random alloy is an important quantity influencing

strengthening in certain alloys which will be discussed in Chapter 5. We have already seen in

Section 2.5.1 that mechanical interaction of a pair of solutes in insignificant, if any. The first

few neighbour interactions which tends to be significant must, therefore, be calculated using

molecular statics simulation (Section 2.1)

Interaction energy U i nt
x y (d) of a solute pair separated by distance d is the difference between

the energy of the systems, where the solute pair is separated by distance d and where they

have infinite(large) separation, embedded in an “average” medium.

U i nt
x y (d) = Ex y (d)−Ex y (∞) (2.56)

where Ex y (d) is the system energy where the solutes x and y are embedded in an average

medium and are separated by distance d (Here all the system energies are of systems with

same total number of atoms). The average medium is characterised by “average atoms”,

which are lattice sites where the associated energetics is averaged over random occupancy

of atomtypes conforming to the alloy compositon. Averaging can be performed explicitly

over many random realizations, which is generally computationally expensive depending

on the nature of the underlying interatomic interactions. Special quasi-random structures

(SQS) can be used instead of random realizations to expedite convergence of the average [69].

For pair interatomic potentials, the averaging can be done analytically. Even for empirical

potentials like the Embedded-atom method (EAM) with a many-body term, an “average atom”

potential can be analytically formulated in a mean-field approach [54] as discussed in Section

2.1.3. When the interaction potentials are described via first-principles, Coherent Potential

approximation[70] is used to describe the average medium. Therefore the interaction energy

is computable for all kinds of energetics describing the interatomic interactions. Another

computable energy quantity is the effective pair interactions, V e f f
x y (d), which has also been

used in Chapter 5. Effective pair interactions are defined as follows,

V e f f
x y (d) = Exx (d)+Ey y (d)−2Ex y (d) (2.57)

The effective pair potentials come out as pair-interaction terms while expressing the config-

urational energy of a random alloy to lowest order in the generalised perturbation method
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framework and has been used to study phase stability in binary and high-entropy alloys[5, 71].

Since Exx (∞)+Ey y (∞)−2Ex y (∞) = 0, one can readily deduce the following relation between

effective pair interactions and interaction energies,

V e f f
x y (d) =U i nt

xx (d)+U i nt
y y (d)−2U i nt

x y (d) (2.58)

Note that the above relation holds true irrespective of the energetics describing the interatomic

interactions.

In Chapter 5, we will need these pair interaction quantities for solute pairs across a stacking

fault. Like shown in Equation 2.56, difference of system energies is taken between system with

solutes at a specified separation and a system where they are far separated from each other.

However the stacking fault must pass in between the solute pairs in both the systems and the

distances of the two solutes from the stacking fault must be same in both the systems. The set

up is schematically presented in Figure 2.6

Stacking fault

Average atoms

Solutes at separation d

d

Solutes at large separation
(Reference configuration)

Figure 2.6 – Schematic of two the systems whose energy difference gives the interaction energy
for the solute pairs indicated here with red and blue atoms.

2.8 Elementary probability theory

In this thesis, we are studying random alloys which are multicomponent alloys with constituent

atoms randomly arranged on lattice sites. Some of the elementary concepts from probability

theory needed to study these systems are presented in this section. We will focus on discrete

random variables with finite set of outcomes which relevant for this thesis.

Random variables, events and probability

A random variable is a mapping from a set of possible outcomes, say Ω, to the set of real

numbers R. For example, when we toss a coin, we either get a head or a tail. “Getting a head”

and “getting a tail” are the two possible outcomes and you can define a random variable say X

which maps the outcomes to integers 1 and 0 respectively. So we say random variable X takes
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the value 1 when we drop a head and the value 0 for a tail.

An event is a subset of the set of possible outcomes. For example, if we roll a dice, there are six

possible outcomes and rolling an even number is then an event. Here we can define a random

variable X which takes the value of the number that has been rolled, i.e. from 1,2, . . . ,6; then

“X is even”, “X > 2”, etc. are all different events.

Probability is a measure assigned to every event which is a real number between 0 and 1. The

sum of probabilities of all the possible outcomes is always 1. For a fair dice, for instance, the

probability of rolling a number more than 3, P(X > 3), is 1/2.

Joint probability

If E1 and E2 are two events, then their joint probability P(E1,E2), is the probability of event

“E1 and E2”.

Mutually exclusive events

If two events E1 and E2 are mutually exclusive, then their joint probability is zero. Mutually

exclusive events are also called disjoint events.

If E1,E2, . . . ,En are n disjoint events such that
n⋃

i=1
Ei = Ω, where Ω is the set of all possible

outcomes, then
n∑

i=1
P(Ei ) = 1.

Independent events

If two events E1 and E2 are independent then their joint probability equals the product of their

individual probabilities.

P(E1,E2) = P(E1)P(E2) (2.59)

A set of n events {Ei : i = 1,2, . . . ,n} are mutually independent iff,

P (E1,E2, . . . ,En) =
n∏

i=1
P(Ei ) (2.60)

Independent random variables

Let X and Y be two random variables each with a finite number of possible outcomes

x1, x2, . . . , xn and y1, y2, . . . , ym respectively. The two random variables are said to be inde-

42



2.8. Elementary probability theory

pendent iff,

P(X = xi ,Y = y j ) = P(X = xi )P(Y = y j ) for all xi , y j (2.61)

Expectation or expected value

If X is a random variable with a finite number of possible outcomes x1, x2, . . . , xn occuring

with probabilities p1, p2, . . . , pn respectively, then the expectation of X is defined as,

〈X 〉 =
n∑

i=1
xi pi (2.62)

The expectation of the product of two independent random variables is the product of their

individual expectations, that is,

〈X Y 〉 = 〈X 〉〈Y 〉 iff X and Y are independent (2.63)

Variance and Covariance

Variance of a random variable X is

Var(X ) = 〈X 2〉−〈X 〉2 (2.64)

Covariance of random variables X and Y is

Cov(X ,Y ) = 〈X Y 〉−〈X 〉〈Y 〉 (2.65)

Notice that Cov(X , X ) = Var(X )

If X and Y are independent random variables, then Cov(X ,Y ) = 0.

Variance of sum of two random variable is given by

Var(X +Y ) = Var(X )+Var(Y )+2Cov(X ,Y ) (2.66)

Square root of variance is the standard deviation.
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Conditional Probability

Conditional probability of an event E1 given E2, denoted as P(E1|E2), is basically the probability

of event E1 to occur when event E2 has already occured. It is defined as,

P(E1|E2) = P(E1,E2)

P(E2)
(2.67)

One can easily deduce the Bayes’ theorem from the above definition as

P(E1|E2) = P(E2|E1)P(E1)

P(E2)
(2.68)

If events E1 and E2 are independent then P(E1|E2) = P(E1).

If {Bi : i = 1,2, . . . ,n} is a set of n disjoint events such that
n⋃

i=1
Bi =Ω, whereΩ is the set of all

possible outcomes, then the probability of any event A can be expressed as follows,

P(A) =
n∑

i=1
P(A∩Bi ) =

n∑
i=1

P(A|Bi )P(Bi ) (2.69)

The above statement is the law of total probability.

If X is a random variable with a finite number of possible outcomes x1, x2, . . . , xn and E is an

event, then the conditional expectation of X given E is given as,

〈X |E〉 =
n∑

i=1
xi P(X = xi |E) (2.70)
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Atomistic-to-continuum (a/c) coupling methods are a class of computational multiscale

schemes that combine the accuracy of atomistic models with the efficiency of continuum

elasticity. They are being utilized in materials science to study the fundamental mechanisms of

material failure such as crack propagation and plasticity, which are governed by the interaction

between crystal defects and long-range elastic fields.

The applicability of these methods to model defect behaviour (like dislocation nucleation from

crack tip) relies on the decaying nonlinear behaviour with increasing distance from the defect

core. Near the elastic singularity “interesting” nonlinear deformation and nucleation events

take place which needs to be resolved with atomistics, while a continuum approximation with

linear elasticity constitutive law can be employed to describe the far-field deformation.

Random alloys are multicomponent systems rife with compositional fluctuations, where every

atom can be conceptualized as solute of a certain type embedded in an average medium

with average elastic properties of the alloy. The defect interacts with these fluctuating solute

environment either chemically (near its core) or through its elastic pressure field away (from

the core). With increasing distance from the defect core, the defect interacts with solutes

from a larger volume of the alloy and the sum of all these interactions has an average effect

on the defect behaviour near its core. Thus the a/c methods are naturally applicable for

studying defect behaviour in random alloys, where the far-field continuum is devoid of all

compositional fluctuation and is described by the average elastic constants of the alloy.

Although the far-field compositional fluctuations can be neglected using a homogenized de-

scription, care must be taken in accounting for the fluctuations at the atomistic-to-continuum

coupling interface. The coupling interface constitutes an overlap region where bidirectional

information transfer takes place across the two domains; any mismatch in the underlying

structure or elastic properties leads to coupling errors. While applying a/c coupling to random

alloys, we are explicitly coupling an inhomogeneous atomistic domain to a homogeneous

continuum, therefore such errors are inevitable unless the coupling interface is carefully con-

structed.

This Part of the thesis is concerned with the application of concurrent multiscale methods to

random alloys and constitutes of one chapter (Chapter 3) which demonstrates the coupling er-

rors and their magnitude in context of force-based coupling strategy. Two alternative methods

of constructing the concurrent multiscale problem are proposed, studied and validated which

mitigates the coupling errors by orders of magnitude. Although the methods are studied with

a specific force-based coupling method, at least one of them can be readily extended to other

concurrent multiscale methods. This is the only study in concurrent multiscale modeling

literature, where a/c coupling has been applied to random alloys and the findings of this study

will facilitate future application of multiscale methods to solid mechanics problems in random

alloys involving interaction of crystal defects with long-range elastic fields.
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3 Atomistic continuum coupling of
random alloys

Disclaimer

This chapter is adapted from the following article, with permission from the coauthors

and the publisher.

S. Nag, T. Junge, W. A. Curtin, “Atomistic-continuum coupling of random alloys”, Mod-

elling and Simulation in Materials Science and Engineering 27, 075004 (2019).

Random alloys have an inhomogeneous structure at the atomic scale, and this randomness

determines many alloy properties. To understand and predict the mechanical behavior of

random alloys, it is then necessary to study them at the atomistic scale. However, if the ma-

terial is subject to small deformations over length scales much larger than the atomic scale,

the material response becomes insensitive to the local randomness. The response is then

governed by the average properties of the alloy, and a random alloy has well-defined macro-

scopic lattice constants and elastic constants. Small deformations are then well-described by

elasticity, as if the alloy is homogeneous. Thus, it can be useful and feasible to use multiscale

methods to study random alloys, with full atomic-scale randomness in regions containing

atomistic defects and/or high deformations where the detailed atomistic response is essential,

surrounded by continuum homogenized material over a much larger region to capture the

surrounding elastic fields that influence the behavior in the atomistic domain. Problems of

interest span a wide range of defect-defect interactions where the intimate atomic structure of

different atomistic defects intersect, making linear elasticity descriptions highly inaccurate.

Of particular interest are problems involving combinations of extended defects such as dislo-

cations, cracks, and grain boundaries, which involve long-range strain fields and thus large

sizes to handle accurately.

Multiscale atomistic/continuum (a/c) coupling methods for quasistatic zero-temperature

mechanics problems are now very well-developed for elemental materials and ordered al-

loys, since both have well-defined and (usually) small unit cells [3, 8, 9]. Methods for finite-

temperature, dynamic, and/or evolving systems are more complex, but have also been devel-
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oped and continue to be refined [16, 21, 22, 72–76]. These methods have not yet been applied

to random alloys, where there is no well-defined unit cell. Most importantly, the local compo-

sitional fluctuations in the random alloy create additional challenges in creating an interface

between fully-atomistic and continuum descriptions, and these challenges must be identified

and solved. In this chapter, we present two methods for force-based atomistic/continuum

coupling of random alloys that resolve problems arising in the direct application of methods

developed for elemental metals.

A general issue in developing a/c coupling for random alloys is the representation of the

continuum domain. Random alloys have compositional fluctuations over all scales. How-

ever, if the system size is sufficiently large, consisting of many atoms, the response of the

system under small loads converges to a well-defined elastic material with the symmetry

of the underlying crystal. The zero-pressure average lattice constant of the random alloy

also converges to a unique value. Given a set of interatomic potentials for the random alloy

elemental constituents, the homogenized response of an effectively infinite domain can be

computed numerically in advance. Convergence studies determine the size needed to obtain

material properties with sufficiently high accuracy. Such a brute-force computational ap-

proach provides the relevant continuum-level alloy properties needed in a multiscale model.

On the other hand, a/c coupling that uses the Cauchy-Born rule to derive the constitutive

behavior of the continuum domain directly from the underlying atomistic response, as in

the Quasicontinuum Method [13], cannot be feasibly done on random alloys. Furthermore,

different specific atom-atom interactions in the random alloy are lost in the continuum repre-

sentation but a/c coupling requires an intimate connection of the real atomistic domain to the

continuum domain through a so-called “pad" of atoms overlapping the continuum domain. It

is desirable to preserve those atom-specific atomic-scale interactions in the region where the

coupling is performed.

An alternative approach to achieving the average alloy properties at the atomistic scale is

via the creation of an “average atom” interatomic potential that embeds the random alloy

average properties into a new single-atom potential [54, 55, 77]. Specifically, given a set of

Embedded-Atom Method (EAM) potentials for the alloying elements X of interest, an “average

atom” (A-atom) EAM potential for the average alloy atom A at alloy composition cX can be

created as described in Chapter 2 in Section 2.1.3. The lattice constant and elastic constants

of the A-atom potential are generally close to those of the true infinite random alloy across

various alloys. Results for the three alloys studied here are shown in Table 3.1. The A-atom

method gives very good predictions for the lattice constants and good predictions for the

elastic constants. The A-atom method also captures well the interactions of individual atom

types with the average matrix, which can be important in the coupling domain of a multiscale

model.

For multiscale modeling where we couple a region of true random atoms to some homogenized

model, it is crucial that the homogenized model have the same lattice constant(s). Any small

lattice constant differences translate directly into errors in strain, and thus errors in stress,
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that are not negligible. On the other hand, small errors in the elastic constants do not create

significant error. Large converged direct simulations of random alloys are thus required to

validate the A-atom approach to the necessary accuracy for the given alloy composition. Since

the A-atom approach may have some error, it is advisable to adjust the composition of the

A-atom alloy by small amounts ∆cX away from the true cX to accurately match the lattice

constants of the true random alloy. Such a correction is shown for the alloys studied here

in Table 3.2, showing no significant change in the elastic constants. Thus, while the A-atom

potential can be quite valuable in many aspects of modeling random alloys, care must be

taken in applications for multiscale coupling. Here, we apply the A-atom potential in one

forced-based coupling method (Method 2 in Section 3.3.2). As mentioned earlier, it should

also find application in energy-based coupling schemes such as the Quasicontinuum Method.

Alloy a (Å) C11 (GPa) C12 (GPa) C44 (GPa)

FeNiCr
Random alloy 3.52166957 243.38 157.24 135.13

Average alloy
3.52181862

(0.00423%)

246.61

(1.33%)

158.12

(0.56%)

138.53

(2.52%)

Ni0.85Al0.15
Random alloy 3.53478252 211.36 152.20 123.19

Average alloy
3.53814763

(0.0951%)

224.21

(6.08%)

150.82

(-0.91%)

123.42

(0.19%)

Al0.95Mg0.05
Random alloy 4.05545782 107.49 58.90 30.46

Average alloy
4.05639532

(0.0231%)

108.21

(0.67%)

57.83

(-1.82%)

30.92

(1.51%)

Table 3.1 – Lattice parameter and elastic constants of true random alloy and those of the
corresponding A-atom potential, for the three random alloys studied in this paper. Errors in
the A-atom quantities are indicated in parentheses.

Alloy ∆cX C11 (GPa) C12 (GPa) C44 (GPa)

FeNiCr

8.3295674E-3 (Fe)
247.11

(1.53%)

158.21

(0.62%)

138.86

(2.76%)
-6.002575E-3 (Ni)

-2.326992E-3 (Cr)

Ni0.85Al0.15
1.66733E-2 (Ni) 224.14

(6.05%)

150.90

(-0.85%)

124.0

(0.66%)-1.66733E-2 (Al)

Al0.95Mg0.05
1.8525526E-3 (Al) 108.49

(0.93%)

57.98

(-1.56%)

31.13

(2.2%)-1.8525526E-3 (Mg)

Table 3.2 – Perturbations ∆cX of the A-atom alloy away from the true alloy composition
cX so as to match the lattice constants of the random alloy upto 8 decimal places. The
corresponding elastic constants of the A-atom potential are shown but differ negligibly from
those at composition cX ; errors relative to the true random alloy are shown in parentheses.

In creating the homogeneous effective elastic material by whatever means, all of the fluctua-
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Chapter 3. Atomistic continuum coupling of random alloys

tions inherent in the underlying random material are eliminated. The effects of fluctuating

properties in the domain that has been replaced by continuum material, on the fields in the

atomistic domain are lost. The fields created by the fluctuations do decay with distance from

the fluctuation, and so can safely be ignored beyond some distance from the atomistic region.

Nonetheless, implicit in the a/c coupling is the notion that these fluctuations are not important

for the phenomena of study in the atomistic domain. This can be studied theoretically and by

convergence studies using the methods presented here, but requires further investigation that

is beyond the scope of this thesis.

The remainder of this chapter focuses on the algorithmic aspects of a force-based atomistic/-

continuum coupling method for random alloys. Section 3.1 demonstrates the non-negligible

errors associated with the straightforward application of the force-based a/c method (refer

Section 2.3) to a random alloy. Section 3.2 analyses the reasons behind the errors with a simple

force-based 1D couple constructed with linear springs and proposes solutions, which are then

used in Section 3.3 to introduce two complementary methods for a/c coupling of random

alloys that mitigates the coupling errors in more complicated systems and coupling geome-

tries and provides coupling with manageable errors. Section 3.4 summarizes our analysis and

results.

3.1 Errors in application of standard a/c coupling to random alloys

The application of the standard a/c coupling (refer Section 2.3) to a random alloy leads to

non-negligible errors, especially near the atomistic/continuum interface. The sharp transition

from atomistic to continuum description occurs precisely at the transition between random

and homogeneous materials. The pad atoms are tied to the computed deformation of the

homogeneous continuum domain and so (i) do not have the exact average lattice constant

or elastic constants, locally, of the infinite random alloy and (ii) cannot relax to adapt to the

precise random arrangements of the nearby true atoms in the atomistic domain. The perfect

crystalline lattice also does not correspond to the relaxed configuration of atoms in the random

alloy. These issues give rise to spurious forces near the interface. Force-based methods are

unsuitable for handling rapidly-varying forces acting at the interface [3], which can result in

long-range spurious stresses in both atomistic and continuum domains. Spurious stresses can

also arise at large deformations due to the replacement of the non-linear atomistic material

by a linear elastic continuum.

To demonstrate the above points explicitly, we examine the spurious stress that arise in

conventional a/c coupling within an infinite slab of crystalline material with a planar a/c

interface longitudinally along its thickness. The test geometry is shown in Figure 3.1 and

consists of a 3d cuboidal problem domain of dimensions Lx = 50 and Ly = 20 lattice units with

periodic boundary conditions imposed in the x and y directions. In the coupled problem,

the thickness of the atomistic and continuum domains are L A
z = 34 and LC

z = 17 lattice units

respectively. We study the equicomposition FeNiCr alloy described by EAM potentials [78].
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3.1. Errors in application of standard a/c coupling to random alloys

The continuum domain is solved by the Finite Element Method. The atoms in the atomistic

domain and the pad atoms are initialized in the perfect crystalline lattice sites at the average

lattice constant of the alloy. A finite element mesh is created by treating all atoms in the

continuum domain as nodes because we are not seeking computational efficiency in this

test case. The construction of the coupled problem, including the atoms and the FE mesh,

is done using the CADD mesher of T. Junge [79]. We then use constant-strain elements and

the pre-computed macroscopic average elastic constants of the true random alloy (reported

in Table 3.1). The coupled problem is then relaxed to the equilibrium state with the surface

at z = L A
z +LC

z (= Lz ) held at zero displacement uz (Lz ) = 0 and the surface at z = 0 held at a

displacement corresponding to an imposed uniaxial strain εzz , uz (0) =−εzz Lz , as indicated

in Figure 3.1. Atomistic minimization is performed using the fire and/or CG minimizers of

the open-source molecular dynamics code LAMMPS[48, 49]. The continuum equilibrium

equations for every finite element are solved using the open-source parallel sparse direct

solver MUMPS[60, 61]. Relaxation is performed in a staggered manner alternating between

atomistic and continuum relaxations until a global force infinity norm tolerance of 10−8 is

reached for the full coupled problem.

Periodic BC along x and y

Atomistic Domain Continuum Domain
Pad

a/c interface (column)

Figure 3.1 – Schematic of an a/c couple under tensile elongation for an infinite slab of ran-
dom alloy. For all cases of a/c coupling examined for this study, this geometry has been
used. Translucent atoms and nodes in the diagram are the periodic images of the boundary
degrees of freedom in the x− and y− directions. The planar a/c interface perpendicular to the
thickness of the slab ensures that any coupling-induced spurious stresses propagate through
the specimen unattenuated. The thickness of the atomistic and continuum domains are
34 and 17 lattice units respectively, with the atomistic domain being larger so as to achieve
converged values for the average lattice constant and elastic constants of the random alloy.
The simulation box (with all the opaque atoms and nodes) is 50 lattice units in x− direction
and 20 lattice units in y− direction. The thickness of the pad is determined by the cut-off
radius of the interatomic potential which is typically one lattice unit in z−direction.

For reference, we perform a complementary study of a fully-random sample having exactly the

same atomic configuration (atoms in the atomistic domain and pad atoms) as in the coupled

system plus atoms in the continuum to create a sample of the same dimensions as the in the
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Chapter 3. Atomistic continuum coupling of random alloys

coupled problem. Under zero applied strain, all atoms in the fully-atomistic problem relax

locally but no net stresses develop because the overall system has the correct macroscopic

average lattice constant. Under an applied strain εzz , all atoms again relax locally and the

average stress throughout the system is given by the average elastic constants and the applied

strain through Hooke’s Law.

To assess spurious effects due to the a/c coupling in the atomistic domain, we compute the

atom-by-atom difference in virial stresses (∆σi =σAC
i −σr e f

i ) using the nominal average atomic

volume of a3/4 and not the local atomic volume. In the continuum domain, spurious stresses

are the difference between the measured nodal stresses and the applied stress computed by

Hooke’s Law. In this planar problem, we then compute the average spurious stress over all Nk

atoms or nodes in plane k parallel to the a/c interface as ∆σm(k) = 1
Nk

∑Nk

i=1∆σi . We further

compute the standard deviation of the spurious stresses over every plane k as ∆σstd (k) =√
1

Nk

∑Nk

i=1 (∆σi −∆σm)2).

Figure 3.2 presents the normal component ∆σzz of the spurious stress under zero applied

strain for a number of different realizations of the random alloy. This stress component shows

the largest error. In this effectively one-dimensional geometry, the coupling induces a constant

long-range stress on the order of 100–200 MPa, with different spurious stresses in the atomistic

and continuum domains. The standard deviation of the spurious stresses ∆σstd
zz is large near

the a/c interface but decreases slowly to 10–30 MPa far from the interface. Spurious stresses on

the order of hundreds of MPa are unacceptable — they are large enough to cause dislocation

motion or introduce additional stress intensity near a crack tip, for instance. In addition, the

precise value of the far-field stresses depends sensitively on the specific alloy realization.

The random alloy has large local stress fluctuations naturally. The standard deviation in atomic

virial stresses for a large fully-relaxed random alloy of FeNiCr is 2–4 GPa. While large, the net

stresses over larger domains decrease steadily, with no net stress on large scales. Spurious

stresses at the a/c interface introduced by coupling can approach the level of the intrinsic

stress fluctuations of the alloy (standard deviation in spurious stresses reaching 1.5 GPa). And,

while smaller in magnitude further from the interface, 100 MPa within 5 nm, the stresses

remain non-negligible for practical purposes.

Under an applied strain, the spurious stresses in the coupled system are expected to remain

on the same order of magnitude as at zero strain. The errors at zero strain are so overwhelming

that errors under applied strain remains a secondary aspect. Also the spurious stresses again

depend on the precise realization of the random system, and changes with increasing load

might not be systematic.

The spurious stresses arise because there is an imbalance of forces at the a/c interface. The

pad atoms are not initially at true equilibrium positions, but rather at perfect lattice positions.

The pad domain is also described by the infinite-size alloy stiffness tensor. Meanwhile, the

atoms in the atomistic domain near the coupling interface, experience local relaxations and

local variations in effective stiffness. The force-based a/c coupling ensures continuity of
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3.2. Illustration of the problem with 1D array of linear springs and proposed solutions

displacements across the interface but does not consider continuity of tractions. Traction

continuity indeed should not be imposed because the continuum interactions are local while

the atomistic interactions are non-local. Imposing traction continuity, as done in energy-based

coupling methods such as QC, leads to so-called ghost-force errors; these are normally avoided

in force-based coupling. However, when high gradients of the deformation gradient, or high

force gradients, exist at the interface, the force-based method gives rise to long-range stresses

in effectively 1d problems [3]. Since an a/c coupling interface should never be positioned in

a region with high gradients — the a/c coupling should occur where the gradients are small

so that the continuum approximation is valid — this failure of the forced-based method is

easily resolved by simply moving the interface to a region of lower gradients. However, in a/c

coupling of the random alloy, the high gradients are induced by the coupling itself and are

unavoidable, leading to the persistent and non-negligible errors shown in Figure 3.2.

Figure 3.2 – Standard a/c couple with no imposed deformation. Coupling-induced spurious
stresses along coupling direction ∆σm

zz and ∆σstd
zz as a function of distance from the a/c

interface. Results are for specimens of equicomposition FeNiCr held fixed at z-ends of the
specimen (thus no imposed deformation). For each alloy, results for 10 different realizations
are shown as indicated by the various colors.

3.2 Illustration of the problem with 1D array of linear springs and

proposed solutions

A linear spring has two properties, its stiffness and its natural length. In this section, we will be

studying a very simplified version of the a/c coupling of random alloys using linear springs

connected in series. Randomizing the natural length and/or the stiffness of the springs will

represent the random alloy (atomistics) with spatial fluctuations in lattice parameter and

elastic constants. A complementary series of springs (“average springs”) with average stiffness

and natural length will represent the homogeneous continuum with average properties of the
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Chapter 3. Atomistic continuum coupling of random alloys

alloy. This simplified version captures the essence of the problem in standard a/c coupling

of random alloys and will naturally lead us to the solutions which are very intuitive, yet

not immediately obvious in the 3D coupling of random alloy with complicated interatomic

interactions.

First we would study the situation where the system of springs have randomly different natural

lengths, however all of them have the same stiffness. The average springs therefore will have

the same stiffness and the average natural length of the ensemble of real springs. Figure 3.3

presents the random and the corresponding average emsembles of springs, each connected in

series.

Average description (with average natural length)

(b)

(a)

Random ensemble (with varying natural lengths)

Figure 3.3 – A series of linear spring with same stiffness connected end-to-end, each of which
has a different natural length. The average version of this ensemble is another series of linear
springs (“average springs”) with the same stiffness, where the natural length of every average
spring is average of the natural lengths of real springs in the original series.

Now we construct a force-based couple with the random and average ensembles of springs, as

depicted in Figure 3.4. The problem is evident in the fact that in absence of any external force,

the force-based couple has nonzero force at the interface because the atomistic(real) spring in

the pad has a different natural length than the average, yet by construction it is constrained

— thus the random ensemble has an unbalanced force to start with of which the average

ensemble is unaware of, leading to net spurious force at the interface of the force-based

couple.

force experienced no force experienced

 Standard force-based couple

Figure 3.4 – A standard force-based couple constructed with the random and average ensemble
of springs shown in Figure 3.3.
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3.2. Illustration of the problem with 1D array of linear springs and proposed solutions

A manifestation of this problem is seen in Figure 3.2 for a 3D forced-based couple of equicom-

position FeNiCr random alloy described by EAM interatomic potentials. Random spurious

point forces act all over the a/c interface which gives rise to the fluctuation in spurious stresses

on relaxation near the interface; and the magnitude of fluctuations diminishes with distance

according to the Saint-Venant’s principle. The spurious point forces at the interface does not

cancel on average over the surface area of the a/c interface even though the alloy is random

and gives rise to high long-range stresses. This can be attributed to the complex nonlinear

EAM potential for the 3D problem and also the high (spurious) force gradients at the interface.

Since a net spurious force acts on the non-rigid a/c interface, the resultant long-range stress is

of opposite sign in the two domains of the a/c couple as evident from Figure 3.2.

The solution to the above problem is obvious, that is to relax the real spring in the pad to

its natural length before constructing the coupled problem as depicted in Figure 3.5. This is

essentially one of the solutions to the 3D random alloy coupled problem described as Method

1, we will see in the next section.

}
Relax to natural length

before constructing
the couple

Figure 3.5 – Elimination of spurious force at the interface due to construction by relaxing
the pad spring in the random ensemble to its natural length before constructing the coupled
problem.

Having fixed the coupling error in absence of any external force, we will now focus our attention

on problems that may arise on applying an external force. Errors that appear on application of

external force must be related to spring stiffness. So we now consider a force-based couple

for an ensemble of springs with varying stiffnesses, as depicted in Figure 3.6. The average

ensemble will have springs with average stiffness of springs in the random ensemble.
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Chapter 3. Atomistic continuum coupling of random alloys

F

F

Figure 3.6 – Force-based couple with springs of varying stiffness and average springs with
average stiffness k.

When a force is applied to the coupled problem, every node should experience the same force.

However, one can see in Figure 3.6 that it is not the case while coupling a random ensemble

of springs to a homogenous one. With reference to Figure 3.6, when a force is applied to the

ensemble of average springs, every spring in this ensemble gets stretched by F/k. As the pad

spring in the random ensemble is constrained to stretch with the average ensemble, it gets

stretched by F/k as well. However it’s stiffness is k and not k. Therefore the force transmitted

in the random ensemble is not F, but kF/k. The imbalance of force in the two ensembles is

equivalent to having a spurious nonzero force at the interface of the couple due to mismatch

of local stiffness among the two ensembles in the pad region.

There are two solutions to the problem depicted in Figure 3.7 (a) one where we assign the stiff-

ness of the pad spring in the random ensemble to the pad spring in the average ensemble and

(b) the other where we replace the pad spring in the random ensemble with an average spring.

In 3D coupling of random alloys with more realistic many-body potentials implementing the

first solution is quite involved. However the second solution can be easily implemented with

the help of “average atoms” discussed in Section 2.1.3. This is basically Method 2 for mitigating

coupling errors which will be discussed in the next section.
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3.3. Methods for accurate 3D a/c coupling of random alloys described by complex
interatomic potentials

F

F

(a) Assigning the stiffness of the pad spring in the random ensemble to the pad spring in the average
ensemble.

F

F

(b) Replacing the pad spring in the random ensemble with an average spring.

Figure 3.7 – The two solutions to resolve the errors due to coupling that manifest on application
of external force.

In the next section, we will be taking concepts from this section and propose detailed algorithm

for implementing the solutions to reduce coupling errors in 3D forced-based coupling of

random alloys described with nonlinear many-body interatomic potentials.

3.3 Methods for accurate 3D a/c coupling of random alloys described

by complex interatomic potentials

In this section we will propose two methods for construction of the a/c couple which will

dramatically reduce the spurious stresses due to coupling (shown in Figure 3.2) to acceptable

levels. The methods derive concepts from the solutions proposed in the previous section

3.2, for the simple case of 1D forced-based couple with a series of linear springs. The meth-

ods proposed in this section are also validated against three model random alloys, namely,

equicomposition FeNiCr medium-entropy alloy, Al-5%Mg and Ni-15%Al alloys.
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Chapter 3. Atomistic continuum coupling of random alloys

3.3.1 Method 1

To reduce the spurious stresses that arise in the standard a/c coupling method, we recall

one source of the error: the pad atoms are initially assigned to perfect-lattice positions. This

is analogous to the situation depicted in Figure 3.4 for an ensemble of linear springs with

randomized natural lengths. The first method to reduce spurious stresses is thus simply

to use the true equilibrium pad atom positions in the random alloy as the initial reference

configuration in the a/c couple. The procedure is shown schematically in Figure 3.8.

Extract small 
sample

Construct coupled
problem

✂

• Large random alloy sample
• Periodic boundary conditions
• Fully relaxed to zero pressure

Figure 3.8 – A/C coupling for random alloys: Method 1 ΩA and ΩC are the atomistic and
continuum domains respectively.

To create the atomistic domain and surrounding pad atom region, we start with a very large

sample of random alloy relaxed to zero pressure under periodic boundary conditions. This

“reference" sample is already needed to determine the average lattice and elastic constants.

From this reference atomistic sample, in the fully relaxed state, we extract the desired atomistic
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3.3. Methods for accurate 3D a/c coupling of random alloys described by complex
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plus pad atom domain to create the atomistic portion of the multiscale model. The atomistic

domain thus inherits a structure that includes fluctuations from surrounding atoms in the large

reference sample for that one particular atomistic realization. The results of the subsequent

multiscale study will thus be influenced by those particular fluctuations, even though those

atoms have been replaced by a continuum representation, with elastic constants of the random

alloy (reported in Table 3.1). This points again to the general non-uniqueness of the multiscale

solution due to fluctuations outside of the atomistic domain.

In Method 1, the initial reference atomic positions rA are those of the relaxed sample, not

the perfect lattice sites. The continuum domain is then constructed as usual, but with the

initial interface nodes rC = rI on the true initial interface atom positions, again not perfect

lattice positions. It is also convenient, although not necessary, to use the true initial pad atom

positions as nodes in the continuum, rC = rP, to avoid interpolation. The continuum domain,

including the pad region, is still assigned the macroscopic elastic properties of the infinite

true random alloy (the A-atom potential is not used).

By construction, this method creates zero spurious forces or displacements under zero load.

The initial atomistic structure and pad are already in equilibrium from the start. Under an

applied load, the elastic response of the pad is not exactly that of the true underlying random

alloy and hence spurious stresses do arise. This is analogous to the situation depicted in Figure

3.6 for an ensemble of linear springs with randomized spring stiffnesses. We show next that

the spurious stresses are small.

The spurious stresses under load using Method 1 are studied using the same geometry as

in Figure 3.1. We study three different fcc random alloys, a dilute solid solution Al-5%Mg, a

moderate-concentration solid solution Ni-15%Al, and again the medium-entropy alloy FeNiCr,

all described by EAM potentials[78, 80, 81]. The continuum domain is meshed to atomistic

resolution for accuracy (as in Section 3.1). A complementary fully atomistic problem is also

constructed as a reference. This reference has exactly the same atomistic configuration as the

multiscale model in the atomistic plus pad regions. The additional atoms in the continuum

domain are taken from the original large “reference" sample from which the atomistic plus

pad region is extracted. A uniaxial displacement corresponding to strain εzz is imposed on

both the multiscale and atomistic reference systems as described in Section 3.1. Both systems

are then relaxed to equilibrium (zero forces on all degrees of freedom) as described also in

Section 3.1.

The spurious stresses in the atomistic domain caused by the a/c coupling are obtained again as

the difference in atom-by-atom atomic virial stresses in the multiscale and reference systems

(∆σi = σa/c
i −σr e f

i ). The planar average and standard deviation in each plane of atoms are

then computed. In the continuum domain, spurious stresses are estimated as the difference

between the nodal stresses computed from the stress states of the surrounding elements and

the elastic prediction of the continuum stress, i.e. ∆σi =σa/c
i −Cε. Figure 3.9 shows ∆σm

zz and

∆σstd
zz for a number of different realizations of each of the three random alloys under a uniaxial

61



Chapter 3. Atomistic continuum coupling of random alloys

strain of εzz = 0.1%. For all cases, the long-range spurious stresses are less than 5 MPa in both

atomistic and continuum domains. Such an error is negligible for realistic problems involving

cracks and dislocations in random alloys. The planar standard deviation ∆σstd
zz is large very

near the a/c interface but decreases below 5 MPa beyond a few atomic/nodal planes away

from the a/c interface. Thus, the strain-induced deviations in local atomic environments lead

to only small force errors that do not propagate significantly into the bulk of the multiscale

specimen. Similar stress levels, or smaller, exist for smaller applied strains. Method 1 is thus

deemed successful for accurate multiscale modeling of random alloys.

We note that at higher applied strains, approaching 1.0%, errors arise simply due to the linear

elastic approximation (in the continuum) to the true non-linear response of the material. Even

in a single-atom (non-alloy) material, deviations between the multiscale method and a full

atomistic model arise at strain levels of 1.0%. These errors can be avoided/minimized by using

a non-linear continuum. The easiest approach is to use the A-atom potential and the Cauchy-

Born rule, following the guidelines of the Quasicontinuum Method but in a force-based setting.

Alternatively, the size of the atomistic domain can simply be expanded so that the strains in

the continuum domain are below 0.1%; this is not possible in the simple uniaxial geometry

considered here.
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Figure 3.9 – Method 1: results at εzz = 0.1% Coupling-induced spurious stresses for the nor-
mal component (∆σm

zz and ∆σstd
zz ) as a function of distance from the a/c interface, for test

specimens of three types of random alloys stretched uniformly by 0.1% along coupling direc-
tion. For each alloy, results for 10 different realizations are shown as indicated by the various
colors.

Note that Method 1 did not require assigning atomistic stiffness (of the pad atoms) to the

continuum pad nodes, which was proposed in Figure 3.7a for the case of linear springs in

Section 3.2. Such a correction will require calculation of the Hessian matrix for the pad atoms

which is cumbersome and computationally expensive, and by doing so we will just gain

marginally in accuracy since the errors without this correction are already negligible, ∼ 5 MPa.

This is an interesting and fortuitous aspect of this method.

It is also noteworthy that in Method 1 we have essentially moved the random/homogeneous

transition away from the a/c interface, to the continuum domain.
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3.3.2 Method 2

• Construct atomistic 
domain and pad
• Pad + buffer A-atoms
at outer boundary

a/c interface

Random-atoms/A-atoms 
interface

Figure 3.10 – A/C coupling in random alloys: Method 2 The random/homogeneous interface
and the atomistic/continuum interface are separated by the introduction of a small buffer
zone of A-atoms in the atomistic domain, with the pad atoms being A-atoms.

Since errors at the a/c interface arise due to having both the atom/continuum and random/ho-

mogeneous transition at the same physical location, another approach to minimizing errors

is to separate these two transitions explicitly. Method 2 accomplishes this as schematically

illustrated in Figure 3.10. Unlike Method 1, this method shifts the random/homogeneous

transition towards the atomistic domain. In this method, the atomistic domain consists of the

desired random alloy region surrounded by a few layers of A-atoms forming a thin buffer layer

at the boundary of the atomistic domain; the pad is constructed with A-atoms. The A-atoms

used in this method are corrected to match the true random alloy lattice constants (Table

3.2). All atoms including the pad atoms are initialized at the average crystalline lattice sites.

The transition from random atoms to A-atoms thus occurs just before the a/c interface in the

atomistic domain and is therefore handled fully atomistically. All these atoms in the atomistic

domain can relax fully in response to the atomistic forces on each atom. The a/c interface is

now identical to that of a single-element material, but using the A-atoms appropriate to the

random alloy. Since the a/c interface is in the A-atom matrix we do not expect any spurious

forces at the a/c interface. The continuum domain is handled in the usual manner, using the

elastic constants of the random alloy (reported in Table 3.1). This method is inspired by the

solution discussed for linear springs in Figure 3.7.

Method 2 does not require any initial reference sample from which the atomistic domain is

sampled. The inner random alloy region in the atomistic domain can be changed to any other

realization with no other changes to the overall multiscale implementation. This facilitates
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testing of different realizations of the atomistic domain. As in Method 1, the effects of fluctua-

tions due to surrounding random atoms that arise in a fully atomistic simulation are lost due

to the continuum approximation and the use of the A-atom buffer and pad atoms.

We quantify the magnitude and extent of any spurious stresses in Method 2 using the same

displacement-controlled tensile tests as in Section 3.3.1 and with the same alloys. The only

difference is in the construction of the multiscale sample as presented above. A complemen-

tary fully atomistic problem is also needed. In this case, the reference atomistic system is

a bimaterial consisting of exactly the same random alloy region plus the A-atom buffer of

the atomistic domain, plus A-atoms in the continuum domain. The spurious stresses in the

atomistic domain are again computed as the difference in atomic virial stresses. In the con-

tinuum domain the spurious stresses are the differences of the nodal stresses of the coupled

problem versus the virial stresses of the corresponding A-atoms at the same nodal sites. A

planar average and standard deviation are again computed.

Figure 3.11 shows the spurious stresses for Method 2 under zero applied strain when using

A-atoms at the a/c interface (rI) and just one additional layer of A-atoms in the atomistic

domain. There is again negligible long-range stress ∆σm
zz , typically 5 MPa or less, due to this

coupling method. The standard deviation ∆σstd
zz is larger at the interface, around 100 MPa,

but decreases to below 10 MPa within just a few atomic/nodal planes and then below 5 MPa

within ±20Å from the a/c interface. These errors could have small consquences for defects

approaching the a/c interface, but remain fairly small. The errors arise because the random

alloy distorts the A-atom matrix near the random/A-atom interface by 2-3%. The proximity

of the a/c interface to this highly strained zone thus gives rise to spurious stresses since the

continuum deformation is formulated with linear elasticity.

The spurious stresses can be reduced further by addition of just one more layer of A-atoms

inside the atomistic domain (results not shown here). The difference in ∆σm
zz in the two

domains then reduces further by ≈ 80%, 70% and 100% for FeNiCr, AlMg, NiAl respectively.

The improved results come at the cost of additional atoms in the system, but this cost may be

acceptable if deemed necessary for any given problem.

65



Chapter 3. Atomistic continuum coupling of random alloys

Figure 3.11 – Method 2, no imposed deformation Coupling-induced stress statistics of the
normal component of spurious stress along coupling direction (∆σm

zz and∆σstd
zz ) as a function

of distance from the a/c interface, for test specimens of three random alloys with z-ends held
fixed. For each alloy, results for 10 different realizations are shown as indicated by the various
colors.

Under an applied uniaxial strain of εzz = 0.1%, the spurious stress levels and trends are barely

changed with respect to no loading, as shown in Figure 3.12. The adaptability of the A-atoms

in the fully atomistic domain is evidently sufficient to prevent any deformation-induced

errors. Comparing Figures 3.9 and 3.12, for Methods 1 and 2 under load respectively, Method 1

remains slightly better than Method 2. Nonetheless, we deem both methods to have acceptable

errors.
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3.3. Methods for accurate 3D a/c coupling of random alloys described by complex
interatomic potentials

Figure 3.12 – Method 2, results at εzz = 0.1% Coupling-induced stress statistics of the normal
component of spurious stress along coupling direction (∆σm

zz and ∆σstd
zz ) as a function of

distance from the a/c interface, for test specimens of three random alloys stretched uniformly
by 0.1% along coupling direction. For each alloy, results for 10 different realizations are shown
as indicated by the various colors.

It is evident from comparison of Figures 3.11 and 3.12 that the slightly different elastic con-

stants of the tweaked A-atoms, compared to those of the random alloy, do not introduce

considerable errors on deformation of the test specimens. This is rather obvious given the

thin (two atomic layers thick) dimension of A-atom buffer in the atomistic domain.

Finally, we note that for Method 2 the dilute alloys have larger spurious stresses than the

medium-entropy alloy and the∆σstd
zz also falls off more slowly for the dilute alloys. This can be

attributed to the fact that the A-atoms for a dilute alloy mostly resemble the host atoms and the

low-concentration (well-separated) solute atoms at the real-atom/A-atom interface heavily

distort the homogenous A-atom region locally. This results in localised highly strained regions
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at the a/c interface and therefore causes large spurious forces. In the medium-entropy alloy,

the A-atom potential is not biased towards any one constituent atom type, hence the A-atom

region near the real-atom/A-atom interface is less distorted, resulting in small spurious forces

at the a/c interface. In medium-entropy alloys, the local solute environments changes rapidly,

therefore the fluctuation in spurious stresses dies down rapidly away from the a/c interface.

3.4 Discussion

Two methods for a/c coupling of random alloys have been proposed and validated here.

The methods differ in the way in which fluctuations outside of the atomistic domain are

incorporated. In Method 1, the initial atomic arrangement of atoms in atomistic domain and

pad is specific to the reference sample from which they are extracted. However after relaxation

the system loses memory of the large reference sample to some extent since a continuum

with average stiffness of the alloy replaces the problem domain outside the atomistic region.

In Method 2, an atomistic configuration, unrelaxed, is directly inserted into the atomistic

domain, and all compositional fluctuations outside of this domain are explicitly discarded

with A-atoms. The predictions of Methods 1 and 2 for the same inner atomistic realization of

random atoms will therefore be slightly different.

Useful connections has been drawn between 1D force-based couple of linear springs and

3D a/c coupling of random alloys with nonlinear many-body interactions. The errors due

to coupling can be easily rationalized with the simple force-based couple of linear springs

and the solutions for this simple 1D problem captures the essence of the Methods proposed

in Section 3.3 for the accurate 3D a/c coupling of random alloys with complex interatomic

interactions.

In random alloys, any definitive study will require the use of multiple realizations of the atom-

istic domain. Analysis will then be required to extract the dominant composition-dependent

effects (the average behavior) and the fluctuation effects due to the specific random realiza-

tions. We speculate that the average behavior will not be significantly different when using

Methods 1 and 2 whereas the fluctuations might be larger for Method 1. As with all multiscale

models, increasing the size of the atomistic domain will lead to more accurate results. In the

case of random alloys, the larger sizes also accommodate more fluctuation effects surrounding

the central domain where complex atomistic phenomena are taking place.

We do not specifically recommend either Method 1 or 2 preferentially. Method 1 has some

overhead in the creation of the specific atomistic domain. However, multiple atomistic sam-

ples can be extracted from one very large periodic reference problem, so the overhead might

be reduced at a given alloy composition. Method 2 is easy to use — different realizations

are simply inserted into the inner atomistic domain at the initial perfect lattice positions,

with the A-atom buffer, pad region, and FE domain unchanged. The computation of the

A-atom potential is very easily done, and retains the EAM form so that implementation is

trivial. Thus, if the lattice constants and elastic constants of the A-atom potential are assumed
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to be sufficiently accurate, there is no need to perform any large periodic reference samples;

however, we recommend validation of the A-atom properties. More importantly, Method 2 is

accomplished by straight-forward adaptation of the standard force-based a/c coupling; only

the atomistic domain (including pad) are replaced by the random atoms and A-atoms, with

the a/c interface inside the A-atom region. Method 2 is also directly amenable to extension

to non-linear deformation in the continuum via application of the Cauchy-Born rule to the

A-atom unit cell, as in the QC method. Method 2 is slightly more costly, however, due to the

additional buffer of A-atoms. Since we have shown that just one layer of buffer atoms is needed

for reliable coupling, this additional cost of Method 2 is moderate (a 3d atomistic domain of

N 3 atoms becomes an atomistic domain of (N +2)3 atoms, thus adding ≈ 6N 2 atoms to the

original N 3).

Regarding accuracy, we have shown that the methods create spurious stresses on the order of

5 MPa across several classes of random alloys. The 3D simulation cell we used in Section 3.3

with a single non-periodic direction normal to the a/c interface, is the worst-case geometry (of

an infinite slab) where the long-range stresses propagate unattenuated across the thickness

of the slab — since coupled problem is effective 1D (in the non-periodic direction) and 1D

elastic Greens function has infinite range. In alloys, stresses of 5 MPa are rather smaller than

the stresses required to move dislocations through the alloy. While the Peierls stresses for the

pure elements (e.g. Al, Ni, Cu) are on the order of 1–20 MPa, the yield strengths of the solid

solution alloys are significantly higher at moderate concentrations (Al-5%Mg strength of ∼ 80

MPa, for instance, and ∼ 300 MPa in FeNiCr). Thus, 5 MPa stress levels will not significantly

affect dislocation motion. Dislocation interactions with grain boundaries typical involve stress

levels of hundreds of MPa, so that again 5 MPa is negligible. Such stress levels acting on a

crack in a standard K-test geometry will create negligible additional stress-intensity. There

are many other cases, of course, but these examples suggest that the errors in the present

coupling method are sufficiently small.

The present methodology applies to random alloys. Many alloys can exhibit short-range-order

(SRO) due to specific atom-atom interactions and under suitable processing conditions of time

and temperature [82–85]. Alloys susceptible to SRO can also exist in the random state, and be

directly amenable to the methods here. However, even alloys with SRO can be studied with

our a/c coupling methods. First, all alloys, with or without SRO, have macroscopic average

lattice constants and elastic constants that can be computed using large-scale simulations

([86]). Thus, Method 1 is directly applicable to alloys with SRO using the computed macroscale

properties in the continuum domain, and with the “pad" region conforming to the same SRO

as the atomistic region (the two regions are generated together). Method 2 is not directly

applicable because the average atom potential is derived for an explicit random alloy. Exten-

sion of the average atom method to alloys with SRO may be possible but this has not been

studied. However, the differences in elastic and lattice constants between the SRO alloy and

the random alloy may be small[87], enabling the use of an adjusted average atom potential to

match the precise properties of the alloy with SRO. In such a case, the average atom pad and

buffer domain will remain represented by the random alloy, introducing a small mismatch
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Chapter 3. Atomistic continuum coupling of random alloys

in local properties in this region. Thus, application of Method 2 would have some additional

error. Overall, the multiscale modeling of alloys with SRO is beyond the scope of this thesis but

merits further study as the investigations of atomistic behaviour in complex alloys becomes of

increasing importance.

The present methods are for force-based a/c coupling. Similar concepts can be applied to

energy-based a/c coupling such as the Quasicontinuum Method. In QC-like methods, we

would not expect spurious long-range stresses. However, the QC method will generate ghost-

forces, and hence spurious displacements, near the a/c interface. In random alloys, such

spurious displacements may lead to spurious fields that extend further into the atomistic

domain, in contrast to elemental materials where the errors are localized; this remains to be

examined. The strength of QC — adaption of the atomistically-resolved domain as defects

form and move through the structure [88] — becomes much more challenging in random

alloys, especially for problems involving dislocations. In random alloys, the strengthening due

to solutes comes from solute fluctuations in a domain extending well outside the dislocation

core. Hence the sizes required for proper atomistic resolution of the dislocation cores may

quickly become large and computationally expensive. In contrast, the force-based coupling

here enables additional multiscale methods, in particular the Coupled Atomistic/Discrete

Dislocation method (CADD), recently extended also to full 3d [17–19], where dislocations can

exist in the continuum domain as discrete dislocations without atomistic resolution. The

continuum dislocations must be informed about the appropriate effective Peierls stress due

to solute strengthening, but this is mainly a calibration issue along with other calibrations of

discrete-dislocation methods.

In summary, random alloys are an important class of structural materials where crucial

behavior is controlled by the atomic scale structure and motion of defects through the lattice

of random atoms. Thus, extending multiscale a/c coupling methods to random alloys is

desirable. Here, we have presented and validated two force-based methods for a/c coupling

of random alloys. We have further discussed the various subtle issues, mainly associated

with fluctuations in local composition, that are unique to random alloys and that influence

the formulation and application of multiscale models. The two methods here present no

difficulties in implementation beyond those of existing standard methods, and so can be

incorporated into existing multiscale codes with relative ease. These methods thus open

avenues for accurate and efficient study of mechanics boundary value problems in random

alloys for problems where it is essential to capture atomistic phenomena in some localized

region of the sample.
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Scientific and technological interest in both dilute solute-strengthened alloys (Al-Mg, Mg-Y,

Ni-Al, and many others) and the high-entropy alloys (HEAs), which are essentially high-

concentration solute-strengthened materials, has led to the development of a general theoreti-

cal model by Leyson et. al [31, 32] to predict solute strengthening in random alloys [31, 32].

This theory is based on the motion of edge dislocations, which typically control strength —

as demostrated by the application of this framework to fcc screw dislocations [89] where the

critical stress to move an edge dislocation at 0K was shown to be comparable, but slightly lower

than the stress to move a screw dislocation. The full theory shows that the temperature- and

strain-rate dependent flow strength stems from the intrinsic solute/dislocation interaction en-

ergies and the dislocation line tension [33, 90, 91]. The solute/dislocation interaction energies

are challenging to determine in real alloys, especially HEAs, due to the need for computational

study of the dislocation core via first principles methods [92]. Experiments cannot provide

this information directly either.

To enable the use of experimental inputs and/or first-principles inputs, the full theory has

been reduced to a simpler form by Varvenne et. al through the use of linear elasticity theory

to compute the solute/dislocation interaction energies [4]. The elasticity model for solute

strengthening then relies on fundamental material and solute quantities: elastic constants

Ci j , dislocation Burgers vector b, stable and unstable stacking fault energies γssf and γusf,

dislocation line tension Γ, and the solute misfit strain tensors εmisfit
i j in the alloy. However the

elasticity theory of solute strengthening has only been examined within isotropic elasticity.

This part of the thesis deals with extending the Leyson’s theory and the reduced Varvenne’s

model for solute-strengthening by relaxing the underlying assumptions of the theory. There

are three chapters in this part. The first chapter extends reduced Varvenne’s isotropic model

to predict solute-strengthening in elastically anisotropic fcc alloys. The second chapter in

this part extends the Leyson’s model for random alloys to include solute-solute interactions

described by pair-wise interactions. Leyson’s theory assumes that the yield strength of random

alloys is controlled by solute-dislocation interactions. Solute-solute interactions exist and

provide the energetic driving force for both short-range and long-range order but can then also

affect yield strength even in the random alloy. Finally, the last chapter of this part formulates

a new strengthening theory to predict yield strength of alloys with short-range order. In the

limit of no short-range order, this new theory gives the same the predictions as the original

theory for random alloys.
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4 Solute-strengthening in elastically
anisotropic fcc alloys

Disclaimer

This chapter is adapted from the following article, with permission from the coauthors

and the publisher.

S. Nag, C. Varvenne, W. A. Curtin, “Solute-strengthening in elastically anisotropic fcc

alloys”, Modelling and Simulation in Materials Science and Engineering 28, 025007

(2020).

The theory of solute-strengthening in random alloys by Leyson et. al has been introduced

in Section 1.2, along with simplification in Varvenne’s reduced model through the use of

linear elasticity theory to compute the solute-dislocation interaction energies. However, the

reduced model has only been examined within isotropic elasticity. Yet the elemental fcc metals

exhibit a range of anisotropies, as characterized by the Zener anisotropy A = 2C44/(C11 −C12)

where C11, C12, and C44 are the three independent elastic constants in a cubic crystal, with

A ∼ 1.22 for Al, ∼ 2.57 for Ni, ∼ 3.21 for Cu, and ∼ 2.85 for Au [93]. Dilute alloys based on Ni, Cu,

and Au should thus be treated within anisotropic elasticity, and many fcc HEA families (e.g.

Co-Cr-Fe-Mn-Ni-Al, Rh-Ir-Pt-Pd-Au-Ag-Ni-Cu) are at least moderately anisotropic. The aim of

this chapter is therefore to provide general results for solute-strengthening in the anisotropic

elastic reduced model for fcc random alloys.

The isotropic theory is useful in the sense that it has a simple analytic form of the dislocation

pressure field needed to calculate the solute-dislocation interaction energies [4] and experi-

mental measurements may only provide averaged isotropic elastic constants. Therefore, in

the chapter results are presented in terms of the difference in predictions between anisotropic

and isotropic models. We show that both elasticity assumptions lead to qualitatively identical

results, which enables the use of the isotropic model with a correction factor to account for

estimated or anticipated anisotropy. Our results also allow for an understanding of whether

the isotropic estimate is an underestimate or an overestimate, and to what approximate de-

gree. Overall, predictions using the full anisotropic theory and isotropic theory using the Voigt
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Chapter 4. Solute-strengthening in elastically anisotropic fcc alloys

averaged isotropic moduli are in very good agreement (within a few %) over a wide range of

anisotropy ratios, 0.5 < A < 4.

The remainder of this chapter is organized as follows. Section 4.1 presents the reduced

model for both anisotropic and isotropic elasticity assumptions. In Section 4.2, predictions of

isotropic and anisotropic models over a wide range of parametric dislocation core structures

are compared. Section 4.3 discusses how to apply the theory with limited experimental or

first-principles properties. Section 4.4 summarizes the chapter.

4.1 Linear elasticity model

The key quantity in Leyson’s model of solute-strengthening is the characteristic energy fluctu-

ation per unit length of dislocation ∆Ẽp(w) (Section 1.2), which is defined as follows,

∆Ẽp(w) =
[∑

n
cn

∑
i j

(
U n

sd (xi −w, y j )−U n
sd (xi , y j )

)2

] 1
2

, (4.1)

where w is the dislocation roughening amplitude in a random alloy, cn is the concentration of

the solute of type n and U n
sd is the interaction energy between a solute of type n at in-plane

position (xi , y j ), and a straight dislocation aligned along z at the origin.

The theory then predicts (1) the zero-temperature yield stress τy0, (2) an associated zero-stress

energy barrier ∆Eb , and (3) a temperature T and strain-rate ε̇ dependent flow stress, for a fcc

random alloy using the following relations,

∆Eb = 1.22

(
w2

cΓ∆Ẽ 2
p(wc )

b

) 1
3

(4.2a)

τy0 = π

2

∆Eb

bwcζc
= 1.01

(
∆Ẽ 4

p(wc )

Γb5w5
c

) 1
3

(4.2b)

τy (T, ε̇) = τy0

[
1−

(
kBT

∆Eb
ln

(
ε̇0

ε̇

)) 2
3

]
(4.2c)

where wc is the characteristic roughening amplitude of a dislocation in a random alloy. Γ and

b are the dislocation line tension and the Burgers vector magnitude of an edge dislocation.

ε̇0 ∼ 104/s and kB are a reference strain rate and Boltzmann’s constant, respectively.

The solute-dislocation interaction energies U n
sd (xi , y j ) can be computed using intensive first-

principles methods [31–33, 94] for dilute alloys. Atomistic simulations using semi-empirical

potentials can be employed, but are rarely quantitative for real materials and so such sim-

ulations are best used to test the theory and any approximations to it. It is thus valuable to

gain broad insight through the introduction of reasonable approximations that enable great

simplification of the theory.
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4.1. Linear elasticity model

4.1.1 Anisotropic elasticity for solute/dislocation interactions

In linear elasticity, the solute/dislocation interaction energy is

U n
sd (xi , y j ) = p(xi , y j )∆Vn , (4.3)

where p(xi , y j ) is the pressure field created at position (xi , y j ) by the dislocation centered at

the origin. The above expression is specific to substitutional solutes in cubic materials; the

general form involves the contraction of the stress tensor and the solute misfit strain tensor

[38, 95–97] and is straightforward. Note that solute interactions with the stacking fault of the

dissociated fcc dislocation are neglected here — see Varvenne et al. [33] for their inclusion

and, when considering plastic flow at moderate temperatures, there is no solute diffusion to

the stacking faults (and so no Suzuki effect). The pressure field of the dislocation depends

on the dislocation core structure. The dislocation structure is characterized generally by the

distribution of Burgers vector ∂b/∂x along the glide plane; we discuss analytical descriptions

of the core structure later. The pressure field generated by the dislocation structure is then a

function of the Burgers vector distribution and the alloy elastic constants, and can be written

in the form

p(xi , y j ) =C44 f (xi , y j ,
C11

C44
, A,

∂b

∂x
), (4.4)

where f is a dimensionless pressure field. f is obtained from the fundamental Stroh solution

σStroh
i j for the components of the stress field (refer Section 2.6) created by an incremental

Burgers vector db(x ′) in an anisotropic material [98], followed by superposition of the fields

due to all the increments of Burgers vector. Specifically, we can write

f (xi , y j ) = 1

C44

∫ ∞

−∞

∂σStroh
kk

∂b
(xi −x ′, y j )

∂b

∂x
(x ′)d x ′. (4.5)

Substituting the above approximation for U (xi , y j ) into all of the prior results leads to a

decoupling of the solute misfit volume and the dislocation fields. The key energy quantity in

Equation 4.1 becomes

∆Ẽp(w) =C44

(∑
n

cn∆V 2
n

) 1
2

[∑
i j

(
f (xi −w, y j )− f (xi , y j )

)2

] 1
2

,

=C44

(∑
n

cn∆V 2
n

) 1
2

g

(
w,

C11

C44
, A,

∂b

∂x

)
. (4.6)

The minimization with respect to w to obtain wc involves only the dislocation-core-structure-

dependent quantity g via the solution of d g /d w = g /2w (refer Section 1.2). The final quanti-
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ties controlling the flow stress versus temperature and strain rate reduce to the forms

∆Eb = 1.22
(
wc g (wc )

) 2
3

(
C 2

44Γ

b

) 1
3 (∑

n
cn∆V 2

n

) 1
3

, (4.7)

τy0 = 1.01

(
g 4 (wc )

wc
5

) 1
3
(

C 4
44

Γb5

) 1
3 (∑

n
cn∆V 2

n

) 2
3

. (4.8)

In a dilute alloy, for a given matrix the analysis is independent of the solute(s) added to create

the alloy. In a concentrated alloy, the material properties (elastic constants, line tension,

Burgers vector, stacking fault energy, and core structure) are those of a hypothetical average-

alloy matrix. The solute misfit volume and concentration only enter through multiplication

after all minimizations have been carried out. In the elasticity theory, we can thus address

the key features of solute strengthening as a function of the elastic properties of the material,

the line tension, and the dislocation structure as represented through ∂b/∂x. For non-dilute

alloys or HEAs with more than one type of solute, the dislocation structure entering the theory

are those for the concentrated alloy at the given composition.

4.1.2 Solute/dislocation interactions estimated with average isotropic elastic con-
stants

The theory can be reduced further under the assumption of isotropy, in line with Ref. [4].

Introducing the average isotropic elastic constants µavg and νavg, the quantity g can be written

as

g

(
w,

C11

C44
, A,

∂b

∂x

)
=

(
µavg

C44

)
1+νavg

1−νavg
g iso

(
w,

∂b

∂x

)
. (4.9)

In this form, the contribution to solute-dislocation interaction energy from dislocation struc-

ture (g iso) and elasticity are fully decoupled. Note that the quantity g iso is equal to the quantity

1
3π

[∑
i j ∆ f 2

i j (w)
] 1

2
in Ref. [4]. All predictions scale with µavg and νavg. Here, we examine the

three standard averaging schemes of Voigt, Reuss, and Hill [99–101]. For all three, the bulk

modulus is

Kavg = C11 +2C12

3
, (4.10)

while the shear moduli are given by

µ
Voigt
avg = C11 −C12 +3C44

5
, (4.11)

µReuss
avg = 5C44 (C11 −C12)

3C11 −3C12 +4C44
, (4.12)

µHill
avg =

µ
Voigt
avg +µReuss

avg

2
. (4.13)
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The average Poisson’s ratio νavg is then computed from µavg and Kavg as

νavg =
3Kavg −2µavg

2
(
3Kavg +µavg

) . (4.14)

The Voigt and Reuss results are polycrystalline upper and lower bounds, respectively. The

intermediate Hill average was proposed because it tends to be closer to many experimental

measurements of elastic constants in polycrystals than either of the bounds. Lastly, µavg/C44

and νavg are dimensionless functions of only C11/C44 and the anisotropy ratio A. Therefore,

comparisons between isotropic and anisotropic elasticity depend only C11/C44, A, the slip

density ∂b/∂x, and the chosen isotropic averaging scheme.

4.1.3 Dislocation core structure parameterization

The strengthening parameters depend on the dislocation structure as characterized by ∂b/∂x.

In fcc systems, the relevant a/2〈110〉 dislocations dissociate into two Shockley partial dis-

locations, bp,1 and bp,2, of a/6〈112〉 type. Following Varvenne et. al [4], we parameterize

the dislocation core structure in terms of two Gaussian functions of width σ separated by

the Shockley partial separation dp . The classical analytical Peierls-Nabarro model yields a

Lorentzian distribution [102], and atomistic simulations of the shear displacement across

the glide plane show a slow decay similar to the Lorentzian function. However, the atomistic

simulations give the total shear displacement, not solely the “plastic" displacement associated

with the distribution ∂b/∂x. The slow decay in atomistics is well-represented as arising from

the elastic strain due to a Gaussian distribution of Burgers vector ∂b/∂x, as shown explicitly

for atomistic models of Al, Cu, and Ni in Section A.1. The Burgers vector distribution is thus

parameterized as
∂b

∂x
(x) = 1p

2πσ2

(
bp,1e−

(x+dp /2)2

2σ2 +bp,2e−
(x−dp /2)2

2σ2

)
. (4.15)

When carrying out the minimization with respect to w , the solution can yield one or two local

minima depending on the core structure [33]. Two local minima, wc,1 and wc,2, emerge when

dp is sufficiently larger than σ. In such situations, the Burgers vector distribution has two very

distinct peaks, one for each partial, and the first minimum occurs at small wc typically smaller

than the partial separation dp . Also, as evident from Figure 4.1, the “second" larger wc,2

solution exists for all parameter values, with wc,2 decreasing with decreasing d/b. The “first

solution" wc,1 exists for larger dp /b but is subsumed by the “second solution" below dp /b ≈ 6.

Unfortunately, the literature seems to suggest that it is the larger-wc solution that emerges

with increasing dp /b whereas it is really the smaller wc that emerges as a new solution. Later

on we discuss results for both solutions when they arise.
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Figure 4.1 – Non-dimensional total energy of a wavy dislocation in a random alloy as a function
of the amplitude, for various Shockley partial separation distances dp at fixed partial peak
width σ/b = 1.5 as computed assuming isotropic elasticity. For partial separations > 6b, there
are two minima at wc,1 and wc,2 while for small partial separations the first minimum is
subsumed by the second minimum, resulting in a single minimum label as wc,1.

4.2 Results

We now assess the accuracy of the easily-used isotropic model relative to the more-complex

anisotropic model. Anisotropy enters in the theory through (i) the dislocation line tension,

and (ii) the dislocation core structure quantity g . Both aspects are examined in the following.

4.2.1 Line tension

The line tension Γ enters the theory as Γ1/3 in ∆Eb and as Γ−1/3 in τy0 (Equations 4.7 and

4.8), and hence results are weakly dependent on the precise value of Γ. However, the line

tension scales with the elastic moduli, and so is in principle a function of the anisotropy. For

fcc alloys, the line tension is best related to the shear modulus in the < 111 > plane along

the < 110 > direction, µ111/110 = (C11 −C12 +C44)/3 via the scaling relation Γ = αµ111/110b2.

Values of α ∼ 1/16− 1/8 have been used, with the larger value found in several atomistic

studies of bowed-out dislocations [103]. In the presence of the crystal anisotropic elastic

constants, µ111/110 must be appropriately estimated. Figures 4.2(a)-(c) thus displays the ratios

µavg/µ111/110 for the Voigt, Reuss and Hill averaging schemes, and for an important range of A

and C11/C44. The ratio (µHill
avg /µ111/110)1/3 is nearly unity over a wide range of A and C11/C44,

deviating by at most 5%. Thus, µHill
avg , which is close to the esperimental polycrystalline shear
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modulus, should be used in estimating the line tension. The Voigt averaged moduli should

not be used for estimating the line tension [104].

Thus, to minimize the differences between isotropic and anisotropic results, the line tension

must be calculated either directly from µ111/110, or from the isotropic polycrystal data.
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Figure 4.2 – Comparison of µavg with µ111/110 for the different isotropic averaging schemes as
a function of C11/C44 and A.

4.2.2 Error of the isotropic approximation

In no case does the isotropic approximation for g yield a different number of solutions for wc

than the anisotropic case. We can compute the relative error of the isotropic solution as

∆E iso
b −∆Eb

∆Eb
=

[(
µavg

C44

)
1+νavg

1−νavg

] 2
3

(
w iso

c

wc
· g iso

(
w iso

c

)
g (wc )

) 2
3

−1; and (4.16)

τiso
y0 −τy0

τy0
=

[(
µavg

C44

)
1+νavg

1−νavg

] 4
3
(

wc

w iso
c

) 5
3

(
g iso

(
w iso

c

)
g (wc )

) 4
3

−1. (4.17)

The relative error is independent of (i) any absolute values of the elastic constants, (ii) the

solute misfit volumes, (iii) dislocation line tension, (iv) total Burgers vector magnitude, and (v)

any numerical prefactors. Thus, the results depend only on the ratios of anisotropic elastic

constants, the isotropic averaging scheme (see equations 4.10–4.14) and the dislocation core
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Chapter 4. Solute-strengthening in elastically anisotropic fcc alloys

structure. Note that the characteristic amplitude w iso
c is independent of the isotropic averaging

scheme.

These dependencies are fully described through the dimensionless elastic parameters A =
2C44/(C11−C12), C11/C44, and core structure parameters dp /b andσ/b. We study a wide range

0.5 < A < 5, the full physical range of C11/C44 for this range of A, and values dp /b = 3,7,11,15

and σ/b = 1.0,1.5,2.0,2.5 that cover expected core structures (See Section A.1). We thus

examine the range of possible errors defined in Equations 4.16 and 4.17 induced by the use of

the isotropic approximation for these values.

4.2.3 Errors in energy barrier and zero-T strength

Overall, we find that the Voigt average provides the best agreement with the full anisotropic

result. Indeed, Figure 4.3 presents the differences in energy barrier and strength versus A

for the Voigt, Reuss, and Hill average, for a typical case (C11/C44 = 2.7; dp /b = 7; σ/b = 1.5).

The error in the Hill result is typically twice that of the Voigt result, and of the opposite sign

(negative rather than positive). Recall that the various isotropic models only differ via ratios of

the dislocation pressure pre-factor µavg
(
1+νavg

)
/
(
1−νavg

)
(see Equation 4.9) and so results

can be easily related analytically. We thus focus on the Voigt results below, which are generally

the most accurate.
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Figure 4.3 – Relative differences in ∆Eb and τy0 estimated with average isotropic elastic con-
stants versus those predicted with full stiffness tensor as a function of anisotropy ratio A
(for C11/C44 = 2.7 and dislocation core parameters being dp = 7b and σ= 1.5b). Results are
reported for Voigt, Reuss and Hill isotropic averages. Filled circle markers: first minimum
solution. Filled star markers: second minimum solution.

The differences in energy barrier and strength are very weakly dependent on C11/C44. Fig-

ure 4.4 presents the differences in energy barrier and strength versus A using the Voigt model
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for various values of C11/C44, again for a typical core structure (dp /b = 7; σ/b = 1.5). The

variations around the middle value of C11/C44 = 2.7 are typically less than 1%. This is well

below the accuracy of the elasticity theory itself and so can be neglected. All further results

below thus correspond to C11/C44 = 2.7.

0.10

0.08

0.06

0.04

0.02

0.0

0.10

0.08

0.06

0.04

0.02

0.0

}

}

}
}

1 2 3 4 5 1 2 3 4 5

3.82
3.33
2.70

2.24
1.94
1.52

3.82
3.33
2.70

2.24
1.94
1.52

Figure 4.4 – Relative differences in ∆Eb and τy0 as estimated with Voigt isotropic elastic
constants versus full anisotropy as a function of C11/C44 and anisotropy ratio (for dislocation
core parameters dp = 7b and σ= 1.5b). Marker colors indicate different C11/C44 values. Filled
circles: first minimum solution; filled stars: second minimum solution.

Figure 4.5 shows the relative differences in wc , ∆Eb and τy0 between the Voigt isotropic model

and the full anisotropic elasticity as a function of anisotropy A, for the first minimum wc,1

for various dislocation core structure parameters (dp /b,σ/b). Figure 4.6 shows the same

quantities for the second minimum wc,2. The differences in the value of wc are zero for most

cases, and differ by ±b/2 in only a few cases. The difference is not systematic with σ/b, and

may arise due to the discrete increments of b/2 used in determining the minimum energy and

thus the appropriate discrete value for wc . Specifically, a very small energy change due to the

isotropic approximation can shift the discrete minimum by b/2; this has consequences for the

energy barrier and strength. Overall, however, the amplitude of the dislocation waviness is

generally well-preserved (within b/2) using the isotropic model.

The differences in energy barrier∆Eb for both minima (Figures 4.5b, 4.6b) are typically positive

and less than 5% over a wide range of parameters. Larger differences correlate with the changes

in the wc value by b/2. For the first solution (wc,1), which controls the low-temperature

behavior, the errors can be negative and reach ≈ 10% but only for very high anisotropy, the

narrowest core structures, and widest core separations. Overall, however, corrections to the

energy barrier due to anisotropy are not significant except when the wc is shifted by b/2, which

occurs mainly for σ/b = 1.0,2.0 and high levels of anisotropy.
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The differences in zero-temperature strength τy0 for both minima (Figures 4.5c, 4.6c) are

typically positive and slightly larger than the energy barrier. For the second minimum (wc,2)

the errors are consistent across all core structures and generally remain below +5% for A < 5.

For the first minimum (wc,1), the error for core widths σ/b = 1.0,2.0 and wide partial spacings

dp /b = 15 is over 10% error even at moderate anisotropy of A = 2−3. These errors correlate

with the small shifts in wc,1 by b/2 because the strength scales as w−5/3
c and wc,1 is typically

small (≈ 5b) so that shifts by ±b/2 are not negligible. This suggests the use of a continuous

w in the minimization rather than the use of a physical discrete set of w spaced by b/2; this

would lead to continuous variation in behavior and more-precise agreement between the

isotropic and anisotropic theories.

Overall, the errors when using the Voigt isotropic elastic constants are within 5% of the true

anisotropic results, and typically overestimating. Deviations do increase with increasing A,

but are almost always small for A < 3 and remain moderate for A < 4. We discuss the practical

application of these results below.
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Figure 4.5 – Relative differences in (a) wc , (b) ∆Eb and (c) τy0 computed with the Voigt-
averaged isotropic elastic constants versus full anisotropic results as a function of the
anisotropy ratio A, for the first minimum solution.
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Figure 4.6 – Relative differences in (a) wc , (b) ∆Eb and (c) τy0 computed with the Voigt-
averaged isotropic elastic constants versus full anisotropic results as a function of the
anisotropy ratio A, for the second minimum solution. Note that there is no second mini-
mum solution for the wider partial spreads σ/b = 2,2.5 when the partial separation is 7b since
it is effectively one full dislocation undissociated.
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4.3 Practical application of the theory

We have seen that the difference between the Voigt isotropic model and the full anisotropic

model are usually relatively small. The largest deviations arise when the isotropic model pre-

dicts a shift of b/2 in wc relative to the full anisotropic model, which occurs almost exclusively

for σ/b = 1.0,2.0 and can thus be identified. Otherwise, we consider the errors of 5% to be well

within the uncertainty of the elasticity model, relative to the full theory, and the full theory

itself involves approximations. Thus, the isotropic theory can be used and then corrected

to approach the anisotropic result based on available understanding. Experiments do not

usually yield the Voigt moduli nor the core structure (especially σ), and application of the

model also requires the line tension Γ. In this section, we therefore first present a parametric

study of the predictions of the isotropic theory and then address how we envision the use of

the anisotropic elasticity theory in combination with experimental or first-principles inputs.

4.3.1 Normalized results for wc ,∆Eb and τy0 using isotropic elasticity

We first present the isotropic results over the range of core structures. From Eqs. 4.7, 4.8 and

4.9, it is evident that the energy barrier and strength are functions of w iso
c (dp /b,σ/b) and

g iso(wc ,dp /b,σ/b), with

∆Eb ∝ (
w iso

c g iso)2/3
, (4.18)

τy0 ∝
(
g iso/w iso

c
5/4

)4/3
. (4.19)

Figures 4.7b and 4.7c show these normalized quantities over a wide range of (dp /b,σ/b) with

the two solutions for wc (where applicable). Figure 4.7a presents the wc,1 and wc,2, although

these are not directly needed in practical application of the model.

Figure 4.7c shows that the strength quantity is quite sensitive to the partial core width σ,

especially for small σ. The quantity σ, while correlated through the Peierls-Nabarro model to

the unstable stacking fault energy and elastic constants of the alloy [102], is not well established.

The atomistic simulations in A.1, and previous analyses in Ref. [4], indicate that a range

1.5 <σ/b < 2.5 prevails across most materials. Subsequent applications of the model used the

value σ/b = 1.5 across a wide range of materials with good success and we have seen above

that the wc for this value of σ/b agrees with that obtained in the full anisotropic model; this is

further discussed below.
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Figure 4.7 – (a) Dislocation roughening amplitude wc , (b) dimensionless ∆Eb , and (c) dimen-
sionless τy0 versus partial separation distance dp /b, for different partial core spreading σ/b,
as computed assuming isotropic elasticity.
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4.3.2 Application using experimental or computational inputs

Here we provide a simple method for experimentalists and computational material scientists

to investigate alloy strengthening in existing or new materials, reasonably accounting for

elastic anisotropy. This is further illustrated on a specific HEA case.

In section 4.2 we have established that the dislocation line tension is well estimated as

Γ = αµb2 using the Hill-average moduli. We have also compared the energy barrier for

dislocation motion (∆Eb) and the zero-temperature yield stress (τy0) using Voigt-averaged

elastic constants versus full anisotropic stiffness tensor, and found a deviation of mostly 5%

(occasionally ∼ 10% for ∆Eb and ≥ 10% for τy0, but only for very high anisotropy). So, for a

first estimation of the strengthening, we can avoid the cumbersome anisotropic formalism

and instead make isotropic predictions ∆E Voigt
b and τ

Voigt
y0 , using the Voigt-averaged elastic

constants. The dimensionless coefficients of Equations 4.18 and 4.19 for ∆Eb and τy0 are

shown in Figure 4.7. Full results are then obtained by multiplying the dimensionless results by

the appropriate prefactors using Voigt-averaged elastic constants

∆Eb prefactor: 1.22

(
µ

Voigt
avg

1+νVoigt
avg

1−νVoigt
avg

) 2
3 ((∑

n
cn∆V̄ 2

n

)
Γb

) 1
3

, (4.20)

τy0 prefactor: 1.01

(
µ

Voigt
avg

1+νVoigt
avg

1−νVoigt
avg

) 4
3
((∑

n cn∆V̄ 2
n

)2

Γb10

) 1
3

, (4.21)

according to Equations 4.7 and 4.8. Finally, for a more-accurate prediction accounting for the

elastic anisotropy, the above isotropic estimations for ∆Eb and τy0 can be corrected by the

additional factors shown in Figures 4.5 and 4.6.

The above procedure requires ingredients from either experiments or atomistic simulations:

µ
Voigt
avg and ν

Voigt
avg , the norm of the Burgers vector b, the solute misfit volumes ∆Vn , the line

tension of the dislocation Γ and the Shockley partial separation (d) and partial spreading (σ).

The Zener factor A is required for choosing the appropriate anisotropy correction factors. We

detail in the following how to get all these quantities.

Elastic constants enable the determination of µVoigt
avg , νVoigt

avg , A, and Γ∝µ111/110 ≈µHill
avg . The Ci j

can be obtained in several different ways, each with a different level of accuracy. The elastic

constants can be computed using first-principles density-functional theory (DFT) calculations,

which is reasonably accurate. They can also be estimated using the elemental values and a

rule-of-mixtures law, C rom
i j = ∑

n cnC n
i j . The full stiffness tensor of an existing alloy sample

can be measured using standard methods for single crystals and advanced techniques for

polycrystals [105–107]. It is more conventional, however, to measure only the average elastic

moduli of untextured polycrystals, which are typically close to the Hill approximation [101]. Γ

can thus be computed using the experimental isotropic shear modulus. The Voigt-averaged

values can then be estimated by using the anisotropy A of the rule-of-mixtures C rom
i j and the
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measured isotropic elastic constants with equations 4.10–4.14 as

µ
Voigt
avg ≈ µ

expt
avg

(2A+3)(3A+2)

3A2 +19A+3
, (4.22)

ν
Voigt
avg ≈

µ
expt
avg

(
1+νexpt

avg

)
−µVoigt

avg

(
1−2νexpt

avg

)
2µexpt

avg

(
1+νexpt

avg

)
+µVoigt

avg

(
1−2νexpt

avg

) . (4.23)

The lattice constant can be computed using first-principles methods or atomistic simulations

with suitable interatomic potentials, or measured by diffraction. The solute misfit volumes

can be computed with some additional effort [37, 54]. The misfit volumes can be determined

in principle from experiments on alloys at different compositions followed by interpolation,

but this requires fabrication of the alloys [108]. Lattice constants and misfit volumes can also

be estimated using Vegard’s law, which has been shown to be fairly accurate over a range of

alloys [4, 37, 109, 110].

The dislocation core parameters dp /b and σ/b are more challenging to assess. Fortunately,

most results are insensitive to dp /b for dp /b ≥ 7. The partial separation dp /b can be estimated

from knowledge of the stable stacking fault energy γssf and analytic and/or Peierls-Nabarro

models. It can also be measured, on average, via TEM [111, 112]. The partial core spreading

σ/b is the least accessible quantity, yet the results are rather sensitive to this value. The

uncertainty in σ/b likely dominates the overall uncertainty of the elasticity model, whether

isotropic or anisotropic. Successful past applications have used a single value of σ/b = 1.5

with the Leyson et. al model, which is on the low end of physical values seen in several fcc

atomistic core structures (Section A.1). This value may partially compensate for (i) additional

“chemical" contributions in the core that are not included in the elasticity model and (ii) a

larger σ/b combined with a larger numerical prefactor (see Ref. [109] and discussion below).

For example, for Al-X binary alloys, the full DFT-computed X-solute interactions energies were

computed [32] but the final results could be well represented by the Leyson et. al elasticity

model with σ/b = 1.5.

As an illustrative example, here we compute the strength of the CoCrFeMnNi Cantor alloy

using available experimental and computational inputs. The uniaxial tensile yield strength

has been measured experimentally as 125 MPa at T=293K and strain rate 10−3s−1 [113], after

extrapolating the Hall-Petch grain-size effect to infinite grain size. Our prediction here is a

refinement of the prediction of Varvenne et. al of 125 MPa based on isotropic elasticity [4] with

the experimental polycrystal elastic constants, which was in very good agreement with the

experimental value.

The single crystal elastic constants of the Cantor alloy have recently been measured by Ter-

amoto et. al to be C11 = 195.9 GPa, C12 = 117.7 GPa, and C44 = 129.3 GPa [114]. The experi-

mentally measured partial dislocation spacing of the edge dislocations dp is ∼ 5−8 nm [111].

The lattice constant obtained from X-ray diffraction is 3.6 Å [115] and therefore the Burgers

vector b is 2.5456 Å; so dp /b À 7. The average misfit volumes ∆V̄n were estimated in Ref. [4],
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based on experimental lattice constant data on Ni-Co, Ni-Cr, and Ni-Fe binaries and a range of

Mn-containing HEAs and the application of Vegard’s law, leading to the values (−0.864, −0.684,

0.286, 0.466, 0.796 Å3) for (Ni, Co, Fe, Cr and Mn), respectively.

With the above inputs, we predict the yield strength using the isotropic theory with Voigt

elastic constants and the additional corrections accounting for anisotropy obtained from

Figures 4.5 and 4.6. The anisotropy is characterized by A = 3.3 and C11/C44 = 1.52. The Voigt-

averaged elastic constants are then computed to be µVoigt
avg = 93.22 GPa and νVoigt

avg = 0.233 (from

Equations 4.11, 4.14). The line tension is computed as Γ= (1/8)µ111/110b2 = 0.3497 eV/Å. The

prefactors for computing ∆Eb and τy0 using the Voigt moduli can be then computed from

Equations 4.20 and 4.21 as 0.847 eV and 5.314 GPa, respectively. The additional correction

factors for anisotropy obtained from Figures 4.5b and 4.5c are 0.976 for ∆Eb and 0.95 for τy0

(first minimum wc,1 relevant here).

The remaining quantities needed in the theory that are not directly connected with the

anisotropy are the misfit quantity
∑

n cn∆V̄ 2
n = 0.43 Å6, dp /b already established to be À 6,

and σ/b. We use the value σ/b = 1.5 to be consistent with Varvenne et. al. With these values,

we obtain the dimensionless quantities for τy0 (0.01758) and ∆Eb (1.277) from Figure 4.7.

Multiplying all of the components discussed above yields τy0 = 88.75 MPa and ∆Eb = 1.056 eV.

The uniaxial tensile yield strength at temperature and strain rateσy = 3.06τy is then computed

from Equation 4.2c as 128.7 MPa, where the Taylor factor 3.06 for untextured fcc polycrystals

is used. This prediction is in very good agreement with the experimental value of 125 MPa.

The additional anisotropy factors do not lead to any significant change in the prediction in

this particular case. This level of agreement is well within the uncertainty of the model and is

not expected to be achieved for all alloys.

In the absence of the single-crystal elastic moduli, we would estimate the strength using

the reported isotropic polycrystalline moduli µ= 80−81 GPa and ν= 0.25−0.265 [115–117]

as follows. The Voigt-average elastic moduli require A. This is estimated using the rule-

of-mixtures C rom
i j obtained from the elemental moduli. For the Cantor alloy, where not all

elements crystallize in fcc at low temperature, we use the first-principles DFT values for these

elements in the fcc structure [118]. The resulting C rom
i j yields the estimate A = 2.35, somewhat

lower than the experimental value but still indicating a non-negligible level of anisotropy. The

Voigt-averaged elastic constants are then computed to be µVoigt
avg = 87.061 GPa, ∼ 6.5% lower

than the single-crystal value, and νVoigt
avg = 0.248 using Equations 4.22 and 4.23 respectively. The

line tension uses the experimental shear modulus, Γ= (1/8)µb2 = 0.406 eV/Å. The anisotropic

correction factors for∆Eb and τy0 are 0.98 and 0.97 respectively (See Figure 4.5). The remaining

inputs to the theory are unchanged. Using the components computed above yields the new

predictions of τy0 = 82.15 MPa and ∆Eb = 1.089 eV with a tensile yield strength at temperature

and strain rate of 121.82 MPa. The difference with the more-complete prediction is small, and

within the uncertainty of the theory.

The example above is intended mainly to show how the anisotropic results can be applied
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in practice, depending on the availability of experimental data. The objective is not to show

that the anisotropic model gives better agreement with experiment in this particular case. In

general, the anisotropic model gives higher strengths than the isotropic model because the

Voigt-averaged elastic constants that best-capture the anisotropy are always larger than the

isotropic elastic constants.

4.4 Discussion and Summary

The illustration in the previous section shows how experimental measurements provide some

guidance on the relevant material properties needed in the theory. As noted, in the absence of

experiments, many of these quantities can be estimated or computed using first-principles

[37]. Thus, there are different avenues for evaluating the parameters needed in the model. Alloy

design and discovery will follow the route of computation. The use of experimental inputs on

materials that have been fabricated and tested can further validate the theory or help identify

if other factors (solute-solute interactions; chemical short-range order; microstructure) are

important in determining strength.

There are uncertainties associated with each material quantity, and the errors associated

with these uncertainties can accumulate. The elasticity theory itself is an approximation to

a more-complete theory, and even the full theory is not perfect. Nonetheless, the theory

provides general guidance for understanding what material variables determine the strength,

and their relative importance. This allows for the rationalization of experimental trends across

families of alloys and provides a framework for searching higher-performance alloys.

The underlying theory of this complex process of a dislocation moving through a random

alloy continues to evolve. In application to edge dislocations in bcc alloys, a new general

stochastic analysis of the wavy dislocation configuration has been presented [109]. This

analysis involves a more-detailed statistical analysis of the wavy dislocation structure via

stochastic modeling of the structure segment-by-segment and including the full statistical

distribution of possible segment energy changes due to the solute fluctuations. This analysis

leads to additional numerical coefficients κ= 0.56 and β= 0.833 multiplying the line energy

and potential energy terms appearing in Equation 4.2a, respectively, and a change in the

energy barrier by a factor
p

2/(
p

2− 0.25) = 1.214. The same analysis applies to fcc alloys,

and the net effects are a factor of
√
κ/β = 0.82 multiplying the line tension and the factor

of 1.214 for the energy barrier, which then also enters the zero-temperature strength. These

effects change the numerical coefficients in Equations 4.2a and 4.2b from (1.22, 1.01) to (1.39,

1.31), respectively. Thus, the successful use of σ/b = 1.5, which is smaller than values seen

in simulations (see Section A.1), together with the original Leyson model may reflect some

cancellation of effects. For instance, using σ/b = 2.0 and the corresponding dimensionless

coefficient for τy0 of ∼ 0.012 (see Figure 4.7c) with the revised prefactor of 1.31 gives a net

factor of ∼ 0.016 which is nearly equal to that obtained using the present Leyson model with

σ/b = 1.5 (dimensionless coefficient ∼ 0.017) and with the Leyson coefficient 1.01, giving a net
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4.4. Discussion and Summary

factor ∼ 0.017. However, for overall consistency with the previous literature and successful

quantitative application of the Leyson model, we advocate continued use of the original

Leyson model coefficients. We also note that these coefficients do not enter into any difference

between isotropic and anisotropic theories, and so do not affect the primary analyses of this

chapter.

The theory has been extended to include the effects of solute-solute interactions, while re-

maining in the random alloy limit [7]. Currently, a new strengthening theory is in development

which accounts for the presence of short-range order (SRO), however the present elastic theory

using solute-dislocation interactions is an integral part of it (Chapter 6). The anisotropic elas-

ticity theory presented here will remain valuable because the solute-solute interactions and

SRO contributions can be incorporated and integrated along with the elasticity contributions

to solute/dislocation interactions. Thus, the theory will continue to improve by incorporating

increasing, but realistic, complexity.

In summary, we have shown that the predictions of a fully anisotropic elastic model for solute

strengthening can be obtained using an isotropic elasticity model with the Voigt-averaged

elastic constants for the dislocation field and the Hill-averaged elastic constants for the line

tension. Additional small correction factors to match the anisotropic result precisely are

also provided. The effects of anisotropy are not negligible — the use of the standard Hill

estimate for the isotropic moduli in equations 4.16 and 4.17 leads to rather lower strength

predictions for high anisotropy (A = 3− 4). Since many HEAs to date have anisotropy in

the range of A = 2− 4, these corrections are valuable for making refined predictions. We

have provided some guidelines on obtaining the data needed to make predictions. Results

then follow using the coefficients presented graphically here, which we hope assists with

application of the theory. The elastic theory provides an approximate but firm and analytical

foundation for understanding trends in solute strengthening. Since the composition space in

multi-component random alloys is immense, and experimental searching through that entire

space is not feasible, the present theory provides a framework for rapid probing of the entire

space in the search for attractive compositions for desired performance.
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5 Effect of Solute-Solute Interactions on
strengthening of random alloys

Disclaimer

This chapter is adapted from the following article, with permission from the coauthor

and the publisher.

S. Nag, W. A. Curtin, “Effect of solute-solute interactions on strengthening of random

alloys from dilute to high entropy alloys”, Acta Materialia 200, 659–673 (2020).

The yield strength of random metal alloys, i.e. alloys with random occupation of the crys-

talline lattice sites by the elemental constituent atoms all considered as solutes, is primarily

understood as controlled by solute-dislocation interactions. The Leyson’s theory for the yield

strength of random alloys composed of any number of components at any concentration

has provided good predictions across a range of alloys, both dilute [31, 32, 38, 119] and HEAs

[4, 33, 37, 109, 110, 120, 121]. While random, such alloys still possess the underlying solute-

solute interactions, and these interactions can influence mechanical properties of the random

alloy. In this chapter, the Leyson’s model, as introduced in Chapter 1: Section 1.2, has been

extended to incorporate the effects of solute-solute interactions into the prediction of yield

strength in random alloys.

In a random alloy, there is no statistical preference for the occurrence of particular solute-

solute pairs at any distance, independent of whether there are solute-solute interactions.

The passage of a dislocation along a crystalline glide plane shifts the relative positions of

atoms above the glide plane with respect to the atoms below the glide plane (see Figure

5.1). On average, the glide creates no change to the number of solute-solute pairs at any

distance. Therefore, there is no average effect of solute-solute interactions on the yield strength.

Locally over finite slip areas, however, the actual number of solute-solute pairs of all types

will change upon slip. Thus, there are scale-dependent fluctuations in the solute-solute

interaction energies as the dislocation moves through the random alloy. At the same time, the

individual solutes - independent of the surrounding solutes - interact with the dislocation.

On average these interactions also sum to zero but have local fluctuations (deviations from
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Chapter 5. Effect of Solute-Solute Interactions on strengthening of random alloys

the average). The dislocation thus experiences energy fluctuations due to both the individual

solutes and the solute-solute interactions. These total fluctuations can attract or repel the

dislocation. The dislocation thus adopts a wavy configuration so as to minimize its total

energy, lowering the energy by moving into regions where solute fluctuations are favorable

and avoiding regions where the fluctuations are unfavorable. With the dislocation residing in

the low-energy environments, a combination of applied stress and temperature is required to

move the dislocation segments, via thermal activation, over the nearby high energy regions.

This determines the strain-rate and temperature-dependent flow stress.

Slip
plane

Figure 5.1 – Schematic illustration of pair changes across the slip plane due to slip by a lattice
vector t . Selected atom pairs are indicated by colored lines in both figures. Considering
distances only in the two planes just above and below the slip plane for simplicity, upon slip
1st NN pairs become 2nd NN pairs (e.g. red-green), 2nd NN pairs can become 1st NN pairs
(e.g. red-red) or 3rd NN pairs (e.g. red-blue), and 3rd NN pairs can become become 2nd NN
pairs (e.g. red-blue) or 4th NN pairs (not shown). These changes combine with solute-solute
interactions to create the fluctuations in energy upon slip that lead to strengthening.

Here, we derive and validate an analytical expression for the fluctuations in energy change

due to solute-solute interactions as a dislocation glides in a random alloy (e.g. Figure 5.1).

Specific results are provided for both fcc and bcc crystal structures. The general result is

incorporated into the theory of strengthening in random alloys, originally proposed by Leyson

et. al. The quantitative effects of solute-solute interactions on yield strength due to edge

dislocations are then assessed in bcc MoNbTaW, bcc NbTaV and fcc Ni-Al. The strengthening

due to solute-solute interactions is negligible in the bcc alloys and significant in Ni-Al at low

(2–10%) Al concentrations due to the very strong Al-Al first-neighbor repulsion. The Ni-Al

results vary widely depending on the source of the input material properties. Connections are

made to simulations on Ni-Al alloys in published literature.

Since solute-solute interaction energies in concentrated and high-entropy alloys are not always

available and can be cumbersome to calculate via atomistic simulation, we also suggest a

strategy to estimated apriori what level of solute-solute interactions would be necessary to

have a notable impact on strengthening. If the required level of interactions is sufficient to

likely cause phase-separation, then one can conclude with no further calculation that the real

effects of solute-solute interactions in a single-phase alloy are not important for strengthening.
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5.1. Solute-strengthening theory accounting for solute-solute interactions

The remainder of this chapter is organized as follows. Section 5.1 revisits the solute-strengthening

theory to incorporate solute-solute interactions. Section 5.2 presents the derivation of the vari-

ance in energy change upon slip in a random alloy due to solute-solute interactions. Section

5.3 validates the analytical expression for the variance via numerical studies on model alloys.

Section 5.4 quantitatively assesses the role of solute-solute interactions in solute-strengthening

in the bcc and fcc alloys. Section 5.5 summarizes our results and their implications.

5.1 Solute-strengthening theory accounting for solute-solute inter-

actions

The theory for strengthening in a random alloy first envisions a wavy edge dislocation having

a wavelength 4ζ and amplitude w . The typical solute-related energy fluctuations over length ζ

are taken equal to the standard deviation σ∆Ep of the total solute-related energy fluctuations.

We extract out the explicit dependence on dislocation segment length ζ by writing σ∆Ep =(
ζρL

) 1
2 ∆Ẽp(w) where ρL is the density of lattice sites along the dislocation line direction. ρL

equals 1/(
p

3b) for fcc alloys and 1/(2
p

2b) for bcc alloys. The quantity ∆Ẽp(w) is the standard

deviation of the energy change, per periodic length along the dislocation line, when the

dislocation glides a distance w . There is also an elastic energy cost per wavy unit equal to

Γw 2

2ζ where Γ is the dislocation line tension. The total energy of a long dislocation of length L

having the wavy structure characterized by ζ and w is then

∆Etot(ζ, w) =
[
Γ

w2

2ζ
− (
ζρL

) 1
2 ∆Ẽp(w)

](
L

2ζ

)
(5.1)

A characteristic wavelength and amplitude (ζc , wc ) emerge by minimizing the total energy of

the long dislocation with respect to both ζ and w . The length ζc is obtained directly as

ζc =
(

4Γ2w4

ρL∆Ẽ 2
p(w)

) 1
3

(5.2)

The amplitude wc then follows from a second minimization ∂∆Etot(ζc (w),w)
∂w = 0 that reduces to

the solution of
∂∆Ẽp(w)

∂w
= ∆Ẽp(w)

2w
(5.3)

The total reduction in energy per length ζc , ∆Ec =∆Etot(ζc , wc ) 2ζc
L , then sets an energy scale

for pinning of the dislocation. The length scale wc along the glide plane sets the glide dis-

tance between local favorable and unfavorable solute environments. The dislocation must be

thermally-activated, assisted by a resolved shear stress τ, out of the local minimum energy

of the favorable environments across the barriers created by the adjacent unfavorable envi-

ronments. The outcome of the analysis is a zero-temperature yield stress τy0, an associated
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Chapter 5. Effect of Solute-Solute Interactions on strengthening of random alloys

zero-stress energy barrier ΔEb , and a stress-dependent activation barrier ΔE(τ) given by

ΔEb = 1.467
(
ρL w2

cΓΔẼ 2
p(wc )

) 1
3

(5.4a)

τy0 = π

2

ΔEb

bwcζc
= 1.45

(
ρ2

LΔẼ 4
p(wc )

Γb3w5
c

) 1
3

(5.4b)

ΔE(τ) =ΔEb

(
1− τ

τy0

) 3
2

(5.4c)

In combination with an Arrhenius law for the thermal activation, these lead to a temperature

T and strain-rate ε̇ dependent flow stress given by

τy (T, ε̇) = τy0

[
1−

(
kBT

ΔEb
ln

(
ε̇0

ε̇

)) 2
3

]
(5.5)

where ε̇0 ∼ 104/s and kB are a reference strain rate and Boltzmann’s constant, respectively.

With increasing temperature, the expression for strengthening is modified to account for

multiscale waviness as discussed in [36] but these details are not important for this paper.

The energy fluctuations due to the random solute environment enter only through σΔEp and

ΔẼp(w). Here, we assume that the fluctuations due to solute-dislocation interactions and

solute-solute interactions are independent. That is, the direct interaction of a single solute

with the dislocation does not depend on the identity of any surrounding solutes. Then, the

fluctuations due to shifting of relative solute positions as the dislocation glides are indepen-

dent of the single-solute positions. The variance (square of the standard deviation) of the

total energy change upon glide of a dislocation is then the sum of the variances of the two

independent contributions,

σ2
ΔEp

=σ2
ΔEsd

+σ2
ΔEss

(5.6)

The standard deviation due to solute-dislocation interactions σΔUs−d has been considered

previously in [4, 31, 32, 119, 120] and is

σΔEsd = (
ζρL

) 1
2

√√√√∑
i , j
n

cn
(
U n

sd (xi −w, y j )−U n
sd (xi , y j )

)2 = (
ζρL

) 1
2 ΔẼp,sd (w) (5.7)

where U n
sd (xi , y j ) is the solute-dislocation interaction energy of a solute of type n at the

projected in-plane position (xi , y j ) with respect to the dislocation line at the origin with

line direction z. With the assumption of linear elasticity and a Burgers vector distribution

characterized by full (for bcc) or partial (for fcc) dislocation core spreading σ and, for fcc, a

partial separation distance dp , ΔẼp,sd (w) can be decoupled into a composition-plus-misfit-
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5.1. Solute-strengthening theory accounting for solute-solute interactions

volume term, an elastic prefactor, and a dislocation core structure coefficient term as

∆Ẽp,sd (w) = g
(
w,dp ,σ

)
µV 1+νV

1−νV

√∑
n

cn∆V 2
n (5.8)

where cn and ∆Vn are the concentration and misfit volume of solute x in the alloy, µV and

νV are the Voigt averaged shear modulus and Poisson ratio of the alloy, and g
(
w,dp ,σ

)
is a

numerical coefficient that depends on the glide distance w , the dislocation core structure

parameters (σ and dp ); in principle, g also depends on the Zener elastic anisotropy parameter

A, but the dependence is weak when the Voigt-averaged elastic constants are used [120].

The wc obtained from the solution of Equation 5.3 using only solute-dislocation interac-

tion energies (refer Figure 4.7a), leads to a dimensionless computed numerical coefficient

g
(
wc ,dp ,σ

)
. Figure 5.2 presents g (wc ) for different fcc dislocation core structures (σ,dp )

(extracted from Figures 4.7b and 4.7c). In addition, for sufficiently large partial separation

distances dp the minimization process gives rise to two solutions wc,1 and wc,2, and hence

two solutions for g , as shown in Figure 5.2. One solution has a high zero-T strength and low

zero-stress barrier, and controls the strength at lower temperatures. The second solution has

a lower strength and higher barrier and controls the strength at higher temperatures. The

two solutions will emerge as relevant in our later study of fcc Ni-Al. Related results for edge

dislocations in bcc alloys can be derived from results in [109].

0.50

0.45

0.35
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0.30

0.40

6 8 104 12 14

Figure 5.2 – Dimensionless solute-dislocation energy fluctuation quantity g (wc ,dp ,σ) for fcc
alloys as a function of the partial dislocatoin separation dp /b, for different dislocation core
structures characterized by partial core spreading σ/b.

The variance σ2
∆Ess

in energy changes due to fluctuations in solute-solute pairs scales with the

number of atoms N on the glide plane over which glide has occurred. Here we are interested

in the normalized variance σ̃2
∆Ess

= σ2
∆Ess

/N where N is the number of atoms swept during

glide of a dislocation segment of length ζ by distance w . We neglect the fact that atoms near

the dislocation core experience fractional slip (e.g. less than one partial Burgers vector for the
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Chapter 5. Effect of Solute-Solute Interactions on strengthening of random alloys

Shockley partials in fcc crystals and less than one Burgers vector for the full dislocations in bcc

crystals). N then depends only on the crystal structure and slip plane. As shown in Figure 5.3,

there are three relevant cases in bcc and fcc crystals. For a compact full dislocation typical in

bcc, N = ρLρGζw where ρL is the density of atomic sites along the line direction and ρG is the

density of projected atomic sites in the glide direction. ρG equals 2/b for fcc alloys and 3/b

for bcc alloys. For dissociated dislocations typical in fcc, there are two cases. When the glide

distance is w < dp , the leading partial shifts material from the unslipped perfect crystal to a

partially-slipped structure while the trailing partial shifts the previous partially-slipped region

back to perfect crystal, so N = 2ρLρGζw . When the glide distance is w > dp , new stacking

fault is formed, the previous partially slipped region reverts back to perfect crystal, and a new

fully-slipped region is formed. The number of partially-slipped atoms on the glide plane is

then Np = 2ρLρG dpζ with normalized standard deviation denoted as σ̃∆Ess ,p and the number

of atoms in the fully-slipped region is N f = ρLρG (w−dp )ζwith normalized standard deviation

denoted as σ̃∆Ess , f .

Partially slipped region

Fully slipped region

Dissociated coreCompact core Dissociated core

(a) (b) (c)

Figure 5.3 – Schematic of areas swept during dislocation glide by a distance w . (a) bcc crystal
(no dissociation); (b) fcc crystal (dissociated core) with w < dp ; (c) fcc crystal (dissociated
core) with w > dp .

The variance due to all solute-solute interaction when a dislocation segment of length ζ glides

by w is thus

σ∆Ess =


√
ζwρLρG σ̃

2
∆Ess , f Compact core√

2ζwρLρG σ̃
2
∆Ess ,p Dissociated core, w < dp√

ζwρLρG σ̃
2
∆Ess , f +ζdpρLρG (2σ̃2

∆Ess ,p − σ̃2
∆Ess , f ) Dissociated core, w > dp

(5.9)

The normalized variances will be derived in the next Section. Factoring out the common term(
ζρL

) 1
2 and adding the contribution from solute-dislocation interactions, the key energetic

quantity ∆Ẽp(w) in the theory can be written as

∆Ẽp(w) =


√
∆Ẽ 2

p,sd (w)+wρG σ̃
2
∆Ess , f Compact core√

∆Ẽ 2
p,sd (w)+2wρG σ̃

2
∆Ess ,p Dissociated core, w < dp√

∆Ẽ 2
p,sd (w)+wρG σ̃

2
∆Ess , f +dpρG (2σ̃2

∆Ess ,p − σ̃2
∆Ess , f ) Dissociated core, w > dp

(5.10)
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5.1. Solute-strengthening theory accounting for solute-solute interactions

where ∆Ẽp,sd (w) is the solute-dislocation fluctuation contribution that appears in the original

theory and the second terms on the right-hand side of Equation 5.10 can be similarly denoted

as ∆Ẽp,ss(w). Recalling Equation 5.3, the minimization to obtain wc can be shown to be

unchanged by the introduction of solute-solute interactions for the compact core and the

dissociated w < dp core,

∂∆Ẽp(w)

∂w
= ∆Ẽp(w)

2w
⇔ ∂∆Ẽp,sd (w)

∂w
= ∆Ẽp,sd (w)

2w
(5.11)

For the dissociated core with w > dp , the minimization may not be greatly affected if the

additional term dpρG (2σ̃2
∆Ess ,p − σ̃2

∆Ess , f ) is small; this must be verified in any specific case.

This analysis demonstrates that the introduction of solute-solute interactions does not change

wc relative to the value in the absence of solute-solute interactions for two important cases

(dissociated core with w < dp common in fcc alloys and compact core common in bcc alloys).

The fact that wc can be independent of solute-solute interactions enables a very rapid paramet-

ric assessment of their importance to strengthening. First, the analytic elasticity theory using

only solute-dislocation interactions can be applied using Equation 5.8 to compute ∆Ẽp,sd (wc )

and the wc can be obtained from the core structure. Then, a magnitude of solute-solute

interactions (i.e. the magnitude of σ̃∆Ess in Equation 5.10) can be assumed and ∆Ẽp,ss(wc )

computed. Solute-solute interactions are only important (e.g. > 10% increase in strength) if

∆Ẽp,ss(wc ) > 0.45∆Ẽp,sd (wc ). If the magnitude of the assumed solute-solute interactions to

achieve this level is unrealistic (e.g. so high that the alloy would likely phase separate or form

LRO at the fabrication temperatures), then the true smaller solute-solute interactions can be

neglected and do not need to be determined.

Estimates for solute-solute interaction energies can also be made using the heat of mixing of

binary alloys as computed (e.g. Ref. [122]) or determined from CALPHAD or other standard

tools. The heats of mixing of binary pairs in a multicomponent alloy has been used to judge

whether a proposed alloy composition is amenable to fabrication as single-phase material

[122]. Here, such estimates can be used to estimate the effects of solute-solute interactions on

strengthening.

Since there are many equations and symbols in this paper, we provide a “List of Symbols” for

reference.
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List of Symbols

a,b Cubic lattice constant, Burgers vector d Normalized pair distances in a

lattice

dp ,σ Partial separation and partial core spread-

ing

Nd Number of lattice sites at distance

d (Sec. 5.3)

ρL ,ρG Lattice site densities along the dislocation

line and glide directions

si x Occupation variable for site i and

type x

µV ,νV Voigt averaged shear modulus and Pois-

son’s ratio respectively

Θdd ′ Structure factor for lattice site pair

distances (d ,d ′)

Γ Dislocation line tension ∆Eb Energy barrier for dislocation glide

cx Concentration of type x in the alloy ∆E(τ) Stress-dependent activation

barrier

∆Vx Misfit volume of solute of type x τy0,τy Zero- and finite-temperature yield

stress

w, wc,1, wc,2 Dislocation roughening amplitude and its

two characteristic values

g Numerical coefficient in ∆Ẽp,s−d

ζ,ζc
1
8 Lateral dislocation roughing scale and

its characteristic value

U x
sd (xi ,y j ) Interaction energy of type-x solute

at position (xi ,y j ) relative to a dis-

location at the origin

σ∆Ep , σ∆Esd ,

σ∆Ess

Standard deviation of dislocation energy

due to total solute fluctuations, the solute-

dislocation contribution, and the solute-

solute contribution interactions

t Slip vector

σ̃∆Ess σ∆Ess divided by
(
ζwρLρG

) 1
2 Ux y Bond energy of x − y solute pair

σ̃∆Ess ,p ,

σ̃∆Ess , f

σ̃∆Ess corresponding to slip by partial and

lattice vector respectively

UA A Bond energy of alloy average-atom

A

∆Ẽp,∆Ẽp,s−d σ∆Ep and σ∆Esd divided by
(
ζρL

) 1
2 Ux A Bond energy of solute x - average

atom A pair

∆Etot Total energy change for wavy dislocation

relative to a straight configuration in a ran-

dom alloy

U i nt
x y Interaction energy of x − y solute

pair

V e f f
x y Effective interaction potential of x − y so-

lute pair
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5.2. Analytical expression for normalized variance σ̃2
∆Ess

for multicomponent alloys

Finally, before proceeding with the detailed analysis of the normalized variance σ̃2
∆Ess

=
σ2
∆Ess

/N , we note that the sum of the variances in Equation 5.6 is a reasonable approximation

for two reasons. First, favorable solute fluctuations should typically have more solutes on

one side of the glide plane and fewer on the other, decreasing the number of solute pairs

across the glide plane in any low-energy pinned region of the dislocation. However, solute-

dislocation interactions are not localized to the atomic sites just above and below the glide

plane [31, 32, 119] and solute/stacking fault interactions are equivalent on both sides of the

glide plane, so the approximation is reasonable. Second, there could be a correlation between

local solute misfit volume and local environment, and the local environment involves solute-

solute pairs. However, computational studies of variations in local solute misfit volumes

indicates that variations are small relative to the misfit volumes themselves. First principles

studies of the changes in misfit volume for close solute pairs relative to isolated solutes also

show small effects (e.g. for Al in Ni, the misfit volume of Al is 1.62Å3 and that for each of two

strongly-repelling near-neighbor Al atoms is 1.82Å3[67]). Therefore, neglecting correlated

fluctuations between single solutes and solute pairs appears to be a good assumption.

5.2 Analytical expression for normalized variance σ̃2
∆Ess

for multi-

component alloys

We now compute the normalized variance σ̃2
∆Ess

in energy changes due to fluctuations in

solute-solute pairs as one half of a crystal slips by some slip vector t over the other half across

a specified slip plane. The analysis is basically topological (Figure 5.1). Atoms are assigned to

each perfect lattice site. For two solutes m and n, we seek the fluctuation in the number of

m−n pair changes across the slip plane at any pair separation distance due to slip. Actual local

deviations from the perfect lattice positions, which occur in the real material when relaxed to

equilibrium, are neglected because they do not change the number of m −n pairs.

We describe the interaction between atoms m and n at lattice sites i and j at a separation

distance
∥∥ri j

∥∥ by a pair potential Umn(
∥∥ri j

∥∥). We will subsequently translate our results into

other forms involving the pair interaction energies U i nt
mn (

∥∥ri j
∥∥) and effective pair potentials

V e f f
mn (

∥∥ri j
∥∥) defined later. For a given realization of the random alloy (i.e. specific occupation

of each lattice site by one particular solute of the alloy), the total energy of the initial (unslipped)

crystal is

E i = 1

2

∑
i , j

i 6= j

∑
m,n

si m s j nUmn(
∥∥ri j

∥∥) (5.12)

Here, si m is an indicator variable which equals 1 if site i is occupied by solute m and equals 0

otherwise. After slip of the upper half of the crystal relative to the lower half of the crystal by a

vector t parallel to the slip plane, the total energy of the system is
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E f = 1

2

∑
i , j

i 6= j
i , j>0

∑
m,n

si m s j nUmn(
∥∥ri j

∥∥)+ 1

2

∑
i , j

i 6= j
i , j<0

∑
m,n

si m s j nUmn(
∥∥ri j

∥∥)+ ∑
i , j

i<0, j>0

∑
m,n

si m s j nUmn(
∥∥ri j + t

∥∥)

(5.13)

The energy change is the difference between the final and initial energies. Energy changes due

to all pairs i − j exclusively below (i , j < 0) or above (i , j > 0) the slip plane are zero, leaving

only changes due to pairs (i < 0, j > 0) across the slip plane. The energy change ∆Ess upon slip

due to solute-solute interactions is then

∆Ess =
∑
i , j

i<0, j>0

∑
m,n

si m s j n

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)
(5.14)

The average energy change is obtained by averaging over all possible random (uncorrelated)

occupations of each site. Thus, with 〈·〉 denoting averaging, 〈si m s j n〉 = cmcn where cm and cn

are the concentrations of m and n atoms, respectively, we obtain

〈∆Ess〉 =
∑
m,n

cmcn

( ∑
i , j

i<0, j>0

Umn(
∥∥ri j + t

∥∥)− ∑
i , j

i<0, j>0

Umn(
∥∥ri j

∥∥)
)
. (5.15)

If t is a lattice vector, the two sums are equal and 〈∆Ess〉 = 0, i.e. there is no change in average

energy upon slip, as expected. For slip by a partial Burgers vector, there will be a change in

average energy equal to the energy of the stacking fault of the alloy.

The effect of solute-solute interactions thus only arises through the fluctuations, as represented

by the variance 〈∆E 2
ss〉−〈∆Ess〉2. With lattice sites labeled by i ,k taken to be below the slip

plane and sites labeled j , l to be above the slip plane, the quantity ∆E 2
ss is

∆E 2
ss =

∑
i , j

∑
m,n

si m s j n

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)∑
k,l

∑
p,q

skp sl q

(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
(5.16)

Taking the average, we use the facts that (i) 〈si m s j n skp sl q〉 = 〈si m skp〉〈s j n sl q〉 and (ii) 〈si m skp〉 =
δi kδmp cm + (1−δi k )cmcp (and similarly 〈s j n sl q〉 = δ j lδnq cn + (1−δ j l )cncq ). Then, we obtain
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〈∆E 2
ss〉 =

∑
i , j

∑
m,n

cmcn

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)2

+∑
i

∑
m

cm
∑
j ,l

j 6=l

∑
n,q

cncq

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Umq (‖ri l + t‖)−Umq (‖ri l‖)

)

+ ∑
i ,k

i 6=k

∑
m,p

cmcp
∑

j

∑
n

cy

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Upn(

∥∥rk j + t
∥∥)−Upn(

∥∥rk j
∥∥)

)

+ ∑
i ,k

i 6=k

∑
m,p

cmcp
∑
j ,l

j 6=l

∑
n,q

cncq

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
(5.17)

Making use of the fact that 〈si m s j n〉 = cmcn (and similarly 〈skp sl q〉 = cp cq ), one can show by

similar manipulations that

〈∆Ess〉2 =∑
i ,k

∑
j ,l

∑
m,n,p,q

cmcncp cq

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
(5.18)

The variance σ2
∆Ess

is therefore

σ2
∆Ess

= ∑
m,n

cmcn
∑
i , j

i<0, j>0

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)2

+ ∑
m,n,q

cmcncq
∑

i
i<0

∑
j ,l

j ,l>0
j 6=l

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Umq (‖ri l + t‖)−Umq (‖ri l‖)

)

+ ∑
m,n,p

cmcncp
∑
i ,k

i ,k<0
i 6=k

∑
j

j>0

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Upn(

∥∥rk j + t
∥∥)−Upn(

∥∥rk j
∥∥)

)

− ∑
m,n,p,q

cmcncp cq
∑
i ,k

i ,k<0

∑
j ,l

j ,l>0
j=l if i 6=k

(
Umn(

∥∥ri j + t
∥∥)−Umn(

∥∥ri j
∥∥)

)(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)

(5.19)

The variance σ2
∆Ess

is a fourth-order polynomial in concentrations. For fcc and bcc, the second

and third terms in Equation 5.19 are equal. For the usual situation in which interactions decay

sufficiently fast with distance, σ2
∆Ess

scales with the number of atomic sites N on the slip plane

such that the normalized quantity σ̃2
∆Ess

is independent of N , as used in the previous Section.
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In real materials, atoms do not interact via pair potentials but rather by many-body interac-

tions. Such multibody interactions are often represented by either interaction energies U i nt
mn or

effective pair potentials V e f f
mn [123] that can be derived from total system energies computed

using first-principles methods or multibody interatomic potentials. A.2 elucidates more on

these effective interaction quantities and how they relate to each other. In systems with atoms

interacting via pair potentials, the effective pair potentials are related to the pair potentials by

the relation

V e f f
mn (

∥∥ri j
∥∥) =Umm(

∥∥ri j
∥∥)+Unn(

∥∥ri j
∥∥)−2Umn(

∥∥ri j
∥∥) (5.20)

Note that the effective pair potentials are non-zero only for non-equal pairs of atoms. Interac-

tion energies involve the energies of m and n atoms at separation
∥∥ri j

∥∥ when embedded in

a surrounding average representation of the alloy. This is equivalent to a statistical average

over all possible random arrangements of all the atoms in the system except atom x at site i

and atom y at site j . Relating to pair potentials, an average atom A can be introduced such

that the A − A interaction is UA A(
∥∥ri j

∥∥) = ∑
m,n cmcnUmn(

∥∥ri j
∥∥) (refer Section 2.1.3). The

interaction of an m atom and an A atom is then described as Um A(
∥∥ri j

∥∥) =∑
n cnUmn(

∥∥ri j
∥∥).

The interaction energy between atoms x and y can then be defined as

U i nt
mn (

∥∥ri j
∥∥) =Umn(

∥∥ri j
∥∥)−Um A(

∥∥ri j
∥∥)−Un A(

∥∥ri j
∥∥)+UA A(

∥∥ri j
∥∥) (5.21)

Derivations of Equations 5.20 and 5.21 are shown in A.2. It is easy to then show the sum rule∑
m cmU i nt

mn (
∥∥ri j

∥∥) = 0 for all atomtypes n, which is useful below. Finally, the effective pair

interaction and the interaction energy can be related without reference to any pair potential

as

V e f f
mn (

∥∥ri j
∥∥) =U i nt

mm(
∥∥ri j

∥∥)+U i nt
nn (

∥∥ri j
∥∥)−2U i nt

mn (
∥∥ri j

∥∥) (5.22)

With the above definitions, we can replace Ux y in Eq. 5.19 by U i nt
mn +Um A +Un A −UA A (derived

from Equation 5.21) and use the sum rule above to obtain the remarkably simple result

σ2
∆Ess

= ∑
m,n

cmcn
∑
i , j

i<0, j>0

(
U i nt

mn (
∥∥ri j + t

∥∥)−U i nt
mn (

∥∥ri j
∥∥)

)2 +Ei nt (5.23)

where

Ei nt = 2
∑

i
i<0

∑
m

cm(1− cm)

( ∑
j

j>0

(
Um A(

∥∥ri j + t
∥∥)−Um A(

∥∥ri j
∥∥)

))2

(5.24)

is an extra term that is non-zero only for non-lattice slip vectors t (e.g. partial dislocations in

fcc) but it is negligible (numerically validated in the next section). We will use this result in

Section 5.4 where the interaction energies are obtained from full multi-body interactions.

Since the sums involve only pair distances and crystal structure, the normalized variance can

further be written in a convenient form based only on normalized pair distances (d , d ′) in the
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crystal lattice as

σ̃2
∆Ess

= ∑
m,n

cmcn
∑

d ,d ′
U i nt

mn (d)U i nt
mn (d ′)Θdd ′ +Ei nt (5.25)

where U i nt
mn (d) is the pair interaction at physical distance d a with a the lattice constant. The

numerical factorΘdd ′1 depends only on the crystal structure and the slip system; values for full

slip (a/6[111]) along a (110) plane in a bcc crystal and for full (a/2[11̄0]) and partial (a/6[12̄1])

slip along a (111) plane in an fcc crystal are shown in Table 5.1. Similarly, in terms of effective

pair potentials, the normalized variance can be expressed as

σ̃2
∆Ess

= 1

4

∑
m,n

cmcn
∑

d ,d ′
V e f f

mn (d)V e f f
mn (d ′)Θdd ′

− 1

2

∑
m,n,q

cmcncq
∑

d ,d ′
V e f f

mn (d)V e f f
mq (d ′)Θdd ′

+ 1

4

∑
m,n,p,q

cmcncp cq
∑

d ,d ′
V e f f

mn (d)V e f f
pq (d ′)Θdd ′ +Ei nt (5.26)

where we must note that V e f f
mm = 0 for all types m.

For a binary alloy, say Xc Y1−c , Equation 5.26 simplifies to,

σ̃2
∆Ess

= c2(1− c)2
∑

d ,d ′
V e f f

X Y (d)V e f f
X Y (d ′)Θdd ′

(5.27)

1Each diagonal element ofΘdd ′ , i.e. Θdd , is the sum of the number of d-distance pairs created and destroyed
across the slip plane upon slip by t for each lattice site below the slip plane. Each off-diagonal element ofΘdd ′ is
the negative of the sum of the number of d-distance pairs that changed to d ′-distance pairs and vice-versa upon
slip by t for each lattice site below the slip plane.
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d

d ′
0.866 1.0 1.414 1.658 1.732 2.0 2.179 2.236

0.866 4 -2 -2 0 0 0 0 0

1.0 4 0 -2 0 0 0 0

1.414 12 -8 0 0 -2 0

1.658 28 -4 -4 0 -8

1.732 8 0 -4 0

2.0 SYMMETRIC 8 0 0

2.179 36 -12

2.236 40

(a)Θdd ′ for a/6[111] slip along (110) plane in bcc.

d

d ′
0.707 1.0 1.225 1.414 1.581 1.732 1.871 2.0 2.121 2.236

0.707 4 -2 -2 0 0 0 0 0 0 0

1.0 6 -2 0 -2 0 0 0 0 0

1.225 18 -4 -6 -2 -2 0 0 0

1.414 12 -4 0 -4 0 0 0

1.581 30 0 -6 -4 -6 -2

1.732 12 -8 0 0 0

1.871 SYMMETRIC 56 0 -16 -8

2.0 12 -4 0

2.121 66 -14

2.236 48

(b)Θdd ′ for a/2[11̄0] slip along (111) plane in fcc.

d

d ′
0.707 1.0 1.155 1.225 1.354 1.414 1.581 1.683 1.732

0.707 2 -2 0 0 0 0 0 0 0

1.0 6 0 -4 0 0 0 0 0

1.155 2 -2 0 0 0 0 0

1.225 14 -4 0 -4 0 0

1.354 12 -4 -4 0 0

1.414 SYMMETRIC 6 0 -2 0

1.581 24 -4 -4

1.683 12 0

1.732 9

(c)Θdd ′ for a/6[12̄1] slip along (111) plane in fcc.

Table 5.1 – Structure factorsΘdd ′ in Equations 5.25 and 5.26 for various fcc and bcc slip systems
in terms of pair distances (d ,d ′). The extended form of the third subtable for partial slip in fcc
is provided in Ref. [7].
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5.3 Validation of σ̃∆Ess

To validate the results in the last section, we use model Lennard-Jones(LJ) pair potentials. We

define 15 different pair interactions among 5 different types of atoms with the general form

Umn(r ) = 4αmnε
[(βmnσ

r

)12 −
(βmnσ

r

)6]
(5.28)

where ε and σ are reference LJ energy and length quantities and αmn and βmn are dimen-

sionless scaling parameters for each specific solute pair considered. Figure 5.4 shows the

pair potentials Umn versus radial distance r for the 15 different pairs among the five atom

types denoted by A, B, C, D, and E; the respective αmn and βmn are tabulated alongside.

These potentials have no physical significance — they are randomly chosen only to represent

a complex multicomponent model system with a broad range of solute-solute interaction

energies relative to the reference energy. The potential is also taken to be zero at distances

beyond 10th neighbors in an fcc lattice and 8th neighbors in a bcc lattice. The pair potentials,

crystal structure, and associated normalized pair distances d are the only quantities needed

to compute σ̃2
∆Us−s

using the results in the previous section (Equations 5.25, 5.26 and 5.24).

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

Atom pairs mn αmn βmn

AA 1.321 0.9922

BA 1.3128 1.023

BB 1.3768 1.0309

CA 0.8185 0.9906

CB 1.2 1.0359

CC 1.5086 1.0712

DA 0.8503 1.0201

DB 0.9164 1.0318

DC 1.2737 1.0090

DD 0.9657 1.016

EA 1.0 1.0

EB 0.8656 1.0442

EC 0.8904 1.03

ED 1.1792 1.0489

EE 1.3542 1.0541

Figure 5.4 – Lennard-Jones pair potentials Umn versus radial distance r for all pairs among the
5 different atomtypes A, B, C, D, E. Every pair is tabulated alongside labelled by color, with the
respective scaling parameters αmn and βmn .

The lattice constant for any given alloy composition is obtained by minimizing the total

average energy of the alloy with respect to volume without allowing local relaxation of atoms

away from the perfect lattice sites. This can be done analytically for both fcc and bcc lattices,
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leading to

a =σ 6

√√√√6
∑

m,n cmcnαmnβ
12
mn

∑
d Nd /d 12∑

m,n cmcnαmnβ
6
mn

∑
d Nd /d 6

(5.29)

where d are the normalized pair distances and Nd the number of pairs in the lattice at normal-

ized distance d , as shown in Table 5.2 for both fcc and bcc lattices.

d 0.866 1.0 1.414 1.658 1.732 2.0 2.179 2.236

Nd 8 6 12 24 8 6 24 24

(a) bcc

d 0.707 1.0 1.225 1.414 1.581 1.732 1.871 2.0 2.121 2.236

Nd 12 6 24 12 24 8 48 6 36 24

(b) fcc

Table 5.2 – Normalized neighbor distance and number of sites at that distance for bcc and fcc
crystals.

Direct numerical simulations of the fluctuations in energy change due to slip in explicit

random alloys are obtained as follows. We create a cuboidal simulation cell of lattice sites for

the desired crystal structure conforming to the lattice parameter computed using Equation

5.29 for the respective alloy composition, with the z direction normal to the eventual slip plane.

We randomly populate the atomic sites with A, B, C, D, and E atoms consistent with the alloy

composition using the random.choice routine of NumPy[124]. Specifically, the probability that

any site is occupied by an m atom is equal to the concentration cm of the alloy. We impose

periodic boundary conditions in the x and y directions to avoid boundary effects. We compute

the total system energy for this initial random configuration of the alloy. We then displace the

atoms in the upper half of the sample (z > 0) by the desired slip vector (t) and compute the total

energy of the sample. The difference between final and initial energies is ∆Ess for the specific

sample. For each alloy composition, this procedure is performed for a minimum of 1000

different realizations and the normalized standard deviation σ̃∆Ess /ε is computed with the

∆Ess values associated with the realizations. We perform the above exercise on 10621 different

alloy compositions consisting of binary, ternary, quaternary and quinary alloys, exhaustively

covering the composition space of A-B-C-D-E alloys.

For fcc, the crystallographic orientation of the simulation cell is x[1̄01], y[12̄1] and z[111] with

slip along the central (111) plane. The cell lengths are Lx = 300a f /
p

2 and Ly = 300a f
p

6/2

and Lz = 2rcut where rcut is the cut-off radius of the pair potentials and a f is the lattice

parameter for fcc. Slip is induced by displacing the upper half of the simulation cell (i) by

a f /
p

2 along x direction for a full Burgers vector and (ii) by a f /
p

6 along y direction for a

Shockley partial Burgers vector. For bcc, the crystallographic orientation of the simulation
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cell is x[111], y[1̄21̄] and z[1̄01] with slip along the central [1̄01] plane. The cell lengths are

Lx = 20ab
p

3/2, Ly = 20ab
p

6 (> 4rcut ) and again Lz = 2rcut (Here ab is the lattice parameter

for bcc). Slip is induced by displacing the upper half of the simulation cell by ab
p

3/2 along

the x direction, which is a full Burgers vector.

Figure 5.5 compares the analytical prediction versus the simulation results for σ̃∆Ess /ε, for full

slip in bcc, full slip in fcc, and partial slip in fcc, for all alloy compositions studied. In all cases,

excellent agreement is obtained, validating the analytical prediction for σ̃∆Ess . The spread

of simulation results around the analytical predictions is expected because we use a finite

number of simulations, leading to fluctuations around the exact σ̃∆Ess value that is derived in

the theory. The fluctuations are thus larger for full slip in fcc (1000 realizations) as compared

to bcc (5000 realizations).

The numerical simulations further enable us to determine the contribution of the term Ei nt in

Equations 5.25 and 5.26 for partial slip in fcc. The maximum fractional errors (absolute value)

across all the fcc random alloys studied here are 3.1%, 0.15% and 0.037% for binary, ternary

and quaternary alloys, respectively. As a result, we advocate neglect of the additional term

Ei nt , which then enables the use of only interaction energies or effective pair potentials for

assessing solute-solute effects due to partial slip.

With the results of Section 5.2 fully validated, we can now apply the theory and assess the

practical consequences of solute-solute interactions on the yield strength of various alloys.
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Figure 5.5 – Validation of analytical prediction for σ̃∆Ess derived in Setion 5.2 against simu-
lations. Data corresponding to 10621 different alloy composition with the five atomtypes
consisting of binary, ternary, quaternary and quinary alloys, is shown. The dashed line corre-
sponds to exact agreement; deviations arise only due to statistical variations in the simulations
due to a finite number of samples studied.
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Chapter 5. Effect of Solute-Solute Interactions on strengthening of random alloys

5.4 Strengthening in high entropy and dilute binary alloys due to

solute-solute interactions

5.4.1 MoNbTaW and NbTaV bcc high- and medium- entropy alloys

Strengthening due to solute-dislocation interactions has been predicted recently in MoNbTaW

based on control of the yield stress by edge dislocations[109]. The predictions are in good

quantitative agreement with experiments over a range of temperatures. However, Körmann

et al. recently calculated effective pair potentials versus distance for all pair combinations

in the MoNbTaW using a first-principles method [5]. These interactions are shown in Figure

5.6, where it is seen that the near-neighbor effective pair interaction (positive indicating a

preference for unlike pair binding) exceeds 100 meV for Mo-Ta and exceeds 60 meV for Mo-Nb

and W-Ta. The B2 phase is found to be stable for this HEA[5] which means stronger binding

energies for unlike pairs compared to like pairs — justifying the mostly positive near-nearbour

effective pair interactions in Figure 5.6. These effective pair potentials are comparable to

individual solute-dislocation interaction energies in the dislocation core [109] and hence

the solute-solute interaction energies could possibly affect the yield strength. Applying the

theory here to calculate σ̃∆Ess based on the Körmann et al. results, we find that solute-solute

interactions make a very small contribution to the strengthening. Specifically, Table 5.3 shows

the solute-dislocation interaction energy parameter ∆Ẽp,sd (wc ), wc , and the solute-solute

interaction contribution
p

wcρG σ̃∆Ess , f computed via Equation 5.10, and finally the resulting

total energy parameter ∆Ẽp(wc ) accounting for both solute-solute and solute-dislocation

interactions. The solute-solute interaction energies then increase the strength by only 2%.

Maresca et al. also studied several model bcc HEAs in the Mo-Nb-Ta-V-W family as described

by EAM potentials [125–127]. They compared theory using only solute-dislocation interaction

energies to direct molecular statics simulations at T=0K and found generally good agreement,

suggesting that solute-solute contributions are again small. Here, we consider the ternary

alloy NbTaV as an example. The interaction energies U i nt
mn (d) for this system were computed

using the same interatomic EAM potentials[128]. The values are typically smaller than those

in MoNbTaW obtained from first-principles, and so even smaller effects on strengthening can

be anticipated. The predictions of the total energy parameter without and with the solute-

solute interactions, and the resulting difference in strength, are also shown in Table 5.3. The

strengthening due to solute-solute interactions in the model NbTaV alloy is negligible, ∼ 0.5%.
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Figure 5.6 – The effective pair potentials V e f f
mn as a function of normalized nearest-neighbour

pair separation d , for bcc MoNbTaW calculated via first principles[5].

Alloys wc /(b/3) ∆Ẽp,sd (wc ) (eV)
p

wcρG σ̃∆Ess , f (eV) ∆Ẽp(wc ) (eV) τy0/τsd
y0

MoNbTaW (DFT inputs [5]) 13 0.766 0.1323 0.7773 1.0197

NbTaV (EAM inputs [125–127]) 13 0.7343 0.06 0.7368 1.0045

Table 5.3 – Role of solute-solute interactions in solute solution hardening of bcc MoNbTaW
and NbTaV high-entropy alloys, with inputs from either DFT or interatomic potentials. For
each alloy, the characteristic amplitude wc , solute-dislocation interaction energy parameter
∆Ẽp,sd (wc ), solute-solute interaction energy parameter computed from the solute interactions
and wc , and the total energy parameter ∆Ẽp(wc ) are shown. The strengthening with solute-
solute interactions is compared to the strengthening with only solute-dislocation interactions,
and the increases in strength are negligible.

The above applications demonstrate that solute-solute interactions have little effect on

strengthening in the bcc refractory HEAs when the effective pair interactions are ∼ 100meV

or smaller. This result stems in part because the T=0K strength due to solute-dislocation

interactions is very high in these alloys. With increasing pair interaction energies, alloys are

generally susceptible to decomposition into intermetallic phases. Körmann et al. show that

the computed near-neighbor interactions in MoNbTaW are sufficient to drive B2 ordering

at a temperature of ∼ 1300K and that inclusion of the longer-range interactions decreases

this transition temperature to ∼ 750K . Thus, the random MoNbTaW alloy has interaction

energies in a range where order can be created at fairly high temperatures and yet these solute-

solute interactions make negligible contributions to the yield strength. We can tentatively

conclude that for those bcc alloys able to be fabricated as single-phase random alloys, the

solute-solute interaction energies will be sufficiently small that their effects on yield strength
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can be neglected.

5.4.2 Dilute Ni-Al fcc solid solution alloys

In Ni alloys with Al solutes, it is well-established that Al-Al pairs have a strong repulsion at

first neighbour distance (0.243 eV as computed by first-principles[67]). This repulsion plays

a key role in the formation of ordered NiAl precipitates that are the basis of Ni superalloys.

While the ordered precipitates in NiAl superalloys consume most of the Al, the Ni-rich matrix

can retain ∼ 12% Al in solution. Thus, it is of interest to examine the strengthening of Ni by Al

in the composition range 0–12% Al. Although the large near-neighbor Al-Al repulsion might

easily drive SRO in the real material, here we assess whether the large repulsion has an effect

on the yield strength of the random solid solution.

We study Ni-Al random alloys using inputs from DFT calculations[67] and two available EAM

potentials (Mishin 2004 [129] denoted as M04; Pun-Mishin 2009 [81] denoted as PM09). Figure

5.7 shows the computed Al-Al interaction energies for the first three neighbor distances, the Al

and Ni misfit volumes, and the alloy elastic constants, as a function of Al concentration for

the two EAM potentials using the accurate average alloy approximation (see Section 2.1.3).

The elastic constants are nearly composition-independent and there is excellent agreement

among the two potentials and experiments [130]. The Al-Al interactions in bulk and across the

stacking fault differ by less than 3.7% across all compositions; the figure shows the average of

the two cases. Figure 5.7 also shows the Al and Ni misfit volumes obtained from experimental

lattice-parameter data [6] on Ni-Al alloys. The Al misfit volume for the M04 potential agrees

well with experiments while that for the PM09 potential deviates significantly, and varies

dramatically with Al concentration, being very low at low Al content. Experimental solute

pair interaction energies are not obtainable so we compare with the DFT interaction energy

of 0.243 eV (computed using 2 first-neighbor Al atoms in a fully-periodic 108-atom cell with

106 Ni atoms). The value for PM09 agrees reasonably well with the DFT value but the value

for M04 is nearly twice as large. While not shown here, the stable stacking fault energy for

the M04 potential is strongly composition-dependent, decreasing from 134 mJ/m2 in pure Ni

to 45 mJ/m2 at 12% Al. For the PM09 potential, the variation is smaller, from 134 mJ/m2 in

pure Ni to 87.5 mJ/m2 at 12%Al. Overall, neither of the two EAM potentials can be considered

quantitative for real Ni-Al; the various trends they exhibit with Al concentration will greatly

influence the overall strength predictions and also the relative contributions of the solute-

dislocation and solute-solute interactions.
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slip plane, only the first NN interaction is significant. Misfit volumes are computed from
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The interaction energies, misfit volumes and the elastic constants constitute the major neces-

sary inputs for strengthening due to solute-dislocation interaction energies using the elasticity

theory as per Equation 5.8 and solute-solute interaction energies using Equation 5.10. How-

ever, the partial core separation dp and the partial core spreading σ determine the dislocation

roughening amplitude wc and eventually the structural coefficient g (wc ,dp ,σ, A) in Equation

5.8. Here we use dp = 9b and σ= 2b that are close to those obtained from the potentials for

pure Ni. For this dp , there are two solutions wc,1 = 5b and wc,2 = 16b, as mentioned earlier and

first identified in [119]. The corresponding structural coefficients are g (wc,1,dp ,σ, A) ∼ 0.25

and g (wc,2,dp ,σ, A) ∼ 0.47. The Zener anisotropy ratio A = 2.5−3.33 leads to minimal correc-

tions [120].

A few details merit comment. First, the strong composition dependence of the stacking fault

energy of the M04 potential implies that the partial separation dp is composition dependent.

For simplicity, this is neglected here. Second, since wc,2 > dp the solution for wc,2 should

account for solute-solute interactions. However, in this system where only first-neighbor

interactions are important,Θdd ′ for full slip is twice that for partial slip, and so the additional

term 2σ̃2
∆Ess ,p −σ̃2

∆Ess , f in Eq. 5.10 is negligible. Third, predictions based on the DFT-computed

Al-Al interaction energy are made using the experimental misfit volumes and elastic constants.

With the above information, we can now assess the energy fluctuation quantity ∆Ẽp(wc ) that

determines all subsequent alloy strengthening properties. To reveal the role of solute-solute

interactions, we show in Figure 5.8a the (i) the fluctuation quantity ∆Ẽp(wc ) accounting for
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both solute-solute and solute-dislocation interactions and (ii) the contribution ∆Ẽp,sd (wc )

due to solute-dislocation interactions only, as a function of Al concentration. For the DFT

interaction energies, the role of solute-solute interactions increases steadily with increasing

concentration for both wc solutions— with the total energy fluctuation increasing by ∼ 15%

at 2%Al and by ∼ 50% at 12%Al relative to ∆Ẽp,sd (wc ) due to the addition of solute-solute

interactions. For the potentials, the solute-solute contributions are much larger. The M04

potential, which has a reasonable misfit volume but very large interaction energy, predicts

more than 40% increase even at 2% Al and ∼ 100% increase at 12% Al. The PM09 potential,

which has a reasonable solute-solute interaction energy but a much smaller Al misfit at low Al

concentrations, predicts a ∼ 130% increase at 2% Al and ∼ 90% increase 12% Al. The solute-

solute effects are significant across all cases at 12%Al, with the interatomic potentials showing

very large effects that, however, are likely due to the inaccuracies of the potentials.

Figure 5.8b shows the fractional increase in zero-temperature flow stress above that due to

solute-dislocation interactions only. The effects of solute-solute interactions on the flow stress

are larger than on the energy parameter because τy0 ∼∆Ẽ 4/3
p (wc ). These results highlight the

significant differences between potentials and DFT, especially for the PM09 potential at low Al

concentrations because of the very small misfit volume of Al for that potential. At the realistic

residual Al concentration of 12% in Ni-Al superalloys, the strength of an assumed random

Ni-Al matrix is predicted, using DFT/experimental inputs, to be 70% higher than the strength

considering solute-dislocation interactions alone.
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Figure 5.8 – (a) Total energy fluctuations entering the solute-strengthening theory and the
contribution of solute-dislocation interactions only, for DFT and EAM potential inputs and for
both solutions of wc ; (b) Predicted fractional increase in T=0K yield stress due to the inclusion
of solute-solute interactions, for DFT and EAM potential inputs, for both solutions of wc .

We now make some comparisons of our predictions against simulation results of Antillon

et.al[131], who used the M04 potential. Antillon et al. performed molecular dynamics stud-

ies at T=1K and also reported that molecular statics (energy minimization) results showed

strengths estimated to be 1.4 times larger. Our experience with MD of dislocation motion in
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random alloys suggests that there are dynamic instabilities that can trigger unabated disloca-

tion motion at stresses well below the values that are predicted and obtained using molecular

statics methods. The release of energy upon the initial motion of segments pinned at lower-

than-average barriers can then start a dynamic process that might not be possible under

conditions more typical of experiments (much lower stresses, much longer time scales). In Ni-

Al, we predict, however, two solutions — one with high stress and low barrier and another with

a low stress and high barrier. We postulate that the dislocation motion observed in dynamic

MD simulations can be halted by the large barriers of the second solution, which are harder to

overcome by dynamic effects, while the quasistatic (energy minimization simulations) may be

controlled more by the first solution. We will thus compare the simulations of Antillon et al. to

predictions of both the first and second solutions. In their numerical interpretation of their

simulations, Antillon et al. did not consider the existence of this second solution, but rather

considered the multi-scale roughening model of Zaiser [132] and Leyson et al. [36].

Antillon et al. reported values for ζc and wc derived from the correlation function along the

dislocation line at a stress just below the measured flow stress. Figure 5.9a shows our predicted

ζc,1 and ζc,2 corresponding to solutions of wc,1 and wc,2, respectively, versus Al concentration

along with the values from Antillon et al. There is reasonable agreement between ζc,2 and the

critical value of Antillon et al. just below flow. This suggests that our postulate that the Antillon

simulations are controlled by the second solution is reasonable. The roughening amplitude wc

reported by Antillon et.al for Ni-10%Al is 10–12.5b, midway between our predictions for wc,1

and wc,2. We do note that wc,2 would be larger at higher concentrations if the concentration-

dependence of dp was considered.

Figure 5.9b shows our predictions of the critical resolved shear stress τy0 and the simulations

of Antillon et al. as a function of Al concentration. We present both solutions corresponding

to wc,1 and wc,2, and also the dynamic and (estimated) quasistatic results from Antillon et

al. The estimated quasistatic simulations are in reasonable agreement with the first solution,

corresponding to the smaller barriers that are predicted to control low-T strength under

more realistic experimental conditions and in non-dynamic (energy-minimizing) simulations.

The dynamic simulations align more closely with, but overestimate, the second solution

that corresponds to the large barriers. The critical stresses in the simulations were taken

after dislocation motion of ∼ 42b. This is larger than the value for overcoming individual

barriers, À wc,2/2(= 8b). Thus, the simulation values are expected to be higher than the theory

because a finite length dislocation line will encounter ever-stronger pinning environments

with increasing glide distance, as demonstrated in [4]. The longest finite-length simulations in

Antillon et al., however, are generally À ζc so that this effect is less prominent than found in

Varvenne et al. Overall, the level of agreement between the present theory and simulations is

not quantitative, but the simulations have challenges and the theoretical predictions have no

fitting parameters at all. The ability of the parameter-free theory to bracket the simulations is

encouraging.
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Figure 5.9 – Validation of theory against simulations: characteristic wavelength of dislocation
waviness and the yield stress. M04 interatomic potential is used for both predictions and
simulations.

Quasistatic simulations of dislocation motion at T=0K using the PM09 potential were presented

briefly by Proville et al.[133]. Those simulations used a dislocation line length of 69Å, which

is somewhat smaller than the lengths ζc predicted for all Al concentrations studied. The

present theory is not directly applicable at such short lengths. Varvenne et al. showed that a

modified analysis could be applied for dislocation lengths at ζc , but that result is not directly

extendable to other lengths. We therefore cannot make reliable predictions associated with

the simulations of Proville et al.

5.5 Summary

We have presented the theoretical framework for the incorporation of specific solute-solute

interactions into a previous theory for solute strengthening in random alloys. The previous

theory considered only the solute-dislocation interaction energies. We derived and validated

an exact general expression for the energy fluctuations due to solute-solute interactions during

dislocation glide. Specific results were provided for fcc and bcc crystal structures, and the

analysis validated on over 10,000 model fcc and bcc alloy compositions described by Lennard-

Jones pair potentials. We also demonstrated that, in a number of situations, the characteristic

amplitude wc of the wavy dislocation is unchanged upon the introduction of solute-solute

interactions, making their inclusion into the existing theory far easier. The key results of the

original theory within the analytic elasticity limit are shown here in Figure 5.2 to enable easy
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application of the theory by researchers in the field.

The new theory has been applied to several alloys. Most importantly, it has been applied to

the bcc MoNbTaW high-entropy alloy for which effective solute-solute pair interactions were

recently reported. We show that the solute-solute interactions make a negligible contribution

to the strengthening even though the effective pair energies can be as high as 100meV. A similar

conclusion was reached in analysis of a model NbTaV alloy described by EAM potentials. The

theory was also applied to dilute fcc Ni-Al alloys, where the Al-Al interactions are very strong

and the solute-dislocation strengthening much lower than in other alloys. For this material,

solute-solute interactions can play an important role in strengthening, with a 60% increase in

strength at 10% Al when using DFT-computed interaction energy. We also show that existing

Ni-Al interatomic potentials have widely differing properties and hence yield very different

results for the effects of solute-solute strengthening (typically much higher than that predicted

with DFT/experimental inputs). We then made some connection to atomistic simulations

reported in the literature, with some insights revealed.

The current theory with solute-solute interactions can be challenging to implement due to

the difficult of determining the the solute-solute interactions. The recent DFT studies show

that estimated interactions can be obtained with extensive computations, and this is likely the

only path for obtaining realistic values. However, it remains possible to execute parametric

studies to determine what levels of solute-solute interactions would be needed to significantly

increase the strength and then determine empirically whether such interactions are reasonable

if the alloy is to be a single-phase random alloy. This latter strategy is strongly recommended

as a first step before embarking on expensive first-principles calculations.

Strong solute-solute interactions can lead to the development of short-range order (SRO).

The present theory applies only to random alloys with no SRO, and so is relevant to alloys

processed at sufficiently high temperatures and quenched to low temperatures such that SRO

is minimized. The inclusion of SRO into the theory can be made by using the current general

framework and introducing the appropriate solute-solute correlation functions (e.g. Warren-

Cowley short-range order parameters), but specific analytic results remain challenging. We

will report on a theory for SRO in the near future.

With the present inclusion of solute-solute interactions, we believe the theory for strengthen-

ing in random alloys is essentially complete. As with all theories, there are approximations

and those approximations must be assessed carefully. However, the theory has no adjustable

parameters. The challenge in applying the theory is in obtaining the necessary material param-

eters. The reduced elasticity theory simplifies the problem for solute-dislocation interactions,

such that the required inputs are the elastic constants, lattice constant, misfit volumes of the

solutes, and the dislocation core structure in the alloy. The first three can be computed using

first-principles methods [37, 121] but the core structure remains very challenging. Fortunately,

studies indicate that the dependence on the core structure may be small in some important

cases (fcc with low SFE; bcc edge dislocations), but this remains a source of uncertainty. As
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discussed above, determining the solute-solute interactions requires computationally inten-

sive first-principles methods which should be reserved for alloys where the solute-dislocation

interactions are weak and/or where solute-solute interactions can be anticipated to be large,

e.g. by considering the heats of formation of binary sub-alloys. This remains an area for future

research.

Based on all the findings here, we advocate for the application of the previous solute-dislocation

theory only as a means of theoretically-guided search for promising new alloys. Deviations

between theory and experiment in any such new alloys would then motivate a more-detailed

study of the role of solute-solute interactions and, ultimately, the role of possible short-range-

order.
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6 Solute-strengthening in alloys with
short-range order

The thesis principally focuses on random alloys, since they are an important limiting case. In

the solute-strengthening part of the thesis, heretofore a theory has been developed for random

alloys which addresses the energy contributions responsible for pinning dislocation segments

in favourable solute environments, thus strengthening the alloy. These contributions are from

solute-dislocation interactions and solute-solute interactions across the slip plane. However,

solute-solute interactions can thermodynamically drive chemical ordering in the form of

short-range order (SRO) and long-range order (LRO). They can also drive phase separation or

precipitation. Generally due to slow kinetics in complex alloys the alloy at room temperature

is out of equilibrium and retains negligible or no SRO from the processing conditions in which

it was heat-treated. However in service the equilibrium ordering may develop eventually or in

case some solute pairs interacts strongly some residual SRO may be present. A considerable

research in recent years has been devoted to identify SRO in medium- and high-entropy alloys

and to study their effect on alloy strength [41–43, 47, 84, 85, 134–136]. SRO has been studied

extensively for binary alloys during the 1950s and 1960s, when experimental methods were

devised to measure SRO [39, 40] and analytical prediction of strengthening due to SRO was

attempted [44–46]. Recently there have been a couple of studies improving on experimental

characterization of SRO in binary alloys [137, 138] and they suggested the influence of SRO on

strength and stacking fault energy [139–141].

In light of the prevailing interest on this topic of chemical ordering in both dilute and complex

alloys, this final chapter of the “solute-strengthening” part of the thesis is devoted to a general

theory for solute-strengthening which will account for SRO, and will revert back to the theory

presented in Chapter 5 in the limit of random alloys (no SRO). Comparisons are made with

already existing theories [45, 47] which either incomplete or partially incorrect in handling the

energy fluctuations due to different solute interactions. The new theory presented here will still

encompass two solute interactions, one with the dislocation and the other with other solutes

across the slip plane. However unlike random alloys, here the solute-solute interactions causes

an “average strengthening” effect in alloys with SRO, which was first addressed qualitatively by

Fisher [44]. In alloys with SRO, certain solute pairs either prefer to stay as neighbours or they
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avoid close proximity. The slip associated with dislocation glide can bring unfavourable pairs

together or drift apart favourable solute pairs on average — this is associated with an energy

cost that needs to be paid by externally applied stress to sustain unabated glide of dislocation

line, thereby strengthening the alloy. The local strengthening due to glide of characteristic

dislocation segments of length ζc in a fluctuating solute environment also gets modified in

the presence of SRO.

To predict the role of SRO on alloy strength, first we need to characterize SRO mathematically.

Section 6.1 characterizes SRO with correlation functions and relates pair correlation functions

to the well-known Warren-Cowley parameter [39, 142, 143]. Section 6.2 discusses some useful

properties of the pair correlation functions. The new strengthening theory depends on higher-

order correlation functions involving more than two sites. Higher-order correlation functions

are not obtained experimentally and are not easily available. Therefore Section 6.3 introduces

a superposition approximation for higher-order correlation functions which approximates the

latter in terms of only pair correlation functions. The section also discusses the implications

of the superposition approximation. Section 6.4 presents the new theory, elaborating in detail

the average strengthening observed in alloys with SRO. Section 6.5 derives expression for the

variance in energy change due to the glide of dislocation segments of length ζ by distance

w , which is the pivotal energy quantity controlling local strengthening in alloys. Section 6.6

summarizes the chapter.

6.1 Characterizing short-range order

Short-range order(SRO) is said to exist when the occupancy of an atomic site i by an atom type

n is conditional on the atom types occupying the surrounding atomic sites. In this section, we

are going to formulate SRO mathematically. Readers must refer Section 2.8 for notations and

basic concepts in probability which will be relevant here.

Let sn
i be the site occupation variable which is 1 when site i is occupied by atom type n and 0

otherwise. Therefore occupancy of site i by atom type n is given by sn
i = 1. P being the probabil-

ity operator, the probability of distinct sites i , j , . . . to be occupied by types n,m, . . . respectively

is given by P(sn
i = 1, sm

j = 1, . . . ). In an alloy with SRO, we define the joint probabilities for site

occupancy as follows using correlation functions λi j ...
nm...,

P(sn
i = 1) = cn ∀i , cn is the concentration of type n

P(sn
i = 1, sm

j = 1) =λi j
nm cncm ∀i , j s.t. i 6= j ,

P(sn
i = 1, sm

j = 1, sp
k = 1) =λi j k

nmp cncmcp ∀i , j ,k s.t. i 6= j 6= k,

P(sn
i = 1, sm

j = 1, sp
k = 1, s t

l = 1) =λi j kl
nmpt cncmcp ct ∀i , j ,k, l s.t. i 6= j 6= k 6= l ,

... (6.1)
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where λi j
nm ,λi j k

nmp ,λi j kl
nmpt , . . . are the pair, 3-site, 4-site, . . . correlation functions. In this chapter

we will require upto 4-site correlation functions. Henceforward, different site indices will

mean different physical sites unless in summations or mentioned otherwise. In random alloys

where all the lattice site occupancies are mutually independent, every correlation function in

Equations 6.1 equals 1.

The pair correlation function λ
i j
nm is invariant to whether site i is occupied by n and j by

m or vice-versa since it depends only the distance between the two sites. Mathematically,

λ
i j
nm =λi j

mn . Other properties of the pair correlation functions are discussed in Section 6.2.

In the literature, the 2-site correlations for alloys with SRO are characterized by the Warren-

Cowley parameters αi j
nm [39], which are given by

α
i j
nm = 1−

P(sn
i = 1

∣∣sm
j = 1)

cn
(6.2)

where P(sn
i = 1

∣∣sm
j = 1) is the conditional probability of site i being occupied by type n when

site j is already occupied by type m. Using the definition of conditional probability (Equation

2.67) and Equation 6.1, Equation 6.2 can be simplified as

α
i j
nm = 1−

P(sn
i = 1, sm

j = 1)

cncm
= 1−λi j

nm (6.3)

Using λ is convenient since we do not have to carry a one in all our upcoming derivations.

However we will be expressing our results as a sum of random alloy term plus a term accounting

for SRO contribution — the latter will have 1−λ which is the well-known Warren-Cowley

parameter.

6.2 Properties of pair correlation functions

From a material science point of view, the pair correlation functions are not arbitrary but

related to the underlying energetics of the alloy. If a certain solute pair has lower energy than

the rest of the pairs, then we can say that solute pair forms a strong bond and the corresponding

solutes attract. Then the pair correlation λ for that pair is more than one. Likewise, the pair

correlation function for a pair of solutes which repels is less than one. Quantitative relation

between energetics of the system and the pair correlation functions is elusive, but a qualitative

understanding like the one stated above is more tangible.

The pair correlation functions satisfies certain inequalities. These can be deduced with the

help of conditional probabilities of the sort P(sn
i = 1

∣∣sm
j = 1), which implies the probability of

finding type n at site i given that site j is occupied by type m. Using Equations 2.67 and 6.1,
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we can write the following expressions with conditional probabilities

P(sn
i = 1

∣∣sm
j = 1) =λi j

nm cn

P(sm
i = 1

∣∣sn
j = 1) =λi j

mn cm

Since λi j
nm = λ

i j
mn and probability is non-negative and ≤ 1, one can easily deduce from the

above two equations that

0 ≤λi j
nm ≤ min

(
1

cn
,

1

cm

)
(6.4)

Also all the pair correlation functions are not independent. Since the sum of probabilities of

all possible outcomes equals 1, we can write∑
n

P(sn
i = 1

∣∣sm
j = 1) = 1 ∀m

In terms of pair correlation functions the above expression can be rewritten as,∑
n
λ

i j
nm cn = 1 ∀m (6.5)

which shows that the pair correlation functions are not independent. The pair correlation

functions for solutes of the same type can be expressed in terms of the pair correlation

functions of solutes of unlike types as follows,

λ
i j
mm = 1

cm

1− ∑
n

n 6=m

λ
i j
nmcn

 ∀m (6.6)

Based on Equation 6.6 and the symmetry λi j
nm =λi j

mn , one can deduce that for an alloy with M

components, there are only M(M−1)
2 independent pair correlation functions for every pair of

sites (i , j ). Therefore, for instance, there is only one independent pair correlation function for

binary (M=2) alloy and three independent pair correlation functions for ternary (M=3) alloy

and so on.
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In terms of the Warren-Cowley parameters αi j
nm , Equation 6.6 can be rewritten as,

λ
i j
mm = 1

cm

1− ∑
n

n 6=m

(1−αi j
nm)cn


= 1

cm

1− (1− cm)+ ∑
n

n 6=m

α
i j
nmcn

= 1+ 1

cm

∑
n

n 6=m

α
i j
nmcn

Therefore, α
i j
mm =− 1

cm

∑
n

n 6=m

α
i j
nmcn ∀m (6.7)

6.3 Superposition approximation for higher-order correlation func-

tions

With the superposition approximation, the higher-order correlation functions (3-site, 4-site,

. . . ) assumes the following form

λ
i j k
pqr =λi j

pqλ
i k
prλ

j k
qr

λ
i j kl
pqr t =λi j

pqλ
i k
prλ

j k
qrλ

j l
qtλ

kl
r tλ

i l
pt

... (6.8)

There is no general quantification of the goodness of this approximation. However in binary

Ni-Zr system, the approximation has been reported to work well in the limit when the pair

correlation functions are small [144]. In this section we will prove however that only in the limit

of small pair correlation functions does the approximation conforms to a valid probability

space.

The sum of probabilities of site i being occupied by the different atom types must always be 1.

Therefore for sites i , j ,k, the following is always true∑
p

P(sp
i = 1

∣∣sq
j = 1, sr

k = 1) = 1

=⇒ ∑
p

λ
i j k
pqr

λ
j k
qr

cp = 1 (Using Equations 2.67 and 6.1) (6.9)

For the superposition approximation to be a valid probability description, Equation 6.9 must
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hold true under the approximation for λi j k
pqr (Equation 6.8). Therefore,

∑
p

λ
i j k
pqr

λ
j k
qr

cp =∑
p
λ

i j
pqλ

i k
pr cp

=∑
p

(1−αi j
pq )(1−αi k

pr )cp

=∑
p

cp −∑
p
α

i j
pq cp −∑

p
αi k

pr cp +∑
p
α

i j
pqα

i k
pr cp

= 1−∑
p
α

i j
pq cp −∑

p
αi k

pr cp +∑
p
α

i j
pqα

i k
pr cp

The first order summation terms simplify to zero using Equation 6.7,∑
p
α

i j
pq cp =αi j

qq cq + ∑
p

p 6=q

α
i j
pq cp =αi j

qq cq −αi j
qq cq = 0

Therefore, we have

∑
p

λ
i j k
pqr

λ
j k
qr

cp = 1+∑
p
α

i j
pqα

i k
pr cp

So the summation over probabilities differs from 1 to the second-order in α, meaning if

Warren-Cowley parameters |α| ¿ 1 then the sum rule in Equation 6.9 holds to a good ap-

proximation. This is a necessary condition for the superposition approximation for 3-site

correlation functions to conform to a valid probability space. One can reach a similar conclu-

sion for all higher-order correlation functions where the first order terms are zero and the sum

rule differ from unity in the higher order terms of the Warren-Cowley parameters.

6.4 Solute-strengthening theory: accounting for short-range order

(SRO)

Dislocations in an alloy attain a wavy configuration since segments of it stray about the mean

dislocation position to get pinned by favourable solute environments which reduces the

system energy. So two possible sources of strengthening can be envisaged, namely (1) the

average strengthening, where there is an energy cost to the system when the average dislocation

line glides in the alloy; in such situation an externally applied stress is needed to reimburse

this penalty and sustain the glide (2) the local strengthening due to the stress needed to unpin

the locally pinned dislocation segments over some barrier.
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Newly slipped
area

Already slipped
area

Dislocation
mean position

(a) Glide of dislocation mean position

Slipped area increased
due to dislocation wriggling

Slip undone due to 
dislocation wriggling

Dislocation mean
position (dashed line)

Transition segment
(contribute to NO potential 

energy change)

(b) Undulation of a straight dislocation due to solute fluctuations

Figure 6.1 – Schematic representation of “average” and “local” strengthening in alloys in
subfigures (a) and (b) respectively. Average strengthening is related to the stress required
to pay for any energy penalty associated with dislocation motion in an alloy. Subfigure (a)
shows the glide of average dislocation line from x = −η to x = 0 — if an energy cost per
unit area is associated with the newly created slipped area, then there will be an associated
average strengthening. Local strengthening or strengthening due to fluctuations, on the other
hand, is related to the stress required to unpin dislocation segments locally from favourable
solute environments to resume and sustain unabated glide. Subfigure (b) shows dislocation
segments of length ζ in an undulated dislocation line which are pinned by favourable solute
environments w distance away from the dislocation mean position.

6.4.1 Average strengthening in alloys with SRO

Average strengthening refers to the externally applied stress needed to compensate for the

energy cost associated with the glide of average dislocation line as schematically depicted in

Figure 6.1a. Let γ be the average energy cost per unit area of the slipped surface. To sustain

dislocation glide, this energy cost must be balanced by the work done per unit slipped area by

an externally applied critical resolved shear stress τA on the glide plane in the glide direction,

which is τAb, where b is the Burgers vector. Therefore, τA = γ/b.

The total potential energy change ∆Ep of the system due to dislocation glide has two con-

tributions (1) one due to interaction of solute n at site i with the dislocation at the origin,

say U n
sd (xi , yi ) and (2) other due to pair interaction of solute p at site k below the slip plane
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with solute q at site l above the slip plane; we call this energy to be Upq (‖rkl‖), where rkl is

the vector joining sites k and l . Therefore, the total potential energy change due to glide of a

straight dislocation of length L by distance η (as depicted in Figure 6.1a) can be expressed as,

∆Ep (L,η) =∑
i

∑
n

sn
i

(
U n

sd (xi , yi )−U n
sd (xi +η, yi )

)
︸ ︷︷ ︸

∆U n
sd ,i (η)

+ ∑
k,l

yk<0
yl>0

∑
p,q

sp
k sq

l

(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
︸ ︷︷ ︸

∆U pq
ss,kl

=∑
i

∑
n

sn
i ∆U n

sd ,i (η)+ ∑
k,l

yk<0
yl>0

∑
p,q

sp
k sq

l ∆U pq
ss,kl =∆Esd +∆Ess (6.10)

where t is the slip vector and (xi , yi , zi ) are the coordinates of site i according to the Cartesian

coordinate system specified in Figure 6.1a.

The energy penalty γ due to dislocation glide is defined earlier as the average energy cost per

unit area of the slipped surface; thereby γ can be expressed as γ= 〈∆Ep〉/(ηL) by definition,

where 〈·〉 is the expectation operator and ηL is the area slipped when a dislocation of length L

glides a distance η (Figure 6.1a). With ρL the density of atomic sites along the dislocation line

direction and ρG the density of projected atomic sites in the glide direction (like in Chapter 5),

the area ηL can be expressed as Na/(ρLρG ), where Na is the number of atomic sites in the area

ηL. Therefore the energy cost γ can be rewritten as γ= (〈∆Ep〉/Na)ρLρG . Using linearity of

the expectation operator, we have 〈∆Ep〉 = 〈∆Esd 〉+〈∆Ess〉 following Equation 6.10.

In Equation 6.10, we have seen that the expression for energy change due to solute-dislocation

interactions ∆Esd =∑
i
∑

n sn
i ∆U n

sd ,i (η) has no product of occupation variables sn
i . Therefore,

the average energy change due to solute-dislocation interactions 〈∆Esd 〉 will not have any

dependence of correlation functions and will have nothing to do with SRO. Therefore, 〈∆Esd 〉 =
0, just like in the case of random alloys [32]. This implies that there is no contribution to average

strengthening from solute-dislocation interactions.

So the average strengthening in alloys with SRO is solely due to solute-solute interactions. In

an alloy with SRO, slip associated with dislocation glide disrupts the chemical ordering of

solutes across the slip plane, bringing together unfavourable solute pairs and separating the

favourable ones. This results in a positive γ. Here we are going to derive the expression for the

critical resolved shear stress τA required to balance γ, in terms of effective pair interactions of

solute pairs (Section 2.7 and Equations 5.20 and 5.22), the Warren-Cowley SRO parameter and

the alloy composition.

To derive an expression for τA in average strengthening, we need to derive an expression for

the average energy change due to solute-solute interactions 〈∆Ess〉, since we know that τAb =
(〈∆Ess〉/Na)ρLρG from our earlier discussion (Note that since 〈∆Esd 〉 = 0, 〈∆Ep〉 = 〈∆Ess〉).

Recalling Equation 6.10, the energy change during dislocation glide, due to solute-solute
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interactions across the slip plane is given by

∆Ess =
∑
k,l

yk<0
yl>0

∑
p,q

sp
k sq

l

(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
(6.11)

Using 〈sp
k sq

l 〉 =λkl
pq cp cq (Equation 6.1), the expected energy change upon slip turns out to be,

〈∆Ess〉 =
∑
p,q

cp cq
∑
k,l

yk<0
yl>0

λkl
pq

(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
(6.12)

Let ndd ′ be the number of pairs across the slip plane (per lattice site on the slip plane), which

were at pair separation d ′ before slip and are at pair separation d after slip (d 6= d ′). Let Md be

the number of pairs across the slip plane (per lattice site on the slip plane), which were at pair

separation d before slip and are at pair separation 6= d after slip.

In terms of pair distances across the slip plane Equation 6.12 can be rewritten as,

〈∆Ess〉/Na = ∑
p,q

cp cq
∑
d

Upq (d)

 ∑
d ′

d ′ 6=d

λpq (d ′)ndd ′ −λpq (d)Md

 (6.13)

For slip by a lattice vector (or full slip), 〈∆Ess〉 = 0 for random alloys (recall Equation 5.15).

For slip by a non-lattice vector, Md is zero for the pair distances d which do not exist in the

pristine crystal structure before slip. Table 6.1 tabulates the ndd ′ values for pair distance (d ,d ′)
upto 10 nearest-neighbors for full slip in fcc and bcc.

Equation 6.13 can be rewritten in terms of Warren-Cowley parameters as,

〈∆Ess〉/Na =∑
d

∑
p,q

cp cqUpq (d) (Nd −Md )−
∑
d

∑
p,q

cp cqUpq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md


(6.14)

where Nd is the number of pairs across the slip plane (per lattice site on the slip plane), which

were at pair separation 6= d before slip and are at pair separation d after slip, therefore implying

Nd = ∑
d ′

d ′ 6=d

ndd ′ (6.15)

The first term in Equation 6.14 is same as the average energy change for a random alloy and

the second term is the additional energy change on average due to SRO. Since we already

know 〈∆Ess〉 = 0 for slip by a lattice vector in random alloys (Equation 5.15), the first term in
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Equation 6.14 will always be zero for slip by a lattice vector with Nd = Md . Therefore, in the

case of slip by lattice vector, Equation 6.14 can be rewritten as

〈∆Ess〉/Na =−∑
d

∑
p,q

cp cqUpq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md

 (6.16)

Equation 6.16 is expressed in terms of bond energies which is not very useful, since alloys

described with semi-empirical potentials or first principles entail many-body interatomic

interactions. However effective pair potentials V e f f
pq is well-defined for any system irrespective

of the total potential energy formulation for the system (Section 2.7). Therefore, we are going

to simplify Equation 6.16 to express 〈∆Ess〉/Na in terms of effective pair potentials, as follows

〈∆Ess〉/Na =−∑
d

∑
p,q

cp cqUpq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md



=−∑
d

∑
p

c2
pUpp (d)

 ∑
d ′

d ′ 6=d

αpp (d ′)ndd ′ −αpp (d)Md



−∑
d

∑
p,q

p 6=q

cp cqUpq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md


Using the sum rule αpp =− 1

cp

∑
q

q 6=p

αpq cq ∀p (Equation 6.7)

=∑
d

∑
p,q

p 6=q

cp cqUpp (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md



−∑
d

∑
p,q

p 6=q

cp cqUpq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md



= 1

2

∑
d

∑
p,q

p 6=q

cp cq
(
Upp (d)+Uqq (d)−2Upq (d)

) ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md


Using the relation V e f f

pq =Upp +Uqq −2Upq (Equation 5.20)

= 1

2

∑
d

∑
p,q

p 6=q

cp cqV e f f
pq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md

 (6.17)
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Recall from Equation 5.22, that V e f f
pq = U i nt

pp +U i nt
qq − 2U i nt

pq , where U i nt
pq is the interaction

energy between solutes p and q . On reversing the steps of the derivation in Equation 6.17 and

replacing the bond energies U by the interaction energies U i nt , one can derive 〈∆Ess〉/Na in

terms of interaction energies as,

〈∆Ess〉/Na =−∑
d

∑
p,q

cp cqU i nt
pq (d)

 ∑
d ′

d ′ 6=d

αpq (d ′)ndd ′ −αpq (d)Md

 (6.18)

The critical shear stress for average strengthening τA is given by

τA = (〈∆Ess〉/Na)
ρLρG

b
(6.19)

Full Burgers vector magnitude b is a/
p

2 for fcc and a
p

3/2 for bcc, where a is the cubic lattice

constant. ρL is 1/(
p

3b) for fcc and 1/(2
p

2b) for bcc. ρG is 2/b for fcc and 3/b for bcc. Using

the above inputs,

ρLρG

b
=


4
p

2p
3

1
a3 for fcc

2
p

2p
3

1
a3 for bcc

(6.20)

Combining Equations 6.17/6.18, 6.19 and 6.20, the critical shear stress τA for fcc and bcc alloys

is given by

In terms of effective pair potentials

τA =


2
p

2p
3

1
a3

∑
d

∑
p,q

p 6=q
cp cqV e f f

pq (d)

(∑
d ′

d ′ 6=d
αpq (d ′)ndd ′ −αpq (d)Md

)
for fcc

p
2p
3

1
a3

∑
d

∑
p,q

p 6=q
cp cqV e f f

pq (d)

(∑
d ′

d ′ 6=d
αpq (d ′)ndd ′ −αpq (d)Md

)
for bcc

In terms of interaction energies

τA =


−4

p
2p

3
1

a3

∑
d

∑
p,q cp cqU i nt

pq (d)

(∑
d ′

d ′ 6=d
αpq (d ′)ndd ′ −αpq (d)Md

)
for fcc

−2
p

2p
3

1
a3

∑
d

∑
p,q cp cqU i nt

pq (d)

(∑
d ′

d ′ 6=d
αpq (d ′)ndd ′ −αpq (d)Md

)
for bcc

(6.21)

Equation 6.21 is an important result of this chapter, since average strengthening is unique to

alloys with SRO and the above equation helps to calculate it for fcc and bcc alloys, with the

knowledge of the effective pair interactions (or interaction energies) and Warren-Cowley SRO

parameters.

In the special case, where the atoms in the alloy interact only with their first neighbours
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and the Warren-Cowley SRO parameters are also non-zero only for the first neighbours, the

following expression for τA can be deduced for fcc and bcc alloys from Equation 6.21 using

ndd ′ values from Table 6.1 and the sum rule in Equation 6.15 for Md (recall Nd = Md for full

slip),

In terms of effective pair potentials

τA =


−4

p
2p

3
1

a3

∑
p,q

p 6=q
cp cqαpq (d1)V e f f

pq (d1) for fcc

−2
p

2p
3

1
a3

∑
p,q

p 6=q
cp cqαpq (d1)V e f f

pq (d1) for bcc

In terms of interaction energies

τA =


8
p

2p
3

1
a3

∑
p,q cp cqαpq (d1)U i nt

pq (d1) for fcc

4
p

2p
3

1
a3

∑
p,q cp cqαpq (d1)U i nt

pq (d1) for bcc

(6.22)

where d1 denotes 1st nearest neighbour distance. Flinn [45] arrived at the above result for

fcc binary alloys in terms of effective pair potentials and recently Antillon et. al [47] also

arrived at the same above result for fcc multicomponent alloys but they expressed τA in terms

of interaction energies. Mohri et. al [46] derived an expression for τA for binary fcc alloys

considering solute pair interactions and correlations up to second nearest neighbour, which

matches Equation 6.21 of this chapter, when evaluated for two nearest neighbour distances

using Table 6.1.
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Pair distances after slip

d ′/a

d/a
0.707 1.0 1.225 1.414 1.581 1.732 1.871 2.0 2.121 2.236

Pa
ir

d
is

ta
n

ce
s

b
ef

o
re

sl
ip

0.707 - 1 1 0 0 0 0 0 0 0

1.0 1 - 1 0 1 0 0 0 0 0

1.225 1 1 - 2 3 1 1 0 0 0

1.414 0 0 2 - 2 0 2 0 0 0

1.581 0 1 3 2 - 0 3 2 3 1

1.732 0 0 1 0 0 - 4 0 0 0

1.871 0 0 1 2 3 4 - 0 8 4

2.0 0 0 0 0 2 0 0 - 2 0

2.121 0 0 0 0 3 0 8 2 - 7

2.236 0 0 0 0 1 0 4 0 7 -

(a) a/2[11̄0] slip along (111) plane in fcc.

Pair distances after slip

d ′/a

d/a
0.866 1.0 1.414 1.658 1.732 2.0 2.179 2.236 2.449 2.598

Pa
ir

d
is

ta
n

ce
s

b
ef

o
re

sl
ip

0.866 - 1 1 0 0 0 0 0 0 0

1.0 1 - 0 1 0 0 0 0 0 0

1.414 1 0 - 4 0 0 1 0 0 0

1.658 0 1 4 - 2 2 0 4 1 0

1.732 0 0 0 2 - 0 2 0 0 0

2.0 0 0 0 2 0 - 0 0 0 2

2.179 0 0 1 0 2 0 - 6 6 0

2.236 0 0 0 4 0 0 6 - 0 6

2.449 0 0 0 1 0 0 6 0 - 6

2.598 0 0 0 0 0 2 0 6 6 -

(b) a/2[111] slip along (110) plane in bcc.

Table 6.1 – The structure factors ndd ′ for every pair of normalized pair distances (d ,d ′) for full
slip in fcc and bcc.

In this section a very general expression for the average strengthening (τA) in fcc and bcc alloys

is provided in terms of effective pair interactions (and interaction energies), the Warren-Cowley

SRO parameters, alloy composition and lattice constant in Equation 6.21. τA be calculated for

fcc and bcc alloys with solute pair interactions extending upto 10 nearest neighbours with the

help of Table 6.1; which is more than sufficient given the short-ranged chemical interactions

among different atoms in metal alloys. τA expression for the special case of first-neighbour

interactions and correlations are also provided and compared to previously studies in the

literature.
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It is difficult to decide just based on Equation 6.21 alone whether τA is positive or negative

given a set of Warren-Cowley SRO parameters αpq . However, the physics of the problem

requires τA to be positive, since a slip will always disrupt chemical ordering thus increasing

the system’s potential energy. Therefore, τA can only be negative if the SRO parameters are

improperly chosen; for example, for a strong p −q bond (implying preferential pairing of p

and q), if the corresponding αpq > 0, then that’s improperly chosen. If the SRO parameters

are consistent with the underlying solute pair interactions in the system, then τA will always

be positive, which will in turn mean strengthening for alloys with SRO. This is easier to

illustrate for the special case when we assume the solute pair interactions and correlations are

restricted to first neighbour, that is, Equation 6.22. Notice that τA is positive if the products

αpq (d1)V e f f
pq (d1) are negative and the products αpq (d1)U i nt

pq (d1) are positive1. This implies

the effective pair interactions needs to be positive and the interaction energies negative for a

negative SRO parameter αpq (d1). Negative αpq (d1) implies attractive solute pairs, which is

consistent with corresponding positive V e f f
pq (p −q is favoured energetically than p −p and

q − q) and a negative U i nt
pq (system energy reduces on bringing the solutes p and q at first

neighbour distance from infinite separation). Therefore, we see that the consistency between

SRO parameter and the interactions of solute pairs is pivotal for having the correct sign for τA ,

which is always positive.

So far, we have focused on slip by lattice vector, while discussing average strengthening. For

slip by non-lattice vector (for example, partial slip by a
6 < 112 > in fcc), the first term in

Equation 6.14 is the stable stacking fault energy (γssf) in random alloy and the second term

is the change in γssf due to SRO. Difference in γssf due to SRO, changes the average spacing

between partials dp , however it does not influence average strengthening. It might influence

local strengthening due to fluctuating solute environment, which we will be discussing next;

however we have seen for random alloys in Figure 4.7 that changing dp does not influence

strengthening when dp > 7b. Therefore, it is speculated that the change in stacking fault energy

due to SRO will not have a notable impact on alloy yield strength. However, recent studies,

corroborating the change in γssf due to SRO, have implicated its impact on strengthening

[41, 82, 141]. The influence of γssf on strengthening, if at all significant, cannot be addressed

by the current theoretical framework.

The following subsection will discuss the local strengthening in alloys with SRO, which is the

stress required to unpin dislocation segments from favourable solute environments. Also,

it will be demonstrated that at finite temperatures, unlike average strengthening, the local

strengthening is thermally-activated involving an energy barrier.

1It is not a necessary condition though since there can be some cancellation among different terms in case

of a multicomponent alloy. However for a binary alloy A−B , the product αAB (d1)V
e f f
AB (d1) definitely has to be

negative to have positive τA .
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6.4.2 Local strengthening in alloys with SRO

Having discussed “average strengthening”, we will now focus our attention on “local strength-

ening” or strengthening due to fluctuations. A dislocation in an alloy undulates in response

to surrounding solute environment — dislocation segments will glide towards regions of

favourable solute fluctuations to minimize total system energy. However this undulation of

the dislocation line with respect to its straight configuration at average dislocation position,

does not contribute to the energy penalty γ since equal area will be swept on either side of

the dislocation mean position resulting in no nett increase in the slipped area (illustrated

schematically in Figure 6.1b). However there is a nett decrease in potential energy of the

system since dislocation segments glide towards favourable solute fluctuations.

We assume an undulated configuration of a dislocation of length L as depicted in Figure 6.1b

where alternating segments of length ζ glide +w and −w respectively with respect to the mean

dislocation position and they are connected by transition segments. Since the dislocation

segments glide towards favourable solute fluctuations, it will decrease potential energy and

therefore average decrease in potential energy of a straight segment of length ζ gliding by

distance w is typically the negative of the standard deviation of ∆Ep (ζ, w) (Refer Equation

6.10; note that the relevant length scale here is ζ and w). Also note that the standard deviation

σ∆Ep is an even function of w . As a result the nett decrease in system energy due to undulation

of a straight dislocation is given by −σ∆Ep (ζ, w) L
2ζ . We have already seen in Equation 6.10 that

∆Ep =∆Esd +∆Ess . So σ∆Ep (ζ, w) can be derived as follows,

∆Ep =∆Esd +∆Ess

σ2
∆Ep

= 〈∆E 2
p〉−〈∆Ep〉2

= 〈∆E 2
sd +∆E 2

ss +2∆Esd∆Ess〉−〈∆Esd 〉2 −〈∆Ess〉2 −2〈∆Esd 〉〈∆Ess〉
=

(
〈∆E 2

sd 〉−〈∆Esd 〉2
)
+

(
〈∆E 2

ss〉−〈∆Ess〉2
)
+2

(
〈∆Esd∆Ess〉−〈∆Esd 〉〈∆Ess〉

)
σ2
∆Ep

=σ2
∆Esd

+σ2
∆Ess

+2cov(∆Esd ,∆Ess) (Recall Equation 2.66) (6.23)

where cov is the covariance operator. Sections 6.5.1, 6.5.2 and 6.5.3 derives expressions

for σ2
∆Ess

, σ2
∆Esd

and cov(∆Esd ,∆Ess) respectively in terms of solute-solute pair interactions

across the slip plane, solute-dislocation interaction energies, SRO parameters and the alloy

composition.

Figure 6.2 schematically shows the different regions in space corresponding to energy change

due to solute-dislocation and solute-solute interactions when a positive edge dislocation

(along z-axis) glides a distance w . From the figure it is evident that energy change due to

solute-dislocation interactions are mainly around the dislocation at both positions, before

and after glide. The change in solute-dislocation interaction energy due to dislocation glide

by w can be viewed as the interaction energy of solutes interacting with a dislocation dipole

with separation w and this field dies down fast at ∼ 1/r 2, r being the distance from the dipole.

So the variance in energy change due to solute-dislocation interactions σ2
∆Esd

will scale with
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Chapter 6. Solute-strengthening in alloys with short-range order

the dislocation line length ζ. The slipped area ζw created by dislocation glide will correspond

to energy change due to solute-solute interactions which are short-ranged and only extend

across a few planes above and below the glide plane. Therefore the variance in energy change

due to solute-solute interactions σ2
∆Ess

will depend on the slipped area ζw . Evident from

Figure 6.2, there is an overlap region near the dislocation core where atomic sites contribute to

both energy changes significantly, viz. due to solute-solute and solute-dislocation interactions.

The covariance of the two energy change contributions, ∆Esd and ∆Ess , will therefore scale

with the dislocation line length ζ (just like σ2
∆Esd

). However the covariance is expected to

be smaller than the variance σ2
∆Esd

due to the small size of the overlap region of these two

contributions.

+

- +

-
slip plane

Figure 6.2 – Schematic illustration of spatial distribution of energy changes due to solute-
dislocation and solute-solute interactions when a positive edge dislocation (along z-axis)
glides a distance w . The solute-dislocation interactions extends upto infinity but decreases
with distance from the core — the bounded regime of solute-dislocation interaction is just for
illustration.

The undulation will cost some elastic energy which is attributed to the increase in length of the

transition segments. So the theory hypothesizes that the straight gliding segments contribute

only to change in potential energy and the transition segment joining the gliding segments

contribute only to elastic energy cost. This average energy cost per transition segment can be

approximated as Γ
(

w 2

2ζ

)
[32], where Γ is the dislocation line tension.

Thus the total energy change of the system due to undulation of the dislocation with respect

to its straight configuration at the mean position, can be expressed as

∆Etot(ζ, w) =
[
Γ

(
w2

2ζ

)
−σ∆Ep (ζ, w)

](
L

2ζ

)
(6.24)

In Sections 6.5.2 and 6.5.3, we will show that the ζ-dependence can be explicitly extracted out

from each of σ2
∆Esd

and cov(∆Esd ,∆Ess). However in Section 6.5.1 we will see that the variance
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in energy change due to solute-solute interactions σ2
∆Ess

is quadratic function of the slipped

area (ζw) with no constant term. In the limit of random alloys the (ζ, w)2 term vanishes.

Here as an approximation, we will ignore the (ζ, w)2 term which helps us to retain the same

structure of solute-strengthening theory for random alloys, with energy fluctuation quantities

modified to account for SRO. Given the above approximation, the variance σ∆Ep (ζ, w) can

be expressed as σ∆Ep (ζ, w) = (
ρLζ

)1/2
∆Ẽp(w) like in the original theory (Recall Section 1.2),

where ρL is the density of atomic sites along the dislocation line and ∆Ẽp is the principle

energy fluctuation quantity for the theory which depends only on the roughening amplitude

w and not on ζ.

Now, there will be a critical (ζc , wc ) which will minimize the total energy change ∆Etot, and

this is the typical undulated configuration the dislocation will attain so as to minimize total

energy. ζc has a closed-form expression as a function of wc which is given as follows,

ζc =
(

4Γ2w4
c

ρL∆Ẽ 2
p(wc )

) 1
3

(6.25)

wc does not have a closed-form expression and has to be obtained numerically as solution to

the following equation,
∂∆Ẽp(w)

∂w
= ∆Ẽp(w)

2w
(6.26)

A stress τF
y will be required to unpin any dislocation segment of length ζc from the favourable

solute environment, which will in turn involve overcoming an energy barrier ∆Eb due to

unfavourable solute fluctuations. This energy barrier is
p

2 times the standard deviation

σ∆Ep (ζc , wc ) plus the gain in elastic energy Γ
(

w 2
c

2ζc

)
and can thus be expressed as

∆Eb =p
2σ∆Ep (ζc , wc )−Γ

(
w2

c

2ζc

)
= 1.467

(
ρL w2

cΓ∆Ẽ 2
p(wc )

) 1
3

(6.27)

The energy landscape E(x) for a dislocation segment of length ζc pinned at favourable solute

fluctuation can be approximated by a cosine ∆Eb
2

(
1−cos

(
πx
wc

))
[32] plus an energy penalty

term γζc x (from average strengthening). Note that while formulating E(x) we are describing

the potential energy surface for a gliding dislocation, be it originally at −wc or +wc (Figure

6.1b) — so there will always be an energy penalty of γζc x for creating additional slipped area

of ζc x by glide. An applied resolved shear stress τy0 needed to glide the dislocation at 0K

temperature would be such that the modified energy landscape E (x,τy0) will no longer have a

minimum or a maximum in [0, wc ] but will have an inflection point at x = wc /2. Formally, it
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would be as follows,

E(x) = ∆Eb

2

(
1−cos

(
πx

wc

))
+γζc x

E(x,τ) = ∆Eb

2

(
1−cos

(
πx

wc

))
+γζc x −τbζc x

∂E(x,τ)

∂x

∣∣∣∣
(x̂,τy0)

= π

2

∆Eb

wc
sin

(
πx̂

wc

)
+γζc −τy0bζc = 0 =⇒ τy0 = π

2

∆Eb

bζc wc
sin

(
πx̂

wc

)
+γ/b

∂2E(x,τ)

∂x2

∣∣∣∣
(x̂,τy0)

= π2

2

∆Eb

w2
c

cos

(
πx̂

wc

)
= 0 =⇒ cos

(
πx̂

wc

)
= 0 (Inflection at x = x̂ = wc /2)

∴ τy0 = π

2

∆Eb

bζc wc
+γ/b = τF

y0 +τA (6.28)

So the net yield strength at zero-temperature τy0, has two components, (1) τF
y0, the local

strengthening due to pinning of dislocation segments in a fluctuation solute environment and

(2) τA , the average strengthening, which is discussing at length in Section 6.4.1.

For τ< τy0, ∂E (x,τ)/∂x = 0 in Equation 6.28 has two solutions, one for energy minimum Emin

and other for energy maximum Emax and the difference of the two is the stress-dependent

energy barrier ∆E (τ). Leyson et.al [32] showed that ∆E (τ) can be approximated (within 6%) by

∆E(τ) ≈∆Eb

(
1− τ−τA

τF
y0

) 3
2

(6.29)

For a quasistatic loading, the rate of unpinning of dislocation segments ν from local minima

by activation over the stress-dependent barrier height ∆E(τ) can be approximated using

transition state theory as ν = ν0 exp(−∆E(τ)/kBT ), where ν0 is the attempt frequency, T is

the temperature and kB is Boltzmann’s constant. The microscopic dislocation escape rate

ν can be related to the macroscopic strain rate by the well-established Kocks model, that

is ε̇ = ε̇0 exp(−∆E(τ)/kBT ), where ε̇ and ε̇0 are proportional to ν and ν0 respectively with

proportionality constant ρbd (ρ is the dislocation density per unit area and d is the flight

distance over which the dislocation moves after each escape). This relation, along with

Equation 6.29, can be inverted to obtain the yield stress (τ= τy (T, ε̇)) at temperature T and

applied strain rate ε̇ as follows,

τy (T, ε̇) = τF
y0

[
1−

(
kBT

∆Eb
ln

(
ε̇0

ε̇

)) 2
3

]
+τA (6.30)

where ε̇0 ∼ 104/s and kB are a reference strain rate and Boltzmann’s constant respectively.

The first term in Equation 6.30 is the temperature-dependent contribution to yield stress τF
y

due to local strengthening. It is noteworthy that the second term corresponding to average

strengthening is temperature-independent, implying that the average strengthening in alloys

with SRO is not thermally activated. Also note that for random alloys, i.e. for γ= 0, Equation

6.30 reverts back to that derived for random alloys in Ref. [32].
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6.5. Variance in energy change due to dislocation glide σ2
∆Ep

In the following section, we will be deriving the variance in energy change when a dislocation of

length ζ glides a distance w , that is, σ2
∆Ep

. This will be done in three subsections, each deriving

expressions for the three contributions to σ2
∆Ep

, namely σ2
∆Ess

, σ2
∆Esd

and cov(∆Esd ,∆Ess)

(Equation 6.23).

6.5 Variance in energy change due to dislocation glide σ2
∆Ep

6.5.1 Contribution due to solute-solute interactions σ2
∆Ess

The variance of ∆Ess is given by σ2
∆Ess

= 〈∆E 2
ss〉− 〈∆Ess〉2. With lattice sites indexed by i ,k

for sites below the slip plane with atomtypes u, p respectively and sites above the slip plane

indexed by j , l with atomtypes v, q respectively, the quantity ∆E 2
ss is given by,

∆E 2
ss =

∑
k,l

∑
p,q

sp
k sq

l

(
Upq (‖rkl + t‖)−Upq (‖rkl‖)

)
︸ ︷︷ ︸

∆U pq
ss,kl

∑
i , j

∑
u,v

su
i sv

j

(
Uuv (

∥∥ri j + t
∥∥)−Uuv (

∥∥ri j
∥∥)

)
︸ ︷︷ ︸

∆U uv
ss,i j

(6.31)

Taking expectation on either sides,

〈∆E 2
ss〉 =

∑
i , j ,k,l

∑
p,q,u,v

〈su
i sv

j sp
k sq

l 〉∆U pq
ss,kl∆U uv

ss,i j (6.32)

Using the probability definitions in Equation 6.1 and the mutual exclusivity of occupancy of

any site by different atom types, the expectation 〈su
i sv

j sp
k sq

l 〉 can be derived as follows (i , j ,k, l

need not be distinct),

〈su
i sv

j sp
k sq

l 〉 = δi kδupδ j lδvq〈
(
sp

k

)2 (
sq

l

)2〉
+δi kδup (1−δ j l )〈(sp

k

)2
sv

j sq
l 〉

+ (1−δi k )δ j lδvq〈su
i sp

k

(
sq

l

)2〉
+ (1−δi k )(1−δ j l )〈su

i sv
j sp

k sq
l 〉

= δi kδupδ j lδvqλ
kl
pq cp cq

+δi kδup (1−δ j l )λk j l
pvq cp cv cq

+ (1−δi k )δ j lδvqλ
i kl
upq cucp cq

+ (1−δi k )(1−δ j l )λi j kl
uv pq cucv cp cq (6.33)
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Therefore, 〈∆E 2
ss〉 can be simplified as,

〈∆E 2
ss〉 =

∑
p,q

cp cq
∑
k,l
λkl

pq

(
∆U pq

ss,kl

)2

+ ∑
p,v,q

cp cv cq
∑

k, j ,l
j 6=l

λ
k j l
pvq∆U pq

ss,kl∆U pv
ss,k j

+ ∑
u,p,q

cucp cq
∑

i ,k,l
i 6=k

λi kl
upq∆U pq

ss,kl∆U uq
ss,i l

+ ∑
u,v,p,q

cucv cp cq
∑

i , j ,k,l
i 6=k
j 6=l

λ
i j kl
uv pq∆U pq

ss,kl∆U uv
ss,i j (6.34)

Making use of the fact that 〈sp
k sq

l 〉 =λkl
pq cp cq (and similarly 〈su

i sv
j 〉 =λ

i j
uv cucv ), one can show

by similar manipulations that

〈∆Ess〉2 = ∑
p,q

cp cq
∑
k,l
λkl

pq∆U pq
ss,kl

∑
u,v

cucv
∑
i , j
λ

i j
uv∆U uv

ss,i j (6.35)

which is square of Equation 6.12

Therefore,

σ2
∆Ess

= 〈∆E 2
ss〉−〈∆Ess〉2

= ∑
p,q

cp cq
∑
k,l
λkl

pq

(
∆U pq

ss,kl

)2

+ ∑
p,v,q

cp cv cq
∑

k, j ,l
j 6=l

λ
k j l
pvq∆U pq

ss,kl∆U pv
ss,k j

+ ∑
u,p,q

cucp cq
∑

i ,k,l
i 6=k

λi kl
upq∆U pq

ss,kl∆U uq
ss,i l

+ ∑
u,v,p,q

cucv cp cq
∑

i , j ,k,l
i 6=k
j 6=l

λ
i j kl
uv pq∆U pq

ss,kl∆U uv
ss,i j

−∑
p,q

cp cq
∑
k,l
λkl

pq∆U pq
ss,kl

∑
u,v

cucv
∑
i , j
λ

i j
uv∆U uv

ss,i j (6.36)

It is straightforward to verify that with all correlation functions equal to 1 like in the case of

random alloys, Equation 6.36 above reverts back to Equation 5.19 for random alloys; let’s call

that variance σ2
∆Ess ,R. Like Equation 5.19, for fcc and bcc crystal structures, the second and

third terms in Equation 6.36 are equal.

As mentioned earlier, the higher-order correlation functions are generally unavailable. Here
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we have made further approximations to express the variance σ2
∆Ess

in Equation 6.36 in terms

of Warren-Cowley SRO parameters only, which can be calculated with atomistic simulations

using Monte-Carlo algorithm [41, 43] and can also be obtained experimentally for binary

alloys [39, 40, 42].

Using superposition approximation for the higher-order correlation functions, we can rewrite

Equation 6.36 for bcc and fcc in terms of pair correlation functions only,

σ2
∆Ess

= ∑
p,q

cp cq
∑
k,l
λkl

pq

(
∆U pq

ss,kl

)2

+2
∑

p,v,q
cp cv cq

∑
k, j ,l
j 6=l

λkl
pqλ

j l
vqλ

k j
pv∆U pq

ss,kl∆U pv
ss,k j

+ ∑
u,v,p,q

cucv cp cq
∑

i , j ,k,l
i 6=k
j 6=l

λkl
pqλ

j l
vqλ

k j
pvλ

i j
uvλ

i k
upλ

i l
uq∆U pq

ss,kl∆U uv
ss,i j

−∑
p,q

cp cq
∑
k,l
λkl

pq∆U pq
ss,kl

∑
u,v

cucv
∑
i , j
λ

i j
uv∆U uv

ss,i j (6.37)

Expressing the pair correlation functions in Equation 6.37 in terms of the Warren-Cowley

parameters and then taking only the first order terms in αs, we can again approximate the

variance σ2
∆Ess

as

σ2
∆Ess

−σ2
∆Ess ,R =−∑

p,q
cp cq

∑
k,l
αkl

pq

(
∆U pq

ss,kl

)2

−2
∑

p,v,q
cp cv cq

∑
k, j ,l
j 6=l

(
αkl

pq +α j l
vq +αk j

pv

)
∆U pq

ss,kl∆U pv
ss,k j

− ∑
u,v,p,q

cucv cp cq
∑

i , j ,k,l
i 6=k
j 6=l

(
αkl

pq +α j l
vq +αk j

pv +αi j
uv +αi k

up +αi l
uq

)
∆U pq

ss,kl∆U uv
ss,i j

+2
∑
p,q

cp cq
∑
k,l
αkl

pq∆U pq
ss,kl

∑
u,v

cucv
∑
i , j
∆U uv

ss,i j (6.38)

where σ2
∆Ess ,R is variance in energy change due to solute-solute interactions in random alloys

(Section 5.2 in Chapter 5). The above expression thus gives the contribution to the variance

σ2
∆Ess

due to SRO in terms of solute pair interactions, Warren-Cowley SRO parameter and the

alloy composition.

6.5.2 Contribution due to solute-dislocation interactions σ2
∆Esd

Let U n
sd (xi , yi ) be the interaction of dislocation line along z-axis with solute atom of type n at

site i with coordinates (xi , yi ) with respect to the dislocation position at the origin.
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The change in potential energy due to solute-dislocation interactions when a dislocation

glides distance w is given by (Recall Equation 6.10),

∆Esd =∑
i

∑
n

sn
i

(
U n

sd (xi , yi )−U n
sd (xi +w, yi )

)
︸ ︷︷ ︸

∆U n
sd ,i (w)

(6.39)

Since ∆U n
sd ,i (w) only depends on the x and y coordinates, we can break

∑
i into

∑
i
∑

k where

index i runs over atomic sites projected on the z-plane and index k runs over the sites along

the z-axis (hence, parallel to the dislocation line) for the respective i th column. So in this

section, the atomic sites are indexed by a tuple (i k). Therefore Equation 6.39 can also be

expressed as,

∆Esd =∑
i ,n

(
Nl∑

k=1
sn

(i k)

)
∆U n

sd ,i (w) (6.40)

Since 〈sn
i k〉 = cn (refer Equation 6.1),

〈∆Esd 〉 = Nl

∑
n

cn
∑

i
∆U n

sd ,i (w)︸ ︷︷ ︸
=0

= 0 (6.41)

where 〈·〉 is the expectation operator and Nl is the number of atomic sites along the dislocation

line. The expectation 〈∆Esd 〉 equals zero like in the case of random alloys.

Variance in ∆Esd , σ2
∆Esd

= 〈∆E 2
sd 〉−〈∆Esd 〉2 = 〈∆E 2

sd 〉

∆E 2
sd =

(∑
i ,n

(∑
k

sn
(i k)

)
∆U n

sd ,i (w)

)2

= ∑
i , j ,n,n′

(∑
k,l

sn
(i k)sn′

( j l )

)
∆U n

sd ,i (w)∆U n′
sd , j (w) (6.42)

Using the definition in Equation 6.1 and the fact that sn
(i k) = 1 and sn′

(i k) = 1 are mutually

exclusive for n 6= n′, the expectation 〈sn
(i k)sn′

( j l )〉 can be derived as,

〈sn
(i k)sn′

( j l )〉 = δi jδklδnn′〈
(
sn

(i k)

)2〉+ (
1−δi jδkl

)〈sn
(i k)sn′

( j l )〉
= δi jδklδnn′cn + (

1−δi jδkl
)
λ

(i k)( j l )
nn′ cncn′ (6.43)
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Therefore,

σ2
∆Esd

= 〈∆E 2
sd 〉

= ∑
i , j ,n,n′

(∑
k,l

〈sn
(i k)sn′

( j l )〉
)
∆U n

sd ,i (w)∆U n′
sd , j (w)

=
(∑

k,l
δkl

) ∑
i , j ,n,n′

δi jδnn′cn∆U n
sd ,i (w)∆U n′

sd , j (w)

+ ∑
n,n′

cncn′
∑
i , j
∆U n

sd ,i (w)∆U n′
sd , j (w)

∑
k,l

(1−δi jδkl )λ(i k)( j l )
nn′

= Nl

∑
n

cn
∑

i

(
∆U n

sd ,i (w)
)2+

+∑
i

∑
n

cn∆U n
sd ,i (w)

∑
n′

cn′∆U n′
sd ,i (w)

∑
k,l

k 6=l

λ(i k)(i l )
nn′

+ ∑
i , j

i 6= j

∑
n

cn∆U n
sd ,i (w)

∑
n′

cn′∆U n′
sd , j (w)

∑
k,l
λ

(i k)( j l )
nn′ (6.44)

∑
n cn∆U n

sd ,i (w) = 0 since
∑

n cnU n
sd (xi , yi ) = 0 for any site i , irrespective of any short-range

order; although individual solute interaction energies with the dislocation U n
sd may not be the

same for random alloys and alloys with SRO. Therefore in case of random alloys, where λ is

always unity, we have σ2
∆Esd

= Nl
∑

n cn
∑

i

(
∆U n

sd ,i (w)
)2

.

Despite correlations, in absence of long-range order (LRO), there will be a distance dcut beyond

which λnn′ = 1 for all solute pairs (n,n′).

Now let us revisit the second and the third terms in Equation 6.44. The second term can be

simplified as follows,

2nd term =∑
i

∑
n

cn∆U n
sd ,i (w)

∑
n′

cn′∆U n′
sd ,i (w)

∑
k,l

k 6=l

λ(i k)(i l )
nn′

= Nl

∑
i

∑
n

cn∆U n
sd ,i (w)

∑
n′

cn′∆U n′
sd ,i (w)

lmax∑
l=−lmax

l 6=0

λnn′(dl )

+Nl

 ∑
l

|l |>lmax

1

∑
i

∑
n

cn∆U n
sd ,i (w)︸ ︷︷ ︸

=0

∑
n′

cn′∆U n′
sd ,i (w)︸ ︷︷ ︸

=0

= Nl

∑
i

∑
n

cn∆U n
sd ,i (w)

∑
n′

cn′∆U n′
sd ,i (w)

lmax∑
l=−lmax

l 6=0

λnn′(dl ) (6.45)

where dl is the distance of a site l relative to a site k along the z-axis and note that position of

site k (or l = 0) does not matter and we can express the 2nd term in term of dl since the pair
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correlation function λnn′ depends on intersite distances and not on the position of the sites.

lmax is the furthest site from any site k along the dislocation line such that their separation is

≤ dcut . Also we assume lmax ¿ Nl and we ignore error due to finite Nl .

The second term can be rewritten in terms of Warren-Coley parameters as follows,

2nd term = 2lmax Nl

∑
i , j

∑
n

cn∆U n
sd ,i (w)︸ ︷︷ ︸

=0

∑
n′

cn′∆U n′
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Similarly the third term can be simplified as,
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Figure 6.3 schematically explains the supremum indices lmax and l j
max used in Equations 6.46

and 6.47.
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(a) 2nd term

(b) 3rd term

Figure 6.3 – Schematic of the distances and indexes used in (a) Equation 6.46 and (b) Equation
6.47, which basically simplifies the 2nd and 3r d terms in Equation 6.44 respectively.

Using Equations 6.44, 6.45, 6.46 and 6.47, σ2
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/Nl can be expressed as,
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(6.48)

Note that the expression for the first term in Equation 6.48 is same as the expression for

σ2
∆Esd

/Nl in case of random alloys; however the first term won’t evaluate to same value for

random alloys and alloys with SRO since the solute-dislocation interaction energies U n
sd might

differ for alloys with and without SRO.

Finally, since the number of atomic sites along the dislocation line of length ζ is given by Nl =
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ρLζ, the varianceσ2
∆Esd

for a dislocation segment of length ζ is given byσ2
∆Esd

=
(
σ2
∆Esd

/Nl

)
ρLζ,

where
(
σ2
∆Esd

/Nl

)
calculated with Equation 6.48 depends solely on solute-dislocation interac-

tion energies, Warren-Cowley SRO parameters and the alloy composition.

6.5.3 Correlation between the energy changes due to solute-solute (∆Ess) and solute-
dislocation (∆Esd ) interactions

In this section we are going to derive the covariance of the energy changes ∆Ess and ∆Esd ,

which is given by

cov(∆Ess ,∆Esd ) = 〈∆Ess∆Esd 〉−〈∆Ess〉〈∆Esd 〉︸ ︷︷ ︸
=0

= 〈∆Ess∆Esd 〉 (6.49)

Expressions for ∆Ess and ∆Esd were mentioned earlier in Equations 6.10, 6.11 and 6.39. Using

those expressions, the product of the two energy changes can be expressed as follows,
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Taking expectation of either sides of Equation 6.50, we have

〈∆Ess∆Esd 〉 =
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∑
k,l

yk<0
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∑
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∑
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We will simplify the two term in the above equation separately and then add them. Before that,
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we need to first simplify 〈sn
i sp

k sq
l 〉. If yi < 0, yk < 0, yl > 0, then
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i sp

k sq
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Similarly, if yi > 0, yk < 0, yl > 0, then
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Using the above result for 〈sn
i sp

k sq
l 〉, the first term of Equation 6.51 simplying as follows,
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Similarly, the second term of Equation 6.51 simplifies as
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Combining the two terms the covariance of ∆Ess and ∆Esd can be expressed as,
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Notice that for random alloys, when λ = 1 (or α = 0), the first term is not zero — So the

covariance between ∆Ess and ∆Esd is not zero for random alloys, but is expected to be small

(Recall Figure 6.2).

In Equation 6.56, change in energy due to solute-solute interactions and the energy change

due to solute-dislocation interactions are multiplied in every term of the equation. The former

scales with area of the slip plane swept by the dislocation when it glides and the latter scales

with dislocation line length — so their product will scale with dislocation line length. So the

covariance cov(∆Ess ,∆Esd ) scales with the number of sites along the dislocation line Nl . This

is also a consequence of the short-ranged solute-solute interactions across the slip plane (again

recall Figure 6.2). Since for a dislocation segment of length ζ, Nl = ρLζ as discussed earlier,

the covariance cov(∆Ess ,∆Esd ) corresponding to the glide of a dislocation segment of length

ζ is given by cov(∆Ess ,∆Esd ) = (cov(∆Ess ,∆Esd )/Nl )ρLζ, where cov(∆Ess ,∆Esd )/Nl depends

solely on solute pair interactions, solute-dislocation interaction energies, pair correlation

functions and the alloy composition.

Using superposition approximation for 3-site correlation function λnpq , Equation 6.56 can be
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rewritten as
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Expanding the pair correlation functions in terms of Warren-Cowley SRO parameters (that is,

λkl
pq = 1−αkl

pq ) and retaining only the first-order terms in the latter, we can rewrite Equation

6.57 as,
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Notice the last two terms are equal (interchange dummy indices p and q).

Therefore, cov(∆Ess ,∆Esd ) can be expressed in terms of the solute pair interactions, solute-

dislocation interaction energies, Warren-Cowley SRO parameter and the alloy composition as
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follows,
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(6.58)

It has been discussed that the covariance involves the sites near the dislocation position in

both the initial and final configurations during dislocation glide (Recall Figure 6.2). At those

sites the assumption of uniform slip vector t is not valid and therefore the error due to this

assumption scales with Nl just like the covariance we derived in Equation 6.56. To calculate

the covariance, one should therefore consider the correct slip distribution around the dislocation

line instead of the constant slip vector t .

6.6 Discussion and Summary

This chapter presents a theoretical framework for solute-strengthening in alloys with SRO.

Short-range order has been characterized with n-site correlation functions and the relation

of the pair correlation functions with the well-known Warren-Cowley SRO parameters has

been established. The theory requires 2-site(pair), 3-site and 4-site correlation functions; how-

ever the higher-order correlation functions are inaccessible experimentally and are generally

unavailable. So a superposition approximation has been introduced which approximates

the higher-order correlation functions as product of certain pair correlation functions. The

validity of using this approximation for small pair correlations has been ascertained.

Using the mathematical framework of SRO, the new theory of solute-strengthening is for-

mulated. Like in random alloys, the fluctuation in energy change due to gliding dislocation

segments has two contributions, one due to solute-dislocation interactions and the other due

to solute-solute interactions across the slip plane. Unlike random alloys, the energy change

due to solute-solute interactions is not zero on average and therefore when a dislocation

glides in an alloy with SRO it leaves behind a high-energy slip plane (like a fault plane). This

is caused by the slip associated with dislocation glide, when energetically favourable solute

pairs are separated and unfavourable solute pairs are brought closer, thus rising the energy on

average due to solute-solute interactions across the slip plane. An externally applied stress

must pay for this energy penalty, thus introducing an additional strengthening component
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for alloys with SRO, which we call “average strengthening”. The average strengthening has

received significant attention in the literature, however they were limited in their analysis. In

this chapter, expressions are derived for predicting the average strengthening, which takes as

inputs the effective pair interactions of solutes across the slip plane, the Warren-Cowley SRO

parameters and the alloy composition. Agreement of the derived expressions in this study

with those proposed in previous studies on average strengthening has been established for

some special cases. This is the most important result of this chapter and is deemed to be

the significant additional strengthening factor due to SRO. It is also shown that the average

strengthening is not thermally-activated.

Like in random alloys, the thermally-activated strengthening component due to glide of lo-

cally pinned dislocation segments over energy barriers presented by the fluctuating solute

environment, is also present in the case of alloys with SRO. In Chapter 5, we have seen that

local strengthening is controlled by the variances in energy change due to solute-dislocation

and solute-solute interactions. In the case of SRO, these variances get modified and in this

chapter we have derived expressions for these variances in terms of correlation functions,

solute-dislocation interaction energies, solute-solute bond energies and the alloy composi-

tion. The variance in energy change due to solute-solute interactions depends on 3-site and

4-site correlation functions in addition to pair correlation functions. Using the superposition

approximation for higher-order correlation functions, approximate expression for the above

variance is derived which depends only on pair correlations. Finally, the two contributions to

energy change (solute-solute and solute-dislocation) are correlated, and the net fluctuation in

energy change controlling local strengthening must also consider the covariance of the two

contributions. The covariance is non-zero even for random alloys, however we neglected it in

Chapter 5 since only very few sites near the dislocation core contribute to this term. In the

general theory proposed in this chapter, we have considered the covariance and derived its ex-

pression, thus giving a complete theoretical framework to the problem of solute-strengthening

in alloys.

The current theory is complete in its analysis of average strengthening and the latter can be

predicted for any multicomponent fcc or bcc alloy with the knowledge of the effective pair

interactions among different solute pairs and the Warren-Cowley SRO parameters. However

the two aforesaid inputs are not easily obtained by experiments. The effective pair inter-

actions and Warren-Cowley SRO parameters can be calculating with DFT calculations and

Monte-Carlo simulations, but these are expensive calculations. Determination of average

strengthening for different dilute and complex concentrated alloys is the primary future goal

of this ongoing project. The modification to the local strengthening due to SRO might be

significant for some alloys, however certain challenges needs to addressed before we can study

this contribution for different alloys. First of all the expressions derived for variance in energy

change controlling local strengthening are in terms of solute pair bond energies. Realistic

metallic alloys modeled with empirical interatomic potentials like EAM or with first principles,

entail many-body interactions among its constituents. Solute pair interaction quantities like

the interaction energies or effective pair potentials can be uniquely defined for any system
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with the help of an average atom concept (Recall Chapter 5). So, the expressions for variances

and covariances in Section 6.5 of this chapter must be reformulated in terms of interaction

energy and effective pair interaction in order to study local strengthening under SRO for realis-

tic alloys. Secondly, approximations like the superposition approximation for higher-order

correlation functions or the ignoring the second-order terms in the variance for solute-solute

interactions are all premised on the assumption that the Warren-Cowley SRO parameters

are small. It remains to be examined how small the SRO parameters need to be for these

approximations to be valid, while still having a notable SRO effect on solute-strengthening.

The theory presented in this chapter, despite lacking full maturity, lays the groundwork

for further modification and improvement with the aim to have a complete and adequate

theoretical framework for predicting yield strength of alloys with any compositional complexity.

This will assist the metallurgical and materials community in more efficient alloy design.
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7 Summary

Alloying enhances strength and other desirable mechanical properties of metals. A new class

of complex concentrated alloys with 5 or more constituents, called high(medium)-entropy

alloys (HEAs/MEAs), shows promising strength and fracture toughness. Under common alloy

processing conditions, HEAs often form single-phase random alloys, with no correlation in

the occupancy of lattice sites by the constituent atom types. Random alloys are an important

limiting case of no chemical ordering and the current thesis primarily addresses two problems

pertaining to random alloys, namely, (1) concurrent multiscale modeling and (2) solute-

strengthening.

Random alloys are rife with compositional fluctuations, which in turn result in fluctuation in

local atomic configurations and elastic stiffnesses. For accurate functioning of a force-based

atomistic/continuum (a/c) couple, it is important that the underlying material description in

both the atomistic and the continuum domains are the same near the a/c interface. A/c cou-

pling of random alloys violate this criterion since the atomistics is inherently inhomogeneous

and the continuum is described with the average elastic constants of the alloy. The resulting

errors due to coupling are of the order of 100 MPa in long-range spurious stresses and spurious

stress fluctuations near the interface. Two methods of constructing the coupled problem for

random alloys have been proposed in the thesis which mitigate errors arising in the standard

method. In one method, the desired atomistic domain and its nearby surroundings are fully re-

laxed to an equilibrium structure and then inserted into the coupled problem as the reference

configuration. This reduces the effects of the random-to-homogeneous transition near the a/c

interface, and guarantees no spurious stress at zero load. In the second method, the random-

to-homogeneous transition is spatially separated from the atomistic-continuum transition by

introducing a small buffer zone of well-defined ‘average atoms’. The random-to-homogeneous

transition is then accomplished fully atomistically while the atomistic to continuum transition

is accomplished in a homogeneous material. The two methods are validated through compar-

isons of the stresses in the coupled method versus the true atomistic system for three different

solid solution alloys (Al-5%Mg, Ni-15%Al, and medium-entropy FeNiCr) as described by EAM

interatomic potentials. Spurious stresses for both methods and across all three materials are
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negligible (≈ 5 MPa) relative to stresses arising in realistic mechanical problems of interest.

These new methods thus enable the accurate study of mechanics boundary value problems

in random alloys for problems where it is essential to capture atomistic phenomena in some

localized region of the random alloy.

Solute strengthening in random alloys is mediated through the impediment to dislocation

motion caused by random compositional fluctuations. Dislocation segments get pinned

at favourable solute fluctuations and externally applied shear stress coupled with thermal

activation is needed to unpin the dislocation and resume motion. Both the local minima

and maxima in the energy landscape traversed by the segments are dictated by the solute-

dislocation interactions and the solute-solute interactions across the slip plane. A recent

theory predicts the strengthening as a function of the solute-dislocation interaction ener-

gies and composition. First-principles calculations of solute-dislocation interaction energies

are computationally expensive, therefore an elasticity model for the interaction has been

formulated which reduces the solute-dislocation interaction energy to the product of the

dislocation pressure field and the solute misfit volume. In the thesis, the elasticity model is

formulated and evaluated for cubic anisotropy in fcc metals, and compared to a previous

isotropic model. The prediction using the isotropic model with Voigt-averaged elastic con-

stants is shown to represent the full anisotropic results within a few percent, and so is the

recommended approach for studying anisotropic alloys. Application of the elasticity model

using accessible experimentally-measured properties and/or first-principles-computed prop-

erties is then discussed so as to guide use of the model for estimating strengths of existing and

newly proposed alloys. On the other hand, the contribution of the solute-solute interactions,

described by pairwise interactions, has been modeled in terms of the standard deviation in

total solute-solute interaction energies as a dislocation segment glides through the material,

which changes specific solute-solute pairs across the glide plane at every pair distance. An an-

alytic expression is derived for the above standard deviation and validated against numerical

simulations on a wide range of model random alloys consisting of 2–5 elements interacting

via Lennard-Jones pair potentials. The theory is applied to the bcc MoNbTaW high entropy

alloy, using solute-solute interactions computed via first-principles, and a model NbTaV alloy,

described by EAM potentials, where the strength increases negligibly by 2% and 0.45%, respec-

tively. Application to random dilute fcc Ni(Al), where the first-neighbor Al-Al interaction is very

strongly repulsive, shows significant strengthening of 60–100% at 10% Al, depending on the

origin of the inputs. Some connections to literature atomistic simulations on Ni(Al) are also

presented. Overall, the strengthening theory presented in this thesis provides a quantitative

framework for assessing the relative roles of solute-dislocation and solute-solute interactions

on strengthening in random alloys.

Finally, the thesis also addresses the role of chemical ordering in the form of short-range

order in influencing strength of alloys. Alloys having strongly disproportionate solute-solute

interactions can lead to the development of short-range order (SRO) or long-range order (LRO),

for example the exceptionally strong Al-Al repulsion in Ni(Al) alloys. Average strengthening

observed only in alloys with SRO, had received considerable attention in the past. Since
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SRO promotes the existence of higher-than-random favourable solute pairs and lower-than-

random unfavourable pairs, the slip associated with dislocation glide disrupts this order

on average, thus leaving behind a high-energy slipped area over the region traversed by

the dislocation line. This average energy cost is balanced by the work done by externally

applied stress to sustain unabated dislocation glide. Expression for the average strengthening

effect have been derived in the thesis in terms of solute pair interaction energies, the well-

known Warren-Cowley SRO parameter and the alloy composition. The strengthening theory

accounting for SRO is still in progress and some challenges need to be addressed before

the theory can be applied to predict the yield strength of non-random alloys. However, the

preliminary development of the theory presented in the thesis is the first step towards having

an all-encompassing theory of solute-strengthening for dilute and complex concentrated

alloys.
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8 Outlook

The thesis has explored some new areas of research in multicomponent alloys which were

either uncharted or came into limelight recently. In this chapter we are going to discuss the

future possibilities of application and extension of the concepts introduced in the thesis.

The thesis proposed two methods of constructing a multiscale problem for random alloys

for accurate atomistic-to-continuum coupling under force-based setting and validated the

methods with an effectively one-dimensional coupling geometry for proof of concept. Now

the methods need to be implemented to solve solid mechanics problems in random alloys of

a multiscale nature. An ideal problem would be to study the nucleation of dislocations from a

crack tip leading to crack tip blunting. A classic problem of this sort is to determine whether

cleavage will be favoured over dislocation emission, which is an important determinant of

material performance. A related problem of more multiscale nature would be to address the

same question but when there are already preexisting dislocations surrounding the crack tip.

These problems are studied for elemental solid in the context of fatigue failure [11, 145, 146]

and it would be interesting to see how compositional fluctuations surrounding the crack

tip influence dislocation emission and crack tip blunting. Coupled atomistic-dislocation

dynamics (CADD) method is often used to study these problems since evolution of dislocation

network and calculation of the long-range elastic field of a collection of dislocations are ro-

bustly handled under linear elasticity assumption by dislocation dynamics (DD) method. The

crack front presents a plane strain problem and normally the coupling interface is therefore

constructed parallel to the crack front. In such a situation, if the emanating and preexisting

dislocations are also parallel to the crack front, the dislocations can cross domains without

ever actually crossing the atomistic-continuum (a/c) interface through the pad region. Study-

ing this problem in the context of random alloys is straightforward using both the proposed

methods of constructing the coupled problem. Dislocation in the atomistic domain glides

toward the continuum domain upto some critical distance from the coupling interface and

then it is hopped onto the continuum domain keeping the resulting elastic fields consistent;

the dislocation can then glide in the continuum domain with some phenomenological mobil-

ity law. If the dislocation happens to exist simultaneously in both the domain as a “hybrid”
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dislocation [17–19], then such a situation is complicated. For elemental solid, an atomistic

template is chosen specific to the dislocation line orientation at the couple interface and that

template is used to patch the dislocation across the two domains. Choosing such a template

for a random alloy in Method 1 is unwieldy since the template needs to be specific to the local

compositional fluctuation. However in Method 2 using average atoms such a template can be

easily devised since coupling interface is in the average atoms region. However mobility of the

dislocation in the explicit random alloy and in the average atoms might be different which

might lead to certain artifacts, which remains to be examined.

The two methods for constructing a multiscale problem are proposed in this thesis in the

context of force-based coupling. However there exists the energy-based methods which is an

active field of research (refer to the brief review in Section 1.1). Method 2 of this thesis with

average atoms, can be readily extended to any multiscale method designed for elemental solids,

since the coupling interface is in the monoatomic average atoms. In the Quasi-continuum (QC)

method for example, Method 2 is directly amenable to extension to nonlinear deformation

in the continuum via application of the Cauchy-Born rule to the average atom unit cell.

One advantage of the energy-based methods is the automatic adaptability of the multiscale

problem — regions of high deformation are tracked down and finely resolved on-the-fly. There

are robust non-local QC cluster-based methods [16, 20] which do not explicitly differentiate

between atoms and continuum degrees of freedom and make a seamless transition from

full atomistics to the coarse-grained atomistic description — these methods are designed for

automatic adaptability and do not suffer from ghost-force issues (refer to the brief review in

Section 1.1). However, automatic adaptability itself can be tricky in random alloys since it has

been established by the solute-strengthening theory [32] that solute fluctuations beyond the

dislocation core contribute significantly to the yield stress of the alloy. Therefore retaining

all the necessary fluctuations in an automatic adaptability scheme for random alloy would

basically mean doing full atomistics, when the dislocation network gets, even moderately,

dense — for instance, the dislocation network beneath an indenter. However there is a way to

circumvent this problem and use Method 2 in an automatic adaptability scheme with the non-

local QC methods. The non-local QC methods [16, 20] define the total energy functional for

the multiscale problem by summing over the energies of selected sampling atoms multiplied

by some weights (refer to Section 1.1 for more details on the methods). The weight associated

with any sampling atom is related to the number of real atoms the former is replacing as a part

of the homogenization protocol. In a simulation with dislocations, regions near the dislocation

core resolved to full atomistics must have all explicit real atomtypes of the random alloy, while

the sampling atoms in the coarse-grained regions must be average atoms (as proposed in

Method 2 in Chapter 3). The missing compositional fluctuations in the coarse-grained region

can be incorporated in the total energy functional of the multiscale problem, as energy of

interaction of the misfit volume ∆V of a solute at any lattice site with the pressure p at that

site — which is p∆V under linear elasticity assumption. The pressure p is obtained from the

degrees of freedom of the multiscale problem using interpolation functions. In this way, we

can perform coarse-graining with average atoms, yet retaining the compositional fluctuations
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in the coarse-grained regions. The advantage of such an automatic adaptation scheme in an

energy-based setting over force-based CADD is that the mobility of all the dislocations in the

problem domain will be controlled by atomistics and not a phenomenological mobility law.

This idea connects concepts from atomistic-continuum coupling and solute-strengthening

theory. The proposed idea remains to be implemented and examined for accuracy and must

be validated with multiscale problems like indentation.

In Chapter 4, the solute strengthening theory under linear elasticity assumption has been

discussed in the context of anisotropic elasticity. An important outcome of the analysis is that

the isotropic theory of Varvenne et. al with Voigt-averaged elastic constants agrees well with

the anisotropic theory over a range of anisotropy ratios and dislocation core structure. The

Chapter also reports the normalized results for the isotropic theory. However the analysis is

specific to edge dislocations in fcc alloys. It would be interesting to study other dislocation

orientations in fcc alloys. The 60◦ dislocation in fcc is particularly noteworthy. When the

dislocation line is at 60◦ to the full Burgers vector, the leading Shockey partial is purely edge of

magnitude b/
p

3 while the trailing Shockley partial is mixed with a larger screw component

of magnitude b/2 and a smaller edge component of magnitude b/(2
p

3). Since only edge

dislocations interacts with dilatational solutes for the isotropic model, it would be interesting

to study the solute-strengthening for the asymmetric Burgers vector distribution of the 60◦

dislocation in fcc.

The theory of solute-strengthening has been extended to include solute-solute interactions.

Only three test cases were studied as a part of this thesis, out of which two were high- and

medium- entropy alloys. There are a lot of other high-entropy alloy families where solute-

solute interactions can play a dominant role. For example, Ref. [147] used isotropic reduced

model of the strengthening theory to study strengthening in Au-Cu-Ni-Pd-Pt family of HEAs

and the predictions do not match experiments. It might be possible that solute pair interaction

energies have a notable contribution to strengthening in these alloys. Another example is the

NiCoCr system, where a strong Cr-Cr repulsion has been reported both experimentally and

via first-principles calculations [41, 42].

Finally the thesis has made the first attempt in developing a general theory of solute-strengthening

accounting for short-range order (SRO). Expressions predicting average strengthening, unique

to SRO, has been derived in terms of effective pair potentials and Warren-Cowley SRO parame-

ter. Both of the inputs mentioned above are unavailable experimentally, so the future plan is to

calculate them via first principles and Monte-Carlo simulation for different multicomponent

alloys and then use these inputs for predicting average strengthening. The new theory is

also incomplete since the energy fluctuation quantities needed to predict local strengthening

due to dislocation pinning in favourable solute environments are expressed in terms bond

energies, which are irrelevant for alloys described by semi-empirical potentials or by first

principles. So it is vital to express the energy fluctuation quantities in terms of interaction

energies, which is an area for future study.
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A Appendix

A.1 Slip density in fcc elements

In elements having an fcc crystal structure of lattice parameter a, the prevailing a/2 < 110 >
dislocations gliding on the {111} planes dissociate into two mixed a/6 < 112 >-type Shockley

partial dislocations bp,1 and bp,2. The partials are separated by an intrinsic stable stacking

fault of energy γssf. The separation distance is determined by a balance between the repulsive

elastic force between the partials and the attractive configurational force due to the stacking

fault.

The cores of the Shockley partials are not delta-functions; the Burgers vector is spread along

the glide plane over some range of atoms. The most widely-used model for describing the

Burgers vector density of dislocation cores is the Peierls-Nabarro (P-N) model [102]. Under

certain simplifications of the generalized stacking fault energy curve, the P-N model predicts a

Lorentzian form of Burgers vector density as b
π

ζ
x2+ζ2 where ζ characterizes the width. Analysis

shows that ζ∼ 1/γusf where γusf is the unstable stacking fault energy. However, the computed

values of ζ for partial cores are typically about 1/2 those observed in simulations of atomistic

dislocation cores [148]. Here, we show that a Gaussian function provides a better description

of the plastic displacements associated with the atomistic dislocation core structure.

The Burgers vector distribution is the plastic slip distribution along the glide plane. The plastic

slip is not the same as the total shear strain, due to the additional elastic shearing. In the

centers of the partial cores of the dislocation, the elastic shearing is indeed small and the use

of elasticity questionable. Away from the centers of the partial cores, the shear distribution is

composed of both plastic and elastic contributions, and the elastic contributions stem from

the elastic fields of the plastic slip distribution along the entire slip plane.

We have examined the slip distribution of fully-relaxed atomistic edge dislocation cores for Al,

Ni, and Cu as predicted by widely-used interatomic potentials [149, 150]. Specifically, the core

structure is created in the standard manner. In an initial cylindrical sample of fcc crystal of

radius 100b with orientation x= (Burgers vector and glide direction {110}), y = (normal to the
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slip plane {111}), z = (dislocation line direction {112}), we impose the anisotropic displacement

field corresponding to a Volterra edge dislocation lying along the z axis of the cylinder with the

cut-plane for slip lying along the (x-y) slip plane in the region (x < 0, y = 0). The displacements

of a thin annular region of atoms on the outer boundary of the cylinder are held fixed at the

Volterra solution and all interior atoms are then relaxed to their equilibrium positions to create

the dissociated dislocation. The displacement u(x) of every atom away from its initial fcc

position is then measured. We focus on the atoms in the planes just above and just below the

slip plane, and denote their positions by the coordinate xi along the glide plane direction. The

difference in shear displacements across the slip plane is computed by finite differences in the

discrete system as
D∆u

Dx

∣∣∣∣
(xi+xi+1)/2

= ∆u(xi+1)−∆u(xi )

b/2
. (A.1)

Figure A.1 shows the computed D∆ux /Dx and D∆uz /Dx from the atomistic calculations for

the edge and screw components respectively of a edge full dislocation in Al, Ni and Cu.

We are interested only in the plastic displacements, which are the discrete atomistic counter-

parts of the slip density ∂b/∂x. We consider the measured shear strains D∆ux /(b/
p

1.5) > 0.01

(corresponding to D∆ux /Dx > 0.016) to be dominated by the plastic displacements. We thus

fit the measured D∆u/Dx in this region to a sum of two Gaussians (Equation 4.15) as

D∆u

Dx
≈ 1p

2πσ2

(
bp,1e−

(x+d/2−xc )2

2σ2 +bp,2e−
(x−d/2−xc )2

2σ2

)
. (A.2)

d/b is taken as the distance between the peaks in D∆ux /Dx and the average or center position

xc of the full dislocation is taken as the middle of the peaks. σ/b is then the only fitting

parameter, computed by a least-squares method, considering both components ∂bx
∂x and ∂bz

∂x .

Figure A.1 shows the best-fit results using dislocations symbols⊥⊥⊥ and the fitted value of σ/b is

shown in each figure. The fits are generally good, with root-mean-square error below ∼ 0.01.

We note that fits to other types of functions, viz. logistic, Lorentzian, Gaussian-Lorentzian

mixture, are not significantly better or worse in this region.
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Figure A.1 – Analysis of the dislocation
core: atomistics, Gaussian fit and relative
displacement gradient due to the fitted
Gaussian core. The blue stars F are the
D∆u/Dx computed from atomistic dis-
placements near the dislocation core, the
dislocations ⊥⊥⊥ are from bimodal Gaussian
fit to the atomistic D∆u/Dx (explained
in the text) and the red filled circles •
are the D∆utot/Dx computed from the
anisotropic displacement field due to the
dislocations ⊥⊥⊥ (also explained in the text).

In the small shear strain region < 1%, Figure A.1 shows that the best-fit Gaussian plastic slip

is significantly smaller than the total atomistic slip. This discrepancy may have tended to
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movitate the use of the Lorentzian function of the original PN model. However, in this regime,

the total shear strains are dominated by the elastic shear strains caused by the Gaussian

distribution of plastic slip. To demonstrate this, we compute the total anisotropic displace-

ments utot(x) at every atomic site generated by the best-fit bimodal Gaussian Burgers vector

distribution using the Stroh formalism and the superposition principle to obtain the elastic

contribution, similar to Equation 4.5. The quantity D∆utot/Dx is then computed from utot

using finite differences as above. Figure A.1 shows the total slip distribution (elastic plus

plastic) in the region outside the cores, and the results closely match the full atomistic results.

The two-Gaussian model thus captures both the underlying plastic slip distribution and the

surrounding elastic shearing for dissociated fcc dislocations.

Atomistically-computed dislocation core structures require either DFT or atomistic inter-

atomic potentials. DFT can be performed on elemental metals but alloy studies automatically

include the response of the atoms to the random environment, preventing extraction of the

underlying structure of the average alloy. In this case, computation of GPFE curves together

with a double-Gaussian modeling of the dislocation core structure could be useful. Atomistic

potentials are available for a number of elements, and some alloy systems, but with the usual

caveats about accuracy relative to the real materials. For alloys, the average-atom potential [54]

can be created and used to examine the average core structure, but again relies on accuracy of

the underlying potentials for the elemental constituents and their interactions. Typical values

of σ are thus valuable. In Figure A.1, we find values 1.75 <σ/b < 2.25 for Al, Cu, and Ni. This

range is consistent with the range 1.5 <σ/b < 2.5 obtained by Varvenne et. al [4] for Fe-Ni-Cr

alloys. They then showed that σ/b = 1.5 provided good predictions for strength across a range

of alloys, and this value was then used in subsequent work. While the solute strengthening

does depend on σ/b, we thus remain consistent with previous work in suggesting the use of

1.5b in all fcc materials unless there is compelling evidence that a significantly different value

should apply (see Section 4.4).

A.2 Interaction energies, Effective Pair Interactions and Bond ener-

gies

Interaction energy of a solute pair separated by distance d , U i nt
x y (d), is the difference in system

energy between the systems, where the solute pair is separated by distance d and where they

have infinite(large) separation, embedded in an “average” medium.

U i nt
x y (d) = Ex y (d)−Ex y (∞) (A.3)

where Ex y (d) is the system energy where the solutes x and y are embedded in an average

medium and are separated by distance d (Here all the system energies are of systems with

same total number of atoms). The average medium is characterised by “average atoms”,

which are lattice sites where the associated energetics in averaged over random occupancy

of atomtypes conforming to the alloy compositon. Averaging can be performed explicitly
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over many random realizations, which is generally computation expensive depending on the

nature of the underlying interatomic interactions. Special quasi-random structures (SQS) can

be used instead of random realizations to expedite convergence of the average [69]. For pair

interatomic potentials, the averaging can be done analytically. Even for empirical potentials

like the Embedded-atom method (EAM) with a many-body term, an “average atom” potential

can be analytically formulated in a mean-field approach [54]. When the interaction potentials

are described via first-principles, Coherent Potential approximation[70] is used to describe the

average medium. Therefore the interaction energy is computable for all kinds of energetics

describing the interatomic interactions. Another computable energy quantity is the effective

pair interactions, V e f f
x y (d), which is defined as follows,

V e f f
x y (d) = Exx (d)+Ey y (d)−2Ex y (d) (A.4)

The effective pair potentials come out as pair-interaction terms while expressing the config-

urational energy of a random alloy to lowest order in the generalised perturbation method

framework and has been used to study phase stability in binary and high-entropy alloys[5, 71].

Since Exx (∞)+Ey y (∞)−2Ex y (∞) = 0, one can readily deduce the following relation between

effective pair interactions and interaction energies,

V e f f
x y (d) =U i nt

xx (d)+U i nt
y y (d)−2U i nt

x y (d) (A.5)

Note that the above relation holds true irrespective of the energetics describing the interatomic

interactions.

In the remainder of this Appendix section, we will be expressing the interaction energies and

effective pair potentials in terms of bond energies in a system where the energetics is decribed

by pair interatomic potentials — basically we will be deriving Equations 5.20 and 5.21 which

we will be using in Section 5.2 to express the energy fluctuation quantity σ2
∆Us−s

in terms of (i)

interaction energies and (ii) effective pair potentials.

In a system described with pair potentials, let the bond energy between two solutes x and y

at separation d be Ux y (d), between a solute x and average atom A be Ux A(d) and between

two average atoms be UA A(d). To study U i nt
x y (d) and V e f f

x y (d), we will first express the system

energy for any arrangement of atoms of types x, y and A on a lattice.

Let si be the site occupation variable for site i , such that,

si =


1 if x occupies site i

0 if A occupies site i

−1 if y occupies site i
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We now define three polynomials with si ,

Pi x = 1

2
si (1+ si ), Pi y =−1

2
si (1− si ), Pi A = 1− s2

i

One can easily recognise that polynomial Pi x equals 1 for site i occupied by x and 0 otherwise

and similar inferences can be drawn for Pi y and Pi A .

Energy of a given configuration {si } on N atomic sites is given by,

E({si }) = 1

2

∑
i , j

i 6= j

(
Pi x P j xUxx (

∥∥ri j
∥∥)+Pi y P j yUy y (

∥∥ri j
∥∥)+Pi AP j AUA A(

∥∥ri j
∥∥)

(Pi x P j y +Pi y P j x )Ux y (
∥∥ri j

∥∥)+(Pi x P j A+Pi AP j x )Ux A(
∥∥ri j

∥∥)+(Pi y P j A+Pi AP j y )Uy A(
∥∥ri j

∥∥)
)

(A.6)

where ri j is the vector from site i to site j . Let us denote U i j
x y = Ux y (

∥∥ri j
∥∥) for brevity. Therefore,

E({si }) = 1

2

∑
i , j

i 6= j

(
1

4
si s j (1+ si )(1+ s j )U i j

xx +
1

4
si s j (1− si )(1− s j )U i j

y y + (1− s2
i )(1− s2

j )U i j
A A

− 1

4
si s j

(
(1+ si )(1− s j )+ (1− si )(1+ s j )

)
U i j

x y +
1

2

(
si (1+ si )(1− s2

j )+ s j (1− s2
i )(1+ s j )

)
U i j

x A

− 1

2

(
si (1− si )(1− s2

j )+ s j (1− s2
i )(1− s j )

)
U i j

y A

)
(A.7)

Equation A.7 can be simplified as,

E({si }) = 1

2

∑
i , j

i 6= j

(
s2

i s2
j

(
1

2
U i j

x y +U i j
A A −U i j

x A −U i j
y A + 1

4
U i j

xx +
1

4
U i j

y y

)

+ s2
i s j

(
1

4
U i j

xx −
1

4
U i j

y y −
1

2
U i j

x A + 1

2
U i j

y A

)
+ si s2

j

(
1

4
U i j

xx −
1

4
U i j

y y −
1

2
U i j

x A + 1

2
U i j

y A

)
+ si s j

(
1

4
U i j

xx +
1

4
U i j

y y −
1

2
U i j

x y

)
+ s2

i

(
1

2
U i j

x A + 1

2
U i j

y A −U i j
A A

)
+ s2

j

(
1

2
U i j

x A + 1

2
U i j

y A −U i j
A A

)
+ 1

2
si

(
U i j

x A −U i j
y A

)
+ 1

2
s j

(
U i j

x A −U i j
y A

)
+U i j

A A

)
(A.8)

Using Equation A.8 above for the energy of any configuration {si }, we will now derive the

system energies for specific configurations, namely Ex y (d), Exx (d) and Ey y (d) defined in

Equations A.3 and A.4.

If the configuration has one x atom and one y atom at separation d and the rest A atoms, then
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the system energy Ex y (d) is given by,

Ex y (d) =
(

1

2
Ux y (d)+UA A(d)−Ux A(d)−UY A(d)+ 1

4
Uxx (d)+ 1

4
Uy y (d)

)
−

(
1

4
Uxx (d)+ 1

4
Uy y (d)− 1

2
Ux y (d)

)
+N

∑
j

j 6=i0

(
1

2
U i0 j

x A + 1

2
U i0 j

y A −U i0 j
A A

)
︸ ︷︷ ︸

S

+ N

2

∑
j

j 6=i0

U i0 j
A A

︸ ︷︷ ︸
E0

=Ux y (d)−Ux A(d)−Uy A(d)+UA A(d)+S +E0 (A.9)

Similarly, the system energy Exx (d) and Ey y (d) are given by,

Exx (d) =
(

1

2
U i j

x y +U i j
A A −U i j

x A −U i j
y A + 1

4
U i j

xx +
1

4
U i j

y y

)
+

(
1

2
U i j

xx −
1

2
U i j

y y −U i j
x A +U i j
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Assuming Ux y (∞) =Ux A(∞) =UA A(∞) = 0,

U i nt
x y (d) = Ex y (d)−Ex y (∞) =Ux y (d)−Ux A(d)−Uy A(d)+UA A(d). (A.12)
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Appendix A. Appendix

V e f f
x y (d) = Ex y (d)− 1

2
(Exx (d)+Ey y (d))

=Uxx (d)−2Ux A(d)+UA A(d)+S +S′+E0

+Uy y (d)−2Uy A(d)+UA A(d)+S −S′+E0

−2Ux y (d)+2Ux A(d)+2Uy A(d)−2UA A(d)−2S −2E0

=Uxx (d)+Uy y (d)−2Ux y (d) (A.13)

Note that Equations A.12 and A.13 are same as Equations 5.21 and 5.20 in the main text.

Also, one can easily verify from Equations A.12 and A.13, the relation (Equation A.5) between

interaction energies and effective pair potentials.
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